
Regional Research Institute Technical
Documents Regional Research Institute

8-27-2015

Object-Oriented Interindustry Systems: Proof of Concept Object-Oriented Interindustry Systems: Proof of Concept

Péter Járosi
West Virginia University, peter.jarosi@mail.wvu.edu

Randall Jackson
West Virginia University, randall.jackson@mail.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/rri_tech_docs

 Part of the Regional Economics Commons

Digital Commons Citation Digital Commons Citation
Járosi, Péter and Jackson, Randall, "Object-Oriented Interindustry Systems: Proof of Concept" (2015).
Regional Research Institute Technical Documents. 12.
https://researchrepository.wvu.edu/rri_tech_docs/12

This Article is brought to you for free and open access by the Regional Research Institute at The Research
Repository @ WVU. It has been accepted for inclusion in Regional Research Institute Technical Documents by an
authorized administrator of The Research Repository @ WVU. For more information, please contact
researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/rri_tech_docs
https://researchrepository.wvu.edu/rri_tech_docs
https://researchrepository.wvu.edu/rri
https://researchrepository.wvu.edu/rri_tech_docs?utm_source=researchrepository.wvu.edu%2Frri_tech_docs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1307?utm_source=researchrepository.wvu.edu%2Frri_tech_docs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/rri_tech_docs/12?utm_source=researchrepository.wvu.edu%2Frri_tech_docs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Regional Research Institute
West Virginia University

Technical Document Series

Object-Oriented Interindustry Systems:
Proof of Concept

Péter Járosi and Randall Jackson

RRI TechDoc 2015-03

Date submitted: August 27, 2015
Key words/Codes: Object oriented modeling, Interindustry

Systems, Python; C67, C68, C63, R15

Object-Oriented Interindustry Systems: Proof
of Concept

Péter Járosi∗

Randall Jackson†

August 27, 2015

Abstract

This document provides a proof-of-concept demonstration of an
object-oriented approach to modeling an inter-industry system. The
example framework uses a small CGE model based on a three-sector
social accounting matrix (SAM). The economy is shocked by changing
total factor of productivity in the production function, the new equi-
librium is determined in classical CGE fashion, and the original SAM
is updated to conform to the new equilibrium solution. In this way,
the efficiency of the Object-oriented modeling (OOM) approach can
be emphasized in the context of the computational simulations of in-
terindustry systems by a simplified CGE example written in Python.
Since this example implemented as only a possible application of the
OOM, the proof of the concept should be interpreted as a particular
but among the most difficult economic modeling cases.

∗Innovation and Economic Growth Research Group, University of Pécs. E–mail:
jarosip@ktk.pte.hu
†Director, Regional Research Institute, and Professor, Department of Geology and

Geography, West Virginia University. E–mail: Randall.Jackson@mail.wvu.edu

2/15

1 The Problem Context

This document presents the first practical example of a response to Jack-
son’s 1994 call for object-oriented modeling in the social sciences, and re-
gional science in particular Jackson (1994). The problem context is pre-
sented in two ways. First, by keeping example problem small we are able to
present the entire problem domain in two spreadsheet pages. Of course, one
of the advantages of the object-oriented approach is that additional sectors
could be added easily. The first page is used to calibrate the classical 3×3
CGE, and the second page is where the shocks are entered and solutions
are computed and displayed. The object-oriented proof-of-concept is demon-
strated using the Python programming language, and comprises two files:
CDIO Economy.py and Example3×3OfCDIO.py.

2 A Brief Description of the Model

There is a SectorClass that defines the attributes and behaviors of the indus-
try sectors. There are three instances: agriculture, manufacturing, services.
The industries are characterized by constant scale Cobb-Douglas production
functions. Capital may be substituted for labor as a function of factor prices.
Labor supply and capital supply are fixed, and there is are labor and capital
demand functions. The numéraire is the price of the capital. There is no
need to check the capital market equilibrium because of Walras Law.

There is a Cobb-Douglas type household class and a StoneGeary house-
hold class derived from the parent Cobb-Douglas household class. The
parent-child relationship demonstrates the inheritance and polymorphism
features of the object-oriented approach. There are no savings, income taxes,
etc., in this simplified model.

The final class is the simplified market equilibrium class, which imple-
ments a Newton tangent method based solver to determine the market equi-
librium. The figure below is a graphical characterization of the tangent
method.

3/15

The Excel spreadsheet file and the two Python files are provided as a
supplement to this Technical Document in compressed (.zip) format.

3 The Essence of the Object Oriented Mod-

eling Approach

By the example described above we illustrate the object-oriented modeling
approach. This modeling framework came from computer science and soft-
ware programming languages, but its value extends beyond popular program-
ming techniques and data abstraction to other problem domains. Moreover,
it has the potential to become one of the most effective scientific methods
for conceptualizing problem domains in the field of economics, as a new way
of problem abstraction and reduction.

Because we can characterize virtually all of the salient elements of an
economy as object, we can develop powerful abstractions of economic en-
tities. In our CGE example, the households and the industrial sectors are
the objects. In computer programming languages an object is a collection
of attributes (data) and behaviors (or methods, typically implemented as
functions), so the almost perfect analogy becomes readily apparent. For an
economic object, we can collect not only data about the economic entities
but also behaviors, methods, etc. —whatever we can implement as a func-
tion inside the class which represents the group of the economic objects. For
example the operation of the industry can be described by its production

4/15

function, input cost shares, factor demand function, etc., and similarly the
behavior of the household can be defined by the commodity demand function
derived from a utility function.

A class in object oriented modeling is a construct that defines the struc-
ture of a set of objects all of which share common characteristics. It identifies
what attributes and behaviors objects of the class will have, and it can ad-
ditionally define default values for attributes and default functionality for
behaviors. The class, sometimes referred to as an object class, characterizes
the entities, but it exists as a construct and does not itself have an identity.
An object is an instance of a class, and it does have identity. There are
numerous real world examples. There is a class of real world objects that we
know as bicycle, for example, all of which have two wheels, a color, a seat,
etc. A bicycle is a type of thing, a construct without identity, whereas the
bicycle in your garage is a bicycle object, one that you can identify and that
has specific values for its attributes.

In our model there are two household classes (i.e., two types of house-
holds), one of which is derived from the other —the former is a subclass, and
one class for the industrial sectors. In the concrete model the three sectors
are manifested as the instances of the same class called “SectorClass”. They
inherit the structure of the SectorClass, and are assigned their attribute val-
ues during model calibration when they were instantiated by the constructor
“ init ” method. Later the values of the attributes can be changed as a re-
sult of the classes behaviors. It is also possible to provide access to selected
objects attribute values with set behaviors (e.g., bicycle.set color(red)). Our
program code has been divided into two parts. The first block contains the
code for the definition of the sectors class and the two types of the house-
holds. The second part is the specified example of the model.

The object-oriented programming literature identifies the primary char-
acteristics of this modeling approach: encapsulation, identity, classification,
aggregation, inheritance and polymorphism. Now we illustrate these princi-
ples in general and also in accordance with our specific economic problem.

5/15

3.1 Encapsulation

The combining of data and functions which operate on that data is the sub-
stance of the object-oriented modeling. We can imagine it as a capsule and
in this capsule we have all of its attributes and functions, encapsulation is
the essence of OOM. Encapsulation is essential to polymorphism, defined
below, in that behaviors with the same name in two different classes can
invoke different actions. In our model, both of the classes, the “SectorClass”
and the “HouseholdClass” have the “calcCommodityDemand” function with
exactly the same name, but each invokes a different behavior. Encapsulation
eliminates name conflict in the namespace of our model; because the names
belong to different classes, they are of different types. We use the “dot”
notation to implement the encapsulation principle.

3.2 Identity

A class is an invariant description of object structure, which means the class
is nothing but a construct from the viewpoint of the existing model unless
and until we create its instances calling the constructor method with different
parameter lists. Attributes of objects can change in their lifetimes. For ex-
ample, we can give a total factor productivity shock to the system increasing
the value of the “tfp” parameter of the sector instances. The identity of the
object remains the same, only the value of its attributes has been changed.

3.3 Classification

Conceptualizing the class hierarchy for the problem domain is the crucial mo-
ment of the abstraction process, and commences before writing any program
code. Without proper class definitions the model development can quickly
become a confused, chaotic, and possibly hopeless attempt. Sometimes it
is easy to find the common attributes and behaviors in the elements of the
model, for example see the class of the sectors in our example. In many other
cases it can be extremely difficult and can result a scientific break-through.
There are some graphical tools and methods that can help this thinking pro-
cess, and these are recommended and highly useful. Many computer drawing
and diagramming tools support object-oriented modeling.

6/15

3.4 Aggregation

Aggregation is a rarely cited essence of the object-oriented programming but
in the economic modeling it often becomes a pivotal step of the abstraction
process. Although composite objects are frequently used in economic sim-
ulations, how the attributes and functions of the lower level entities can be
aggregated is not a always a simple and straightforward question. The sim-
plified market equilibrium class may not be the most elegant answer for this
question in this context, but it is satisfactory for the proof-of-concept. We
are developing more sophisticated aggregations for the market types, solver
classes, etc. to supporting easily understandable modeling structures for the
open source collaboration we are currently initiating.

3.5 Inheritance

Inheritance can be interpreted through the relationship between the sub-
classes and superclasses. In the CGE example the household with the Cobb-
Douglas utility function (CD) is defined as the parent class (called as super-
class earlier) and the Stone-Geary type household (SG) was derived from it
as a child object (subclass). As the children inherit all of the of properties
from their parents, but redefine (overwrite) some and potentially add others.

3.6 Polymorphism

After declaring the subclass, some of its attributes and functions can be
overwritten and others can be left unchanged. In the case of the StoneGeary
household, the demand for commodities is different from the case of the
CobbDouglas household, which explains why the function “calcCommodity-
Demand” had to be overwritten according to the different utility function.
The “market equilibrium”object is indifferent to which type of households
are used, because the interfaces of the commodity demand functions are the
same, and the calculated demand can be obtained for the solver algorithm
without any changes in the code of the latter class. An object’s interface
provides other objects with access to its properties. As examlples, the set

7/15

and get functions are commonly used by external objects to set an object?s
attributes and to get the values of object attributes.

Of course, the example here is not the only one possible or correct way
to implement these two types of household. It is not even the simplest way,
which would be a trivial implementation where only the SG household has
been defined as a class, and the CD case can be used by the code of SG
with the zero values of the subsistence levels of consumption without using
any subclass definition. However, that example would not be suitable to
demonstrate inheritance and polymorphism. But there are a lot of possible
extensions of the model where a similar trivial approach would be impracti-
cal, for example suppose what if the production function should be changed
from Cobb-Douglas to CES. Since the Cobb-Douglas is the special case of the
CES, more accurately it is the limit of the CES function when the elasticity
of substitution approaches one in the limit, this is not a trivial case and the
modification of the model surely would be easier by the principle of poly-
morphism than programming some clever code into only one class definition.
Such clever coding solutions also tend to obfuscate the conceptual underpin-
nings of these modeling frameworks rather than clarify and make them more
transparent, which defeats the purpose of object oriented modeling in the
first place. A future technical documents will demonstrate the example of
the replacement of the production function.

4 Conclusion

Defining new classes in a programming language means that beyond using
the built-in types of the language the developer creates new user defined
types. In this way the new elements of the language or a new language al-
together can be invented according to the terminology of the given problem
domain as it was illustrated above by the CGE example. So we do not need
to think about integers, floats, vectors, matrices, etc. anymore but we can
operate with the terms of sectors, households, demand, supply, etc. when we
write the code of the model. Not only the name and the attributes of the
new entity can be defined by this approach but its behaviors, functions etc.
can be bound together into one entity. Our longer term goal is to generalize
and extend the modeling framework and the Python language for many spe-

8/15

cial purposes: including interindustry systems, environment problems, etc.,
energy technology transitions, water quantity and water quality issues, and
more.

Supporting Algorithm(s)/Code

The contents of the Python files are listed below, but we recommend that if
you plan to use this code, you extract the files from the zip file that accom-
panies this document to ensure proper formatting.

CDIO Economy.py

#I n i t i a l i z e a s e c t o r wi th the Leon t i e f c o e f f i c i e n t s and the
#parameters o f the Cobb−Douglas product ion func t i on

def i n i t (s e l f , indexOfThisSector , expOnInterGoods ,
expOnFactors , g ivenFactorSupply) :
#The o r d i n a l i t y o f t h i s s e c t o r in the input−output t a b l e
s e l f . ordSect = indexOfThisSector
#The c a r d i n a l i t y o f the s e c t o r s in the input−output t a b l e
s e l f . cardSect = len (expOnInterGoods)
#The c a r d i n a l i t y o f the f a c t o r s in the product ion func t i on
s e l f . cardFact = len (expOnFactors)
#We suppose the cons i s t ency o f the SAM
s e l f . t o ta lOut l ay s = sum(expOnInterGoods) + sum(expOnFactors)
s e l f . nominalOutput = s e l f . t o ta lOut l ay s
s e l f . p r i c e Index = 1.00
s e l f . realOutput = s e l f . nominalOutput / s e l f . p r i c e Index
#Ca l i b r a t e the column vec to r o f the c o e f f i c i e n t s in the
#input−output t a b l e
s e l f . c o e f f i c i e n t s = [expOnInterGoods [i] / s e l f . t o ta lOut l ay s \
for i in range (s e l f . cardSect)]
#Ca l i b r a t e the parameters (Pa r t i a l e l a s t i c i t i e s and t f p)
#of the Cobb−Douglas product ion func t i on
s e l f . e l a s t i c i t i e s = [expOnFactors [i] / sum(expOnFactors) \
for i in range (s e l f . cardFact)]
#The i n i t i a l va lue o f the t f p (t o t a l f a c t o r o f p r o d u c t i v i t y)
denominator = 1 .00
for i in range (s e l f . cardFact) :

denominator ∗= givenFactorSupply [i]∗∗ s e l f . e l a s t i c i t i e s [i]
s e l f . t f p = s e l f . realOutput / denominator

9/15

s e l f . f a c t o r P r i c e = [expOnFactors [i] / g ivenFactorSupply [i] \
for i in range (s e l f . cardFact)]
#In the case o f the c a l i b r a t i o n :
s e l f . i n i t i a lVaPerUn i t = 1 .00 − sum(s e l f . c o e f f i c i e n t s)
s e l f . currentVaPerUnit = s e l f . i n i t i a lVaPerUn i t
s e l f . f ac torSupp ly = givenFactorSupply
#s e l f . factorDemand = givenFactorSupp ly
s e l f . factorDemand = [s e l f . e l a s t i c i t i e s [i] ∗ \
s e l f . currentVaPerUnit ∗ s e l f . realOutput / s e l f . f a c t o r P r i c e [i] \
for i in range (s e l f . cardFact)]
#edf meaning : e xce s s demand o f f a c t o r s
s e l f . ed f = [s e l f . factorDemand [i] − s e l f . f ac torSupp ly [i] \
for i in range (s e l f . cardFact)]
#Ca lcu l a t e the i n i t i a l in t e rmed ia t e demand o f commodities
s e l f . commodityDemand = [s e l f . c o e f f i c i e n t s [i]∗ s e l f . realOutput \
for i in range (s e l f . cardSect)]

def calcVaPerUnit (s e l f , p r i c e sOfFac to r s) :
#Ca lcu l a t e the new Value Added per Unit depending from
#the p r i c e s o f f a c t o r s
s e l f . f a c t o r P r i c e = pr i c e sOfFac to r s
numerator = 1.00
denominator = s e l f . t f p
for i in range (s e l f . cardFact) :

numerator ∗= pr i c e sOfFac to r s [i] ∗∗ s e l f . e l a s t i c i t i e s [i]
denominator ∗= s e l f . e l a s t i c i t i e s [i] ∗∗ s e l f . e l a s t i c i t i e s [i]

s e l f . currentVaPerUnit = numerator / denominator
return s e l f . currentVaPerUnit

def calcFactorDemand (s e l f , p r i c e sOfFactor s , givenRealOutput) :
#In the Cobb−Douglas product ion f u c t i on the r e are
#s u b s t i t u t i o n s between the f a c t o r s
s e l f . calcVaPerUnit (p r i c e sOfFac to r s)
s e l f . realOutput = givenRealOutput
s e l f . factorDemand = [s e l f . e l a s t i c i t i e s [i] ∗ \
s e l f . currentVaPerUnit ∗ s e l f . realOutput \
/ pr i c e sOfFac to r s [i] for i in range (s e l f . cardFact)]
return s e l f . factorDemand

def calcExcessDemandOfFactors (s e l f , p r i c e sOfFactor s ,
givenRealOutput) :
s e l f . calcFactorDemand (pr i ce sOfFactor s , givenRealOutput)
s e l f . ed f = [s e l f . factorDemand [i] − s e l f . f ac torSupp ly [i] \
for i in range (s e l f . cardFact)]
return s e l f . ed f

10/15

def calcCommodityDemand (s e l f , givenRealOutput) :
#In the Leon t i e f framework product ion the demand
#of commodities are independent
s e l f . realOutput = givenRealOutput
s e l f . commodityDemand = [s e l f . c o e f f i c i e n t s [i] ∗ \
s e l f . realOutput for i in range (s e l f . cardSect)]
return s e l f . commodityDemand

class HholdCobbDouglas :
#The parent o b j e c t o f the househo lds

def i n i t (s e l f , expOnFinalGoods) :
#I n i t i a l i z e the Cobb−Douglas u t i l i t y f unc t i on .
s e l f . d i sposable Income = sum(expOnFinalGoods)
#The c a r d i n a l i t y o f the d i f f e r e n t goods by
#the s e c t o r s in the consumption
s e l f . cardSect = len (expOnFinalGoods)
s e l f . setBetaParams (expOnFinalGoods)
s e l f . commodPrice = [1 . 0 0 for i in range (s e l f . cardSect)]
#Ca lcu l a t e the i n i t i a l f i n a l demand o f commodities
s e l f . commodityDemand = [s e l f . betaParams [i] ∗ \
s e l f . d i sposable Income / s e l f . commodPrice [i] \
for i in range (s e l f . cardSect)]

def setBetaParams (s e l f , r e sExpend i tures) :
#Ca l i b r a t e the be ta parameters o f the u t i l i t y f unc t i on
#by the r e s i d u a l income and expend i tu r e s
resIncome = sum(re sExpend i tures)
s e l f . betaParams = [re sExpend i tures [i] / resIncome \
for i in range (s e l f . cardSect)]

def calcCommodityDemand (s e l f , pricesOfGoods ,
g ivenDisposableIncome) :
#Ca lcu l a t e the f i n a l demand o f hoseho ld s
s e l f . d i sposable Income = givenDisposableIncome
s e l f . commodityDemand =[s e l f . betaParams [i] ∗ \
s e l f . d i sposable Income / pricesOfGoods [i] \
for i in range (s e l f . cardSect)]
return s e l f . commodityDemand

class HholdStoneGeary (HholdCobbDouglas) :
#The c h i l d o b j e c t o f the househo lds

11/15

def i n i t (s e l f , expOnFinalGoods , subs i s tenceCons) :
#I n i t i a l i z e the Stone−Geary u t i l i t y f unc t i on .
HholdCobbDouglas . i n i t (s e l f , expOnFinalGoods)
s e l f . subCons = subs i s tenceCons
s e l f . resExps = [expOnFinalGoods [i] − subs i s tenceCons [i] \
for i in range (s e l f . cardSect)]
s e l f . setBetaParams (s e l f . resExps)

def calcCommodityDemand (s e l f , pricesOfGoods ,
g ivenDisposableIncome) :
#Ca lcu l a t e the f i n a l demand o f hoseho ld s
s e l f . d i sposable Income = givenDisposableIncome
s e l f . r e s idua l Income = givenDisposableIncome − \
sum([pr icesOfGoods [i]∗ s e l f . subCons [i] \
for i in range (s e l f . cardSect)])
s e l f . commodityDemand =[s e l f . subCons [i] + s e l f . betaParams [i] \
∗ s e l f . r e s idua l Income / pricesOfGoods [i] \
for i in range (s e l f . cardSect)]
return s e l f . commodityDemand

Example3x3OfCDIO.py

#A 3 s e c t o r s example o f the Input−output economy
#with Cobb−Douglas product ion func t i on
#ver s i on 0.3 beta , Aug , 2015.
from CDIO Economy import SectorClass , \
HholdCobbDouglas , HholdStoneGeary
import numpy as np

class Simpl i f i edEqui l ibr iumOfMarkets :

def i n i t (s e l f , indexOfLabor , l i s t O f S e c t o r s , l i s tO fHho ld s) :
#The index o f the Labor in the l i s t o f the Factors
s e l f . i o l = indexOfLabor
#The c a r d i n a l i t y o f the s e c t o r s in the input−output t a b l e
s e l f . ca rdSec t s = len (l i s t O f S e c t o r s)
s e l f . s e c t o r s = l i s t O f S e c t o r s
#The c a r d i n a l i t y o f the househo lds
s e l f . cardHhols = len (l i s tO fHho ld s)
s e l f . hholds = l i s tO fHho ld s
#The accuracy and the s t ep op t i ons o f the s o l v e r
s e l f . solvOptTolFun = 0.000001
s e l f . solvOptTolX = 0.0000001
s e l f . c o e f fMat r i x = np . matrix . t ranspose (np . matrix

12/15

([s e l f . s e c t o r s [i] . c o e f f i c i e n t s
for i in range (s e l f . ca rdSec t s)]))
s e l f . l e o n t i e f I n v e r s e = np . l i n a l g . inv (np . i d e n t i t y
(s e l f . ca rdSec t s) − s e l f . c o e f fMat r i x)
#For debugg ing only
#pr in t (s e l f . l e o n t i e f I n v e r s e)

def calcTheNewRealOutput (s e l f) :
tota l Income = sum([np . dot (s e l f . s e c t o r s [j] . f a c t o r P r i c e ,
s e l f . s e c t o r s [j] . f ac torSupp ly)
for j in range (s e l f . ca rdSec t s)])
rowVectorOfVaPerUnit = np . matrix ([s e l f . s e c t o r s [j] .
calcVaPerUnit (s e l f . s e c t o r s [j] . f a c t o r P r i c e)
for j in range (s e l f . ca rdSec t s)])
rowVectorOfCommPrices = np . dot (rowVectorOfVaPerUnit ,
s e l f . l e o n t i e f I n v e r s e)
pricesOfGoods = np . array (rowVectorOfCommPrices) . \
f l a t t e n () . t o l i s t ()
colVectorOfFinalDemand = np . matrix . t ranspose (np . matrix
([s e l f . hholds [0] . calcCommodityDemand
(pricesOfGoods , tota l Income)]))
colVectorOfRealOutput = np . dot (s e l f . l e o n t i e f I n v e r s e ,
colVectorOfFinalDemand)
realOutput = np . array (colVectorOfRealOutput) . \
f l a t t e n () . t o l i s t ()
for j in range (s e l f . ca rdSec t s) :

s e l f . s e c t o r s [j] . calcExcessDemandOfFactors (
s e l f . s e c t o r s [j] . f a c t o r P r i c e , realOutput [j])

def stepTowardEquil ibrium (s e l f , indexOfSector) :
i = indexOfSector
i f abs (s e l f . s e c t o r s [i] . ed f [s e l f . i o l]) > s e l f . solvOptTolFun :

l a s t F a c t o r P r i c e = s e l f . s e c t o r s [i] . f a c t o r P r i c e [s e l f . i o l]
tempFactorPrice = s e l f . s e c t o r s [i] . f a c t o r P r i c e [s e l f . i o l] \
+ s e l f . solvOptTolX
lastExcessDemandOfFactors = s e l f . s e c t o r s [i] . ed f [s e l f . i o l]
s e l f . s e c t o r s [i] . f a c t o r P r i c e [s e l f . i o l] = tempFactorPrice

s e l f . calcTheNewRealOutput ()
tempExcessDemandOfFactors = s e l f . s e c t o r s [i] . ed f [s e l f . i o l]

nextFactorPr ice = l a s t F a c t o r P r i c e − s e l f . solvOptTolX ∗ \
lastExcessDemandOfFactors \
/ (tempExcessDemandOfFactors−lastExcessDemandOfFactors)

13/15

#Error hand l ing
i f nextFactorPr ice <= 0 . 0 0 :

nextFactorPr ice = l a s t F a c t o r P r i c e / 2 .00
#Set the new FactorPrice
s e l f . s e c t o r s [i] . f a c t o r P r i c e [s e l f . i o l] = nextFactorPr ice

s e l f . calcTheNewRealOutput ()
nextExcessDemandOfFactors = s e l f . s e c t o r s [i] . ed f [s e l f . i o l]

#Debugging the va l u e s o f the most important v a r i a b l e s
#during the i t e r a t i o n proces s
#pr in t (” s e c t o r ” , i , s e l f . s e c t o r s [i] . f a c t o rPr i c e)
#pr in t (s e l f . s e c t o r s [i] . f ac torSupp ly , s e l f . s e c t o r s [i] .
#factorDemand)
#pr in t (lastExcessDemandOfFactors ,
#nextExcessDemandOfFactors)
#pr in t (””)

#I n i t i a l i z e the s e c t o r in s t ance s (Index in the IO tab l e ,
#[Expendi tures on Intermdia te Goods] , \
#[Expendi tures on Factors] ,
#[Factor Supp l i e s])

a g r i c u l t = Sec to rC la s s (0 , [256466 .975822654 , 408396.165980749 , \
311743 .90414051] , \
[532904 .12448497 , 431069 .657967317] , \
[3 00000 . 00 , 431069 .657967317])

manufact = Sec to rC la s s (1 , [532853 .858444792 , 355800.894077304 , \
608714 .436575474] , \
[1024107 .22949434 , 1421295 .81744353] , \
[2 00000 . 00 , 1421295 .81744353])

s e r v i c e s = Sec to rC la s s (2 , [378117 .307470861 , 785721.936621465 , \
540607 .901795493] , \
[1654889 .68703088 , 1112063 .10268159] , \
[3 00000 . 00 , 1112063 .10268159])

t h r e e S e c t o r s = [a g r i c u l t , manufact , s e r v i c e s]
#I n i t i a l i z e the househo ld in s tance ([Expendi tures on Fina l Goods])
cdHhold = HholdCobbDouglas ([773142 .686657892 , 2392853.23935591 , \

3010333 .69308882])
sgHhold = HholdStoneGeary ([773142 .686657892 , 2392853.23935591 , \

3010333 .69308882] , \
[773142 .686657892/2 .00 , 2392853 .23935591/3 .00 , \
3010333 .69308882/4 .00])

14/15

#oneHhold = [cdHhold]
oneHhold = [sgHhold]

#I n i t i a l i z e the in s tance o f the S imp l i f i edEqu i l i b r iumOfMarke t s
#lmdEqu means l a bo r market dr i ven e qu i l i b r i um
lmdEqu = Simpl i f i edEqui l ibr iumOfMarkets (0 , th r e eSec to r s , oneHhold)
print (” Before the shock : (s ee the CalibrationOfThe3x3Cge shee t !) ”)
print (” S e c t o r a l t o t a l f a c t o r o f p r o d u c t i v i t y : ”)
print ([lmdEqu . s e c t o r s [j] . t f p for j in range (lmdEqu . cardSec t s)])
print (”Real Output : ”)
print ([lmdEqu . s e c t o r s [j] . realOutput for j in range (lmdEqu . cardSec t s)])

#Give t f p shocks in t o a l l o f the s e c t o r s
#Increase the the t o t a l f a c t o r o f p r o d u c t i v i t y
#(a g r i c u l t +4%, manufact +5%, s e r v i c e s +6%)
for i in range (lmdEqu . cardSec t s) :

lmdEqu . s e c t o r s [i] . t f p = lmdEqu . s e c t o r s [i] . t f p ∗ (1 . 0 4
+ f loat (i)/100)
lmdEqu . s e c t o r s [i] . calcExcessDemandOfFactors (lmdEqu . s e c t o r s [i] .
f a c t o r P r i c e , lmdEqu . s e c t o r s [i] . realOutput)

print
#Conro l l the maximum number o f i t e r a t i o n s
solvOptMaxIter = 0
while (max([abs (lmdEqu . s e c t o r s [j] . ed f [0]) for j in \
range (lmdEqu . cardSec t s)]) > lmdEqu . solvOptTolFun) \
and (solvOptMaxIter < 1000) :

for i in range (lmdEqu . cardSec t s) :
lmdEqu . s e c t o r s [i] . calcExcessDemandOfFactors (
lmdEqu . s e c t o r s [i] . f a c t o r P r i c e , lmdEqu . s e c t o r s [i] . realOutput)
lmdEqu . stepTowardEquil ibrium (i)
#for debugg ing only :
#pr i n t (lmdEqu . s e c t o r s [i] . f a c t o rPr i c e)
#pr in t (lmdEqu . s e c t o r s [i] . ed f)

solvOptMaxIter += 1
print (” After the shock : (s ee the Solut ionOfTheClass ic3x3Cge shee t !) ”)
print (”Number o f i t e r a t i o n s : ” , solvOptMaxIter)
print (” S e c t o r a l t o t a l f a c t o r o f p r o d u c t i v i t y : ”)
print ([lmdEqu . s e c t o r s [j] . t f p for j in range (lmdEqu . cardSec t s)])
print (”Real Output : ”)
print ([lmdEqu . s e c t o r s [j] . realOutput \
for j in range (lmdEqu . cardSec t s)])

15/15

References

Jackson, R. (1994). Object-oriented modeling in regional science: an advo-
cacy view. Papers in Regional Science, 73(4):347–367.

	Object-Oriented Interindustry Systems: Proof of Concept
	Digital Commons Citation

	tmp.1536256276.pdf.k7U40

