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Abstract. We propose kernel-based estimators for the components of a partially linear regression in a triangular system
where endogenous regressors appear both in the linear and nonparametric components of the regression. Compared
with other estimators currently available in the literature, e.g. the sieve estimators proposed in Ai and Chen (2003)
or Otsu (2011), our estimators have explicit functional form and are much easier to implement. They rely on a set of
assumptions introduced by Newey et al. (1999) that characterize what has become known as the “control function”
approach for endogeneity in regression. We explore conditional moment restrictions that make this model suitable for
additive regression estimation as in Kim et al. (1999) and Manzan and Zerom (2005). We establish consistency and
\/n asymptotic normality of the estimator for the parameters in the linear component of the model, give a uniform
rate of convergence, and establish the asymptotic normality for the estimator of the nonparametric component. In
addition, for statistical inference, a consistent estimator for the covariance of the limiting distribution of the parametric
estimator is provided. A small Monte Carlo study sheds light on the finite sample performance of our estimators and
an empirical application illustrates their use.
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1 Introduction

There exists a rapidly growing literature on the specification and estimation of semiparametric and nonparametric
regression models with endogenous regressors.! This results from the understanding that fully specified parametric
models generally lead to inconsistent estimators and faulty inference due to a high probability of model misspecifi-
cation. In addition, the problem of regressor endogeneity is widely encountered in, but not restricted to, empirical
models in Economics, mostly due to measurement error, omitted regressors, or simultaneity that arises in agents’ op-
timization problems or the characterization of market equilibrium. Identification and estimation of these models have
been conducted under two broad approaches: the instrumental variable (IV) approach (see, e.g., Newey and Powell,
2003; Ai and Chen, 2003; Otsu, 2011) or the control function (CF) approach (see, e.g., Newey et al., 1999; Pinkse,
2000; Blundell and Powell, 2003; Su and Ullah, 2008; Martins-Filho and Yao, 2012). As discussed in Newey et al.
(1999) and Blundell et al. (2013) the desirability of these approaches rests on the suitability of different, and gen-
erally non-nested sets of assumptions, rendering their choice largely dependent on the specific stochastic framework
encountered by the researcher.

It is now well known that following the IV approach is made difficult by the fact that, in this case, the non-
parametric IV regression is typically an ill-posed problem, leading to estimators that converge at slower rates when
compared to those obtained in the absence of endogeneity (see, e.g., Hall and Horowitz, 2005; Darolles et al., 2011;
Chen and Christensen, 2015). In addition, computation of these estimators is numerically difficult due to the fact that
they cannot be expressed by closed form algebraic expressions (see, e.g., Ai and Chen, 2003; Otsu, 2011). Alterna-
tively, following the CF approach normally leads to multi-stage estimation procedures, where nonparametric generated
regressors make it difficult to asymptotically characterize final stage estimators for both finite and infinite parameters
of interest (see, e.g., Newey et al., 1999; Pinkse, 2000; Hahn and Ridder, 2013).

In this paper, we contribute to the CF approach by considering the estimation of a partially linear regression
model where endogenous regressors appear in both the finite and infinite dimensional components of the model. Our
proposed estimators are all kernel based and, therefore, easy to implement from a computational perspective. In
addition, we obtain their consistency, give their asymptotic distributions, and provide estimators for their variances,
allowing for easy asymptotically based inference. Specifically, we consider the following partially linear triangular

model,

Y; = Bo+ Xy B+m(X1i, Z1:) + &, (1)
X; =I1(Z;) + U, (2)
E(S,') = O, E(Ui|Zi) = 07 E(Ei‘Zi, U,') = E(£i|Uj), fori= 1, LR /B (3)

I'See Chen and Qiu (2016) for a comprehensive review of the existing literature.



Y; is a scalar regressand, Zj; € RP11 is a subvector of Z; = (Z;,Z};) € RP" with Dy = Dy + D12, X1, Xo; are non-
overlapping subvectors of X; € RP2 of dimensions Ds; and D2y with Dy = Dy; + Dy, and € is an unobserved scalar
random error. The variables X; are taken to be endogenous in that E(€;|X;) # 0, and the variables Z; are exogenous as a
result of the moment conditions in (3). U; is a vector of unobserved random errors and IT: RPt — RP2 is an unknown
nuisance function. Our primary interest is in the estimation of the finite dimensional parameters ( fy S’ ) and the
infinite dimensional parameter m(-) in Equation (1). The partially linear structure of this equation reflects the often
assumed linearity with respect to some of the regressors while retaining the flexibility of a nonparametric structure for
other components of the regression. See, for motivation, Robinson (1988), Speckman (1988) and Hérdle et al. (2000).
For another parsimonious semiparametric specification see the single-index model in Birke et al. (2017).

Newey et al. (1999) proposed series estimators (power and splines) for a model where there is no intercept in
equation (1), i.e., By = 0 and the partially linear structure in (1) is generically modeled as g(X;,Z;;).> Otherwise, their
model is identical to ours. The fact that in their case By = 0 permits the relaxation of the assumption that E(g;) = 0,
and given that our partially linear structure is a restriction on g, their estimation method can be adapted to the model
described by (1)—(3) (see Section 6 of their paper). In Section 3 of this paper, we contrast the additional assumptions
they make to characterize some of the asymptotic behavior of their estimators with those we make to obtain similar
results.

Recently, Martins-Filho and Yao (2012) proposed kernel-based estimators for ( 5 8’ ) and m(-), but although
their estimators appear to have good finite-sample properties, they have failed to provide a characterization of their
asymptotic behavior. In fact, our theoretical work suggests that their estimators cannot be shown to be asymptotically
normally distributed under standard parametric and nonparametric normalizations, respectively (see details given in
Section 2). Alternatively, to our knowledge, besides the estimators proposed by Newey et al. (1999), there exist two
estimation procedures following the IV approach that can be used to estimate the parameters in Equation (1): the sieve
minimum distance estimator of Ai and Chen (2003) and the sieve conditional empirical likelihood estimator of Otsu
(2011). These estimators are based on the moment condition E(g;|Z;) = 0, which is different from those given in (3).
As mentioned above, strictly speaking, neither their condition nor the ones given in (3) are stronger than the other (see
Newey et al., 1999). However, under the additional restrictions that U; is independent of Z; and E(g;) = 0, the moment
restrictions in (3) imply that E(&;]Z;) = 0, making the estimators developed in their papers suitable for our model.?

As will be shown in Section 2 and 3, the estimators proposed in this paper have a number of desirable char-
acteristics. First, the estimator for the linear components of the semiparametric regression model given in (1) are
\/n asymptotic normal. Second, we provide consistency, give the uniform convergence rate, and establish asymptotic
normality, under standard nonparametric normalization, for the estimator of the nonparametric component in (1). In

addition, we provide a consistent estimator for the covariance of the limiting distribution of the parametric estimator,

2Qzabaci et al. (2014) also considered a model similar to that in Newey et al. (1999), but in their formulation T1(Z;), g(X;,Z;) and E(&;|U;) are
all additive nonparametric functions of each of their arguments.

31t should be noted that the estimators of Ai and Chen (2003) and Otsu (2011) apply to more general models than ours, since their use is not
constrained to the partially linear regression under the control function structure we adopt.



making our results directly usable for inference.

From a technical perspective, the results in this paper can be viewed as extensions of the asymptotic normality
results of Manzan and Zerom (2005) to the case of a partially linear regression model with generated regressors ap-
pearing in the parametric and nonparametric component. In this sense, our work is also related to Li and Wooldridge
(2002). Although the estimation procedure we consider is conceptually simple and easy to implement, its asymp-
totic characterization is non-trivial, requiring repeated analysis of U-statistics of high degree. This has been greatly
facilitated by results in Yao and Martins-Filho (2015), which are used frequently in our proofs. The ancillary re-
sults required to obtain our theorems are, to our knowledge, novel and can be used in other contexts where generated
regressors are encountered in various types of two stage kernel based estimators.

The rest of this paper is organized as follows. Section 2 describes the model in greater detail, considers identifi-
cation and the moment conditions used in estimation, and provides a detailed algorithm for estimation. Section 3 gives
asymptotic characterizations for our estimators and the assumptions we used to obtain our results. Where appropriate,
we contrast our assumptions with those in Newey et al. (1999). Section 4 contains a small Monte Carlo study that
sheds some light on the finite sample performance of our estimators and contrasts them to the series estimator proposed
by Newey et al. (1999). Section 5 gives an empirical application using our methods to study the aid-policy-growth
relationship, which has been the subject of much work in the Economic Development literature. Section 6 concludes.

All proofs are given in the Appendix.

2 Moment conditions, identification, and estimation

2.1 Moment Conditions

We start by deriving a collection of conditional moments that emerge from the model described by equations (1)—(3).
They are the bases for the estimators we propose in section 2.2. Given equations (2) and (3), we have that E(g]|X);,
Z;,U;) = B(&|Z;,U;) = E(&]U;), and E(X2|X1:,Zi, U;) = E(X2i|Z;, U;) = Xa;. Letting g(U;) = E(&|U;): RP2 — R, and
using (1), we can write

E(Y;[X1i,Z;,U;) = Bo+X3,B + m(X1i,Z1;) + g(Uj;). 4

Letting v; = Y; — E(Y;|Xy;,Z;, U;), we have

Yl_ﬁ(]_Xélﬁ :m(X1i,Z|,~)+g(U,~)+v,~, fori= 1,"',7’1, (5)

where, by construction, E(v;|Z;,U;) = 0. Note that if fy and B were known, and U; were observed, (5) could be
viewed as an additive nonparametric regression model, with regressand ¥; — By — X3,8. As is common in the additive

nonparametric literature (see, inter alia, Linton and Hérdle, 1996, Kim et al., 1999, Martins-Filho and Yang, 2007),



we assume that E(m(Xy;,Z;;)) = E(g(U;)) = 0, since each component in an additive nonparametric model can only
be identified up to an additive constant.*

Using a suitable “instrument” function, we now obtain moment conditions that motivate our estimator for 3y and
B. For simplicity, in what follows, we put W; = (X{;,Z};)’. As in Kim et al. (1999), we define the “instrument” function
asn; =n(W;,U;) = %, where fiy is the joint marginal density of elements in W;, fiy the marginal density of Uj,
and ¢ the joint density of W; and U;. Note that E(n(W;,U;)|W;) = 1, E(n(W;,U;)g(Ui)|W;) = 0, E(n(W;,U;)|U;) = 1

and E(1(W;,U;)m(W;)|U;) = 0. By pre-multiplying both sides of (5) by ;, and taking conditional expectations given

W; and U; we have, respectively,

E(ni(Yi = X5;8 — Bo) [Wi) =m(Wi),  E(mi(Yi—X3,8—Bo) |Ui) = g(Uy). (6)

It is apparent that if By and B were known, and U; were observed, m(W;) and g(U;) could be estimated based on the
moment conditions (6) using an estimated sequence {7);}}_, constructed with nonparametric density estimators of fi,
Jfu and ¢ evaluated at all data points. To address the fact that By and f are unknown, note that m(W;) and g(U;) can be
expressed as conditional expectations containing 3, By in (6). Substituting them back into (5) and rearranging, with
Bo = E(n:(Y; — X5,)). we have

Yi* :XZ*i/ﬁ""Vi; for i=1,---,n, Q)

where Y* = Y; —E(n;Y;|W;) — E(n:Y:|U;) + E(n:Y;), and X5; = X5 — E(n:iX0i|W;) — E(N:X2i|U;) + E(n:iX2i).
It is important to note that Equation (7) provides infinitely many moment conditions to estimate f3, since by pre-

multiplying by any arbitrary measurable function L(X};,Z;,U;), we still have E (L(X 11, Zi, Ui) vi

X]i,Zi,Ui) =0. Here,
L(X1;,Z;,U;) can be treated as a normalizing factor that should be suitably chosen to derive the asymptotic properties

of an estimator for 8. In our case, we choose L(Xy;,Z;,U;) = /T, and consider

1

VY = iXs B+ mivi,  for i=1,---,n. (8)

LettingY = (Y17. “’Y")/’X = (X17“ : 7Xn)/’Z: (Zlu tee 7Zn)/9 we write \/ﬁY* = \/ﬁX;ﬁ—"\/ﬁV, where Y* = (Y1*7' )

#As in Robinson (1988), we note that E (m(X;,Z;)) = 0 can be relaxed if we set fy = 0.



Y X5 = (X350, X5,)  v=(vi, -, v), /1T = diag{\/Mi}"_ |, and E(y/7;vi|X1;,Z;,U;) = 0. Note that since o =
E(n;(Y; — X5;B)) and given L(X1;,Z;,U;) = /i, we have E(n;Y*|W;) = E(n,Y*|U;) = E(n:X3;|Wi) = E(n:X5,|U;) = 0.
The choice of L(+) is critical in establishing the asymptotic properties of our estimators of By, 8, and m(-). Besides
using different estimators for the conditional expectations in Y;* and X;;, Martins-Filho and Yao (2012) failed to
suggest, or understand, the role of L(-) in obtaining asymptotic properties of the kernel-based estimators for this model.
In fact, a more careful investigation of the consequences of choosing such a normalizing function in establishing the
asymptotic properties of estimators for By, 8, and m(-) remains an open and important topic of study, as it also has a
direct impact on the structure of the variances of their asymptotic distributions.

We denote the additive components in Y;*, X5; and the corresponding error terms by m;(W;) = E(n:Y;|W;),
my(Wi) = E(n:iXoi|W;), m3(W;) = E(ni|W;) = 1, g1(U;) = E:Yi|Ui), §2(Ui) = E(MiXai|Ui), g3(Ui) = E(ni|Us) = 1,
ur = E(miYy), o = EMMiXai), vimti = MY — mi(Wh), vinai = NiXoi — mo(Wh), vinzi = Ni — 1, v = niYi — g1(U5),
ve2i = NiXoi — g2(U;), and vg3; = m; — 1. Given the moment condition associated with m(W;) in Equation (6), we
let viyi = 0;(Yi — X5,8 — Po) — m(Wi) = vin1i — VioiB — v3io-

The regressors /7;X5; in Equation (8) satisfy E(\/ﬁXz"ivi) = 0, suggesting an estimator of f that is ob-
tained by inserting estimators of /7;Y;* and /7; X; prior to an application of a standard rule, such as no-intercept
ordinary least squares (OLS) method. Note that by (6), we have m(W;) = m;(W;) — m5(W;)B — m3(W;)Bo, and
g(Ui) = g1(U;) — g5(U;) B — g3(U;)Bo. Thus, to estimate Y;*, X;:, m(W;), and g(U;), we need only estimate each of
their additive components separately. The main technical difficulty rests in the fact that U; must be substituted by a
generated regressor U; in the estimation of all conditional moments involving U; and 1;. Kernel-based nonparametric
regression estimators are employed throughout this paper, and for identification purposes, existence and nonsingularity

of &y = E(n,-Xz*in*i’ ) needs to be assumed.

2.2 Estimation

Based on the moment conditions given in section 2.1, we now describe in detail our proposed estimation procedure.

Since U; is not observed, the first step in the estimation generates U;. We obtain a Nadaraya-Watson (NW) estimator



for I1(Z;) from (2), with the j" element defined as

R n Z _Z
Hj(Z)—argmm Z < th l) forj=1,---,Ds,
0 1

where X; ; is the jth element of X;, h; > 0 is the associated bandwidth, and K;: RP! — R is a multivariate ker-
nel function. To associate the relevant subvector of IT(Z;) with X,;, we define I1(Z;) = (I1}(Z;),115(Z;))’, where
L(2) = (Ihi(Z), -, Ihp,,(Z)) = Xoi — Usi. T1j(Z;) is defined similarly. Denote the estimates by I1(Z;) =
(fI/1 (Zi),H’Z(Zi)) = (Hl (Z,-),---,IQID2 (Zi))/ and calculate the nonparametric residuals U; = (Uil,--~,UiD2)/, where
Uij =X;;—1Ij(Z),for j=1,---,Drandi=1,---,n

In the second step, we estimate 7); (instrument functions) from section 2.1 using W;, and the generated regressors

U, obtained in the first step. We first obtain Rosenblatt-Parzen density estimators for fy, fiv, and ¢:

. 1 & U, — . 1 & W, —
fulu) = nth;K2< h2u>, fw(w) = ZK3< h3w>7

D3
nh3 =1

R B Ut/)/_(w/ M/)/
i) = o ok (P )

t=1

where K>: RP?2 -5 R, K3: RP3 5 R, and Ky: RP4 — R are multivariate kernel functions, D3 = Dy + Dy, D4 =

D, + D3, and h; > 0 is the associated bandwidth for i = 2,3,4. Then, a natural estimator for 1; is fi; = )(W;,U;) =
Jw (W) Ju (T)
oWl -

In the third step we obtain NW estimators for the conditional expectations in the expressions for ¥;*, XJ; as

follows:
. 1 1 Wz—Wi) . . 1 1 ¢ (VVt_VVi) R
mW) = —5-5—-).K ( Y, (W) = % K3 Xor,
(W) nh?3 fW(VVi);; I3 uns (W) nh1333 W(Wz)z I3 N X2t o
oA 1 J m—@>A o 1 J (A 0)
U) = —F —-) Kb | — Y, ) = K X
&1(U) nh?z fU(Ui)t; 2( In Nt & (U;) nhD2 fU( 1)2 2 In N Xor-

Estimators of the unconditional expectations y; and y, are given by fi; = %):;’:1 7:Y;, and flp = %Z?:l ¢ X2;. Thus,
we define estimators of ¥;* and X7, respectively as Vi =Y, — iy (W) — 81(0) + fu1, Xoi = Xoi — iia(W;) — 82(U0;) + fha,
fori=1,---,n

In the fourth step, using the estimators 7;, f/, and )22,- derived in the previous steps, instead of 7;, ¥;*, and X3; in



(8), we have a feasible no-intercept OLS estimator of 3:
A Aran—1 Aran
B = (Xn%)  XinY, (10)

where ¥ = (Y1,---,%,), Xo = (Xa1,---,X2,)', and fi = diag{#; . Given that By = E(Y; — X, ) and the estimator

B, an estimator of By is fo = ¥ —)?2’[3, where Y =1y" ¥, and o = 1Y | X,

1
n

Finally, the last step provides an estimator for m. Given Equation (6) and the estimators ﬁo and 3, We propose

the following estimators have for m(W;) and g(U;),
(W;) = i (Wi) — iy (W) B — iz (W) o, 2(0i) = 81(0) — 8(0) B — &3(Ti) o, (11)

where 7i3(W;) and 3(U;) are NW estimators for m3(W;) and g3(U;) defined similarly as 7 (W;) and &;(U;) in (9)

except that 7; is used, instead of 7;Y;, as regressand.

3 Asymptotic characterizations of 5 and (")

In this section, we study the asymptotic properties of the estimators [§ and 7i(-) defined in the previous section. We
first establish the uniform convergence in probability rate of the Rosenblatt density estimator using estimated residuals
{lZ};’Zl . Second, we give the uniform convergence in probability rate of the NW estimator constructed using estimated
residuals {U;}_,. Third, we establish v/ asymptotic normality of B — B. Lastly, we use the asymptotic normality of

Vvn( 3 — B) to establish the asymptotic distribution of /7 under suitable centering and normalization.

3.1 Assumptions

First we provide a list of general assumptions that will be adopted in our theorems and introduce notation. In what
follows, C denotes a generic constant in (0,c0) that may vary from case to case. kU) (x) denotes the jM-order derivative

of k(x) evaluated at x.

Assumption Al. The kernels K;, i = 1,2,3,4, satisfy K;(x) = H?;l ki(x;), where D; is the corresponding dimension

of K;. k; is symmetric about zero, 4-times continuously differentiable and satisfies: a) [ k;(x)dx=1;b) |k§j ) ()| x>+ —



0 as |x| — oo, j=0,---,4, for some a > 0; ¢) k; is a kernel of order s;, i.e., [k;(x)x/dx =0 for j=1,---,5;— 1, and
[ 1ki(x)||x[*idx < C. We let s = max{s;}}_, and y, 5, = [ ki(x)x%idx.

Our use of “higher-order” kernels is needed to attain suitable orders for the biases of our nonparametric esti-
mators. Since global differentiability of the kernel functions is required in using Taylor’s Theorem, in the following
theorems, kernels that have compact support are excluded. It is easy to construct kernels that satisfy the conditions

in Al. For example, kernels of even order s > 2, can be defined as
L(s-2) ‘
kg(x) = Z cszf(])(x), (12)
j=0

where ¢ (x) = (27) 1/ 2exp( —1x?) for suitably chosen c;. In particular, given that we can evaluate the moments
my; = [x¥¢(x)dx, 0 < j < I(s—2), we choose {c j}jé(s(;% that satisfy the linear system of s/2 simultaneous
equations Z]%:(‘z;z) cimy(ivj) = 60, 0 < i < %(s —2), where 0y is Kronecker’s delta. For example, k»(x) = ¢ (x),
ka(x) = (3 — 3x2) ¢ (x) and ke(x) = (% -3+ %x‘*) ¢ (x). Note that these kernels are continuously differentiable
of any order everywhere, and when multiplied by any polynomial function they are all uniformly bounded and ab-
solutely integrable, as their tails decay exponentially. We show in Lemma 1 that product kernels satisfying Al are
locally Lipschitz continuous, which is necessary for Lemma 3.

Assumption A2. The components of the sequence {(X/,Z;,Y;)}"_, of random vectors by described in (1) - (3) are in-

dependent and identically distributed (IID) random vectors. The density functions fw (W;), fz(Z;), ¢ (Wi, U;), fuz(Ui,
Z;) and fy(U;) are uniformly bounded away from zero and infinity on arbitrary convex compact subsets of their
domains. Here, fyz(+) is the joint density function of (U;,Z;).

The existence, boundedness properties and compactness of the support of the densities in assumption A2 are
common regularity conditions imposed to derive properties of kernel based nonparametric estimators and largely

overlap with Assumption 2 in Newey et al. (1999).

Assumption A3. (i) E(m(W;)) =E(g(Ui)) =0, (i) E(v}|Z;,Ui) = 07 <o, B(Uj|Zi) =05, <o, E(vp;|Wi) =

mli
Ot < 0 B(vani ;|Wi) = 00p < o0, E(v3,|Ui) = 05 < o0, E(viy; ;|Ui) = 03y < oo, and (iii) the following
Cramer’s conditions: E’Xzi’j‘p < C”’zp!E|X2J’2 <o, E(|U;j|P|Z;) < C”’zp!oéj, for some C >0, alli, p=3,4,---,

and j=1,---,D;.



A3 (i) is assumed without loss of generality and is used in identification of the additive structure in Equation
(1). In A3 (ii), it is not essential to assume the second conditional moment of the error terms are independent of the
conditioning variables; however, the boundedness of the second moment is crucial here, as in Assumptions 1 and 5
in Newey et al. (1999). The Cramer’s conditions in A3 (iii) are imposed due to the use, in Lemma 2, of Bernstein’s
Inequality to establish the uniform order in probability of some specific averages. In particular, Lemma 2 is critical
in handling the fact that U; is estimated by U;, which is used in defining fy, ¢ and #;. If U; were observed, Cramer’s

conditions could be relaxed.

Assumption Ad. Let C* denote the class of functions such that each of its elements: (i) is k-times partially continu-
ously differentiable, and (ii) all their partial derivatives up to order k are uniformly bounded. Ford = 1,---,D», and
k=1,2,I1;(:),0 (), fuz(-),m(-),8(-),mi(-), gk (-) € C*T', where s is defined in assumption Al.

Assumption A4 assumes smoothness of the regression functions and uniform bounds of their partial derivatives.
This assumption, together with kernels of suitable order, as required in Al, gives desired orders for the biases. We
note that in our assumption Al s = max{s[}le, and for convenience A4 requires all functions to be in C**!. This is
sufficient for our theorems, but not necessary, expressing only the highest degree of smoothness needed. Depending

on the context lower degrees of smoothness can be assumed.’

1
Assumption AS. Denote L;,, = ( 105[)7) : + hf." Jfori=1,---,4,and L, = 2?12 L;,, where h; — 0 as n — o and satisfies:
1

. I . 1 . D; .
(i) hy =n~°, with 7y < o< {Eé2}7D1(25i+Di)’
S
(ii) fori=2,4, h; =n 5D with s; > D;/2+2;
S71‘

1
— % iDx . 1 53 .
(iii) A3 =n 23703 with 5 < & < min .
25Dy S (I

Assumption A5 provides the order of all the bandwidths. The fact that using residual estimates {Ui};z:l , instead
of {U;}_,, has no impact on the first-order asymptotic properties of our estimator relies on undersmoothing in the
first stage when regressing X on Z nonparametrically, and on IT(z) being sufficiently smooth. For Ay, h3 and h4, the
orders are chosen optimally by minimizing the mean squared error of traditional NW kernel estimators. The second
inequality in A5 (iii) implies that L;, /L3, — 0 for i = 2,4 to ensure that using estimated densities for fy(-) and ¢ (-)

does not result in any asymptotic consequences in deriving the distribution of 7.

SFor example, in Section 4, where specific data generating processes (DGP) are considered, it suffices to have ITy(-) € C%, ¢(-) € C*, fyz(-) €
Cm(),mi(-) € C?, g,8() €CH



3.2 Theorems

By Theorem 2.6 in Li and Racine (2007), under A1-AS5, for a compact subset &7 C RP1 we have

sup [I1(Z;) — I1(Z;)| = Op(Lin) (13)

VAS 74

2 oo . o . .
where Ly, = (1(;%7) + h}'. This uniform convergence rate in probability of the NW estimator is used throughout
iy

this paper. Note that fi;(U;) and ¢(W;,U;) are used to approximate fy (U;) and ¢(W;,U;) in 1;. In Theorem I, we
show that the uniform convergence rate of fi(U;) to fy(U;) using {U;}_, is no different from that of the traditional

Rosenblatt density estimator based on the unobserved {U;}}_,. A similar result holds for é(W;,0;).

Theorem 1. Under A1-AS, for arbitrary convex and compact subsets 9; C RP', 4; € RP2 and 9y C RP3, we have

sup | fuUi) = fu(Ui)| = Op(Lan), sup | fw(Wh) — fir (Wi)| = Op(Ln),
{Z,-,U,-}E%ZX%U W€y
(14)
sup |0 (Wi,Ui) — 9 (Wi, Up)| = Op(Lan),
Wi, Zi,Ui y €97 x Gy xGw

1/2 .
where 97 X 4y denotes the Cartesian product of sets 9z and Gy, Ly, = (loth:') + hf’, fori=2.734.
nh;
Note that in Theorem 1 we establish the uniform convergence rate of fU(Ui) and @(WG,U,-) over %7 x 4, and
Gy X Gy X Gy separately. This is due to the fact that U; is an estimated residual given by U; = X; — I1(Z;) and the
uniform convergence rate of IT (Z;) given in (13) is taken over a compact set 4. Theorem 1 and A2 together imply

that |f); — n;| = O,(L,) uniformly, where L, = Z?:z Liy, and consequently we have |fly — ux| = O,(L,) for k =1,2.

With this result, we are ready to provide the uniform convergence rate of the estimators given in (9).

Theorem 2. Under A1-AS, for arbitrary convex and compact subsets 47, Gy and Gy, for k =1,2,3, we have,

P L N
sup a(0) g (U)| = 0, (Ln+h‘"), sup W) —mW)| = 0, (L). (15)
{Z;,U;,W; } €97 x Gy x Gy 2 {Z;,U;,W;} €97 x Gy <9y

The rates of uniform convergence in probability of g; to g; and i to my, and by consequence, those of g to g
and 71 to m depend fundamentally on the degree of smoothness of the functions appearing in A4 and the dimensions of

the vectors X; and Z;. Given D; fori =1, ---,4 and assumption A5, it is possible to obtain the necessary smoothness in

10



A4 that assures the results in Theorem 2. Furthermore, the given rate of convergence can be calculated as a function of
n. Similarly, given Assumptions 3 and 8 in Newey et al. (1999), the rate of convergence in their Theorem 4.3 can also
be calculated. An important difference between our results and theirs is that, in our case, the rate is obtained taking
into account the randomness of U; and the estimation of g (4 in their notation), whereas they take U = i as fixed and
the true g to be known.

Note that the first term in the order of g;(U;) is not new, as it is just a sum of uniform orders for different NW
estimators. The A, in the denominator of the second term comes from a Taylor expansion of the kernel evaluated at

Lin

the estimated residuals {U;}"_,. With well chosen bandwidths in A5, it is essential to have that L2, (—2)2 =o(n"1/?).

This result will help establish the asymptotic distribution of ,3

. 1, 2 \!
Vil p) = (180%) S0 - %:B). 16)

As we can see in (16), there are two components that need to be studied to establish the asymptotic properties of
V(B — B). We need to (i) establish the asymptotic behavior of the matrix %Xz’ﬁﬁz and (ii) establish the asymptotic
normality of the term ﬁﬁéﬁ (Y — X5 B). Uniform orders of NW estimators derived in Theorem 2 will help take care
of (i). However, to establish /n asymptotic normality for the second term, we need to investigate the behavior of
U -statistics up to degree 3. Yao and Martins-Filho (2015) provides a direct and convenient method to characterize the
asymptotic magnitude of each component in the H-decomposition (see Hoeffding, 1948) of a U-statistic, and many
places in our proofs are built on their results. The next theorem establishes the asymptotic distribution of B after

suitable centering and under /n-normalization.

Theorem 3. Under A1-AS, assuming that matrix ®g exists and is nonsingular, we have
5 d _ _
Vi(B—B) == A (0,25 (@1 +D2)@; ), (17

where the matrices gy, P, P, have typical elements given by

@, =E [Th (Xor,j — moj(Wr) — 82 (Ur) + Haj) (Xor g — mar(Wr) — 8ok (Uy) + NZk)} ;

@y, =E [77,2 (Xar,j —maj(Wr) — 82 (Uy) + 2 ) (Xar ik — moe (Wr) — g2k (Us) +uzk)}63;

11



20— i 22 ( IL;(2, HZj(Zt))Ddg(Ut)nt‘Zi>

XE((Uzk( i) — ILi(Z)) Dsg (U 77t|Z> UiaUs |, for jk=1,--+,Dop.

Remarks. 1. It follows directly from Theorem 3 that [§ is consistent and asymptotically unbiased. The explicit
structure for the covariance of the limiting distribution allows for asymptotically valid inference and hypothesis testing
when a consistent estimator for the covariance is available. Given the structure of its component covariance matrices,

we provide consistent estimators for ®;, i = 1,2, 3 as follows,

1 R “ A A " ~
dg=-Xj7X,, &1 =-X7"%67, D =-00, (18)

] 2D22(Zi))/9 ﬁzz(ﬁz(zl)v'”anz(zn))/’ lﬂE(lﬂ"'vl);x]’ DgE(Dlg7 Dng) DdgAE(DdgA(Ul)7"'7

(9) and (11), by taking partial derivatives, we have Dyg(U;) given by

1

nhD2+1 fu(,

ot bk (U0 [0 3 - (000 - 00D

2. The covariance ®; ! (D + <I>2)<I>a ! differs from what one would obtain if U; were observed. Hence, there is an
asymptotic cost in using U; in estimation. It manifests itself via the presence of ®,, which would be zero if U; were
observed. Furthermore, the covariance matrix of the limiting distribution does not meet the semiparametric efficiency
bound of Chamberlain (1992), a characteristic that our estimator shares with that proposed in Li and Wooldridge
(2002).5

3. Given Theorems 2, 3 and (11), we have the uniform convergence rate of (U;) at 0, (Ln + %”) , which is generally
worse than that of the traditional NW estimator due to the presence of 4, in the second term.

The following theorem gives asymptotic normality of 7(-) at the typical nonparametric rate, in our case, nh?3.

6See Li (2000) and Manzan and Zerom (2005) for estimators that satisfy a semiparametric efficiency bound when all regressors are observed,
i.e., in the absence of generated regressors.

12



k .
Theorem 4. Let D f(x) = ﬁf(x) and DY f(x) = f(x), Yk > 1,1 < j < k. Under A1-AS5, and assume E(v,,;|Wi) =

G2, < oo, E(|vm,|2+5|W,) < C < oo for some 8 > 0, we have

nh> (m(w) — m(w) fbm(w)> Ly (0,®5+y),

53

where  by(w) = h3’ ;:;3( T3) Z = Z Dhm( 537kfw(w) +0,(h3),

@i= o [gmar. ei=nonue) [ ( Ko Kz(ﬂﬂ/z)d%)zdyz

Remarks. 1. Given the order and structure of the bias, it follows immediately from Theorem 4 that M(w) —m(w) =
op(1).

2. The fact that 1);, By, and B have to be estimated is costly asymptotically. In particular, the variance of the limiting
distribution contains the strictly positive term ®4 added to ®3. ®3 can be immediately recognized as the covariance of
the limiting distribution of an “oracle” Nadaraya-Watson estimator constructed under the assumption that 71;, By, and
B are known. Hence, i(+) is not oracle efficient. It may be possible to eliminate ®4 by considering a new estimator

that explores a one-step backfitting procedure using ¢(-). We leave this modification for future research.

4 Monte Carlo Study

In this section, we provide some experimental evidence on the finite sample behavior of our estimators ([3 (- )) and
contrast it to that of some alternative estimation procedures. We consider the following data generating processes

(DGPs):

DGP;: Y;=Ln(|X;;— 1|+ 1)sgn(Xy; — 1) +X5,8 + Po + &,

exp(Xl,-)

DGPy: Y= —F—— ——
2 ! 1+3€Xp(X1i)

+X3,B8+ Bo+ &,

13



fori=1,---,n. The sample size n is set at 100 and 400. In both DGPs, Z;; and Z,; are generated independently from

N(0,1), and we construct X;; = Zy; + Zp; + Uy; and Xp; = lel. +Z§i +Uy;. € and U; = (Uy;,Uy;) are generated as

where the values 6 = 0.3, 0.6, and 0.9 indicate weak, moderate, and strong endogeneity, respectively. It is easy to
verify that E(g;|Z;) = 0, E(U;|Z;) = 0, and thus E(g|U;,Z;) = E(g|U;) = %(UU + Uy;). We set the parameters
B =1,By =1, and perform 1000 repetitions for each experiment design.

The implementation of our estimators requires a choice of kernel function K;(-) for i = 1,---,4 and bandwidth
sequences. For all kernels, we use products of a univariate Gaussian kernel of appropriate orders, as we discussed in
assumption Al. For both DPGs we have D1 = D, =2, D3 =1 and D4 = 3, and setting s; =5, 5o =3, 53 =1, 54 = 4,
we choose bandwidths in accordance to A5 by setting hy = 1.256(Z;)n~® for § = 1/9 and h; = 1.256 (M;)n~ 1/ (Z5i+Di) |
for i = 2,3,4, where 6(M;) is the sample standard deviation of the variable M;, with M, = U, M5 = (X11,21;), and
My = (X11, 21, U)).

We also implement the series estimators proposed by Newey et al. (1999), which we denote by (Bsp,ﬁzsp). It
should be noted that their estimator was developed for a model where By = 0, and the use of a trimming function
w(7) (in their notation), prevents the use of our assumption E(€) = 0. Thus, we adapt their estimation procedure to
the DGPs under consideration and use B-splines throughout the implementation. We use the same number of knots
to estimate I, m and g and follow their constraints on how fast the number of knots diverge to infinity to obtain the
convergence results in their Theorem 5.1. Specifically, given D; for i = 1,---,4 in the DGPs we must select B-splines
of order 7 with s; > 6. Hence, the smallest degree of differentiability permitted for IT is s; = 7, more than we need

to assume to attain the uniform rates of convergence for our nonparametric estimator of m. The higher degree of

smoothness they must assume provides some benefits, specifically, for the DGPs considered here, the rate of uniform

-1/3 ~5/14.

convergence in probability of our estimator is n while theirs is n

14
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Table 1: Finite sample performance

6=03 0=0.6 60=09

B S R D M B S R D M B S R D M
DGP, n=100
(3, 1) 0.057 0.058 0.081 0.059 0.280 0.078 0.058 0.097 0.078 0.279 0.098 0.056 0.113 0.096 0.310
(ﬁgp, fsp) 0.062 0.089 0.109 0.073 0.609 0.125 0.088 0.153 0.122 0.587 0.172 0.085 0.192 0.172 0.580
(ﬁRob, mgep) 0.076  0.052 0.092 0.074 0533 0.139 0.054 0.149 0.135 0.557 0.181 0.054 0.189 0.181 0.591
(325L5, m) 0.029 0.798 0.798 0.164 0.058 0.506 0.509 0.167 0.065 0.507 0511 0.171
(ﬁ,v, m) 0.005 0.053 0.053 0.035 0.013 0.054 0.056 0.038 0.017 0.051 0.054 0.038

n =400
(B, 7i1) 0.046 0.029 0.054 0.044 0.277 0.061 0.029 0.067 0.060 0.270 0.075 0.029 0.080 0.074 0.303
(ﬁgp, Msp) 0.017 0.034 0.039 0.025 0511 0.032 0.030 0.044 0.034 0.508 0.043 0.029 0.052 0.043 0.505
(ﬁRo;,, mgep) 0.073 0.025 0.078 0.073 0.520 0.133 0.026 0.136 0.133 0554 0.173 0.026 0.175 0.172 0.582
(323LS, m) 0.018 0.444 0.444 0.159 0.076  0.812 0.815 0.151 0.062 0.404 0.409 0.166
(ﬁ;v, m) 0.002 0.026 0.026 0.017 0.005 0.025 0.025 0.017 0.007 0.025 0.026 0.018
DGP, n=100
(ﬁ, 7i1) 0.096 0.058 0.112 0.095 0.182 0.119 0.055 0.131 0.116 0.211 0.144 0.056 0.154 0.144 0.268
(35,:, isp) 0.062 0.088 0.108 0.072 0340 0.123 0.090 0.152 0.122 0408 0.171 0.082 0.190 0.171 0.311
(BRob’ mgep) 0.071  0.052 0.088 0.072 0243 0.132 0.053 0.143 0.133 0270 0.175 0.053 0.183 0.176 0.303
([§25LS, m) 0.031 0475 0475 0.156 0.056 0592 0594 0.173 0.074 0.718 0.721 0.181
(31\/, m) 0.003 0.053 0.053 0.036 0.011  0.052 0.054 0.037 0.018 0.053 0.056 0.038

n =400
([§, 7i1) 0.077 0.031 0.083 0.075 0.125 0.094 0.034 0.100 0.092 0.163 0.115 0.032 0.119 0.113 0.236
([%p, 1sp) 0.019 0.033 0.038 0.025 0319 0.032 0.031 0.045 0.034 0.240 0.043 0.029 0.052 0.044 0.231
(ﬁRob, mgep) 0.073 0.025 0.077 0.072 0229 0.131 0.027 0.134 0.131 0258 0.172 0.027 0.174 0.173 0.301
(&SLS, m) 0.024 0499 0499 0.153 0.061 0456 0.460 0.156 0.090 0.814 0.818 0.165
(31V, m) 0.003 0.026 0.026 0.018 0.005 0.025 0.026 0.018 0.007 0.025 0.026 0.017

Note: The mean of root mean squared error (M) is intended to be left blank for (ﬁzSLS,m) and (B,V,m) since m is treated as known and will not be estimated in these

cases.



In Table 1, we provide results on bias (B), standard deviation (S), root mean squared error (R), and median of
root squared error (D) for the estimation of §, and the mean of root mean squared error (M) for estimating m obtained
by averaging across the realized values of (X;;,Z;;). We give results for (B,n%) and for comparison, we also provide
results for the oracle estimators for 8 and By by taking m(-) as given using two different methods. ﬁszS is derived
using the traditional two stage least square (2SLS) method for linear models, while ﬁ,v is based on IV estimation using
the nonparametric proxies I, as in section 2.2. Lastly, we provide results for the estimators proposed by Robinson
(1988), denoted here by ( ﬁR(,;,,n%R(,;,), which ignore the endogeneity of X;. To avoid any extreme estimates or boundary
bias in the nonparametric estimation, results on M for estimators of m(-) are only shown by the mean of 10 —90%
quantile range of sample estimates.’

As shown in Table 1, all of the estimators’ performances, in terms of the aforementioned measures, improve with
the sample size (e.g., for DGP;, when 6 = 0.3, root mean squared error of B drops nearly 40% from 0.081 to 0.054
when we increase the sample size from 100 to 400). For all DGPs, sample sizes and values of 6, our nonparametric
estimators of m outperforms rigp and, as expected, rfig,,. The performance of 3 relative to that of Bsp is more
nuanced. For DGP; and n = 100 it exhibits smaller B, S, R and D than ng for all 6. For n = 400 these relative results
are reversed except for S where the estimators have similar performance. For DGP;, ﬁsp outperforms [§ for all 6 and
all performance measures.

We note that ﬁ and BSP seem to adequately account for the endogeneity problem since, given the same DGP
and sample size, the performance of these estimators regarding bias (B) does not change significantly as the degree
of endogeneity (0) increases, contrasting with the estimator BROb. In this case, as 0 increases from 0.3 to 0.9, the
bias more than doubles. The performance of BZSLS is the worst among the five estimators, even though it is derived
assuming m(-) is known. This result is not surprising since in 2SLS estimation we specify a linear structure when
approximating the endogenous variables, which in our DGPs it is not. This illustrates the importance of nonparametric
estimation when we are not able to specify the functional forms of interest. ﬁIV avoids that potential misspecification
and gives the best performance among all estimators for 3 in every aspect, exactly as we expected.

To give a more visual description of the distribution of root squared error (RSE) for estimators of 3 across the

simulated samples, we estimate and plot its density for each linear estimator with n = 100 for DGP; in the left panel

7Especially for the second DGP since it has a lower bound of zero for the range of the nonparametric component.
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Figure 1: Estimated densities for RMS of estimators of 3, n = 100, DGP (left panels) and DGP; (right panels).
0 = 0.3 (top panels), 8 = 0.6 (middle panels) and 8 = 0.9 (bottom panels)
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of Figure 1, and DGP; in the right panel. The same is done with n = 400 in Figure 2. The density estimation is
performed using the gamma kernel density estimator proposed by Chen (2000) to avoid any boundary bias. Top,
middle, and bottom panels correspond to different degrees of endogeneity, 8 = 0.3, 0.6, and 0.9, respectively. It is
apparent that the estimated densities for the RSE of estimators ﬁIV (dashed-dotted graph) are closest to the vertical
axis, most concentrated around zero and exhibit thinnest tails to the right across all the panels in both figures. In Figure
1 the density associated with our estimator ﬁ (solid graph) is closer to the vertical axis and has thinner tails especially
when 6 = 0.6 or 0.9. In Figure 2, it is ﬁgp (dotted line) that is closer to to the vertical axis with thinner tails. The

densities associated with the other estimators exhibit particularly bad behavior, especially for large 6.

5 Empirical application: aid-policy-growth relationship

In this section we illustrate the use of our model and the ease of conducting estimation through a simple application.
Specifically, we study the impact of foreign aid and policy on economic growth in developing countries. Prominent
in this literature is Burnside and Dollar (2000) (henceforth BD). They find that aid is only effective in a good policy
environment.® This paper was extraordinarily influential at the time and continues to be so due to its clear recom-
mendation: foreign aid should be distributed to countries with good policy environments. However, following BD, an
extensive study of the effect of aid has been conducted and results seem to vary greatly with model specifications and
samples used.” Although alternative tightly parametrized specifications might be useful, Easterly et al. (2004) points
out an essential problem and calls for more flexible regression models: “This literature has the usual limitations of
choosing a specification without clear guidance from theory, which often means there are more plausible specifications
than there are data points in the sample.”

Therefore, without imposing any prior restrictive functional forms on aid and policy, our model is fully flexible
and well suited in this context. More importantly, it controls for the potential endogeneity in the nonparametric and

linear parts. For simplicity and ease of comparison, we adopt most of the variables from BD and consider the following

8They estimate a 2SLS model and find a significantly positive interaction term between aid and a policy index, controlling the potential
endogeneity of aid by using a series of instruments.

9There are three mainstream views: 1) BD’s Policy View: aid promotes growth but only with a “good policy” environment; see also Collier
and Dehn (2001), Collier and Dollar (2002), and Burnside and Dollar (2004); 2) Diminishing Returns View: irrespective of policy, aid promotes
growth but with diminishing returns; see Hansen and Tarp (2001) among others; 3) the “Null” View: Boone (1996) finds no relationship between
aid and investment, the basic ingredient of growth drivers, excluding those with most aid; see also Rajan and Subramanian (2008).
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empirical model:
Y, = m(Xi, Z1;) + Z5;P1 + o + &, 1)
X; = (Z) + Ui, )
where ¥; is per-capita real GDP growth rate (gdpg), X; is international aid (effective development assistance) provided
to a country as a percentage of its GDP (aid), Zy; is an index of quality of the policy environment (policy),'” and Z;
is a set of other control variables.!! Note that Equation (1°) is different from (1) in that it now includes a vector of
exogenous variables rather than endogenous in the linear part.'> In line with BD, policy and all the other variables in
Z; are considered exogenous. Aid might be endogenous due to the facts that donors might respond to negative growth
shocks by providing more assistance, or countries with positive growth shocks (for example, newly discovered oil
fields) might receive special favors from some donors due to strategic or commercial interests. Although the focus of
this application lies in the aid-policy-growth relationship (estimation of the nonparametric part), the theoretical model
is able to accommodate any endogeneity stemming from covariates in the linear part with suitable instruments.'> Here
in order to keep things simple and comparable with baseline results from BD, we stick to the above empirical model.

Based on the same dataset from BD with a total of 275 observations,*

we provide all our graphical results in
Figure 3. Figure 3a on the left presents a three-dimensional (3D) surface plot of the fitted growth against aid and
policy.!> The surface is smooth and varies significantly with different combinations of aid and policy. The most
obvious feature is the high peak when both aid and policy are at high levels, which directly leads to BD’s famous

Policy View since effect of aid is greatly boosted by “good” policies. This is largely due to Botswana (1978-1989)'6

10Variable policy is constructed by BD from measures of budget balance, inflation, and the Sachs-Warner openness index.

Nz, = (Z};,Z%,,Z};)' represents the set of all exogenous variables where Z; consists of an index of institutional quality (icrge), log of initial real
per-capita GDP for the period (/gdp), a measure of ethnic fractionalization (ethnf), a measure of assassination (assas), ethnic fractionalization x
assassinations (ethnf x assas), and a measure of financial depth, money supply as a percentage of GDP lagged one period (m21); and Z3; is a set of
excluded instrumental variables including log of population (Ipop) and arms import as a percentage of total imports lagged one period (arms1).

12The estimation procedure and Theorem 1-3 continue to hold since exogeneity of the added regressors creates no added difficulties for the
asymptotic characterization of our proposed estimator.

3For example, we also find that institutional quality could be endogenous given that faster economic growth may produce higher levels of
institutional quality (see Aron, 2000) and there might be some unobserved factors that jointly determine both high levels of institutional quality and
economic growth (see Easterly et al., 2006). A plausible instrument for it is Gini index, a measure of social cohesion that, in part, determines the
institutional quality. See Easterly et al. (2006) for more details. We leave this for future work.

14The dataset is publicly available at www . cgdev.org/publication/aid-policies-and-growth-data-set.

15We plot on where aid and policy most concentrated, that is, aid GDP ratio from -0.5% and 8% (more than 98% observations) and policy above
-1.5 (more than 97% observations).

16Botswana is well known as the “African Exception” due to its high economic growth and democracy. Its record consistently stands in stark
contrast to virtually all other parts of Sub-Saharan Africa.
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Figure 3: Aid and policy effects on growth
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which has consistently high levels of aid, policy, and growth rate. To give a better comparison with BD, Figure 3a on
the right stacks the 3D plot with the fitted growth predicted in BD under a linear 2SLS model.!” Due to the linearity
restriction, it is a flat plane without any fluctuation, which is roughly an average of our fitted surface. One of the most
important features it misses is that aid appears to have varying effects at different range. In particular, it is growth-
enhancing at high levels while the linear model simply averages it out. Taking a closer look into the individual effects
of aid and policy, we slice the surface along aid with policy fixed at its 25%, 50%, and 75% quantile in Figure 3b on
the left. To make the plot more informative, we also mark the 25%, 50%, and 75% quantile of aid on the top axis and
draw three vertical dotted lines. In general, the effect of aid is not obvious, except at very high levels (above 3% aid
GDP ratio).!8 In contrast, we can see from the right figure that a good policy environment is indeed growth-enhancing
across its entire range with a larger effect at high levels (above its 75% quantile). For statistical inference, we add
a 95% confidence interval in Figure 3c for each aid-growth or policy-growth curve of Figure 3b. As expected, the
confidence band varies greatly with aid or policy distribution, that is, it widens where the data is scarce.

In sum, we find that aid in general does not promote growth, expect at high levels (above 3% aid GDP ratio)
while policy has a consistent and positive effect. Our findings do not support BD’s conclusion—policy increases
aid effectiveness in growth. In BD, aid effectiveness is assumed to be only dependent on policy, not even on itself.
Figure 3b on the left provides a plausible explanation. We see that the effect of aid does vary with itself, but it will
be averaged out in BD’s setup for countries with a not so good policy environment (25% and 50% quantile) due to
the drop in curves when aid GDP ratio is above 5%, while for countries with a very good policy environment (75%
quantile), we do not see such drop. The positive interaction term in BD only captures the increasing averaged effect
of aid with policy but misses the whole picture. In fact, for the majority range of aid, its effectiveness (slope of the

curves) actually decreases with policy although the difference seems not significant.

17Coefficient estimates are reported in Column (5) (2SLS) of Table 4 in BD, where aid has a coefficient -0.32, policy 0.74**, and their interaction
0.18*. ** and * represent 5% and 10% significance levels, respectively.

18We also implement estimators in Robinson (1988) without controlling for any endogeneity, and find that this positive effect at high levels is
cut in half, suggesting that aid might be endogenous in that it is more likely to be given due to assistance purpose.
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6 Summary and conclusion

In this paper we contribute to the growing literature on the estimation of semiparametric and nonparametric regres-
sion models with endogenous regression. Adopting the control function approach, we propose easily computable
kernel-based estimators for the finite and infinite dimensional parameters of a partially linear regression model and
establish their asymptotic distributions. Two critical steps are needed to establish these results: first, the choice of the
normalizing function L(-) appearing in Section 2.1, and second the repeated use of the results on U-Statistics obtained
in Yao and Martins-Filho (2015). Besides its role in assuring asymptotic normality of the proposed estimators, the
choice of L(-) generates a class of estimators with different variances for their asymptotic distributions. A simple
empirical investigation of the aid-policy-growth relationship is provided to illustrate the ease of implementation of our
method. Future research should be done on selecting optimal (minimal variance) estimators from this class. In fact,
further investigation of the efficiency properties of these estimators may shed light on how to construct oracle efficient

estimators for m(-) and semiparametric efficient estimators for 3.
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Appendix

This appendix presents the proofs of the main theorems and statements and proofs of the supporting lemmas. For a

scalar variable x, f'(x) denotes the derivative of f(x) evaluated at x. For D x 1 vectors ¥, 8, define y# = [T4_, yﬁ “,

Im=Zimmmﬂw=%ﬂwﬂﬁﬂw=£%ﬂwDWWﬁﬁﬁ%gﬂwJﬂwmﬂvmmmmmﬂwmm

and Hessian matrix of f(y). Note that for a scalar function f(7), Jf(7) is the transpose of the gradient vector of f(7y).

A X B denotes the Cartesian product of two sets A and B. x4 denotes the indicator function for the set A. P(A) denotes

the probability of event A in the probability space (Q,.%, P), E(-) denotes expectation, and V(-) denotes variance.
U-statistics will be repeatedly used in the proofs. Let {P;}_, be a sequence of IID random variables and ¢, (P;,,

,P;,) be a symmetric (kernel) function that depends on n. Then a U-statistic U, of degree k is defined as

n
Un: (2> Z (pn i1y lk

where ¥, ) denotes the sum over all subsets 1 <ij <+ <ig <nof {1,---,n}. Now let ¢y(z1, -, 2c) = E(@u(Pr, -,
PPyt PPy = p1, Pe = pe), 62, = V(@en(Pr,--,P.)) and 6, = E(¢,(P;,,---,P,). In addition, recursively

deﬁnehgzl)(pl):¢1n(p1)_ena"',hSLC)(pla"'apc):¢Cn(p17"'ap6) Zj iZCJ (pllu : »Pij)—en forc=2,---,

k. By Hoeffding’s H-decomposition in Hoeffding (1961) we have

n9+2<> (P, Py),

where H,gj)([’il7--~,P-

Lj

)= (;‘) - Y(n,j) hﬁ,j ) (P, ,Pij). The order of U, can be determined by studying each H,(,j ) and
6, in the finite sum. By Theorem 1 in Yao and Martins-Filho (2015), the order of H,Ej ) is determined by n and the
leading variance O'J-2n. Throughout the proofs, we will use {P;}}_; and the above notation to characterize the U-statistics

of interest, denoted by U, .

Proof of Theorems

Theorem 1 Proof. By the uniform convergence rate of the Rosenblatt density estimator given in Theorem 1.4 of Li
and Racine (2007), we have supy,.c«, | Ffw (Wi) = fw (W,)f = O,(L3,). Similarly, for the first equation in (14), we only
need to focus on | fy (U;) — fu (U;)|.

,;Ui), Kyi = K> (U’

ously differentiable, by Taylor’s Theorem,

Denote Ky = K> (U’ ,:2 Ui ) , and other kernels similarly. Since K> is 4-times partially continu-

1 &,
K> '7K2'
nhé)ztzzl( 1 1 nh

P

Ju(U) = fu(Uy) =

n 3 H ﬁ U 4
I ti p o A =) T
Z<Z RPN k(U H>> L
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where H = %(U, -U;)— h—lz(lj,-—U,-)7 A €(0,1).
Next, we examine the uniform order of T; over ¥z x ¢ fori=1,---,4 in four steps.

Step 1: We rewrite 77 into two parts:

D, n D,
T=Y ( D2+1 Z id — Uia)DaKori + Z Uig = Ua DdK2n) =Y (T +Tn),
d=1 =1 =1
where Tyy = — (Ujy —Uiy) C1(U;) and C\(U;) = (nthH)’]):}’:lDngt,-. By Lemma 3, it can be shown that

supy.cq, [C1 (Ui) —E(C1(Uh))| = Op((log n/(nhDﬁz))l/z) = 0,(1), and by integration by parts, E(C;(U;)) =
[ K2(7)Da fy (Ui —hyy)dy < C uniformly. Thus, supycq, |C1(U)| = O, (1). Note that |Usy — Usg| = |T14(Z;) — T4(Z))].

and by the uniform convergence rate of Nadaraya-Watson estimator, we have supy ., |U,~d — Uid‘ = 0p(L1,). Conse-
quently, 711 = Op(Li,) uniformly.
Given I1y(Z) = (nhy" f2(Z)) "' -y KiuXia. and fz(Z;) = (nh?") "V ¥, K1y, we have
1

*(0td - Utd) = ﬁd(zt) - Hd(Zt) mzlﬁlt (Uld JrHd(Zl) Hd(Zt)> + OP(L%n) (A~1)

by the uniform order of f7(Z,) — fz(Z;) and Uq — U4. Thus, we have

ZZ D D+1 Ki:DaK2iUja + 222 D D+11
i—ti=1h{'"hy>"" f2(Z;) SIS hy T f2(4)

K1 DgKai (Hd(zl) -1, (Z,))
+ OP(L%,,)WZ |DdK2ti| = T121 + T122 + Op(L%n/hZ)a
2 t=1

1
Tio = —K (0)DyK»iUpq + 57— KiuDaK2iUja = E1n+ Eop.
2 Z DlhD2+l (Zt) ZIZ]ZZI ththJrlf (Zt)

t#1
We can show that Ej, = O, ((nh?‘hz)_1> uniformly over ¢y by Lemma 3, and E;, < , where U, =
-1 -1 1 2) . .
( ) Zr 121 1%‘%%&1 = (g) Y Y W = ('2’) Y Xl O =6, +2H,(L ) +H,(l ) is a U-statistic.
4 t#l t<l

6, = E(¢n1t) — 0 in this case. H." = Lyn, hg)(Ui,Pz) =1y 0n(ULP) =LY B(u| Ui, P) = L X7 Ue(Us,
Z;), where c(U;, Z;) = [ Ki(71)K2(v2)Dafy)z(Ui+h2¥2|Z; — hiy1)dyidys. Given Cramer’s condition in A3 and Lemma
2, we have sup{z UYedy x4y Y = 0, ((log n/n)l/z), as E(H,(,l)) = 0. For H”, by Theorem 1 in Yao and Martins-
Filho (2015), H? = (62,/n%)1/20,,(1), where 62, = V (¢;) = E(92,) < 4E(y2,) = ((h?lhé’ﬁz)—l). Thus H\> =
(n2hP1H222)=1/20 (1) uniformly. In sum, Tip; = O, ((nh1 i)~ + (log n/n)!/? + (nzh?lh§2+2)—1/2) = 0, (L)
uniformly by AS.

The order of T12> could be analyzed in the same way, given that IT and f7 are s times partially continuously dif-

ferentiable, and K is a multivariate kernel of order s1, we have T2, = O, (hil + (logn/n) 2y (112/111)1 _thDZH)’I/ 2) =
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Op(Lin) uniformly by AS. In sum, supz iyeq, «g, Tt = Op(Lin).
Step 2: T = Y 5/—» (nhlz)z)71 Y™, HBDPK,,, when 1 appears in the d"" and k™ position of B, we have

: ZHﬁD“Kz,, =

1 N N .
P hD2+2 Z [(Uid = Uta) — (Ui — Uia)] [(Ui — Ui) — (O — Ui) | D3 Koi-
nny = =1

Since supycy, |Usp — Uas| = Op(Lin), for a =i, j and b = d,k, we have T, = O, (L}, /h3) ()~ T | D2 K| =
0, (L3,/h3) C2(U;). By Lemma 3 and that E(C>(U;)) = O(1) uniformly over ¢, we have C(U;) = O, (1) uniformly.

Thus, sup(z i1eq, <9, T2 = Op (LT, /13).

Step 3: Similarly, sup;z 1eq, s, T3 = Op (I3,/13)-

Step 4: Ty is different from 75 and T3 in that supy g, Ca(U;) = 0p(l/h12)2), where C4(U;) = (nhé)z)71 Yo, |DPKs,|.

for any |B| = 4, and DPK3,, = DP K, (U, — U;) /ha + AH). Thus, SUP(z uyes, xy 14 = Op (L‘l‘n/h?ﬁ“). By A5, it can
be shown that T, T3, Ty = 0,(n~"/?), and T) = O,(L1,) = O,(Lay), which gives us

sup | fu(Ui) — fu(U)| = Op(Lan).

{Z1,Uiye972x Gy

The uniform order of ‘qs(Wi, U;) — (W, Ui)| can be derived in the similar way under AS, and consequently, here, we

omit the details.

O]
Theorem 2 Proof. We start with the j" element of §>(U;) — g»(U;). Note that
N 1 LN
$2j(Ui) — 82;(Ui) = D o (1) ;KnntXZt,j £, (U)
1 LN
= ——7) Ky {(TI Th)XZt jt Vet ((ng(Ut) _g2j(Ui))}
nhlg)sz(Ui)z;
Cg2ti
1 " N
= KiCorii+ —5———— Y JK2i (U — Uy — (U; — U;) ) Cy2
nthfU Z ti g2t thZ+1fU(U,-)t=ZI tl( t T ) g2ti
RiCni ¢ (140, (Ls (A2)
nh fU U, Z ti gn} p( n))

(Z Tk> (1+0p(L2n)),

where Ry; is the remainder term of a Taylor’s expansion of Ry at (U, —U;)/hy, and Vg2r,j s the jth element of vg,. We

complete the proof by showing in three steps that 71 = O,(Ly), T = O, (L1,/h2), and T3 = 0, (n~/?).
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Step1: Let T} = 22:1 Tix, corresponding to the three components in C,;; separately. By Theorem 1 and A2, we have

sup | — M| = Op(Lon + L3n + Lay) = Op(Ly).

{Z,U}Egz ng

By Lemma 3, Tj; = OI,(L,L)(nhZDZ)’1 Y |Koini X, j| = Op(Ly) uniformly, since by A3 and A4,

B
E ( o Z|K2n77tX21 ,|> h (|Kzzi 22;(Ur) +ngt,j)|)
< [ 1K (lg24(Us+ ha) | +Cfy (Ui + by
< Claj(U)|+C [ 1Kol (g2(Us+ha7)] ~ lgai (W) dy+C
D,
<Cleaj(U)|+Chx [ 1Kol Y. lraldy-+C
d=1

<C |g2j(U;)|+C, which is bounded uniformly over 4.

By Lemma 3, we have supycq, |Ti2| = ((log n/nhD2)1/2) O0,(Lay), given E(T12) = 0.

For Ti3, note that by Taylor’s Theorem, E(7i3) = h;szljl(U,)E(Kz,i(gzj(U,) - gzj(Ui))) =
1o U) [Ka(y) (82 (Ui + hay) — 82;(U;)) fu (Ui + hay)dy = O(h3*) = O(Ly,) uniformly over %y, given that
K> is of order s, £2j(Ur), fu(U;) € C*2 and all the partial derivatives of g2;(U;) up to order s, are uniformly
bounded by A4. By Lemma 3, we have h;lsupUE%|Tl3 —E(T3)| = 0,((log n/(nhgz))l/z) = Op(Ly,). Thus,
supyeg, |T13| = Op(Lan), and we have Ty = O)(Ly) uniformly.

Step 2: For 7>, similar to 7y, by Lemma 3, we have

L = thH ZJKzn — (Ui~ Up)) Cgui
Lln !
=0
(i hy ) Zl nhzzfu Zl
_ Lln
= 0,(52).

Step 3: R;; is the remainder term of a Taylor’s expansion of Ko; at (U; — U;)/ha, thus R;; = Zfﬁ‘zzﬂﬁ | !)*lDﬁKg,,-Hﬁ

DdKth( nt>X2tj+Vg2tj+ ((ng(Ut)_gﬂ(Ui)))‘

+Y1=a(4)) ' DP K, (U1 — Uyi) /o) HP, where (Uyi — Uy) /o = (0; = U;) [y + AH, A € (0,1), and H = (0, — U; —
(U,' — U,'))/hz. Thus, let T3 = Zl?z:l T3y, with

D> D,
I = Z Z T ZDdezn (Uzd ~ U — (Uia — Uid)) (Utl — Uy — Uy — U,-,))Cgm
—1i=1 2nhy 2 fy (Uh) (=1
Dy D, .
= < ) Z Z Dz Z |Dd1K2tl g2n} = 0, (h2”> ,
d=1i=1nh; 2
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by A3. Similarly, T3> = 0, (L},/h3). By A1, T3 = 0, (L, /15> ) LY | [Coi| = 0, (L}, /H5> ). By A5, we can
show that Ty = O, (L}, /B3 + L3, /B3 + L}, /W52 ™) = 0, (n~"/?) uniformly.

Combining 1-3, we have sup;. y1ce, 4, 182(0;) — g2(Uy)| = O, <Ln + Ll”) For 1y j(W;) — myj(W;), note that

X 1
(W) —ma;(W;) = WW();K&%X&J maj(W;)
= {nhD3f ZK3U{ — N X2t]+vm2t]+(m2](vvt) mZJ(W/l))}}(1+Op(L3n))
W
CmZti
=0,(Ly), (A.3)

where the order can be found similarly to 77 in part 1. For fl;;, we have

N 14 1Z _
fioj = b2y = Y (=1%o + (- XX~ EMiXai ) ) = Op(L) +0p(n™12) = 0, ().

=1 =1

S

The uniform orders of g1(U;), i1y (W;), fi1, &3(U;), and i3 (W;) can be found similarly by replacing A Xo: j with fi,Y; or
7}, respectively. Thus, the details of these proofs are not be provided here.

O

Theorem 3 Proof. Note that m = m; —maf8 — Bo, g = g1 — 828 — Po, where m = (m(Wl), e 7m(W,,)),, and g,my,
81,m2, &> and their associated estimators are defined similarly in vector forms. Denote Vy = }— (4.4} Vi1 and Vx =
Yi—{mgu} Vi, where Viuy =ity —my, Vg1 = 81— 81, Vit = —(u — t1), Vi = 1ia —1ma, Vo = §2 — g2, and Vo =

—(,ﬂz — ‘Ll,z). Thus, since ? =Y* —Vy, )?2 = Xz* — Vx, and ? —Xzﬁ = V—Zk:{m’g,“}(vkl — szﬁ), we have

1y oo 1 1 1 4
where -~ X, = fx;’f;xz—fng’ﬁvx V)QﬁXZ*—i-;V)'(ﬁVXE Y Ax,
k=1
) o 1y, . 1. 1y, . l,,. e
;in(Y*XZB) = ;invf;in(le *szﬁ)*gxzn(vgl ngzB)f;in(Vm —ViB)= Y Bi.
k=1

The proof has five steps:
(1) We show that A; Ly @y and Ay, Az, Ay = op(1).
(2) We show that /nB; — A (0,®).

(3) We show that B>, B4 = op(n—l/z)_

n - _ _ X3 DyKo Ky -
(4) We show that B3 = 1 ¥ a,i+0,(n"'/?), where a,; = 5i1(2hll)‘h§2) 1UidE(%J (Uz)(UhZU’)‘Zi)-
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(5) Combining (1)-(4), we show that \/E(B -B) A, JV(O,CIDaI (D, +CI>2)CI>61).

Step 1: By uniform order of |f); — 1;|, Kolmogorov’s LLN and A3, we have
lnA**/ 1¢ * yrx/ 1< syl P
A= ;ZniXZiXZi = ;Zsz,-Xzi + Op(Ln);Z|X2iX25 | — Py,
i=1 i=1 i=1

where o, =E(n:X5, X5, ) = E{ M (Xor j —m2j(Wr) — 82(Ur) + Uaj) (X — mok(Wr) — 82k (Ur) + o) } < oo, since

{niX3,X;/}" | is an IID sequence, and E|n;X}; 1 Xa; j| <ocodueto (i). n; is uniformly bounded; (ii). E|Xo; jXo; x| <
(E(X22147]4)E(X22i,k))l/2 < oo by Cauchy-Schwarz Inequality;  (iil). E|Xo; jmox(Wi)| < (E(Xzzi,j)E(m%k(Wi)))l/z;
(iv). E(m3,(W;)) = B(E(niX2ik|Wi)?) < E(E(n2X3,[W;)) = E(n?X3,,) < e. By the non-singularity of @y in

A3, we have A|" LN 61361. And for —A; = Ly A:X5Vy,, the (k, /)™ element is —Ay, ) = ,1; i1 NiX5 Vi j <

n

-1

Op(Ly+Lin/h2) L ¥ X5 .| = 0,(1) by Theorem 2. Similarly we have A3, As = 0,(1). Thus, (157%,) " 2 @

Step 2: We rewrite B into four elements:
14 . 12 12 12 12 4
By = ;ZXZiﬁiVi = szz*ini"i + EZVXi(ﬁi —Mi)vi+ szz*i(ﬁi —ni)vi+ EZVXiT]iVi =Y By,
i=1 i=1 i=1 i=1 i=1 k=1

and show that \/nB BN N (0,®1) by establishing that /B M, A (0,®1), and B2, B13, B4 = 0p(n~1/?).

First, by Levy’s Central Limit Theorem and the Cramer-Wold device, we have \/nBj; NS (0,®,), since
). {X5mvi}, is ID;  @Qi). E(X5mv) = 0;  (iii). E0V?|Z,U;) = 623 (iv). V(X5mvi) = EQXGmAviXs)) =
o, E(N/X3,X5])) = ®1 < oo, where @y, = o} E(n7X5, ;X3,,) = 0, E{n? (Xor,j = maj(Wr) = 82(Ut) + H2;) (Xor e —
mox(Wr) — gar(Uy) + #2k)} < oo,

Second, given that |Vy;|, |l — Mi| = Op(Ly + Lin/h2), we have B, = O, (L2 + L2, /h3) L Y2 [vi| = 0,(n~172).

Third, the j™ element of B3 is % o G(M,)(R:(W;, U,) — ni(W;, U;)), where G(M;) = Xz*,',jvi and M; = (X;,Z;,
Ui, ;). Note that since E(vi|X;, Z;,U;) = 0, E(G(M;)|X;,Z;, U;) = 0. In addition, E(G*(M;)) = E(X;7v7) < o by A3.
By A4, G(M;) is continuous, hence using Lemma 4, Bj3 = 0, (n~'/?).

Fourth, for B4, the jth element can be written as
12 12 12 12 3
By = *vai,jnivi = *ZVmZi,jniVi + *ZVgZi,jniVi + *vaﬂi,jnivi = Z Bisk.
ni3 ni3 ni3 ni3 k=1
We show that By, = op(n_l/z) fork=1,2,3.

Note that Biaz = —; Xiiy (flo; — Hoj) ivi = — (o) — t27) 5 Tiy Mivi = Op (L) Op (= 1/2) = 0p(n~1/2).
For By41, given that (nh?3fw (W,)) ! Y1 K3iCpoi = Op(Ly), and by the decomposition of 7y j(W;) — maj(W;)
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in A.3 from the proof of Theorem 2, we have

1 & & nlle3tl : -1/2
By = 7221337@12”, + - Z|171V1|0p )0p(L3n) = ZBl4lk+0p ),
niSi=hy? fw (Wh) k=1

VK3 A 1 oz VK3
where  Bigp = 222 l?;l . — M) X j, Bian = 722 TiviZa Vm2t,js
zltlhfW) S50 fr (W)
VK';
Bz = 222 ;7; il (maj (W) —ma;(W;)).
i=ti=1h3° fw (W)

1. We show that B4y = 0, (n~'/?) fork = 1,2,3.

1.1.

1.2.

1.3.

Let O =y Y7 (hl3j3fw (Wi))*ln,'v,'th,-. So Biai1 = 2 Y (Al — 1) Xar,jO;. By Lemma 3, we can show that
Or = Op(Lsy) uniformly over %y, given A3 and E(Qr) = 0. Given ), — 1, = 0;0p(La) uniformly, we have
By = OP(Ln)Op(lGn)%Z?:l N Xar | = op(n—l/Z) by AS.
bet Bz = ”%2?21):?:1 Wir = Ein + Ezn, where Y = (hé)SfW(VVI))71niViK3tiVm2t,j- Thus, Ey, =
,%22?:1 Wit = 0,(n~'/?) by Chebyshev’s Inequality, since E(Ej,) = 0, V(E1,) = n%E(lI/r%ii) - O(n’3h3_D3) _
o(n™). And |Ey,| < C|U,|, where U, is a U-statistic of degree 2 such that U, = (;)71 " X0 Qi with
Onit = Wit + Wiri- i<t
. 6,00, =0, as E(vi|W;) = E(vuy j|M;) = 0;
O3, = Vigu) < CE(,) < i ™ 0203, E(K3,) = 0015 ™)

1Y =0, BY = 0,((62,/n2)"/) = 0, (n~2(nh22)112) = 0, (n~112),

We have Bia12 = 0,(n~'/?).

Given Bi413 = nzZ 12, | Wnir» Where Wi = hy szw (Wi)NiviK3ii(maj(W;) — ma;(W;)), we have |Bjaiz| <
C|U,|, where U, = (2) ,-:_1 Z,zl(])m-,, with @iy = Wir + Wi, is a U-statistic of degree 2.

« 0,,E(¢ni|P) =0, as E(v;|W;) =

- 010 = (9l P) = fig' (W)mviE ( O3 i (o (W) = oy (W) [W; )

. o7, =E(¢},) = 0(h3") = o(1),
03, = V(0u) < CE(v2,) < Oy 2 67E (K3, (may (W) —ma; (W)*) = 0(; ™ );

cHY =0, ((0,/n)'%) = 0p(n™ ). HY = 0,((03,/n%) %) = 0y (0= P (nh>2)"112) = 0, (n™ '),

We have Bj413 = op(n_l/z).

Combining 1.1-1.3, we have Bj4; = 0,,(n"'/?).
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2. For Biy, as it is shown in the proof of Theorem 2, Vy; j = gzj(U) 2iU) = (Zk 1Tk)(l + 0,(Las)), where
T = Oy(Ly), Ta = O, (L1, /h2), and T3 = 0, (n~'/?). Thus, by the decomposition of V,2; ; in A.2, we have

1 3 12
Biyp = ;ng%,jnivi =Y Bux+ ;Zlnivi\ (Op(n_%) +(0p(Ln) + 0, (Lln/hZ))Op(LG))
i=1 k=1 i=1

3
= Z B142k+0p(n71/2) by AS,

=1
1 n n nlvl 1 n n nlvl
where Bigp = — 7K2ticg2ti7 Bl = —— ———t——JK2i(U; — U;)Coaui,
Z;Zﬂa * fu (Uy) nzizznzzlh?“fy( U;)
1 & & nivi N
Biaz = 722 Dz+1 JK»i(U, = Uy)Coris  Cori = (M — M) Xarj +veor,j + (82 (Ur) — 82, (U3)).

(Ui)

Similar to By4; we just analyzed, we have B4y = ol,(n_l/z), with U; replacing W;. Bjapy and Bjap3 are similar in
structure, so here we only show that By4y = op(n’l/ 2). Given the three components in Cgy;;, let By = ):2:1 B4k
We show that Bisoor = 0,(n~!/?) for k = 1,2,3.
2.1. Biaa1 = o) Z‘iz‘ihDﬁ?lvl )JKzn(U, Ui) (i — )Xo, j
=1t
L1n> n o 02 i Xaor, jD g Ko

LYy

i—li=1d= hé)sz(Ui)

Ly _
= 0,(L,)0, (hlg) =0p(n /2y by AS.

< 0,(1.)0,

2.2. By A.l in the proof of Theorem 1, we have
iViVg2i DdKZI
Bioym = — ), Tzzm—]t(ud—ljd)
a=1 " iZ= Ju(Ui)

D, n n . .
_ g{ 1 ZZZ Nivivea, jDaKiKii (Uld-i'(nd(zl)—nd(zi)))

imli=li= 1hD]hD2+1fU( Ui)fz(Zi)

S |

Niviveos, /DdK2tt

SiEt| T ()
Dy
= Z(T1d+T2d)+0p(n_l/2).
d=1

where the last equality follows by Markov’s Inequality and that O, (L3, /h2) = 0,(n~'/?) by AS.

We show that 14, Toy = 0 (n_l/z).

1 & 1 Nivivgas, ]DdKZIiKlli 1 1z
22.1. Ty = —= Uu=— Yhitl
n l:th:Z]I; WS fy (U f2(2) n’ ;;1; "

Ifi#t#1letU, = (g‘)_l Yitid Wniet = (’31)_1 Yici<1 Onizz be a U-statistic of degree 3. We analyze each
component in Uy, = 6, + 3H." + 30> + H'> by Hoeffding’s decomposition in Hoeffding (1961).
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2.2.2.

E(¢nitl|H),E(¢nitl|Pi,B) =
0, 63, = V(9uur) <CE(y2,) = O((K)'h> )71,

=Y 1P = 0.1 =0, ((03,/n)'?) = 0, ({1 H52) 71 2) = 0, (n12).

0, as E(vi|Wi,U;),E(vex,|Us), E(Una|Z1) =

2
¢ O-ln’ O-2n

We have U, = o, (n"'/?).

For all other cases, by Markov’s Inequality and A5, we have

. . 1 & Nivivgai, ]DdKZ(O)Kl (0) 2,Dy,Dy+1\—1 _1/2
if i=t=10, —S) Wui= U-d:O(nh'h2 ):o(n /);
n3 lzzl n 3 ; thhD2+1fU(Uj)fZ(Zi) l 14 ( 1 2 ) 14
. . l & Nivivgai, deKZ(O)Klli Dy+1\—1 —1/2
if i=t£1, — il = 1a=0p( (02 ) ") = 0p(n™'/%);
"3;1; " 3121121thhD2+1fU( Ui)fz(Z:) p< ? ) !
i#l i#l
. . 1 & & Nivivgar /DdK2tiK1 (0) D -1 _1/2
it i=1#t, — 2 : =0, | (nh{" 'hy )zo(n /2,
3 lzzlt; niti 3121121 thhD2+1fU( i)fZ(Zi) P(( 1 ) P
i#t i#t
e I &y Nivivear, jiDaK2iKisi -1 ~1)2
if i£t=1, — it = Uys=0 (l’lhz) =o0,(n"""7).
"3;; " 3;;hD'hD2HfU( Ui)fz(Zi) p( ) '
i#t i#t
In sum, we have Tj4 = 0, (n"'/?).
iViVerr iD Kot K 1 S &
Ty = Y Y Y e DR 1y, )= S Y v
SaEr Y fy (U f2(2) i ==

o

121'7&:7&1 Wit = 6, + 3 + 38 + HY be a U-statistic of degree 3.

Ifitt#LletU, = (3)

o 0, E(Gict |P2), E(Whier| P 1) E(Wiat | P2, Pr) =
E(Wi|P P) = (hgz+1fU(Ui)fz(Zi))_lniVngZz,deKztiE(hl_D‘K11i(Hd(Zl) I1;(Z )|Zl),

= O(" /5% "), 02, = V (9unr) < CE(yzyy) = O((h" 13> )7);

g —o, mP? = 0,,((622n/n2)1/2) 0p< '(n 2hD2+2) 1/2) = o0,(n"172),

HyY = 0,((03, /1) 12) = 0, (AP 2h5242) 712) = 0, (n™112).

71/2).

0, as E(vi|W;,U;), E(vea, j|Us) = 0,

. 6}, =0, 03, <E(E* (Y|P, P)) o((n>

We have U, = 0,(n

For all other cases, by Markov’s Inequality and AS, we have

if i:t:l7 i:l#tv Wm'tl:();

e Niviveri jDaK2(0)Kyy; Dy+1y —1

if i=r#l, Wit = I;(Z)) — [1;(Z;)) = O, hy (nhy? ;

312]4[2 niil = n3;; Dlth+1fU( i)fZ(Zi)( d\Z1 d\%i ) p( 1( 2 ) )

i#l i#l

. Nivivgar,jDaKoriK1si -1

f t=1, I1;(Z)—I1;(Z;)) = O, hy(nh .

1 l# ’;lzltzwmlt n3 ZZIIZ DIhD2+1fU( i)fZ(Zi) ( d( t) d( l)) p( l(n 2) )
i#t i#t
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We have B4y = op(l’fl/z).

2.3. Similar to part 2.2, we have

Dy g wiDaKui(g2;(Us) — 82,(U))
Bians = — Z 2 Z;[Zn i 2Di21]](‘y()Ui)g2]( ) (Uia — Uia)
o 2 d nlledKZUKllz (gZJ(UI) ng(Ui)) I _II :
_ Z{ ZUZ”Z P U0 ) (Uld+( 1(Z)) d(z,)))
niviD, Ktt 8 (Ut) 8 D _
2121; ‘ ZthfljfU(Ui) 240 )‘} = ; Tia+Trq) +op(n 172y,

We show that T4, Thy = op(n’l/z).

D K> Ki
231. Ty = 3222 Oivila BB (82j(Uy) — £25(U, Uld_ ZZZ%M

imli=li= lthhDZ+1fU( Ui) fz(Z;) imli=li=

Ifitt#11letU, = (3) Yitett Wit = 6n+ 3EY ¢ 3H,(l )+ B be a U-statistic of degree 3.

E(Woint [P Pr), E(Wnint| P Pr) = 0, as - B(vi|W;, Us), E(UialZy) = 0;
E(Wi|P, P) = (h?lfU(Ui)fZ(Zi))71niViUldKlliE(hg_Dz_lDdKZti(ng(UI) ) U,-);
+ 07, =0, 03, <E(EX (Y|P, 1)) = O(h ™), 03, = V(9uin) < CE(yizy) = O((h" ) ")
-1 =0, B =0,((03,/m)'"?) = 0, ((w2") ) = 0, (n”112),
Hy = 0,((03,/1)12) = 0, ({1 152) ~12) = 0, (n™112).

We have U, = 0,,(n"1/?).

For all other cases, by Markov’s Inequality and AS, we have

if i=t=1, i=t#Il, Wuz=0;

if i=1%#1, n3ZZV’nm: 322

NiviUiaDgK2iKy (0)

8
imli= S5 E (U f2(Z)
i#t i#t
. NiviUiaDaKiK\si _1
if i#t=1, Whist = (22j(Ur) — g2j(Ui)) = Op(n™").
S,ZLZ ”S,Zi; WO U fr(22)
i#t i#t
In sum, we have Tj4 = 0,(n~'/?).
NiviDaK2:iK1j; l v
232. Ty = ZZZ DDy (82)(Ur) — 82;(Un) (Ia(Z) — 1T, 3222‘/’""1
imti=ti=1hy 'hy > fu(Ui) fz(Z;) i=li=1i=

s

Ifi#t#1LletU, = (3) Yttt Wnitt = On+ 38V 438 + H®) be a U-statistic of degree 3.

E(Woirt|P), E(Whiet|P) s E(Whiet [P, 1) = 0, as - E(vi|Z;, U, W;) = 0;
E(Woin|P) = (fU(U')fZ(Zi))_1niViE(h1_Dlhz_Dz_lDdKZtiKlli(ng(Ul) 82;(U) (My(Z)) — 4 (Z)) | P )
E(Wyint| P, Pr) = (hD2+1fU(Ui)fZ(Zi))_lniViDdKZti(ng(Ut)_ng(Ui))E<h1_DlKlli(nd(zl)_Hd(zi)) Zi),
E(Wirt|P P) = (B2 fu (U f2(Z2)) ™ miviK (Hd(Zi)—Hd(Zi))E(hszrlDdKzn (82j(Ur) —2;(Ui)) Ui);
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. 62, < E(EX(WuuP)) = OU2") = 0(1), 02, < CE (EX (Wil P P) + B2 (it | P, BY)) = O(12* /122 +
/R ). 63, = V(dun) < CE(vy) = Op (1) *h5%) ")
1Y = 0, ((0F,/m)!12) =0y 2), HEY = 0,((03,/1%)!12) = 0, (1 (r2952) ™2+ (2 ) %)
—op(n2), HY) = 0,((03,/m)'12) = 0, ((nhD" 2h5?)” ‘/2) op(n12).
We have U, = 0,,(n"1/?).
For all other cases, by Markov’s Inequality and AS, we have

if i=t=1 i=I1#t, i=t#I], Yuy=0
1 & anlDdK2th1tl

B L Vi = 5 LY p et e

—li=1 i—1i=1h
i#t i#t

= 0p(hi/n) = op(nfl/z).

if i#r=1 (82 (Ur) — 82j(U)) (I4(Z) — 114(Z;))

We have Bj4p3 = op(n’l/z). By 2.1-2.3, we have B4 = op(n’1/2).

Combing all the terms in Step 2, we have By = By + 0,(n"'/?), where \/nBy N N (0,P).
Thus,\/nB; —= A (0,®).

Step 3: We first show that B4 = 0,(n~'/?). Note that
l,,. 1,, 1, 1., . e
—By = ;in(Vm —VapB) = ;inVul - ;erlv;ﬂﬁ + ;Xz(n =) (Vur = Vi2P) = Z B
k=1
By Theorems 1 and 2, we have |f), — 1

Bar = Vi (3 Xy Ximi — 5 Ximy Vaimli) = Op(La) (0p(n™1/2) + 0, (L)) = 0,(n~1/?) by AS. Bar = 0,(n"'/?) fol-
lows similarly, and Byz = O, (L2) = 0,(n"'/?) by AS.

» Vi, Vuii = Op(Ly,). Given that Vyy; is the same across i, we have

Then, we show that By = 0,,(n~'/2). Note that
1 1 1 3
</ o/ O/
—B; = Zinle - ;inVmZﬁ + ;Xz(n — 1) (Vi1 = Vi2B) = Y Buy.

By3 = 0,(L2) = 0,(n" /%) by AS. By, is of the same structure as By, thus we only show that By = 0, (n~'/?).
Note that By = % 1 XMVt — Z?=1 VxiNiVimii = B, +0p(n’]/2) by Theorem 2. By the decomposition of

Vinti, similar to V,; given in A.3 from the proof of Theorem 2, we have the jth element of B’2 1 as

1 & nin*, K3
By, 2722711%1:#0 (L3n)Op Z\W%,!— 2321k+0p(n 1),
i=1 lh * fw (W)
1 & nzle K3tl n nlle K3rl
where By = —227’(71;*17:)& Bz = ZZ SV
n* SIS R v (W) n 5 e 11y fiw (W)
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1 n n

771 2” 3[!
B my(W;) —mi(W;)).
= L gy O ()

3. We show that By, = 0,(n~'/?) for k = 1,2,3.

31 Let O =iy7  (h ?3fw(Wi)) NiX5; ;Kaii- S0 Baiy = %Z:’zl(ﬁ, —1,)Y,Q,. By Lemma 3, we can show that
0 = OP(L3,,) uniformly over %y, given A3 and E(Q;) = 0. Given fi; — 1, = 1,0,(L,) uniformly, we have
B = OP(Ln)Op(LM)%Zf:l Y| = Op(”il/z) by A5.

32. Byp = ,%zf,?:] Y h;mfv; (Wi)niXs; iKsiivmie = nz Y Yl Wair = E1y + Eyy, where Ey, = 2 Y Vi =
ST, n 2 fy! (Wi)niXs; ;K3 (0)vm; = 0, ((nh?)~! ) = 0,(n"Y?), and |Ey| < C|U,| with U, =
() Y 1}‘.;':1 Vit = 0, + 2H" + H® | a U-statistic of degree 2.

it
© 61, 0%, = 0, as (X5, W), E(vm W) =
- 03, = V() < CE(y2,) = O(;™);
Hi'' = 0. B = 0,((03,/n)"/2) = 0,(n2)71/2) = 0, (n™112).
We have By = op(n’l/z).

3.3. [Bays| < C|Up|, where U, = (2)
(m1(W;) —my (W))).

E(Wit|Pr) =0, as E(n:X3; ;|W;) =

1 L Wnir is a U-statistic of degree 2, with y,,;; = hy by fw 1 (W,')T],-X;L Kaii

i#t

e 01 =E(Wr|P) = iy (WimiXs; jE (hy ™ Kaei (my (W) —my (W) | W;) < CHY X, ; uniformly over Wi;
. of, =E(¢},) = O(hé”) = o(1), 03, =V(dur) < c1~:<w,%,-,> =0(r""%);

1 _ 2 _ —2\— —
=Y = 0,((a2,/n)'/?) = 0,(n"112), B = 0,((2,/n?)V/?) = 0, (n/2(nhE72)1/2) = 0, (n~1/2).

We have B3 = Op(nil/z).
By 3.1-3.3, we have By = o, (n"'/?).
Step 4: For B3, we have —B3 = %)A(z'n(Vgl — Ve B) +0p(n’1/2) = B3| + B3, Jrop(ifl/z). We will focus on B3
here, since B3zp has a similar structure to B3y and could be analyzed accordingly. By Theorem 2, we have B3; =

%Z?:l XZNiVari — %):;':1 VxiniVa1i = By, + 01,(71’1/2). Similar to A.2 given in the proof of Theorem 2, by Taylor’s

Theorem, we have

szU ZKZH gln ZJKZH( (U U))Cgltt

Zth gln} (1 + Op(L2n))a

Dﬁ]fu

”hzsz
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where Co15i = () — N1)Ys +ve1r + (g1 Uy) — gl(Ui)), and Ry; is the remainder term of a Taylor’s expansion of K,;; at
(U; —U;) /hy.

Similar to the T3 term in the proof of Theorem 2, we have (nh?2 fu(U)) 'Y RiConii = 0, (n~'/?) uniformly.

Thus, we have the j element of B}, as
12 3 1 .
/ * * Y
B3 = ;Z‘,Xzi,ﬂlivgli = Z B3+ ;ZIniniA,j\ (Up(” 2)+ (0p(La) + 0, (Lln/hz))Op(LZn)>
i=1 k=1 i=1

ZB31k+0p( 1/2) by AS,

1 L2 1X2 1 n n 771 2
where B3 :722711[(2”%“” B3, = ZZ DT, 2 JKi (Ui — Ui) Cersiy
i=t=1hy" fu (U;) i=ti=1h (i)
B33 = 12": % JKyi (U —U;)Cgy
3= 5 NS N ti\Ur — Ur ) Cglri-
n2 P o lhD2+1fU( )

We show that B3;1,B313 = op(n_1/2) and B3, = %):;’:1 A1nij +op(n_1/2), where

by, X5, :DaKo Kt U —U

id 21] 1 1 t !

Alni,j = E Je1(U; (7)
" dglzh’f‘h’;z ( Fonfea BT,

z,.> |

B3y is of similar structure as Bi4; with U; replacing W, n;X5; J replacing 1;v;, Cg1s; replacing C,pyj, and
E(n:X3; ;|Ui) = O replacing E(n;v;|W;) = 0. By the same arguments in 1.1 — 1.3, we have B3j1 = o), (n=1/2). Given the

three components in Cyyy;, let —B312 = Z;Ll B39k, with

7in n ni Z*i.j s 7 1 A2 Th 2”
B3 = nzg’gihDﬁIfU(Ui)JKzn(Ul U) (i —n0)Y;, B3 = zZizZihDﬁl l)J 241 (Ui = Uy) v,
1 &L nl 2i.]
B33 = — —JKyi (Ui = Ui) (g1(Ur) — g1(Ui)).
n2;£h§2+1fU(U) “( )( t )

4. We show that B331, B3122 = Op(l’fl/z), and B33 = %Z?:] Alni,j —|—0p(n71/2).

4.1. Given f)y — 1, = O,(L,) and U,—U; = O,(L1,) uniformly, by Markov’s Inequality and AS, we have

I3 My =0p(n”'1?).

B31o1 = Op(Ly
! i=li=1d= h?ZfU(Ui)

(L1n> n n D |niX2*l‘jnthDdK2ti|

4.2. By A.l in the proof of Theorem 2, we have

D21 & & Xy jveuDaKoi

B3 = Z pp ZZ (Uia —Uia)

SnrES B W)
2 1 & anQ, ]VglthKZItKllt
—z{gzzz

m SSER R fy(U) f2(Z)

(Uld + (Ma(z) - Hd(Z,-))>
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NiX5; jve1DaKui
T
n> "y (U)

Dy
} — Z(Tld-i-ng)—&-op(n*l/z).

d=1

We show that Ty, Thy = op(n_l/z).
I EE niXQ*i,J'VglthKZIiKlll I &G

421. Ty ==Y Y Ua = — 3.3 ) Y-

SEER R U) f2(Z) i—li=1i=1
Ifitt#11letU, = (3)_1 Yitett Viitt = On 38 138 + B be a U-statistic of degree 3.

- 65, 60 E(Whint| P Pr), E(Whiet|[P, P) = 0, as E(veie|Uy), E(Una|Z)) =

+ o = Byl P) = it (M ) <
. 05, <E(¢3,) = O(hy?), 03, = V(9nint) < CE(Y) = Op((h?1h§2+2)7l>§
Y =0, HY =0,((62/n%)"?) = 0,((nhd)") = o0,(n /),

03,/
Hy = 0,((03,/1)12) = 0, (" 15>2)™12) = 0, (n~112).

We have U, = 0,,(n"1/?).
For all other cases, by Markov’s Inequality and AS, we have

e NiX3; jve1:DaK2(0)K: (0) 2, Dy Dy+1\ —1 1
i=r=4 n3Z ""’:n3z D‘lthz“fU( U f2(2) Ui = 0p (7 157*1) ") = op %)

e NiX3; jve1:DaK2(0) K1y
if i=t¢t 7& l, Yyiil =
n zZuZ " zZuZl W R (U £2(Z:)
i#l i#l

U[d = 0p ((nh12)2+1)_1> = Op(nil/z);

1 n n

if l':l?él, n3ZZWm”: 322

anZI \J vglthKZUK] (0)

Uia = O (0" h2) ") = 0p(o ")

imli= SSRE (U f2(Z)
i#t i#t
1 & 1 & MiXs; jve1:DaKoiKii _1 1n
it itt=0 =YY Y = U = 0p((nh2) ") =0 (n™"/2).
3,21; " 3;;hD‘hD2+1fU( Ui)fz(Z:)
i#t i#t

In sum, we have Ti4 = 0, (n"'/?).

n

(I4(Z1) — M (Z)) = giilg%iw

NiX3; ve1:DaKoiKiii

1 n n
422. Ty = ?ZZZ

i=li=1/= 1hD1hD2+1fU( Ui)fz(Zi) n
Ifi#tr#11letU, = (3) Yitrt1 Wnirt = On + 3H,(, )+ 3H( ) ( ) be a U-statistic of degree 3.
o 00, E(Whiet|P:), E(Wniet | 1), E(Whiet|P, P1) = 0, as E(Vglt|Ut> =
v NiX5; ;DaKoiKyyi chy! \V 1t
E(ll/nitl|PI) = h?l;éz“ E ( fU(}Ui)fZ(Zi) (Hd(Zl ) —

) cn, |n,X2Uvg1,Dd1<2n!
D+l
2 fu U f2(2i)
Chylvers| .
)ST

)

NiX3; Ve DaKari

E(Whit| P Pr) = DlhD2+jljU( ,-)fz(Z,-)E(Km(Hd( 1) —11,(Z))|Z
' e NiX5; iDaKoiKy; B _

E(Wiu|Fr, 1) = h?lhé’z“E( fuUi)fz(Z:) (Hd(zl) Hd(z’))

ty

. b, <E(9}) = 0(h" /h3). 3, < CE (B (Wit Pi, ) + B2 (Wit P P)) = O(R™ /522 + 13 /13,

03, = V(i) < CE(y2,) = Op((thl—zhgz+2),1>;
: H”(l) = Op((o-lzn/”z)l/z) =0, (nfl/zh“l'lhgl) — Op(n71/2>’
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Hy? = 0y((63,/n)!/2) = 0y (n™ 203 (nh> ) 712 4 (nh3) ~1/2)) = 0, (n ™12,
HY = 0,((62,/n%)'12) = 0, (n3h) 2h222)71/2) = o, (n~1/2).
We have U, = 0,,(n"1/?).
For all other cases, by Markov’s Inequality and A5, we have

if i=t=1, i=1%#t, Wit = 0,

. . Ni Q,JVglthKZ(O)Klli
if l:l#l, Yyiil =
*ZUZ zzuzlthhDZ“ u(U)f2(Z)
i#l i#l

L niX 2i JVglthKZIlKltt

if i#t=1, 322"’"’” ZZ D1h02+1

(Hd(zl) - Hd(Zi)) =0, (l’ll (nh§2+1)—1>;

(My(2) - () = 0, <h1 (nhz)_l).

i—1i= i=1=1h; v(Ui) fz(Z:)
i#t i#t
We have B3y = op(n_l/z).
Doy & & niXs; i (81(Ur) — 81(Ui)) DaKoi |
4.3. B3123 = 72 : l]( l ) l(Uid_Uid)

=1 Sii= hé)z“f (U:)

_ i{gzzznlle] 81 (Ur) — 81(U;) ) DaKasiK 1y

(Uld + (Iy(Z)) —Hd(Z,»)))

i=11=11 hll)‘th“fU( Ui f2(Z:)
Ni 2”(81 Up) — 81(Ui)) DgKai D> s
=— Y (Wig+Wag) +o,(n1/?).
2?:1; hDZ“fuwn &

We show that Y2 Wig = L X7, ayi j+0,(nV/2), Wag =o0,(n"/?).

Ni 2;,(81 Ur) - (Ui))DdKZtiKllz n
43.1. Wiy = Vi
1 3121;‘112 D'hDZHfU( Ui) fz(Z;) 312‘3211Z !

Ifi#t#1letU, = (3) Yititt Wit = On + 3EY + 3H,E )+ B be a U-statistic of degree 3.

E(@uit|P), E(Wniet |71 ) E(Wnint [P, ) = 0, as E(Un|Z) =

U, NiX5; iDaKaiKyyi
E(Whint| P1) h§2+1E( f;(jl]i)f2<tzi) <g1(Ut ) ClUtdl,
niX5; KU ( ’ ) C’n,le KllrUld‘
E(w,|P, P) = L E(D4K; Uy) U L
(Yoin1 | P, ) h?lhgzﬂfU(Ui)fz(Zi) a2t (gl ) = fU UNfaZ)

U 0iX3; ;DaKoiiKyji
E(‘Vnitl |PMPI) = thhlgz“ E( fé(ly.)fz(z.) (gl (Ut) -
1M

. 0%, <E(92,) = 0(1), 63, < CE (B (Wiur|Ps, P) + E* (Y|P, 1)) = O (A "),
03, = V(@) < CE(YZ,) = 0, ((715%)7);

CHY = 0,7), B = 0,((03,/n2)' %) = 0, ((2H)) ) = 0, (717,
Hy) = 0,((03,/n)' ) = 0, (<n3h?lhé’2“)*”2) = op(n1/2).

Uz,ZI) <C|U1d\

We have U, = 3H," +0,(n"1/?), where gV =1 ~ Y/ E(Wuin| ). In this case, we need to investigate
the structure of H\" further. Note that g1(U) —g1(U) = Jg1(U) (Uy — Uy) + 3 (U, — U;) ' Hg (Uyi) (U = Uy),

where U;; = AU; + (1 — A)Uy, for A € (0,1). Plugging this into E(y,;| ), we have
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3H ZE Wnltl|PI Zalnl Jd+ Zblnl jd>

3U1d <nz 2i deKZttKllz
where a1 jq

Jg1(U)(U; = Uy)

Zl)a

— T\ U0 2
3Uia NiX5;, DaKaiKuii 1 ,
blnl,jd - thlh?2+1 < fU( )fZ( ) 2(Uf _Ui) Hg, (Uti)(Ut _Ui) Z ).

Given |b]nl.,jd| < Ch2|U1d|, E(b]nle) = 0, and V(%Z’;:l blnl,jd) = O(h%nfl), by Chebyshev’s In-
equality, we have 1 Y7 by, ju = 0, (han= %) = 0,(n~1/?), and U, = Iy aija +o,(n"172).
For all other cases, by Markov’s Inequality and AS, we have

if i=t=1 i=t#I, Yu=0;

n DyKyiK; (0) _
. . 2” dB2tilx ] D 1
if i=1+#1, Wiri = (&1(U) —&1(Ui))Uia = O (@hﬁ) >?
3212 " *lel hD‘th“fu( Ui f(Z) o
i#t i#t
) L L3 NiX5; iDaKoiKyi .
it itr=1, — i = (g1(U:) —81(U) U = Op(n™").
mPIRL 3,anlhD'th+‘fU( Ui f2(Z)
i#t i#t
Note that W4 %( )U +op(n n!/ 2). By exchanging i and [ in H,g” for future notation convenience, we
have
6 (M\1& & Uy MiXy; jPaKoiKii U -0 I
Wig = — (")~ E J l/( )Z +o,(n /2
Z e (3> ok Lo B\ Twnnay TR ) e
o 6 (n\1& —1/2
1 6 (n 1 &
_ 1! . o _1)2 . —1/2
n;alnh]"‘ <n3 <3> ) ni:Z]Cllm,] +0p(n )
1 n
= ;Zalni,j‘f'op(n 1/2)7

where the last equation follows from that (%( ) — 1) o(1),and 1¥7  ay, ;= 0,(n~1/2).

In sum, we have Zd Wig = L X0 aiij+op(n1/?).

| LR DyK5iKyi 1
73

432, Woy = zzszg (21(U) = &1(U) (Ta(Z1) — Ta(Z)) = ZZZ%n
v (Ui f2(2) SEE

i—ti=1i=1h;
Ifi#t#1,letU, = (3) Yt Wit = On+ 3 130 + B be a U-statistic of degree 3.

6, = O(K") = 0,(n1/?);

Cpy niX3; R _ . M
E(Yin|Pr) = h?lhgzﬂfU(Ui)fz(Zi)E(DdKan”l(gl(UI) g1(U))(Ma(Z) = ‘Z"U’ JuUi)fz(Zi)°
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E(Woirt|B),E(Whiet | P1) E(Wniet | P, P) = O(hy),
nzxz,JDdK2n(£l(Ut) 21(Ui))

) ’Zl) < Chil |an2*i‘deK2ti<gl (Ur)—e1 (U,))|

)
itl | Py B E(Ki(I1;(Z;) — ,
(IV tl| t) DlhD2+1fU( Unfa(Z) ( ll( d( l) /1?2+1fU(Ui)fZ(Zi)
niX5; ;Kui(la(Z)—114(Z;))

)}U) < C|T”'Xz*i.jKlli(Hd(Z[)fnd(Z,-)) )
l )

E(vw,i1| P, P) = ’
(V/mzl| is 1) Dlth“ h?lfU(Ui)fZ(Zi

iz PaKailgiU)
+ 01, < CE(E* (Wit |P) +E* (Wil ) + B (Wit | P)) = O(H),

=0(R+h" hy P2+ P = 0 (" P+ 1P, 62, = O((hY Phe) )

O3, = f
- Y =0,((6%,/n)'/2) = 0 (n112) = 0, (n"1/72),
HY = 0,((03,/n%)'12) = 0, (! (252) ™2+ (w2 %)) = 0, (n™112),
HyY = 0,((03,/m%)'2) = 0, (w252 1) 712 = 0, (n7172).
We have U, = 0,,(n"1/?).
For all other cases, by Markov’s Inequality and AS, we have

if i=t=1, i=1#t, i=t#l, WYuy=0

1 & & 1 & nlle DdKZItKltz
if iFr=1, Vi 4 81(Ur) = &1(U;)) (Ia(Z) — I4(Z:)
”3121; “ ”3121; W R fy (U3 f2(Z )( l i )
i#t i#t

=0p(hi/n) = op(nfl/z).

We have B3| = —% Yo anij+ op(n’l/ 2). For Bs3, the analysis is exactly similar to B3z, but note that for the term

having order OP(n_l/ 2) in B33, the corresponding term in B3133, denoted as W{ 4018

X5; ;(81(Ur) — &1(Ui)) DaKaiKuis
Ug.

W= 53y yt

imli=1i= DlhDZHfU( Ui fz(Z)

The difference here is we have Z; instead of Z;, such that E(y,;;|P;) = 0 in that E(n;X5; ]| ;) = 0. Thus, by the same
arguments for the rest of terms, we have B313 = 0, (n’l/z).
As to Bsp, the analysis is similar to B3 given above. For the component with order OP(n’]/ 2), we can actually

combine that in B3; and the one in B3; together to have a more intuitive result. Note that

1

Veli— VeaiB = {
nhy> fuy (Uy)

sz,,[n M) (¥ = XorB) + (vets = veau )

+ (81U~ 1(U) = (22(U) — £2(U) B } (1+0p(L20)),
and the component of order O,(n~'/2) involves the third term in brackets, which is (81(Ur) — g2(U)B — Bo) —
(81(U) — 82(Ui)B — Bo) = g(Uy) — g(Uy). Thus using (g(U;) — g(U;)) instead of (g1 (U;) — g1(U;i)) in Wig, we have

1 _
B3 = ;Z?:Iam'—"_op(n 1/2)v
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&E Uy <an2*1DdKZle 1il

UZ‘ —Ul
where a,; = _
" Z’l 2K B2 Tu(U)fz(Z)) )

Jg(U,)( I

z,) |

Step 5: Combing orders of By, B, B3, B4, we have % Aéﬁ(f/f)zzﬁ) Bii+-+ Z, L anit+op(n 1/2). Next we investigate
Vi(Biy+ ;T ).

Let A € RP2 be a non-stochastic vector such that A’A = 1. Denote Bj; + %Z?:Mm’ = % L Xmivi +
ani) = 1Y% | by, and we have E(A'b,;) = 0 as E(X5;mvi), E(aw) = 0, and E(A/bybl,A) = A'E(X;nAviX5))A +

ME(apiay,)A = A'® A + A'E(ayia),;)A. Denote Xp; j = I j(Z;) + U j, the j™ element of a,; can be written as

)

1 D U, —U,
= /W(nzj(zl)+U21,j_m2j("vl)_ng(Ul)+/~L2j> ZUidDdKzleling(Ul)( thz l>
1M

D, Uid (nl 21 ]DdKZIIKlll ( (Ut - Ul)
N ————

A
= L\ R n@) g

o MmW,U)
fu(Un)fz(Z))

Dy
= /(sz(Zi*hn/)+Uzt,j*hzllfzj*mj(Wz)*gzj(Ut*hzllf)Jerj) Y UiaDKx(w)Ki (7)
d=1

(W, U; —hay)
Jfu (Ui —haw) fz(Zi — hy)

%/ ILj(Zi) 4 Uny,j — maj(Wi) — 82(Ur) +N2/>ZUzd —Dag(Uy)) (Wi, Ur) fumz(Us, Wi| Z;)dU, dW,

o

fu(Ur) fzum(Zy, U, Wy)dU,dZ;dU;dW;

xJh(Ur —hay)y

fuoUy) fzum(Zi — hiy, Uy — hoyw,Wy)dydywdU,dW,

:72 ((HZJ Jrszj ij(VVt> gZJ(Ut)JF.UZJ)Ddg(Ut)Th

Yo

The convergence follows by A3, and that [ D;K>(y)ydy = (0

=— Z ((Hg, HZj(Zt))Ddg(Ul)nl

—1,---,0)/, where —1 appears on the d position

3Ty

of the vector. The last equation follows by E(1,X3,|U;) = 0. Hence, the (j,k)™ element of E(ay;a),;) converges to

) sz15

By Lyapunov’s Central Limit Theorem, we have \/ﬁ(B“ + %):;':1 ani) N (0,®; + D), provided

Dy D,

Z Z <(H2J H2,/'(Zt))Ddg(Uz)Tlt

=16=1

P2y =E

Zi) E ((HZk(Zi) - sz(Zz))Dsg(Ut)nz

limy, e Y7 E|rz_1/21’am|2+5 =0 for some & > 0. Note that by C, Inequality,

2+6 Dy
S n78/2D£r§ Z A«]~2+8E|am"j |2+5,
j=1

120 248 _sply
ZE|n Aa ’ =n HZ’E

Dy
Y Ajani j
=

246

D>
where E|am]|2+5 —>/ Z sz i)+ Us j— mzj(W,)—gzj(U,)+u2j)Ddg(U,)n,

2)
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X |Uia | fzu (2, Up)dZidU;

+6
Uia 2 f20(2:, Ui)dZ:dU;

2

<CZ/‘E (T j(Zi) + U j — maj(Wi) — 82(Ur) + ;) |Z

< oo since E(|Uid|2+5|Zi) <C< o and E|X2i,j|2+5 <

Thus lim, e Y, E’n’l/zl’amlus =0 for some 6 > 0, and we have % Aéﬁ(f’ —X:B) BN N (0, +P,). From

Step 1, we have (%Yéﬁ&)q LN @, . All together, we have

V(B —B) =5 A (0,05 (@) +@2)05").

Theorem 4 Proof. By Equation (6) and (11), we have

m(w) —m(w) = (g (w) —my(w)) = (12 (w) — ma(w))'B — (i3 (w) — 1) Bo
— (ia(w) —ma(w)) (B —B) — (i3 (w) — 1) (Bo — Bo) —ma(w)' (B —B) — (Bo — Bo)-

Since, by Theorems 2 and 3, fo — Bo = 0, (n"/2), B — B = 0,(n~1/?), and sz (w) — ma(w) = 0,(1), the last four

terms in /f1(w) — m(w) when multiplied by (nh3D3)1/ 2 are 0,(1). Thus,

VI (o) = m(o)) =\ (G o) =y () — (a(o) = ma ()’ B — (s (w) — 1) By ) +0,(1).

We first investigate \/nh?3 (11 (w) —my (w)), and then the asymptotic distribution of 7(w) follows immediately due

to the similar structure of ri(w) and s (w). Given the expressions for sit; (w) and fiy (w), and the uniform order of

fw(w), letting K3, ,» = K3 (

W’[W> , we have
3

nhm}w( )Zletw( my (W;) —my (w ))+(nth—m1(W,))+(ﬁ,—n,)Y,)}(1+0,,(L3n))

{ZTk} (1+0 L3n)>.

The proof has four steps:

A (w) —my(w) = {

(1) We show that T} = by,1.1 (W), where by, (w) = b 523 DYREY

—k
3 T (w o i Dm () D fiv (w) + 0 ().

(S3

(2) We show that /nkh5> Ty L5 A/ (0,®,,1 1), where @, | = fm) [K2(y)dy.

(3) We show that \/nh3 (T5 — b1 2(w)) =5 A (0, @1 2), Whete byt 2 (w) = 5 5525 L Y23 oy (w) D fi (w) +
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0p (), Bt 2 = m3(w) fiv (W) [ (J Ks (1)Ks (1 +1)dn ) *dpe.
(4) Combining (1)-(3), we show that /nh5> (i (w) — my (W) — byt () 55 A (0, 1 1 + Byt 2), where by (w) =

bml,l (W) + bm1’2(w).

Step 1: By Taylor’s Theorem, we have

1
T, = WZK&W my(W;) — (W))
s3+1

:; n 53 1 ﬁm —w B # ﬁm W
}’l/’l?SfW(W)IE’IQ’Iw <|ﬁz] |ﬁ"D 1( )(W ) +|ﬁ|:Z?3+1 (S3+1)!D 1( ) > Z T3t

where w = w+ A (W, —w), for some A € (0,1). For each k = 1,---, 53, we rewrite Tj; as

W 1 W, —w\P
T = 3 DPm tg, Where t5= w ( ! )
1k k'fW (W) wlz::k ( ) kﬁ kﬁ h3D3 tzl 3t, l’l3

12
By Lemma 3, sup,,cq, |txg — E(txg)| = ((logn/nh?3) ) If k = 1, for any |B| = 1, by Taylor’s Theorem and

given that k3 is of order s3, we have

E(tip) = /K3(Y)J’ﬁfw(w+h3?’)d7

s3—1
:/1@()/)}/5 <fW(W)+ Y I,Dafw( J(han)*+ Y, ?Dafw( )(h37’)a> dy

o= i laf! |ot|=s3

_ s3] Micy 53 (s3—1)B s3—1
i (s3—l)!D fW(W)+0(h3 )

Thus, given that /i3 = n~'/(337D3) we have 3 (logn/nh3*)'/? = o(h), and

K s 1 §2—
Ty = b fo;;)m Y. DPmy(w)D5 P fiy () + 0, (H5")
IBl=1

1 iDnu (D™ fiw (w) + 0, (1),

_ 1,53 :u'k3 1,83

3 fw(w) 1(s3 —1)!

Similarly, if k = 2, for any f such that || = 2 and 2 is in the j® position of the vector f3, 0 elsewhere, we have

E(tzﬁ) hy 2 (ik‘ ;3 D}~ Zfw(w)+o (h?*z) . And for any remaining B such that |B| =2, E(r,3) =0 (h?*z). Thus,

=hy ?ﬁ% 57 ZJ lD my (w) j.rsz(w) +o, (h?3). In a similar manner, we have,

M _
T = ) Filsy )1 ZDm DY iy () +0p (), forany k= 1,153
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hS3+l

For k= 53+ 1, we have T, 72 Kyw (X DBy (w) (Wi o (h3}), by Markov’
OrK =53 , W€ have 1(s3+1) = D3f =1 83tw |Bl=s3+1 (Yﬁ]) my(w h3 =0p(iy ), 0y Markov's
Inequality and E|T (5, 1)| = O(h”H) = o(h?) since m; (w) € C*3*1. Combining all the T3; terms, we have

53

s3 Mksz,s . k 53—k K
Ti = bui1(w), where by, /pe Djm (w)D}’ w)+o0,(hY).
i 11(w) i(w) = i lw )Z T Z Jw(w)+0p(h3’)

Step 2: Given 1Y, = m(W,) + viu1,, we have T = Y!' | ay,, where ay, = (nh?3fw(w))_1K3,ﬁwvm1,. Since

E(v1:|W;) =0 and E(v2,,|W;) = < oo, we have E(ay;,) =0, and V(ay,,) = n—2h;D3 fwtw)o2  [K3(Y) fw(w+

vml
hyy)dy. Let S2 =YY" V(ay,) = (nh?3)_1fu72(w)63m1fK%(}/)fW(w + h3y)dy. Then, by Lyapunov’s CLT, if
p E\alm/Sln|2+5 — 0 for some § > 0asn— oo, wehave Y1 | a1 /Sin A, A4(0,1),i.e., given Sl,, — cI>m/1 1

2 :
nh?3T2 BN N(0,®p11), where @y | = Oom1_ /K%(y)dy
fw(w) .

Given that nhg33 82— @11 > 0 and E(|vy, [>T |W;) < C, Lyapunov’s condition is satisfied since

246
n

YE

t=1

D3\ 6/2+1
2o (nh 3) / ! KSz,me]z

nhé)3 Sw(w)

Altn

Sln

gC(nh%)*a/z/ IK3(7))*"0dy — 0, as n — oo

= ( 352 5/2+IZ

Step 3: Denote fy (Ur) = fy,. fw(Wi) = fw,, W2, T0) = &, fu (Us) = fu,. fw(We) = fiw,» (Wi, Uy) = @1 According

to the uniform order of these density estimators from Theorem 1 and L2, (L1, /h>)> = o(n~'/?) by A5, we have

1 2~ ~ ~
A== o (0, = ) = oS (8= 00+ 00 g = fi) ) +opl 1),

Since T3 = (nh” fiv (w)) ™' Ly Kaeo (A — 01)Y:), and (nh3? fiy (W)~ L0 |Kw¥:| = 0,(1), we have

3
T3 = Z T3k+0p(n7]/2),

k=1
where T: ! i ! (fo — fu)KzewniYs, T L il(é 0r) Kzr i Yy
31 = " p. . < U; JB3tw 5 32 = — - - 3t,w )
nhg)%fw( )t lfUt U; twlhtdt nhé)3fw(w)t=1¢[ t t t tLt
1 n

=—pH—— K3t wie s
W f (o »Zlfw,(fw’ S Koo

From Theorem 1, we have | fU, — fU,| = 0,(Lay) and |@ — ¢:| = Op(Lan) uniformly. Thus, nh?3T31 =

0, (\/nh5*Lay) = 0,(1) by Assumption AS Gii). Similarly, \/nh5 T2 = 0, (\/mh* Lan ) = 0,(1). Let T3 =
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T331 + T333, where

n n n 1 A
531 = %wal (E(fw,) — fw) K3 oYy, T3 = nhD3fW ;T E(fw,)) K3t i Yi-

We show that T33; contributes to a bias and 733, to a normal distribution.

For T31, given that E(f,) — fi, = b3 “k3 23 Z D;3 fw(W;) +o(h3') by Taylor’s Theorem and the high order of

kernel k3, we have

1 US|

—_— D3 W) K3t w1 Yy
nh3D3fW( ¥- Fo, Jw (W) Kz i Y

D3
s “k3,53 - K
T331=h33? th+o(h33), where ;=
P o

Since N,Y; = Vi1 + (m1(Ws) —mi(w)) +my(w), lett; = ):,le tjk, where

1 |
t'1= DfWWKa Vinlss th=—fF—— DS?fWWK3 my (W w)),
j xfW ) Zth )83t wVmlr b nh?3fw( ); 1fo (W) tw( (W) —my ( ))
ml( ) < 1 S3
13 = —p o Y D fiy (W,)K,
P f (w) S (P s

By Markov’s Inequality and E(t;1) = 0, E(t},) = O((nhy*)™") due to E(vm,[W;) = 0 and E(2,,|W,) <
C, we have 1j; = OP((nh3D3)_1/2) =0p(1). And tjp = Op(h3) = 0,(1) since Eltjp| < Ch;D3E|K3t7W(m1(W,) -

(W))| = O(h3). For tj3, since E(tj3) = mi(w)fi(w)~" [ DF fiv (w + h39)Ka(¢)dp — mi(w)fy' (w)D3 fiw (w),
and E(tjz-3) = O((nh?3)_1) = o(l), we have tj3 = ml(w)fv;l(w)D;?fW(w) + o,(1). In sum, T3 =
Iy M L2 i (w)DY fiy () + 0p (5 ) = byt 2(w).

For T33,, we show that (n/, D3y1/2735, = (nhy Dyizyn g, +o0,(1) N A (0,1 2), where

Wz), Dy12 = mi(w) fiw (w //Kz % K3(71+}’2)d%) dp.

2Dz — _
aon = (nh3?) 'my (W)E(le.1 (K3ir — E/(K3i) ) Kipw
Since th — E(fW[) = (I’l/’l3D3)7l ?:1 (K3t,' — E,'(K3”')), we have T332 = T3321 + T3322, where

1 U
T30 = 727 K3(0) —Ei(K3:i)) KarwMiYe,  Tazo1 =

2h§D;f szw, K31 — Ei(K31i) ) K3 i Y-

2h2D3fw =t
1
Since E;(Ki) = O(h*), we have Tyzo; < C(nh?3)*2él |Kar T Y] = 0, ((nh23)~1), thus (nhD3)1/2T3321 = 0,(1).
For T3327, we have T332 = nLZ (5)Up="110,, where U, = (3) Zl I1<Z L Oui = 6, 12 4 g, Oii = Wpsi +
i
i i = ) (B8 . Ty =) =0, =) < 1) =00 ™)
Y = 0,((63,/n*)'/?) = 0, (nh3*)~"), and we have (nh?3)l/2H,(lz) 0p(1). For H{") = n~' Y| E(y4i|W}), given
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that E(n,Y;|W;) = m (W;), we have H = Q1 + 0>, where

I 1 my(w) 1
o= Y (G (KB (i) K (o 04) - () [, €2 = ’:}’éﬁ LB (7 (K= (Ki) K ).

Since E(Q;) =0, E(Q?) :0((nh§3)’1h3),we have (nh )1/2Q1 0,(h ;/2) =0,(1). Since Q2 =Y, ayn, let Zy,
(nh3”) = my (w)E; (f K3iK3in). and gty = (nh3”*) =y (w)E(fy KsitKaiow). 50 that s = Zy — p, and E(Zy,) =

. Then, we have Zy, = () ™"m1 (w) [ Ka(1)Ks (Y52 41 ) dp, e = 0™ (w) [ Ka(n)Ka(1 + ) dvidys =
O(n™"), and V(ax) = B(Z3,) — 2 = 02y " md(w) [ ([ Ks(1)Ks (1 + )dn)*fiv (w + hayo)dps — 2. Letting
83, = Yi V(axa), we have nh3*S3, = m?(w) [ ([ Ks(n)Ks(n + Yz)d%) fw(w+h3p)dp — n?h33 pk — Py .
Thus, by Lyapunov’s CLT, if )} ; E|a2m/Sz,,|2+5 — 0 for some 6 > 0 as n — oo, we have Y'_ | dorm/San A, A4°(0,1),

i.e., combing previous results on other terms in 73,

/123 (T — b 2 (W)~ A (0,@p012),  where D2 = m2(w) fiy (w //K3 WK (11 + 1)dn ) 2.

Given that nh?3 S%n — ®,,12 > 0, Lyapunov’s condition is satisfied since

n

YE

t=1

246 D3\6/2+1
Clnhs”) Y E(1Zn**%) < C(nh) 7 =0, as n — oo.

@tn

SZn

T )

Step 4: Combining results from (1) to (3), we have 1/n/’l3D3 (11 (W) — 1 (W) — byt (W) = /05> T (a1 + aG2n)s
Hiys —k :

where b1 (W) = by1,1 (W) + b 2(w) = by ff iys 0 7T S? =) 'Z/ 1 Dj Kmy (w)D j? fw(w) +o0,(h3’). Reapplying Lya-

punov’s CLT, given that S2 = V(¥ (a1m + axm)) = S5, + 53, +2 X1 Cov(aim, azm) = 51, + 53, as E(aimazm) =0,

and nh?3Sﬁ — @11 + P12, We have \/nh?3 (1 (W) — mi(w) = by (w)) BN N (0, @11 +Pp12). Lyapunov’s

condition can be easily verified using C, Inequality.
Next, we extend this result for 1 (w) to /i1(w). Recall that,

1 1
rhl(w) = ZK3t whe Yz, ’/h(w) =

W fy ) B e 0 B )

We see that /i1(w) shares a similar structure as it (w) except using 7 (¥; — X3, 8 — Bo) instead of Y, as the regressand.
Given that 7, (Y; — X}, B — Bo) = m(W,) + v, E02,|W,) = 62, < C, and E(|vy|*"%|W;) < C, by repeating Step 1-4,
we have \/@(ﬁl(w) —m(w) — bu(w)) LN N (0,®3 + @4), where by,(w) = h3’ ;;3 o DI il 53 ) ,Zj 1Dk (w)
) D iy () + 0, (), 3= 22 TR0y, =) fir ) (] Ka(1)Ks (1 + 1)) 2

48



Lemmas

We start by noting that for any kernel K that satisfies Assumption A1, and for any function f(x) : R” — R such that

J1f(7)|dy < oo, we have that if x is a point of continuity of f(x),

JEDf G+ haay— ) [Kay as 0o

This result follows directly from Theorem 1A in Parzen (1962).

Lemma 1. Assume that K(x) : RP — R is a product kernel K(x) = ?:1 k(xj) with k(x) : R — R such that: a) k(x) is
continuously differentiable everywhere; b) |k(x)||x|* < C, for any x € R and some C > 0; ¢) [k) (x)||x]* < C, for any
x € R and some C > 0. Thus, for any |B| =0, ---,3, K(x)xP satisfies a local Lipschitz condition, i.e., for any x #y € A,

where A C RP is a bounded convex set, we have |K (x)xP — K(y)y?| < C|jx—y|

g, for some C > 0.
Proof. Note that by a)-c), for any x € R, we have |k(x)||x|, k) (x)||x|' < C,i=0,---,3.

(a) |B| = 0. Since by the Mean Value Theorem K (x) — K(y) = JK(x*)(x —y), where x* = x+A(y —x), A € (0,1),

* * * 1/2
and [D;K (x*)| = [k (x}) [ TT5..; [k(x})| < C, we have [K (x) = K(y)| <CLL i —yil <CD (L2 (xi —yi)?) <
C||x —y||g for some C > 0 by the Triangle and C, inequalities.

() |B|=1.Foranyi=1,---,D,

|[K(x)xi = K(y)yil = (K (x) = K(y)) + K () (xi = i)

= |xJJK(x*)(x —y) + K(y)(xi — yi)| by the Mean Value Theorem

= | (DK (x") + K (y)) (xi —yi) + ;_xiDpK () (xp = yp)
pFi

D
< CZ |x; —yi| < C||x—y||g by the Triangle and C; inequalities.

i=1

The Mean value theorem is used in the second equality since k(x) is continuously differentiable on the convex set
A. And since set A is bounded, there exists a C > 0 such that y; —x; = A; and |A;| < C. Thus x} =x; + A (y; —x;) =

x; + AA, and we have [x;k™!) (x!)| = [xk!) (x; 4 1A)| < C by ¢).

(c) |B|=2.Foranyi,j=1,---,D,

K (x)xix; — K(y)yiy;| = |xj(K(x)xi — K(y)yi) + K()yi(x; —y;)]

< |xK (x) +x5yiDiK ()| [xi = yil + [xj9iD K (x*) + K (y)yi| |xj — v

+| Y xpyiDpK(x")

pFLJ

Pxp —ypl < Cllx—yllE

49



(d) |B|=3.Foranyi,jl=1,---,D,

|K (x)xix o — K(y)yiyjvi| = |a(Kx)xixcj — K(3)yiy;) +KO)yiyj (=)
< ‘xixjxlDiK(x*) —l—xjle(y)‘ |xi — yi| + ‘xixjxleK(x*) —&—le(y)yi’ Ixj—jl

+ |xixjx DK () + K()yiys| i —yil+ Y, |xixjmDpK (x) | [xp — x| < Cllx—yllE.
p#i.jil

O

Lemma 2. Let {X;}! | be a sequence of independent and identically distributed (IID) random variables, G,(X;,x) :
R x RX — R such that: a) |G,(Xi,x) — Gn(Xi,x')| < Bo(X;)||x —X'|| for all x,x' and B, (X;) > 0 withE(B,(X;)) < C < oo;
b) E(Gn(X;,x)) < 0 and E(|Gn(X;,x) —E(G,Z(Xi,x))|p) < CP’Zp!E((G,,(X,',x) —E(Gu(X;,x)))?) < oo for some C >0
foralli=1,2,--- and p=3,4,---. Then, if Sp(x) = ' 1 Gu(Xi,x), for x € Gy, an arbitrary convex compact subset
of RK,

sup I5,() ~ B () = 0p ((*£)").

xE€Gy n
Proof. Since G, is a compact subset of RX, there exists xo € RX such that G, C B(xo,r) = {x € RE : |lx —xo|| < r}.
Thus, for all x,x’ € Gy, ||x—x'|| < 2r. By the Heine-Borel Theorem, every infinite open cover of G, contains a finite
subcover which we construct as {B(x;, n’l/z)}i’;l with x; € G, and I, < nX/2C. For x € B(x;,n~'/?), by condition a),

we have

‘Sn(x)_Sn(ka < Vli]/z%iBn(Xi)ZOp(nfl/z)

since E(B,(X;)) < o and {X;}_, is and IID sequence. Similarly, |E(S,(x)) — E(S,(xx))| = O(n~'/?) and using the
triangle inequality we have, |S,(x) —E(S,(x))| < [Su(xx) — E(Su(xx))| + O, (n~'/?). Since (@)l/zn’l/z =o(1), it

suffices to show that for all € > 0, there exists a constant A¢ such that for n > N

12
n
> <
P((log n) 15, S (k) — B (Sn(xt))| _Ae> <e

1/2
Leteg, = (105 ”) A¢ and note that

P( max |S (xx) —E (Sn(xx)) |>en> ZP [Sn (xx) —E(Sn(xx))] > €4).-

1<k<

Given condition b), and letting ¢, = 4V (G,(X;,xx)) + 2Cé¢,, by Bernstein’s Inequality, we have
u &> AZ1 IY;
P( >n8,,> gZeXp(n") Zexp< £ ogn) =2n .
Cn Cn

n
ZGn(Xiaxk Z (X, xp))
Hence, P( max |S,(xx) —E(S,(xx))| > 8,,) < 2Uyn8/en < CpK/2=8¢/en . Since €, — 0 as n — oo and V(G (X;,

i=1
1<k<l,
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xx)) < o0, we can choose A, sufficiently large such that K /2 — A2 /c, < 0 and

P( max |S,(xx) —E(Sy(x))| > £n> <e.

1<k<lIy,

O
Lemma 3. Assume that K(x) : RP — R is a product kernel K (x) = H?:l k(x;) with k(x) : R — R such that: a) k(x)

is continuously differentiable everywhere;  b) |k(x)||x|"*¢ = 0 as |x| — oo, for some ¢ > 0; ¢) [k (x)[|x]> = 0
as |x| — oo. In addition, assume that 1) {(X;,&) }i=12,.. is an independent and identically distributed sequence of
random vectors; 2) The joint density of X; and & is given by fxe(x,€) = fx (x)fex (€|x); 3) fx(x) is continuous and

uniformly bounded everywhere. Let w(X; — x;x) : RP — R and g(€) : R — R be measurable functions. Define

)= iy ZK (th;x) (th;xfw(xt —xi)g(e),

=1
where |B| =0,1,2,3. If

i) E(|g(&)]*]X;) < C < oo for some a > 2;

ii) w(X, —x;x) satisfies a Lipschitz condition of order 1 in x, i.e., |w(X; —x;x) — w(X; — x*;x)| < C||x —x¥||g for some

C >0, and |w(X; —x,x)| < C for all x € RP.

1/2
Then, for an arbitrary compact set 9 C RP, we have sup|s(x) —E(s(x))| = O, <(]2;f[f ) ) , provided that h,, — 0,
xe¥ "
nh?
logn

nhP+2 — oo and — 0 as n— oo,

Proof. Let B(xo,r) = {x € R : ||x—x||g < r} for r € R*. & compact implies that there exists xo € R such that 4 C

B(xo, r). Therefore, for all x,z € ¥,

x—z||g < 2r. Let b, > 0 be such that 4, — 0 as n — e where n € {1,2,--- }. For
lrl

any n, by the Heine-Borel Theorem, every infinite cover for ¢ contains a finite subcover {B (xk,C ( thﬂ )_1/ 2) }k |

D/2
withx¥* €@ and 1, < C (hp%) . Now let

1 & (X —x\ (X —x\P

with By < B, <--- such that };7 | B, < co for some a > 0.

sup|s(x) —E(s(x))| < sup|s(x) —s*(x)| +sup|E(s(x) — s*(x))| +sup|s* (x) —E(s"(x))| =T + T» + T5.

x€¥ x€9 xX€¥ x€9q

1. Ty = sup

x€9

B
(nhff)_lzg’le(X’h;x) (Xf*x) w(X; —x;x)8(&)X{|g(e)|>B,} |- By Chebyshev’s Inequality, for a > 0,

hy,
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P(lg(&)| > B;) < E(‘gé?)‘a) < B% by i). Consequently,

=

i(\g8z|>Bz Z ‘gg’ <Ci3;“<w.
t=1 t=1

By the Borel-Cantelli Lemma P (litminf{|g(£,)\ < Bt}> = 1. Hence, there exists an N such that for all # > N we
—yo0
have P(|g(&)| < B;) = 1. Since B; < B, fort < n we have P(|g(&)| < B,) = 1, and therefore x{|4(¢,)>5,} = 0 with

probability 1, which gives 71 = 0 almost surely when r is sufficiently large.

E(s(x) —s"

. For T, note that by 1) and 2), we have
nhD

B

X X, —x

// J|>B ( th )( th > w(X: —x;x)8(&) fxe (Xi, &)dedX,
n =1 (&)|>Bn n n

< /K(Y)yﬁw(hny;x)f)((x""hnY)dy/|g(8)|f8\X(8|x)X{|g(£)|>Bn}d8

SC/|g(€)|fe|x(Slx)l{\g(s)\>3n}d€,

where the last inequality follows by the assumptions on K (-), and uniform bound on w(-) and fx(-).

By Holder’s Inequality, for a > 1, we have

1-1/a

1/a
[ et@ e (eb0eor-n,19e < ( [l Faxtelie)  ( [aiwornafoxlele)

where the first integral after the inequality is uniformly bounded by i), and by Chebyshev’s Inequality,

1-1/a e E aly 1-1/a
([ ttrnafextele) = (Plse)>5,0)' " SC(W) S

Hence, > = O(B)~%).

. Rewrite T3 as: T3 = supl|s”(x) —E(s"(x))| < supls®(x) — s (x)| + sup[E(s% (x) — s (x"))|

x€¥ xX€Y xe¥

+ max |s*(F) —E(T(K)| = Tay + Ty + Tss.
1<MIY() (s(x")) 31+ T30 + I33

_1/2
3.1. ForxeB(xk,C(héﬁrz) / ),Wehave
1 & X —x\ /X —x\P X, — N\ (X —x\P
A‘; T k < t t _ t t
|57 (x) =57 (x)| < nhﬁt;<K( " )( " ) K( m >< " )
(XA (X b
hn hn

c c 1
< (hmllx = lle oI - x|E> ~ . 18(E) X ls(eni<n}
=1

(X —x;x)]|

+ [w(X; —x1x) —w(X; —x*25) > 8(&) 121 1g(e)|<B}
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1 1/2 1 1/2 14
< C (nhfl)) +hn (nhfl)> ;; 8’ ‘x{‘g (&)|<Bu}>

where the second inequality follows by Lemma 1 and b), i.e., local Lipschitz condition and uniform bound-

B
edness of K(X’h;xk) (X’ka) - {lg(&)|xqie(e)<By}y | =12, is TID due to the measurability of g and con-

hy,

dition 1). By condition i) and Kolmogorov’s Law of Large Numbers we have D (|g(8z)|%{|g(g,)|g3n}
—E(|(&)X(jg(e)|<8a})) = 0p(1). Thus, T51 = O, ((nhB)~1/2).

3.2. Following similar arguments we have T3 = E(|s%(x) — s (x*)|) < C(nhP)~1/2,

—1/2
3.3. Ts3 = max |s7(x*) —E(s7(xX))]. Letting €, = nh) A with 0 < A < oo, we have
g

1<k<I, logn

In
P (may 556~ BT )] > ) < X PSS )~ B > )

1<k<I, =

Let s°(x%) —E(s*(x)) = L ¥ | Z,, with

1 (X =2 (X —x\P
Zm =5pK ( 7 )( i ) W% =) (@) egel<n)

1 X,ka Xi—x A
o (15) (5 st

By the bounds on |K (x)||x?| and w(-), lg(&)|X1g(e,)1<Bay < Bn» We have that |Z;,| < Ch,PB,,. By Bernstein’s

Inequality,
_ lognAz
P(ls"(¢) — E(s*(¢))| > &) < 2exp ; & e
2t L VZ) + 35 (B) 02
—lognA2

=2exp ogn i

20DV (Zin) + 2CB, (10% ”) A2
A2
= 2n7m y

1/2
where ¢(n) = 2hPV(Z,,) + 3CB, (log”) AZ. Consequently,
D/2
. 7& n D/2 7& 1
P( max |s%(x*) —E(s" (")) >£n> <2n W < 2C<h£,)+2> n =20 ——5—

1<k<l, h£+2nﬁ<f’)7
1 D/2
<2c (Wn) ,

provided A2/D > c(n). Hence, given that nh?+2 — oo as n — oo the left-hand side of the inequality is less

than € provided c(n) is bounded. To show that ¢(n) is bounded, we choose B, such that B,&, — 0, i.e.,

B,&, = o(1), guaranteeing that the second term of ¢(n) is o(1). Furthermore, h2V(Z,,) < C given condition i)
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1/2
and [|K(7)y?P|dy < o for |B| =0,---,3 due to b). Thus, T33 = O,, ((“’g")

nhb
log n 1/2
In sum, we have T3 = O, ( D ) .
n

1/2
Combining results from part 1 to 3, we have that sup,¢|s(x) — E(s(x))| = O(B} %) + 0( <1°g ") ) To show that

D
nhy;

1 log n'\ /2 . o D\ 12
B, = 0( ( 3 ) ), we note that since B, &, = o(1) implies that B, = o ( 1 ) , we have

nhP logn

nhD 1/2 X I’lhD 1/2 I’lhD (1—a)/2 nhD 1—a/2
n B —a — n n 1 — n 1 — 1
(logn> " <logn) <logn) o(1) (logn) o(1) =o(1),

where the last equality follows if @ > 2, which is assumed in i). Thus, we have

s st =0, (15) )

O

Lemma 4. Let {M;}!_| be a sequence of independent and identically distributed random vectors with the same dis-
tributionas M = (X Z U &) and G(M) a continuous function of M with E(G*(W)|Z) < C < co. Then, if the joint

density fw of M is continuous,

op(nfl/z), if E(GM;)|X;,Z;,U;) =0

f ; 4 .
ni3 0, <n1/2 + th’) ,if  E(G(M))|X;,Z;,U;) # 0
i=1
Proof. First, note that

(Wi, 0i) — (Wi, Up) =5———
oW, Uy)

+fw W) (fu (@) = fu (Ui) = (W, Up) (6 (W;,T;) — 0 (Wi, Uy)) | - (A4)

[(Fu(0) = fu ) (Fw(Wi) — fw (W) + fu (Us) (Fw (Wh) — fw (W7))

Also, for some A € (0,1) andd =1,---,D,

O~ Ui = — (fz(lzmlfle’“ (Z’h‘lz") (Umﬂnd(z,»—x(z,—z,->><zt—z,->>> (140, (Lin)-

Recall that fy U;) = nh%z Yr o Ko+ W Y JKa [U;—U; — (U, - U)] + op(n‘l/z), hence we write
2 niy

N A 1 & )
ful0) = —52 ¥ Koig + TY + T +0,(n™"/2),
nn, = =1
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1D2nn

where Tif =—— 3 Y3 DI,ZT

e e 14 (Z)

n n 1
L LY e g Dok (U +3000(2 = M2~ 2)) (21— 2) ) (1 + Op(L1a)).

KuiDaKoi (Uia+ ML (2= 2121~ 2)) (21 = 7)) (1 + Op(L1a)),

U 1 Dy
T =—
2i n2

Similarly, §(W;,0;) = (nh*) " L0 Kagi + T + T +0,(n~"/?), where,

1 & & 1

=2 LLk

57— KuiD2aKari\ Uia + 114 (Zi = A(Z) = Z;) ) (Z1 = Zi) ) (1 + Op(L1,)),
d=1i=1i=1 thhD4+1f( Z;) t< ( ) ) g

n n 1
=YYy DDt KiuDaaKasi (Uld+JHd (Z—Mz1-27))(Z1 - ))(1 +0p(L1n)),
n =1 h4 Z Zt

and Dy K4 (m,u) denotes the partial derivative of Ky (m,u) with respect to uy, the d™ element of u.
By assumption AS and Theorem 1, we have that ( fiy (0;) — fu (Up)) (fw (W) — fw (W;)) = 0, (n~'/2). In addition,

1 ¢(WHU1) +Op(Lsy). Thus, we write (A.4) as
Z Ky —E,
nh 3 =1

oWi0;)
DA
1 n
+ fu(U <Et ( B Zlﬁn> - )> + fw (Wi ( ZKzn E, <hm ZKZit>>
nin, = =1

+ fw (W, (Et ( Vo ZKM) - > + fw (W) T, + fw (W) T3/

K4n ZK4Z‘1
nh 4 t=1

a0
"VZ,U (Et ( Da ZK4tt> ‘/Vl7U1)> _n(‘/Vlle)let/I_n(mﬂUl)TZY
n1/2) ]

080 = n(W,0) = (7 + OnlLan)) |20

1

Dy
nhy,

- It

”4[1

where E; denotes an expectation taken with respect to the random variables indexed by ¢. Besides the o p(n"/ 2) term,

there are ten additional terms inside the brackets [-], which we label Liip, with p =1,---,10. We will establish the
orders of 52;;1 G(Mi)l,,ip for p="7,---,10. The the remaining terms are similar, and simpler, in structure. First, we
consider

1& 1 & 1 1 & 1 &
n ZG(Mi)Inn = 0 ZG(Mi)TI(Wian) ((])(WuUt) +Op(L4n)> (nhD4 ZKM*Et (nhf“,zziKM>> ,

4 t=1
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and it suffices to establish the order of

- - —G(Mi)n (W, U;)

Lo=5YY

i=1i=1 ¢(W,7U,)h

/! -1
Z ml+ ZZZ lllmt+IVrm - ﬁzl’/m'i‘i“ (nzn> Una
i=1 i=1

i<t

1 n n
(Kati — By (Kari)) = 2 Z Z Wit
i=1r=1

n
1
n2

where U, is a U-statistic of degree 2. From Yao and Martins-Filho (2015), since E(W,;s + Wysi) = 0,

n

Uy = i 3 E (Wi + Vi) M) + 0 (™ (B (i + w))) /2.

i=1

Furthermore, since E((Wyir + Wui)?) < CE(w?2,) and given that E(G*(M)) < C < o, we have E((Wir + Wui)?) =
O(h,™*), and consequently the last term is Op(n_lh;D“/z) =0,(n"'?). If E(G(M;)|X;,Z;,U;) = 0, then [ (W +
Vi) fiv (W)W, = 0 and Uy, = 0,,(n~/2). If E(G(M;)|X;,Z;, U;) # 0, then E(yie|M;) = 0 and E (E (il M;)) = O(1).
But since E(y,,;|M;) # 0, we have U, = 0, (n~'/2). By AS, we have niZ Y Wi = OI,(n_lh;D“) =o0,(n"'/?). Now,

we consider

%iG(Ml‘)IniS = *% iG(Mi)n(Wi,Ui) (M+OP(L471 > ( ¢ < B Zsz) - Wi,Ui)> ;

i=1 i=1 nhy* =

and it suffices to establish the order of I = f% ya %%U’) (Et ((nhf“)‘l Y K4t,~) — (W, Ui)). Note that

given assumption Al and ¢ € C*, by Taylor’s Theorem we write

t< D4ZK4,,>— oW U)+ Y - /K4 (DP9 (Wi, Us) +hady) i yP dy = 9 (Wi, Uy) + Do (Wi, U,
1Bl=ss*

where Dy (W;,U;) = O(hS*). Consequently, if E(G(M;)|X;,Z;,U;) = 0, then I g = O, (n~'?h*) = 0,(n~'/?), and if
E(G(M;)|X;,Z;,U) # 0, then E(|1,,5]) = O(h}') and I, = O, (hy').
For the term -, Z?=1 G(M;) L9 = —; L G(M)n (Wi, Uy) ( sy T o (L4,,)) Tﬂ-”, we establish the order of

. D,
(p(WG[(]A;If)ZT(];V;/Z 712]11]104-5-1 Z DraKyi (Uld +J1, (Z Az~ )) (% =2 ))

(Viniet + Wanitl ) s

3 —
M-
M= I

!
Im’9 =

s M=
N

I
3 =
™=

I
S
Il
=
Il
-

G(M)n(WpU))
oW Un f2 ZOHP DT ZKIZ:DZdKMzUlda
13 4 1

G(M:)W(Wz,Uz)
1 0(Wi,Ui) fz(Zi)h Dlh

where Yy =

3~
(ngE
(ngE
M=

Il
-
=

I
-
=

I
-

=

3 —
-
M=

I
=
Il
=
Il

Yonirl = oyEs Z K11iD2aKaiid 14 (Zi = M(Z) — Z:)) (Z1 — Z).
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For i #t # [, we have for k = 1,2 that n% Yitrtt Vioninn = (6 — 2= + 3%)U,f, where U¥ is a U-statistic of degree 3 with
a symmetric kernel given by @i = Y5 Winir, with & being the permutations of {i,7,/}.
We first consider Unl. Using Theorem 1 in Yao and Martins-Filho (2015) and noting that E(U;4|Z;) = 0 we have

0, = E(1,i11) = 0. Furthermore, using the notation for U-statistics

G (W)n*WuUy) B Dy, Dy

2 i i) 2 2 2 _ Dy —Dy—2
03, <CE Ki1iD34KariB(Uyy|Z;) | = O(hy ' hy )-
O2(W;,Up) f2(Zi)h Dlhi’)““dg ’

Hence, H\> = OP(n73/2h;D'/2hZD4/271) = 0,(n"'/?). Similarly, given assumption A5 we have

H,Ez) = 0,(n 71h*D1/2 4D4/2*1) :Op(n71/2).

Now, 62, < CE (E*(W1,in1|M;)) since E(W1int|M;) = E(W1in1|M;) = 0. IfE(G(M;)|X;, Z;, U;) =0, then (W01 |M;) =

1n

and 67, = 0. We have U = 0,(n~'/2). If E(G(M;)|X;, Z:,U;) # O, then

Dy G(X;,Z;,U;, €)n(W;, U;
E(Wlnitl|M1)—>ZUld/ (Xi,Z1, Ui, &)n (Wi, Us)

D W, U; Xi, Z;,U;, €)dX;dU;deg;.
= ¢(VVian)fZ(Zl) 2d¢( i l)fW( iy40 1,81) i (dE;

Given that E(G2(W;)|Z;) < C, we have 62, = O(1), Hy") = 0, (n~/?). Thus, U} = 0,(n~/?).
We now consider U2. We note that 62, < O(h, ”***h;”*~ ") and consequently HY =0,(n"1/?). In a similar

manner we obtain H\”) = 0, (n~1/2). Now,
2 2 N4 R2 2 251 2 251 -2
01y < C (E*(Wanitt [M;) + E* (Wanint|[M1) + E* (Wi |M;)) < O(hy™) +O(hi) + O(hy" by ®),

where the orders in the last inequality follow from routine integration and the same arguments used to study Wipipm.
Consequently, we have HS") = 0,(n=1/2hy +n=1218 by ') = 0, (n~\/2). IFE(G(M;)|X;, Zi, Uy) = 0, then E(¢ni|M;) =
0and U2 = 0,(n~'/2). If E(G(M;)|X;,Zi,U;) # 0, then 6, = 6E(E(Wauin|M;)) = O(K') and U2 = 0, (n~/%) +- O(h}").

For the additional cases, it is straightforward to verify that a) if i =t =1, Iy = O, (n 2h; "'h; P71y =
op(n™V2); by ifitt=114=0,n""h") =0,(n"2); o) ifi=1#1I4=0,n"h," ") =0,(n/2),
dyand ifi=1#1,1';g = 0,(n~"h; "'y ") = 0,(n~"/2). So, collecting all the orders, we have

/ o,,(n_l/z), if E(G(Mi)‘X,’,Z,',Ui) =0
ni9 = .
O,(n "2+ n"), if E(GM)|X:,Z:,U;) #0
The term %Z?:] GMi)Lio=—+ Y1, G(M)n (W, U;) (m + O,,(L4n)) T} can be treated precisely as % "L G(M;)
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~ . op(n='/?), if E(G(M)|X:,Z;,U;) =0
x I,i9, and we obtain exactly the same orders, viz., I,jj0 =  Com-
O,(n 241", ifE(G(M;)|X;,Zi,U;) # 0

bining the orders of terms 1,,;, for p =1,---,10, we have

op(n—l/Z)’ if E(G(Ml)‘XnZlaUl):O

4 .
0, <n1/2+2h;‘f>, if E(G(M))|Xi,Zi,U;) #0
=1

1

Sp =
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