
Economics Faculty Working Papers Series Economics 

2018 

Estimation of a Partially Linear Regression in Triangular Systems Estimation of a Partially Linear Regression in Triangular Systems 

Xin Geng 
IFPRI, x.geng@cgiar.org 

Carlos Martins-Filho 
University of Colorado, carlos.martins@colorado.edu 

Feng Yao 
West Virginia University, Feng.Yao@mail.wvu.edu 

Follow this and additional works at: https://researchrepository.wvu.edu/econ_working-papers 

 Part of the Econometrics Commons 

Digital Commons Citation Digital Commons Citation 
Geng, Xin; Martins-Filho, Carlos; and Yao, Feng, "Estimation of a Partially Linear Regression in Triangular 
Systems" (2018). Economics Faculty Working Papers Series. 12. 
https://researchrepository.wvu.edu/econ_working-papers/12 

This Working Paper is brought to you for free and open access by the Economics at The Research Repository @ 
WVU. It has been accepted for inclusion in Economics Faculty Working Papers Series by an authorized 
administrator of The Research Repository @ WVU. For more information, please contact 
researchrepository@mail.wvu.edu>. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/econ_working-papers
https://researchrepository.wvu.edu/econ
https://researchrepository.wvu.edu/econ_working-papers?utm_source=researchrepository.wvu.edu%2Fecon_working-papers%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/342?utm_source=researchrepository.wvu.edu%2Fecon_working-papers%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/econ_working-papers/12?utm_source=researchrepository.wvu.edu%2Fecon_working-papers%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 

 
 

Department of Economics 
Working Paper Series 

 
Estimation of a Partially Linear 
Regression in Triangular Systems 
Xin Geng 

Carlos Martins-Filho 

Feng Yao 

 

Working Paper No. 18-05 

 

 

This paper can be found at the College of Business and Economics Working Paper 
Series homepage: 
http://business.wvu.edu/graduate-degrees/phd-economics/working-papers 



ESTIMATION OF A PARTIALLY LINEAR REGRESSION IN TRIANGULAR SYSTEMS

XIN GENG∗

IFPRI
2033 K Street NW

Washington, DC 20006-1002, USA
email: x.geng@cgiar.org
Voice: + 1 202 862 4636

CARLOS MARTINS-FILHO

Department of Economics IFPRI
University of Colorado 2033 K Street NW
Boulder, CO 80309-0256, USA & Washington, DC 20006-1002, USA
email: carlos.martins@colorado.edu email: c.martins-filho@cgiar.org
Voice: + 1 303 492 4599 Voice: + 1 202 862 8144

FENG YAO

Department of Economics School of Economics and Trade
West Virginia University Guangdong University of Foreign Studies
Morgantown, WV 26505, USA & Guangzhou, Guangdong 510006, P. R. China
email: feng.yao@mail.wvu.edu email: 201470006@oamail.gdufs.edu.cn
Voice: +1 304 293 7867 Voice: + 86 20 3932 8858

March, 2018

Abstract. We propose kernel-based estimators for the components of a partially linear regression in a triangular system
where endogenous regressors appear both in the linear and nonparametric components of the regression. Compared
with other estimators currently available in the literature, e.g. the sieve estimators proposed in Ai and Chen (2003)
or Otsu (2011), our estimators have explicit functional form and are much easier to implement. They rely on a set of
assumptions introduced by Newey et al. (1999) that characterize what has become known as the “control function”
approach for endogeneity in regression. We explore conditional moment restrictions that make this model suitable for
additive regression estimation as in Kim et al. (1999) and Manzan and Zerom (2005). We establish consistency and√

n asymptotic normality of the estimator for the parameters in the linear component of the model, give a uniform
rate of convergence, and establish the asymptotic normality for the estimator of the nonparametric component. In
addition, for statistical inference, a consistent estimator for the covariance of the limiting distribution of the parametric
estimator is provided. A small Monte Carlo study sheds light on the finite sample performance of our estimators and
an empirical application illustrates their use.

Keywords. partially linear regression; endogeneity; semiparametric instrumental variable estimation.

JEL Classifcations. C14, C36.

AMS-MS Classifications. Primary: 62G07, 62G08, 62G20.

∗We would like to thank seminar and conference participants at the European, China, and Asian Meetings of the Econometric Society, 3rd
Conference of the International Society for Non-Parametric Statistics, University of Colorado at Boulder and IFPRI, for their helpful comments and
suggestions. All remaining errors are ours.



1 Introduction

There exists a rapidly growing literature on the specification and estimation of semiparametric and nonparametric

regression models with endogenous regressors.1 This results from the understanding that fully specified parametric

models generally lead to inconsistent estimators and faulty inference due to a high probability of model misspecifi-

cation. In addition, the problem of regressor endogeneity is widely encountered in, but not restricted to, empirical

models in Economics, mostly due to measurement error, omitted regressors, or simultaneity that arises in agents’ op-

timization problems or the characterization of market equilibrium. Identification and estimation of these models have

been conducted under two broad approaches: the instrumental variable (IV) approach (see, e.g., Newey and Powell,

2003; Ai and Chen, 2003; Otsu, 2011) or the control function (CF) approach (see, e.g., Newey et al., 1999; Pinkse,

2000; Blundell and Powell, 2003; Su and Ullah, 2008; Martins-Filho and Yao, 2012). As discussed in Newey et al.

(1999) and Blundell et al. (2013) the desirability of these approaches rests on the suitability of different, and gen-

erally non-nested sets of assumptions, rendering their choice largely dependent on the specific stochastic framework

encountered by the researcher.

It is now well known that following the IV approach is made difficult by the fact that, in this case, the non-

parametric IV regression is typically an ill-posed problem, leading to estimators that converge at slower rates when

compared to those obtained in the absence of endogeneity (see, e.g., Hall and Horowitz, 2005; Darolles et al., 2011;

Chen and Christensen, 2015). In addition, computation of these estimators is numerically difficult due to the fact that

they cannot be expressed by closed form algebraic expressions (see, e.g., Ai and Chen, 2003; Otsu, 2011). Alterna-

tively, following the CF approach normally leads to multi-stage estimation procedures, where nonparametric generated

regressors make it difficult to asymptotically characterize final stage estimators for both finite and infinite parameters

of interest (see, e.g., Newey et al., 1999; Pinkse, 2000; Hahn and Ridder, 2013).

In this paper, we contribute to the CF approach by considering the estimation of a partially linear regression

model where endogenous regressors appear in both the finite and infinite dimensional components of the model. Our

proposed estimators are all kernel based and, therefore, easy to implement from a computational perspective. In

addition, we obtain their consistency, give their asymptotic distributions, and provide estimators for their variances,

allowing for easy asymptotically based inference. Specifically, we consider the following partially linear triangular

model,

Yi = β0 +X ′2iβ+m(X1i,Z1i)+ εi, (1)

Xi =Π(Zi)+Ui, (2)

E(εi) = 0, E(Ui|Zi) = 0, E(εi|Zi,Ui) = E(εi|Ui), for i = 1, · · · ,n. (3)

1See Chen and Qiu (2016) for a comprehensive review of the existing literature.
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Yi is a scalar regressand, Z1i ∈ RD11 is a subvector of Zi = (Z′1i,Z
′
2i)
′ ∈ RD1 with D1 = D11 +D12, X1i, X2i are non-

overlapping subvectors of Xi ∈ RD2 of dimensions D21 and D22 with D2 = D21 +D22 and εi is an unobserved scalar

random error. The variables Xi are taken to be endogenous in that E(εi|Xi) 6= 0, and the variables Zi are exogenous as a

result of the moment conditions in (3). Ui is a vector of unobserved random errors and Π : RD1 →RD2 is an unknown

nuisance function. Our primary interest is in the estimation of the finite dimensional parameters ( β0 β ′ ) and the

infinite dimensional parameter m(·) in Equation (1). The partially linear structure of this equation reflects the often

assumed linearity with respect to some of the regressors while retaining the flexibility of a nonparametric structure for

other components of the regression. See, for motivation, Robinson (1988), Speckman (1988) and Härdle et al. (2000).

For another parsimonious semiparametric specification see the single-index model in Birke et al. (2017).

Newey et al. (1999) proposed series estimators (power and splines) for a model where there is no intercept in

equation (1), i.e., β0 = 0 and the partially linear structure in (1) is generically modeled as g(Xi,Z1i).2 Otherwise, their

model is identical to ours. The fact that in their case β0 = 0 permits the relaxation of the assumption that E(εi) = 0,

and given that our partially linear structure is a restriction on g, their estimation method can be adapted to the model

described by (1)–(3) (see Section 6 of their paper). In Section 3 of this paper, we contrast the additional assumptions

they make to characterize some of the asymptotic behavior of their estimators with those we make to obtain similar

results.

Recently, Martins-Filho and Yao (2012) proposed kernel-based estimators for ( β0 β ′ ) and m(·), but although

their estimators appear to have good finite-sample properties, they have failed to provide a characterization of their

asymptotic behavior. In fact, our theoretical work suggests that their estimators cannot be shown to be asymptotically

normally distributed under standard parametric and nonparametric normalizations, respectively (see details given in

Section 2). Alternatively, to our knowledge, besides the estimators proposed by Newey et al. (1999), there exist two

estimation procedures following the IV approach that can be used to estimate the parameters in Equation (1): the sieve

minimum distance estimator of Ai and Chen (2003) and the sieve conditional empirical likelihood estimator of Otsu

(2011). These estimators are based on the moment condition E(εi|Zi) = 0, which is different from those given in (3).

As mentioned above, strictly speaking, neither their condition nor the ones given in (3) are stronger than the other (see

Newey et al., 1999). However, under the additional restrictions that Ui is independent of Zi and E(εi) = 0, the moment

restrictions in (3) imply that E(εi|Zi) = 0, making the estimators developed in their papers suitable for our model.3

As will be shown in Section 2 and 3, the estimators proposed in this paper have a number of desirable char-

acteristics. First, the estimator for the linear components of the semiparametric regression model given in (1) are
√

n asymptotic normal. Second, we provide consistency, give the uniform convergence rate, and establish asymptotic

normality, under standard nonparametric normalization, for the estimator of the nonparametric component in (1). In

addition, we provide a consistent estimator for the covariance of the limiting distribution of the parametric estimator,

2Ozabaci et al. (2014) also considered a model similar to that in Newey et al. (1999), but in their formulation Π(Zi), g(Xi,Z1i) and E(εi|Ui) are
all additive nonparametric functions of each of their arguments.

3It should be noted that the estimators of Ai and Chen (2003) and Otsu (2011) apply to more general models than ours, since their use is not
constrained to the partially linear regression under the control function structure we adopt.

2



making our results directly usable for inference.

From a technical perspective, the results in this paper can be viewed as extensions of the asymptotic normality

results of Manzan and Zerom (2005) to the case of a partially linear regression model with generated regressors ap-

pearing in the parametric and nonparametric component. In this sense, our work is also related to Li and Wooldridge

(2002). Although the estimation procedure we consider is conceptually simple and easy to implement, its asymp-

totic characterization is non-trivial, requiring repeated analysis of U-statistics of high degree. This has been greatly

facilitated by results in Yao and Martins-Filho (2015), which are used frequently in our proofs. The ancillary re-

sults required to obtain our theorems are, to our knowledge, novel and can be used in other contexts where generated

regressors are encountered in various types of two stage kernel based estimators.

The rest of this paper is organized as follows. Section 2 describes the model in greater detail, considers identifi-

cation and the moment conditions used in estimation, and provides a detailed algorithm for estimation. Section 3 gives

asymptotic characterizations for our estimators and the assumptions we used to obtain our results. Where appropriate,

we contrast our assumptions with those in Newey et al. (1999). Section 4 contains a small Monte Carlo study that

sheds some light on the finite sample performance of our estimators and contrasts them to the series estimator proposed

by Newey et al. (1999). Section 5 gives an empirical application using our methods to study the aid-policy-growth

relationship, which has been the subject of much work in the Economic Development literature. Section 6 concludes.

All proofs are given in the Appendix.

2 Moment conditions, identification, and estimation

2.1 Moment Conditions

We start by deriving a collection of conditional moments that emerge from the model described by equations (1)–(3).

They are the bases for the estimators we propose in section 2.2. Given equations (2) and (3), we have that E(εi|X1i,

Zi,Ui) = E(εi|Zi,Ui) = E(εi|Ui), and E(X2i|X1i,Zi,Ui) = E(X2i|Zi,Ui) = X2i. Letting g(Ui)≡ E(εi|Ui) : RD2 → R, and

using (1), we can write

E(Yi|X1i,Zi,Ui) = β0 +X ′2iβ +m(X1i,Z1i)+g(Ui). (4)

Letting vi = Yi−E(Yi|X1i,Zi,Ui), we have

Yi−β0−X ′2iβ = m(X1i,Z1i)+g(Ui)+ vi, for i = 1, · · · ,n, (5)

where, by construction, E(vi|Zi,Ui) = 0. Note that if β0 and β were known, and Ui were observed, (5) could be

viewed as an additive nonparametric regression model, with regressand Yi−β0−X ′2iβ . As is common in the additive

nonparametric literature (see, inter alia, Linton and Härdle, 1996, Kim et al., 1999, Martins-Filho and Yang, 2007),
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we assume that E(m(X1i,Z1i)) = E(g(Ui)) = 0, since each component in an additive nonparametric model can only

be identified up to an additive constant.4

Using a suitable “instrument” function, we now obtain moment conditions that motivate our estimator for β0 and

β . For simplicity, in what follows, we put Wi = (X ′1i,Z
′
1i)
′. As in Kim et al. (1999), we define the “instrument” function

as ηi =η(Wi,Ui)≡ fW (Wi) fU (Ui)
φ(Wi,Ui)

, where fW is the joint marginal density of elements in Wi, fU the marginal density of Ui,

and φ the joint density of Wi and Ui. Note that E
(
η(Wi,Ui)|Wi

)
= 1, E

(
η(Wi,Ui)g(Ui)|Wi

)
= 0, E

(
η(Wi,Ui)|Ui

)
= 1

and E
(
η(Wi,Ui)m(Wi)|Ui

)
= 0. By pre-multiplying both sides of (5) by ηi, and taking conditional expectations given

Wi and Ui we have, respectively,

E
(
ηi(Yi−X ′2iβ −β0) |Wi

)
= m(Wi), E

(
ηi(Yi−X ′2iβ −β0) |Ui

)
= g(Ui). (6)

It is apparent that if β0 and β were known, and Ui were observed, m(Wi) and g(Ui) could be estimated based on the

moment conditions (6) using an estimated sequence {η̂i}n
i=1 constructed with nonparametric density estimators of fW ,

fU and φ evaluated at all data points. To address the fact that β0 and β are unknown, note that m(Wi) and g(Ui) can be

expressed as conditional expectations containing β , β0 in (6). Substituting them back into (5) and rearranging, with

β0 = E(ηi(Yi−X ′2iβ )), we have

Y ∗i = X∗′2i β + vi, for i = 1, · · · ,n, (7)

where Y ∗i ≡ Yi−E(ηiYi|Wi)−E(ηiYi|Ui)+E(ηiYi), and X∗2i ≡ X2i−E(ηiX2i|Wi)−E(ηiX2i|Ui)+E(ηiX2i).

It is important to note that Equation (7) provides infinitely many moment conditions to estimate β , since by pre-

multiplying by any arbitrary measurable function L(X1i,Zi,Ui), we still have E
(

L(X1i,Zi,Ui) vi

∣∣∣X1i,Zi,Ui

)
= 0. Here,

L(X1i,Zi,Ui) can be treated as a normalizing factor that should be suitably chosen to derive the asymptotic properties

of an estimator for β . In our case, we choose L(X1i,Zi,Ui) =
√

ηi, and consider

√
ηi Y ∗i =

√
ηi X∗′2i β +

√
ηi vi, for i = 1, · · · ,n. (8)

Letting Y = (Y1, · · · ,Yn)
′, X = (X1, · · · ,Xn)

′, Z = (Z1, · · · ,Zn)
′, we write

√
η Y ∗=

√
η X∗2 β +

√
η v, where Y ∗= (Y ∗1 , · · · ,

4As in Robinson (1988), we note that E(m(X1i,Z1i)) = 0 can be relaxed if we set β0 = 0.
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Y ∗n )
′, X∗2 = (X∗21, · · · ,X∗2n)

′, v = (v1, · · · ,vn)
′,
√

η = diag{√ηi}n
i=1, and E

(√
ηi vi

∣∣X1i,Zi,Ui
)
= 0. Note that since β0 =

E
(
ηi(Yi−X ′2iβ )

)
and given L(X1i,Zi,Ui) =

√
ηi, we have E(ηiY ∗i |Wi) = E(ηiY ∗i |Ui) = E(ηiX∗2i|Wi) = E(ηiX∗2i|Ui) = 0.

The choice of L(·) is critical in establishing the asymptotic properties of our estimators of β0, β , and m(·). Besides

using different estimators for the conditional expectations in Y ∗i and X∗2i, Martins-Filho and Yao (2012) failed to

suggest, or understand, the role of L(·) in obtaining asymptotic properties of the kernel-based estimators for this model.

In fact, a more careful investigation of the consequences of choosing such a normalizing function in establishing the

asymptotic properties of estimators for β0, β , and m(·) remains an open and important topic of study, as it also has a

direct impact on the structure of the variances of their asymptotic distributions.

We denote the additive components in Y ∗i , X∗2i and the corresponding error terms by m1(Wi) ≡ E(ηiYi|Wi),

m2(Wi) ≡ E(ηiX2i|Wi), m3(Wi) ≡ E(ηi|Wi) = 1, g1(Ui) ≡ E(ηiYi|Ui), g2(Ui) ≡ E(ηiX2i|Ui), g3(Ui) ≡ E(ηi|Ui) = 1,

µ1 ≡ E(ηiYi), µ2 ≡ E(ηiX2i), vm1i ≡ ηiYi −m1(Wi), vm2i ≡ ηiX2i −m2(Wi), vm3i ≡ ηi − 1, vg1i ≡ ηiYi − g1(Ui),

vg2i ≡ ηiX2i− g2(Ui), and vg3i ≡ ηi− 1. Given the moment condition associated with m(Wi) in Equation (6), we

let vmi ≡ ηi(Yi−X ′2iβ −β0)−m(Wi) = vm1i− v′m2iβ − vm3iβ0.

The regressors
√

ηi X∗2i in Equation (8) satisfy E
(√

ηi X∗2ivi
)
= 0, suggesting an estimator of β that is ob-

tained by inserting estimators of
√

ηi Y ∗i and
√

ηi X∗2i prior to an application of a standard rule, such as no-intercept

ordinary least squares (OLS) method. Note that by (6), we have m(Wi) = m1(Wi)−m′2(Wi)β −m3(Wi)β0, and

g(Ui) = g1(Ui)− g′2(Ui)β − g3(Ui)β0. Thus, to estimate Y ∗i , X∗2i, m(Wi), and g(Ui), we need only estimate each of

their additive components separately. The main technical difficulty rests in the fact that Ui must be substituted by a

generated regressor Ûi in the estimation of all conditional moments involving Ui and ηi. Kernel-based nonparametric

regression estimators are employed throughout this paper, and for identification purposes, existence and nonsingularity

of Φ0 ≡ E
(
ηiX∗2iX

∗′
2i
)

needs to be assumed.

2.2 Estimation

Based on the moment conditions given in section 2.1, we now describe in detail our proposed estimation procedure.

Since Ui is not observed, the first step in the estimation generates Ûi. We obtain a Nadaraya-Watson (NW) estimator
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for Π(Zi) from (2), with the jth element defined as

Π̂ j(Zi) = argmin
θ

1

nhD1
1

n

∑
t=1

(Xt, j−θ)2 K1

(
Zt −Zi

h1

)
for j = 1, · · · ,D2,

where Xt, j is the jth element of Xt , h1 > 0 is the associated bandwidth, and K1 : RD1 → R is a multivariate ker-

nel function. To associate the relevant subvector of Π(Zi) with X2i, we define Π(Zi) ≡ (Π′1(Zi),Π
′
2(Zi))

′, where

Π2(Zi) ≡ (Π21(Zi), · · · ,Π2D22(Zi))
′ = X2i −U2i. Π1(Zi) is defined similarly. Denote the estimates by Π̂(Zi) =(

Π̂′1(Zi),Π̂
′
2(Zi)

)′ ≡ (Π̂1(Zi), · · · ,Π̂D2(Zi)
)′ and calculate the nonparametric residuals Ûi ≡

(
Ûi1, · · · ,ÛiD2

)′, where

Ûi j ≡ Xi, j− Π̂ j(Zi), for j = 1, · · · ,D2 and i = 1, · · · ,n.

In the second step, we estimate ηi (instrument functions) from section 2.1 using Wt , and the generated regressors

Ût obtained in the first step. We first obtain Rosenblatt-Parzen density estimators for fU , fW , and φ :

f̂U (u) =
1

nhD2
2

n

∑
t=1

K2

(
Ût −u

h2

)
, f̂W (w) =

1

nhD3
3

n

∑
t=1

K3

(
Wt −w

h3

)
,

φ̂(w,u) =
1

nhD4
4

n

∑
t=1

K4

(
(W ′t Û ′t )

′− (w′ u′)′

h4

)
,

where K2 : RD2 → R, K3 : RD3 → R, and K4 : RD4 → R are multivariate kernel functions, D3 ≡ D11 +D21, D4 ≡

D2 +D3, and hi > 0 is the associated bandwidth for i = 2,3,4. Then, a natural estimator for ηi is η̂i = η̂(Wi,Ûi) ≡

f̂W (Wi) f̂U (Ûi)

φ̂(Wi,Ûi)
.

In the third step we obtain NW estimators for the conditional expectations in the expressions for Y ∗i , X∗2i as

follows:

m̂1(Wi) =
1

nhD3
3

1
f̂W (Wi)

n

∑
t=1

K3

(
Wt −Wi

h3

)
η̂tYt , m̂2(Wi) =

1

nhD3
3

1
f̂W (Wi)

n

∑
t=1

K3

(
Wt −Wi

h3

)
η̂tX2t ,

ĝ1(Ûi) =
1

nhD2
2

1
f̂U (Ûi)

n

∑
t=1

K2

(
Ût −Ûi

h2

)
η̂tYt , ĝ2(Ûi) =

1

nhD2
2

1
f̂U (Ûi)

n

∑
t=1

K2

(
Ût −Ûi

h2

)
η̂tX2t .

(9)

Estimators of the unconditional expectations µ1 and µ2 are given by µ̂1 =
1
n ∑

n
t=1 η̂tYt , and µ̂2 =

1
n ∑

n
t=1 η̂tX2t . Thus,

we define estimators of Y ∗i and X∗2i respectively as Ŷi = Yi− m̂1(Wi)− ĝ1(Ûi)+ µ̂1, X̂2i = X2i− m̂2(Wi)− ĝ2(Ûi)+ µ̂2,

for i = 1, · · · ,n.

In the fourth step, using the estimators η̂i, Ŷi, and X̂2i derived in the previous steps, instead of ηi, Y ∗i , and X∗2i in

6



(8), we have a feasible no-intercept OLS estimator of β :

β̂ =
(
X̂ ′2η̂X̂2

)−1 X̂ ′2η̂Ŷ , (10)

where Ŷ = (Ŷ1, · · · ,Ŷn)
′, X̂2 = (X̂21, · · · , X̂2n)

′, and η̂ = diag{η̂i}n
i=1. Given that β0 = E(Yi−X ′2iβ ) and the estimator

β̂ , an estimator of β0 is β̂0 = Ȳ − X̄ ′2β̂ , where Ȳ ≡ 1
n ∑

n
t=1 Yt , and X̄2 ≡ 1

n ∑
n
t=1 X2t .

Finally, the last step provides an estimator for m. Given Equation (6) and the estimators β̂0 and β̂ , we propose

the following estimators have for m(Wi) and g(Ui),

m̂(Wi) = m̂1(Wi)− m̂′2(Wi)β̂ − m̂3(Wi)β̂0, ĝ(Ûi) = ĝ1(Ûi)− ĝ′2(Ûi)β̂ − ĝ3(Ûi)β̂0, (11)

where m̂3(Wi) and ĝ3(Ûi) are NW estimators for m3(Wi) and g3(Ui) defined similarly as m̂1(Wi) and ĝ1(Ûi) in (9)

except that η̂t is used, instead of η̂tYt , as regressand.

3 Asymptotic characterizations of β̂ and m̂(·)

In this section, we study the asymptotic properties of the estimators β̂ and m̂(·) defined in the previous section. We

first establish the uniform convergence in probability rate of the Rosenblatt density estimator using estimated residuals

{Ûi}n
i=1. Second, we give the uniform convergence in probability rate of the NW estimator constructed using estimated

residuals {Ûi}n
i=1. Third, we establish

√
n asymptotic normality of β̂ −β . Lastly, we use the asymptotic normality of

√
n(β̂ −β ) to establish the asymptotic distribution of m̂ under suitable centering and normalization.

3.1 Assumptions

First we provide a list of general assumptions that will be adopted in our theorems and introduce notation. In what

follows, C denotes a generic constant in (0,∞) that may vary from case to case. k( j)(x) denotes the jth-order derivative

of k(x) evaluated at x.

Assumption A1. The kernels Ki, i = 1,2,3,4, satisfy Ki(x) = ∏
Di
j=1 ki(x j), where Di is the corresponding dimension

of Ki. ki is symmetric about zero, 4-times continuously differentiable and satisfies: a)
∫

ki(x)dx= 1; b) |k( j)
i (x)||x|5+a→

7



0 as |x| → ∞, j = 0, · · · ,4, for some a > 0; c) ki is a kernel of order si, i.e.,
∫

ki(x)x jdx = 0 for j = 1, · · · ,si−1, and∫
|ki(x)||x|sidx <C. We let s≡max{si}4

i=1 and µki,si ≡
∫

ki(x)xsidx.

Our use of “higher-order” kernels is needed to attain suitable orders for the biases of our nonparametric esti-

mators. Since global differentiability of the kernel functions is required in using Taylor’s Theorem, in the following

theorems, kernels that have compact support are excluded. It is easy to construct kernels that satisfy the conditions

in A1. For example, kernels of even order s≥ 2, can be defined as

ks(x) =

1
2 (s−2)

∑
j=0

c jx2 j
φ(x), (12)

where φ(x) = (2π)−1/2exp(− 1
2 x2) for suitably chosen c j. In particular, given that we can evaluate the moments

m2 j =
∫

x2 jφ(x)dx, 0 ≤ j ≤ 1
2 (s− 2), we choose {c j}

1
2 (s−2)
j=0 that satisfy the linear system of s/2 simultaneous

equations ∑

1
2 (s−2)
j=0 c jm2(i+ j) = δi0, 0 ≤ i ≤ 1

2 (s− 2), where δi0 is Kronecker’s delta. For example, k2(x) = φ(x),

k4(x) =
( 3

2 −
1
2 x2
)

φ(x) and k6(x) =
( 15

8 −
5
4 x2 + 1

8 x4
)

φ(x). Note that these kernels are continuously differentiable

of any order everywhere, and when multiplied by any polynomial function they are all uniformly bounded and ab-

solutely integrable, as their tails decay exponentially. We show in Lemma 1 that product kernels satisfying A1 are

locally Lipschitz continuous, which is necessary for Lemma 3.

Assumption A2. The components of the sequence {(X ′i ,Z′i ,Yi)}n
i=1 of random vectors by described in (1) - (3) are in-

dependent and identically distributed (IID) random vectors. The density functions fW (Wi), fZ(Zi), φ(Wi,Ui), fUZ(Ui,

Zi) and fU (Ui) are uniformly bounded away from zero and infinity on arbitrary convex compact subsets of their

domains. Here, fUZ(·) is the joint density function of (Ui,Zi).

The existence, boundedness properties and compactness of the support of the densities in assumption A2 are

common regularity conditions imposed to derive properties of kernel based nonparametric estimators and largely

overlap with Assumption 2 in Newey et al. (1999).

Assumption A3. (i) E
(
m(Wi)

)
= E

(
g(Ui)

)
= 0, (ii) E

(
v2

i

∣∣Zi,Ui
)
= σ2

v < ∞, E
(
U2

i j

∣∣Zi
)
= σ2

U j < ∞, E
(
v2

m1i

∣∣Wi
)
=

σ2
vm1 < ∞, E

(
v2

m2i, j

∣∣Wi
)
= σ2

vm2 < ∞, E
(
v2

g1i

∣∣Ui
)
= σ2

vg1 < ∞, E
(
v2

g2i, j

∣∣Ui
)
= σ2

vg2 < ∞, and (iii) the following

Cramer’s conditions: E
∣∣X2i, j

∣∣p ≤Cp−2 p!E
∣∣X2, j

∣∣2 < ∞, E
(
|Ui j|p|Zi

)
≤Cp−2 p!σ2

U j, for some C > 0, all i, p = 3,4, · · · ,

and j = 1, · · · ,D2.

8



A3 (i) is assumed without loss of generality and is used in identification of the additive structure in Equation

(1). In A3 (ii), it is not essential to assume the second conditional moment of the error terms are independent of the

conditioning variables; however, the boundedness of the second moment is crucial here, as in Assumptions 1 and 5

in Newey et al. (1999). The Cramer’s conditions in A3 (iii) are imposed due to the use, in Lemma 2, of Bernstein’s

Inequality to establish the uniform order in probability of some specific averages. In particular, Lemma 2 is critical

in handling the fact that Ui is estimated by Ûi, which is used in defining f̂U , φ̂ and η̂i. If Ui were observed, Cramer’s

conditions could be relaxed.

Assumption A4. Let Ck denote the class of functions such that each of its elements: (i) is k-times partially continu-

ously differentiable, and (ii) all their partial derivatives up to order k are uniformly bounded. For d = 1, · · · ,D2, and

k = 1,2, Πd(·),φ(·), fUZ(·),m(·),g(·),mk(·),gk(·) ∈Cs+1, where s is defined in assumption A1.

Assumption A4 assumes smoothness of the regression functions and uniform bounds of their partial derivatives.

This assumption, together with kernels of suitable order, as required in A1, gives desired orders for the biases. We

note that in our assumption A1 s≡max{si}4
i=1, and for convenience A4 requires all functions to be in Cs+1. This is

sufficient for our theorems, but not necessary, expressing only the highest degree of smoothness needed. Depending

on the context lower degrees of smoothness can be assumed.5

Assumption A5. Denote Lin≡
(

log n

nh
Di
i

) 1
2
+hsi

i , for i= 1, · · · ,4, and Ln =∑
4
i=2 Lin, where hi→ 0 as n→∞ and satisfies:

(i) h1 = n−δ , with 1
2s1

< δ < min
{i=2,4}

Di
D1(2si+Di)

;

(ii) for i = 2,4, hi = n−
1

2si+Di , with si ≥ Di/2+2;

(iii) h3 = n−
1

2s3+D3 , with 1
2 < s3

D3
< min
{i=2,4}

si
Di

.

Assumption A5 provides the order of all the bandwidths. The fact that using residual estimates {Ûi}n
i=1, instead

of {Ui}n
i=1, has no impact on the first-order asymptotic properties of our estimator relies on undersmoothing in the

first stage when regressing X on Z nonparametrically, and on Π(z) being sufficiently smooth. For h2, h3 and h4, the

orders are chosen optimally by minimizing the mean squared error of traditional NW kernel estimators. The second

inequality in A5 (iii) implies that Lin/L3n→ 0 for i = 2,4 to ensure that using estimated densities for fU (·) and φ(·)

does not result in any asymptotic consequences in deriving the distribution of m̂.

5For example, in Section 4, where specific data generating processes (DGP) are considered, it suffices to have Πd(·) ∈C6, φ(·) ∈C4, fUZ(·) ∈
C5, m(·),mk(·) ∈C2, g,gk(·) ∈C4.
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3.2 Theorems

By Theorem 2.6 in Li and Racine (2007), under A1-A5, for a compact subset GZ ⊂ RD1 , we have

sup
Zi∈GZ

∣∣Π̂(Zi)−Π(Zi)
∣∣= Op(L1n) (13)

where L1n =
(

log n

nh
D1
1

)1/2
+hs1

1 . This uniform convergence rate in probability of the NW estimator is used throughout

this paper. Note that f̂U (Ûi) and φ̂(Wi,Ûi) are used to approximate fU (Ui) and φ(Wi,Ui) in ηi. In Theorem 1, we

show that the uniform convergence rate of f̂U (Ûi) to fU (Ui) using {Ûi}n
i=1 is no different from that of the traditional

Rosenblatt density estimator based on the unobserved {Ui}n
i=1. A similar result holds for φ̂(Wi,Ûi).

Theorem 1. Under A1–A5, for arbitrary convex and compact subsets GZ ⊂RD1 , GU ⊂RD2 and GM ⊂RD3 , we have

sup
{Zi,Ui}∈GZ×GU

∣∣ f̂U (Ûi)− fU (Ui)
∣∣ = Op(L2n), sup

Wi∈GW

∣∣ f̂W (Wi)− fW (Wi)
∣∣ = Op(L3n),

sup
{Wi,Zi,Ui}∈GZ×GU×GW

∣∣φ̂(Wi,Ûi)−φ(Wi,Ui)
∣∣ = Op(L4n),

(14)

where GZ×GU denotes the Cartesian product of sets GZ and GU , Lin =
(

log n

nh
Di
i

)1/2
+hsi

i , for i = 2,3,4.

Note that in Theorem 1 we establish the uniform convergence rate of f̂U (Ûi) and φ̂(Wi,Ûi) over GZ ×GU and

GZ ×GU ×GW separately. This is due to the fact that Ûi is an estimated residual given by Ûi = Xi− Π̂(Zi) and the

uniform convergence rate of Π̂(Zi) given in (13) is taken over a compact set GZ . Theorem 1 and A2 together imply

that |η̂i−ηi| = Op(Ln) uniformly, where Ln ≡ ∑
4
i=2 Lin, and consequently we have |µ̂k− µk| = Op(Ln) for k = 1,2.

With this result, we are ready to provide the uniform convergence rate of the estimators given in (9).

Theorem 2. Under A1–A5, for arbitrary convex and compact subsets GZ , GU and GW , for k = 1,2,3, we have,

sup
{Zi,Ui,Wi}∈GZ×GU×GW

∣∣∣ĝk(Ûi)−gk(Ui)
∣∣∣ = Op

(
Ln +

L1n

h2

)
, sup
{Zi,Ui,Wi}∈GZ×GU×GM

∣∣∣m̂k(Wi)−mk(Wi)
∣∣∣ = Op (Ln) . (15)

The rates of uniform convergence in probability of ĝk to gk and m̂k to mk, and by consequence, those of ĝ to g

and m̂ to m depend fundamentally on the degree of smoothness of the functions appearing in A4 and the dimensions of

the vectors Xi and Zi. Given Di for i = 1, · · · ,4 and assumption A5, it is possible to obtain the necessary smoothness in

10



A4 that assures the results in Theorem 2. Furthermore, the given rate of convergence can be calculated as a function of

n. Similarly, given Assumptions 3 and 8 in Newey et al. (1999), the rate of convergence in their Theorem 4.3 can also

be calculated. An important difference between our results and theirs is that, in our case, the rate is obtained taking

into account the randomness of Ûi and the estimation of g (λ in their notation), whereas they take U = ū as fixed and

the true g to be known.

Note that the first term in the order of ĝk(Ûi) is not new, as it is just a sum of uniform orders for different NW

estimators. The h2 in the denominator of the second term comes from a Taylor expansion of the kernel evaluated at

the estimated residuals {Ûi}n
i=1. With well chosen bandwidths in A5, it is essential to have that L2

n,
(L1n

h2

)2
= o(n−1/2).

This result will help establish the asymptotic distribution of β̂ .

√
n(β̂ −β ) =

(
1
n

X̂ ′2η̂X̂2

)−1 1√
n

X̂ ′2η̂(Ŷ − X̂2β ). (16)

As we can see in (16), there are two components that need to be studied to establish the asymptotic properties of

√
n(β̂ −β ). We need to (i) establish the asymptotic behavior of the matrix 1

n X̂ ′2η̂X̂2, and (ii) establish the asymptotic

normality of the term 1√
n X̂ ′2η̂(Ŷ − X̂2β ). Uniform orders of NW estimators derived in Theorem 2 will help take care

of (i). However, to establish
√

n asymptotic normality for the second term, we need to investigate the behavior of

U-statistics up to degree 3. Yao and Martins-Filho (2015) provides a direct and convenient method to characterize the

asymptotic magnitude of each component in the H-decomposition (see Hoeffding, 1948) of a U-statistic, and many

places in our proofs are built on their results. The next theorem establishes the asymptotic distribution of β̂ after

suitable centering and under
√

n-normalization.

Theorem 3. Under A1–A5, assuming that matrix Φ0 exists and is nonsingular, we have

√
n(β̂ −β )

d−→N
(
0,Φ−1

0 (Φ1 +Φ2)Φ
−1
0
)
, (17)

where the matrices Φ0,Φ1,Φ2 have typical elements given by

Φ0( j,k) = E
[
ηt
(
X2t, j−m2 j(Wt)−g2 j(Ut)+µ2 j

)(
X2t,k−m2k(Wt)−g2k(Ut)+µ2k

)]
;

Φ1( j,k) = E
[
η

2
t
(
X2t, j−m2 j(Wt)−g2 j(Ut)+µ2 j

)(
X2t,k−m2k(Wt)−g2k(Ut)+µ2k

)]
σ

2
v ;

11



Φ2( j,k) = E

[
D2

∑
d=1

D2

∑
δ=1

E
((

Π2 j(Zi)−Π2 j(Zt)
)
Ddg(Ut)ηt

∣∣Zi

)
×E
((

Π2k(Zi)−Π2k(Zt)
)
Dδ g(Ut)ηt

∣∣Zi

)
UidUiδ

]
, for j,k = 1, · · · ,D22.

Remarks. 1. It follows directly from Theorem 3 that β̂ is consistent and asymptotically unbiased. The explicit

structure for the covariance of the limiting distribution allows for asymptotically valid inference and hypothesis testing

when a consistent estimator for the covariance is available. Given the structure of its component covariance matrices,

we provide consistent estimators for Φi, i = 1,2,3 as follows,

Φ̂0 =
1
n

X̂ ′2η̂X̂2, Φ̂1 =
1
n

X̂ ′2η̂
2X̂2σ̂

2
v , Φ̂2 =

1
n

Q′Q, (18)

where σ̂2
v ≡ 1

n v̂′v̂, v̂≡Y−X2β̂− β̂0−m̂− ĝ, Q≡ (Q1, · · · ,Qn)
′, Qi≡ 1

n (1nΠ̂′2(Zi)−Π̂2)
′η̂DĝÛi, Π̂2(Zi)≡ (Π̂21(Zi),

· · · ,Π̂2D22(Zi))
′, Π̂2 ≡ (Π̂2(Z1), · · · ,Π̂2(Zn))

′, 1n ≡ (1, · · · ,1)′n×1, Dĝ ≡ (D̂1ĝ, · · · ,DD2 ĝ), Dd ĝ ≡ (Dd ĝ(Û1), · · · ,

Dd ĝ(Ûn))
′, and Dd ĝ(Ûi) is the partial derivative of the estimator ĝ(u) with respect to ud evaluated at Ûi. Given Equation

(9) and (11), by taking partial derivatives, we have Dd ĝ(Ûi) given by

Dd ĝ(Ûi) =−
1

nhD2+1
2

1
f̂U (Ûi)

n

∑
t=1

DdK2

(
Ût −Ûi

h2

)[
η̂t(Yt −X2t β̂ )− (ĝ1(Ûi)− ĝ′2(Ûi)β̂ )

]
.

2. The covariance Φ
−1
0 (Φ1 +Φ2)Φ

−1
0 differs from what one would obtain if Ui were observed. Hence, there is an

asymptotic cost in using Ûi in estimation. It manifests itself via the presence of Φ2, which would be zero if Ui were

observed. Furthermore, the covariance matrix of the limiting distribution does not meet the semiparametric efficiency

bound of Chamberlain (1992), a characteristic that our estimator shares with that proposed in Li and Wooldridge

(2002).6

3. Given Theorems 2, 3 and (11), we have the uniform convergence rate of ĝ(Ûi) at Op

(
Ln +

L1n
h2

)
, which is generally

worse than that of the traditional NW estimator due to the presence of h2 in the second term.

The following theorem gives asymptotic normality of m̂(·) at the typical nonparametric rate, in our case,
√

nhD3
3 .

6See Li (2000) and Manzan and Zerom (2005) for estimators that satisfy a semiparametric efficiency bound when all regressors are observed,
i.e., in the absence of generated regressors.
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Theorem 4. Let Dk
j f (x)≡ ∂ k

∂ j ···∂ j
f (x) and D0

j f (x)≡ f (x), ∀k≥ 1,1≤ j≤ k. Under A1–A5, and assume E
(
v2

mi

∣∣Wi
)
=

σ2
vm < ∞, E

(
|vmt |2+δ |Wt

)
≤C < ∞ for some δ > 0, we have

√
nhD3

3

(
m̂(w)−m(w)−bm(w)

)
d−→N

(
0,Φ3 +Φ4

)
,

where bm(w) = hs3
3

µk3,s3

fW (w)

s3

∑
k=0

1
k!(s3− k)!

D3

∑
j=1

Dk
jm(w)Ds3−k

j fW (w)+op(h
s3
3 ),

Φ3 =
σ2

vm

fW (w)

∫
K2

3 (γ)dγ, Φ4 = m2(w) fW (w)
∫ (∫

K3(γ1)K3(γ1 + γ2)dγ1

)2

dγ2.

Remarks. 1. Given the order and structure of the bias, it follows immediately from Theorem 4 that m̂(w)−m(w) =

op(1).

2. The fact that ηi, β0, and β have to be estimated is costly asymptotically. In particular, the variance of the limiting

distribution contains the strictly positive term Φ4 added to Φ3. Φ3 can be immediately recognized as the covariance of

the limiting distribution of an “oracle” Nadaraya-Watson estimator constructed under the assumption that ηi, β0, and

β are known. Hence, m̂(·) is not oracle efficient. It may be possible to eliminate Φ4 by considering a new estimator

that explores a one-step backfitting procedure using ĝ(·). We leave this modification for future research.

4 Monte Carlo Study

In this section, we provide some experimental evidence on the finite sample behavior of our estimators
(
β̂ , m̂(·)

)
and

contrast it to that of some alternative estimation procedures. We consider the following data generating processes

(DGPs):

DGP1 : Yi = Ln(|X1i−1|+1) sgn(X1i−1)+X ′2iβ +β0 + εi,

DGP2 : Yi =
exp(X1i)

1+3 exp(X1i)
+X ′2iβ +β0 + εi,
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for i = 1, · · · ,n. The sample size n is set at 100 and 400. In both DGPs, Z1i and Z2i are generated independently from

N(0,1), and we construct X1i = Z1i +Z2i +U1i and X2i = Z2
1i +Z2

2i +U2i. εi and Ui = (U1i,U2i) are generated as

 εi

Ui

∼ NID

0,


1 θ θ

θ 1 θ 2

θ θ 2 1



 ,

where the values θ = 0.3, 0.6, and 0.9 indicate weak, moderate, and strong endogeneity, respectively. It is easy to

verify that E(εi|Zi) = 0, E(Ui|Zi) = 0, and thus E(εi|Ui,Zi) = E(εi|Ui) =
θ

1+θ 2 (U1i +U2i). We set the parameters

β = 1,β0 = 1, and perform 1000 repetitions for each experiment design.

The implementation of our estimators requires a choice of kernel function Ki(·) for i = 1, · · · ,4 and bandwidth

sequences. For all kernels, we use products of a univariate Gaussian kernel of appropriate orders, as we discussed in

assumption A1. For both DPGs we have D1 = D2 = 2, D3 = 1 and D4 = 3, and setting s1 = 5, s2 = 3, s3 = 1, s4 = 4,

we choose bandwidths in accordance to A5 by setting h1 = 1.25σ̂(Zi)n−δ for δ = 1/9 and hi = 1.25σ̂(Mi)n−1/(2si+Di),

for i = 2,3,4, where σ̂(Mi) is the sample standard deviation of the variable Mi, with M2 = Ûi, M3 = (X1i,Z1i), and

M4 = (X1i,Z1i,Ûi).

We also implement the series estimators proposed by Newey et al. (1999), which we denote by (β̂SP, m̂SP). It

should be noted that their estimator was developed for a model where β0 = 0, and the use of a trimming function

w(τ) (in their notation), prevents the use of our assumption E(ε) = 0. Thus, we adapt their estimation procedure to

the DGPs under consideration and use B-splines throughout the implementation. We use the same number of knots

to estimate Π, m and g and follow their constraints on how fast the number of knots diverge to infinity to obtain the

convergence results in their Theorem 5.1. Specifically, given Di for i = 1, · · · ,4 in the DGPs we must select B-splines

of order 7 with s1 > 6. Hence, the smallest degree of differentiability permitted for Π is s1 = 7, more than we need

to assume to attain the uniform rates of convergence for our nonparametric estimator of m. The higher degree of

smoothness they must assume provides some benefits, specifically, for the DGPs considered here, the rate of uniform

convergence in probability of our estimator is n−1/3 while theirs is n−5/14.
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Table 1: Finite sample performance

θ = 0.3 θ = 0.6 θ = 0.9

B S R D M B S R D M B S R D M

DGP1 n = 100
(β̂ , m̂) 0.057 0.058 0.081 0.059 0.280 0.078 0.058 0.097 0.078 0.279 0.098 0.056 0.113 0.096 0.310
(β̂SP, m̂SP) 0.062 0.089 0.109 0.073 0.609 0.125 0.088 0.153 0.122 0.587 0.172 0.085 0.192 0.172 0.580
(β̂Rob, m̂Rob) 0.076 0.052 0.092 0.074 0.533 0.139 0.054 0.149 0.135 0.557 0.181 0.054 0.189 0.181 0.591
(β̂2SLS, m) 0.029 0.798 0.798 0.164 0.058 0.506 0.509 0.167 0.065 0.507 0.511 0.171
(β̂IV , m) 0.005 0.053 0.053 0.035 0.013 0.054 0.056 0.038 0.017 0.051 0.054 0.038

n = 400
(β̂ , m̂) 0.046 0.029 0.054 0.044 0.277 0.061 0.029 0.067 0.060 0.270 0.075 0.029 0.080 0.074 0.303
(β̂SP, m̂SP) 0.017 0.034 0.039 0.025 0.511 0.032 0.030 0.044 0.034 0.508 0.043 0.029 0.052 0.043 0.505
(β̂Rob, m̂Rob) 0.073 0.025 0.078 0.073 0.520 0.133 0.026 0.136 0.133 0.554 0.173 0.026 0.175 0.172 0.582
(β̂2SLS, m) 0.018 0.444 0.444 0.159 0.076 0.812 0.815 0.151 0.062 0.404 0.409 0.166
(β̂IV , m) 0.002 0.026 0.026 0.017 0.005 0.025 0.025 0.017 0.007 0.025 0.026 0.018

DGP2 n = 100
(β̂ , m̂) 0.096 0.058 0.112 0.095 0.182 0.119 0.055 0.131 0.116 0.211 0.144 0.056 0.154 0.144 0.268
(β̂SP, m̂SP) 0.062 0.088 0.108 0.072 0.340 0.123 0.090 0.152 0.122 0.408 0.171 0.082 0.190 0.171 0.311
(β̂Rob, m̂Rob) 0.071 0.052 0.088 0.072 0.243 0.132 0.053 0.143 0.133 0.270 0.175 0.053 0.183 0.176 0.303
(β̂2SLS, m) 0.031 0.475 0.475 0.156 0.056 0.592 0.594 0.173 0.074 0.718 0.721 0.181
(β̂IV , m) 0.003 0.053 0.053 0.036 0.011 0.052 0.054 0.037 0.018 0.053 0.056 0.038

n = 400
(β̂ , m̂) 0.077 0.031 0.083 0.075 0.125 0.094 0.034 0.100 0.092 0.163 0.115 0.032 0.119 0.113 0.236
(β̂SP, m̂SP) 0.019 0.033 0.038 0.025 0.319 0.032 0.031 0.045 0.034 0.240 0.043 0.029 0.052 0.044 0.231
(β̂Rob, m̂Rob) 0.073 0.025 0.077 0.072 0.229 0.131 0.027 0.134 0.131 0.258 0.172 0.027 0.174 0.173 0.301
(β̂2SLS, m) 0.024 0.499 0.499 0.153 0.061 0.456 0.460 0.156 0.090 0.814 0.818 0.165
(β̂IV , m) 0.003 0.026 0.026 0.018 0.005 0.025 0.026 0.018 0.007 0.025 0.026 0.017

Note: The mean of root mean squared error (M) is intended to be left blank for
(
β̂2SLS,m

)
and

(
β̂IV ,m

)
since m is treated as known and will not be estimated in these

cases.
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In Table 1, we provide results on bias (B), standard deviation (S), root mean squared error (R), and median of

root squared error (D) for the estimation of β , and the mean of root mean squared error (M) for estimating m obtained

by averaging across the realized values of (X1i,Z1i). We give results for
(
β̂ , m̂

)
and for comparison, we also provide

results for the oracle estimators for β and β0 by taking m(·) as given using two different methods. β̂2SLS is derived

using the traditional two stage least square (2SLS) method for linear models, while β̂IV is based on IV estimation using

the nonparametric proxies Π̂2 as in section 2.2. Lastly, we provide results for the estimators proposed by Robinson

(1988), denoted here by (β̂Rob, m̂Rob), which ignore the endogeneity of Xi. To avoid any extreme estimates or boundary

bias in the nonparametric estimation, results on M for estimators of m(·) are only shown by the mean of 10− 90%

quantile range of sample estimates.7

As shown in Table 1, all of the estimators’ performances, in terms of the aforementioned measures, improve with

the sample size (e.g., for DGP1, when θ = 0.3, root mean squared error of β̂ drops nearly 40% from 0.081 to 0.054

when we increase the sample size from 100 to 400). For all DGPs, sample sizes and values of θ , our nonparametric

estimators of m outperforms m̂SP and, as expected, m̂Rob. The performance of β̂ relative to that of β̂SP is more

nuanced. For DGP1 and n = 100 it exhibits smaller B, S, R and D than β̂SP for all θ . For n = 400 these relative results

are reversed except for S where the estimators have similar performance. For DGP2, β̂SP outperforms β̂ for all θ and

all performance measures.

We note that β̂ and β̂SP seem to adequately account for the endogeneity problem since, given the same DGP

and sample size, the performance of these estimators regarding bias (B) does not change significantly as the degree

of endogeneity (θ ) increases, contrasting with the estimator β̂Rob. In this case, as θ increases from 0.3 to 0.9, the

bias more than doubles. The performance of β̂2SLS is the worst among the five estimators, even though it is derived

assuming m(·) is known. This result is not surprising since in 2SLS estimation we specify a linear structure when

approximating the endogenous variables, which in our DGPs it is not. This illustrates the importance of nonparametric

estimation when we are not able to specify the functional forms of interest. β̂IV avoids that potential misspecification

and gives the best performance among all estimators for β in every aspect, exactly as we expected.

To give a more visual description of the distribution of root squared error (RSE) for estimators of β across the

simulated samples, we estimate and plot its density for each linear estimator with n = 100 for DGP1 in the left panel

7Especially for the second DGP since it has a lower bound of zero for the range of the nonparametric component.
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Figure 1: Estimated densities for RMS of estimators of β , n = 100, DGP1(left panels) and DGP2 (right panels).
θ = 0.3 (top panels), θ = 0.6 (middle panels) and θ = 0.9 (bottom panels)
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Figure 2: Estimated densities for RMS of estimators of β , n = 400, DGP1(left panels) and DGP2 (right panels).
θ = 0.3 (top panels), θ = 0.6 (middle panels) and θ = 0.9 (bottom panels)
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of Figure 1, and DGP2 in the right panel. The same is done with n = 400 in Figure 2. The density estimation is

performed using the gamma kernel density estimator proposed by Chen (2000) to avoid any boundary bias. Top,

middle, and bottom panels correspond to different degrees of endogeneity, θ = 0.3, 0.6, and 0.9, respectively. It is

apparent that the estimated densities for the RSE of estimators β̂IV (dashed-dotted graph) are closest to the vertical

axis, most concentrated around zero and exhibit thinnest tails to the right across all the panels in both figures. In Figure

1 the density associated with our estimator β̂ (solid graph) is closer to the vertical axis and has thinner tails especially

when θ = 0.6 or 0.9. In Figure 2, it is β̂SP (dotted line) that is closer to to the vertical axis with thinner tails. The

densities associated with the other estimators exhibit particularly bad behavior, especially for large θ .

5 Empirical application: aid-policy-growth relationship

In this section we illustrate the use of our model and the ease of conducting estimation through a simple application.

Specifically, we study the impact of foreign aid and policy on economic growth in developing countries. Prominent

in this literature is Burnside and Dollar (2000) (henceforth BD). They find that aid is only effective in a good policy

environment.8 This paper was extraordinarily influential at the time and continues to be so due to its clear recom-

mendation: foreign aid should be distributed to countries with good policy environments. However, following BD, an

extensive study of the effect of aid has been conducted and results seem to vary greatly with model specifications and

samples used.9 Although alternative tightly parametrized specifications might be useful, Easterly et al. (2004) points

out an essential problem and calls for more flexible regression models: “This literature has the usual limitations of

choosing a specification without clear guidance from theory, which often means there are more plausible specifications

than there are data points in the sample.”

Therefore, without imposing any prior restrictive functional forms on aid and policy, our model is fully flexible

and well suited in this context. More importantly, it controls for the potential endogeneity in the nonparametric and

linear parts. For simplicity and ease of comparison, we adopt most of the variables from BD and consider the following

8They estimate a 2SLS model and find a significantly positive interaction term between aid and a policy index, controlling the potential
endogeneity of aid by using a series of instruments.

9There are three mainstream views: 1) BD’s Policy View: aid promotes growth but only with a “good policy” environment; see also Collier
and Dehn (2001), Collier and Dollar (2002), and Burnside and Dollar (2004); 2) Diminishing Returns View: irrespective of policy, aid promotes
growth but with diminishing returns; see Hansen and Tarp (2001) among others; 3) the “Null” View: Boone (1996) finds no relationship between
aid and investment, the basic ingredient of growth drivers, excluding those with most aid; see also Rajan and Subramanian (2008).
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empirical model:

Yi = m(Xi,Z1i)+Z′2iβ1 +β0 + εi, (1’)

Xi = Π(Zi)+Ui, (2)

where Yi is per-capita real GDP growth rate (gdpg), Xi is international aid (effective development assistance) provided

to a country as a percentage of its GDP (aid), Z1i is an index of quality of the policy environment (policy),10 and Z2i

is a set of other control variables.11 Note that Equation (1’) is different from (1) in that it now includes a vector of

exogenous variables rather than endogenous in the linear part.12 In line with BD, policy and all the other variables in

Zi are considered exogenous. Aid might be endogenous due to the facts that donors might respond to negative growth

shocks by providing more assistance, or countries with positive growth shocks (for example, newly discovered oil

fields) might receive special favors from some donors due to strategic or commercial interests. Although the focus of

this application lies in the aid-policy-growth relationship (estimation of the nonparametric part), the theoretical model

is able to accommodate any endogeneity stemming from covariates in the linear part with suitable instruments.13 Here

in order to keep things simple and comparable with baseline results from BD, we stick to the above empirical model.

Based on the same dataset from BD with a total of 275 observations,14 we provide all our graphical results in

Figure 3. Figure 3a on the left presents a three-dimensional (3D) surface plot of the fitted growth against aid and

policy.15 The surface is smooth and varies significantly with different combinations of aid and policy. The most

obvious feature is the high peak when both aid and policy are at high levels, which directly leads to BD’s famous

Policy View since effect of aid is greatly boosted by “good” policies. This is largely due to Botswana (1978-1989)16

10Variable policy is constructed by BD from measures of budget balance, inflation, and the Sachs-Warner openness index.
11Zi = (Z′1i,Z

′
2i,Z

′
3i)
′ represents the set of all exogenous variables where Z2i consists of an index of institutional quality (icrge), log of initial real

per-capita GDP for the period (lgdp), a measure of ethnic fractionalization (ethnf ), a measure of assassination (assas), ethnic fractionalization ×
assassinations (ethnf × assas), and a measure of financial depth, money supply as a percentage of GDP lagged one period (m21); and Z3i is a set of
excluded instrumental variables including log of population (lpop) and arms import as a percentage of total imports lagged one period (arms1).

12The estimation procedure and Theorem 1–3 continue to hold since exogeneity of the added regressors creates no added difficulties for the
asymptotic characterization of our proposed estimator.

13For example, we also find that institutional quality could be endogenous given that faster economic growth may produce higher levels of
institutional quality (see Aron, 2000) and there might be some unobserved factors that jointly determine both high levels of institutional quality and
economic growth (see Easterly et al., 2006). A plausible instrument for it is Gini index, a measure of social cohesion that, in part, determines the
institutional quality. See Easterly et al. (2006) for more details. We leave this for future work.

14The dataset is publicly available at www.cgdev.org/publication/aid-policies-and-growth-data-set.
15We plot on where aid and policy most concentrated, that is, aid GDP ratio from -0.5% and 8% (more than 98% observations) and policy above

-1.5 (more than 97% observations).
16Botswana is well known as the “African Exception” due to its high economic growth and democracy. Its record consistently stands in stark

contrast to virtually all other parts of Sub-Saharan Africa.
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Figure 3: Aid and policy effects on growth

(a) Joint aid-policy-growth relationship

0 1 2 3 4 5 6 7
Aid

-1

0

1

2

3

4

F
itt

ed
 g

ro
w

th

25% quantile of policy
50% quantile of policy
75% quantile of policy

0.25 0.82 2.28

-1 0 1 2 3
Policy index

-1

0

1

2

3

4
F

itt
ed

 g
ro

w
th

25% quantile of aid
50% quantile of aid
75% quantile of aid

0.52 0.94 1.65

(b) Individual aid-growth and policy-growth relationship
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(c) Individual aid-growth and policy-growth relationship with 95% confidence interval
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which has consistently high levels of aid, policy, and growth rate. To give a better comparison with BD, Figure 3a on

the right stacks the 3D plot with the fitted growth predicted in BD under a linear 2SLS model.17 Due to the linearity

restriction, it is a flat plane without any fluctuation, which is roughly an average of our fitted surface. One of the most

important features it misses is that aid appears to have varying effects at different range. In particular, it is growth-

enhancing at high levels while the linear model simply averages it out. Taking a closer look into the individual effects

of aid and policy, we slice the surface along aid with policy fixed at its 25%, 50%, and 75% quantile in Figure 3b on

the left. To make the plot more informative, we also mark the 25%, 50%, and 75% quantile of aid on the top axis and

draw three vertical dotted lines. In general, the effect of aid is not obvious, except at very high levels (above 3% aid

GDP ratio).18 In contrast, we can see from the right figure that a good policy environment is indeed growth-enhancing

across its entire range with a larger effect at high levels (above its 75% quantile). For statistical inference, we add

a 95% confidence interval in Figure 3c for each aid-growth or policy-growth curve of Figure 3b. As expected, the

confidence band varies greatly with aid or policy distribution, that is, it widens where the data is scarce.

In sum, we find that aid in general does not promote growth, expect at high levels (above 3% aid GDP ratio)

while policy has a consistent and positive effect. Our findings do not support BD’s conclusion—policy increases

aid effectiveness in growth. In BD, aid effectiveness is assumed to be only dependent on policy, not even on itself.

Figure 3b on the left provides a plausible explanation. We see that the effect of aid does vary with itself, but it will

be averaged out in BD’s setup for countries with a not so good policy environment (25% and 50% quantile) due to

the drop in curves when aid GDP ratio is above 5%, while for countries with a very good policy environment (75%

quantile), we do not see such drop. The positive interaction term in BD only captures the increasing averaged effect

of aid with policy but misses the whole picture. In fact, for the majority range of aid, its effectiveness (slope of the

curves) actually decreases with policy although the difference seems not significant.

17Coefficient estimates are reported in Column (5) (2SLS) of Table 4 in BD, where aid has a coefficient -0.32, policy 0.74∗∗, and their interaction
0.18∗. ∗∗ and ∗ represent 5% and 10% significance levels, respectively.

18We also implement estimators in Robinson (1988) without controlling for any endogeneity, and find that this positive effect at high levels is
cut in half, suggesting that aid might be endogenous in that it is more likely to be given due to assistance purpose.
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6 Summary and conclusion

In this paper we contribute to the growing literature on the estimation of semiparametric and nonparametric regres-

sion models with endogenous regression. Adopting the control function approach, we propose easily computable

kernel-based estimators for the finite and infinite dimensional parameters of a partially linear regression model and

establish their asymptotic distributions. Two critical steps are needed to establish these results: first, the choice of the

normalizing function L(·) appearing in Section 2.1, and second the repeated use of the results on U-Statistics obtained

in Yao and Martins-Filho (2015). Besides its role in assuring asymptotic normality of the proposed estimators, the

choice of L(·) generates a class of estimators with different variances for their asymptotic distributions. A simple

empirical investigation of the aid-policy-growth relationship is provided to illustrate the ease of implementation of our

method. Future research should be done on selecting optimal (minimal variance) estimators from this class. In fact,

further investigation of the efficiency properties of these estimators may shed light on how to construct oracle efficient

estimators for m(·) and semiparametric efficient estimators for β .
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Appendix

This appendix presents the proofs of the main theorems and statements and proofs of the supporting lemmas. For a

scalar variable x, f ′(x) denotes the derivative of f (x) evaluated at x. For D× 1 vectors γ,β , define γβ = ∏
D
d=1 γ

βd
d ,

|β |=∑
D
d=1 βd , Dd f (γ)= ∂

∂d f (γ), D2
dk f (γ)= ∂ 2

∂d∂k f (γ), Dβ f (γ)= ∂ |β |

∂
β1
1 ···∂

βD
D

f (γ). J f (γ) and H f (γ) denote the Jacobian

and Hessian matrix of f (γ). Note that for a scalar function f (γ), J f (γ) is the transpose of the gradient vector of f (γ).

A×B denotes the Cartesian product of two sets A and B. χA denotes the indicator function for the set A. P(A) denotes

the probability of event A in the probability space (Ω,F ,P), E(·) denotes expectation, and V(·) denotes variance.

U-statistics will be repeatedly used in the proofs. Let {Pi}n
i=1 be a sequence of IID random variables and φn(Pi1 ,

· · · ,Pik) be a symmetric (kernel) function that depends on n. Then a U-statistic Un of degree k is defined as

Un =

(
n
2

)−1

∑
(n,k)

φn(Pi1 , · · · ,Pik),

where ∑(n,k) denotes the sum over all subsets 1≤ i1 < · · ·< ik ≤ n of {1, · · · ,n}. Now let φcn(z1, · · · ,zc) = E(φn(P1, · · · ,

Pc,Pc+1, · · · ,Pk)|P1 = p1, · · · ,Pc = pc), σ2
cn = V(φcn(P1, · · · ,Pc)) and θn = E(φn(Pi1 , · · · ,Pik). In addition, recursively

define h(1)n (p1) = φ1n(p1)−θn, · · · ,h(c)n (p1, · · · , pc) = φcn(p1, · · · , pc)−∑
c−1
j=1 ∑(c, j) h( j)

n (pi1 , · · · , pi j)−θn for c = 2, · · · ,

k. By Hoeffding’s H-decomposition in Hoeffding (1961) we have

Un = θn +
k

∑
j=1

(
k
j

)
H( j)

n (Pi1 , · · · ,Pi j),

where H( j)
n (Pi1 , · · · ,Pi j) =

(n
j

)−1
∑(n, j) h( j)

n (Pi1 , · · · ,Pi j). The order of Un can be determined by studying each H( j)
n and

θn in the finite sum. By Theorem 1 in Yao and Martins-Filho (2015), the order of H( j)
n is determined by n and the

leading variance σ2
jn. Throughout the proofs, we will use {Pi}n

i=1 and the above notation to characterize the U-statistics

of interest, denoted by Un .

Proof of Theorems

Theorem 1 Proof. By the uniform convergence rate of the Rosenblatt density estimator given in Theorem 1.4 of Li

and Racine (2007), we have supWi∈GW

∣∣ f̂W (Wi)− fW (Wi)
∣∣ = Op(L3n). Similarly, for the first equation in (14), we only

need to focus on | f̂U (Ûi)− f̂U (Ui)|.

Denote K̂2ti = K2

(
Ût−Ûi

h2

)
, K2ti = K2

(
Ut−Ui

h2

)
, and other kernels similarly. Since K2 is 4-times partially continu-

ously differentiable, by Taylor’s Theorem,

f̂U (Ûi)− f̂U (Ui) =
1

nhD2
2

n

∑
t=1

(
K̂2ti−K2ti

)
=

1

nhD2
2

n

∑
t=1

(
3

∑
|β |=1

Hβ

|β |!
Dβ K2ti + ∑

|β |=4

Hβ

|β |!
Dβ K2

(
Ut −Ui

h2
+λH

))
≡

4

∑
i=1

Ti,
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where H ≡ 1
h2
(Ût −Ut)− 1

h2
(Ûi−Ui), λ ∈ (0,1).

Next, we examine the uniform order of Ti over GZ×GU for i = 1, · · · ,4 in four steps.

Step 1: We rewrite T1 into two parts:

T1 =
D2

∑
d=1

(
− 1

nhD2+1
2

n

∑
t=1

(Ûid−Uid)DdK2ti +
1

nhD2+1
2

n

∑
t=1

(Ûtd−Utd)DdK2ti

)
≡

D2

∑
d=1

(T11 +T12),

where T11 ≡ −
(
Ûid−Uid

)
C1(Ui) and C1(Ui) ≡ (nhD2+1

2 )−1
∑

n
t=1 DdK2ti. By Lemma 3, it can be shown that

supUi∈GU
|C1(Ui)−E(C1(Ui))| = Op

((
log n/(nhD2+2

2 )
)1/2

)
= op(1), and by integration by parts, E(C1(Ui)) =∫

K2(γ)Dd fU (Ui−h2γ)dγ ≤C uniformly. Thus, supU∈GU
|C1(Ui)|=Op(1). Note that

∣∣Ûid−Uid
∣∣= ∣∣Π̂d(Zi)−Πd(Zi)

∣∣,
and by the uniform convergence rate of Nadaraya-Watson estimator, we have supZi∈GZ

∣∣Ûid−Uid
∣∣= Op(L1n). Conse-

quently, T11 = Op(L1n) uniformly.

Given Π̂d(Zt) = (nhD1
1 f̂Z(Zt))

−1
∑

n
l=1 K1ltXl,d , and f̂Z(Zt) = (nhD1

1 )−1
∑

n
l=1 K1lt , we have

−(Ûtd−Utd) = Π̂d(Zt)−Πd(Zt) =
1

nhD1
1 fZ(Zt)

n

∑
l=1

K1lt

(
Uld +Πd(Zl)−Πd(Zt)

)
+Op(L2

1n) (A.1)

by the uniform order of f̂Z(Zt)− fZ(Zt) and Ûtd−Utd . Thus, we have

T12 =
1
n2

n

∑
t=1

n

∑
l=1

1

hD1
1 hD2+1

2 fZ(Zt)
K1ltDdK2tiUld +

1
n2

n

∑
t=1

n

∑
l=1

1

hD1
1 hD2+1

2 fZ(Zt)
K1ltDdK2ti

(
Πd(Zl)−Πd(Zt)

)
+Op(L2

1n)
1

nhD2+1
2

n

∑
t=1
|DdK2ti| ≡ T121 +T122 +Op(L2

1n/h2),

T121 =
1
n2

n

∑
t=1

1

hD1
1 hD2+1

2 fZ(Zt)
K1(0)DdK2tiUtd +

1
n2

n

∑
t=1

n

∑
l=1

t 6=l

1

hD1
1 hD2+1

2 fZ(Zt)
K1ltDdK2tiUld ≡ E1n +E2n.

We can show that E1n = Op

(
(nhD1

1 h2)
−1
)

uniformly over GU by Lemma 3, and E2n ≤ C|Un|, where Un =(n
2

)−1
∑

n
t=1 ∑

n
l=1

t 6=l

K1lt DdK2ti

h
D1
1 h

D2+1
2 fZ(Zt )

Uld ≡
(n

2

)−1
∑

n
t=1 ∑

n
l=1

t 6=l
ψnlt ≡

(n
2

)−1
∑

n
t=1 ∑

n
l=1

t<l
φnlt = θn + 2H(1)

n + H(2)
n is a U-statistic.

θn = E(φnlt) = 0 in this case. H(1)
n = 1

n ∑
n
l=1 h(1)n (Ui,Pl) =

1
n ∑

n
l=1 φ1n(Ui,Pl) =

1
n ∑

n
l=1 E(φnlt |Ui,Pl) =

1
n ∑

n
l=1 Uldc(Ui,

Zl), where c(Ui,Zl)≡
∫

K1(γ1)K2(γ2)Dd fU |Z(Ui+h2γ2|Zl−h1γ1)dγ1dγ2. Given Cramer’s condition in A3 and Lemma

2, we have sup{Z,U}∈GZ×GU
H(1)

n = Op
(
(log n/n)1/2

)
, as E(H(1)

n ) = 0. For H(2)
n , by Theorem 1 in Yao and Martins-

Filho (2015), H(2)
n = (σ2

2n/n2)1/2Op(1), where σ2
2n≡V(φnlt) =E(φ 2

nlt)≤ 4E(ψ2
nlt) =O

(
(hD1

1 hD2+2
2 )−1

)
. Thus H(2)

n =

(n2hD1
1 hD2+2

2 )−1/2Op(1) uniformly. In sum, T121 = Op

(
(nhD1

1 h2)
−1 +(log n/n)1/2 +(n2hD1

1 hD2+2
2 )−1/2

)
= Op(L1n)

uniformly by A5.

The order of T122 could be analyzed in the same way, given that Π and fZ are s1 times partially continuously dif-

ferentiable, and K1 is a multivariate kernel of order s1, we have T122 =Op
(
hs1

1 +(log n/n)1/2+(n2hD1−2
1 hD2+2

2 )−1/2
)
=
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Op(L1n) uniformly by A5. In sum, sup{Z,U}∈GZ×GU
T1 = Op(L1n).

Step 2: T2 = ∑|β |=2
(
nhD2

2

)−1
∑

n
t=1 Hβ Dβ K2ti, when 1 appears in the dth and kth position of β , we have

1

nhD2
2

n

∑
t=1

Hβ Dβ K2ti =
1

2nhD2+2
2

n

∑
t=1

[
(Ûtd−Utd)− (Ûid−Uid)

][
(Ûtk−Utk)− (Ûik−Uik)

]
D2

dkK2ti.

Since supZ∈GZ

∣∣Ûab−Uab
∣∣= Op(L1n), for a = i, j and b = d,k, we have T2 = Op

(
L2

1n/h2
2
)(

nhD2
2

)−1
∑

n
t=1

∣∣D2
dkK2ti

∣∣≡
Op
(
L2

1n/h2
2
)

C2(Ui). By Lemma 3 and that E(C2(Ui)) = O(1) uniformly over GU , we have C2(Ui) = Op(1) uniformly.

Thus, sup{Z,U}∈GZ×GU
T2 = Op

(
L2

1n/h2
2
)
.

Step 3: Similarly, sup{Z,U}∈GZ×GU
T3 = Op

(
L3

1n/h3
2
)
.

Step 4: T4 is different from T2 and T3 in that supU∈GU
C4(Ui) = Op(1/hD2

2 ), where C4(Ui) ≡
(
nhD2

2

)−1
∑

n
t=1

∣∣Dβ K∗2ti

∣∣,
for any |β |= 4, and Dβ K∗2ti ≡Dβ K2((Ut−Ui)/h2 +λH). Thus, sup{Z,U}∈GZ×GU

T4 = Op

(
L4

1n
/

hD2+4
2

)
. By A5, it can

be shown that T2,T3,T4 = op(n−1/2), and T1 = Op(L1n) = Op(L2n), which gives us

sup
{Zi,Ui}∈GZ×GU

| f̂U (Ûi)− fU (Ui)|= Op(L2n).

The uniform order of
∣∣φ̂(Wi,Ûi)−φ(Wi,Ui)

∣∣ can be derived in the similar way under A5, and consequently, here, we

omit the details.

Theorem 2 Proof. We start with the jth element of ĝ2(Ûi)−g2(Ui). Note that

ĝ2 j(Ûi)−g2 j(Ui) =
1

nhD2
2 f̂U (Ûi)

n

∑
t=1

K̂2tiη̂tX2t, j−g2 j(Ui)

=
1

nhD2
2 f̂U (Ûi)

n

∑
t=1

K̂2ti

{
(η̂t −ηt)X2t, j + vg2t, j +

(
(g2 j(Ut)−g2 j(Ui)

)}
︸ ︷︷ ︸

Cg2ti

=

{
1

nhD2
2 fU (Ui)

n

∑
t=1

K2tiCg2ti +
1

nhD2+1
2 fU (Ui)

n

∑
t=1

JK2ti
(
Ût −Ut − (Ûi−Ui)

)
Cg2ti

+
1

nhD2
2 fU (Ui)

n

∑
t=1

RtiCg2ti

}(
1+Op(L2n)

)
(A.2)

≡

(
3

∑
k=1

Tk

)(
1+Op(L2n)

)
,

where Rti is the remainder term of a Taylor’s expansion of K̂2ti at (Ut−Ui)/h2, and vg2t, j is the jth element of vg2t . We

complete the proof by showing in three steps that T1 = Op(Ln), T2 = Op (L1n/h2), and T3 = op(n−1/2).
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Step 1: Let T1 ≡ ∑
3
k=1 T1k, corresponding to the three components in Cg2ti separately. By Theorem 1 and A2, we have

sup
{Z,U}∈GZ×GU

|η̂t −ηt |= Op(L2n +L3n +L4n)≡ Op(Ln).

By Lemma 3, T11 = Op(Ln)(nhD2
2 )−1

∑
n
t=1 |K2tiηtX2t, j|= Op(Ln) uniformly, since by A3 and A4,

E

(
1

nhD2
2

n

∑
t=1

∣∣K2tiηtX2t, j
∣∣)=

1

hD2
2

E
(∣∣K2ti(g2 j(Ut)+ vg2t, j)

∣∣)
≤
∫
|K2(γ)|(|g2 j(Ui +h2γ)|+C) fU (Ui +h2γ)dγ

≤C |g2 j(Ui)|+C
∫
|K2(γ)|(|g2 j(Ui +h2γ)|− |g2 j(Ui)|)dγ +C

≤C |g2 j(Ui)|+C h2

∫
|K2(γ)|

D2

∑
d=1
|γd |dγ +C

≤C |g2 j(Ui)|+C, which is bounded uniformly over GU .

By Lemma 3, we have supU∈GU
|T12|= Op

(
(log n/nhD2

2 )1/2
)
= Op(L2n), given E(T12) = 0.

For T13, note that by Taylor’s Theorem, E(T13) = h−D2
2 f−1

U (Ui)E
(

K2ti
(
g2 j(Ut) − g2 j(Ui)

))
=

f−1
U (Ui)

∫
K2(γ)

(
g2 j(Ui + h2γ) − g2 j(Ui)

)
fU (Ui + h2γ)dγ = O(hs2

2 ) = O(L2n) uniformly over GU , given that

K2 is of order s2, g2 j(Ut), fU (Ut) ∈ Cs2 and all the partial derivatives of g2 j(Ut) up to order s2 are uniformly

bounded by A4. By Lemma 3, we have h−1
2 supU∈GU

|T13 − E(T13)| = Op
(
(log n/(nhD2

2 ))1/2
)
= Op(L2n). Thus,

supU∈GU
|T13|= Op(L2n), and we have T1 = Op(Ln) uniformly.

Step 2: For T2, similar to T11, by Lemma 3, we have

T2 =
1

nhD2+1
2 fU (Ui)

n

∑
t=1

JK2ti
(
Ût −Ut − (Ûi−Ui)

)
Cg2ti

= Op

(L1n

h2

) D2

∑
d=1

1

nhD2
2 fU (Ui)

n

∑
t=1

∣∣∣∣∣DdK2ti

(
(η̂t −ηt)X2t, j + vg2t, j +

(
(g2 j(Ut)−g2 j(Ui)

))∣∣∣∣∣
= Op

(L1n

h2

)
.

Step 3: Rti is the remainder term of a Taylor’s expansion of K̂2ti at (Ut −Ui)/h2, thus Rti = ∑
3
|β |=2(|β |!)

−1Dβ K2tiHβ

+∑|β |=4(4!)−1Dβ K2
(
(Ûti−Uti)/h2

)
Hβ , where (Ûti−Uti)/h2 ≡ (Ûi−Ui)/h2 +λH, λ ∈ (0,1), and H =

(
Ût −Ut −

(Ûi−Ui)
)
/h2. Thus, let T3 ≡ ∑

3
k=1 T3k, with

T31 =
D2

∑
d=1

D2

∑
l=1

1

2nhD2+2
2 fU (Ui)

n

∑
t=1

D2
dlK2ti

(
Ûtd−Utd− (Ûid−Uid)

)(
Ûtl−Utl− (Ûil−Uil)

)
Cg2ti

= Op

(
L2

1n

h2
2

) D2

∑
d=1

D2

∑
l=1

1

nhD2
2

n

∑
t=1

∣∣D2
dlK2tiCg2ti

∣∣= Op

(
L2

1n

h2
2

)
,
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by A3. Similarly, T32 = Op
(
L3

1n/h3
2
)
. By A1, T33 = Op

(
L4

1n/hD2+4
2

) 1
n ∑

n
t=1

∣∣Cg2ti
∣∣ = Op

(
L4

1n/hD2+4
2

)
. By A5, we can

show that T3 = Op
(
L2

1n/h2
2 +L3

1n/h3
2 +L4

1n/hD2+4
2

)
= op(n−1/2) uniformly.

Combining 1-3, we have sup{Zi,Ui}∈GZ×GU
|ĝ2(Ûi)−g2(Ui)|= Op

(
Ln +

L1n
h2

)
. For m̂2 j(Wi)−m2 j(Wi), note that

m̂2 j(Wi)−m2 j(Wi) =
1

nhD3
3 f̂W (Wi)

n

∑
t=1

K3tiη̂tX2t, j−m2 j(Wi)

=

{
1

nhD3
3 fW (Wi)

n

∑
t=1

K3ti

{
(η̂t −ηt)X2t, j + vm2t, j +

(
m2 j(Wt)−m2 j(Wi)

)}
︸ ︷︷ ︸

Cm2ti

}(
1+Op(L3n)

)

= Op(Ln), (A.3)

where the order can be found similarly to T1 in part 1. For µ̂2 j, we have

µ̂2 j−µ2 j =
1
n

n

∑
t=1

(η̂t −ηt)X2t, j +
(1

n

n

∑
t=1

ηtX2t, j−E(ηiX2i, j)
)
= Op(Ln)+Op(n−1/2) = Op(Ln).

The uniform orders of ĝ1(Ûi), m̂1(Wi), µ̂1, ĝ3(Ûi), and m̂3(Wi) can be found similarly by replacing η̂tX2t, j with η̂tYt or

η̂t , respectively. Thus, the details of these proofs are not be provided here.

Theorem 3 Proof. Note that m = m1−m2β − β0, g = g1− g2β − β0, where m ≡
(
m(W1), · · · ,m(Wn)

)′, and g,m1,

g1,m2,g2 and their associated estimators are defined similarly in vector forms. Denote VY ≡ ∑k={m,g,µ}Vk1 and VX ≡

∑k={m,g,µ}Vk2, where Vm1 ≡ m̂1−m1, Vg1 ≡ ĝ1− g1, Vµ1 ≡ −(µ̂1− µ1), Vm2 ≡ m̂2−m2, Vg2 ≡ ĝ2− g2, and Vµ2 ≡

−(µ̂2−µ2). Thus, since Ŷ = Y ∗−VY , X̂2 = X∗2 −VX , and Ŷ − X̂2β = v−∑k={m,g,µ}(Vk1−Vk2β ), we have

β̂ −β =
(1

n
X̂ ′2η̂X̂2

)−1 1
n

X̂ ′2η̂
(
Ŷ − X̂2β

)
,

where
1
n

X̂ ′2η̂X̂2 =
1
n

X∗′2 η̂X∗2 −
1
n

X∗′2 η̂VX −
1
n

V ′X η̂X∗2 +
1
n

V ′X η̂VX ≡
4

∑
k=1

Ak,

1
n

X̂ ′2η̂(Ŷ − X̂2β ) =
1
n

X̂ ′2η̂v− 1
n

X̂ ′2η̂(Vm1−Vm2β )− 1
n

X̂ ′2η̂(Vg1−Vg2β )− 1
n

X̂ ′2η̂(Vµ1−Vµ2β )≡
4

∑
k=1

Bk.

The proof has five steps:

(1) We show that A1
p−→Φ0 and A2, A3, A4 = op(1).

(2) We show that
√

nB1
d−→N (0,Φ1).

(3) We show that B2,B4 = op(n−1/2).

(4) We show that B3 =
1
n ∑

n
i=1 ani+op(n−1/2), where ani≡∑

D2
d=1(2hD1

1 hD2
2 )−1UidE

(
ηlX∗2lDdK2tlK1il

fU (Ul) fZ(Zl)
Jg(Ul)

(Ut−Ul
h2

)∣∣Zi

)
.
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(5) Combining (1)-(4), we show that
√

n(β̂ −β )
d−→N

(
0,Φ−1

0 (Φ1 +Φ2)Φ
−1
0

)
.

Step 1: By uniform order of |η̂i−ηi|, Kolmogorov’s LLN and A3, we have

A1 =
1
n

n

∑
i=1

η̂iX∗2iX
∗′
2i =

1
n

n

∑
i=1

ηiX∗2iX
∗′
2i +Op(Ln)

1
n

n

∑
i=1
|X∗2iX

∗′
2i |

p−→Φ0,

where Φ0( j,k) ≡ E(ηtX∗2t, jX
∗
2t,k) = E

{
ηt(X2t, j−m2 j(Wt)−g2 j(Ut)+µ2 j)(X2t,k−m2k(Wt)−g2k(Ut)+µ2k)

}
< ∞, since

{ηiX∗2iX
∗′
2i }n

i=1 is an IID sequence, and E|ηiX∗2i,kX∗2i, j| < ∞ due to (i). ηi is uniformly bounded; (ii). E|X2i, jX2i,k| ≤(
E(X2

2i, j)E(X
2
2i,k)
)1/2

< ∞ by Cauchy-Schwarz Inequality; (iii). E|X2i, jm2k(Wi)| ≤
(
E(X2

2i, j)E(m
2
2k(Wi))

)1/2;

(iv). E(m2
2k(Wi)) = E

(
E(ηiX2i,k|Wi)

2
)
≤ E

(
E(η2

i X2
2i,k|Wi)

)
= E(η2

i X2
2i,k) < ∞. By the non-singularity of Φ0 in

A3, we have A−1
1

p→ Φ
−1
0 . And for −A2 = 1

n ∑
n
i=1 η̂iX∗2iV

′
Xi, the (k, j)th element is −A2(k, j) =

1
n ∑

n
i=1 η̂iX∗2i,kVXi, j ≤

Op(Ln+L1n/h2)
1
n ∑

n
i=1 |X∗2i,k|= op(1) by Theorem 2. Similarly we have A3,A4 = op(1). Thus,

( 1
n X̂ ′2η̂X̂2

)−1 p−→ Φ
−1
0 .

Step 2: We rewrite B1 into four elements:

B1 =
1
n

n

∑
i=1

X̂2iη̂ivi =
1
n

n

∑
i=1

X∗2iηivi +
1
n

n

∑
i=1

VXi(η̂i−ηi)vi +
1
n

n

∑
i=1

X∗2i(η̂i−ηi)vi +
1
n

n

∑
i=1

VXiηivi ≡
4

∑
k=1

B1k,

and show that
√

nB1
d−→N (0,Φ1) by establishing that

√
nB11

d−→N (0,Φ1), and B12,B13,B14 = op(n−1/2).

First, by Levy’s Central Limit Theorem and the Cramer-Wold device, we have
√

nB11
d−→N (0,Φ1), since

(i). {X∗2iηivi}n
i=1 is IID; (ii). E(X∗2iηivi) = 0; (iii). E(v2

i |Zi,Ui) = σ2
v ; (iv). V(X∗2iηivi) = E(X∗2iη

2
i v2

i X∗′2i ) =

σ2
v E(η2

i X∗2iX
∗′
2i ))≡ Φ1 < ∞, where Φ1( j,k) = σ2

v E(η2
t X∗2t, jX

∗
2t,k) = σ2

v E
{

η2
t (X2t, j−m2 j(Wt)−g2 j(Ut)+µ2 j)(X2t,k−

m2k(Wt)−g2k(Ut)+µ2k)
}
< ∞.

Second, given that |VXi|, |η̂i−ηi|= Op(Ln +L1n/h2), we have B12 = Op(L2
n +L2

1n/h2
2)

1
n ∑

n
i=1 |vi|= op(n−1/2).

Third, the jth element of B13 is 1
n ∑

n
i=1 G(Mi)(η̂i(Wi,Ûi)−ηi(Wi,Ui)), where G(Mi) ≡ X∗2i, jvi and Mi ≡ (Xi,Zi,

Ui,εi). Note that since E(vi|Xi,Zi,Ui) = 0, E(G(Mi)|Xi,Zi,Ui) = 0. In addition, E(G2(Mi)) = E(X∗22i, jv
2
i ) < ∞ by A3.

By A4, G(Mi) is continuous, hence using Lemma 4, B13 = op(n−1/2).

Fourth, for B14, the jth element can be written as

B14, j =
1
n

n

∑
i=1

VXi, jηivi =
1
n

n

∑
i=1

Vm2i, jηivi +
1
n

n

∑
i=1

Vg2i, jηivi +
1
n

n

∑
i=1

Vµ2i, jηivi ≡
3

∑
k=1

B14k.

We show that B14k = op(n−1/2) for k = 1,2,3.

Note that B143 =− 1
n ∑

n
i=1
(
µ̂2 j−µ2 j

)
ηivi =−

(
µ̂2 j−µ2 j

) 1
n ∑

n
i=1 ηivi = Op(Ln)Op(n−1/2) = op(n−1/2).

For B141, given that
(
nhD3

3 fW (Wi)
)−1

∑
n
t=1 K3tiCm2ti = Op(Ln), and by the decomposition of m̂2 j(Wi)−m2 j(Wi)
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in A.3 from the proof of Theorem 2, we have

B141 =
1
n2

n

∑
i=1

n

∑
t=1

ηiviK3ti

hD3
3 fW (Wi)

Cm2ti, j +
1
n

n

∑
i=1

∣∣ηivi
∣∣Op(Ln)Op(L3n)≡

3

∑
k=1

B141k +op(n−1/2),

where B1411 =
1
n2

n

∑
i=1

n

∑
t=1

ηiviK3ti

hD3
3 fW (Wi)

(η̂t −ηt)X2t, j, B1412 =
1
n2

n

∑
i=1

n

∑
t=1

ηiviK3ti

hD3
3 fW (Wi)

vm2t, j,

B1413 =
1
n2

n

∑
i=1

n

∑
t=1

ηiviK3ti

hD3
3 fW (Wi)

(
m2 j(Wt)−m2 j(Wi)

)
.

1. We show that B141k = op(n−1/2) for k = 1,2,3.

1.1. Let Qt ≡ 1
n ∑

n
i=1
(
hD3

3 fW (Wi)
)−1

ηiviK3ti. So B1411 = 1
n ∑

n
t=1(η̂t −ηt)X2t, jQt . By Lemma 3, we can show that

Qt = Op(L3n) uniformly over GW , given A3 and E(Qt) = 0. Given η̂t −ηt = ηtOp(Ln) uniformly, we have

B1411 = Op(Ln)Op(L3n)
1
n ∑

n
t=1 |ηtX2t, j|= op(n−1/2) by A5.

1.2. Let B1412 ≡ 1
n2 ∑

n
i=1 ∑

n
t=1 ψnit ≡ E1n + E2n, where ψnit ≡

(
hD3

3 fW (Wi)
)−1

ηiviK3tivm2t, j. Thus, E1n =

1
n2 ∑

n
i=1 ψnii = op(n−1/2) by Chebyshev’s Inequality, since E(E1n) = 0, V(E1n) =

1
n3 E(ψ2

nii) = O
(
n−3h−D3

3

)
=

o(n−1). And |E2n| ≤ C|Un|, where Un is a U-statistic of degree 2 such that Un =
(n

2

)−1
∑

n
i=1 ∑

n
t=1

i<t
φnit with

φnit ≡ ψnit +ψnti.

• θn,σ
2
1n = 0, as E(vi|Wi) = E(vm2t, j|Mt) = 0;

• σ2
2n = V(φnit)≤CE(ψ2

nit)≤Ch−2D3
3 σ2

v σ2
X1, jE(K

2
3ti) = O(h−D3

3 );

• H(1)
n = 0, H(2)

n = Op
((

σ2
2n/n2

)1/2)
= Op(n−1/2(nhD3

3 )−1/2) = op(n−1/2).

We have B1412 = op(n−1/2).

1.3. Given B1413 = 1
n2 ∑

n
i=1 ∑

n
t=1

i 6=t
ψnit , where ψnit = h−D3

3 f−1
W (Wi)ηiviK3ti

(
m2 j(Wt)−m2 j(Wi)

)
, we have |B1413| ≤

C|Un|, where Un =
(n

2

)−1
∑

n
i=1 ∑

n
t=1

i<t
φnit , with φnit ≡ ψnit +ψnti, is a U-statistic of degree 2.

• θn,E(φnit |Pt) = 0, as E(vi|Wi) = 0;

• φ1n = E(φnit |Pi) = f−1
W (Wi)ηiviE

(
h−D3

3 K3ti
(
m2 j(Wt)−m2 j(Wi)

)∣∣Wi

)
;

• σ2
1n = E(φ 2

1n) = O(h2s3
3 ) = o(1),

σ2
2n = V(φnit)≤CE(ψ2

nit)≤Ch−2D3
3 σ2

v E
(

K2
3ti
(
m2 j(Wt)−m2 j(Wi)

)2
)
= O

(
h−D3+2

3

)
;

• H(1)
n = Op

((
σ2

1n/n
)1/2)

= op(n−1/2), H(2)
n = Op

((
σ2

2n/n2
)1/2)

= Op(n−1/2(nhD3−2
3 )−1/2) = op(n−1/2).

We have B1413 = op(n−1/2).

Combining 1.1-1.3, we have B141 = op(n−1/2).
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2. For B142, as it is shown in the proof of Theorem 2, Vg2i, j = ĝ2 j(Ûi)− g2 j(Ui) ≡
(

∑
3
k=1 Tk

)
(1+Op(L2n)), where

T1 = Op(Ln), T2 = Op (L1n/h2), and T3 = op(n−1/2). Thus, by the decomposition of Vg2i, j in A.2, we have

B142 =
1
n

n

∑
i=1

Vg2i, jηivi =
3

∑
k=1

B142k +
1
n

n

∑
i=1
|ηivi|

(
op(n−

1
2 )+

(
Op(Ln)+Op

(
L1n/h2)

)
Op(L2n)

)
≡

3

∑
k=1

B142k +op(n−1/2) by A5,

where B1421 =
1
n2

n

∑
i=1

n

∑
t=1

ηivi

hD2
2 fU (Ui)

K2tiCg2ti, B1422 = − 1
n2

n

∑
i=1

n

∑
t=1

ηivi

hD2+1
2 fU (Ui)

JK2ti(Ûi−Ui)Cg2ti,

B1423 =
1
n2

n

∑
i=1

n

∑
t=1

ηivi

hD2+1
2 fU (Ui)

JK2ti(Ût −Ut)Cg2ti, Cg2ti = (η̂t −ηt)X2t, j + vg2t, j +
(
g2 j(Ut)−g2 j(Ui)

)
.

Similar to B141 we just analyzed, we have B1421 = op(n−1/2), with Ui replacing Wi. B1422 and B1423 are similar in

structure, so here we only show that B1422 = op(n−1/2). Given the three components in Cg2ti, let B1422 = ∑
3
k=1 B1422k.

We show that B1422k = op(n−1/2) for k = 1,2,3.

2.1. B14221 = − 1
n2

n

∑
i=1

n

∑
t=1

ηivi

hD2+1
2 fU (Ui)

JK2ti(Ûi−Ui)(η̂t −ηt)X2t, j

≤ Op(Ln)Op

(
L1n

h2

)
1
n2

n

∑
i=1

n

∑
t=1

D2

∑
d=1

∣∣ηiviηtX2t, jDdK2ti
∣∣

hD2
2 fU (Ui)

= Op(Ln)Op

(
L1n

h2

)
= op(n−1/2), by A5.

2.2. By A.1 in the proof of Theorem 1, we have

B14222 = −
D2

∑
d=1

1
n2

n

∑
i=1

n

∑
t=1

ηivivg2t, jDdK2ti

hD2+1
2 fU (Ui)

(Ûid−Uid)

=
D2

∑
d=1

{
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηivivg2t, jDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Uld +

(
Πd(Zl)−Πd(Zi)

))
+Op(L2

1n)
1
n2

n

∑
i=1

n

∑
t=1

∣∣∣∣∣ηivivg2t, jDdK2ti

hD2+1
2 fU (Ui)

∣∣∣∣∣
}

≡
D2

∑
d=1

(T1d +T2d)+op(n−1/2).

where the last equality follows by Markov’s Inequality and that Op(L2
1n/h2) = op(n−1/2) by A5.

We show that T1d , T2d = op(n−1/2).

2.2.1. T1d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηivivg2t, jDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uld ≡

1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl .

If i 6= t 6= l, let Un =
(n

3

)−1
∑i 6=t 6=l ψnitl =

(n
3

)−1
∑i<t<l φnitl be a U-statistic of degree 3. We analyze each

component in Un = θn +3H(1)
n +3H(2)

n +H(3)
n by Hoeffding’s decomposition in Hoeffding (1961).
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• θn,E(φnitl |Pi),E(φnitl |Pi,Pt) = 0, as E(vi|Wi,Ui),E(vg2t, j|Ut),E(Uld |Zl) = 0;

• σ2
1n,σ

2
2n = 0, σ2

3n = V(φnitl)≤CE(ψ2
nitl) = O

(
(hD1

1 hD2+2
2 )−1

)
;

• H(1)
n ,H(2)

n = 0, H(3)
n = Op

((
σ2

3n/n3
)1/2

)
= Op

((
n3hD1

1 hD2+2
2

)−1/2
)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l,
1
n3

n

∑
i=1

ψniii =
1
n3

n

∑
i=1

ηivivg2i, jDdK2(0)K1(0)

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uid = Op

((
n2hD1

1 hD2+1
2

)−1
)
= op(n−1/2);

if i = t 6= l,
1
n3

n

∑
i=1

n

∑
l=1

i6=l

ψniil =
1
n3

n

∑
i=1

n

∑
l=1

i6=l

ηivivg2i, jDdK2(0)K1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uld = Op

((
nhD2+1

2

)−1
)
= op(n−1/2);

if i = l 6= t,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψniti =
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηivivg2t, jDdK2tiK1(0)

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uid = Op

((
nhD1

1 h2
)−1
)
= op(n−1/2);

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψnitt =
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηivivg2t, jDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Utd = Op

((
nh2
)−1
)
= op(n−1/2).

In sum, we have T1d = op(n−1/2).

2.2.2. T2d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηivivg2t, jDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Πd(Zl)−Πd(Zi)

)
≡ 1

n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl .

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3.

• θn,E(φnitl |Pi),E(ψnitl |Pi,Pl),E(ψnitl |Pt ,Pl) = 0, as E(vi|Wi,Ui), E(vg2t, j|Ut) = 0,

• E(ψnitl |Pi,Pt) =
(
hD2+1

2 fU (Ui) fZ(Zi)
)−1

ηivivg2t, jDdK2tiE
(

h−D1
1 K1li

(
Πd(Zl)−Πd(Zi)

)∣∣Zi

)
;

• σ2
1n = 0, σ2

2n ≤ E
(
E2(ψnitl |Pi,Pt)

)
= O

(
h2s1

1 /hD2+2
2

)
, σ2

3n = V(φnitl)≤CE(ψ2
nitl) = O

(
(hD1−2

1 hD2+2
2 )−1

)
;

• H(1)
n = 0, H(2)

n = Op

((
σ2

2n/n2
)1/2

)
= Op

(
hs1

1

(
n2hD2+2

2

)−1/2
)
= op(n−1/2),

H(3)
n = Op

(
(σ2

3n/n3)1/2
)
= Op

((
n3hD1−2

1 hD2+2
2

)−1/2
)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l, i = l 6= t, ψnitl = 0;

if i = t 6= l,
1
n3

n

∑
i=1

n

∑
l=1

i 6=l

ψniil =
1
n3

n

∑
i=1

n

∑
l=1

i 6=l

ηivivg2i, jDdK2(0)K1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Πd(Zl)−Πd(Zi)

)
= Op

(
h1
(
nhD2+1

2

)−1
)

;

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i 6=t

ψnitt =
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηivivg2t, jDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Πd(Zt)−Πd(Zi)

)
= Op

(
h1
(
nh2
)−1
)
.
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We have B14222 = op(n−1/2).

2.3. Similar to part 2.2, we have

B14223 = −
D2

∑
d=1

1
n2

n

∑
i=1

n

∑
t=1

ηiviDdK2ti
(
g2 j(Ut)−g2 j(Ui)

)
hD2+1

2 fU (Ui)
(Ûid−Uid)

=
D2

∑
d=1

{
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiviDdK2tiK1li
(
g2 j(Ut)−g2 j(Ui)

)
hD1

1 hD2+1
2 fU (Ui) fZ(Zi)

(
Uld +

(
Πd(Zl)−Πd(Zi)

))
+Op(L2

1n)
1
n2

n

∑
i=1

n

∑
t=1

∣∣∣∣∣ηiviDdK2ti
(
g2 j(Ut)−g2 j(Ui)

)
hD2+1

2 fU (Ui)

∣∣∣∣∣
}
≡

D2

∑
d=1

(T1d +T2d)+op(n−1/2).

We show that T1d , T2d = op(n−1/2).

2.3.1. T1d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiviDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
g2 j(Ut)−g2 j(Ui)

)
Uld ≡

1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl .

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3.

• θn,E(ψnitl |Pi,Pt),E(ψnitl |Pl ,Pt) = 0, as E(vi|Wi,Ui), E(Uld |Zl) = 0;

• E(ψnitl |Pi,Pl) =
(
hD1

1 fU (Ui) fZ(Zi)
)−1

ηiviUldK1liE
(

h−D2−1
2 DdK2ti

(
g2 j(Ut)−g2 j(Ui)

)∣∣∣Ui

)
;

• σ2
1n = 0, σ2

2n ≤ E
(
E2(ψnitl |Pi,Pl)

)
= O

(
h−D1

1

)
, σ2

3n = V(φnitl)≤CE(ψ2
nitl) = O

(
(hD1

1 hD2
2 )−1

)
;

• H(1)
n = 0, H(2)

n = Op

((
σ2

2n/n2
)1/2

)
= Op

((
n2hD1

1

)−1/2
)
= op(n−1/2),

H(3)
n = Op

(
(σ2

3n/n3)1/2
)
= Op

((
n3hD1

1 hD2
2

)−1/2
)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l, i = t 6= l, ψnitl = 0;

if i = l 6= t,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψniti =
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiviUidDdK2tiK1(0)

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
g2 j(Ut)−g2 j(Ui)

)
= Op

((
nhD1

1

)−1
)

;

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψnitt =
1
n3

n

∑
i=1

n

∑
t=1

i 6=t

ηiviUtdDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
g2 j(Ut)−g2 j(Ui)

)
= Op(n−1).

In sum, we have T1d = op(n−1/2).

2.3.2. T2d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiviDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
g2 j(Ut)−g2 j(Ui)

)(
Πd(Zl)−Πd(Zi)

)
≡ 1

n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl .

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3.

• θn,E(ψnitl |Pt),E(ψnitl |Pl),E(ψnitl |Pt ,Pl) = 0, as E(vi|Zi,Ui,Wi) = 0;

• E(ψnitl |Pi) =
(

fU (Ui) fZ(Zi)
)−1

ηiviE
(

h−D1
1 h−D2−1

2 DdK2tiK1li
(
g2 j(Ut)−g2 j(Ui)

)(
Πd(Zl)−Πd(Zi)

)∣∣Pi

)
,

E(ψnitl |Pi,Pt)=
(
hD2+1

2 fU (Ui) fZ(Zi)
)−1

ηiviDdK2ti
(
g2 j(Ut)−g2 j(Ui)

)
E
(

h−D1
1 K1li

(
Πd(Zl)−Πd(Zi)

)∣∣∣Zi

)
,

E(ψnitl |Pi,Pl)=
(
hD1

1 fU (Ui) fZ(Zi)
)−1

ηiviK1li
(
Πd(Zl)−Πd(Zi)

)
E
(

h−D2−1
2 DdK2ti

(
g2 j(Ut)−g2 j(Ui)

)∣∣∣Ui

)
;
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• σ2
1n ≤ E

(
E2(ψnitl |Pi)

)
= O(h2s1

1 ) = o(1), σ2
2n ≤ CE

(
E2(ψnitl |Pi,Pt)+E2(ψnitl |Pi,Pl)

)
= O

(
h2s1

1 /hD2
2 +

1/hD1−2
1

)
, σ2

3n = V(φnitl)≤CE(ψ2
nitl) = Op

(
(hD1−2

1 hD2
2 )−1

)
;

• H(1)
n = Op

(
(σ2

1n/n)1/2
)
= op(n−1/2), H(2)

n = Op
(
(σ2

2n/n2)1/2
)
= Op

(
hs1

1

(
n2hD2

2

)−1/2
+
(
n2hD1−2

1

)−1/2
)

= op(n−1/2), H(3)
n = Op

(
(σ2

3n/n3)1/2
)
= Op

((
n3hD1−2

1 hD2
2

)−1/2
)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l, i = l 6= t, i = t 6= l, ψnitl = 0;

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψnitt =
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiviDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
g2 j(Ut)−g2 j(Ui)

)(
Πd(Zt)−Πd(Zi)

)

= Op
(
h1/n

)
= op(n−1/2).

We have B14223 = op(n−1/2). By 2.1-2.3, we have B142 = op(n−1/2).

Combing all the terms in Step 2, we have B1 = B11 + op(n−1/2), where
√

nB11
d−→ N (0,Φ1).

Thus,
√

nB1
d−→N (0,Φ1).

Step 3: We first show that B4 = op(n−1/2). Note that

−B4 =
1
n

X̂ ′2η̂(Vµ1−Vµ2β ) =
1
n

X̂ ′2ηVµ1−
1
n

X̂ ′2ηVµ2β +
1
n

X̂ ′2(η̂−η)(Vµ1−Vµ2β )≡
3

∑
k=1

B4k.

By Theorems 1 and 2, we have |η̂i − ηi|, Vµ2i, Vµ1i = Op(Ln). Given that Vµ1i is the same across i, we have

B41 = Vµ1i
( 1

n ∑
n
i=1 X∗2iηi− 1

n ∑
n
i=1 VXiηi

)
= Op(Ln)

(
Op(n−1/2)+Op(Ln)

)
= op(n−1/2) by A5. B42 = op(n−1/2) fol-

lows similarly, and B43 = Op(L2
n) = op(n−1/2) by A5.

Then, we show that B4 = op(n−1/2). Note that

−B2 =
1
n

X̂ ′2ηVm1−
1
n

X̂ ′2ηVm2β +
1
n

X̂ ′2(η̂−η)(Vm1−Vm2β )≡
3

∑
k=1

B2k.

B23 = Op(L2
n) = op(n−1/2) by A5. B22 is of the same structure as B21, thus we only show that B21 = op(n−1/2).

Note that B21 =
1
n ∑

n
i=1 X∗2iηiVm1i− 1

n ∑
n
i=1 VXiηiVm1i ≡ B′21 +op(n−1/2) by Theorem 2. By the decomposition of

Vm1i, similar to Vm2i given in A.3 from the proof of Theorem 2, we have the jth element of B′21 as

B′21 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, jK3ti

hD3
3 fW (Wi)

Cm1ti +Op(L3n)Op(Ln)
1
n

n

∑
i=1

∣∣ηiX∗2i, j
∣∣≡ 3

∑
k=1

B21k +op(n−
1
2 ),

where B211 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, jK3ti

hD3
3 fW (Wi)

(η̂t −ηt)Yt , B212 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, jK3ti

hD3
3 fW (Wi)

vm1t ,
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B213 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, jK3ti

hD3
3 fW (Wi)

(
m1(Wt)−m1(Wi)

)
.

3. We show that B21k = op(n−1/2) for k = 1,2,3.

3.1. Let Qt ≡ 1
n ∑

n
i=1
(
hD3

3 fW (Wi)
)−1

ηiX∗2i, jK3ti. So B211 = 1
n ∑

n
t=1(η̂t −ηt)YtQt . By Lemma 3, we can show that

Qt = Op(L3n) uniformly over GW , given A3 and E(Qt) = 0. Given η̂t −ηt = ηtOp(Ln) uniformly, we have

B211 = Op(Ln)Op(L3n)
1
n ∑

n
t=1 |ηtYt |= op(n−1/2) by A5.

3.2. B212 = 1
n2 ∑

n
i=1 ∑

n
t=1 h−D3

3 f−1
W (Wi)ηiX∗2i, jK3tivm1t ≡ 1

n2 ∑
n
i=1 ∑

n
t=1 ψnit ≡ E1n +E2n, where E1n = 1

n2 ∑
n
i=1 ψnii =

1
n2 ∑

n
i=1 h−D3

3 f−1
W (Wi)ηiX∗2i, jK3(0)vm1i = Op

(
(nhD3

3 )−1
)

= op(n−1/2), and |E2n| ≤ C|Un| with Un =(n
2

)−1
∑

n
i=1 ∑

n
t=1

i 6=t
ψnit = θn +2H(1)

n +H(2)
n , a U-statistic of degree 2.

• θn, σ2
1n = 0, as E(ηiX∗2i, j|Wi), E(vm1t |Wt) = 0;

• σ2
2n = V(φnit)≤CE(ψ2

nit) = O(h−D3
3 );

• H(1)
n = 0, H(2)

n = Op
(
(σ2

2n/n2)1/2
)
= Op((n2hD3

3 )−1/2) = op(n−1/2).

We have B212 = op(n−1/2).

3.3. |B213| ≤C|Un|, where Un =
(n

2

)−1
∑

n
i=1 ∑

n
t=1

i6=t
ψnit is a U-statistic of degree 2, with ψnit ≡ h−D3

3 f−1
W (Wi)ηiX∗2i, jK3ti(

m1(Wt)−m1(Wi)
)
.

• θn,E(ψnit |Pt) = 0, as E(ηiX∗2i, j|Wi) = 0;

• φ1n = E(ψnit |Pi) = f−1
W (Wi)ηiX∗2i, jE

(
h−D3

3 K3ti(m1(Wt)−m1(Wi))
∣∣Wi
)
≤Chs3

3 ηiX∗2i, j uniformly over Wi;

• σ2
1n = E(φ 2

1n) = O(h2s3
3 ) = o(1), σ2

2n = V(φnit)≤CE(ψ2
nit) = O

(
h−D3+2

3

)
;

• H(1)
n = Op

(
(σ2

1n/n)1/2
)
= op(n−1/2), H(2)

n = Op
(
(σ2

2n/n2)1/2
)
= Op(n−1/2(nhD3−2

3 )−1/2) = op(n−1/2).

We have B213 = op(n−1/2).

By 3.1-3.3, we have B21 = op(n−1/2).

Step 4: For B3, we have −B3 = 1
n X̂ ′2η(Vg1 −Vg2β ) + op(n−1/2) ≡ B31 + B32 + op(n−1/2). We will focus on B31

here, since B32 has a similar structure to B31 and could be analyzed accordingly. By Theorem 2, we have B31 =

1
n ∑

n
i=1 X∗2iηiVg1i− 1

n ∑
n
i=1 VXiηiVg1i ≡ B′31 + op(n−1/2). Similar to A.2 given in the proof of Theorem 2, by Taylor’s

Theorem, we have

Vg1i = ĝ1(Ûi)−g1(Ui) =

{
1

nhD2
2 fU (Ui)

n

∑
t=1

K2tiCg1ti +
1

nhD2+1
2 fU (Ui)

n

∑
t=1

JK2ti

(
Ût −Ut −

(
Ûi−Ui

))
Cg1ti

+
1

nhD2
2 fU (Ui)

n

∑
t=1

RtiCg1ti

}(
1+Op(L2n)

)
,
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where Cg1ti ≡ (η̂t −ηt)Yt + vg1t +
(
g1(Ut)− g1(Ui)

)
, and Rti is the remainder term of a Taylor’s expansion of K̂2ti at

(Ut −Ui)/h2.

Similar to the T3 term in the proof of Theorem 2, we have (nhD2
2 fU (Ui))

−1
∑

n
t=1 RtiCg1ti = op(n−1/2) uniformly.

Thus, we have the jth element of B′31 as

B′31, j =
1
n

n

∑
i=1

X∗2i, jηiVg1i =
3

∑
k=1

B31k +
1
n

n

∑
i=1
|ηiX∗2i, j|

(
op(n−

1
2 )+

(
Op(Ln)+Op

(
L1n/h2)

)
Op(L2n)

)
≡

3

∑
k=1

B31k +op(n−1/2) by A5,

where B311 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j

hD2
2 fU (Ui)

K2tiCg1ti, B312 = − 1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j

hD2+1
2 fU (Ui)

JK2ti
(
Ûi−Ui

)
Cg1ti,

B313 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j

hD2+1
2 fU (Ui)

JK2ti
(
Ût −Ut

)
Cg1ti.

We show that B311,B313 = op(n−1/2) and B312 =
1
n ∑

n
i=1 a1ni, j +op(n−1/2), where

a1ni, j =
D2

∑
d=1

Uid

2hD1
1 hD2

2

E

(
ηlX∗2l, jDdK2tlK1il

fU (Ul) fZ(Zl)
Jg1(Ul)

(Ut −Ul

h2

)∣∣∣∣∣Zi

)
.

B311 is of similar structure as B141 with Ui replacing Wi, ηiX∗2i, j replacing ηivi, Cg1ti replacing Cm2ti, j, and

E(ηiX∗2i, j|Ui) = 0 replacing E(ηivi|Wi) = 0. By the same arguments in 1.1−1.3, we have B311 = op(n−1/2). Given the

three components in Cg1ti, let −B312 ≡ ∑
3
k=1 B312k, with

B3121 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j

hD2+1
2 fU (Ui)

JK2ti
(
Ûi−Ui

)
(η̂t −ηt)Yt , B3122 =

1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j

hD2+1
2 fU (Ui)

JK2ti
(
Ûi−Ui

)
vg1t ,

B3123 =
1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j

hD2+1
2 fU (Ui)

JK2ti
(
Ûi−Ui

)(
g1(Ut)−g1(Ui)

)
.

4. We show that B3121, B3122 = op(n−1/2), and B3123 =
1
n ∑

n
i=1 a1ni, j +op(n−1/2).

4.1. Given η̂t −ηt = Op(Ln) and Ûi−Ui = Op(L1n) uniformly, by Markov’s Inequality and A5, we have

B3121 = Op(Ln)Op

(
L1n

h2

)
1
n2

n

∑
i=1

n

∑
t=1

D2

∑
d=1

∣∣ηiX∗2i, jηtYtDdK2ti
∣∣

hD2
2 fU (Ui)

= op(n−1/2).

4.2. By A.1 in the proof of Theorem 2, we have

B3122 =
D2

∑
d=1

1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, jvg1tDdK2ti

hD2+1
2 fU (Ui)

(Ûid−Uid)

= −
D2

∑
d=1

{
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, jvg1tDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Uld +

(
Πd(Zl)−Πd(Zi)

))
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+ Op(L2
1n)

1
n2

n

∑
i=1

n

∑
t=1

∣∣∣∣∣ηiX∗2i, jvg1tDdK2ti

hD2+1
2 fU (Ui)

∣∣∣∣∣
}
≡−

D2

∑
d=1

(T1d +T2d)+op(n−1/2).

We show that T1d , T2d = op(n−1/2).

4.2.1. T1d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, jvg1tDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uld ≡

1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl .

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3.

• θn, σ2
1n, E(ψnitl |Pi,Pt), E(ψnitl |Pi,Pl) = 0, as E(vg1t |Ut), E(Uld |Zl) = 0;

• φ2n = E(ψnitl |Pt ,Pl) =
vg1tUld

h
D1
1 h

D2+1
2

E
(

ηiX∗2i, jDdK2tiK1li
fU (Ui) fZ(Zi)

∣∣Zl ,Ut

)
≤ C|vg1tUld |

h2
;

• σ2
2n ≤ E(φ 2

2n) = O(h−2
2 ), σ2

3n = V(φnitl)≤CE(ψ2
nitl) = Op

(
(hD1

1 hD2+2
2 )−1

)
;

• H(1)
n = 0, H(2)

n = Op
(
(σ2

2n/n2)1/2
)
= Op

(
(nh2

2)
−1
)
= op(n−1/2),

H(3)
n = Op

(
(σ2

3n/n3)1/2
)
= Op

((
n3hD1

1 hD2+2
2

)−1/2
)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l,
1
n3

n

∑
i=1

ψniii =
1
n3

n

∑
i=1

ηiX∗2i, jvg1tDdK2(0)K1(0)

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uid = Op

((
n2hD1

1 hD2+1
2

)−1
)
= op(n−1/2);

if i = t 6= l,
1
n3

n

∑
i=1

n

∑
l=1

i6=l

ψniil =
1
n3

n

∑
i=1

n

∑
l=1

i6=l

ηiX∗2i, jvg1tDdK2(0)K1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uld = Op

((
nhD2+1

2

)−1
)
= op(n−1/2);

if i = l 6= t,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψniti =
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiX∗2i, jvg1tDdK2tiK1(0)

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uid = Op

((
nhD1

1 h2
)−1
)
= op(n−1/2);

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψnitt =
1
n3

n

∑
i=1

n

∑
t=1

i 6=t

ηiX∗2i, jvg1tDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Utd = Op

((
nh2
)−1
)
= op(n−1/2).

In sum, we have T1d = op(n−1/2).

4.2.2. T2d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, jvg1tDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Πd(Zl)−Πd(Zi)

)
≡ 1

n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl .

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3.

• θn,E(ψnitl |Pi),E(ψnitl |Pl),E(ψnitl |Pi,Pl) = 0, as E(vg1t |Ut) = 0;

• E(ψnitl |Pt) =
vg1t

h
D1
1 h

D2+1
2

E
(

ηiX∗2i, jDdK2tiK1li
fU (Ui) fZ(Zi)

(
Πd(Zl)−Πd(Zi)

)∣∣Ut

)
≤ Ch

s1
1 |vg1t |
h2

,

E(ψnitl |Pi,Pt) =
ηiX∗2i, jvg1t DdK2ti

h
D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(

K1li
(
Πd(Zl)−Πd(Zi)

)∣∣∣Zi

)
≤

Ch
s1
1

∣∣ηiX∗2i, jvg1t DdK2ti

∣∣
h

D2+1
2 fU (Ui) fZ(Zi)

,

E(ψnitl |Pt ,Pl) =
vg1t

h
D1
1 h

D2+1
2

E
(

ηiX∗2i, jDdK2tiK1li
fU (Ui) fZ(Zi)

(
Πd(Zl)−Πd(Zi)

)∣∣∣Ut ,Zl

)
≤ Ch1|vg1t |

h2
;

• σ2
1n ≤ E(φ 2

1n) = O
(
h2s1

1 /h2
2
)
, σ2

2n ≤ CE
(
E2(ψnitl |Pi,Pt)+E2(ψnitl |Pt ,Pl)

)
= O

(
h2s1

1 /hD2+2
2 + h2

1/h2
2
)
,

σ2
3n = V(φnitl)≤CE(ψ2

nitl) = Op
(
(hD1−2

1 hD2+2
2 )−1

)
;

• H(1)
n = Op

(
(σ2

1n/n2)1/2
)
= Op

(
n−1/2hs1

1 h−1
2

)
= op(n−1/2),
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H(2)
n = Op

(
(σ2

2n/n2)1/2
)
= Op

(
n−1/2(hs1

1 (nhD2+2
2 )−1/2 +h1(nh2

2)
−1/2)

)
= op(n−1/2),

H(3)
n = Op

(
(σ2

3n/n3)1/2
)
= Op

(
(n3hD1−2

1 hD2+2
2 )−1/2

)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l, i = l 6= t, ψnitl = 0;

if i = t 6= l,
1
n3

n

∑
i=1

n

∑
l=1

i 6=l

ψniil =
1
n3

n

∑
i=1

n

∑
l=1

i6=l

ηiX∗2i, jvg1tDdK2(0)K1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Πd(Zl)−Πd(Zi)

)
= Op

(
h1
(
nhD2+1

2

)−1
)

;

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i 6=t

ψnitt =
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiX∗2i, jvg1tDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Πd(Zt)−Πd(Zi)

)
= Op

(
h1
(
nh2
)−1
)
.

We have B3122 = op(n−1/2).

4.3. B3123 =
D2

∑
d=1

1
n2

n

∑
i=1

n

∑
t=1

ηiX∗2i, j
(
g1(Ut)−g1(Ui)

)
DdK2ti

hD2+1
2 fU (Ui)

(Ûid−Uid)

= −
D2

∑
d=1

{
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, j
(
g1(Ut)−g1(Ui)

)
DdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
Uld +

(
Πd(Zl)−Πd(Zi)

))
+ Op(L2

1n)
1
n2

n

∑
i=1

n

∑
t=1

∣∣∣∣∣ηiX∗2i, j
(
g1(Ut)−g1(Ui)

)
DdK2ti

hD2+1
2 fU (Ui)

∣∣∣∣∣
}
≡−

D2

∑
d=1

(W1d +W2d)+op(n−1/2).

We show that ∑
D2
d=1 W1d = 1

n ∑
n
i=1 a1ni, j +op(n−1/2), W2d = op(n−1/2).

4.3.1. W1d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, j
(
g1(Ut)−g1(Ui)

)
DdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)
Uld ≡

1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3.

• θn,E(φnitl |Pi),E(ψnitl |Pt),E(ψnitl |Pi,Pt) = 0, as E(Uld |Zl) = 0;

• E(ψnitl |Pl) =
Uld

h
D1
1 h

D2+1
2

E
(

ηiX∗2i, jDdK2tiK1li
fU (Ui) fZ(Zi)

(
g1(Ut)−g1(Ui)

)∣∣Zl

)
≤C|Uld |,

E(ψnitl |Pi,Pl) =
ηiX∗2i, jK1liUld

h
D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(

DdK2ti
(
g1(Ut)−g1(Ui)

)∣∣∣Ui

)
≤

C
∣∣ηiX∗2i, jK1liUld

∣∣
h

D1
1 fU (Ui) fZ(Zi)

,

E(ψnitl |Pt ,Pl) =
Uld

h
D1
1 h

D2+1
2

E
(

ηiX∗2i, jDdK2tiK1li
fU (Ui) fZ(Zi)

(
g1(Ut)−g1(Ui)

)∣∣∣Ut ,Zl

)
≤C|Uld |;

• σ2
1n ≤ E(φ 2

1n) = O(1), σ2
2n ≤CE

(
E2(ψnitl |Pi,Pl)+E2(ψnitl |Pt ,Pl)

)
= O

(
h−D1

1

)
,

σ2
3n = V(φnitl)≤CE(ψ2

nitl) = Op
(
(hD1

1 hD2
2 )−1

)
;

• H(1)
n = Op(n−1/2), H(2)

n = Op
(
(σ2

2n/n2)1/2
)
= Op

((
n2hD1

1

)−1/2
)
= op(n−1/2),

H(3)
n = Op

(
(σ2

3n/n3)1/2
)
= Op

((
n3hD1

1 hD2+2
2

)−1/2
)
= op(n−1/2).

We have Un = 3H(1)
n +op(n−1/2), where H(1)

n = 1
n ∑

n
l=1 E(ψnitl |Pl). In this case, we need to investigate

the structure of H(1)
n further. Note that g1(Ut)−g1(Ui) = Jg1(Ui)(Ut−Ui)+

1
2 (Ut−Ui)

′Hg1(Uti)(Ut−Ui),

where Uti = λUi +(1−λ )Ut , for λ ∈ (0,1). Plugging this into E(ψnitl |Pl), we have
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3H(1)
n =

3
n

n

∑
l=1

E(ψnitl |Pl)≡
1
n

n

∑
l=1

a1nl, jd +
1
n

n

∑
l=1

b1nl, jd ,

where a1nl, jd =
3Uld

hD1
1 hD2+1

2

E
(

ηiX∗2i, jDdK2tiK1li

fU (Ui) fZ(Zi)
Jg1(Ui)(Ut −Ui)

∣∣∣Zl

)
,

b1nl, jd =
3Uld

hD1
1 hD2+1

2

E
(

ηiX∗2i, jDdK2tiK1li

fU (Ui) fZ(Zi)

1
2
(Ut −Ui)

′Hg1(Uti)(Ut −Ui)
∣∣∣Zl

)
.

Given |b1nl, jd | ≤ Ch2|Uld |, E(b1nl, jd) = 0, and V
( 1

n ∑
n
l=1 b1nl, jd

)
= O(h2

2n−1), by Chebyshev’s In-

equality, we have 1
n ∑

n
l=1 b1nl, jd = Op(h2n−1/2) = op(n−1/2), and Un =

1
n ∑

n
l=1 a1nl, jd +op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l, i = t 6= l, ψnitl = 0;

if i = l 6= t,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψniti =
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiX∗2i, jDdK2tiK1(0)

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
g1(Ut)−g1(Ui)

)
Uid = Op

((
nhD1

1

)−1
)

;

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ψnitt =
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiX∗2i, jDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
g1(Ut)−g1(Ui)

)
Utd = Op(n−1).

Note that W1d = 1
n3

(n
3

)
Un +op(n−1/2). By exchanging i and l in H(1)

n for future notation convenience, we

have

D2

∑
d=1

W1d =
6
n3

(
n
3

)
1
n

n

∑
i=1

D2

∑
d=1

Uid

2hD1
1 hD2

2

E

(
ηlX∗2l, jDdK2tlK1il

fU (Ul) fZ(Zl)
Jg1(Ul)

(Ut −Ul

h2

)∣∣∣∣∣Zi

)
+op(n−1/2)

≡ 6
n3

(
n
3

)
1
n

n

∑
i=1

a1ni, j +op(n−1/2)

=
1
n

n

∑
i=1

a1ni, j +

(
6
n3

(
n
3

)
−1
)

1
n

n

∑
i=1

a1ni, j +op(n−1/2)

=
1
n

n

∑
i=1

a1ni, j +op(n−1/2),

where the last equation follows from that
(

6
n3

(n
3

)
−1
)
= o(1), and 1

n ∑
n
i=1 a1ni, j = Op(n−1/2).

In sum, we have ∑
D2
d=1 W1d = 1

n ∑
n
i=1 a1ni, j +op(n−1/2).

4.3.2. W2d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, jDdK2tiK1li

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
g1(Ut)−g1(Ui)

)(
Πd(Zl)−Πd(Zi)

)
≡ 1

n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ψnitl .

If i 6= t 6= l, let Un =
(n

3

)−1
∑i6=t 6=l ψnitl = θn +3H(1)

n +3H(2)
n +H(3)

n be a U-statistic of degree 3.

• θn = O(hs1
1 ) = op(n−1/2);

• E(ψnitl |Pi) =
ηiX∗2i, j

h
D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(
DdK2tiK1li(g1(Ut)−g1(Ui))(Πd(Zl)−Πd(Zi))

∣∣Zi,Ui
)
≤

Ch
s1
1

∣∣ηiX∗2i, j

∣∣
fU (Ui) fZ(Zi)

,
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E(ψnitl |Pt),E(ψnitl |Pl),E(ψnitl |Pt ,Pl) = O(h1),

E(ψnitl |Pi,Pt) =
ηiX∗2i, jDdK2ti(g1(Ut )−g1(Ui))

h
D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(
K1li
(
Πd(Zl)−Πd(Zi)

)∣∣Zi
)
≤

Ch
s1
1

∣∣ηiX∗2i, jDdK2ti(g1(Ut )−g1(Ui))
∣∣

h
D2+1
2 fU (Ui) fZ(Zi)

,

E(ψnitl |Pi,Pl) =
ηiX∗2i, jK1li(Πd(Zl)−Πd(Zi))

h
D1
1 h

D2+1
2 fU (Ui) fZ(Zi)

E
(
DdK2ti

(
g1(Ut)−g1(Ui)

)∣∣Ui
)
≤

C
∣∣ηiX∗2i, jK1li(Πd(Zl)−Πd(Zi))

∣∣
h

D1
1 fU (Ui) fZ(Zi)

;

• σ2
1n ≤CE

(
E2(ψnitl |Pi)+E2(ψnitl |Pl)+E2(ψnitl |Pt)

)
= O(h2

1),

σ2
2n = O

(
h2

1 +h2s1
1 h−D2

2 +h2−D1
1

)
= O

(
h2s1

1 h−D2
2 +h2−D1

1

)
, σ2

3n = O
(
(hD1−2

1 hD2
2 )−1

)
;

• H(1)
n = Op

(
(σ2

1n/n)1/2
)
= O

(
h1n−1/2

)
= op(n−1/2),

H(2)
n = Op

(
(σ2

2n/n2)1/2
)
= Op

(
hs1

1

(
n2hD2

2

)−1/2
+
(
n2hD1−2

1

)−1/2
)
= op(n−1/2),

H(3)
n = Op

(
(σ2

3n/n3)1/2
)
= Op

((
n3hD1−2

1 hD2+2
2

)−1/2
)
= op(n−1/2).

We have Un = op(n−1/2).

For all other cases, by Markov’s Inequality and A5, we have

if i = t = l, i = l 6= t, i = t 6= l, ψnitl = 0;

if i 6= t = l,
1
n3

n

∑
i=1

n

∑
t=1

i 6=t

ψnitt =
1
n3

n

∑
i=1

n

∑
t=1

i6=t

ηiX∗2i, jDdK2tiK1ti

hD1
1 hD2+1

2 fU (Ui) fZ(Zi)

(
g1(Ut)−g1(Ui)

)(
Πd(Zl)−Πd(Zi)

)

= Op
(
h1/n

)
= op(n−1/2).

We have B312 =− 1
n ∑

n
i=1 a1ni, j +op(n−1/2). For B313, the analysis is exactly similar to B312, but note that for the term

having order Op(n−1/2) in B3123, the corresponding term in B3133, denoted as W ′1d , is

W ′1d =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

ηiX∗2i, j
(
g1(Ut)−g1(Ui)

)
DdK2tiK1lt

hD1
1 hD2+1

2 fU (Ui) fZ(Zt)
Uld .

The difference here is we have Zt instead of Zi, such that E(ψnitl |Pl) = 0 in that E(ηiX∗2i, j|Ui) = 0. Thus, by the same

arguments for the rest of terms, we have B313 = op(n−1/2).

As to B32, the analysis is similar to B31 given above. For the component with order Op(n−1/2), we can actually

combine that in B31 and the one in B32 together to have a more intuitive result. Note that

Vg1i−Vg2iβ =

{
1

nhD2
2 fU (Ui)

n

∑
t=1

K̂2ti

[
(η̂−ηt)(Yt −X2tβ )+(vg1t − vg2tβ )

+
((

g1(Ut)−g1(Ui)
)
−
(
g2(Ut)−g2(Ui)

)
β

)]}(
1+Op(L2n)

)
,

and the component of order Op(n−1/2) involves the third term in brackets, which is
(
g1(Ut)− g2(Ui)β − β0

)
−(

g1(Ui))−g2(Ui)β −β0
)
= g(Ut)−g(Ui). Thus using

(
g(Ut)−g(Ui)

)
instead of

(
g1(Ut)−g1(Ui)

)
in W1d , we have

B3 =
1
n ∑

n
i=1 ani +op(n−1/2),
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where ani =
D2

∑
d=1

Uid

2hD1
1 hD2

2

E

(
ηlX∗2lDdK2tlK1il

fU (Ul) fZ(Zl)
Jg(Ul)

(Ut −Ul

h2

)∣∣∣∣∣Zi

)
.

Step 5: Combing orders of B1,B2,B3,B4, we have 1
n X̂ ′2η̂(Ŷ−X̂2β )=B11+

1
n ∑

n
i=1 ani+op(n−1/2). Next we investigate

√
n(B11 +

1
n ∑

n
i=1 ani).

Let λ ∈ RD2 be a non-stochastic vector such that λ ′λ = 1. Denote B11 +
1
n ∑

n
i=1 ani =

1
n ∑

n
i=1(X

∗
2iηivi +

ani) ≡ 1
n ∑

n
i=1 bni, and we have E(λ ′bni) = 0 as E(X∗2iηivi), E(ani) = 0, and E(λ ′bnib′niλ ) = λ ′E(X∗2iη

2
i v2

i X∗′2i )λ +

λ ′E(ania′ni)λ = λ ′Φ1λ +λ ′E(ania′ni)λ . Denote X2i, j = Π2 j(Zi)+U2i, j, the jth element of ani can be written as

ani, j =
D2

∑
d=1

Uid

hD1
1 hD2

2

E

(
ηlX∗2l, jDdK2tlK1il

fU (Ul) fZ(Zl)
Jg(Ul)

(Ut −Ul

h2

)∣∣∣∣∣Zi

)

=
∫ 1

hD1
1 hD2

2

(
Π2 j(Zl)+U2l, j−m2 j(Wl)−g2 j(Ul)+µ2 j

) D2

∑
d=1

UidDdK2tlK1ilJg(Ul)

(
Ut −Ul

h2

)
× ηl(Wl ,Ul)

fU (Ul) fZ(Zl)
fU (Ut) fZUM(Zl ,Ul ,Wl)dUtdZldUldWl

=
∫ (

Π2 j(Zi−h1γ)+U2t, j−h2ψ2 j−m2 j(Wl)−g2 j(Ut −h2ψ)+µ2 j

) D2

∑
d=1

UidDdK2(ψ)K1(γ)

×Jh(Ut −h2ψ)ψ
ηl(Wl ,Ut −h2ψ)

fU (Ut −h2ψ) fZ(Zi−h1γ)
fU (Ut) fZUM(Zi−h1γ,Ut −h2ψ,Wl)dγdψdUtdWl

→
∫ (

Π2 j(Zi)+U2t, j−m2 j(Wl)−g2 j(Ut)+µ2 j

) D2

∑
d=1

Uid (−Ddg(Ut))ηl(Wl ,Ut) fUM|Z(Ut ,Wl |Zi)dUtdWl

= −
D2

∑
d=1

E

((
Π2 j(Zi)+U2t, j−m2 j(Wt)−g2 j(Ut)+µ2 j

)
Ddg(Ut)ηt

∣∣∣Zi

)
Uid

= −
D2

∑
d=1

E

((
Π2 j(Zi)−Π2 j(Zt)

)
Ddg(Ut)ηt

∣∣∣Zi

)
Uid .

The convergence follows by A3, and that
∫

DdK2(ψ)ψdψ = (0, · · · ,−1, · · · ,0)′, where −1 appears on the dth position

of the vector. The last equation follows by E(ηtX∗2t |Ut) = 0. Hence, the ( j,k)th element of E(ania′ni) converges to

Φ2( j,k) ≡ E

[
D2

∑
d=1

D2

∑
δ=1

E

((
Π2 j(Zi)−Π2 j(Zt)

)
Ddg(Ut)ηt

∣∣∣Zi

)
E

((
Π2k(Zi)−Π2k(Zt)

)
Dδ g(Ut)ηt

∣∣∣Zi

)
UidUiδ

]
.

By Lyapunov’s Central Limit Theorem, we have
√

n
(
B11 +

1
n ∑

n
i=1 ani

) d−→N (0,Φ1 +Φ2), provided

limn→∞ ∑
n
i=1 E

∣∣n−1/2λ ′ani
∣∣2+δ

= 0 for some δ > 0. Note that by Cr Inequality,

n

∑
i=1

E
∣∣n−1/2

λ
′ani
∣∣2+δ

= n−δ/2 1
n

n

∑
i=1

E

∣∣∣∣∣D22

∑
j=1

λ jani, j

∣∣∣∣∣
2+δ

≤ n−δ/2D1+δ

22

D22

∑
j=1

λ
2+δ

j E|ani, j|2+δ ,

where E|ani, j|2+δ →
∫ ∣∣∣∣∣ D2

∑
d=1

E
((

Π2 j(Zi)+U2t, j−m2 j(Wt)−g2 j(Ut)+µ2 j
)
Ddg(Ut)ηt

∣∣∣Zi

)∣∣∣∣∣
2+δ
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×|Uid |2+δ fZU (Zi,Ui)dZidUi

≤C
D2

∑
d=1

∫ ∣∣∣E((Π2 j(Zi)+U2t, j−m2 j(Wt)−g2 j(Ut)+µ2 j
)∣∣∣Zi

)∣∣∣2+δ

|Uid |2+δ fZU (Zi,Ui)dZidUi

< ∞ since E
(
|Uid |2+δ |Zi

)
<C < ∞ and E|X2i, j|2+δ < ∞.

Thus limn→∞ ∑
n
i=1 E

∣∣n−1/2λ ′ani
∣∣2+δ

= 0 for some δ > 0, and we have 1
n X̂ ′2η̂(Ŷ − X̂2β )

d−→N (0,Φ1 +Φ2). From

Step 1, we have
( 1

n X̂ ′2η̂X̂2
)−1 p−→ Φ

−1
0 . All together, we have

√
n(β̂ −β )

d−→N
(
0,Φ−1

0 (Φ1 +Φ2)Φ
−1
0
)
.

Theorem 4 Proof. By Equation (6) and (11), we have

m̂(w)−m(w) =
(
m̂1(w)−m1(w)

)
−
(
m̂2(w)−m2(w)

)′
β −

(
m̂3(w)−1

)
β0

−
(
m̂2(w)−m2(w)

)′(
β̂ −β

)
−
(
m̂3(w)−1

)(
β̂0−β0

)
−m2(w)′

(
β̂ −β

)
−
(
β̂0−β0

)
.

Since, by Theorems 2 and 3, β̂0− β0 = Op(n−1/2), β̂ − β = Op(n−1/2), and m̂2(w)−m2(w) = op(1), the last four

terms in m̂(w)−m(w) when multiplied by (nhD3
3 )1/2 are op(1). Thus,

√
nhD3

3

(
m̂(w)−m(w)

)
=

√
nhD3

3

(
(m̂1(w)−m1(w))−

(
m̂2(w)−m2(w)

)′
β −

(
m̂3(w)−1

)
β0

)
+op(1).

We first investigate
√

nhD3
3

(
m̂1(w)−m1(w)

)
, and then the asymptotic distribution of m̂(w) follows immediately due

to the similar structure of m̂(w) and m̂1(w). Given the expressions for m̂1(w) and f̂W (w), and the uniform order of

f̂W (w), letting K3t,w ≡ K3

(
Wt−w

h3

)
, we have

m̂1(w)−m1(w) =

{
1

nhD3
3 fW (w)

n

∑
t=1

K3t,w

((
m1(Wt)−m1(w)

)
+
(
ηtYt −m1(Wt)

)
+(η̂t −ηt)Yt

)}(
1+Op(L3n)

)
≡

{
3

∑
k=1

Tk

}(
1+Op(L3n)

)
.

The proof has four steps:

(1) We show that T1 = bm1,1(w), where bm1,1(w)≡ hs3
3

µk3 ,s3
fW (w) ∑

s3
k=1

1
k!(s3−k)! ∑

D3
j=1 Dk

jm1(w)D
s3−k
j fW (w)+op(h

s3
3 ).

(2) We show that
√

nhD3
3 T2

d−→N (0,Φm1,1), where Φm1,1 ≡
σ2

vm1
fW (w)

∫
K2

3 (γ)dγ .

(3) We show that
√

nhD3
3

(
T3−bm1,2(w)

) d−→N (0,Φm1,2), where bm1,2(w)≡ hs3
3

µk3 ,s3
fW (w)

1
s3! ∑

D3
j=1 m1(w)D

s3
j fW (w)+
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op(h
s3
3 ), Φm1,2 ≡ m2

1(w) fW (w)
∫ (∫

K3(γ1)K3(γ1 + γ2)dγ1
)2dγ2.

(4) Combining (1)-(3), we show that
√

nhD3
3

(
m̂1(w)−m1(w)−bm1(w)

) d−→N (0,Φm1,1+Φm1,2), where bm1(w) =

bm1,1(w)+bm1,2(w).

Step 1: By Taylor’s Theorem, we have

T1 =
1

nhD3
3 fW (w)

n

∑
t=1

K3t,w
(
m1(Wt)−m1(w)

)
=

1

nhD3
3 fW (w)

n

∑
t=1

K3t,w

(
s3

∑
|β |=1

1
|β |!

Dβ m1(w)(Wt −w)β + ∑
|β |=s3+1

1
(s3 +1)!

Dβ m1(w̃)(Wt −w)β

)
≡

s3+1

∑
k=1

T3k,

where w̃≡ w+λ (Wt −w), for some λ ∈ (0,1). For each k = 1, · · · ,s3, we rewrite T1k as

T1k =
hk

3
k! fW (w) ∑

|β |=k
Dβ m1(w)tkβ , where tkβ ≡

1

nhD3
3

n

∑
t=1

K3t,w

(
Wt −w

h3

)β

.

By Lemma 3, supw∈GW
|tkβ −E(tkβ )| = Op

((
logn/nhD3

3

)1/2
)

. If k = 1, for any |β | = 1, by Taylor’s Theorem and

given that k3 is of order s3, we have

E(t1β ) =
∫

K3(γ)γ
β fW (w+h3γ)dγ

=
∫

K3(γ)γ
β

(
fW (w)+

s3−1

∑
|α|=1

1
|α|!

Dα fW (w)(h3γ)α + ∑
|α|=s3

1
s3!

Dα fW (w̃)(h3γ)α

)
dγ

= hs3−1
3

µk3,s3

(s3−1)!
D(s3−1)β fW (w)+o

(
hs3−1

3

)
.

Thus, given that h3 = n−1/(2s3+D3), we have h3(logn/nhD3
3 )1/2 = o(hs3

3 ), and

T11 = hs3
3

µk3,s3

fW (w)
1

1!(s3−1)! ∑
|β |=1

Dβ m1(w)D(s3−1)β fW (w)+op(h
D3
3 )

= hs3
3

µk3,s3

fW (w)
1

1!(s3−1)!

D3

∑
j=1

D jm1(w)D
s3−1
j fW (w)+op(h

D3
3 ).

Similarly, if k = 2, for any β such that |β | = 2 and 2 is in the jth position of the vector β , 0 elsewhere, we have

E(t2β ) = hs3−2
3

µk3 ,s3
(s3−2)! Ds3−2

j fW (w)+o
(

hs3−2
3

)
. And for any remaining β such that |β |= 2, E(t2β ) = o

(
hs3−2

3

)
. Thus,

T12 = hs3
3

µk3 ,s3
fW (w)

1
2!(s3−2)! ∑

D3
j=1 D2

jm1(w)D
s3−2
j fW (w)+op(h

D3
3 ). In a similar manner, we have,

T1k = hs3
3

µk3,s3

fW (w)
1

k!(s3− k)!

D3

∑
j=1

Dk
jm1(w)D

s3−k
j fW (w)+op(h

D3
3 ), for any k = 1, · · · ,s3.
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For k = s3+1, we have T1(s3+1) =
h

s3+1
3

nh
D3
3 fW (w)

∑
n
t=1 K3t,w

(
∑|β |=s3+1

1
(s3+1)! Dβ m1(w̃)

(
Wt−w

h3

)β
)
= op(h

s3
3 ), by Markov’s

Inequality and E|T1(s3+1)|= O(hs3+1
3 ) = o(hs3

3 ) since m1(w) ∈Cs3+1. Combining all the T3k terms, we have

T1 = bm1,1(w), where bm1,1(w)≡ hs3
3

µk3,s3

fW (w)

s3

∑
k=1

1
k!(s3− k)!

D3

∑
j=1

Dk
jm1(w)D

s3−k
j fW (w)+op(h

s3
3 ).

Step 2: Given ηtYt = m1(Wt) + vm1t , we have T2 = ∑
n
t=1 a1tn, where a1tn ≡ (nhD3

3 fW (w))−1K3t,wvm1t . Since

E(vm1t |Wt) = 0 and E(v2
m1t |Wt) = σ2

vm1 < ∞, we have E(a1tn) = 0, and V(a1tn) = n−2h−D3
3 f−2

W (w)σ2
vm1
∫

K2
3 (γ) fW (w+

h3γ)dγ . Let S2
1n ≡ ∑

n
t=1 V(a1tn) = (nhD3

3 )−1 f−2
W (w)σ2

vm1
∫

K2
3 (γ) fW (w + h3γ)dγ . Then, by Lyapunov’s CLT, if

∑
n
t=1 E|a1tn/S1n|2+δ → 0 for some δ > 0 as n→∞, we have ∑

n
t=1 a1tn/S1n

d−→N (0,1), i.e., given
√

nhD3
3 S1n→Φ

1/2
m1,1,

√
nhD3

3 T2
d−→N (0,Φm1,1), where Φm1,1 ≡

σ2
vm1

fW (w)

∫
K2

3 (γ)dγ.

Given that nhD3
3 S2

1n→Φm1,1 > 0 and E(|vm1t |2+δ |Wt)<C, Lyapunov’s condition is satisfied since

n

∑
t=1

E
∣∣∣∣a1tn

S1n

∣∣∣∣2+δ

=

(
nhD3

3

)δ/2+1(
nhD3

3 S2
1n

)δ/2+1

n

∑
t=1

E

∣∣∣∣∣ K3t,wvm1t

nhD3
3 fW (w)

∣∣∣∣∣
2+δ
≤C

(
nhD3

3

)−δ/2
∫
|K3(γ)|2+δ dγ → 0, as n→ ∞.

Step 3: Denote f̂U (Ût) = f̂Ût
, f̂W (Wt) = f̂Wt , φ̂(Wt ,Ût) = φ̂t , fU (Ut) = fUt , fW (Wt) = fWt , φ(Wt ,Ut) = φt . According

to the uniform order of these density estimators from Theorem 1 and L2
n,(L1n/h2)

2 = o(n−1/2) by A5, we have

η̂t −ηt =
1

φ 2
t

(
φt fWt ( f̂Ût

− fUt )− fUt fWt (φ̂t −φt)+φt fUt ( f̂Wt − fWt )
)
+op(n−1/2).

Since T3 = (nhD3
3 fW (w))−1

∑
n
t=1 K3t,w

(
(η̂t −ηt)Yt

)
, and (nhD3

3 fW (w))−1
∑

n
t=1

∣∣K3t,wYt
∣∣= Op(1), we have

T3 =
3

∑
k=1

T3k +op
(
n−1/2),

where T31 =
1

nhD3
3 fW (w)

n

∑
t=1

1
fUt

( f̂Ût
− fUt )K3t,wηtYt , T32 =−

1

nhD3
3 fW (w)

n

∑
t=1

1
φt
(φ̂t −φt)K3t,wηtYt ,

T33 =
1

nhD3
3 fW (w)

n

∑
t=1

1
fWt

( f̂Wt − fWt )K3t,wηtYt .

From Theorem 1, we have
∣∣ f̂Ût
− fUt

∣∣ = Op(L2n) and |φ̂t − φt | = Op(L4n) uniformly. Thus,
√

nhD3
3 T31 =

Op

(√
nhD3

3 L2n

)
= op(1) by Assumption A5 (iii). Similarly,

√
nhD3

3 T32 = Op

(√
nhD3

3 L4n

)
= op(1). Let T33 =
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T331 +T332, where

T331 =
1

nhD3
3 fW (w)

n

∑
t=1

1
fWt

(
E( f̂Wt )− fWt

)
K3t,wηtYt , T332 =

1

nhD3
3 fW (w)

n

∑
t=1

1
fWt

(
f̂Wt −E( f̂Wt )

)
K3t,wηtYt .

We show that T331 contributes to a bias and T332 to a normal distribution.

For T331, given that E( f̂Wt )− fWt = hs3
3

µk3 ,s3
s3! ∑

D3
j=1 Ds3

j fW (Wt)+o(hs3
3 ) by Taylor’s Theorem and the high order of

kernel k3, we have

T331 = hs3
3

µk3,s3

s3!

D3

∑
j=1

t j +o(hs3
3 ), where t j =

1

nhD3
3 fW (w)

n

∑
t=1

1
fWt

Ds3
j fW (Wt)K3t,wηtYt .

Since ηtYt = vm1t +(m1(Wt)−m1(w))+m1(w), let t j = ∑
3
k=1 t jk, where

t j1 =
1

nhD3
3 fW (w)

n

∑
t=1

1
fWt

Ds3
j fW (Wt)K3t,wvm1t , t j2 =

1

nhD3
3 fW (w)

n

∑
t=1

1
fWt

Ds3
j fW (Wt)K3t,w

(
m1(Wt)−m1(w)

)
,

t j3 =
m1(w)

nhD3
3 fW (w)

n

∑
t=1

1
fWt

Ds3
j fW (Wt)K3t,w.

By Markov’s Inequality and E(t j1) = 0, E(t2
j1) = O

(
(nhD3

3 )−1
)

due to E(vm1t |Wt) = 0 and E(v2
m1t |Wt) ≤

C, we have t j1 = Op
(
(nhD3

3 )−1/2
)
= op(1). And t j2 = Op(h3) = op(1) since E|t j2| ≤ Ch−D3

3 E
∣∣K3t,w

(
m1(Wt)−

m1(w)
)∣∣ = O(h3). For t j3, since E(t j3) = m1(w) fW (w)−1 ∫ Ds3

j fW (w + h3φ)K3(φ)dφ → m1(w) f−1
W (w)Ds3

j fW (w),

and E(t2
j3) = O

(
(nhD3

3 )−1
)
= o(1), we have t j3 = m1(w) f−1

W (w)Ds3
j fW (w) + op(1). In sum, T331 =

hs3
3

µk3 ,s3
fW (w)

1
s3! ∑

D3
j=1 m1(w)D

s3
j fW (w)+op(h

s3
3 )≡ bm1,2(w).

For T332, we show that (nhD3
3 )1/2T332 = (nhD3

3 )1/2
∑

n
t=1 a2tn +op(1)

d−→N (0,Φm1,2), where

a2tn = (nh2D3
3 )−1m1(w)E

(
f−1
Wi

(
K3it −Et(K3it)

)
K3i,w

∣∣∣Wt

)
, Φm1,2 ≡ m2

1(w) fW (w)
∫ (∫

K3(γ1)K3(γ1 + γ2)dγ1
)2dγ2.

Since f̂Wt −E( f̂Wt ) = (nhD3
3 )−1

∑
n
i=1
(
K3ti−Ei(K3ti)

)
, we have T332 = T3321 +T3322, where

T3321 =
1

n2h2D3
3 fW (w)

n

∑
t=1

1
fWt

(
K3(0)−Ei(K3ti)

)
K3t,wηtYt , T3321 =

1

n2h2D3
3 fW (w)

n

∑
t=1

n

∑
i=1

t 6=i

1
fWt

(
K3ti−Ei(K3ti)

)
K3t,wηtYt .

Since Ei(K3ti) = O(hD3
3 ), we have T3321 ≤C(nhD3

3 )−2
n
∑

t=1
|K3t,wηtYt |= Op

(
(nhD3

3 )−1
)
, thus (nhD3

3 )1/2T3321 = op(1).

For T3322, we have T3322 =
1
n2

(n
2

)
Un =

n−1
n

1
2Un, where Un≡

(n
2

)−1
∑

n
t=1 ∑

n
i=1

t<i
φnti = θn+2H(1)

n +H(2)
n , φnti =ψnti+

ψnit , and ψnti = (h2D3
3 fWt )

−1
(
K3ti−Ei(K3ti)

)
K3t,wηtYt . Then θn = E(φnti) = 0, σ2

2n = V(φnti)≤CE(ψ2
nti) = O(h−2D3

3 ),

H(2)
n = Op

(
(σ2

2n/n2)1/2
)
= Op

(
nhD3

3 )−1
)
, and we have (nhD3

3 )1/2H(2)
n = op(1). For H(1)

n = n−1
∑

n
t=1 E(ψnit |Wt), given
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that E(ηtYi|Wi) = m1(Wi), we have H(1)
n = Q1 +Q2, where

Q1 ≡
1

nh2D3
3

n

∑
t=1

E
( 1

fWi

(
K3it −Et(K3it)

)
K3i,w

(
m1(Wi)−m1(w)

)∣∣∣Wt

)
, Q2 ≡

m1(w)

nh2D3
3

n

∑
t=1

E
( 1

fWi

(
K3it −Et(K3it)

)
K3i,w

∣∣∣Wt

)
.

Since E(Q1) = 0, E(Q2
1) = O

(
(nhD3

3 )−1h3
)
, we have (nhD3

3 )1/2Q1 = Op(h
1/2
3 ) = op(1). Since Q2 = ∑

n
t=1 a2tn, let Ztn =

(nh2D3
3 )−1m1(w)Ei

(
f−1
Wi

K3itK3i,w
)
, and µn = (nh2D3

3 )−1m1(w)E
(

f−1
Wi

K3itK3i,w
)
, so that a2tn = Ztn− µn and E(Ztn) =

µn. Then, we have Ztn = (nhD3
3 )−1m1(w)

∫
K3(γ1)K3

(
Wt−w

h3
+ γ1

)
dγ1, µn = n−1m1(w)

∫
K3(γ1)K3(γ1 + γ2)dγ1dγ2 =

O(n−1), and V(a2tn) = E(Z2
tn)− µ2

n = n−2h−D3
3 m2

1(w)
∫ (∫

K3(γ1)K3(γ1 + γ2)dγ1
)2 fW (w + h3γ2)dγ2 − µ2

n . Letting

S2
2n ≡ ∑

n
t=1 V(a2tn), we have nhD3

3 S2
2n = m2

1(w)
∫ (∫

K3(γ1)K3(γ1 + γ2)dγ1
)2 fW (w + h3γ2)dγ2 − n2hD3

3 µ2
n → Φm1,2.

Thus, by Lyapunov’s CLT, if ∑
n
t=1 E|a2tn/S2n|2+δ → 0 for some δ > 0 as n→ ∞, we have ∑

n
t=1 a2tn/S2n

d−→N (0,1),

i.e., combing previous results on other terms in T3,

√
nhD3

3

(
T3−bm1,2(w)

) d−→N (0,Φm1,2), where Φm1,2 ≡ m2
1(w) fW (w)

∫ (∫
K3(γ1)K3(γ1 + γ2)dγ1

)2dγ2.

Given that nhD3
3 S2

2n→Φm1,2 > 0, Lyapunov’s condition is satisfied since

n

∑
t=1

E
∣∣∣∣a2tn

S2n

∣∣∣∣2+δ

≤
C
(
nhD3

3

)δ/2+1(
nhD3

3 S2
2n

)δ/2+1

n

∑
t=1

E(|Ztn|2+δ )≤C
(
nhD3

3

)−δ/2→ 0, as n→ ∞.

Step 4: Combining results from (1) to (3), we have
√

nhD3
3

(
m̂1(w)−m1(w)− bm1(w)

)
=
√

nhD3
3 ∑

n
t=1(a1tn + a2tn),

where bm1(w) = bm1,1(w)+bm1,2(w) = hs3
3

µk3,s3
fW (w) ∑

s3
k=0

1
k!(s3−k)! ∑

D3
j=1 Dk

jm1(w)D
s3−k
j fW (w)+op(h

s3
3 ). Reapplying Lya-

punov’s CLT, given that S2
n ≡V

(
∑

n
t=1(a1tn+a2tn)

)
= S2

1n+S2
2n+2∑

n
t=1 Cov(a1tn,a2tn) = S2

1n+S2
2n as E(a1tna2tn) = 0,

and nhD3
3 S2

n → Φm1,1 +Φm1,2, we have
√

nhD3
3

(
m̂1(w)−m1(w)− bm1(w)

) d−→ N (0,Φm1,1 +Φm1,2). Lyapunov’s

condition can be easily verified using Cr Inequality.

Next, we extend this result for m̂1(w) to m̂(w). Recall that,

m̂1(w) =
1

nhD3
3 fW (w)

n

∑
t=1

K3t,wη̂tYt , m̂(w) =
1

nhD3
3 fW (w)

n

∑
t=1

K3t,wη̂t
(
Yt −X ′2tβ −β0

)
.

We see that m̂(w) shares a similar structure as m̂1(w) except using η̂t
(
Yt−X ′2tβ −β0

)
instead of η̂tYt as the regressand.

Given that η̂t
(
Yt −X ′2tβ −β0

)
= m(Wt)+ vmt , E(v2

mt |Wt) = σ2
vm ≤C, and E(|vmt |2+δ |Wt) ≤C, by repeating Step 1-4,

we have
√

nhD3
3

(
m̂(w)−m(w)− bm(w)

) d−→ N (0,Φ3 +Φ4), where bm(w) = hs3
3

µk3 ,s3
fW (w) ∑

s3
k=0

1
k!(s3−k)! ∑

D3
j=1 Dk

jm(w)

×Ds3−k
j fW (w)+op(h

s3
3 ), Φ3 =

σ2
vm

fW (w)

∫
K2

3 (γ)dγ , Φ4 = m2(w) fW (w)
∫
(
∫

K3(γ1)K3(γ1 + γ2)dγ1)
2 dγ2.
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Lemmas

We start by noting that for any kernel K that satisfies Assumption A1, and for any function f (x) : RD→ R such that∫
| f (γ)|dγ < ∞, we have that if x is a point of continuity of f (x),

∫
K(γ) f (x+hnγ)dγ → f (x)

∫
K(γ)dγ as n→ ∞.

This result follows directly from Theorem 1A in Parzen (1962).

Lemma 1. Assume that K(x) : RD→R is a product kernel K(x) = ∏
D
j=1 k(x j) with k(x) : R→R such that: a) k(x) is

continuously differentiable everywhere; b) |k(x)||x|3 ≤C, for any x ∈ R and some C > 0; c) |k(1)(x)||x|3 ≤C, for any

x ∈R and some C > 0. Thus, for any |β |= 0, · · · ,3, K(x)xβ satisfies a local Lipschitz condition, i.e., for any x 6= y∈ A,

where A⊂ RD is a bounded convex set, we have |K(x)xβ −K(y)yβ | ≤C||x− y||E , for some C > 0.

Proof. Note that by a)-c), for any x ∈ R, we have |k(x)||x|i, |k(1)(x)||x|i ≤C, i = 0, · · · ,3.

(a) |β |= 0. Since by the Mean Value Theorem K(x)−K(y) = JK(x∗)(x− y), where x∗ = x+λ (y− x), λ ∈ (0,1),

and |DiK(x∗)|= |k(1)(x∗i )|∏D
p 6=i |k(x∗p)| ≤C, we have |K(x)−K(y)| ≤C ∑

D
i=1 |xi−yi| ≤CD

(
∑

D
i=1(xi− yi)

2
)1/2≤

C||x− y||E for some C > 0 by the Triangle and Cr inequalities.

(b) |β |= 1. For any i = 1, · · · ,D,

|K(x)xi−K(y)yi|= |xi(K(x)−K(y))+K(y)(xi− yi)|

= |xiJK(x∗)(x− y)+K(y)(xi− yi)| by the Mean Value Theorem

=

∣∣∣∣∣(xiDiK(x∗)+K(y))(xi− yi)+ ∑
p6=i

xiDpK(x∗)(xp− yp)

∣∣∣∣∣
≤C

D

∑
i=1
|xi− yi| ≤C||x− y||E by the Triangle and Cr inequalities.

The Mean value theorem is used in the second equality since k(x) is continuously differentiable on the convex set

A. And since set A is bounded, there exists a C≥ 0 such that yi−xi =∆i and |∆i| ≤C. Thus x∗i ≡ xi+λ (yi−xi) =

xi +λ∆, and we have |xik(1)(x∗i )|= |xik(1)(xi +λ∆)| ≤C by c).

(c) |β |= 2. For any i, j = 1, · · · ,D,

|K(x)xix j−K(y)yiy j|= |x j(K(x)xi−K(y)yi)+K(y)yi(x j− y j)|

≤ |x jK(x)+ x jyiDiK(x∗)| |xi− yi|+
∣∣x jyiD jK(x∗)+K(y)yi

∣∣ |x j− y j|

+

∣∣∣∣∣ ∑
p6=i, j

x jyiDpK(x∗)

∣∣∣∣∣ |xp− yp| ≤ C ||x− y||E
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(d) |β |= 3. For any i, j, l = 1, · · · ,D,

∣∣K(x)xix jxl−K(y)yiy jyl
∣∣ = ∣∣xl(K(x)xix j−K(y)yiy j)+K(y)yiy j(xl− yl)

∣∣
≤
∣∣xix jxlDiK(x∗)+ x jxlK(y)

∣∣ |xi− yi|+
∣∣xix jxlD jK(x∗)+ xlK(y)yi

∣∣ |x j− y j|

+
∣∣xix jxlDlK(x∗)+K(y)yiy j

∣∣ |xl− yl |+ ∑
p 6=i, j,l

∣∣xix jxlDpK(x∗)
∣∣ |xp− xp| ≤ C ||x− y||E .

Lemma 2. Let {Xi}n
i=1 be a sequence of independent and identically distributed (IID) random variables, Gn(Xi,x) :

R×RK→R such that: a) |Gn(Xi,x)−Gn(Xi,x′)| ≤Bn(Xi)‖x−x′‖ for all x,x′ and Bn(Xi)> 0 with E(Bn(Xi))<C <∞;

b) E(Gn(Xi,x))< ∞ and E(|Gn(Xi,x)−E(Gn(Xi,x))|p)≤Cp−2 p!E((Gn(Xi,x)−E(Gn(Xi,x)))
2)< ∞ for some C > 0

for all i = 1,2, · · · and p = 3,4, · · · . Then, if Sn(x) = 1
n ∑

n
i=1 Gn(Xi,x), for x ∈ Gx, an arbitrary convex compact subset

of RK ,

sup
x∈Gx

|Sn(x)−E(Sn(x))|= Op

(( log n
n

)1/2)
.

Proof. Since Gx is a compact subset of RK , there exists x0 ∈ RK such that Gx ⊂ B(x0,r) = {x ∈ RK : ‖x− x0‖ < r}.

Thus, for all x,x′ ∈ Gx, ‖x− x′‖ < 2r. By the Heine-Borel Theorem, every infinite open cover of Gx contains a finite

subcover which we construct as {B(xk,n−1/2)}ln
k=1 with xk ∈Gx and ln < nK/2C. For x ∈ B(xk,n−1/2), by condition a),

we have

|Sn(x)−Sn(xk)| ≤ n−1/2 1
n

n

∑
i=1

Bn(Xi) = Op(n−1/2)

since E(Bn(Xi)) < ∞ and {Xi}n
i=1 is and IID sequence. Similarly, |E(Sn(x))−E(Sn(xk))| = O(n−1/2) and using the

triangle inequality we have, |Sn(x)−E(Sn(x))| ≤ |Sn(xk)−E(Sn(xk))|+Op(n−1/2). Since
( n

log n

)1/2n−1/2 = o(1), it

suffices to show that for all ε > 0, there exists a constant ∆ε such that for n≥ N

P

((
n

log n

)1/2

max
1≤k≤ln

|Sn(xk)−E(Sn(xk))| ≥ ∆ε

)
≤ ε.

Let εn =
(

log n
n

)1/2
∆ε and note that

P
(

max
1≤k≤ln

|Sn(xk)−E(Sn(xk))| ≥ εn

)
≤

ln

∑
k=1

P(|Sn(xk)−E(Sn(xk))| ≥ εn) .

Given condition b), and letting cn = 4V (Gn(Xi,xk))+2Cεn, by Bernstein’s Inequality, we have

P

(∣∣∣∣∣ n

∑
i=1

Gn(Xi,xk)−
n

∑
i=1

E(Gn(Xi,xk))

∣∣∣∣∣≥ nεn

)
≤ 2exp

(
−nε2

n

cn

)
= 2exp

(
−∆2

ε log n
cn

)
= 2n−

∆2
ε

cn .

Hence, P
(

max
1≤k≤ln

|Sn(xk)−E(Sn(xk))| ≥ εn

)
≤ 2lnn−∆2

ε/cn < CnK/2−∆2
ε/cn . Since εn → 0 as n→ ∞ and V(Gn(Xi,
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xk))< ∞, we can choose ∆ε sufficiently large such that K/2−∆2
ε/cn < 0 and

P
(

max
1≤k≤ln

|Sn(xk)−E(Sn(xk))| ≥ εn

)
≤ ε.

Lemma 3. Assume that K(x) : RD→ R is a product kernel K(x) = ∏
D
j=1 k(x j) with k(x) : R→ R such that: a) k(x)

is continuously differentiable everywhere; b) |k(x)||x|7+c → 0 as |x| → ∞, for some c > 0; c) |k(1)(x)||x|3 → 0

as |x| → ∞. In addition, assume that 1) {(Xt ,εt)
′}t=1,2,··· is an independent and identically distributed sequence of

random vectors; 2) The joint density of Xt and εt is given by fXε(x,ε) = fX (x) fε|X (ε|x); 3) fX (x) is continuous and

uniformly bounded everywhere. Let w(Xt − x;x) : RD→ R and g(ε) : R→ R be measurable functions. Define

s(x) =
1

nhD
n

n

∑
t=1

K
(

Xt − x
hn

)(
Xt − x

hn

)β

w(Xt − x;x)g(εt),

where |β |= 0,1,2,3. If

i) E
(
|g(εt)|a

∣∣Xt
)
≤C < ∞ for some a≥ 2;

ii) w(Xt−x;x) satisfies a Lipschitz condition of order 1 in x, i.e., |w(Xt−x;x)−w(Xt−xk;xk)| ≤C||x−xk||E for some

C > 0, and |w(Xt − x,x)|<C for all x ∈ RD.

Then, for an arbitrary compact set G ⊆ RD, we have sup
x∈G
|s(x)−E(s(x))| = Op

((
log n
nhD

n

)1/2
)
, provided that hn→ 0,

nhD+2
n → ∞ and nhD

n
log n → ∞ as n→ ∞.

Proof. Let B(x0,r) = {x∈RD : ||x−x0||E < r} for r ∈R+. G compact implies that there exists x0 ∈RD such that G ⊆

B(x0,r). Therefore, for all x,z ∈ G , ||x− z||E < 2r. Let hn > 0 be such that hn→ 0 as n→∞ where n ∈ {1,2, · · ·}. For

any n, by the Heine-Borel Theorem, every infinite cover for G contains a finite subcover
{

B
(

xk,C
( n

hD+2
n

)−1/2
)}ln

k=1

with xk ∈ G and ln ≤C
(

n
hD+2

n

)D/2
. Now let

sτ(x) =
1

nhD
n

n

∑
t=1

K
(

Xt − x
hn

)(
Xt − x

hn

)β

w(Xt − x;x)g(εt)χ{|g(εt )|≤Bn}

with B1 ≤ B2 ≤ ·· · such that ∑
∞
t=1 B−a

t < ∞ for some a > 0.

sup
x∈G
|s(x)−E(s(x))| ≤ sup

x∈G
|s(x)− sτ(x)|+ sup

x∈G
|E(s(x)− sτ(x))|+ sup

x∈G
|sτ(x)−E(sτ(x))| ≡ T1 +T2 +T3.

1. T1 = sup
x∈G

∣∣∣∣(nhD
n )
−1

∑
n
t=1 K

(
Xt−x

hn

)(
Xt−x

hn

)β

w(Xt − x;x)g(εt)χ{|g(εt )|>Bn}

∣∣∣∣. By Chebyshev’s Inequality, for a > 0,
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P(|g(εt)|> Bt)<
E(|g(εt )|a)

Ba
t

< C
Ba

t
by i). Consequently,

∞

∑
t=1

P(|g(εt)|> Bt)<
∞

∑
t=1

E(|g(εt)|a)
Ba

t
<C

∞

∑
t=1

B−a
t < ∞.

By the Borel-Cantelli Lemma P
(

liminf
t→∞
{|g(εt)| ≤ Bt}

)
= 1. Hence, there exists an N such that for all t > N we

have P(|g(εt)| ≤ Bt) = 1. Since Bt ≤ Bn for t ≤ n we have P(|g(εt)| ≤ Bn) = 1, and therefore χ{|g(εt )|>Bn} = 0 with

probability 1, which gives T1 = 0 almost surely when n is sufficiently large.

2. For T2, note that by 1) and 2), we have

E(s(x)− sτ(x)) =
1

nhD
n

n

∑
t=1

∫ ∫
|g(εt )|>Bn

K
(

Xt − x
hn

)(
Xt − x

hn

)β

w(Xt − x;x)g(εt) fXε(Xt ,εt)dεtdXt

≤
∫

K(γ)γβ w(hnγ;x) fX (x+hnγ)dγ

∫
|g(ε)| fε|X (ε|x)χ{|g(ε)|>Bn}dε

≤C
∫
|g(ε)| fε|X (ε|x)χ{|g(ε)|>Bn}dε,

where the last inequality follows by the assumptions on K(·), and uniform bound on w(·) and fX (·).

By Hölder’s Inequality, for a > 1, we have

∫
|g(ε)| fε|X (ε|x)χ{|g(ε)|>Bn}dε ≤

(∫
|g(ε)|a fε|X (ε|x)dε

)1/a(∫
χ{|g(ε)|>Bn} fε|X (ε|x)dε

)1−1/a

,

where the first integral after the inequality is uniformly bounded by i), and by Chebyshev’s Inequality,

(∫
χ{|g(ε)|>Bn} fε|X (ε|x)dε

)1−1/a

=
(
P(|g(ε)|> Bn|X)

)1−1/a ≤C

(
E
(
|g(ε)|a

∣∣X)
Ba

n

)1−1/a

≤CB1−a
n .

Hence, T2 = O(B1−a
n ).

3. Rewrite T3 as: T3 = sup
x∈G
|sτ(x)−E(sτ(x))| ≤ sup

x∈G
|sτ(x)− sτ(xk)|+ sup

x∈G
|E(sτ(x)− sτ(xk))|

+ max
1≤k≤ln

|sτ(xk)−E(sτ(xk))| ≡ T31 +T32 +T33.

3.1. For x ∈ B
(

xk,C
(

n
hD+2

n

)−1/2
)

, we have

|sτ(x)− sτ(xk)| ≤ 1
nhD

n

n

∑
t=1

(∣∣∣∣∣K
(

Xt − x
hn

)(
Xt − x

hn

)β

−K
(

Xt − xk

hn

)(
Xt − xk

hn

)β
∣∣∣∣∣ |w(Xt − x;x)|

+

∣∣∣∣∣K
(

Xt − xk

hn

)(
Xt − xk

hn

)β
∣∣∣∣∣ |w(Xt − x;x)−w(Xt − xk;xk)|

)
|g(εt)|χ{|g(εt )|≤Bn}

≤
(

C
hD+1

n
||xk− x||E +hn

C
hD+1

n
||xk− x||E

)
1
n

n

∑
t=1
|g(εt)|χ{|g(εt )|≤Bn}
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≤ C

((
1

nhD
n

)1/2

+hn

(
1

nhD
n

)1/2
)

1
n

n

∑
t=1
|g(εt)|χ{|g(εt )|≤Bn},

where the second inequality follows by Lemma 1 and b), i.e., local Lipschitz condition and uniform bound-

edness of K
(

Xt−xk

hn

)(
Xt−xk

hn

)β

. {|g(εt)|χ{|g(εt )≤Bn}|}t=1,2,··· is IID due to the measurability of g and con-

dition 1). By condition i) and Kolmogorov’s Law of Large Numbers we have 1
n ∑

n
t=1
(
|g(εt)|χ{|g(εt )|≤Bn}

−E(|g(εt)|χ{|g(εt )|≤Bn})
)
= op(1). Thus, T31 = Op

(
(nhD

n )
−1/2

)
.

3.2. Following similar arguments we have T32 = E(|sτ(x)− sτ(xk)|)≤C(nhD
n )
−1/2.

3.3. T33 = max
1≤k≤ln

|sτ(xk)−E(sτ(xk))|. Letting εn =
(

nhD
n

log n

)−1/2
∆ε with 0 < ∆ε < ∞, we have

P
(

max
1≤k≤ln

|sτ(xk)−E(sτ(xk))| ≥ εn

)
≤

ln

∑
k=1

P(|sτ(xk)−E(sτ(xk))| ≥ εn).

Let sτ(xk)−E(sτ(xk)) = 1
n ∑

n
t=1 Ztn with

Ztn =
1

hD
n

K
(

Xt − xk

hn

)(
Xt − x

hn

)β

w(Xt − xk;xk)g(εt)χ{|g(εt )|≤Bn}

−E

(
1

hD
n

K
(

Xt − xk

hn

)(
Xt − x

hn

)β

w(Xt − xk;xk)g(εt)χ{|g(εt )|≤Bn}

)
.

By the bounds on |K(x)||xβ | and w(·), |g(εt)|χ{|g(εt )|≤Bn} ≤ Bn, we have that |Ztn| ≤Ch−D
n Bn. By Bernstein’s

Inequality,

P(|sτ(xk)−E(sτ(xk))| ≥ εn)≤ 2 exp

 −n log n
nhD

n
∆2

ε

2n−1
n
∑

t=1
V(Ztn)+

2
3

CBn
hD

n

(
log n
nhD

n

)1/2
∆2

ε


= 2 exp

 − logn ∆2
ε

2hD
n V(Ztn)+

2
3CBn

(
log n
nhD

n

)1/2
∆2

ε


= 2 n−

∆2
ε

c(n) ,

where c(n)≡ 2hD
n V(Ztn)+

2
3CBn

(
log n
nhD

n

)1/2
∆2

ε . Consequently,

P
(

max
1≤k≤ln

|sτ(xk)−E(sτ(xk))| ≥ εn

)
≤ 2lnn−

∆2
ε

c(n) ≤ 2C
(

n
hD+2

n

)D/2

n−
∆2

ε
c(n) = 2C

 1

hD+2
n n

2∆2
ε

Dc(n)−1

D/2

< 2C
(

1
hD+2

n n

)D/2

,

provided ∆2
ε/D > c(n). Hence, given that nhD+2

n → ∞ as n→ ∞ the left-hand side of the inequality is less

than ε provided c(n) is bounded. To show that c(n) is bounded, we choose Bn such that Bnεn → 0, i.e.,

Bnεn = o(1), guaranteeing that the second term of c(n) is o(1). Furthermore, hD
n V(Ztn)≤C given condition i)
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and
∫
|K(γ)γ2β |dγ < ∞ for |β |= 0, · · · ,3 due to b). Thus, T33 = Op

((
log n
nhD

n

)1/2
)

.

In sum, we have T3 = Op

((
log n
nhD

n

)1/2
)

.

Combining results from part 1 to 3, we have that supx∈G |s(x)−E(s(x))| = O(B1−a
n )+O

((
log n
nhD

n

)1/2)
. To show that

B1−a
n = O

((
log n
nhD

n

)1/2)
, we note that since Bnεn = o(1) implies that Bn = o

((
nhD

n
log n

)1/2
)

, we have

(
nhD

n

log n

)1/2

B1−a
n =

(
nhD

n

log n

)1/2( nhD
n

log n

)(1−a)/2

o(1) =
(

nhD
n

log n

)1−a/2

o(1) = o(1),

where the last equality follows if a≥ 2, which is assumed in i). Thus, we have

sup
x∈G

∣∣s(x)−E(s(x))
∣∣= Op

((
log n
nhD

n

)1/2
)
.

Lemma 4. Let {Mi}n
i=1 be a sequence of independent and identically distributed random vectors with the same dis-

tribution as M = (X Z U ε ) and G(M) a continuous function of M with E(G2(W )|Z)≤C < ∞. Then, if the joint

density fW of M is continuous,

Sn =
1
n

n

∑
i=1

G(Mi)
(
η̂(Wi,Ûi)−η(Wi,Ui)

)
=


op(n−1/2), if E(G(Mi)|Xi,Zi,Ui) = 0

Op

(
n−1/2 +

4

∑
i=1

hsi
i

)
, if E(G(Mi)|Xi,Zi,Ui) 6= 0

.

Proof. First, note that

η̂(Wi,Ûi)−η(Wi,Ui) =
1

φ̂(Wi,Ûi)

[(
f̂U (Ûi)− fU (Ui)

)(
f̂W (Wi)− fW (Wi)

)
+ fU (Ui)

(
f̂W (Wi)− fW (Wi)

)
+ fW (Wi)

(
f̂U (Ûi)− fU (Ui)

)
−η(Wi,Ui)

(
φ̂(Wi,Ûi)−φ(Wi,Ui)

)]
. (A.4)

Also, for some λ ∈ (0,1) and d = 1, · · · ,D2,

Ûid−Uid =−

(
1

fZ(Zi)

1

nhD1
1

n

∑
t=1

K1

(
Zt −Zi

h1

)
(Utd +JΠd(Zi−λ (Zt −Zi))(Zt −Zi))

)
(1+Op(L1n)).

Recall that f̂U (Ûi) =
1

nh
D2
2

∑
n
t=1 K2it +

1
nh

D2+1
2

∑
n
t=1 JK2it [Ûi−Ui− (Ût −Ut)]+op(n−1/2), hence we write

f̂U (Ûi) =
1

nhD2
2

n

∑
t=1

K2it +TU
1i +TU

2i +op(n−1/2),
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where TU
1i =−

1
n2

D2

∑
d=1

n

∑
l=1

n

∑
t=1

1

hD1
1 hD2+1

2 fZ(Zi)
K1liDdK2it

(
Uld +JΠd

(
Zi−λ (Zl−Zi)

)
(Zl−Zi)

)
(1+Op(L1n)),

TU
2i =

1
n2

D2

∑
d=1

n

∑
l=1

n

∑
t=1

1

hD1
1 hD2+1

2 fZ(Zt)
K1ltDdK2it

(
Uld +JΠd

(
Zt −λ (Zl−Zt)

)
(Zl−Zt)

)
(1+Op(L1n)).

Similarly, φ̂(Wi,Ûi) = (nhD4
4 )−1

∑
n
t=1 K4ti +T M

1i +T M
2i +op(n−1/2), where,

T M
1i =− 1

n2

D2

∑
d=1

n

∑
l=1

n

∑
t=1

1

hD1
1 hD4+1

4 fZ(Zi)
K1liD2dK4ti

(
Uld +JΠd

(
Zi−λ (Zl−Zi)

)
(Zl−Zi)

)
(1+Op(L1n)),

T M
2i =

1
n2

D2

∑
d=1

n

∑
l=1

n

∑
t=1

1

hD1
1 hD4+1

4 fZ(Zt)
K1ltD2dK4ti

(
Uld +JΠd

(
Zt −λ (Zl−Zt)

)
(Zl−Zt)

)
(1+Op(L1n)),

and D2dK4(m,u) denotes the partial derivative of K4(m,u) with respect to ud , the dth element of u.

By assumption A5 and Theorem 1, we have that
(

f̂U (Ûi)− fU (Ui)
)(

f̂W (Wi)− fW (Wi)
)
= op(n−1/2). In addition,

1
φ̂(Wi,Ûi)

= 1
φ(Wi,Ui)

+Op(L4n). Thus, we write (A.4) as

η̂(Wi,Ûi)−η(Wi,Ui) =

(
1

φ(Wi,Ui)
+Op(L4n)

)[
fU (Ui)

(
1

nhD3
3

n

∑
t=1

K3ti−Et

(
1

nhD3
3

n

∑
t=1

K3ti

))

+ fU (Ui)

(
Et

(
1

nhD3
3

n

∑
t=1

K3ti

)
− fW (Wi)

)
+ fW (Wi)

(
1

nhD2
2

n

∑
t=1

K2it −Et

(
1

nhD2
2

n

∑
t=1

K2it

))

+ fW (Wi)

(
Et

(
1

nhD2
2

n

∑
t=1

K2it

)
− fU (Ui)

)
+ fW (Wi)TU

1i + fW (Wi)TU
2i

−η(Wi,Ui)

(
1

nhD4
4

n

∑
t=1

K4ti−Et

(
1

nhD4
4

n

∑
t=1

K4ti

))

−η(Wi,Ui)

(
Et

(
1

nhD4
4

n

∑
t=1

K4ti

)
−φ(Wi,Ui)

)
−η(Wi,Ui)T M

1i −η(Wi,Ui)T M
2i

+op(n−1/2)

]
,

where Et denotes an expectation taken with respect to the random variables indexed by t. Besides the op(n−1/2) term,

there are ten additional terms inside the brackets [·], which we label Inip, with p = 1, · · · ,10. We will establish the

orders of 1
n ∑

n
i=1 G(Mi)Inip for p = 7, · · · ,10. The the remaining terms are similar, and simpler, in structure. First, we

consider

1
n

n

∑
i=1

G(Mi)Ini7 =−
1
n

n

∑
i=1

G(Mi)η(Wi,Ui)

(
1

φ(Wi,Ui)
+Op(L4n)

)(
1

nhD4
4

n

∑
t=1

K4ti−Et

(
1

nhD4
4

n

∑
t=1

K4ti

))
,
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and it suffices to establish the order of

I′ni7 =
1
n2

n

∑
i=1

n

∑
t=1

−G(Mi)η(Wi,Ui)

φ(Wi,Ui)h
D4
4

(K4ti−Et(K4ti))≡
1
n2

n

∑
i=1

n

∑
t=1

ψnit

=
1
n2

n

∑
i=1

ψnii +
1
n2 ∑∑

i<t
(ψnit +ψnti) =

1
n2

n

∑
i=1

ψnii +

(
n−1

2n

)
Un,

where Un is a U-statistic of degree 2. From Yao and Martins-Filho (2015), since E(ψnit +ψnti) = 0,

Un =
2
n

n

∑
i=1

E
(
(ψnit +ψnti)|Mi

)
+Op

(
n−1(E((ψnit +ψnti)

2))1/2
)
.

Furthermore, since E((ψnit +ψnti)
2) < C E(ψ2

nit) and given that E(G2(M)) < C < ∞, we have E((ψnit +ψnti)
2) =

O(h−D4
4 ), and consequently the last term is Op(n−1h−D4/2

4 ) = op(n−1/2). If E(G(Mi)|Xi,Zi,Ui) = 0, then
∫
(ψnit +

ψnti) fW (Wt)dWt = 0 and Un = op(n−1/2). If E(G(Mi)|Xi,Zi,Ui) 6= 0, then E(ψnit |Mi) = 0 and E
(
E2(ψnti|Mi)

)
= O(1).

But since E(ψnti|Mi) 6= 0, we have Un = Op(n−1/2). By A5, we have 1
n2 ∑

n
i=1 ψnii = Op(n−1h−D4

4 ) = op(n−1/2). Now,

we consider

1
n

n

∑
i=1

G(Mi)Ini8 =−
1
n

n

∑
i=1

G(Mi)η(Wi,Ui)

(
1

φ(Wi,Ui)
+Op(L4n)

)(
Et

(
1

nhD4
4

n

∑
t=1

K4ti

)
−φ(Wi,Ui)

)
,

and it suffices to establish the order of I′ni8 = −
1
n ∑

n
i=1

G(Mi)η(Wi,Ui)
φ(Wi,Ui)

(
Et

(
(nhD4

4 )−1
∑

n
t=1 K4ti

)
−φ(Wi,Ui)

)
. Note that

given assumption A1 and φ ∈Cs, by Taylor’s Theorem we write

Et

(
1

nhD4
4

n

∑
t=1

K4ti

)
=φ(Wi,Ui)+ ∑

|β |=s4

1
s4!

∫
K4(γ)Dβ

φ
(
(Wi,Ui)+h4λγ

)
hs4

4 γ
β dγ ≡ φ(Wi,Ui)+Dφ (Wi,Ui),

where Dφ (Wi,Ui) = O(hs4
4 ). Consequently, if E(G(Mi)|Xi,Zi,Ui) = 0, then I′ni8 = Op(n−1/2hs4

4 ) = op(n−1/2), and if

E(G(Mi)|Xi,Zi,Ui) 6= 0, then E(|I′ni8|) = O(hs4
4 ) and I′ni8 = Op(h

s4
4 ).

For the term 1
n ∑

n
i=1 G(Mi)Ini9 =− 1

n ∑
n
i=1 G(Mi)η(Wi,Ui)

(
1

φ(Wi,Ui)
+Op(L4n)

)
T M

1i , we establish the order of

I′ni9 =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

G(Mi)η(Wi,Ui)

φ(Wi,Ui) fZ(Zi)h
D1
1 hD4+1

4

D2

∑
d=1

D2dK4ti
(
Uld +JΠd

(
Zi−λ (Zl−Zi)

)
(Zl−Zi)

)
=

1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

(ψ1nitl +ψ2nitl),

where ψ1nitl =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

G(Mi)η(Wi,Ui)

φ(Wi,Ui) fZ(Zi)h
D1
1 hD4+1

4

D2

∑
d=1

K1liD2dK4tiUld ,

ψ2nitl =
1
n3

n

∑
i=1

n

∑
t=1

n

∑
l=1

G(Mi)η(Wi,Ui)

φ(Wi,Ui) fZ(Zi)h
D1
1 hD4+1

4

D2

∑
d=1

K1liD2dK4tiJΠd
(
Zi−λ (Zl−Zi)

)
(Zl−Zi).
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For i 6= t 6= l, we have for k = 1,2 that 1
n3 ∑i 6=t 6=l ψknitl = (6− 1

2n +
1

3n2 )Uk
n , where Uk

n is a U-statistic of degree 3 with

a symmetric kernel given by φknitl = ∑P ψknitl , with P being the permutations of {i, t, l}.

We first consider U1
n . Using Theorem 1 in Yao and Martins-Filho (2015) and noting that E(Uld |Zl) = 0 we have

θn = E(φ1nitl) = 0. Furthermore, using the notation for U-statistics

σ
2
3n ≤CE

(
G2(Wi)η

2(Wi,Ui)

φ 2(Wi,Ui) f 2
Z (Zi)h

2D1
1 h2D4+2

4

D2

∑
d=1

K2
1liD

2
2dK4tiE(U2

ld |Zl)

)
= O(h−D1

1 h−D4−2
4 ).

Hence, H(3)
n = Op(n−3/2h−D1/2

1 h−D4/2−1
4 ) = op(n−1/2). Similarly, given assumption A5 we have

H(2)
n = Op(n−1h−D1/2

1 h−D4/2−1
4 ) = op(n−1/2).

Now, σ2
1n≤CE

(
E2(ψ1nitl |Ml)

)
since E(ψ1nitl |Mi)=E(ψ1nitl |Mt)= 0. If E(G(Mi)|Xi,Zi,Ui)= 0, then E(ψ1nitl |Ml)= 0

and σ2
1n = 0. We have U1

n = op(n−1/2). If E(G(Mi)|Xi,Zi,Ui) 6= 0, then

E(ψ1nitl |Ml)→
D2

∑
d=1

Uld

∫ G(Xi,Zl ,Ui,εi)η(Wi,Ui)

φ(Wi,Ui) fZ(Zl)
D2dφ(Wi,Ui) fW (Xi,Zl ,Ui,εi)dXidUidεi.

Given that E(G2(Wi)|Zi)≤C, we have σ2
1n = O(1), H(1)

n = Op(n−1/2). Thus, U1
n = Op(n−1/2).

We now consider U2
n . We note that σ2

3n ≤ O(h−D1+4
1 h−D4−1

4 ) and consequently H(3)
n = op(n−1/2). In a similar

manner we obtain H(2)
n = op(n−1/2). Now,

σ
2
1n ≤C

(
E2(ψ2nitl |Mi)+E2(ψ2nitl |Ml)+E2(ψ2nitl |Mt)

)
≤ O(h2s1

1 )+O(h2
1)+O(h2s1

1 h−2
2 ),

where the orders in the last inequality follow from routine integration and the same arguments used to study ψ1nimt .

Consequently, we have H(1)
n =Op(n−1/2h1+n−1/2hs1

1 h−1
2 )= op(n−1/2). If E(G(Mi)|Xi,Zi,Ui)= 0, then E(φ2nitl |Ml)=

0 and U2
n = op(n−1/2). If E(G(Mi)|Xi,Zi,Ui) 6= 0, then θn = 6E(E(ψ2nitl |Mi)) = O(hs1

1 ) and U2
n = op(n−1/2)+O(hs1

1 ).

For the additional cases, it is straightforward to verify that a) if i = t = l, I′ni9 = Op(n−2h−D1
1 h−D4−1

4 ) =

op(n−1/2); b) if i 6= t = l, I′ni9 = Op(n−1h−1
4 ) = op(n−1/2); c) if i = t 6= l, I′ni9 = Op(n−1h−D4−1

4 ) = op(n−1/2);

d) and if i = l 6= t, I′ni9 = Op(n−1h−D1
1 h−1

4 ) = op(n−1/2). So, collecting all the orders, we have

Ini9 =

 op(n−1/2), if E(G(Mi)|Xi,Zi,Ui) = 0

Op(n−1/2 +hs1
1 ), if E(G(Mi)|Xi,Zi,Ui) 6= 0

.

The term 1
n ∑

n
i=1 G(Mi)Ini10 =− 1

n ∑
n
i=1 G(Mi)η(Wi,Ui)

(
1

φ(Wi,Ui)
+Op(L4n)

)
T M

2i can be treated precisely as 1
n ∑

n
i=1 G(Mi)
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× Ini9, and we obtain exactly the same orders, viz., Ini10 =

 op(n−1/2), if E(G(Mi)|Xi,Zi,Ui) = 0

Op(n−1/2 +hs1
1 ), if E(G(Mi)|Xi,Zi,Ui) 6= 0

. Com-

bining the orders of terms Inip for p = 1, · · · ,10, we have

Sn =


op(n−1/2), if E(G(Mi)|Xi,Zi,Ui) = 0

Op

(
n−1/2 +

4

∑
i=1

hsi
i

)
, if E(G(Mi)|Xi,Zi,Ui) 6= 0

.
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