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Abstract

Applying linear and log-log functional forms plus spatial economet-
ric analyses to a dataset of 125 municipal water utilities, we investigate
the determinants of charges for water use and minimum monthly access
to water across West Virginia municipalities in 2014. Water charges
models are consistent with the theory of water cost determination as
water source, debt, and economies of size plus scale in�uence what
household consumers pay for water. Based on model results, ground-
water use by utilities lowers water charges and is estimated to save
household customers in West Virginia over $3.6 million annually. West
Virginia households typically pay far below the OECD standard of 3 to
5% of household income for municipal water, which may explain why
socioeconomic factors do not in�uence minimum charges for access.
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1 Introduction

Water is a basic resource that is vital to the existence of life. Because of this,
provision of potable water is often discussed as a basic human right (UN,
2010). While a renewable resource, the global water cycle implies essentially
a �xed water supply (Renzetti, 2012). Increasing demands for water strain
the ability of communities to achieve sustainable management. One of the
main goals in a sustainable water planning system is providing adequate
supplies of clean water for all users at a reasonable cost (Gleick, 1998).
According to the World Bank (2015), 99% of Americans have access to an
improved water source, however, consumers pay vastly di�erent amounts for
the same volume of water. For instance, Walton (2015) provides water price
data for 30 major U.S. cities with a range for the same volume of water from
$23.26 (in Fresno, CA) to $153.78 (in Santa Fe, NM).

Provision of clean and reliable water is a key element of any developed
society. Water markets are mostly dominated by monopolists or at least con-
tains monopoly elements (Klein, 2010). The lack of any feasible and realistic
competition makes it necessary to have a regulatory mechanism in place to
deal with the negative externalities imposed by a monopoly market. In West
Virginia, the provision of water services occurs as a regulated monopoly. The
West Virginia Public Service Commission (WVPSC) provides oversight for
this necessary government function to ensure that consumers have access to
safe and reliable water supplies at reasonable rates. Through the WVPSC,
municipal utilities operate as monopolies within their communities because
of the capital intensive structure of a water utility.

Pricing regulation by the WVPSC is based on the costs faced by water
providers. However, when water charges across West Virginia municipalities
are examined on the basis of total cost to the customer for 4,500 gallons, a
more than �ve-fold di�erence is observed (from $13.26 in Vienna to $71.89
in Matoaka) (WVPSC, 2014). This range is comparable to that found at a
national level even with a much more homogenous climate in West Virginia.
Figure 1 demonstrates this variety of charges across West Virginia municipal
utilities.

Given these dramatic di�erences in water charges and a growing concern
for the municipal agencies' actions for supplying drinking water (Renzetti,
1999), our main objective in this research is to examine what factors explain
the cost di�erences among municipal water utilities across the state of West
Virginia. We use a cost-based approach to determine what factors explain
water pricing di�erences.

In this research, we use the term water charge as the concept to be
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examined. Price and charge both involve the element of money, but price
describes how a consumer must pay to gain an additional unit of product or
service, while charge is the total amount paid to acquire a certain quantity
of a product or service. In terms of water supply in the United States, water
charge is a way to standardize the acquisition of water across a multitude of
pricing structures. Water utility pricing structures often include a minimum
charge and either �xed or variable unit charges (usually on a per 1,000-gallon
basis).

Besides this main objective, we ask another question about whether social
equity concerns are linked to minimum charges for access to water provision
(independent from the water volume consumption) among water utilities.
We will investigate whether minimum charges by utilities account for socioe-
conomic circumstances within a community or not. Similar to water charges,
minimum charges di�er across municipal utilities. For example, there are 30
municipalities in West Virginia whose minimum charge to consumers is zero,
while the highest minimum charge in our sample is at the municipality of
Sistersville where households have $39 per bill as the minimum charge.

V. and Tsitsi�i (2014) point out that assessment of minimum charges
is not socially fair. Fairness matters to consumers, especially fairness in
distribution is a concern in political philosophy. Apart from the income
level, all individuals should have access to water. In the scope of fairness
literature, consumers need to pay for water based on their ability to pay.
This is an issue that we try to address in this study by examining minimum
charges where households are obliged to pay a �xed charge per month to
have access to water. These charges generate a secure source of revenue for
the local water utilities that enable them to cover, for example, water losses
in their network.

Finally, we introduce the spatial aspect to models that explain water and
minimum access charges. We add geographic variables to investigate the spa-
tial implications of water charges. Commonly, municipal utilities located in
the same county or region will have similarities in their primary source of
water, topography, cost of living, etc. These similarities among municipali-
ties in a region may have e�ects on either water charges or minimum charge
determinants in a spatial framework.

Thus, this study contributes to the literature in three ways. First, we in-
troduce spatial characteristics to the model to determine the extent to which
neighboring municipal utilities in�uence the municipal water charges. Sec-
ond, we consider geography and morphology attributes in the water charges
model. Lastly, we test to see whether social equity considerations explain
minimum access charges to water provision. Previous studies related to the
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economy of water, introducing data, conceptual and empirical models will
be explained respectively. In the last two parts we provide the results and
end the research by discussion.

2 Literature Review

Among the studies on water issues include water pricing systems, ownership,
regulatory policies speci�cally on utilities, and social equity. Teresa and
Rodriguez-Ferrero (1998) argue that natural hydrological conditions require
application of a complex, integrated and highly developed water manage-
ment and pricing systems. From Susan and Teeples. (1996), who recommend
a hedonic cost function for water provided by public versus private, to Bae
(2007), who investigates institutional factors in�uencing the water pricing
system, there is a considerable amount of research evaluating water pricing
in the U.S. These pricing structures involve di�erent systems of either a uni-
form block rate, decreasing block rate, increasing block rate, or increasing
and declining block rate. There is a clear trend in water conservation policies
towards volumetric charging (David and Je�rey (2006). Katrin and Nauges
(2007), Alexandros and Zachariadis (2013), and Bill and Troy (2008) argue
that consumers accept practical incentives such as rebates or exchange of
high e�ciency type appliances more than price increases or water restriction
policies, while Mary and Archibald (1998) �nd that price-based policies are
as e�ective as non-price policies. Kenneth et al. (2014) is an example of
investigating a new water rate mechanism (increasing block rate water bud-
gets), which considers household-speci�c characteristics and environmental
conditions in setting a more e�cient block rate.

Goldstein Goldstein (1998) argues that potable water is an inexpensive,
virtually limit-less resource in many areas of the United States. According
to Goldstein, accessibility and availability of the water supply is the reason
why water cost is not a substantial concern. After 30 years of changes in
availability of water resources, the Goldstein argument of limit-less water
supplies in the U.S. is questionable (e.g. Tracy et al. (2015) note examples
in the western U.S.). The main recommendation of setting water charges
in a way that re�ects the full cost of providing water is still accurate and
valuable.

Many studies show that the di�erences in e�ciency between public and
private sectors are not statistically signi�cant. Renzetti 2004 is an example
of research that emphasizes a lack of evidence for di�erences in performance
of public versus private utilities. Teeples 1998 replicate three cost models of
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water delivery systems to compare ownership e�ciency. They �nd that as
speci�cation improves, di�erences between public and private water supplies
reduce to insigni�cance. This is the same result that Bel 2010. �nd - there
is no empirical evidence that private ownership is more e�cient than public
ownership utilities. 2012 points out that this result is not surprising because
of a wide range of di�erent circumstances in each case study.

Savenije (1998) argues that because a large investment (high �xed cost)
is needed to supply water at an economy of scale, water provision is a natu-
ral monopoly market. Residential water supply is also considered a natural
monopoly (Müller Müller (2015). As Holland (2006) points out, the owner
of a water supply system is interested in shrinking the deliveries in order to
increase the pro�t by a higher cost of water provided to customers. Govern-
mental regulation is required to control the monopoly structure of the water
market (Pahl-Wostl (2015)).

Barbara and Filippini (2001) estimate a water variable cost function in
the regulation of the Italian water industry at the provincial level applying
network characteristics. Although the authors did not have access to the
data, they recommend the inclusion of geographical and morphological vari-
ables in the cost function to achieve a more realistic result. They conclude
that the cost of labor, water loss, and service area characteristics are the
most in�uential factors in the water pricing mechanism. Using a stochastic
cost frontier approach, Cécile and Reynaud (2005) examine the e�ects of
regulation on the e�ciency of water utilities in Wisconsin. The motivation
for choosing Wisconsin is that utilities follow di�erent regulatory regimes
(e.g. price cap or rate-of-return). The authors �nd that regulatory regimes
a�ect utilities' e�ciency scores.

Bae (2007) separates the in�uential factors in a water supply cost into
four major categories: (1) institutional arrangements and characteristics,
(2) government regulations, (3) supply factors and characteristics, and (4)
natural environment and local characteristics. The maximum capacity of
water production and treatment, water sources, water loss during water pro-
duction, and pricing rate structures are the explanatory variables that Bae
(2007) uses to impose on the model for a sample of 259 utilities across the
U.S. He �nds that water rate regulations by the public utility commission
have a negative e�ect on water cost. While the author introduces natural
environment characteristics, he does so only by including a corresponding
variable in the empirical model for LCV index (League of Conservation Vot-
ers) to rank the states. High LCV index scores imply higher water cost.

Pahl-Wostl (2015) argues that it is inevitable that one role of government
within water management systems is to control for inequality and fairness.
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Consumer Utilities Advocacy Centre (2012) contends that social equity was
traditionally an important concern in the urban water pricing system, while
nowadays policies focus on di�erent aspects such as water e�ciency, �nan-
cial sustainability, and cost recovery. He recommends a two-part tari�: a
�xed supply charge and a variable charge. Based on household income or
other economic circumstances, the requisite social support policy should be
considered in a �xed charge.

Bakker (2001) discusses economic equity versus equalization in water pol-
icy. Distinguishing between these two concepts, he explains that according
to the equity principle, users should be charged according to their ability to
pay. Following Bakker by applying a Cobb-Douglas cost function, García-
Valiñas (1983) uses the same equity argument to propose a tari� rate which
achieves e�ciency, equity, �nancial aspects and/or public acceptability and
transparency. In this function, the author controls for water supplied, la-
bor and capital cost, and the length of the pipeline. In the �ve European
metropolitan cities studied by Bithas (2008), he argues that increasing block
rates do not promote social equity and recommends the number of members
in each household to be considered in setting water cost. Finally, the Organi-
zation for Economic Co-operation and Development recommends that water
bills not exceed 3-5% of annual household income (OECD (2003); OECD
(2010)).

3 Models

As motivated by Bae,2007 the general form of a model that explains water
charges to customers from a municipal water utility can be written as:

WCit = f(Qit, Init, Enit, Geit) (1)

where (WC) is the water charges for a �xed volume of water that cus-
tomers pay in return for provision of water; (Q) is the quantity of water sold
to all the customers of a water utility; (In) is a vector of institutional and
cost of providing service characteristics of water utilities; (En) is the index
of water quality; and (Ge) is geographical characteristics of the sample.

Following Kim (1987), Kim Kim (1988), Fabbri and Fraquelli (2000), Fu-
mitoshi and Urakami (2007), Filippini (1983), and Ansink and Houba (2012),
we control for both economies of size and scale to account for quantity of
water sold. Each of these studies distinguish between output scale and net-
work scale e�ects (economies of size and scale). In the institutional category,
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we utilize variables of primary water source (i.e. ground water, surface wa-
ter, or purchased water), network line length, long term debt, and volume of
water loss in water production cycles. Bae (2007) controlled for di�erent wa-
ter right doctrines (i.e. riparian rights versus prior appropriation), di�erent
ownerships for water supply (i.e., public water versus private water systems),
and di�erent pricing mechanisms (i.e. uniform rates, increasing block rate,
or decreasing block rates). Our observations are within a single state where
more than 80 percent of all municipal water utilities follow a declining block
rate structure. Since there is no signi�cant heterogeneity in block rates, our
�nal estimation does not control for this variable.

Although regulated by theWest Virginia Bureau of Public Health (WVBPH),
the quality of water provided by each municipal utility di�ers depending
upon the number of violations to drinking water standards. We introduce
two variables to re�ect violations during 2014: 1) the number of violations
reported for each water utility, and 2) a dummy variable as an indicator
of having a water violation or not. Out of 125 observations, 72 municipal-
ities did not have any reported violations in 2014. Finally, in geography
category, we include variables re�ecting elevation changes and di�erences in
slope within a municipality's boundary along with population density. Table
1 shows the explanatory variables in each category.

Table 1: Categorization of explanatory variables

Variable Category

Sold water (million gallons) Quantity
Sold water per customer (million gallons) Quantity
Network length (miles/customer) Institutional
Debt ($1,000/customer) Institutional
Water loss (%) Institutional
Groundwater as source Institutional
Violations (number in 2014) Institutional
Elevation di�erence (ft) Geographical
Average slope (%) Geographical
Population density (person/sq. mile) Geographical

Based on equation (1), an empirical equation for water charges can be
written as:



8/32

WCi =β0 + β1Linei + β2Soldi + β3Sold
2
i + β4SoldPCi + β5SoldPC

2
i

+ β6Debti + β7Lossi + β8Groundi + β9PopulationDi

+ β10PopulationD
2
i + β11V iolationi + β12ElevationDifi + εi

(2)

However, as pointed out by Hervé and Vermersch (1989) and Filippini (1983),
estimation of a translog variable cost function with a high number of explana-
tory variables can lead to multicollinearity problems. Thus, we examine three
functional forms for the water charges model: a linear with quadratic vari-
ables, a Cobb-Douglas (log of dependent and independent variables), and a
spatial model.

Our approach here is to �rst estimate a model for water charge and
then by controlling for spatial spillovers, we estimate another model in a
spatial framework. According to James and Pace (2009) and Elhorst (2014),
under non-spatial econometric estimation, observed values do not depend on
location. They are independent points and therefore there is no correlation
between them and their neighbors. However, LeSage and Pace James and
Pace (2009) explain that in the case of spatial dependency: �In contrast to
point observations, for a region we rely on the coordinates of an interior
point representing the center (the centroid). An important point is that
in spatial regression models each observation corresponds to a location or
region�. In non-spatial models, each observation has a mean of xiβ and a
random component εi where the observation i represents a region or point
in space at one location and is considered to be independent of observations
in other locations. In other words, independent or statistically independent
observations imply that E(ε(i)εj) = E(εi)E(εj) = 0. This assumption of
independence greatly simpli�es models.

In most cases this assumption is not applicable and observations in di�er-
ent points or regions are dependent LeSage and Pace 2009. Suppose we have
two neighbors (regions) i and j. If these two regions are spatially correlated
and normality for error terms is assumed, then:

yi = ρiyj + xiβ + εi (3)

yj = ρjyi + xjβ + εj (4)

where the dependent variable in neighbor j in�uences the dependent variable
in neighbor i and vice versa. After examining spatial dependency of our
dependent variable with a Moran's I test1 (Moran's i index = 0.113, P-value

1For more information, please see Li et al. (2007).
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= 0.030), this result show spatial dependency and the need to apply spatial
econometrics modeling.

There are �ve di�erent spatial models. The �rst is the spatial autoregres-
sive lag model (SAR) as shown in equations 3 and 4. Spatial Error Model
(SEM) assumes dependency in error term. A SLX model or spatial lag of
explanatory variable assumes that only explanatory variables play a direct
role in determining dependent variables. Lastly, the Spatial Durbin Model
(SDM) and Spatial Error Durbin Model (SDEM) include spatial lags of the
explanatory variables as well as the dependent variable and a spatial lag of
the explanatory variables (WX) along with spatially dependent disturbances.

All spatial models have a weight matrix (W), which quanti�es the con-
nections between regions. Elhorst (2014) names the weight matrix as a tool
to describe the spatial arrangement of the geographical units in the sam-
ple. There are variety of units of measurement for spatial dependency such
as neighbors, distance, and links (Getis (2007)). The spatial weight matrix
is based on the distance between municipalities. In this study, we applied
seven nearest-neighbors weight matrix2 . Spatial econometric models are
estimated using software codes provided by Donald Lacombe3 .

For the minimum monthly access charge model, we include variables
re�ecting cost, social equity, municipal governance, city size, and �xed cost
considerations. Brown (2007) explains that minimum charges are established
to provide an essentially guaranteed base revenue stream for the utility. V.
and Tsitsi�i (2010) argue that the determination of the �xed charge has to be
based on the actual water charge. Besides water charge, we introduce social
demographics of a municipality such as percentage of elderly population,
median household income, and percentage of population below the poverty
level to the minimum charge equation to see whether these socioeconomic
characteristics in�uence the minimum monthly charge for access to water
provision.

The general form for a minimum access charge equation for water provi-
sion is:

MMCi = f(WCi, SEi, SMi, CSi,WLi) (5)

where (MMC) stands for the minimum monthly charge set by the municipal
water utility i, (WC) is the water charge, and (SE) shows the socioeconomic
factors as indicators of social equity concerns in�uencing minimum charges.

2Lesage and Pace (2010) argue that the con�guration of the spatial weight matrix
matters very little

3Available at: http://myweb.ttu.edu/dolacomb/matlab.html
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SM is a dummy variable to describe municipality governance. This vari-
able is included in the minimum monthly access charge model to examine
whether local politics in�uenced this charge. A �strong� mayor-council type
of government is compared to a �weak� mayor-council and council-manager.
Under a �strong� mayor-council government, a mayor is elected separately
and has substantial administrative and budgetary authority above the coun-
cil (National League of Cities 2013). It is hypothesized that a �strong� mayor
type of government would result in more political pressure to keep minimum
charges low relative to a �weak� mayor or council-manager. There is some
evidence in the literature that the existence of a �strong� mayor inhibits the
implementation of policies such as market-based ideas within municipalities
(Krebs and Pelissero (2010), Bae (2013)).

The CS variable measures the e�ect of city size on minimum monthly
water charge. As we explained earlier, minimum charge represents a �xed
proportion of the water charge that each residential household customer
must pay regardless of their water consumption. Since West Virginia is a
small, mostly rural state, there are few large cities (only one over 50,000
in population). Thus, the size variable utilized was a distinction between
class II municipalities (10,000 to 50,000 in population) versus class III and
IV municipalities (less than 10,000). The logic for this variable is that larger
municipalities imply a greater tax base from which there may be an increased
ability of the municipality to absorb losses that might be incurred from lower
minimum monthly access charges. Lastly, we include a variable to measure
water loss (WL). The WL variable examines whether �xed costs like water
losses in�uence the minimum water charge.

The empirical model for minimum monthly access charges is:

MCi = β0+β1WCi+β2PCIi+β3SRi+β4HOi+β5SMi+β6CSi+β7Li+εi
(6)

where (PCI) is average per capita income; (SR) is the percentage of house-
holds with one or more above 65-year-old; and (HO) is the percentage of
households own a house unit. To avoid a simultaneity issue, predicted water
charges from equation 2 are utilized for MC since both water charges and
minimum charges are proposed simultaneously by water utilities to the WV
PSC. We conducted robustness checks with the socioeconomic and demo-
graphic characteristics by examining di�erent combinations of these variables
in models.
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4 Data

Data for this research are primarily based on the annual reports submitted
to the WVPSC by municipal water utilities in West Virginia. These annual
reports for water utilities are available through WVPSC website4 and data
were collected for 2014. These reports contained numerous missing values
� mostly for total treatment capacity, total main line, total long term debt,
and water source. According to the WVPSC, there is no obligation for
utilities to provide the information in their annual report. Thus, additional
information was gathered through email and phone calls to utility personnel
about missing data or when information in a report seems questionable.

Additionally, water quality violation data are based on the 2014 annual
report of environmental engineering division of the WVBPH. The report in-
cludes violations for: maximum contaminant level, monitoring/reporting, or
treatment technique which were submitted throughout the year. The Natural
Resource Analysis Center at West Virginia University provided the neces-
sary topography data within municipality boundaries, maximum elevation,
minimum elevation, elevation di�erence, and the average slope. Municipal
population size is derived from the 2014 population estimates of the U.S.
Census Bureau 2015.

A total of 14 cities in West Virginia have a population greater than
10,000, nine of these municipalities are in our data base. For local gover-
nance, historically, most municipalities in West Virginia have implemented
a mayor-council type of government (Richard et al. (1996)). This type of
government was selected as the base and compared to a strong mayor type.
Municipalities with a strong mayor were determined from an on-line search of
municipal government web pages and a description of their governing struc-
ture. Of the 125 municipalities in the database, only nine have a strong
mayor type.

For the log-log models, a value of 0.1 is used to replace zeros in all
variable observations of zero with the exception of the violations variable.
This allowed for conversion of variables to log values at a small value close
to zero. Since the violations variable is expressed as integers only, we added
+1 to the current values.

Tables 2 and 3 show the data summary statistics and expected coe�-
cient signs for the independent variables in the water charge and the min-
imum monthly access charge models. Due to considerations of economies
of size and scale, negative coe�cients are expected for population density,

4Available at: http://www.psc.state.wv.us/Annual_Reports/default.htm
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Table 2: Summary statistics of variables used in the water charge model

Variable Mean Standard Min Max Expected
Deviation sign of

coe�cient

Water charges ($) 38.71 11.88 13.26 71.89
Network length 0.04 0.27 0.001 3.10 +
(miles/customer)
Sold water 137.34 295.26 13 11,374 -
(million gallons)
Sold water per customer 0.06 0.08 0.002 0.83 -
(million gallons)
Debt ($1,000/customer) 1.52 1.42 0 6.03 +
Water loss (%) 24.59 17.23 0 92.32 +
Groundwater as source 0.26 N/A 0 1.00 -
Population density 1,316.60 786.37 125.94 5,778.89 -
(person/sq. mile)
Violations 2.46 5.15 0 34 -
(number in 2014)
Elevation di�erence (ft) 452.92 234.11 71.99 1285.03 +
Average slope (%) 18.834 11.175 4.62 55.82 +

water sold, and the water sold per customer. We expect a positive coe�cient
for main line length due to added infrastructure costs. Since ground water
typically requires less treatment than surface water, we expect a negative
coe�cient for the ground water source variable. Also, the violation coe�-
cient is expected to be negative as the number of violations stem from lower
quality source water and less treatment. To control for the degree of eleva-
tion changes within the utility service area, we introduce two topographic
variables: di�erence between maximum and minimum elevation and average
percent slope (Feinerman et al. (2016)). We expect both to have negative
coe�cients - more changes in topography, the higher the cost of providing
water due to higher costs of water transmission in hilly areas.

For the minimum monthly access charge equation, we expect a positive
sign for water charge. If social equity matters in setting minimum water
charges, then income, education, and home ownership variables are expected
to have positive coe�cients. Also with social equity concerns, the percent
of residents who are below the poverty line and the percentage of elderly
households both should have negative impacts on minimum charges.
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Table 3: Summary statistics of variables used in the minimummonthly access
charge

Variable Mean Standard Min Max Expected
Deviation sign of

coe�cient

Minimum monthly 20.99 7.11 3.87 39
charge ($)
% HHs with 1 and 31.32 7.99 10.34 49.53 -
>1 older than 65
Percentage of -
population (%) 17.62 5.82 4.60 37.50
older than 65
Median Income ($) 34,892.09 12,263.78 12,344 106,250 +
Per capita Income ($) 19,719.85 6,473.85 4,472 64,099 +
Percentage below (%) 22.61 9.96 0.1 55.3 -
poverty rate
Percentage of home (%) 67.44 12.96 29.90 92.70 +
ownership
Percentage of bachelor (%) 14.64 10.32 0.1 65.80 +
degree or higher
Class II municipalities 0.06 N/A 0 1 -
Strong Mayor 0.04 NA 0 1 -
Water loss (%) 24.59 17.23 0 92.32 +
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5 Results

We estimate regressions using water charge per 4,500 gallons and the min-
imum monthly access charge as dependent variables. Institutional, govern-
mental, geographical, environmental, and socioeconomic factors are inde-
pendent variables. For the water charges model, ten di�erent speci�cations
are estimated. The �rst six one are linear functional form (Table 4) and
the remaining four are in log-log form (Table 5). Variables that are highly
correlated with the number of customers are altered to per capita to avoid
multicollinearity (network length, sold water, debt).

In the water charges model with a linear function form, coe�cient p-
values consistently below 0.05 are: sold water per capita; total debt; ground-
water as a water source, and population density (Table 4). The network
length variable has a coe�cient with p-values under 0.10, while water loss,
elevation di�erence and violation variable coe�cients consistently have p-
values much above 0.05 (Table 4). Our expectations for positive coe�cient
signs on geographical variables (elevation di�erence and slope) and negative
coe�cient signs for violation variables are not met by the linear functional
form models, however, their p-values are all above 0.10.

To interpret the results from Model 1, a one person increase per square
mile will decrease the water charge by $0.01. Although based on the quadratic
form of population density, this is true up to a certain point (5000 peo-
ple/square mile), after this point, population density will actually start to
increase water charges. Other interpretations of 4,500 gallon charges include:
increasing the total long-term debt by one thousand dollars per customer will
increase this charge by $1.84, use of groundwater as a primary water source
reduces this charge by $5.11, and an increase of one mile in main line length
per customer will increase this charge by $5.20.

The log-log (Cobb-Douglas) functional form coe�cients reported in Table
5 correspond to elasticities. The coe�cient sign results match the linear
functional form results for all variables. Variable coe�cients with p-values
below 0.05 include: sold water, debt, and groundwater. Model 7 has the
highest F-statistic value and we continue our interpretation based upon this
model. Among all the determinants, groundwater as a water source has the
largest impact on water charge. When groundwater is source of water for
a municipal utility, the water charge to household customers is 17% lower
compared to utilities with surface or purchased water as their primary water
source. For 1% changes in the quantity of sold water and long-term debt,
water charges are reduced 6% and increased 2%, respectively.

To choose the most representative weight matrix for the data, we test
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di�erent sets of nearest neighbor relationships. The seven nearest neighbors'
weight matrix has the highest log likelihood value among the eight matri-
ces examined. Since log-likelihood has the power to compare the models,
this test guides us to our particular speci�cation (Kalenkoski and Lacombe,
2013). Table 6 shows the result of choosing the most appropriate weight
matrix.

To examine spatial correlation among observations, we utilize �ve di�er-
ent spatial models (i.e. SAR, SEM, SDM, SDEM, and SLX). Table 7 shows
the results for the SAR model since this model is the only one with a signif-
icant spatial component. We report the other speci�cations in Appendix I.
Model 1 speci�cation is used in a spatial framework because among all the
linear and log-log functional forms, this model has the highest adjusted R2.
In the SAR model, there is a positive and statistically signi�cant spillover ef-
fect. This result means that water charges in neighboring municipal utilities
have positive spillover e�ects on the water charge of a particular municipal
utility. In other words, since water charges are spatially dependent, if charges
increase in a neighboring municipal j, then water charges in municipal i will
increase as well. Compared to Model 1 results in Table 4, the magnitude of
the direct e�ects in Table 7 are similar to the coe�cients for each variable.
While none of the indirect e�ects have p-values even close to 0.10, the total
e�ect impacts in the SAR model have an increased magnitude of impact on
water charges. For example, groundwater as a water source has an estimated
total impact of reducing water charges by $6.45 in the SAR model compared
to the linear model estimate of $5.11.

Finally, for the minimum monthly charge model, we specify a linear
functional form in estimating coe�cients. Since education, percent below
poverty, and income variables are highly correlated, we run four di�erent
regression models to control for these factors in separate models (Table 8).
Examining Model A, predicted water charge has a positive coe�cient with a
very small p-value. On average, minimum monthly access charges incorpo-
rate about 40% of the municipal utility's 4,500 gallon charge. Socioeconomic
factors included in this model are households with one or more residents over
65, per capita income, and home ownership rate. All of these variable coe�-
cients have p-values well above 0.10. Strong mayor has a coe�cient p-value
slightly below 0.10 with a negative impact on minimum charge, about $4.50
per month. The water loss coe�cient has a p-value at 0.10 and shows a slight
rise in minimum charge ($0.01) for each additional 1% water loss. The vari-
able for municipal size (class II municipalities) does not impact minimum
charges. None of the four models have coe�cients for elderly or poverty
variables with p-values below 0.05 (Table 8). Overall, the results of these
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Table 4: Results of the water charges model in linear functional form

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Network length 5.20 5.25 5.64 5.69 5.98 4.32
(0.096) (0.094) (0.071) (0.070) (0.065) (0.176)

Sold water (000) -8.82 -8.52 -11.30 -10.95 -12.72 -10.42
(0.282) (0.301) (0.175) (0. 190) (0.131) (0.216)

Sold water2 (000) 0.0007 0.0006 0.0014 0.0013 0.0023 0.0012
(0.859) (0.879) (0.721) (0.743) (0.577) (0.756)

Sold water pc -126.40 -130.11 -124.44 -128.17 -125.77 -4.17
(0.006) (0.004) (0.007) (0.006) (0.008) (0.704)

Sold water pc2 147.79 152.02 145.24 149.51 148.44 -
(0.006) (0.005) (0.007) (0.006) (0.008)

Debt 1.84 1.82 1.83 1.81 2.04 1.72
(0.002) (0.003) (0.002) (0.003) (0.001) (0.005)

Water loss 0.05 0.05 0.05 0.05 0.04 0.07
(0.281) (0.25) (0.305) (0.282) (0.371) (0.140)

Groundwater (%) -5.11 -4.98 -5.61 -5.48 -5.56 -5.13
(0.008) (0.011) (0.003) (0.005) (0.005) (0.010)

Population -10.01 -10.20 -9.87 -10.06 -2.25 -10.22
density (000)

(0.000) (0.000) (0.000) (0.000) (0.063) (0.000)
Population 0.002 0.002 0.002 0.002 - 0.002
density2 (000)

(0.002) (0.001) (0.002) (0.002) (0.002)
Violations 0.17 - 0.16 - 0.24 0.20

(0.323) (0.332) (0.172) (0.253)
Violations dummy - 1.07 - 1.07 - -

(0.567) (0.573)
Elevation di�erence -0.006 -0.006 - - -0.005 -0.007

(0.110) (0.121) (0.201) (0.082)
Average slope - - -0.10 -0.10 - -

(0.206) (0.226)
Constant 55.54 55.88 54.86 55.19 48.92 49.54

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Adj. R2 0.32 0.32 0.32 0.28 0.27 0.27
F-statistic 5.91 5.82 5.78 5.95 5.17 5.43
Number of 125 125 125 125 125 125
observations

Note: P-values in parenthesis
pc: per customer
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Table 5: Results of the water charges model in log-log (Cobb-Douglas) func-
tional form

Variable Model 7 Model 8 Model 9 Model 10

Network length 0.015 0.15 0.20 0.21
(0.623) (0.624) (0.511) (0.514)

Sold water (000) -0.06 -0.06 -0.06 -0.06
(0.022) (0.023) (0.010) (0.011)

Sold water pc -0.06 -0.06 -0.05 -0.05
(0.300) (0.278) (0.337) (0.311)

Debt 0.02 0.02 0.02 0.02
(0.008) (0.009) (0.009) (0.010)

Water loss 0.003 0.003 0.004 0.005
(0.875) (0.875) (0.807) (0.802)

Groundwater -0.17 -0.17 -0.18 -0.18
(0.002) (0.002) (0.001) (0.001)

Population density -0.08 -0.08 -0.07 -0.07
(0.094) (0.080) (0.129) (0.113)

Violations 0.03 - 0.03 -
(0.208) (0.203)

Violations dummy - 0.05 - 0.05
(0.339) (0.341)

Elevation di�erence -0.05 -0.05 - -
(0.256) (0.261)

Average slope - - -0.03 -0.03
(0.457) (0.488)

Constant 4.72 4.7 4.4 4.6
(0.000) (0.000) (0.000) (0.000)

Adj. R2 0.26 0.26 0.26 0.25
F-statistic 5.92 5.81 5.80 5.69
Number of observations 125 125 125 125

Note: P-values in parenthesis
pc: per customer
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Table 6: Log-likelihood values for nearest neighbor weight matrices

Nearest neighbor weight matrix Rho Value Log-likelihood value

knn = 1 0.034 -404.9399
knn = 2 0.055 -404.9098
knn = 3 0.123 -404.3130
knn = 4 0.179 -403.7208
knn = 5 0.147 -404.3005
knn = 6 0.199 -403.8745
knn = 7 0.234 -403.6541
knn = 8 0.202 -404.2045

models show that socioeconomic factors within municipal populations do not
contribute to equity considerations explaining variations in municipal utility
minimum charges.

The minimum monthly access charge model also is examined for spatial
impacts. We repeat the same procedure as the water charge model in order
to choose the most appropriate weight matrix (Table 9). The seventh nearest
neighbor weight matrix has the highest log-likelihood, so that we continue
the rest of spatial econometric estimations based upon in�uences from the
seventh nearest neighbors. The results of the SAR and SEM estimations
(the only two spatial models with a signi�cant spatial component) for Model
A are presented in Table 10. The results for the other three spatial models
are presented in Appendix II.

Among the explanatory variables, again only water charge has a coef-
�cient with a p-value below 0.05 (Table 10). Water charges have positive
e�ects on the minimum monthly access charges (both direct and indirect in
the SAR model). This result means that predicted water charges in munic-
ipal i in�uence not only the minimum water charge in municipal i, but also
in�uence the minimum water charge in neighboring j municipalities. This
spillover e�ect from water charges is about 1/3 the size of the direct e�ect.
Also, the SEM model result shows that there are some signi�cant spillover ef-
fects of variables that are not explicitly modeled (error term). Except for the
negative total e�ect by strong mayor, none of the other variable coe�cients
in Table 10 show evidence of statistical signi�cance.
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Table 7: Results of the SAR model estimation for Model 1

Variable Direct e�ect Indirect e�ect Total e�ect

Network length pc 5.15 1.87 7.03
(0.087) (0.442) (0.131)

Sold water (000) -8.33 -2.15 -10.48
(0.285) (0.544) (0.315)

Sold water2 0.0004 0.00007 0.0005
(0.915) (0.992) (0.936)

Sold water pc -125.33 -44.37 -169.71
(0.004) (0.368) (0.026)

Sold water pc2 146.86 51.88 198.75
(0.004) (0.366) (0.025)

Debt pc 1.84 0.65 2.50
(0.001) (0.347) (0.015)

Water loss 0.05 0.02 (0.07)
(0.234) (0.511) (0.273)

Groundwater -4.83 -1.61 -6.45
(0.008) (0.339) (0.020)

Population density (000) -9.87 -2.59 -12.46
(0.000) (0.336) (0.009)

Population density2 (000) 0.002 0.0004 0.0022
(0.001) (0.346) (0.015)

Violation 0.15 0.04 0.20
(0.346) (0.590) (0.378)

Elevation di�erence -0.005 -0.001 -0.007
(0.126) (0.432) (0.157)

Constant - - 45.45
(0.000)
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Table 8: Results of the minimum monthly access charge model

Variable Model A Model B Model C Model D

Predicted Water Charge 0.39 0.39 0.4 0.4
per 4,500 gal (0.000) (0.000) (0.000) (0.000)
Household with one or 0.04 -0.04 - -0.04
more older than 65 (0.638) (0.647) (0.639)
Percentage of population - - 0.01 -
older than 65 (0.926)
Per capita income (000) -0.04 - -0.04 -

(0.658) (0.662)
Median HH income (000) - 0.21 - -

(0.625)
Bachelor degree or more - - - -0.007

(0.911)
Home ownership rate 0.06 0.04 0.07 0.06

(0.264) (0.433) (0.169) (0.234)
Percent below poverty - - - 0.03

(0.603)
Class II municipalities -1.20 -1.38 -1.25 -1.12

(0.645) (0.587) (0.606) (0.662)
Strong Mayor -4.55 -4.49 -4.48 -4.60

(0.095) (0.099) (0.101) (0.099)
Water loss 0.01 0.01 0.01 0.01

(0.100) (0.105) (0.733) (0.749)
Constant 1.02 0.45 1.45 -1.07

(0.823) (0.927) (0.764) (0.860)
Adj. R2 0.19 0.19 0.19 0.19
Number of observations 125 125 125 125

Note: P-values in parenthesis
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Table 9: Log-likelihood values for nearest neighbor weight matrices

Nearest neighbor weight matrix Rho Value Log-likelihood value

knn = 1 0.150 -357.555
knn = 2 0.182 -358.487
knn = 3 0.228 -358.004
knn = 4 0.273 -357.449
knn = 5 0.267 -358.586
knn = 6 0.316 -357.826
knn = 7 0.330 -357.375
knn = 8 0.246 -359.640

Table 10: Results of the minimum monthly access charge model

Variable Direct e�ect Indirect e�ect Total e�ect

Predicted Water Charge 0.33 0.11 0.44 0.39
per 4,500 gal (0.000) (0.000) (0.000) (0.000)
Household with one or 0.03 0.01 0.04 0.04
more older than 65 (0.524) (0.589) (0.534) (0.649)
Per capita income (000) -0.04 -0.02 -0.06 -0.028

(0.710) (0.759) (0.720) (0.746)
Home ownership rate 0.04 0.01 0.05 0.06

(0.238) (0.368) (0.259) (0.230)
Class II municipalities -1.68 -0.68 -2.37 -0.38

(0.647) (0.708) (0.659) (0.824)
Strong Mayor -4.62 -1.70 -6.33 -4.04

(0.118) (0.276) (0.099) (0.115)
Water loss 0.006 0.001 0.007 0.001

(0.855) (0.898) (0.864) (0.959)
Constant - - -5.25 1.51

(0.31) (0.736)

Note: P-values in parenthesis
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6 Conclusions

Previous studies on water cost estimation have neglected both geography
and spillover aspects regarding factors explaining the cost of providing wa-
ter, although some researchers explicitly recommend controlling for these
variables (Barbara and Filippini (2001)). As discussed earlier, the main goal
of this study is �rst to estimate the in�uences of primary factors on water
charges and secondly, to estimate the determinants of minimum monthly
access charges across municipalities in West Virginia. Our estimation of
the water charge model show that the quantity of water sold per customer,
population density, ground water as a primary source of water, and utility
debt source are the most important explanatory factors for residential water
charges. In addition, main line length is sometimes an in�uential factor to
explaining water charges.

The addition of geographic variables of elevation di�erence and slope
did not have their expected impact on water charges. There are a couple
of explanations for this result. First, the locations water utility plants are
unknown and if it is located in an area with minimum elevation, the cost of
transmission would be larger than when it is located in a maximum elevation
area. Secondly, water utility boundary of service may be di�erent than the
municipal boundary, which could in�uence the result. Utility boundary data
are not accessible to the public.

From our model results, groundwater as a water source lowers water
charges by about $5 to $6 per 4,500 gallons (approximately a 15% reduction
in customer cost). This result demonstrates the importance of protecting
groundwater quality with source water protection programs. According to
Environmental Protection Agency, states, local governments, and utilities
all play important roles in water protection programs. Providing a wellhead
protection program for ground water and watershed management programs
for surface water are among services that states o�er to water utilities.

In West Virginia, implementation of the wellhead protection program
began in the early 1990's as a part of ground water protection strategy
to encourage utilities to develop protection and management plans. The
WVBPH assesses all of West Virginia's public water systems and creates
polices to provide clean and safe drinking water. Our water charge model
results provide the basis for a rough estimate of the bene�ts from ground
water protection. Allowing for a $5 saving for each 4,500 gallons of use,
the over 240,000 households in West Virginia served by municipalities using
groundwater have an annual cost savings of $3.6 million in their water charges
compared to other water sources.
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Similar to Bae 2007, we �nd that utility debt also impacts water charges.
For every $1,000 of utility debt, water charges increase by about $2 per
4,500 gallons. Given the mean of debt per customer and 4,500 gal of water
use monthly, utility debt adds about $36 to the annual household water
bill (about an 8% increase). This result demonstrates the importance of
grant versus loan �nancing to utilities. As reported by the Environmental
Finance System , di�erent organizations provide long term �xed low-interest
loans to rural areas and low-income communities to help them to increase
the water quality. Prior to the 1987 amendments to the Clean Water Act,
municipal utility assistance was provided through grants with the federal
government picking up 55% of project cost. This amendment changed grants
to low-interest rate loans. This change means that now local governments
are responsible for 100% of projects' cost (Copeland (1999)). This societal
change of replacing the federal government grants to municipal utilities with
low-interest loans has increased long term utility debt, which has increased
water charges to customers.

The population density variable has a negative e�ect on water charges
in all model speci�cations, which means more dense areas have lower wa-
ter charges. Given the quadratic speci�cation, this negative impact occurs
only up to a certain point (5,000 people/square mile). This is also true for
the total water sold to customers. In other words, although municipalities
in West Virginia are small, size and scale impacts are still found in small
municipalities.

In addition, there are modest, but statistically signi�cant (evaluated at
a p=0.05 or lower) levels of spatial autocorrelation in both models among
West Virginia municipal water utilities in terms of water charges and min-
imum monthly access charges. This result shows that both these pricing
decisions are in�uenced by neighboring utilities. While none of the variables
in the water charges model had statistically in�uential, indirect impacts,
water charges in the minimum monthly access charge model had a positive
indirect impact with a p-value below 0.10. Thus, an increase in water charges
in municipal utility i leads not only to a higher minimum charge in munic-
ipality i, but also higher minimum charges in neighboring j municipalities
due to positive spillover e�ects.

When examining minimum charges, there is some evidence that utilities
located in strong mayor governing system assess lower minimum charges
than other municipalities. Overall, minimum charges are closely related
to water charges � incorporating about 40% of the water charge for 4,500
gallons into the minimum charge. To examine the share of household income
taken up by water charges in West Virginia municipalities, we calculated the
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average water use for each household multiplied the water charge and divided
by the average household income. On average, West Virginia households
pay far below the OECD standard of 3% to 5% of household income for
water. Our results indicate that the average share of water costs across
West Virginia households with municipal water utilities is 1.5% of household
income devoted to water charges with a maximum share being 4%. With such
reasonable costs of water for households, this could be a factor explaining
why our models �nd no signi�cant e�ects from socioeconomic factors on
monthly minimum charges for access to water.
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Appendix 1 - Estimation results for SEM, SDM, SLX, and SDEM models

Variable SEM SDM SLX SDEM

Network length pc 5.34 4.64 4.64 4.7
(0.064) (0.000) (0.161) (0.10)

Sold water (000) -6.86 -6.96 -6.92 -6.78
(0.219) (0.325) (0.451) (0.395)

Sold water square (000) 0.0006 -0.0006 -0.0006 -0.0007
(0.843) (0.863) (0.889) (0.852)

Sold water pc -123.33 -157.10 -156.98 -157.57
(0.000) (0.000) (0.001) (0.000)

Sold water pc square 145.40 187.19 178.11 178.11
(0.000) (0.000) (0.002) (0.000)

Debt pc 1.81 2.01 2.01 2.00
(0.001) (0.000) (0.002) (0.000)

Water loss 0.08 -0.03 0.04 0.03
(0.222) (0.398) (0.478) (0.424)

Ground water -5.13 -5.004 -5.005 -4.96
(0.005) (0.004) (0.022) (0.009)

Population density (000) -9.15 -9.15 -9.16 -9.18
(0.000) (0.000) (0.001) (0.000)

Population density square (000) 0.002 0.002 0.016 0.016
(0.001) (0.002) (0.009) (0.002)

Violation 0.14 0.09 0.09 0.095
(0.357) (0.554) (0.607) (0.563)

Elevation di�erence -0.005 -0.004 -0.004 -0.004
(0.136) (0.311) (0.381) (0.328)

Constant 54.70 70.94 70.54 71.00
(0.000) (0.000) (0.000) (0.000)

rho - 0.005 - -
(0.962)

Lambda 0.18 - - -0.05
(0.221) (0.767)

W* Network length pc - -4.82 -4.85 -4.47
(0.000) (0.567) (0.529)

W* Sold water (000) - 4.08 4.6 4.92
(0.856) (0.882) (0.823)

W* Sold water square (000) - -0.01 -0.01 -0.01
(0.349) (0.445) (0.320)

W* Sold water pc - -197.44 -196.18 -203.04
(0.000) (0.253) (0.000)

W* Sold water pc square - 186.88 185.58 191.23
(0.000) (0.326) (0.000)

W* Debt pc - 1.97 1.95 2.03
(0.200) (0.296) (0.190)
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continued- Appendix 1 - Estimation results for SEM, SDM, SLX, and SDEM
models

Variable SEM SDM SLX SDEM

W* Water loss - -0.07 -0.07 -0.06
(0.536) (0.643) (0.620)

W* Ground water - 0.68 0.72 -0.36
(0.014) (0.88) (0.927)

W* Population density (000) - -5.57 -5.44 -5.78
(0.274) (0.506) (0.421)

W* Population density square (000) - 0.001 0.01 0.001
(0.453) (0.553) (0.472)

W* Violation - 0.58 0.58 0.57
(0.332) (0.426) (0.342)

W* Elevation di�erence - -0.003 -0.003 -0.003
(0.645) (0.765) (0.716)

R- square 0.37 0.44 0.44 0.44
Number of observations 125 125 125 125
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Figure 1: Map of West Virginia municipal utilities and their 2014 water
charges.
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Appendix 2 - Estimation results for minimum water charge SDM, SLX, and
SDEM models

Variable SDM SLX SDEM

Predicted Water Charge per 4,500 gal 0.36 0.37 0.36
(0.000) (0.000) (0.000)

Household with one or more older than 65 0.04 0.04 0.05
(0.619) (0.682) (0.563)

Per capita income (000) -0.008 0.008 0.027
(0.932) (0.921) (0.759)

Home ownership rate 0.06 0.06 0.05
(0.955) (0.340) (0.377)

Class II municipalities -1.02 -1.06 -1.20
(0.135) (0.658) (0.609)

Strong Mayor -4.56 -5.01 -4.75
(0.368) (0.073) (0.072)

Water loss 0.007 -0.006 -0.007
(0.825) (0.855) (0.823)

Constant 8.51 9.38 8.60
(0.620) (0.609) (0.643)

Rho 0.24 - -
(0.097)

Lambda - - 0.12
(0.198)

W* Predicted water charge -0.04 0.06 0.07
(0.718) (0.952) (0.897)

W* Household with one or more older than 65 -0.04 -0.23 -0.01
(0.760) (0.860) (0.860)

W* Per capita income -0.03 -0.04 -0.04
(0.750) (0.725) (0.720)

W* Home ownership rate -0.01 -0.01 -0.01
(0.627) (0.603) (0.615)

W* Class II -10.29 -11.40 -11.16
(0.112) (0.095) (0.112)

W* SM -2.27 -4.77 -6.52
(0.639) (0.454) (0.374)

W*water loss 0.064 0.07 0.06
(0.408) (0.365) (0.435)

R- square 0.28 0.28 0.29
Number of observations 125 125 125
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