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This paper applies a multi-step semiparametric stochastic production frontier estimator proposed by Yao
et al. (2017) to investigate the effects of economic freedom on the production frontier and technical effi-
ciency. We allow output elasticities and technical efficiency to depend on the economic freedom variable,
estimate a smooth coefficient stochastic production frontier, and compare with parametric alternatives,
the Cobb-Douglas and translog estimates. Our results add to the literature on economic freedom and
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1. Introduction

In recent decades, the creation of cross-country measures of economic and political institutions has led

to a large literature on the effect of institutions on growth. One measure of economic institutions is the

Economic Freedom of the World (EFW) index by Gwartney et al. (2015). The EFW index has been used

as a measure of institutions in hundreds of studies in economics and related disciplines (Hall & Lawson,

2014). By far the most frequent relationship of interest to economists has been the impact of institutions

on growth. The very first major empirical paper using the EFW index was on this question (Easton &

Walker, 1997) and subsequent years have seen dozens of papers written on the economic freedom/growth

relationship. Gwartney (2009) summarizes what is known about the relationship between economic

freedom and growth in his presidential address to the Southern Economic Association.1

We investigate the mechanism through which economic freedom can affect economic performance,

measured by a country’s technical efficiency, or deviation from the production frontier. If information

on price is available together with an appropriate behavioral assumption on cost minimization or profit

maximization, then one can also consider allocative efficiency. For example, in the input selection case,

allocative efficiency entails selecting the mix of inputs that produce a given output with given input prices

at minimum costs. Allocative and technical efficiency combine to provide an overall economic efficiency

measure. Since we utilize country level aggregated data, the behavioral assumption is not obvious. Thus,

we measure economic performance with a country’s technical efficiency. Different countries operate at

different distances from the production frontier, and clearly efficiency can be influenced by institutional

quality (Adkins et al., 2002). We expect that economic freedom can generally impact both the production

frontier and efficiency, thus accuracy in estimating both will be crucial to assess a country’s efficiency

level. From a policy perspective, accuracy is important as policymakers should be better informed about

the amount of technical inefficiency that exists in an economy and exactly how changes in institutional

quality at different stages influence the marginal productivity of capital and labor as well as technical

efficiency.

In this paper we add to this literature by applying a smooth coefficient stochastic frontier model to

estimate the production frontier and therefore assess countries’ efficiency. We believe that the impact

of economic freedom on production frontier cannot be simply captured by entering it into production

function linearly as a regular input or neutrally as assumed by much of the literature. The impact

depends further, potentially nonlinearly, on how economic freedom affects output elasticities (marginal

1Some well-cited papers in this literature include Dawson (1998), Gwartney et al. (1999), Heckelman & Stroup (2000),
Carlsson & Lundström (2002), Dawson (2003), De Haan et al. (2006), and Justesen (2008).
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products) of human capital, labor, and physical capital.2 First, increases in economic freedom improve

the mobility of labor and capital across countries (Ashby, 2010; Azman-Saini et al., 2010; Nejad &

Young, 2016). For example, an increase in economic freedom for countries with low economic freedom

would make physical capital, such as foreign direct investment, more accessible (Bengoa & Sanchez-

Robles, 2003; Kapuria-Foreman, 2007). Economic freedom thus alters opportunity costs between labor

and capital and affects output elasticities.3 Second, economic freedom also reduces transactions costs,

which improves productivity in terms of output elasticity (Klein & Luu, 2003). Clearly, the impacts

of economic freedom can be highly nonlinear, both neutrally and non-neutrally. A country’s economic

freedom is not a typical input like labor, physical capital or human capital, thus we should naturally treat

it as an auxiliary/environmental variable when assessing its impact. Specifically in terms of its effect on

the frontier, unlike regular inputs, economic freedom level can have a facilitating impact, thereby shifting

the frontier neutrally, but it can also influence non-neutrally by affecting the productivity of regular

inputs as argued above. To ignore this effect of economic freedom on the productivity of inputs could

lead to a mismeasurement of the amount of technical inefficiency in an economy. Our semiparametric

model is perfect for capturing both the neutral and non-neutral effects, which are purely nonparametric.

The effects of economic freedom on output elasticities are largely ignored in the empirical literature

on economic freedom and growth. While a handful of studies employ a stochastic production frontier

approach to this question, they do not investigate the effect of output elasticities. Instead, their focus is

largely on how economic freedom affects technical efficiency. For example, Adkins et al. (2002) investigate

the effects of economic freedom on the production frontier and find that more economic freedom in a

country leads to decreased inefficiency. They do not, however, address the effect of economic freedom

on output elasticities on the frontier. Clearly, a misspecified frontier can lead to misleading technical

efficiency estimates and therefore the policy importance of economic freedom relative to inputs such as

capital and labor. Similarly, while Klein & Luu (2003) find that increased economic freedom reduces

technical inefficiency, they do not allow the elasticities of human or physical capital to vary with the level

of institutional quality and henceforth fail to recognize the non-neutral effect of institutional changes on

productivity.

To address this hole in the literature we adopt the semiparametric smooth coefficient model pioneered

by Li et al. (2002) and recently extended by Yao et al. (2017). This approach allows us to explicitly

explore both the neutral effect of economic freedom (the shifting of the production frontier neutrally by

economic freedom) and the non-neutral effect (the shifting of the production frontier through changing

2In this respect, our work is similar to that of Hall et al. (2010), who find in a cross-section that the marginal product
of labor and capital varies with the institutional quality of a country.

3Throughout the paper we will use output elasticity and marginal product interchangeably.
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output elasticities). We also allow the efficiency distribution to depend on economic freedom through a

scaling function on efficiency, thus the conditional mean and variance of the efficiency depend on economic

freedom. This is in contrast with the approaches so far in the literature, which arbitrarily allow only

the conditional mean to depend on economic freedom, which can result in biased estimates. Thus, we

believe that our efficiency estimates are robust to potential misspecification from both the frontier and

efficiency distribution. We apply the multi-step procedure developed by Yao et al. (2017) and estimate

a smooth coefficient stochastic production frontier with a country level panel data from 1980 to 2010

observed at 5-year increments. We do so in order to estimate the effect of economic freedom (EF ) on

both the production frontiers and technical efficiencies of countries.

Contrary to Hall et al. (2010), we find that the marginal product of human capital and labor is

decreasing when countries have an intermediate level of economic freedom.4 We find, however, that

increases in economic freedom improve the marginal product of physical capital when a country has a

moderate economic freedom but negatively affects marginal product of physical capital when economic

freedom is low or high. The result shows that for many countries, though the neutral impact is positive

and decreasing with economic freedom, higher economic freedom results in an overall outward shift in

the production frontier. For example, if China in 2010 had economic freedom at the level of the United

States, its production frontier would shift upward by over 20 percent. We compare the estimates for

our semiparametric model with three parametric counterparts (Cobb-Douglas, translog, and restricted

translog) and perform a model specification test. The tests suggest that the semiparametric model is more

appropriate for modeling production frontiers. Failure to account for the potentially delicate nonlinear

impact of economic freedom to the frontier results in misleading efficiency levels. Empirically, the average

efficiency estimates from our semiparametric model are much higher, at least 20% higher, than those from

parametric models.

The remainder of this article is organized as following. Section 2 introduces our methodology and

model specifications. Section 3 describes the nature of variables and data sources. Section 4 discusses

empirical results, illustrating the smooth varying coefficients of stochastic production frontiers and the

distribution of technical efficiency. Section 5 provides a robustness check with an alternative measure of

economic freedom and section 6 concludes.

2. Methodology and Model Specification

Adkins et al. (2002) investigate the effects of economic freedom on production frontier and technical

4Our empirical approach, however, is different from theirs and thus our results are not directly comparable.
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efficiency. However, using a parametric Cobb-Douglas production function with composite error, they

only examine the neutral and linear effect of economic freedom on production frontier but ignore the

non-neutral effects of economic freedom on the marginal productivity of inputs. Klein & Luu (2003) also

employ a parametric Cobb-Douglas production function approach. The dependence of the efficiency term

on economic freedom is through representing the conditional mean as a linear function of determinant

variables, including economic freedom. Note that the conditional variance of efficiency is modeled as a

constant. This modeling strategy is considered to be arbitrary (Parmeter & Kumbhakar, 2014, p. 55).

For example, if the goal is to study how economic freedom affects effciency, there is no particular reason

why it should be assumed to exert influence through conditional mean but not variance.

We follow Yao et al. (2017) and consider a semiparametric smooth coefficient stochastic production

frontier for panel data. Specifically, for i = 1, · · · , n and t = 1, · · · , T ,

Yit = α(EFit) + βH(EFit)Ln(Hit) + βL(EFit)Ln(Lit) + βK(EFit)Ln(Kit) + εit

= (1, X ′it)(α(EFit), β(EFit)
′)′ + εit

= (1, X ′it)δ(EFit) + εit

(1)

where Yit is the logarithm of output, Xit = (Ln(Hit), Ln(Lit), Ln(Kit))
′ represent the logarithm of tra-

ditional inputs, including human capital, labor and capital, and δ(EFit) = (α(EFit), β(EFit)
′)′, where

β(EFit) = (βH(EFit), βL(EFit), βK(EFit))
′, is a vector of unknown smooth functions of exogenous en-

vironmental variable, the economic freedom. The composite error is εit = vit − uit, where we specify

a two-sided error vit ∼ i.i.d.N(0, σ2
v) representing random noise which independent of EFit, Xit, and

uit; uit = uig(EFit; η) for a one-sided error ui, scaled by a nonnegative function g(EFit; η) known up

to parameter η, capturing inefficiency. We consider ui ∼ i.i.d.|N(0, σ2
u)| and independent of EFit and

Xit. EFit enters inefficiency term through the scaling function g(·) to affect the distribution of εit. For

EFi = (EFi1, · · · , EFiT )′ and εi = (εi1, · · · , εiT )′, we denote the conditional density of εi given EFi by

h(εi;EFi, θ0), where θ0 = (σ2
u, σ

2
v , η)′ denote the true parameters. Thus with above distribution speci-

fications, E(εit|EFit) = −µ(EFit; θ0) = −
√

2

π
σug(EFit, η) and V (εit|EFit) = σ2

v +
π − 2

π
σ2
ug

2(EFit, η).

We employ a Gaussian kernel function K(u) = e−u
2/2/
√

2π and data driven least square cross validation

method to find the optimal bandwidth for our dataset.

Since the seminar work of Aigner et al. (1977) and Meeusen & Van Den Broeck (1977), the stochastic

frontier (SF) approach as a tool to model and estimate efficiency has grown exponentially (see Kumbhakar

et al. (2015) for extensive reviews and applications). SF models are popular among practitioners due to

the fact that these models accommodate stochastic noise as an integral part of the production technology

and can separate noise from inefficiency. Furthermore, one can easily perform statistical tests on many
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economic hypotheses of interest. However, restrictive assumptions typically are made on either the

production frontier function and/or the distributional assumptions, with respect to inefficiency and the

noise terms. For example, the SF model introduced by Aigner et al. (1977) and Meeusen & Van Den

Broeck (1977) uses a parametric frontier along with a composite error term in which the one-sided

inefficiency term follows a particular distribution (half-normal for example), while the noise term follows

a normal distribution.

With panel data, one can relax the distribution assumption on the inefficiency term (see Schmidt

& Sickles (1984), Cornwell et al. (1990) and Lee & Schmidt (1993), Horrace & Parmeter (2011) and

Parmeter et al. (2017) for different approaches). However, flexibility in modeling the frontier is still

limited to a known parametric functional form such as Cobb-Douglas or translog. Even with a correctly

specified distribution for the composite errors, an incorrectly specified frontier function can still lead

to misleading conclusion regarding inefficiency levels, returns to scale, technical change, etc. On the

other hand, maintaining the distribution structure in Aigner et al. (1977) and Fan et al. (1996), Martins-

Filho & Yao (2015) investigate a nonparametric frontier model and examine properties of the estimators.

Kumbhakar et al. (2007), and Park et al. (2015) model and estimate the frontier and all parameters of

the distribution of the composite error as smooth functions of the inputs. A common feature of the these

methods is that the frontier is fully nonparametric, although the rate of convergence of the proposed

frontier estimator is rather slow especially when the number of inputs (conditioning variables) is large.

It is the well-known curse of dimensionality problem afflicting multivariate kernel based nonparametric

estimation. Since it is common to have a large number of variables in frontier models, the accuracy of

the asymptotic approximation can be rather poor.

In this paper, we utilize the smooth coefficient frontier model introduced in Yao et al. (2017). The

frontier function takes a more flexible functional form, i.e., α(EFit) +X ′itβ(EFit), instead of just a linear

or a semiparametric partially linear form. The sample size required for estimation is not as demanding as

a fully nonparametric frontier model, and therefore likely to be useful to the applied researchers. Clearly,

the frontier can be shifted neutrally by economic freedom via α(EF ), and also non-neutrally through

β(EF ). The semiparametric frontier model proposed in this article is different from the standard smooth

coefficient regression model (Li et al., 2002; Cai & Li, 2008) because the conditional mean of the composite

error is not zero due to the presence of the one-sided inefficiency term. We assume that the inefficiency

and noise term follow the half-normal and normal distributions which depends on economic freedom.

To capture the dependence, we allow that EF enters inefficiency term through the scaling function g(·)

to affect the distribution of the efficiency, thus, the conditional mean and variance of the inefficiency

term is a function of EF, known up to certain parameters. This is in contrast to Adkins et al. (2002),
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who allow EF to arbitrarily impact only the mean, but not the variance, of inefficiency. Thus, we allow

the inefficiency to vary across individual and time through its dependence on EF. We note that it is

important to determine the level of inefficiency and also to understand how the inefficiency is affected by

EF. Ignoring the effect of EF in the composite error term, especially in the one-sided inefficiency term,

can cause biased estimates of the frontier function and technical inefficiency level. This could, in turn,

potentially lead to incorrect policy inferences.

We utilize a multi-step estimation procedure to consistently estimate the semiparametric frontier func-

tion (See Yao et al. (2017)5). Since E(εit|EFit) 6= 0, the standard smooth varying coefficient estimation

as in Li et al. (2002) can not be applied directly. Instead, subtracting conditional mean of Equation (1)

on both sides, we have

Yit − E(Yit|EFit) = (Xit − E(Xit|EFit))′β(EFit) + µ(EFit; θ0) + εit, (2)

then we estimate δ̂(EFit) and θ̂ with the following steps.

First, let ε̃it = εit + µ(EFit; θ0), then E(ε̃it|EFit) = 0. From Equation (2), we construct ỹit =

Yit−Ê(Yit|EFit), X̃it = Xit−Ê(Xit|EFit), where Ê(Yit|EFit) and Ê(Xit|EFit) are local linear estimates

of conditional mean of Yit and Xit, respectively, evaluated at EFit. Then, Equation (2) transforms into,

ỹit = X̃ ′itβ(EFit) + ε̃it, (3)

and we apply standard smooth varying coefficient estimation (see Li et al. (2002)) on Equation (3) to

obtain consistent estimator β̌(EF ) = (β̌L(EF ), β̌H(EF ), β̌K(EF ))′ = b̂0, where b̂0 = (b̂0H , b̂0L, b̂0K)′,

b̂1 = (b̂′1H , b̂
′
1L, b̂

′
1K)′, b̂ = (b̂′0, b̂

′
1)′, such that

b̂ = argmin
b

n∑
i=1

T∑
t=1

K

(
EFit − EF

h

)
(ỹit − W̃ ′itb)2, (4)

where W̃it =

 X̃it

X̃it ⊗ (EFit − EF )

, and ⊗ denotes the Kronecker product.

Second, recall that µ(EFit; θ0) is known up to the parameter θ0, we can construct ε̂it(θ) = ỹit −

X̃itβ̌(EFit) − µ(EFit; θ), and ε̂i(θ) = {ε̂it(θ)}Tt=1. We estimate θ by θ̂ via pseudo-likelihood estimation.

5Yao et al. (2017) propose a four-step semiparametric estimators, establish their consistency and asymptotic normality,
and carry out a comprehensive Monte Carlo study.
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Following Pitt & Lee (1981), we write the log-likelihood function as,

Ln
n∏
i=1

h(ε̂i(θ);EFi, θ) = C − n(T−1)
2 lnσ2

v − 1
2

n∑
i=1

ln(σ2
v + σ2

u

T∑
t=1

g2(EFit; η))

+
n∑
i=1

ln[1− Φ(−µ∗i
σ∗i

)] + 1
2

n∑
i=1

(µ∗i
σ∗i

)2 −
n∑

i=1

T∑
t=1

ε̂2it(θ)

2σ2
v

(5)

where σ2
i = σ2

v + σ2
u

T∑
t=1

g2(EFit; η), λ = σu/σv, µ∗i = −σ2
u

T∑
t=1

εitg(EFit; η)/σ2
i , σ2

∗i = σ2
uσ

2
v/σ

2
i , and

σ2
v = σ2

i /(1 + λ2
T∑
t=1

g2(EFit; η)),, and φ(·) and Φ(·) refer to the PDF and CDF of a standard normal,

respectively. Furthermore, we choose g(EFit; η) = eηEFit in the application, η can be interpreted as the

semi-elasticity of expected inefficiency with respect to EFit.

Third, after θ̂ is obtained in the second step, µ(EFit; θ̂) can be estimated. Adding µ(EFit; θ̂) to both

sides of Equation (1), we have

Yit + µ(EFit; θ̂) = (1, X ′it)δ(EFit) + µ(EFit; θ̂) + εit, (6)

Again, since E(ε̃it|EFit) = 0, we estimate δ̂(EFit) = (α̂(EFit), β̂(EFit)
′)′ with the standard smooth vary-

ing coefficient estimation. Specifically, δ̂(EF ) = â0, where â0 = (â00, â0H , â0L, â0K)′, â1 = (â′10, â
′
1H , â

′
1L, â

′
1K)′,

â = (â′0, â
′
1)′, such that

â = argmin
a

n∑
i=1

T∑
t=1

K

(
EFit − EF

h

)
(y̌it − Q̃′ita)2, (7)

where Q̃it =

 (1, X ′it)
′

(1, X ′it)
′ ⊗ (EFit − EF )

 and y̌it = Yit + µ(EFit; θ̂).

Finally, following Jondrow et al. (1982), we calculate observation specific technical inefficiencies for

our semiparametric model. With proper modifications, we derive the conditional density of uit given εit

and EFit as

f(uit|εit, EFit) = [1− Φ(εit
σugit

σ(EFit)σv
)]−1 1
√

2π(
σvσugit
σ(EFit)

)
exp[− 1

2σ2
vσ

2
ug

2
it

σ2(EFit)

(uit +
εitσ

2
ug

2
it

σ2(EFit)
)2]

where git = g(EFit; η), and σ2(EFit) = σ2
v + σ2

ug
2(EFit). We estimate technical efficiency as TEit =

e−M(uit|εit,EFit), where M(uit|εit, EFit) = −εit σ
2
ug

2(EFit;η)
σ(EFit)

if εit ≤ 0 and M(ui|εit, EFit) = 0 if εit > 0.

We compare our semiparametric model with three benchmark models. The first is a Cobb-Douglas

production function with composite error which is nested in Equation (1),

Yit = α0 + α1EFit + α2EF2
it + βHLn(Hit) + βLLn(Lit) + βKLn(Kit) + vit − uieηEFit , (8)
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where we only allow economic freedom to shift the production frontier through the intercept term

α(EFit) = α0 + α1EFit + α2EF2
it, a quadratic function to capture potential nonlinearity. All coefficients

of Xit are assumed to be constants.

The second model is a translog model

Yit = α0 + α1EFit + α2EF2
it + β1HLn(Hit) + β2HLn

2(Hit) + β1LLn(Lit)

+β2LLn
2(Lit) + β1KLn(Kit) + β2KLn

2(Kit) + βEFHEFitLn(Hit)

+βEFLEFitLn(Lit) + βEFKEFitLn(Kit) + βHLLn(Hit)Ln(Lit)

+βHKLn(Hit)Ln(Kit) + βLKLn(Lit)Ln(Kit) + vit − uieηEFit

(9)

Due to the presence of square and cross products of Xit, it is not nested in Equation (1), but it imposes

no priori restrictions on substitution possibilities among input variables,

In the third benchmark, we restrict the translog production model such that the coefficients of

Ln2(Hit), Ln2(Lit), Ln2(Kit), Ln(Lit)Ln(Kit), Ln(Lit)Ln(Hit), and Ln(Hit)Ln(Kit) are jointly equal

to zero, which makes it nested in Equation (1). After removing those terms, we estimate restricted

translog model as,

Yit = α0 + α1EFit + α2EF2
it + β1HLn(Hit) + β1LLn(Lit) + β1KLn(Kit)

+βEFHEFitLn(Hit) + βEFLEFitLn(Lit) + βEFKEFitLn(Kit) + vit − uieηEFit

(10)

3. Data Descriptions

We use the country-level data from the Penn World Table (PWT ) and Economic Freedom of the

World: 2015 Annual Report by Gwartney et al. (2015) to investigate the effects of economic freedom

on a country’s production frontier and technical efficiency. Our dataset consists of 440 observations for

110 countries from 1990 to 2010 observed at 5-year increments.6 A complete list of countries and their

respective economic freedom as of 2010 are presented in Table 1. The EFW index is based on a 0 – 10

scale, with higher scores representing higher levels of economic freedom.

We employ the Penn World Table because it is the most comprehensive country-level aggregated data

comprised of human capital per capita, labor, and physical capital. The 8.1 version of the Penn World

Table provides output-side real GDP in million of 2005 US dollars for different countries over time, which

facilitates comparison of economic productivity across a large number of countries. The combined data

6We look at only five-year increments for two reasons. First, institutions change slowly and thus 5-year increments is
standard in the economic freedom/growth literature. Second, the EFW index only reports at 5-year intervals from 1990 to
2000.
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set enables us to estimate production frontiers and technical efficiency, and to investigate the effects of

changing economic freedom on production frontiers.

Our dependent variable Y is the logarithm of output-side real GDP in millions of 2005 US dollars.

Independent variables include the logarithm of human capital per capita Ln(H), the logarithm of labor

force Ln(L), and the logarithm of real capital stock Ln(K), where H is an index of human capital based

on years of schooling and returns to education (see Psacharopoulos (1994) and Barro & Lee (2013)),

labor force L is in millions of persons participated in employment, and real capital stock K is in millions

of 2005 US dollars. Additional descriptions of variables from the Penn World Table can be obtained in

Feenstra et al. (2015).

Economic freedom of the world index (EFW ) is our primary variable of interest in this paper and

we treat it as the “environmental” variable in our estimation of production functions. Based on our

hypothesis, the effects of economic freedom on output are double-sided. Increases in economic freedom

can reduce transaction costs for productive activities, make foreign capital more accessible and domestic

capital more productive, and improve the return on education, all of which boost productivity. However,

on the other hand, increases in economic freedom also relax governmental control of the population,

which increases the migration of immigrants to countries with higher levels of economic freedom. While

this is likely to increase the productivity of destination countries, it will lower output elasticity in the

origin country.

We use the chain-linked EFW index (EFW ) to ensure comparability across time. EFW measures the

degree of economics freedom in five major areas: (1) size of government; (2) legal system and security of

property rights; (3) access to sound money; (4) freedom to trade internationally; and (5) regulation. Each

of these components are based on several variables. The rating of size of government, for instance, is based

on four separate components, such as government consumption as a percentage of total consumption.

Each component is put on a 0 to 10 scale and then aggregated up to an overall score for the entire

country, which also varies from 0 to 10. The detailed EFW index structure can be obtained from

Gwartney et al. (2015). Gwartney & Lawson (2003) provides an overview of the history and creation of

the index. The summary statistics for all the variables are presented in Table 2.

4. Estimation Results

The estimation results for our semiparametric smooth coefficient model are summarized in Table 3

Panel A, providing the mean values and 10th, 50th (median), and 90th percentile of our smooth coefficients

of δ̂(EF ) = (α̂(EF ), β̂H(EF ), β̂L(EF ), β̂K(EF ))′, as well as the parameter estimate θ̂ = (σ̂2
u, σ̂

2
v , η̂)′.

Compared with benchmark models presented in Table 4 Panel A, our semiparametric estimates give
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a lower σ̂2
u but a higher σ̂2

v , 2.0241 and .0357, respectively. The Cobb-Douglas production frontier,

translog frontier, and restricted translog frontier give relative higher estimates of σ̂2
u and lower σ̂2

v , where

(σ̂2
u, σ̂

2
v) = (2.6714, .0217), (σ̂2

u, σ̂
2
v) = (2.8809, .0194), and (σ̂2

u, σ̂
2
v) = (3.2214, .0209), respectively. All

estimates suggest a relatively small magnitude for the random noise relative to that of the efficiency

term. With an estimated η̂ of −.1383, our semiparmetric model implies that increased economic freedom

will increase technical efficiency (TEit). The Cobb-Douglas, translog, and restricted translog models

suggest an estimated η̂ of −.1156 and −.0519 and −.0404, respectively, confirming our sempiparametric

estimate (with the same sign, though of different magnitudes).

The restricted translog production function assumes that the coefficients of Ln2(Hit), Ln2(Lit),

Ln2(Kit), Ln(Lit)Ln(Kit), Ln(Lit)Ln(Hit), and Ln(Hit)Ln(Kit) are jointly equal to zero. To check

its validity empirically, we perform a likelihood ratio test for the null of β2H = β2L = β2K = βHL =

βHK = βLK = 0 which gives us a test statistic of .0943, smaller than the critical value of 12.592 at the

5% significance level. Since we cannot reject the null hypothesis and the restricted translog is also nested

in our semiparametric model, we focus on Cobb-Douglas and restricted translog models as parametric

counterparts in the following analysis.

Since our semiparametric estimators are smooth functions of the environmental variable EF , we plot

our coefficients (α̂(EF ), β̂H(EF ), β̂L(EF ), β̂K(EF ))′ and their 95% confidence intevals, which are based

on the asymptotic results in Yao et al. (2017), against economic freedom of the world index in Figure

1. For comparison purposes, we superimpose the parametric counterpart estimates. As expected, our

smooth coefficients are mostly positive and nonlinear across the entire range of the economic freedom

index, and exhibit different patterns.

The upper-left panel in Figure 1 presents the neutral effects of economic freedom α̂(EF ) against its

parametric counterparts. The neutral effects of economic freedom on production from our semiparametric

estimates are decreasing with economic freedom, but much smaller than those from parametric estimates.

The upper-right panel in Figure 1 describes the output elasticity of human capital (or marginal product of

human capital). It shows a decreasing pattern in general but also suggests improved productivities from

human capital when economic freedom is above 7.5 (approximately Japan in 2010). The 95% confidence

bounds of sempiparametric estimates contain most of its parametric counterparts for the output elasticity

of human capital, but it is not the case for the neutral effect. It suggests that parametric models yield

fairly reasonable estimates for the output elasticity of human capital, but quite likely misspecify the

neutral effect.

The lower-left panel in Figure 1 plots the output elasticity of labor (or marginal product of labor).

It demonstrates that the output elasticity of labor decreases as the economic freedom of the world index
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rises. However, output elasticity of labor decreases at a slower rate once economic freedom reaches 6.0

(China in 2010). Our semiparametric estimates are generally much lower than the parametric estimates.

The output elasticity of capital in the lower-right panel exhibits an increasing pattern in general but at

a lower rate when economic freedom reaches 6.0. Our results suggests higher output elasticity of capital

under semiparametric specification than parametric counterparts. In both cases, the confidence intervals

of our semiparametric estimates do not contain the parametric counterparts, suggesting the parametric

models are likely misspecified. The returns to scale estimates suggested by our semiparametric model at

10th, 50th, and 90th percentiles are .9477, 1.1258, and 1.9209, respectively, with a mean of 1.2972. In

comparison, Cobb-Douglas and restricted translog models indicate returns to scale estimates of 1.5274

and 1.3367, respectively.

Discrepancies between semiparametric and parametric estimates imply that the parametric approaches,

which are very much likely to suffer from misspecification, overestimate the neutral effect of economic

freedom, output elasticity of labor and underestimate output elasticity of capital, but deliver reasonable

estimates of output elasticity of human capital.

Given the pattern exhibited in Figure 1 and the fact that Ln(K)’s magnitude is much larger than

other inputs, we expect that economic freedom shifts the production frontier upward. For illustration,

let’s consider the case of China. In 2010, China had a chain-linked EF score of 6.07. Our semiparametric

model suggests that if China had the economic freedom level of the United States (7.76), its production

frontier would be shifted upward by $3,914,667 millions of 2005 US dollar or 20.83% higher than its

estimated 2010 outputs on the frontier, ceteris paribus. In comparison, the Cobb-Douglas suggests that

the same increase in EF will have a much smaller impact on the production frontier, with an upward

shift of $56,328 millions of 2005 US dollar (or .28% higher than the estimated 2010 production frontier).

The restricted translog model indicates a larger upward shift of $4,971,707 millions of 2005 US dollar (or

32.44% higher) on the frontier.

Figure 2 presents kernel density estimates of composite error and technical efficiency for all three

models. The left panel indicates that composite errors for all three models cluster around −0.5 which

suggests majority of observations are not fully technically efficient on average (E(εit|EFit) < 0) and

operates below production frontier. Moreover, the kernel density of composite error for semiparametric

estimates is taller and more tightly centered around −0.5, suggesting smaller composite error in absolute

values and higher technical efficiency on average under semiparametric estimates than those of parametric

counterparts, whose densities exhibit a fairly obvious negative skewness with larger magnitudes in absolute

value.

The right panel of Figure 2 presents density estimates of technical efficiency for semiparametric and
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parametric estimates. The results are consistent with what is suggested in the left panel. Compared

with parametric counterparts, the density of semiparametric technical efficiency is more tightly centered

at a higher level, suggesting higher efficiencies under the semiparametric approach. The average and

median technical efficiency are .6955 and .7046 for the semiparametric model, at least 20% higher than

those from the parametric models, which are .5009 and .4744 for Cobb-Douglas, and .5699 and .5625 for

translog. The results suggest that technical efficiencies are likely to be mismeasured in parametric models.

Our results are consistent with Adkins et al. (2002) and Klein & Luu (2003) in the sense that majority

of observations are technically inefficient. However, our estimates of technical efficiency are smaller in

absolute values. A direct comparison between our and their estimates may not be appropriate since they

incorporate many other variables such as political rights and civil liberty in the estimation of technical

efficiency. However, we conjecture that their estimates can be misleading, since they assume constant

output elasticities which can either overestimate or underestimate the impact of economic freedom on

the elasticities as demonstrated in Figure 1.

In Equation (1), economic freedom shifts production frontier directly via α(EFit) and indirectly

through the output elasticities of input variables, βH(EFit), βL(EFit), and βK(EFit). Economic free-

dom also affects efficiency through g(EFit; η). To given the audience of a more vivid picture, we fol-

low Yao et al. (2017) to obtain partial effect of economic freedom on technical efficiency change from

∂ ln ˜TEit/∂LCit = η{ln ˜TEit} where ln ˜TEit = −ui exp(ηLCit), and ˜TEit = exp(−uit). Note that for

˜TEit, we use the actual estimated uit, with ui replaced by estimated mean value and η by its estimate.

We did not use the Jondrow et al. (1982) estimate TEit discussed before, since it depends on the unknown

composite error εit term, whose estimate generates a fair amount of random fluctuations in the graphs.

Thus, we plot the partial effect of economic freedom on the efficiency changes for all three estimates

against economic freedom in the left panel of Figure 5. The partial effects are found to be positive for

all three but decrease with higher levels of economic freedom. This suggests that technical efficiency

increases with more economic freedom, but at a decreasing rate.

If one believes that the smooth varying coefficients should take a parametric form, then one naturally

would like to perform a model specification test. If the parametric functional form is not rejected, then

one could use it for simplicity. We perform a model specification test proposed by Yao et al. (2017) to test

parametric models against our semiparametric model. Following the wild bootstrap procedure described

in Yao et al. (2017), the test statistics T̂n7 for the null hypotheses of Cobb-Douglas and translog model

specifications are 343.62 and and 142.7, respectively, and the boot-strapped p−values are zero under both

7Yao et al. (2017) propose a modified test for parametric frontier specification based on Li et al. (2002) and Li & Racine
(2010) for panel data framework and establish asymptotic properties for the test statistics T̂n. Please refer to Yao et al.
(2017) for details.
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scenarios, strongly rejecting the parametric models. Consequently, to address the effects of economic

freedom on technical efficiency, the two popular parametric frontier models, being too restrictive in their

functional forms, are likely misspecified.

5. Robustness Testing

To probe the robustness of the empirical results from section 4, we employ the index of economic

freedom (IEF) from the Heritage Foundation (Miller & Kim, 2017) as our alternative measurement of

economic freedom and replicate the analysis above. While the IEF is based on the same philosophical

foundation as the EFW, it covers slightly different data and is scaled from 0-100 as compared to the

0-10 of the EFW. The index of economic freedom covers variables in 10 major areas, including business

freedom, trade freedom, monetary freedom, government size and spending, fiscal freedom, property rights,

investment freedom, financial freedom, freedom from corruption, and labor freedom. We match the index

of economic freedom with our dataset to improve comparability with our earlier results. As of 2010,

Singapore exhibits the highest IEF score of 86.1 whereas Zimbabwe has the lowest score of 21.4. Both

measurements of economic freedom are highly correlated, with a correlation of .8364. The IEF scores as

of 2010 are listed in Table 1 and summary statistics are presented in Table 2.

The smooth coefficient estimates using IEF as the “environmental” variable are presented in Table 3

Panel B. The smooth coefficient estimates of output elasticities have similar magnitudes and are generally

comparable with the estimates obtained from using EFW as the environmental variable. For the param-

eter estimate θ̂, it provides estimates at a smaller magnitude, where (σ̂2
u, σ̂

2
v , η̂) = (.2834, .0217,−.0056).

With an estimated η̂ of −.0056 using an alternative measurement of economic freedom, it further confirms

that higher levels of economic freedom increase technical efficiency. The Maximum Likelihood Estimation

results for parametric models are tabulated in Table 4 Panel B. Comparing with the smooth coefficient

estimates using IEF, the Cobb-Douglas, translog, and restricted translog models provide much larger esti-

mates of σ̂2
u, similar estimates of σ̂2

v , and lower estimates of η̂, where(σ̂2
u, σ̂

2
v , η̂) = (8.3085, .0214,−.2292),

(σ̂2
u, σ̂

2
v , η̂) = (4.1121, .0209,−.1855), and (σ̂2

u, σ̂
2
v , η̂) = (6.7571, .0212,−.2165), respectively.

We also plot smooth coefficients using IEF as environmental variable and their 95% confidence bounds

in Figure 3 to facilitate comparison. Parametric estimates from the Cobb-Douglas and restricted translog

models are also superimposed. As expected, the smooth coefficients using IEF as the environmental

variable demonstrated similar patters as smooth coefficients generated using EFW as the environmental

variable.

The neutral effects of economic freedom presented in the upper-left panel of Figure 3 show a decreasing

pattern as economic freedom increases. The neutral effects on the production are much smaller than
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those from its parametric counterparts. The smooth coefficient estimate of output elasticity of human

capital described in the upper-right panel of Figure 3 indicates a decreasing pattern as economic freedom

increases but it starts to increase when index of economic freedom score exceeds 70. It is consistent

with the observation of output elasticity of human capital obtained when using EFW as the environment

variable, which starts to increase when economic freedom exceeds 7.5. A large portion of parametric

estimates also fall into the 95% confidence interval, suggesting reasonable estimates of output elasticity

of human capital from parametric models.

The output elasticity of labor is presented in the lower-left panel of Figure 3 while output elasticity

of capital is presented in the lower-right panel. Smooth coefficient function of output elasticity of labor

decreases in general with economic freedom. Parametric models suggest higher output elasticity of labor

as a fairly large portion of parametric estimates is above the upper bound of the confidence interval. The

output elasticity of capital shows an increasing pattern as economic freedom increases but at a slower

rate once economic freedom reached 60. This is also consistent with the observation made using EFW

as the environmental variable, where the output elasticity of capital increases at a much slower rate once

economic freedom reaches the threshold of 6.0. Parametric results indicate lower estimates of output

elasticity of capital than our semiparameric estimate.

We also present the kernel density estimates of the composite error and technical efficiency using

IEF as economic freedom in Figure 4. The results are similar to those indicated using EFW as the

environmental variable. Composite errors from both semiparametric and parametric models clusters

around -.45 but semiparametric estimates are more tightly centered around -.45. This indicates smaller

composite error and higher technical efficiency on average for our semiparametric estimates. The kernel

density of technical efficiency for semiparametric model is also more tightly centered at a higher level,

suggesting higher efficiencies under the semiparametric specification. We also plot the efficiency changes

for all three models in the right panel of Figure 5 using IEF as the environmental variable. We observe

the same decreasing pattern for the partial effect of economic freedom as before, though the partial effect

for the semiparametric model has a much smaller magnitude due to a reduced estimate of η̂.

6. Conclusion

In this paper, we apply a multi-step semiparametric smooth coefficient stochastic production frontier

estimator proposed by Yao et al. (2017) to investigate the effects of economic freedom on production fron-

tier and technical efficiency. We contrast the semiparametric estimate with Cobb-Douglas and translog.

Allowing the output elasticities and technical efficiency to depend on the environmental variable, eco-

nomic freedom, we observe significant variation on output elasticities. A model specification test indicates
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that both Cobb-Douglas and translog production frontiers are likely to be misspecified.

Our results add to the literature on economic freedom and growth in three ways. First, our results

highlight the importance of flexible modeling as parametric estimates of the marginal productivity of in-

puts are shown to be fairly restrictive. Parametric approaches overestimate the neutral effect of economic

freedom and the output elasticity of labor, and underestimate the output elasticity of capital, relative

to our semiparametric estimates. Second, our empirical average efficiency estimates are at least 20%

higher than those obtained from the parametric counterparts. Third, we find that the output elasticities

of labor, human capital, and physical capital vary with the level of economic freedom. In this way our

results are similar to that of Hall et al. (2010), but more precise. Our results suggest that the output

elasticities are mostly positive. Interestingly, increased economic freedom generally lowers the output

elasticities or marginal products of human capital and labor but leads to improvements in the marginal

product of capital.

Like the previous literature we find that economic freedom shifts the semiparametric stochastic pro-

duction frontier upward and reduces technical inefficiency. Thus, higher economic freedom is favored for

a country to improve its efficiency in general. However, we discover that economic freedom positively

impacts the frontier mainly through the non-neutral effect on the output elasticity of capital. Thus,

on the policy front, countries with a higher capital to labor ratio are especially advised to improve its

economic freedom, if the policy goal is to be as efficient as possible with its inputs.
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Appendix: Tables and Figures

Table 1: List of Countries and Economic Freedom as of 2010

Country EFW IEF Country EFW IEF Country EFW IEF Country EFW IEF

Albania 7.51 66.0 Denmark 7.75 77.9 Korea, South 7.28 69.9 Senegal 5.78 54.6

Argentina 5.72 51.2 Dominican Rep. 7.06 60.3 Kuwait 7.40 67.7 Sierra Leone 6.91 47.9

Australia 8.10 82.6 Ecuador 5.70 49.3 Latvia 7.01 66.2 Singapore 8.53 86.1

Austria 7.53 71.6 Egypt 6.79 59.0 Lithuania 6.99 70.3 Slovak Rep 7.44 69.7

Bahrain 7.69 76.3 El Salvador 7.43 69.9 Luxembourg 7.59 75.4 Slovenia 6.55 64.7

Bangladesh 6.52 51.1 Estonia 7.76 74.7 Malawi 5.97 54.1 South Africa 6.87 62.8

Barbados 6.64 68.3 Fiji 6.33 60.3 Malaysia 7.00 64.8 Spain 7.26 69.6

Belgium 7.47 70.1 Finland 7.73 73.8 Mali 5.97 55.6 Sri Lanka 6.26 54.6

Belize 6.45 61.5 France 7.43 64.2 Malta 7.61 67.2 Sweden 7.61 72.4

Benin 5.81 55.4 Gabon 5.50 55.4 Mauritius 7.92 76.3 Switzerland 8.23 81.1

Bolivia 6.39 49.4 Germany 7.53 71.1 Mexico 6.69 68.3 Syria 5.73 49.4

Botswana 7.22 70.3 Ghana 6.86 60.2 Morocco 6.45 59.2 Taiwan 7.74 70.4

Brazil 6.56 55.6 Greece 6.75 62.7 Namibia 6.51 62.2 Tanzania 6.53 58.3

Bulgaria 7.22 62.3 Guatemala 7.24 61.0 Nepal 5.92 52.7 Thailand 6.60 64.1

Burundi 5.02 47.5 Honduras 7.04 58.3 Netherlands 7.58 75.0 Togo 5.62 47.1

Cameroon 6.56 52.3 Hong Kong 8.85 89.7 New Zealand 8.10 82.1 Trinidad & Tob. 6.95 65.7

Canada 8.05 80.4 Hungary 7.32 66.1 Niger 5.93 52.9 Tunisia 6.06 58.9

Central Afr. 5.72 48.4 Iceland 6.41 73.7 Norway 7.38 69.4 Turkey 6.52 63.8

Chile 7.94 77.2 India 6.59 53.8 Pakistan 5.98 55.2 Uganda 7.56 62.2

China 6.07 51.0 Indonesia 7.05 55.5 Panama 7.25 64.8 Ukraine 5.87 46.4

Colombia 6.33 65.5 Iran 6.46 43.4 Paraguay 6.62 61.3 United Kingdom 7.90 76.5

Congo, Dem. 5.61 41.4 Ireland 7.75 81.3 Peru 7.51 67.6 United States 7.76 78.0

Congo, Rep. 4.95 43.2 Israel 7.60 67.7 Philippines 7.09 56.3 Uruguay 7.29 69.8

Costa Rica 7.41 65.9 Italy 7.11 62.7 Poland 7.09 63.2 Venezuela 3.84 37.1

Cote d’Ivoire 5.85 54.1 Jamaica 7.12 65.5 Portugal 7.05 64.4 Zambia 7.68 58.0

Croatia 6.97 59.2 Japan 7.51 72.9 Romania 7.14 64.2 Zimbabwe 4.51 21.4

Cyprus 7.65 70.9 Jordan 7.75 66.1 Russia 6.34 50.3

Czech Rep. 7.35 69.8 Kenya 7.07 57.5 Rwanda 7.20 59.1
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Table 2: Summary Statistics

Symbol Variable Description Mean Std. Min. Max. Bandwidth

Ln(Y ) Log of Output-Side Real GDP 11.3531 1.9074 7.0998 16.3799 −
Ln(H) Log of Human Capital .8947 .2442 .1397 1.2864 −
Ln(L) Log of Labor Force 1.5453 1.6410 −2.8134 6.6611 −
Ln(K) Log of Capital Stock 12.2795 2.0745 6.9201 17.5224 −
EFW Economic Freedom of the World 6.6790 1.0913 2.9707 9.1509 .7891

IEF Index of Economic Freedom 61.8722 10.5502 21.4 8.97 .6688
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Table 3: Estimation of the Semiparametric Smooth Coefficient Stochastic Frontier

Panel A: Economic Freedom of the World Index

MLE Estimates Standard Error

σ̂2
u 2.0241 .4566

σ̂2
v .0357 .0037

η̂ −.1383 .0132

Smooth Coefficient Mean 10th Percentile Median 90th Percentile

α̂(EF) 2.0446 1.0160 2.0949 2.9463

β̂H(EF) .3374 −.0307 .1654 .9552

β̂L(EF) .2184 .1557 .1911 .3418

β̂K(EF) .7413 .5922 .7614 .8467

Panel B: Index of Economic Freedom

MLE Estimates Standard Error

σ̂2
u .2834 .0373

σ̂2
v .0333 .0027

η̂ −.0056 .0017

Smooth Coefficient Mean 10th Percentile Median 90th Percentile

α̂(EF) 2.0068 1.4956 1.9827 2.5315

β̂H(EF) .4299 .1771 .2922 .6694

β̂L(EF) .2340 .1767 .2024 .3712

β̂K(EF) .7344 .6391 .7606 .7821
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Table 4: Maximum Likelihood Estimation of Parametric Benchmark Models

Panel A: Economic Freedom of the World Index

Cobb-Douglas Model Translog Model Restricted Translog Model
Variables

Coefficient Prob. Coefficient Prob. Coefficient Prob.

Constant 5.3703 .0000 7.7710 .0000 7.9271 .0000

EF −.3178 .0129 −.1716 .3067 −.6367 .0000

EF2 .0231 .0080 .0006 .9490 .0100 .3059

Ln(H) .6076 .0000 4.5700 .0000 .6522 .2167

Ln(L) .3836 .0000 1.2026 .0000 .4167 .0002

Ln(K) .5362 .0000 −.4002 .1029 .2678 .0010

Ln2(H) − − 1.8076 .0012 − −
Ln2(L) − − .0830 .0005 − −
Ln2(K) − − .0731 .0000 − −
EFLn(H) − − .1381 .1480 −.0368 .6378

EFLn(L) − − .0216 .3247 −.0117 .4696

EFLn(K) − − .0051 .7832 .0443 .0005

Ln(H)Ln(L) − − .6310 .0000 − −
Ln(H)Ln(K) − − −.7418 .0000 − −
Ln(L)Ln(K) − − −.1442 .0000 − −
σ̂2
u 2.6714 .0234 2.8809 .0539 3.2214 .0170

σ̂2
v .0217 .0000 .0194 .0000 .0209 .0000

η̂ −.1156 .0013 −.0519 .1814 −.0404 .0000

Log-likelihood 359.065 390.614 372.628

Observations 440 440 440

Panel B: Index of Economic Freedom

Cobb-Douglas Model Translog Model Restricted Translog Model
Variables

Coefficient Prob. Coefficient Prob. Coefficient Prob.

Constant 5.8476 .0000 4.7966 .0000 5.8135 .0000

EF −.6265 .0000 −.4942 .0072 −.6271 .0000

EF2 .0425 .0000 .0338 .0164 .0431 .0024

Ln(H) .5589 .0000 2.9839 .0045 1.8180 .0028

Ln(L) .3178 .0000 .4311 .1707 .2154 .2017

Ln(K) .5995 .0000 .4715 .0937 .5183 .0000

Ln2(H) − − 1.6340 .0027 − −
Ln2(L) − − .0398 .1067 − −
Ln2(K) − − .0159 .3942 − −
EFLn(H) − − −.2100 .0523 −.1988 .0354

EFLn(L) − − −.0121 .6699 −.0215 .6194

EFLn(K) − − .0184 .3723 .0135 .4237

Ln(H)Ln(L) − − .4007 .0111 − −
Ln(H)Ln(K) − − −.3676 .0169 − −
Ln(L)Ln(K) − − −.0402 .2791 − −
σ̂2
u 8.3085 .0227 4.1121 .1197 6.7571 .0848

σ̂2
v .0214 .0000 .0209 .0000 .0212 .0000

η̂ −.2292 .0000 −.1855 .0003 −.2165 .0000

Log-likelihood 367.893 380.418 372.176

Observations 440 440 440
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Figure 1: Plots of Smooth Coefficient Frontiers Against EFW

Figure 2: Kernel Density of Composite Error and Technical Efficiency EFW
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Figure 3: Plots of Smooth Coefficient Frontiers against Heritage index

Figure 4: Kernel Density of Composite Error and Technical Efficiency Heritage index
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Figure 5: Partial Effect of Economic Freedom on Technical Efficiency
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