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Abstract

In this paper we suggest a J-test in a spatial panel framework of a null model against

one or more alternatives. The null model we consider has fixed effects, along with spatial

and time dependence. The alternatives can have either fixed or random effects. We

implement our procedure to test the specifications of a demand for cigarette model. We

find that the most appropriate specification is one that contains the average price of

cigarettes in neighboring states, as well as the spatial lag of the dependent variable. Along

with formal large sample results, we also give small sample Monte Carlo results. Our large

sample results are based on the assumption N → ∞ and T is fixed. Our Monte Carlo

results suggest that our proposed J-test has good power, and proper size even for small

to moderately sized samples.

JEL classification: C01, C12

Key Words: Spatial Panel Models, Fixed Effects, Time and Spatial Lags, Non-nested

J-test

1 Introduction

The J-test is a procedure for testing a null model against non-nested alternatives.1 As de-

scribed in Kelejian and Piras (2011), the J-test is based on whether or not predictions of

the dependent variable based on the alternative models add significantly to the explanatory

power of the null model.

Kelejian (2008) extended the J-test procedure to a spatial framework, but the suggested

test was not based on all of the available information. This was pointed out by Kelejian

and Piras (2011) who, among other things, generalized Kelejian’s assumptions. However,

neither Kelejian (2008) nor Kelejian and Piras (2011) considered a panel data framework.

This is unfortunate because a great many studies in recent years have been in a panel data

framework.2

1There is, of course, a large literature relating to the J-test. For example, see Davidson and MacKinnon
(1981); MacKinnon et al. (1983); Godfrey (1983); Pesaran and Deaton (1978); Dastoor (1983); Pesaran (1974,
1982); Delgado and Stengos (1994), and the reviews given in Greene (2003, pp.153-155, 178-180) and Kmenta
(1986, pp 593-600). A nice overview of issues relating to non-nested models is given in Pesaran and Weeks
(2001).

2See, e.g., Anselin et al. (2008); Kapoor et al. (2007); Baltagi et al. (2007c, 2003); Baltagi and Liu (2008);
Baltagi et al. (2007a, 2013); Debarsy and Ertur (2010); Elhorst (2003); Elhorst and Freret (2009); Elhorst
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In this paper we generalize these earlier works on the J-test to a panel data framework.

We specify a null model containing fixed effects, a spatially lagged dependent variable, and

a time lagged dependent variable. The disturbance term is specified non-parametrically and

allows for general patterns of spatial and time correlation, as well as heteroskedasticity. We

allow for G alternative models which are specified in such a way that both spatial and time

correlation of various sorts, as well as general patterns of heteroskedasticity are special cases.

However, we note that our J-test procedure is not suitable for testing two models which only

differ in that one has fixed effects while the other has random effects.3

As in Kelejian and Piras (2011) we show that, given reasonable assumptions, the full

information J-test in a panel is computationally simple, and indeed, simpler than the tests

suggested in Kelejian (2008). We also illustrate that these assumptions would typically be

satisfied in most spatial models.

We give large sample results, as well as small sample Monte Carlo results. Our Monte

Carlo results suggest that our proposed J-test has good power, and proper size even for small

to moderately sized samples. We also implement our procedure to test the specifications of

a demand for cigarette model which has appeared numerous times in the literature (Baltagi

and Levin, 1986, 1992). Using our J-test, we find that the most appropriate specification is

one that includes, along with the average price of cigarettes in neighboring states, the spatial

lag of the dependent variable.

In Section 2 we specify the null model, while the alternative models are specified in Section

3. Section 4 is devoted to a discussion of the underlying features of the J-test. Formal model

specifications are given in Section 5, along with their interpretations. The J-test is given in

Section 6. Section 7 describes a dynamic demand for cigarettes model which we estimate and

then test using our proposed J-test procedure. Empirical results relating to this demand for

cigarette model are also given in this section. Section 8 describes the Monte Carlo model

used to study the small sample behavior of our proposed test, while the results of our Monte

(2008, 2009, 2010); Elhorst et al. (2010); Lee and Yu (2010c,a,b,d); Mutl and Pfaffermayr (2011); Pesaran and
Tosetti (2011); Yu and Lee (2010); Yu et al. (2008); Parent and LeSage (2010).

3In a slightly different context Mutl and Pfaffermayr (2011) suggest and give large sample results for a
Hausman test to discriminate between such models.
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Carlo study are given in Section 9. Conclusions and suggestions for further work are given in

Section 10. Technical details are relegated to the appendices.

2 The null model

Consider the model corresponding to N cross sectional units at time t

H0 :

yt = Xtβ1 + Ptβ2 + λ0Wyt + α0yt−1 + µ+ ut; (1)

t = 1, ..., T

where yt is the N × 1 vector of observations on the dependent variable at time t; Xt is a

N × kx matrix of observations at time t on kx exogenous variables which vary with respect

to both time and cross sectional units; Pt is an N × (T − 1) matrix of observations on T − 1

time dummy variables; W is an N ×N observed exogenous weighting matrix, µ is an N × 1

vector of fixed effects, and ut is the corresponding N × 1 disturbance vector.4 The available

data are from t = 0, ..., T, so that yt, yt−1, Xt, and Pt are observed for all t = 1, ..., T .

The regression parameters of the model are β1, and β2 which are, respectively, kx× 1 and

(T − 1)× 1 vectors, and λ0 and α0 which are both scalars. Our formal list of assumptions is

given below; at this point we note that our large sample theory relates to N → ∞, with T

fixed. We allow for triangular arrays but do not index the variables in (1) with the sample

size in order to simplify the notation.

Let eT be a T ×1 vector of unit elements. Then, stacking the model in (1) over t = 1, ..., T

yields

y = Xβ1 + Pβ2 + λ0(IT ⊗W )y + (2)

α0y−1 + (eT ⊗ IN )µ+ u

4Clearly if the model also had regressors which only varied cross sectionally, the corresponding coefficients
would not be identified. This was the case in a paper by Kelejian et al. (2013).
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where y′ = [y′1, ..., y
′
T ], X

′
= [X ′1, ..., X

′
T ], P ′ = (P ′1, ..., P

′
T ), y−1 is identical to y except all of

its elements are lagged one time period, and u′ = [u′1, ..., u
′
T ].

Let ε′ = [ε′1, ..., ε
′
T ], where εt, t = 1, ..., T, is a N × 1 vector of random elements. At this

point we assume that E(ε) = 0 and E(εε′) = INT . More formal assumptions are given below.

Given this notation, we assume the following structure for the NT × 1 disturbance vector u

u = Rε (3)

where R is an NT ×NT unknown lower triangular block nonstochastic matrix with N ×N

blocks Rij , i, j = 1, ..., T where Rij = 0 if j > i. Clearly, the form of R, namely

R =



R11 0 . . . 0

R21 R22 0 . . 0

. . . 0 . 0

. . . . 0 0

. . . . . 0

RT1 RT2 . . . RTT


(4)

restricts each element of u from depending upon future elements of ε. It also permits the

elements of u to be spatially and time autocorrelated, as well as heteroskedastic.

3 Alternatives under H1

The alternatives under H1 correspond to (2) in that they have the same structure but they

may have different regressors, weighting matrices, or error term specifications. These models

may have fixed or random effects, and a disturbance term which may be spatially and time

correlated, as well as heteroskedastic. However, we do not allow for alternatives which only

differ from the null in their error term specification.
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Using evident notation, we assume the alternatives

H1 : (5)

yt = MJ,tφ1,J + Pt φ2,J + λJWJyt + αJyt−1 + θJ + νJ,t

J = 1, ..., G; t = 1, ..., T

where for the J th model under H1, MJ,t is an N × kMJ
exogenous regressor matrix whose

elements vary with respect to both time and cross sectional units; Pt is defined in (1) above;

WJ is an N × N matrix of observations on an exogenous weighting matrix, θJ is the vector

of fixed or random effects, and νJ,t is the N × 1 error vector. Finally, φ1,J and φ2,J , are

conformably defined parameter vectors, and λJ , and αJ are scalar parameters. Stacking (5)

over t = 1, ..., T yields

y = MJφ1,J + Pφ2,J + λJ(IT ⊗WJ)y + (6)

αJy−1 + (eT ⊗ IN )θJ + νJ

J = 1, ..., G;

where, M ′J = [M ′J,1, ...,M
′
J,T ], ν ′J = (ν ′J,1, ..., ν

′
J,T ), and y, P, and y−1 where defined in (2).

Denote the J th model under H1 as H1,J . At this point we assume E(νJ |H1,J ,ΥJ) = 0 and

E(νJν
′
J |H1,J ,ΥJ) = VJ , where ΥJ = (MJ , P,WJ). Further assumptions are given in Section

5.

A suggestion relating to nested models and the J-test.

As indicated above, the J-test is a procedure for testing a null model against a non-nested

alternative. Although the procedure can be applied to certain nested models, we recommend

against doing so. As an example, using evident notation, the following hypotheses may be of

6



interest to some researchers

H0 : y = XB1 + (IT ⊗W )XB2 + λ1(IT ⊗W )y + u

H1 : y = XB3 + λ2(IT ⊗W )y + u

The null model is commonly referred to as a Durbin model; the alternative is often called a

spatial lag model. Note that H1 is nested in H0. A simple test of H0 against H1 would be

a χ2 test relating to the significance of the estimator of B2. On the other hand, the J-test

can not be applied in this case because the predicted value of the dependent variable based

on H1 would be perfectly collinear in the variables under H0. However, if H1 were the null

model, and H0 were the alternative model, the J-test could be applied because the predicted

value of the dependent variable based on the alternative, which is H0 in this case, would not

be perfectly collinear with the variables of the null. Despite this, most researchers would just

estimate the full model under H0 above and use a χ2 test for the significance of β2.

4 The components of the J-tests

In this section we describe the components underlying our suggested J-test. Specifically,

after some preliminaries, we develop the augmented equation our test is based on. That

equation involves predictions of the dependent variable under the alternative hypothesis.

These predictions are based on information sets which are also given in this section. We

also develop notation for the instruments which we suggest for estimating the augmented

equation. In the next section we give our modeling assumptions which use the notation

developed in this section.

Some preliminaries

Let

Q0 = (IT −
1

T
JT )⊗ In; JT = eT e

′
T (7)

7



and note that

Q0(IT ⊗A) = (IT ⊗A)Q0 (8)

Q0(eT ⊗ IN ) = 0

where A is any N ×N matrix.5 It then follows from (2) that pre-multiplying the null model

by Q0
6 eliminates the vector (eT ⊗ IN )µ and therefore

H0 : (9)

Q0y = Q0Xβ1 +Q0Pβ2 + λ0Q0(IT ⊗W )y + α0Q0y−1 +Q0u

= Q0Zγ0 +Q0Rε

Z = (X,P, (IT ⊗W )y, y−1); γ′0 = (β′1, β
′
2, λ0, α0)

For future reference note that the pre-multiplication of the alternative models in (6) by Q0

yields

H1 : (10)

Q0y = Q0MJφ1,J +Q0Pφ2,J + λJQ0(IT ⊗WJ)y + αJQ0y−1 +Q0νJ ; J = 1, ..., G

= Q0ZJγJ +Q0νJ

ZJ = [MJ , P, (IT ⊗WJ)y, y−1]; γ′J = (φ′1,J , φ
′
2,J , λJ , αJ)

The augmented equation

5See, e.g., Kapoor et al. (2007).
6There is more than one way to eliminate fixed effects. We chose to eliminate them by premultiplying the

model by Q0 because it was convenient. We note that some researchers may eliminate the fixed effects from a
dynamic panel model by taking a time difference. This is done because, under certain assumptions, it facilitates
the use of specific time lagged dependent variables as part of the instrument set. We did not take this approach
for at least two reasons. First, our error specification in (3) implies that we are allowing for a general pattern
of time series correlation in the errors and, therefore, time lagged values of the dependent variable can not be
used as instruments. Second, even if they could be used as instruments, there is, at present, no central limit
theorem that could then be applied to obtain the large sample distribution of the model parameter estimators
because of our general model specifications.
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The J-test is based on augmenting the null model in (9) by the predicted values of Q0y

based on each of the G alternatives under H1 and then testing for the significance of the

augmenting variables.7 Denote the J th alternative under H1 as H1,J , and let INFOJ be the

information set underlying the prediction of Q0y under H1,J . Possible information sets are

described below. At this point let

Y +
J = E[Q0y|H1,J , INFOJ ] (11)

= Q0E[y|H1,J , INFOJ ]

= Q0Y
E
J , J = 1, ..., G

where Y E
J = E[y|H1,J , INFOJ ]. The information sets we consider are described below. At

this point we note that these sets contain variables of the model which are correlated with

Q0νJ and so E[y|H1,J , INFOJ ] involves E[νJ |H1,J , INFOJ ] 6= 0 - see, e.g., (10).

A result relating to the case G=1

Results for the general case in which G > 1 are given below. At this point we note a

result relating to the typical case in which G = 1. Specifically, under reasonable conditions,

we demonstrate in the appendix that, asymptotically, if G = 1 and the true model under the

alternative is H1,J , the term E[νJ |H1,J , INFOJ ] can be ignored even if it is observed.8 We

also note that Q0Y
E
J can be taken as one of two forms, given below, which are both efficient

as well as asymptotically equivalent in terms of the power of the J-test. In finite samples

results relating to these two forms need not be identical.

The general case: The two forms

Assuming the inverse exists,9 let

ΠJ = (IT ⊗ (IN − λJWJ)−1), J = 1, ..., G (12)

7Essentially, the rational of the J-test is that if the null model is correct, these augmenting variables should
not add to the explanation of the dependent variable in (9).

8Assuming a linear conditional mean, E[νJ |H1,J , INFOJ ] can be estimated given reasonable data assump-
tions since it only involves variances and covariances of the elements of νJ and INFOJ .

9Further specifications are given below.
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Then, the two forms are Q0Y
E,A
J and Q0Y

E,B
J where

Q0Y
E,A
J = Q0MJφ1,J +Q0Pφ2,J + λJQ0(IT ⊗WJ)y + αJQ0y−1 (13)

Q0Y
E,B
J = Q0ΠJMJφ1,J +Q0ΠJPφ2,J + αJQ0ΠJy−1, J = 1, ..., G

Note that Q0Y
E,A
J corresponds to the right hand side of the null model, while Q0Y

E,B
J corre-

sponds to its reduced form.

Let φ̂1,J , φ̂2,J , λ̂J , and α̂J be the estimated values of φ1,J , φ2,J , λJ , and αJ based on the

specifications of H1,J , J = 1, ..., G. Let

︷ ︸︸ ︷
Q0Y

E,A
J = Q0MJ φ̂1,J +Q0Pφ̂2,J + λ̂JQ0(IT ⊗WJ)y + α̂JQ0y−1 (14)︷ ︸︸ ︷

Q0Y
E,B
J = Q0ΠJMJ φ̂1,J +Q0ΠJPφ̂2,J + α̂JQ0ΠJy−1

Finally, let

Ŷ i
1,G = [

︷ ︸︸ ︷
Q0Y

E,i
1 , ...,

︷ ︸︸ ︷
Q0Y

E,i
G ], i = A,B (15)

and note that Ŷ i
1,G is an NT ×G matrix.

Given this notation, and for a preselected value of i = A,B,10 our augmented equation

for the J-test is

Q0y = Q0Zγ0 +Q0Ŷ
i

1,Gψi +Q0Rε (16)

= Q0Γ̂iξi +Q0Rε, i = A,B

where ψi is a G×1 vector of parameters, Γ̂i = [Z, Ŷ i
1,G] and ξ′i = (γ′0, ψ

′
i), i = A,B. The J-test

relates to the significance of the estimator of ψi based on (16). Details concerning this are

given below.

The information sets

We consider two information sets for the J th model, for each time t = 1, ..., T, under H1.

10We indicate that the value of i should be preselected in the test in order to avoid a selection which is based
on the results obtained.
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The first is a minimum set in the sense that it only relates to the variables that enter the right

hand side of the model in (5) with the exception of θJ because this term does not appear in

the augmented model (16), nor is it relevant for estimating that model. The second is a full

information set in the sense that it includes all possible variables that could be relevant in

the prediction described in (13).

Our minimum and maximum information sets are

INFOmin
J,t = (ΥJ ,WJyt, yt−1)

INFOmax
J,t = (INFOmin

J,t , y−i,t, y0, ..., yt−1); J = 1, ..., G

where y−i,t is identical to yt except it does not contain its ith element. Note that, since the

diagonal elements of the weighting matrices are zero,11 WJyt does not involve the ith element

of yt. As a consequence, WJyt is given if both WJ and y−i,t are given. Clearly, INFOmin
J,t

relates to the variables that enter the transformed model (10). On the other hand, INFOmax
J,t

contains all of the elements of INFOmin
J,t as well as all of the lagged dependent variable vectors

which would be available at time t. These additional vectors could be of use in predicting if

the error term is time autocorrelated.

The instruments

Under our assumptions given in the next section the spatially lagged dependent variable

as well as the time lag which appears in the augmented equation in (16) are endogenous.

Therefore, we suggest an instrumental variable procedure for estimating that model.

Let X−1 and MJ,−1 be identical, correspondingly, to X and MJ except that all of their

elements are lagged one time period, J = 1, ..., G. Let

FJ = [MJ , (IT ⊗WJ)MJ ,MJ,−1, (IT ⊗WJ)MJ,−1], J = 1, ..., G

11The assumption that the diagonal elements of the weighting matrices are zero is standard, and is given in
our formal list of specifications in the next section.
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Our suggested instruments are H where:12

H = Q0[X,P, (IT ⊗W )X,X−1, (IT ⊗W )X−1, F1, ..., FG]LI (17)

where LI in (17) denotes the linearly independent columns of the matrix in brackets. For

future reference, and without loss of generality, we will refer to H as an NT × kh matrix,

where kh > kx + T +G+ 1, which is the number of parameters in the augmented model.

5 Model specifications

In this section we first list our assumptions and then give their interpretation.

The assumptions

Assumption 1 (a) T is a fixed positive integer. (b) For all 1 ≤ t ≤ T and 1 ≤ i ≤ N, N ≥ 1

the elements of ε, namely εit are identically distributed with mean and variance (0, 1), and

have a finite fourth moments. In addition for each N ≥ 1 and 1 ≤ t ≤ T, 1 ≤ i ≤ N the

error terms εit are independently distributed. (c) The row and column sums of the NT ×NT

matrix R is uniformly bounded in absolute value.

Assumption 2 (a) For all J = 1, ..., G, E(νJ |H1,J ,ΥJ) = 0 and E(νJν
′
J |H1,J ,ΥJ) = VvJ ,

where the row and column sums of VvJ are uniformly bounded in absolute value. (b) (IN−aWJ)

is nonsingular for all |a| < 1.0, J = 1, ..., G.

Assumption 3 (a) The diagonal elements of W and WJ , J = 1, ..., G are zero. (b) |λ0| <

1.0; (c) (IN − aW ) is nonsingular for all |a| < 1.0. (d) The row and column sums of W,

(IN − aW )−1, R, and WJ , J = 1, ..., G and are uniformly bounded in absolute value.

Assumption 4 (a) The elements of the instrument matrix H, and therefore of X and MJ , J =

1, ..., G are uniformly bounded in absolute value. (b) H,X, and MJ , J = 1, ..., G have full col-

umn rank for N large enough.

12Recall from footnote 5 that the general specifications of our model preclude the use of lagged values of the
dependent variable as instruments.
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Assumption 5 The data corresponding to the alternative models, and the estimation proce-

dures are such that, under H1,J :

(φ̂1,J , φ̂2,J , λ̂J , α̂J)
P→ (c1,J , c2,J , LJ , aJ), J = 1, ..., G.

where c1,J , c2,J , LJ , aJ are finite constants which need not equal, respectively, φ1,J , φ2,J , λJ ,

and αJ .

Assumption 6 Let Γi be identical to Γ̂i except that φ̂1,J , φ̂2,J , λ̂J , and α̂J are replaced, re-

spectively, by c1,J , c2,J , LJ , and aJ , J = 1, ..., G. Then, we assume

(a) : lim
N→∞

(NT )−1H ′H = ΩHH

(b) : p lim
N→∞

(NT )−1H ′Q0Γi = ΩHQ0Γi , i = A,B

(c) : lim
N→∞

(NT )−1H ′Q0RR
′Q0H = ΩH′Q0RR′Q0H

where ΩHH ,ΩHQ0Γi , and ΩH′Q0RR′Q0H are finite full column matrices, and therefore ΩHH

and ΩH′Q0RR′Q0H are positive definite.

Interpretations

In the great majority of spatial panel models the time dimension is short relative to the

number of cross sectional units. Assumption 1 (a) is consistent with this and with large

sample theory based on N → ∞. Part (b) of this assumption accounts for triangular arrays

in specifying the elements of ε. Since the product of matrices whose row and column sums are

uniformly bounded in absolute value also have this property, it follows from part (c) that the

row and column sums of the variance-covariance matrix of u, namely, RR′, are also uniformly

bounded in absolute value.

As we demonstrate in the appendix, it turns out that specifications beyond those given

in Assumption 2 relating to νJ are of no consequence asymptotically concerning either the

size or power of our suggested J-test. Obviously, part (b) of this assumption is needed in

reference to Q0Y
E,B
J in (13). Assumptions 3 and 4 are standard. The force of Assumption 5

13



is that, asymptotically, the size of our test does not depend upon the consistent estimation

of the models under H1; on the other hand, it should be evident that the power of our test

will be higher if the alternative models are consistently estimated! Assumption 6 is somewhat

standard.

6 The J-Test

Our test is based on the 2SLS estimator of the parameter vector ξi in the augmented equa-

tion (16). Let PH = H(H ′H)−1H ′, Φ̂i = Q0Γ̂i and Φ̃i = PHΦ̂i. Then the 2SLS estimator of

ξi based on (16) is

ξ̃i = (Φ̃′iΦ̃i)
−1Φ̃′iQ0y, i = A,B (18)

Theorem 1 Given the model in (16) and the assumptions in Section 5

(NT )1/2[ξ̃i − ξi]
D→ N(0, p lim

N→∞
A[ΩH′Q0RR′Q0H ]A′) (19)

ΩHQ0RRQ0H = lim
N→∞

(NT )−1(R′Q0H)′(R′Q0H)

A = (NT )(Φ̃′iΦ̃i)
−1[Γ̂′iQ0H](H ′H)−1

The proof on Theorem 1 is given in the appendix.

The suggested small sample approximation to the distribution of ξ̃i based on (19) is

ξ̃i ' N(ξi, Ṽξ̃i
) (20)

Ṽξ̃i
= (NT )−1A[Ω̃H′Q0RR′Q0H ]A′

where Ω̃H′Q0RR′Q0H is a HAC estimator of ΩH′Q0RR′Q0H - see, e.g. Kelejian and Prucha

(2007) and Kim and Sun (2011). Let ξ̃
′
i = (γ̃′0, ψ̃

′
i) and let Ṽψ̃i

the lower right G × G block

diagonal submatrix of Ṽξ̂i
. Then, at the 5% level, our suggested J-test will reject the null
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model if

ψ̃
′
iṼ
−1

ψ̃i

ψ̃
′
i > χ2

G(.95). (21)

7 Empirical Application

In our empirical application, we use a dynamic demand model for cigarettes (Baltagi and

Levin, 1986, 1992). Our data set is based on a panel from 46 US states over the period

1963-1992, and it has been used for illustrative purposes in a number of spatial econometric

studies (see e.g. Elhorst, 2005; Debarsy et al., 2012, among others). This data set (over a

limited period) was originally used in Baltagi and Levin (1986), who estimated a dynamic

demand for cigarettes to address several important policy issues. They found that cigarette

sales in a given state are negatively (and significantly) affected by the average retail price

of cigarettes in that state with a price elasticity of -0.2. They also found that the income

effect was not significant. A distinctive characteristic of their model is that cigarette sales

in each state is assumed to depend upon, among other things, the lowest cigarette price in

neighboring states. This price variable is meant to capture cross state shopping by cigarette

consumers, as well as a “bootlegging” effect, where cigarette consumers purchase cigarettes

from “agents” who obtain their supplies from states which have lower prices. This bootlegging

effect is found to be positive and statistically significant. Baltagi and Levin (1992) updated

the results of their previous analysis (on an extended time frame), and considered various

ways of modeling the bootlegging effect. In particular, they analyzed the sensitivity of their

results by replacing the minimum price of cigarettes in neighboring states, by the maximum

neighboring price. However, they did not consider replacing the minimum price with an

average price of the neighboring states, which would seem to be the most intuitive thing to

do in a spatial context.

With our J-test, we wish to test two competing non-nested alternatives. The null model

we consider is the one estimated in Baltagi and Levin (1992) and includes, along with time

dummies and spatial fixed effects, the minimum price variable in neighboring states. The

alternative model is one that is specified in terms of the average price of the neighboring
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states, as well as a spatially lagged dependent variable.

More formally, the model under the null, H0, is the following:

lnCit = β1 lnCit−1 + β2 ln pit + β3 ln Iit + β4 ln p̄it + µi + δt + uit (22)

where i = 1, . . . , N denotes states, t = 1, . . . , T denotes time periods. In our sample N = 46,

and T = 29. In (22) Cit is cigarette sales per capita in constant dollars to persons of smoking

age in state i at time t; pit is the real price of cigarettes in state i at time t; Iit is real per

capita disposable income in state i at time t; p̄it denotes the minimum real price of cigarettes

in a neighboring state; µi is the fixed effect for state i, and δt is the fixed time effect for period

t. The error term uit is assumed to have the non-parametric specification in (3). We expect

β1 > 0, β2 < 0, and β3 > 0. The expectations concerning β1, β2, and β3 relate, respectively,

to habit effects, the usual negative price effect on demand, and the positive effect of income.

We also expect β4 to be positive. The reason for this is that higher prices in neighboring

states should lead to greater sales in state i.

Stacking the data over i and t (22) can be expressed as

y = XB0 + P∆0 + α0y−1 + (eT ⊗ IN )µ+ u0 (23)

where y is the NT × 1 vector of observations on lnCit; X is the matrix of observations on the

price variable ln pit, the income variable ln Iit, and on the minimum price variable ln p̄it; P is

an N × (T − 1) matrix of observations on T − 1 dummies (δt); y−1 is identical to y except all

of its elements are lagged one time period. µ is the N × 1 vector of fixed effects; eT is the

T × 1 vector of unit elements; and u0 is the corresponding vector of disturbance terms.13

13To estimate the null model we use the following matrix of instruments:

H0 = Q0[X,X−1, P ]

Results from the estimation of the null, alternative and augmented model are reported in the Appendix.
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We assume the alternative model, H1, to be:

lnCit = β5 lnCit−1 +β6 ln pit+β7 ln Iit+β8

N∑
j=1

wij ln pjt+λ

N∑
j=1

wij lnCjt+πi+ δt+vit (24)

where the spatial weight wij is a measure of the distance between states,14
∑n

j=1wij lnCjt is

the spatial lag of consumption,
∑N

j=1wij ln pjt is the average price of cigarettes in neighboring

states, and πi is the fixed effect corresponding to the ith unit. We will again assume that the

error term is specified non-parametrically. The remaining notation should be evident. Note

that the
∑N

j=1wij ln pjt is different from the minimum price in Baltagi and Levin (1992) so

that the models under H0 and H1 are non-nested. In this formulation we would assume that

β8 is positive for reasons similar to those relating to β4 in H0, namely cross state purchases.

Finally, λ is the coefficient that measures spatial spillover effects.

Stacking the data, the alternative model can be written in the usual spatial form as

y = MB1 + (IT ⊗W )M?B2 + λ(IT ⊗W )y + P∆1 + α1y−1 + (eT ⊗ IN )π + u1 (25)

where M is the NT × 2 matrix of observations on the price variable ln pit, and the income

variable ln Iit; M
? is an NT × 1 vector of observations on the spatial lag of the price variable,

and the remaining notation should be evident.

As indicated, the J-test is based on augmenting the null model by the predicted values of

Q0y based on the alternative model. The procedure then is to test for the significance of the

augmenting variable.

Given the specifications of the model, the first step in the procedure is to estimate the

alternative model by 2SLS. The matrix of instruments used to estimate the alternative model

is 15

H∗1 = Q0[M, (IT ⊗W )M, (IT ⊗W 2)M,M−1, (IT ⊗W )M−1, (IT ⊗W 2)M−1, P ]

14The weighting matrix employed in this paper is based on the six nearest neighbors.
15Note that the spatial lag in the price variable is one of the columns in the spatial lag of M .
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Given the estimated parameter values, we can obtain the two predictors corresponding to (14).16

Let M̄ be the NT×3 matrix whose columns are observations on ln pit, ln Iit, and the minimum

price variable in (22). Then, the augmented equation is also estimated by 2SLS using the

matrix of instruments which is identical to H∗1 except that M is replaced by M̄ .

One final point relates to statistical inference. Standard errors are produced using the

spatial HAC estimator of Kelejian and Prucha (2007) with a Parzen kernel. Following previous

literature (e.g. Anselin and Lozano-Gracia, 2008), we specify a variable bandwidth based on

the distance to the six nearest neighbors.17

At the 5% level the J-test rejects the null model since the Chi-squared variable = 19.063 >

χ2
1 = 3.841. We conclude then that cross state purchases are better captured by the average

price in neighboring states.

8 Monte Carlo Design

The design for the Monte Carlo simulation is based on the typical format used in studies on

spatial panel models (e.g. Kapoor et al., 2007; Lee and Yu, 2010c; Piras, 2013) and in studies

on non-nested tests (Pesaran, 1982; Davidson and MacKinnon, 1981; Godfrey and Pesaran,

1983; Delgado and Stengos, 1994).

Following previous literature (see e.g. Florax et al., 2003; Baltagi et al., 2003, 2007b, among

others), our experimental design relates to data generated on regular grids. Specifically, we

generate the data from two regular grids of dimensions 10 × 10 and 20 × 20, corresponding

to sample sizes of 100 and 400 observations. For each sample size we construct three row

normalized weighting matrices. Following Kelejian and Prucha (1999), the first of this matrix

is defined in a circular world and it is generally referred to as the k ahead and k behind

spatial weighting matrix. Specifically, in our first matrix (W0), k is set to five. Our second

16In the paper we only present the test based on the predictor corresponding to the minimum information
set. The results for the other predictor are qualitatively similar and, therefore, are only available upon request
from the authors.

17In the empirical application as well as in all of the Monte Carlo experiments in Section 8, the denominator
of Ω̃H′Q0RR′Q0H is N(T − 1) − k where k is the number of regressors in the model. This degrees of freedom
correction in typically done in fixed effects studies (see e.g. Baltagi, 2008, equation 2.24). Also, in order to
estimate the residuals more efficiently, Q0u is estimated from the null model.
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matrix (W1) is a distance matrix based on the three nearest neighbors. The distance measure

employed to calculate the three nearest neighbors matrix is the Euclidean distance

dij =
√

(xi − xj)2 + (yi − yj)2 (26)

where (xi, yi) and (xj , yj), are the coordinates of the two units. The last spatial weighting

matrix considered (W3) is a contiguity matrix based on the queen criterion (i.e. common

borders and vertex).

For each sample size we design four sets of experiments. In the first set of experiments

the null and alternative models only differ in terms of the weighting matrix employed. In the

second set the null and alternative models differ both in terms of the spatial weighting matrix

and the regressor matrix. In the third and fourth set of experiments we consider more than

one model under the alternative.

In the first set of experiments, the null model is generated from:

y = X0β0 + λ0(IT ⊗W0)y + α0y−1 + u (27)

u = N(0, σ2INT )

where the regressors matrix X0 is taken as X0 = (x1, x2), where the NT × 1 values of x1

are generated from a uniform distribution over (0,4); the NT × 1 values of x2 are generated

from a chi-squared with three degrees of freedom.18 The elements of the parameter vector β0

were set to 0.5, and σ2 = 1.0; this value of σ2 lead to R2 values of, approximately 0.6. The

alternative model is also generated from (27) except that it is specified in terms of the spatial

weights matrix W1. In this experiment, and in the experiments below, once generated, the

values of the regressors are held fixed in the Monte Carlo trials. The parameter values, and

the specification of the innovation term are given below.

18We generate the spatial panel data with 100 + T periods and then take the last T as our sample and we
set T equal to 5 in all experiments. The initial values are generated as

y0 = (IT ⊗ (IN − λ0W0)−1)X0β0
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In the second set of experiments, the null model is identical to (27), while the alternative

model differs in terms of both the weighting matrix and the regressor matrix X1 = (z1, z2).

Specifically, the weighting matrix employed in this set of experiments is W1 (the three nearest

neighbors). Additionally, the first column of the regressors matrix (z1) is generated from an

uniform distribution over (0,3), and the values of z2 are generated as

z2 = ax1 + ξ (28)

where a = 0.5 and ξ ∼ N(0, INT ). This value of a leads to a correlation between z2 and x1

of, approximately, 0.5.

The third set of experiments is different from the previous two in that it accounts for

two models under the alternative. Again, the null model is specified as in (27), and the two

alternative models are specified in terms of X0 and W1, and X1 and W0, respectively.

Finally, the fourth set of experiments accounts for three models under the alternative.

While the null model is again specified as in (27), the models under the alternative are

specified in terms of X0 and W1, X1 and W0, and X1 and W2, respectively. The four sets of

experiments are summarized in Table 1.

In all four sets of experiments, six values are considered for λ, namely -0.6, -0.4, -0.2, 0.2,

0.4 and 0.6; and two values for α, namely -0.2, 0.2. Our parameter combinations are consistent

with the stability conditions given in Elhorst (2001) and Parent and LeSage (2011).

The total number of combinations relating to λ, α, N and the four sets of experiment

combining different definitions of W leads to a total of 6 × 2 × 2 × 4 = 96 experiments for

each of which the two predictors are calculated. For all experiments, 2,000 replications are

performed. This is roughly the number of replications needed to obtain a 95% confidence

interval of length .02 on the size of a test statistic.
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9 Monte Carlo Results

Our Monte Carlo results corresponding to each of the four experiments are summarized in

Tables 2-9. For each experiment and sample size, these tables give the frequency of rejection

of the null hypothesis at the 5% level. Reading across, the results in the first two sections

give the estimated size of the test, while power estimates are given in the second two sections.

The results in the tables relate to the use of our two predictors, Y (A) and Y (B). Finally, the

first four tables refers to the smaller sample size (n = 100), while the other four to the larger

sample size (n = 400).

Consider the results in Table 2, which are based on the first set of experiments for n = 100.

Looking first at column averages, the empirical size of the test, based on both predictors in (14)

is reasonably close to the theoretical 5% level. There is only one exception when α = 0.2 and

λ = 0.6. In this case the average sizes of the test corresponding to the predictor y(A) is, in

percentage points, 6.15. The theoretical level, in percentage terms, is 5.00. A glance at the

corresponding results in Table 6, based on n = 400, suggests that as the sample size increases

the empirical size gets closer to the theoretical level.

Let us turn now to the reported power calculations of the J-test in Table 2. Again, in

terms of column averages, it should be clear that the J-test exhibits “very” high power in all

cases relating to the first set of experiments in which the null and alternative models differ

only in the spatial weight matrix. In these cases, the power results seem to be degraded for low

values of λ.19 Given our Monte Carlo design, the power is very high and, in general, differences

relating to the use of the two predictor are small. Therefore, based on computational simplicity

we suggest the use of our test in this paper based on the predictor y(A).20 When the sample

size increases (see Table 6) the power calculation are virtually all equal to 1.0.

19In a sense this result is not very surprising given that the power of any test will depend on the extent
to which the null and alternative hypotheses differ. A further discussion of this is given by LeSage and Pace
(2009). Using Bayesian posterior model comparisons, they illustrate for alternative weight matrices that as the
spatial dependence approaches low levels, the posterior probabilities approach the prior probabilities. In the
limiting case, if the spatial dependence were zero an empirical test would not be able to distinguish between
two different weighting matrices.

20However, as pointed out by Jin and Lee (2013), there might be situations where the gap in the power for
the two versions of the spatial J-test may be large. This is an issue that could be explored in a larger Monte
Carlo study, and we leave it for further research.
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Consider now the results in Table 3, where the difference between the null and alternative

model pertains to both the weighting matrix and the regressors matrix. The empirical size of

the test, based on the predictor y(B), is reasonably close to the theoretical 5% level. There

are very few exceptions mostly related to low values of λ. Specifically, these exceptions are,

in percentage points, 6.3, 6.25 and 6.45. On the other hand, concerning the predictor y(A),

none of the estimates of the empirical size fall into the acceptance interval (.041, .060) and

the test seems to systematically over-reject the null hypothesis.21 Fortunately, we note that

this “size of test problem” diminishes as the value of n increases. In fact, looking at column

averages in Table 7, we note that the empirical size of the test, based on both predictors, is

reasonably close to the theoretical 5% level when the sample size is n = 400. There are a few

exceptions that do not fall into the “acceptance interval”. Moving to the power of the test

we observe from Table 3 that, for all combinations of model parameters, the power of the test

corresponding to the use of both predictors is equal to one. The suggestion is that, in terms

of power, if the null and alternative models differ in both the spatial weighting matrix and

the regressor matrices, the two tests we suggest in this paper are equally good.

The last two sets of experiments are specified in such a way that the null model is tested

against two (or more) possible alternatives. In particular, Table 4 relates to a situations where

there are two models under the alternatives, while the results in Table 5 are obtained when

there are three models under the alternative.

Results in Table 4 and 5 suggest that, when there is more than one model under the

alternative hypothesis the empirical size of the test, based on both predictors, is reasonably

close to the theoretical 5% level. Interestingly, there are no exceptions to this in Table

4. However, Table 5 presents a few cases in which the empirical sizes do not fall into the

“acceptance interval”. These cases are mostly related to the use of the first predictor, and

only one case relates to the second predictor. Fortunately, we note again that this “size of

test problem” diminishes as the value of n increases. In fact, looking at Table 9, we note that

there are only two individual size estimates significantly different from 5% when the sample

21Some studies have suggested to implement bootstrap testing procedure to improve the small sample per-
formance of the test (see, e.g., Burridge and Fingleton, 2010, for an example in a spatial context). We decided
to leave this for future research.
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size is n = 400. Finally, the reported powers in Table 4 and 5 are very high and suggest that

in reasonably large samples, the two tests considered are quite “powerful”.

10 Conclusion

In this paper we extended the J-test to a spatial panel model containing fixed effects, a

spatially lagged dependent variable, and a time lagged dependent variable. The disturbance

term in our model was specified non-parametrically and allows for general patterns of spatial

and time correlation, as well as heteroskedastity. The alternative models were specified in such

a way that both spatial and time correlation of various sorts, as well as general patterns of

heteroskedasticity are special cases. These alternative models can have either fixed or random

effects. Given reasonable assumptions, our test is computationally simple.

We gave formal large sample results, as well as small sample Monte Carlo results that

suggested, among other things, that our proposed J-test has good power, and proper size for

small to moderately sized samples.

Finally, we implemented our procedure to test the specifications of a demand for cigarette

model. Our empirical results suggested that the most appropriate specification was the one

involving a spatial lag of cigarette consumption in neighboring states.

One suggestion for future research would be an extension of our results to the case in

which both N → ∞ and T → ∞. In doing this one should, among other things, account for

the possible limits of N/T - e.g., to 0,∞, or a finite constant. Another extension would be

to non-linear spatial models in a panel framework. Among others, such a framework would

arise in qualitative, or limited dependent variable models. Still another suggestion for future

research relates to small sample issues which would arise in a Monte Carlo study in which

the true value of a parameter relating to the spatial lag of the dependent variable is “close”

to a limiting value of the parameter space- e.g., if 1.0 is a limiting value then the true value

might be .9. Assuming the stability conditions described in Parent and LeSage (2011), in this

framework estimates of this parameter would, in some trials, exceed that upper limit. There

are various ways of handling such cases but guidance on this issue would be relevant.
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Table 1: Experimental Designs Relating to the Regressor and Weighting Matrices

Experiments Regressors Weights

Set 1
H0 X0 W0

H1 X0 W1

Set 2
H0 X0 W0

H1 X1 W1

Set 3
H0 X0 W0

H1 X1 W0

X0 W1

Set 4
H0 X0 W0

H1 X0 W1

X1 W0

X1 W2

Table 2: Frequency of rejection of the null hypothesis: two predictors (2000 replications),
n = 100, t = 5.

First set of experiments.
H0 : X0,W0 and H1 : X0W1

size power

Y (A) Y (B) Y (A) Y (B)

α = −0.2 λ = −0.6 0.0505 0.0525 1.0000 1.0000
λ = −0.4 0.0500 0.0510 1.0000 1.0000
λ = −0.2 0.0540 0.0545 0.8885 0.8985
λ = 0.2 0.0495 0.0450 0.9155 0.8655
λ = 0.4 0.0560 0.0565 1.0000 1.0000
λ = 0.6 0.0555 0.0590 1.0000 1.0000

α = 0.2 λ = −0.6 0.0575 0.0525 1.0000 1.0000
λ = −0.4 0.0515 0.0435 1.0000 1.0000
λ = −0.2 0.0475 0.0525 0.8405 0.8510
λ = 0.2 0.0580 0.0595 0.8475 0.7670
λ = 0.4 0.0445 0.0450 1.0000 1.0000
λ = 0.6 0.0615 0.0565 1.0000 1.0000

Average 0.0530 0.0523 0.9577 0.9485
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Table 3: Frequency of rejection of the null hypothesis: two predictors (2000 replications),
n = 100, t = 5.

Second set of experiments.
H0 : X0,W0 and H1 : X1W1

size power

Y (A) Y (B) Y (A) Y (B)

α = −0.2 λ = −0.6 0.0650 0.0535 1.0000 1.0000
λ = −0.4 0.0645 0.0565 1.0000 1.0000
λ = −0.2 0.0665 0.0520 1.0000 1.0000
λ = 0.2 0.0685 0.0630 1.0000 1.0000
λ = 0.4 0.0690 0.0520 1.0000 1.0000
λ = 0.6 0.0685 0.0530 1.0000 1.0000

α = 0.2 λ = −0.6 0.0760 0.0625 1.0000 1.0000
λ = −0.4 0.0670 0.0530 1.0000 1.0000
λ = −0.2 0.0640 0.0645 1.0000 1.0000
λ = 0.2 0.0670 0.0575 1.0000 1.0000
λ = 0.4 0.0680 0.0575 1.0000 1.0000
λ = 0.6 0.0675 0.0515 1.0000 1.0000

Average 0.0676 0.0564 1.0000 1.0000

Table 4: Frequency of rejection of the null hypothesis: two predictors (2000 replications),
n = 100, t = 5.

Third set of experiments.
H0 : X0,W0 and H1 : X0W1;X1W0

size power

Y (A) Y (B) Y (A) Y (B)

α = −0.2 λ = −0.6 0.0575 0.0580 1.0000 1.0000
λ = −0.4 0.0510 0.0485 1.0000 1.0000
λ = −0.2 0.0430 0.0460 1.0000 1.0000
λ = 0.2 0.0540 0.0445 1.0000 1.0000
λ = 0.4 0.0490 0.0410 1.0000 1.0000
λ = 0.6 0.0510 0.0460 1.0000 1.0000

α = 0.2 λ = −0.6 0.0475 0.0495 1.0000 1.0000
λ = −0.4 0.0545 0.0490 1.0000 1.0000
λ = −0.2 0.0540 0.0470 1.0000 1.0000
λ = 0.2 0.0485 0.0415 1.0000 1.0000
λ = 0.4 0.0570 0.0445 1.0000 1.0000
λ = 0.6 0.0440 0.0465 1.0000 1.0000

Average 0.0509 0.0468 1.0000 1.0000
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Table 5: Frequency of rejection of the null hypothesis: two predictors (2000 replications),
n = 100, t = 5.

Fourth set of experiments.
H0 : X0,W0 and H1 : X0W1;X1W0;X1W2

size power

Y (A) Y (B) Y (A) Y (B)

α = −0.2 λ = −0.6 0.0645 0.0465 1.0000 1.0000
λ = −0.4 0.0580 0.0550 1.0000 1.0000
λ = −0.2 0.0525 0.0495 1.0000 1.0000
λ = 0.2 0.0545 0.0460 1.0000 1.0000
λ = 0.4 0.0555 0.0505 1.0000 1.0000
λ = 0.6 0.0480 0.0450 1.0000 1.0000

α = 0.2 λ = −0.6 0.0625 0.0510 1.0000 1.0000
λ = −0.4 0.0690 0.0555 1.0000 1.0000
λ = −0.2 0.0680 0.0505 1.0000 1.0000
λ = 0.2 0.0580 0.0505 1.0000 1.0000
λ = 0.4 0.0530 0.0390 1.0000 1.0000
λ = 0.6 0.0575 0.0440 1.0000 1.0000

Average 0.0584 0.0486 1.0000 1.0000

Table 6: Frequency of rejection of the null hypothesis: two predictors (2000 replications),
n = 400, t = 5.

First set of experiments.
H0 : X0,W0 and H1 : X0W1

size power

Y (A) Y (B) Y (A) Y (B)

α = −0.2 λ = −0.6 0.0515 0.0490 1.0000 1.0000
λ = −0.4 0.0520 0.0535 1.0000 1.0000
λ = −0.2 0.0480 0.0460 1.0000 1.0000
λ = 0.2 0.0430 0.0445 1.0000 1.0000
λ = 0.4 0.0520 0.0505 1.0000 1.0000
λ = 0.6 0.0555 0.0510 1.0000 1.0000

α = 0.2 λ = −0.6 0.0465 0.0445 1.0000 1.0000
λ = −0.4 0.0530 0.0535 1.0000 1.0000
λ = −0.2 0.0500 0.0500 1.0000 1.0000
λ = 0.2 0.0455 0.0480 1.0000 1.0000
λ = 0.4 0.0465 0.0445 1.0000 1.0000
λ = 0.6 0.0490 0.0510 1.0000 1.0000

Average 0.0494 0.0488 1.0000 1.0000
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Table 7: Frequency of rejection of the null hypothesis: two predictors (2000 replications),
n = 400, t = 5.

Second set of experiments.
H0 : X0,W0 and H1 : X1W1

size power

Y (A) Y (B) Y (A) Y (B)

α = −0.2 λ = −0.6 0.0560 0.0545 1.0000 1.0000
λ = −0.4 0.0510 0.0510 1.0000 1.0000
λ = −0.2 0.0670 0.0635 1.0000 1.0000
λ = 0.2 0.0505 0.0540 1.0000 1.0000
λ = 0.4 0.0645 0.0625 1.0000 1.0000
λ = 0.6 0.0565 0.0580 1.0000 1.0000

α = 0.2 λ = −0.6 0.0610 0.0585 1.0000 1.0000
λ = −0.4 0.0510 0.0540 1.0000 1.0000
λ = −0.2 0.0500 0.0520 1.0000 1.0000
λ = 0.2 0.0495 0.0500 1.0000 1.0000
λ = 0.4 0.0580 0.0570 1.0000 1.0000
λ = 0.6 0.0610 0.0615 1.0000 1.0000

Average 0.0563 0.0564 1.0000 1.0000

Table 8: Frequency of rejection of the null hypothesis: two predictors (2000 replications),
n = 400, t = 5.

Third set of experiments.
H0 : X0,W0 and H1 : X0W1;X1W0

size power

Y (A) Y (B) Y (A) Y (B)

α = −0.2 λ = −0.6 0.0455 0.0470 1.0000 1.0000
λ = −0.4 0.0475 0.0505 1.0000 1.0000
λ = −0.2 0.0530 0.0610 1.0000 1.0000
λ = 0.2 0.0505 0.0490 1.0000 1.0000
λ = 0.4 0.0450 0.0550 1.0000 1.0000
λ = 0.6 0.0545 0.0540 1.0000 1.0000

α = 0.2 λ = −0.6 0.0460 0.0480 1.0000 1.0000
λ = −0.4 0.0540 0.0590 1.0000 1.0000
λ = −0.2 0.0560 0.0580 1.0000 1.0000
λ = 0.2 0.0470 0.0470 1.0000 1.0000
λ = 0.4 0.0490 0.0475 1.0000 1.0000
λ = 0.6 0.0500 0.0535 1.0000 1.0000

Average 0.0498 0.0525 1.0000 1.0000
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Table 9: Frequency of rejection of the null hypothesis: two predictors (2000 replications),
n = 400, t = 5.

Fourth set of experiments.
H0 : X0,W0 and H1 : X0W1;X1W0;X1W2

size power

Y (A) Y (B) Y (A) Y (B)

α = −0.2 λ = −0.6 0.0460 0.0485 1.0000 1.0000
λ = −0.4 0.0525 0.0485 1.0000 1.0000
λ = −0.2 0.0530 0.0515 1.0000 1.0000
λ = 0.2 0.0495 0.0550 1.0000 1.0000
λ = 0.4 0.0535 0.0530 1.0000 1.0000
λ = 0.6 0.0615 0.0625 1.0000 1.0000

α = 0.2 λ = −0.6 0.0475 0.0545 1.0000 1.0000
λ = −0.4 0.0495 0.0435 1.0000 1.0000
λ = −0.2 0.0495 0.0450 1.0000 1.0000
λ = 0.2 0.0565 0.0455 1.0000 1.0000
λ = 0.4 0.0585 0.0495 1.0000 1.0000
λ = 0.6 0.0510 0.0500 1.0000 1.0000

Average 0.0524 0.0506 1.0000 1.0000
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Table 10: Estimation of the alternative model.

Coefficients se t-stat p-val

ln pi,t -0.4366 0.0454 -9.6174 0.0000
ln Ii,t 0.1661 0.0316 5.2492 0.0000∑N

j=1 wij ln pj,t 0.1776 0.0974 1.8237 0.0682∑N
j=1 wij lnCj,t 0.2169 0.0564 3.8440 0.0001

lnCi,t−1 0.6433 0.0371 17.3191 0.0000

Table 11: Estimation of the null model.

Coefficients se t-stat p-val

ln pi,t -0.4957 0.0492 -10.0726 0.0000
ln Ii,t 0.1894 0.0361 5.2467 0.0000
ln pmin -0.0159 0.0359 -0.4441 0.6569
lnCi,t−1 0.6016 0.0410 14.6690 0.0000

Table 12: Estimation of the augmented model using the first predictor y(A) based on the
minimum information set.

Coefficients se t-stat p-val

ln pi,t -0.0749 0.1206 -0.6212 0.5345
ln Ii,t 0.0203 0.0551 0.3687 0.7123
ln pmin -0.3479 0.2121 -1.6401 0.1010
lnCi,t−1 0.0747 0.1868 0.3997 0.6894

y(A) 0.8288 0.2737 3.0281 0.0025
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Appendix

A: Asymptotic equivalence of Q0Y
E,A
J and Q0Y

E,B
J when G = 1

A.1: Results relating to

︷ ︸︸ ︷
Q0Y

E,A
J

Let

Q0 = [Q′0,1, ..., Q
′
0,T ]′

where Q0,t is the N ×NT matrix which consists of the tth block of N consecutive rows of Q0

- e.g., Q0,1 is the first N consecutive rows of Q0, etc. Let Q0,t,i. be the ith row of Q0,t and

note from (10) and (11) that E[Q0,t,i.y|H1,J , INFO
max
J,t ] = Q0,t,i.E[y|H1,J , INFO

max
J,t ] where

Q0,t,i.E[y|H1,J , INFO
max
J,t ] = Q0,t,i.MJφ1,J +Q0,t,i.Pφ2,J (29)

+λJQ0,t,i.0(IT ⊗WJ)y + αJQ0,t,i.y−1

+Q0,t,i.E[νJ |H1,J , INFO
max
J,t ]

Let

rJ |t,i = Q0,t,i.E[νJ |H1,J , INFO
max
J,t ] (30)

and note that rJ |t,i 6= 0 since the elements of the NT ×1 vector νJ are both spatially and time

correlated, and INFOmax
J,t contains the vectors [y0, ..., yt−1, y−i,t]. However, using the iterated

expectations principle, recalling that INFOmax
J,t contains ΥJ = (MJ , P,WJ), and Assumption

2 it follows that

E[rJ |t,i|H1,J ,ΥJ ] = Q0,t,i.E[E(νJ |H1,J , INFO
max
J,t )|H1,J ,ΥJ ] (31)

= Q0,t,i.E(νJ |H1,J ,ΥJ) = 0

The results in (30) and (31) imply

Q0,t,i.νJ = rJ |t,i + ΘJ |t,i (32)
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where E[ΘJ |t,i|H1,J ,ΥJ ] = 0.22

Let rJ |t = [rJ |t,1, ..., rJ |t,N ]′ and rJ = [rJ |1, ..., rJ |T ]′. It follows from (30) - (32) that

Q0νJ = rJ + ΘJ (33)

where

E[Q0νJ |H1,J ,ΥJ ] = E[rJ |H1,J ,ΥJ ] = E[ΘJ |H1,J ,ΥJ ] = 0 (34)

and the VC matrix of Q0νJ is

Q0VvJQ0 = VrJ + VΘJ
+ CrJ ,ΘJ

+ C ′rJ ,ΘJ
(35)

where VrJ and VΘJ
are, respectively, the variance covariance matrices of rJ and ΘJ , and

CrJ ,ΘJ
is the covariance matrix between rJ and ΘJ . Clearly the row and column sums of

Q0 are uniformly bounded in absolute value by T−1
T < 2.0; By Assumption 2, the row and

column sums of VvJ are also uniformly bounded in absolute value. Since the product of

matrices whose row and column sums are uniformly bounded in absolute value also have rows

and column sums which are so uniformly bounded, the row and column sums of Q0VvJQ0 are

also uniformly bounded in absolute value. It then follows from (35) that the row and column

sums of VrJ are uniformly bounded in absolute value.

If rJ were observed and used, the predictor

︷ ︸︸ ︷
Q0Y

E,A
J in (14) would be replaced by

︷ ︸︸ ︷
Q0Y

E,A
J +rJ

in the augmented regression (16). We now show that the large sample distribution of ξ̃i in (18)

does not involve rJ .

The estimator ξ̃i can be expressed

(NT )1/2[ξ̃i − ξi] = NT (Φ̃′iΦ̃i)
−1(NT−1/2)Φ̃′iQ0Rε (36)

=
{

[(NT )−1Φ̂′iH] [(NT )(H ′H)−1] [(NT )−1H ′Φ̂i]
}−1
∗

[(NT )−1Φ̂′iH] [(NT )(H ′H)−1] [(NT )−1/2H ′Q0Rε]

22To see this, take expectations across in (32) conditional on H1,J , INFO
max
J,t and use the result in (31).
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Since Φ̂A = Q0Γ̂A and, in this case Γ̂A = [Z,

︷ ︸︸ ︷
Q0Y

E,A
J +rJ ], the term rJ only arises in (36)

in terms of the product (NT )−1H ′Q0[Z,

︷ ︸︸ ︷
Q0Y

E,A
J +rJ ]. Let ηJ = (NT )−1H ′Q0rJ . Then, in

light of (36) the term rJ enters into the large sample distribution of ξ̃i only via ηJ . It follows

from (33) - (35) that the mean and variance covariance matrix of ηJ are

E[ηJ |H1,J ,ΥJ ] = 0 (37)

E[ηη′J |H1,J ,ΥJ ] = (NT )−2H ′[Q0VrJQ0]H

In light of (35) the row and column sums of Q0VrJQ0 are uniformly bounded in absolute

value. By Assumption 4, the elements of H are uniformly bounded in absolute value and so

the elements of H ′[Q0VrJQ0]H are 0(N); it follows from (37) that

E[ηη′J |H1,J ,ΥJ ]→ 0 (38)

The results in (37), (38), and Chebyshev’s inequality imply

ηJ
P→ 0 (39)

It then follows that, asymptotically, rJ is of no consequence in our J-test.

A.2: Equivalence of Q0Y
E,A
J and Q0Y

E,B
J , asymptotically, when G = 1.

Let

KJ = [IT ⊗ (IN − λJWJ)−1] (40)

and note from (8) and (10) that under H1,J

Q0y = KJQ0MJφ1,J +KJQ0Pφ2,J + αJKJQ0y−1 +KJQ0νJ (41)
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Consider Q0Y
EA
J and, recalling (8) and (13), we have

Q0Y
E,A
J = Q0MJφ1,J +Q0Pφ2,J + λJ(IT ⊗WJ)Q0y + αJQ0y−1 (42)

= Q0MJφ1,J +Q0Pφ2,J + αJQ0y−1 + (IT ⊗ λJWJ) ∗

[KJQ0MJφ1,J +KJQ0Pφ2,J + αJKJQ0y−1 +KJQ0νJ ]

Combining terms in (42) we have

Q0Y
E,A
J = SJQ0MJφ1,J + SJQ0Pφ2,J + SJQ0y−1λJ + (IT ⊗ λJWJ)KJQ0vJ (43)

where

SJ = INT + (IT ⊗ λJWJ) (IT ⊗ (IN − λJWJ)−1) (44)

= [IT ⊗ (IN − λJWJ) + (IT ⊗ λJWJ)] [IT ⊗ (IN − λJWJ)−1]

= IT ⊗ (IN − λJWJ)−1

≡ ΠJ , J = 1, ..., G

where ΠJ is defined in (12). Let hJ = (IT ⊗ λJWJ)KJQ0vJ . It then follows from (42) - (44)

that

Q0Y
E,A
J = ΠJQ0MJφ1,J + ΠJQ0Pφ2,J + ΠJQ0y−1λJ + hJ (45)

≡ Q0Y
E,B
J + hJ

since Q0ΠJ = ΠJQ0. Thus, in finite samples the only difference between the use of Y E,A
J and

Y E,B
J is the term hJ . However, asymptotically, hJ is of no consequence for the same reason

that rJ is of no consequence. For example, it follows from (36) that hJ can only effect the

asymptotic distribution of ξ̃i if plimN→∞(NT )−1H ′hJ 6= 0. However, (NT )−1H ′hJ
P→ 0 and
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so hJ is of no consequence. To see this, let ΨJ = (NT )−1H ′hJ . Now note from (34) that

E[ΨJ |H1,J ,ΥJ ] = (NT )−1H ′(IT ⊗ λJWJ)KJQ0E[vJ |H1,J ,ΥJ ] (46)

= 0

and

E[ΨJΨ′J |H1,J ,ΥJ ] = (NT )−2H ′[(IT ⊗ λJWJ)KJ ][Q0VvJQ0][K ′J(IT ⊗ λJW ′J)]H (47)

It follows from Assumption 3 and (35) that the row and column sums of the matrices in

brackets in (47) are uniformly bounded in absolute value; in addition, from Assumption 4 the

elements of H are uniformly bounded in absolute value. Therefore, the elements of the VC

matrix E[ΨJΨ′J |H1,J ,ΥJ ] are 0(N−1) and so E[ΨJΨ′J |H1,J ,ΥJ ]→ 0. Chebyshev’s inequality

then implies that ΨJ
P→ 0.

Of course, in practice

︷ ︸︸ ︷
Q0Y

E,A
J and

︷ ︸︸ ︷
Q0Y

E,B
J would be used instead of Q0Y

E,A
J and Q0Y

E,B
J .

Therefore the use of

︷ ︸︸ ︷
Q0Y

E,A
J and

︷ ︸︸ ︷
Q0Y

E,B
J would be asymptotically equivalent if, in light

of (36), the data and estimation procedure associated with H1,J are such that the parameters

are consistently estimated and

p lim
N→∞

(NT )−1H ′
︷ ︸︸ ︷
Q0Y

E,A
J = p lim

N→∞
(NT )−1H ′Q0Y

E,A
J (48)

p lim
N→∞

(NT )−1H ′
︷ ︸︸ ︷
Q0Y

E,B
J = p lim

N→∞
(NT )−1H ′Q0Y

E,B
J

Proof of Theorem 1

To simplify notation, we prove Theorem 1 for the case in which

︷ ︸︸ ︷
Q0Y

E,A
J is used, J =

1, ..., G. The proof for the case in which

︷ ︸︸ ︷
Q0Y

E,B
J is used is virtually identical.
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First note from (10), (14) and (15) that

Ŷ A
1,G = [Z1, ..., ZG] [γ̂′1, ..., γ̂

′
G]′ (49)

= Z1,G γ̂1,G

where Z1,G = [Z1, ..., ZG] and γ̂1,G = [γ̂′1, ..., γ̂
′
G]′ where γ̂′J = (φ̂

′
1,J , φ̂

′
2,J , λ̂J , α̂J), J = 1, ..., G.

For this case Γ̂A in (16) is

Γ̂A = [Z,Z1,G γ̂1,G] (50)

and ΓA = [Z,Z1,G γ1,G]. Therefore, recalling that Φ̃A = PHΦ̂A and Φ̂A = Q0Γ̂A it follows

from (16) and (18) that

(NT )1/2[ξ̃i − ξi] =
{

(NT )−1Γ̂′AQ0H [(NT )−1H ′H]−1(NT )−1H ′Q0Γ̂A

}−1
∗

(NT )−1Γ̂′AQ0H (NT )(H ′H)−1 (NT )−1/2H ′Q0Rε (51)

Consider the term (NT )−1H ′Q0Γ̂A in the inverse on the first line of (51) and note that by

Assumption 5, γ̂1,G
P→ C1,G = (c′1, ..., c

′
G)′, where c′J = (c0,J , c2,J , LJ , aJ), J = 1, ..., G. Part

(b) of Assumption 6, and (49), imply

(NT )−1H ′Q0Γ̂A] = p lim
N→∞

(NT )−1H ′Q0[Z,Z1,G γ̂1,G] (52)

= [p lim
N→∞

(NT )−1H ′Q0Z, (p lim
N→∞

(NT )−1H ′Q0Z1,G) p lim
N→∞

γ̂1,G]

= [p lim
N→∞

(NT )−1H ′Q0Z, (p lim
N→∞

(NT )−1H ′Q0Z1,G) γ1,G]

= p lim
N→∞

(NT )−1H ′Q0ΓA

= ΩHQ0ΓA
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Let ẑ be the inverse term on the first line of (51) and let

z̃ = ẑ ∗ [(NT )−1Γ̂′AQ0H] [(NT )(H ′H)−1] (53)

Then from (52), and parts (a) and (b) of Assumption 6, first note that

ẑ P→
{

Ω′HQ0ΓA
Ω−1
HHΩHQ0ΓA

}−1
(54)

where Ω′HQ0ΓA
Ω−1
HHΩHQ0ΓA

is positive definite and, therefore, nonsingular since ΩHH is pos-

itive definite and so, therefore, is Ω−1
HH , and ΩHQ0ΓA

has full column rank. It then follows

from (52) - (54), and and parts (a) and (b) of Assumption 6 that

z̃ P→ z∗ (55)

z∗ =
{

Ω′HQ0ΓA
Ω−1
HHΩHQ0ΓA

}−1
Ω′HQ0ΓA

Ω−1
HH

Finally, consider the last term on the second line in (51), namely (NT )−1/2H ′Q0Rε. Since

the row and column sums of both Q0 and R are uniformly bounded in absolute value, the row

and column sums of Q0R are also uniformly bounded in absolute value. Since by Assumption

4 (a) the elements of H are uniformly bounded in absolute value it follows that the elements

of H ′Q0R are uniformly bounded in absolute value. Given this, and Assumptions 1, 6 part

(c), and the central limit theorem (30) in Pötscher and Prucha (2000) it follows that

(NT )−1/2H ′Q0Rε
D→ N(0,ΩH′Q0RR′Q0H) (56)

Therefore, by the continuous mapping theorem and (51) - (55)

(NT )1/2[ξ̃i − ξi]
D→ N(0,z∗ΩH′Q0RR′Q0Hz

∗′) (57)
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