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Abstract

Weighting matrices are typically assumed to be exogenous. However, in many
cases this exogeneity assumption may not be reasonable. In these cases,
typical model specifications and corresponding estimation procedures will no
longer be valid. In this paper we specify a spatial panel data model which
contains a spatially lagged dependent variable in terms of an endogenous
weighting matrix.

We suggest an estimator for the regression parameters, and demonstrate
its consistency and asymptotic normality. We also suggest an estimator for
the large sample variance-covariance matrix of that distribution.

We then apply our results to a an interstate panel data cigarette demand
model which contains an endogenous weighting matrix. Among other things,
our results suggest that, if properly accounted for, the bootlegging effect of
buyers, or “agents” for them, crossing state borders to purchase cigarette
turns out to be positive and significant.



1 Introduction

A broad range of suggestions have been offered in the literature concerning
the specification of the spatial weighting matrix. Historically, many of these
suggested specifications are based on geographic criteria. For example, units
are often defined to be “neighbors” if they are within a certain geographic
distance of each other, or if they are in the same region, or if they have a
common border, etc. In such cases, model estimation is simplified because
the weighting matrix can be taken to be exogenous rather than endogenous.1

Because of these simplifications, researchers rarely consider the endogeneity
of their weighting matrix even when its endogeneity is evident! For exam-
ple, after discussing a variety of issues associated with the elements of the
weighting matrix, Anselin and Bera (1998) state that “in the standard esti-
mation and testing approaches, the weights matrix is taken to be exogenous.”
They go on to suggest that if the elements of the weighting matrix involve
socioeconomic indicators, the “weights should be chosen with great care to
ensure their exogeneity, unless their endogeneity is considered explicitly in the
model specification”. Although not suggested by Anselin and Bera (1998),
their statements might have lead some researchers to purposefully misspec-
ify, and estimate, their model by either ignoring the (obvious) endogeneity
of their weighting matrix, or by selecting an inappropriate matrix which can
be comfortably viewed as exogenous.

There are many studies which involve weighting matrices for which the
assumption of exogeneity may not be reasonable. For example, in estimating
a cost-function model, Cohen and Morrison Paul (2004) specify the elements
of the weighting matrix in terms of the share of the value of goods shipped
from a state. In a study relating to the diffusion of knowledge spillover, Par-
ent and LeSage (2008) specified a weighting matrix based on a technological
proximity index. In the context of a growth model, Conley and Ligon (2002)
use an economic definition based on transport costs. Similarly, Conley and
Topa (2002) use a socio-economic distance based on social networks to study
the spatial patterns of unemployment in Chicago. In a recent paper Behrens
et al. (2012) point out that connectivity in terms of geographical proximity

1Among others, studies based on an exogenous weighting matrix are Baltagi et al.
(2007), Kelejian and Prucha (1998), Kelejian and Prucha (1999), Kelejian and Prucha
(2001), Kelejian and Prucha (2004), Kapoor et al. (2007), Lee (2004), Piras (2011), Rey
and Boarnet (2004). For a spatial model involving a weighting matrix which is exogenous
but in a nonparameteric framework, see Pinske et al. (2002).
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is narrow. In deriving a quantity-based structural gravity equation system,
they adopt a broader definition in terms of a similarity measure that is based
on the relative size of regions as reflected by population share.2 In a study
relating to budget spillovers and fiscal policy interdependence, Case et al.
(1993) stress that states that are economically similar, are more likely to
have an effect on each other than states that simply share a common border.
In the context of the above studies, many of the weighting matrices are likely
to be endogenous.

As will become clear, if a weighting matrix in a spatial model is endoge-
nous, typical model specifications will no longer be appropriate. Similarly,
regression parameter estimators which do not account for the endogeneity of
the weighting matrix will typically be inconsistent.

In this paper we specify a spatial panel data model which contains a
spatially lagged dependent variable in terms of an endogenous weighting
matrix. We consider model specification issues, and suggest an estimator for
the regression parameters. We demonstrate the consistency and asymptotic
normality of our estimator. We also point out a number of subtle issues that
may not be obvious to all readers.

Our results are presented in terms of a fixed effects panel model. However,
we demonstrate that minor modifications extend our results to a random
effects panel data model.

We apply our theoretical results to a dynamic model for the demand for
cigarettes. In our model, the elements of the weighting matrix depend upon
cigarette price ratios which we view as endogenous. The model presented in
this paper can be viewed as a variant of the model put forth by Baltagi and
Levin (1986); however, their model did not contain spatial lags, and therefore
did not contain an “endogeneity” problem.

As an overview of our results, we find that cigarette consumption per
capita in a given state is negatively effected by the price of cigarettes in that

2Trade share variables were used to formulate a weighting matrix in a study on exchange
market contagion by Kelejian et al. (2006) and in a study relating to GDP fluctuations by
Mukerji (2009). Both the Mukerji (2009), and the Kelejian et al. (2006) studies recognized
the endogeneity of the weighting matrix but they were applied, and did not contain formal
estimation, or Monte Carlo results. Yet another study involving an endogenous weighting
matrix was the one by Hondroyianis et al. (2012). Their study related to contagion issues
in the bond markets of Europe. Their weighting matrix was formulated in terms of the
differences of GPDs and national debts between the countries. However, in their study,
the endogeneity of the weighting matrix was not accounted for.
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state, and positively effected by the prices of cigarettes in neighboring states
if those prices are lower than in the given state. This could be the result if
consumers in a given state cross borders to capitalize on such lower prices, or
if bootleggers purchase cigarettes in lower priced neighboring areas and then
sell them to consumers in higher priced areas. As “somewhat” expected, we
also find that cigarette consumption per capita in a given state is positively
effected by the income level of that state.3

The paper is organized as follows. Section 2 presents the model and dis-
cusses some of the issues related to the error specification. In particular,
we show that when the spatial weighting matrix is taken to be endogenous,
typical models of spatially correlated disturbance terms would have a ma-
jor shortcoming. In that section we specify our disturbance term in such a
way that it does not have such “major shortcomings”; we also argue that,
asymptotically, our disturbance specification is quite general. The model as-
sumptions are presented and discussed in Section 3, while Section 4 describes
the estimation procedure. The dynamic demand for cigarettes is introduced
and estimated in Section 5. Conclusions and suggestions for further research
are given in Section 6. Technical details are relegated to the appendix.

2 The Model

Consider the model

yN(t) = µ+XN(t)β + λWN(t)yN(t) + YN(t)γ + uN(t) (1)

≡ ZN(t)δ + µ+ uN(t)

ZN(t) = [XN(t),WN(t)yN(t), YN(t)]; δ′ = (β′, λ, γ′)

t = 1, ..., T ; N > 1

where yN(t) is an N × 1 vector of observations on the dependent variable
at time t; µ is an N × 1 vector of fixed effects, XN(t) is an N × k matrix
of observations on k exogenous regressors at time t, β is an k × 1 vector of
parameters, λ is a scalar parameter, WN(t) is an N×N matrix of observations
on an endogenous weighting matrix at time t, YN(t) is an N × q matrix of

3We “somewhat” expected this income result because income levels positively correlate
with educational levels, and the level of education could have a negative effect on cigarette
consumption due to health issues.
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observations on q endogenous variables at time t, γ is a corresponding q × 1
vector of parameters, δ′ = (β′, λ, γ′), and uN(t) is the N × 1 disturbance
vector which is specified below. The subscript N denotes triangular arrays.

Stacking the model over t = 1, ..., T we have, using evident notation

yN = ZNδ + (iT ⊗ IN)µ+ uN (2)

ZN = [XN , diag
T
t=1[WN(t)]yN , YN ]

where iT is a T × 1 vector of unit elements, and

yN = [yN(1)′, ..., yN(T )′]′; ZN = [ZN(1)′, ..., ZN(T )′]′;

uN = [uN(1)′, ..., uN(T )′]′; XN = [XN(1)′, ..., XN(T )′]′;

YN = [YN(1)′, ..., YN(T )′]′.

We assume the following non-parametric specification for uN

uN = RN εN (3)

where RN is an unknown NT × NT non-stochastic matrix, and εN is an
NT × 1 random vector whose mean is zero, and for which further details are
defined below. At this point we note that the solution of the model for yN
in terms of XN , diag

T
t=1[WN(t)], and YN is4

yN = (INT − λdiagTt=1[WN(t)])−1[XNβ + (iT ⊗ IN)µ+ YNγ + uN ] (4)

Our large sample results below are based on the assumption that N →∞
with T fixed. Because of this the model in (2) is transformed to eliminate
the fixed effects. Specifically, consider the standard transformation matrix
Q0,N = (IT − 1

T
JT )⊗ IN , where JT = iT i

′
T and note that

Q0,N(iT ⊗ IN)µ = 0 (5)

Therefore, pre-multiplying (2) by Q0,N yields

Q0,NyN = Q0,NZNδ +Q0,NRNεN (6)

= (Q0,NXN , Q0,Ndiag
T
t=1[WN(t)]yN , Q0,NYN)δ +Q0,NRNεN

= ZNδ +Q0,NRNεN

4Formal assumptions relating to the weights are given in Section 3.
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where ZN = Q0,NZN.
Unless the weighting matrix is time invariant, Q0,Ndiag

T
t=1[WN(t)] 6=

diagTt=1[WN(t)]Q0,N and therefore, in general, the term in (6)

Q0,Ndiag
T
t=1[WN(t)]yN 6= diagTt=1[WN(t)]Q0,NyN

2.1 Comments about the error specification

An issue relating to an endogenous weighting matrix

Before continuing to formal specifications, certain comments about the
error term specification should be noted. First, the disturbance term uN is be-
ing specified in a nonparametric way. One reason for this is that typical mod-
els of spatially correlated disturbance terms would have a major shortcoming
because of the endogeneity of WN(t). To see this, let WN = diagTt=1[WN(t)].
In a typical Cliff-Ord setting, the specification of the error term would be

uN = ρWNuN + εN (7)

where (INT − ρWN) would be assumed to be nonsingular and E(εN) = 0.
However, in this setting,

uN = (INT − ρWN)−1εN (8)

and since WN is endogenous

E(uN) = E[(INT − ρWN)−1εN ] (9)

6= 0

because the elements of WN , and therefore those of WN would not be inde-
pendent with those of εN . Therefore, the specification in (7) would imply a
disturbance term whose mean is not zero! Perhaps more significantly, under
typical specifications, this mean would involve some or all of the exogenous
variables which partially determine the elements of WN ,

5 as well as unknown
parameters and so the mean would not just be a constant vector. Indeed,

5We say “partially” because if the elements of WN (t) are endogenous, then the deter-
mination of WN (t) would also involve endogenous variables, and perhaps, error terms. To
simplify the presentation, we did not indicate that the expectation of WN (t) is conditional
upon the exogenous variables.

5



unless extremely strong assumptions are made, even the functional forms of
these means would not be known.

The comments above apply to any spatial error model which involves an
endogenous weighting matrix -e.g., to spatial moving average models, etc.
Obviously, the above comments would not apply if the weighting matrix in
the error process is exogenous, and therefore different from the endogenous
weighting matrix defining the spatially lagged dependent variable. However,
such a specification might be difficult to justify since it would involve different
measures of “meaningful” distance - e.g., a trade model with endogenous
trade shares as weights defining a spatially lagged dependent variable, and
a row normalized weighting matrix based on contiguous areas with equal
weights in each row.

Asymptotic generality of the specification uN = RN εN

At first, this specification may seem to be restrictive in that some com-
monly used error term specifications in a panel framework can not be ex-
pressed as in (3). As one example, consider the somewhat typical error term
specification in Kapoor et al. (2007).6 They assumed a nonstochastic and
time invariant weighting matrix, say WN , spatial correlation in a Cliff-Ord
setting, and an innovation term which has an error component structure with
random effects. Using evident notation, their model is

ψN = ρ(IT ⊗WN)ψN + ηN (10)

ηN = (iT ⊗ IN)µN + νN

where ψN is the NT × 1 model error term, ηN is the corresponding NT × 1
innovation vector, µN is an N × 1 vector of i.i.d. random effects which have
mean and variance (0, σ2

µ), and vN is an NT × 1 vector of i.i.d. stochastic
terms which have mean and variance (0, σ2

v). The error term ψN in (10) can
not be expressed in a manner comparable to (3), and so in this sense the
specification in (3) may seem “overly” restrictive.

On the other hand, given the specifications in Kapoor et al. (2007), the
error term ψN in (10) is such that

E(ψN) = 0; E(ψNψ
′
N) = ΩψN

(11)

where ΩψN
is positive definite. Our assumptions below imply that RN is

nonsingular, and εN has a zero mean, and its VC matrix is INT . This implies

6This was pointed out to us by Ingmar Prucha.
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that
E(uN) = 0; E(uNu

′
N) = RNR

′
N (12)

Clearly there exists an RN such that

RNR
′
N = ΩψN

(13)

For example, since ΩψN
is positive definite and symmetric it can be expressed

as ΩψN
= Ω

1/2
ψN

Ω
1/2
ψN

7 and so if RN = Ω
1/2
ψN

(13) will hold. The implication
is that every panel data framework specification of the error term which
implies a zero mean vector, and a VC matrix which is positive definite is
consistent with the first two moments of our specification uN = RNεN in (3).
Furthermore, given that the mean of the error vector is zero, our assumptions
in Section 3 imply that the large sample distribution of the IV estimators of
the regression parameters given below do not depend upon any characteristic
of the disturbance distribution other than its VC matrix. The implication of
this is that in a large sample IV framework, it is of no consequence whether
or not a “true” disturbance vector can be expressed as in (2). In this sense,
our error term specification in (3) is not “overly” restrictive.8

3 Model assumptions

The mean of WN(t)

Using evident notation, denote the elements of WN(t) as wij,N(t),
t = 1, ..., T. Some of these elements will be specified, apriori, to be zero, while
others will be positive.9 Denote the subset of elements of WN(t) which are
not specified to be zero as w∗ij,N(t).10 We assume that the mean of w∗ij,N(t)
exists and is an unknown function of two sets of exogenous variables. One
set, say pij,N(t) is observable, and the other set, say qij,N(t) is not observable,
or perhaps not even known. The regressor matrix XN and pij,N(t) may have
elements in common.

7See, e.g., equations (7) and (11) in Kapoor et al. (2007).
8Of course, other characteristics of the error distribution could have an effect on the

corresponding small sample distributions.
9For example, among others, the diagonal elements of WN (t) would be specified to be

zero.
10In the specification of w∗ij,N (t), the subscripts i, j only take on those values which

correspond to the non-zero elements of WN (t).
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Denote this mean relationship as

E[w∗ij,N(t)] = f [pij,N(t), qij,N(t)] (14)

The result in (14) implies

w∗ij,N(t) = f [pij,N(t), qij,N(t)] + ζ ij,N(t) (15)

where E(ζ ij,N) = 0.
Suppose pij,N(t) is an 1× r vector, say pij,N(t) = (p1,ij,N(t), ..., pr,ij,N(t)),

and consider the linear approximation to f [pij,N(t), qij,N(t)] in terms of the
elements of pij,N(t), namely11

f [pij,N(t), qij,N(t)] ≈ p1,ij,N(t)a1 + ...+ pr,ij,N(t)ar (16)

so that via (15) we have

w∗ij,N(t) ≈ p1,ij(t)a1 + ...+ pr,ij,N(t)ar + ζ ij,N(t) (17)

where a1, ..., ar are constants. If an intercept is assumed in the approximation
in (16), the values of p1,ij,N(t) can be taken as 1.0 .

Let â1, ..., âr be the least squares estimates of the parameters, a1, ..., ar
based on (17) using all the nonzero values in WN(t), t = 1, ..., T. Let the
approximation to f [pij,N(t), qij,N(t)] be

f̂ [pij,N(t), qij,N(t)] = p1,ij,N(t)â1 + ...+ pr,ij,N(t)âr (18)

Let Ps,N(t) be the N × N matrix whose zero elements are exactly in
the same positions as those of WN(t), and whose nonzero elements are ob-
tained by replacing w∗ij,N(t) with ps,ij,N(t), s = 1, ..., r. Then we assume the

approximation to E[WN(t)] to be Ŵ e
N(t) where

Ŵ e
N(t) = P1,N(t)â1 + ...+ Pr,N(t)âr (19)

and, correspondingly, diagTt=1[Ŵ e
N(t)] is

diagTt=1[Ŵ e
N(t)] = diagTt=1[P1,N(t)â1 + ...+ Pr,N(t)âr] (20)

11We are assuming a linear approximation for ease of presentation; it will become clear
that our results will hold if the approximation is in terms of a higher order polynomial
which might be considered if r is small.
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The mean of YN(t)

Let Yij,N(t) be the ijth element of YN(t), and let

E[Yij,N(t)] = φ(mij,N(t), ξij,N(t)) (21)

where mij,N(t) is a 1 × g vector of exogenous variables at time t that are
observed, and ξij,N(t) is a vector of exogenous variables that are not observed.
Let MN(t) be the N × g matrix of observations on mij,N(t), and let MN be
the NT ×g matrix of observations: MN = [MN(1)′, ...,MN(T )′]′.

The instruments

Because the model in (6) contains endogenous regressors, as well as an
endogenous weighting matrix we suggest an IV procedure for its estimation.
We specify the form of these instruments before giving the assumptions of the
model. We do this because some of the assumptions of the model are given
in terms of these instruments. We also need to introduce some additional
notation.

Let

Si,N(t) = Pi,N(t)XN(t), i = 1, ..., r (22)

Vi,N(t) = Pi,N(t)MN(t), i = 1, ..., r

Stacking the data on these matrices over t = 1, ..., T we define

Si,N = [Si,N(1)′, ..., Si,N(T )′]′, i = 1, ..., r (23)

Vi,N = [Vi,N(1)′, ..., Vi,N(T )′]′i = 1, ..., r

Finally, we define

SN = (S1,N , ..., Sr,N) (24)

VN = (V1,N , ..., Vr,N)

and note that SN and VN are, respectively, NT × rk and NT × rg matrices.
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Our suggested instruments are Ĥ∗N where12

Ĥ∗N = (Q0,NXN , Q0,NMN , Q0,Ndiag
T
t=1[Ŵ e

N(t)] XN , Q0,Ndiag
T
t=1[Ŵ e

N(t)] MN)

= (Q0,NXN , Q0,NMN , Q0,NSN Â1, Q0,NVN Â2]) (25)

≡ Q0,N(XN ,MN , SN Â1, VN Â2)

where Â1 and Â2 are, respectively, the rk × k and rg × g matrices

Â1 = [Ikâ1, ..., Ikâr]
′ (26)

Â2 = [Igâ1, ..., Igâr]
′

Note that the instrument matrix Ĥ∗N is NT × 2k+ 2g and the regression
parameter vector δ is (k + 1 + q) × 1. We therefore assume that 2k + 2g ≥
1 + k + q, or

k + 2g ≥ 1 + q (27)

so that there are at least as many instruments as there are regression pa-
rameters. Note that even if g = 0 so that none of the exogenous variables
that partially determine the mean of the endogenous matrix YN is observed,
the condition in (27) will still hold if k ≥ 1 + q. Note also that in this case
because YN is endogenous, it partially depends upon yN and therefore should
depend upon XN .

Another expression of Ĥ∗N is useful for our analysis below. Specifically,
Ĥ∗N can be expressed as

Ĥ∗N = HN Ã (28)

where
HN = Q0,N(XN ,MN , SN , VN) (29)

Ã =


Ik 0k×g 0k×k 0k×g

0g×k Ig 0g×k 0g×g
0rk×k 0rk×g Â1 0rk×g
0rg×k 0rg×g 0rg×k Â2

 (30)

12Obviously, we are assuming that if XN and MN have columns in common, these
columns are not included in MN . Also, our set of instruments could be extended to
include products of the square of Ŵ e

N (t) -e.g. terms such as Q0,NdiagTt=1[(Ŵ e
N (t))2] XN .

Such an extended set of instruments could improve estimation efficiency. We have not
included these additional instruments for ease of presentation. Our large sample results
given below would still hold with obvious modifications.
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Adjustments for the case of a random effects model

If the model has random effects instead of fixed effects, there are only two
changes that need to be made in order for our results given below to hold.
First, there would be an intercept term in the original model (1), and the vec-
tor of random effects would be incorporated into the disturbance specification
in (3). In this case, there would be no reason to multiply the model across by
Q0,N and therefore the list of instruments would be the same as those given
in (25) except that none of the variables would be pre-multiplied by Q0,N .
Second, the list of instruments would contain the intercept. Of course, the
assumptions given below would need to be correspondingly adjusted.

3.1 Assumptions

In this section we give detailed assumptions corresponding to the fixed effects
model; their interpretations and justifications are given in the next section.

Assumption 1 T is a given finite integer.

Assumption 2 p lim
N→∞

âi = ci, i = 1, ..., r where 0 ≤ ci < ∞ and at least

one of (c1, ..., cr) is not zero.

Assumption 3 (a) (XN) is nonstochastic with rank k for N large enough,
and its elements are uniformly bounded for all t = 1, ..., T and N > 1. (b)
Let A be identical to Ã except that âi is replaced by ci, i = 1, ..., r and let
H∗N = HNA. Then, we assume that H∗N is nonstochastic and has full column
rank, namely, 2k + 2g for N large enough, and its elements are uniformly
bounded for all t = 1, ..., T and N > 1.

Assumption 4 (a) The diagonal elements of diagTt=1[WN(t)] are zero (b)
Each row and column of diagTt=1[WN(t)] has, at most, a finite number of
non-zero elements. (c) The elements of diagTt=1[WN(t)] are uniformly bound
in absolute value by a constant. (d) (INT − λdiagTt=1[WN(t)]) is nonsingular
for all |λ| < ξ, where ξ is a finite constant.

Assumption 5 The matrix RN is nonsingular, and the row and column
sums of RN and R−1

N are uniformly bound in absolute value.
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Assumption 6 For all 1 ≤ t ≤ T and 1 ≤ i ≤ N, N ≥ 1 the elements of
εN , namely εit,N , are identically distributed with zero mean and unit variance.
In addition for each N ≥ 1 and 1 ≤ t ≤ T, 1 ≤ i ≤ N the error terms εit,N
are identically and independently distributed.

Assumption 7 We also assume

(a) : p lim
N→∞

(NT )−1Ã′[H ′NHN ]Ã = A′QHHA ≡ QH∗H∗

(b) : p lim
N→∞

(NT )−1Ã′H ′NZN = A′Q
HZ
≡ Q

H∗Z

(c) : p lim
N→∞

(NT )−1Ã′H ′NRNR
′
NHN Ã = A′QHRRHA ≡ QH∗RRH∗

where QHH , QHZ
, and QHRRH are finite matrices and QH∗H∗ , Q

H∗Z
, and

QH∗RRH∗ are finite full column rank matrices.

3.2 Assumption Interpretations

Given our model, Assumption 1 essentially indicates that our large sample
results relate to N →∞. Assumption 2 requires that the linear approxima-
tion in (17), namely [p1,ij(t)a1 + ... + pr,ij,N(t)ar], is at least correlated with
w∗ij,N(t). This seems reasonable given the general correlation of most eco-
nomic variables. Assumption 3 part (a) rules out perfect multicollinearity,
and therefore an identification problem; it also rules out regressors whose
values increase beyond limit. Part (b) of this assumption effectively rules
out linearly dependent instruments. Note that a necessary condition for H∗N
to have full column rank is that A has full column rank. A necessary and
sufficient condition for A to have full column rank is given in Assumption 2,
namely that at least one ci 6= 0. Obviously, part (b) of Assumption 3 would
be violated if certain columns of MN are linearly dependent upon those in
XN .

Assumption 4 (a) is a standard specification for all weighting matrices
and is, effectively, a normalization of the model. In many spatial models it is
typically assumed that each unit has a finite number of neighbors (typically
bordering units) and so Assumption 4 (b) is reasonable. However the part
of this assumptions that relates to the number of non-zero elements in each
column rules out a model containing a central unit to which all units are

12



related. Such a situation could arise if one unit is dominant either financially,
militarily, or otherwise. In Assumption 4 (c) we are effectively assuming that
the specification of the weights, the structure of the weighting matrix, and
the stochastics involved are such that the weights are uniformly bound in
absolute value by a constant. One example of this would be a model in
which the elements of the weighting matrix are trade shares.13 In this case
each weight would be in the interval [0, 1]. Assumption 4 (d) implies that
the model is complete in that it can be solved for the dependent variable,
yN , in terms of µ,XN , YN , and uN for all |λ| < ξ , which could be taken as
the parameter space for λ. Given Gershgorin’s Theorem, and Assumptions
4 (b) and (c), the researcher should be able to place an upper limit on the
maximum row sum of the weighting matrix which can then be taken as the
value of ξ. As one example, if the weighting matrix is based on trade shares,
that sum would be 1.0.

Assumption 5 is also somewhat standard, see Kelejian and Prucha (2007),
and along with Assumption 6, implies a well behaved VC matrix of the
disturbance vector. These assumptions are consistent with a disturbance
term which is both spatially correlated and heteroskedastic in a general way.
They also account for triangular arrays. In Assumption 6 the innovation term
is assumed to have a zero mean and unit variance. The variance assumption
is not restrictive because the matrix RN can always be defined to make this
so- e.g., scaled by the inverse of a standard deviation!

Assumption 7 gives conditions which are typically made in determining
large sample distributions - see e.g., Kelejian and Prucha (1999, 2004) and
Kapoor et al. (2007).

4 Estimation and Inference

Let PĤ∗
N

= Ĥ∗N(Ĥ∗′NĤ
∗
N)−1Ĥ∗′N and let ẐN = PĤ∗

N
ZN . For future reference

note that

Ĥ ′∗NQ0,N = Ĥ∗N (31)

H ′NQ0,N = H ′N

13In Assumption 4 we are assuming that each row and column of diagTt=1[WN (t)] con-
tains, at most, a finte number of non-zero elements. Therefore, in a trade share model one
must assume that no country trades (or has significant trades) with all other countries.
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This follows from (28) and (29) because Q0,N is symmetric and idempotent.
Since we are assuming a non-parametric specification of the error term

our estimator of δ is just the 2SLS estimator:

δ̂ = (Ẑ ′N ẐN)−1Ẑ ′NyN (32)

The proof of Theorem 1 is given in the appendix.

Theorem 1 Given our model in (1), and Assumptions 1-7:

(NT )1/2(δ̂ − δ) D→ N(0, V Cδ̂) (33)

where

V Cδ̂ = ΨQH∗RRH∗Ψ′ (34)

Ψ = [p lim
N→∞

NT (Ẑ ′N ẐN)−1] Q′
H∗Z

(QH∗H∗)−1

and where
p lim
N→∞

(NT )−1Ẑ ′N ẐN = Q′
H∗Z

(QH∗H∗)−1Q
H∗Z

(35)

Small sample inferences can be based on the approximation

δ̂ ' N [δ, Ω̂δ̂)

Ω̂δ̂ = NT GN [Q̂H∗RRH∗ ]G′N

GN = (Ẑ ′N ẐN)−1Z
′
NĤ

∗
N(Ĥ∗′NĤ

∗
N)−1

where Q̂H∗RRH∗ = Ã′Q̂HRRHÃ and where Q̂HRRH is the HAC estimator of
QHRRH – see, e.g., Kelejian and Prucha (2007) and Kim and Sun (2011).14

Let c′ be a constant 1 × 1 + k + q vector. Then, as an example, the
hypothesis H0 : c′δ = 0 would be rejected at the two tail 5% level if

(c′δ̂)2

c′V̂ Cδ̂c
> 1.96

14Neither Kelejian and Prucha (2007), nor Kim and Sun (2011) considered a panel
framework. However their results can easily be applied in a panel framework given an
evident condition if T is finite. Specifically, let (q′1, ..., q

′
T )′ = Q0u where qt, t = 1, ..., T is

the tth N × 1 block of Q0u. Let qti be the ith element of qt.Then, using obvious notation,
the “evident” condition is

|cov(qti, qsj)| < |cov(qti, qtj)|
for all: t, s = 1, ..., T ; i, j = 1, ..., N

Given this condition, the distance measure in the HAC estimator between qti and qsj , say
d(qti, qsj), can simply be taken as d(qi, qj).
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4.1 Testing degenerate models

In this section we demonstrate in the context of our model that if the weight-
ing matrix is endogenous the researcher can, under reasonable conditions,
test for degenerate forms of the model. If, however, the weighting matrix
is exogenous and, as usual, time invariant, the researcher can not test for
degenerate models in which E(Q0,NyN) = 0.

The case when WN(t) is endogenous

First note that the only assumption that could depend upon nonzero
values of the model parameters is Assumption 7, part (b). We will show
that part (b) of Assumption 7 does not rule out the degenerate case of the
model in which λ = 0, β = 0, γ = 0 as long as WN(t) is endogenous.15 The
implication of this is that one can test the hypothesis λ = 0, β = 0, γ = 0, or
any subset of this hypothesis - e.g., the hypothesis β = 0, γ = 0 within the
context of our model if WN(t) is endogenous.

To see this note that if λ = 0, β = 0, γ = 0, the data generating process
for yN would be

yN = (iT ⊗ IN)µ+ uN (36)

and so the true form of the considered transformed model would be

Q0,NyN = Q0,NuN (37)

The transformed matrix ZN = Q0,NZN would still be

ZN = Q0,N [XN , diag
T
t=1[WN(t)]yN , YN ] (38)

Therefore

p lim
N→∞

(NT )−1H ′NZN = p lim
N→∞

(NT )−1H ′N ∗ (39)

[Q0,NXN , Q0,Ndiag
T
t=1[WN(t)]yN , Q0,NYN ]

First note that Assumption 2 part (b) does not, in any way, depend upon,
or involve, non-zero values of any of the regression parameters. Given this,

15Note that we are only assuming the disturbance specification in (3) and Assumptions 5
and 6 so that maximum likelihood is not an option. Also, even if normality were assumed,
one would have to extend the model by specifying a distribution for YN .

15



and assuming that E(YN) 6= 0, consider the limit matrix of a subset of the
matrix in (39), namely

p lim
N→∞

(NT )−1H ′N [Q0,NXN , Q0,NYN ] = Φ1 (40)

It is quite reasonable to assume that Φ1 has full column rank since the ele-
ments of YN involve variables all of which are not contained in XN .

Now consider the remaining limit in (39), namely

p lim
N→∞

(NT )−1H ′NQ0,Ndiag
T
t=1[WN(t)]yN

Since WN(t) is endogenous, its elements would be correlated with those of
uN , and therefore with those of yN . Thus,16

E(diagTt=1[WN(t)]yN) 6= 0 (41)

The result in (41) does not involve the assumption that λ 6= 0. Therefore,
the assumption that

p lim
N→∞

(NT )−1H ′NQ0,Ndiag
T
t=1[WN(t)]yN = Φ2 (42)

where Φ2 is a finite non-zero vector is reasonable unless one considers pecu-
liar cases of unbounded moments, etc. It is also reasonable to assume that
(Φ1,Φ2) has full column rank since the q columns of p limN→∞(NT )−1H ′NQ0,NYN ,
in Φ1 involve the endogeneity of YN while the vector Φ2 involves the endo-
geneity of diagTt=1[WN(t)]yN .

The case when WN(t) is exogenous

Now consider the case in which WN(t) is exogenous and time invariant:
WN(t) = WN , t = 1, ..., T. For this case we demonstrate, again in the context
of our model, that one can not test the null hypothesis λ = 0, β = 0, γ = 0
if E(Q0,NyN) = 0. We show this by demonstrating that Assumption 7 part
(b) would not hold because Q

HZ
would not have full column rank. It will

also become clear from these results that any hypothesis which implies that
E(Q0,NyN) = 0 can not be tested.

16Note that the expectation in (41) should involve pij,N and qij,N - see (14).
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To see this first note that if (36) is the data generating process, E(Q0,NyN) =
E(Q0,NuN) = 0 and so

E(H ′NQ0,ndiag
T
t=1[WN(t)]yN) = E[H ′NQ0,N(IT ⊗WN) yN ] (43)

= E[H ′N(IT ⊗WN)Q0,N yN ]

= H ′N(IT ⊗WN)E(Q0,N yN)

= 0

Let V CΞ be the VC matrix of Ξ = (NT )−1H ′N(IT ⊗WN)Q0,NyN . Then in
this case, since HN , Q0,N , and WN are exogenous, and recalling that Q0,N =
(IT − JT

T
)⊗ IN

V CΞ = (NT )−2H ′N(IT ⊗WN) [V CQ0y] (IT ⊗W ′
N)HN (44)

= (NT )−2H ′N(IT ⊗WN)[Q0,NRNR
′
NQ0,N ] (IT ⊗W ′

N)HN

Consistent with Assumption 4 (b) and (c), assume that the row and column
sums of WN are uniformly bound in absolute value by, say cw; by Assumption
5 the row and column sums of RN are also uniformly bound in absolute value,
as are the row and column sums of (IT ⊗WN) and Q0,N = (IT − 1

T
JT ) ⊗

IN , respectively by cw and 1.0. Since the product of matrices whose row
and column sums are uniformly bound in absolute value, also has row and
column sums which are so bounded, the row and column sums of the matrix
(IT⊗WN)[Q0,NRNR

′
NQ0,N ] (IT⊗W ′

N) in (44) are uniformly bound in absolute
value. By Assumption 3 part (b) the elements of HN are uniformly bound
in absolute value, and thus the elements of V CΞ in (44) are 0[(NT )−1]. It
follows from (44) that V CΞ → 0 and therefore by Chebyshev’s inequality

(NT )−1H ′N(IT ⊗WN)Q0,NyN
P→ 0

and therefore p limN→∞(NT )−1H ′NZN is not a full column rank matrix be-
cause one of its columns is a column of zeroes.

5 Empirical Application

In our empirical application, we consider a dynamic demand for cigarettes
based on a panel data from 46 US states over the period 1963-1992 (Baltagi
and Levin, 1986, 1992; Baltagi and Li, 2004). This data set has also been used
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for illustrative purposes in a number of spatial econometric studies (see e.g.
Elhorst, 2005; Debarsy et al., 2010, among others). Our model is a variation
of the one considered in Baltagi and Levin (1986). They considered a state
level dynamic demand for cigarettes using the same data set over a limited
period (1963-1980) to address several policy issues (such as the impositions of
warning labels and the application of the Fairness Doctrine Act to cigarette
advertising). They found a significant effect of the average retail price on
cigarette consumption with a price elasticity of -0.2, but an insignificant
income elasticity. A distinctive characteristic of their model is that consumer
cigarette demand in each state is assumed to depend upon, among other
things, the lowest cigarette price in neighboring states. This is meant to
capture a bootlegging effect where buyers of cigarettes near state borders are
tempted to buy from neighboring states if there is a price advantage in doing
so. This bootlegging effect is found to be positive and statistically significant.
However, the specification in Baltagi and Levin (1986) is only a first attempt
at dealing with the issue of how to capture the bootlegging effect. As Baltagi
and Levin (1986) point out, their model does not account for the fact that
cross-border shopping may relate to more than one state and not just the
one neighboring state with the minimum price. As will become clear later,
our model is able to account for this.17

In this paper, we assume the following model:

lnCit = β1 lnCit−1 + β2 ln pit + β3 ln Iit + λ

[
46∑
j=1

pjt
pit
dijt lnCjt

]
+ µi + δt + uit

(45)
where i = 1, . . . , 46 denotes states, t = 1, . . . , 29 denotes time periods, and
the disturbance term uit has the non-parametric specification in (3). Cit is
cigarette sales to persons of smoking age in packs per capita in state i at
time t and, therefore, is a measure of real per capita cigarette sales. pit is the
average retail price per pack of cigarettes in state i at time t. Iit is per capita
disposable income in state i at time t. All values are measured in real terms.
We expect β1 > 0, β2 < 0, β3 > 0, and λ > 0. Our expectations concerning

17A number of variations on the Baltagi and Levin (1986) study have been considered
but none of these studies considered the possibility of an endogenous weighting matrix.
See, e.g., Baltagi (2008), Elhorst (2005), and Debarsy et al. (2010).

As a point of information, the data are available as supplementary material to Baltagi
(2008) on the website: www.wileyeurope.com/college/baltagi.
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β1, β2, and β3 relate, respectively, to habit effects, the usual negative price
effect on demand, and the positive effect of income. We expect λ to be posi-
tive for a number of reasons. First, the higher is the price ratio (pjt/pit), the
less attractive is cross state shopping and so, given smoking habits of in-state
consumers, the higher should be the in-state sales of cigarettes. Second, and
somewhat indirect, values of (pjt/pit)dijt > 0 imply that prices in neighboring
states are lower than prices in the home state. These lower prices could lead
to more intense smoking habits of in-state residents, as well as a broadening
of the smoking in-state population, both of which would lead to an increase
of in-state cigarette sales.18

The model in (45) also has state specific effects, µi, as well as time specific
effects, δt. Baltagi and Levin (1986) and Baltagi (2008) give several motiva-
tions for the inclusions of time and state specific effects. The time effects
can be justified by the various policy interventions and health warnings that
occurred during the period under analysis. As for the state specific effects,
they can represent any state-specific characteristics such as states that host
military bases (that are tax-exempt), touristic states (where cigarette con-
sumption is exceptionally high), or states with high percentage of Mormon
population (a religion whose members are forbidden to smoke).

The spatial lag in brackets in (45) accounts for cross border cigarette
shopping, or bootlegging. Specifically, dijt is a dummy variable which indi-
cates the desirability of cross border shopping. In particular, dijt = 1 if i and
j are border states and pjt < pit; dijt = 0 if i and j are not border states,
or if pjt > pit. The multiplication of dijt by the price ratio in (45) effectively
indicates that the price ratio pjt/pit will only be considered by cigarette con-
sumers in state i at time t if pjt < pit. As will become clear, the first part
of the term in brackets in (45), namely (pjt/pit)dijt is the i, jth element of
our weighting matrix at time t. Since the price of cigarettes is endogenous
in a demand model for cigarettes, our weighting matrix is endogenous. The
entire term in (45) is the spatial lag of the dependent variable.

Stacking (45) for each time period t, over i = 1, . . . , 46, our model can be

18Our paper is not the first example of a demand equations that includes a spatial
lag of the dependent variable. A previous influential application can be found in Case
(1991) that, as an example of spatial modeling, estimates a demand for rice in Indonesia.
However, the model in Case (1991) is not specified in terms of an endogenous weighting
matrix.
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written in the usual spatial form:

yt = Xtβ + λWtyt + Ytγ + µ+ e46δt + ut; t = 1963, ..., 1992 (46)

where yt is the 46 × 1 vector of observations on lnCit at time t; Xt is the
corresponding vector of observations on the income variable ln Iit; Wt is the
46× 46 weighting matrix whose i, jth element is (pjt/pit)dijt; Yt is the 46× 2
matrix of observations on lnCit−1 and ln pit; µ is the vector of fixed effects;
e46 is a 46× 1 vector of unit elements; and ut is the corresponding vector of
disturbance terms.

To estimate (46) we tookXt as exogenous, andWtyt and Yt as endogenous.
We then stacked the data over t = 1963, ..., 1992, multiplied by Q0,N =
(IT − 1

T
JT ) ⊗ IN , and then used the IV procedure described in Section 4.

Using evident notation, in doing this we took the variables in (17), to be
the intercept, the cigarette tax rate in state i relative to that in state j,
the relative populations of these two states, the relative compensation per
employees in these two states, and the distance between them measured in
hundreds of miles.19 We took the variables defined by MN as the cigarette
tax rate, population, compensation per-employee, as well as the one period
time lag of these three variables.20 Our complete set of instruments also
included the time dummy variables, as well as the product of the square of
the estimated weighting matrix and the exogenous variables- i.e., via (25):
Q0,Ndiag

T
t=1[(Ŵ e

N(t))2]XN and Q0,Ndiag
T
t=1[(Ŵ e

N(t))2]MN .
Table 1 reports the estimation results of the cigarette demand equation.

Standard errors are produced using the spatial HAC estimator of Kelejian and
Prucha (2007) with a Parzen kernel.21 The variables all have the expected
signs and are strongly significant. As expected, the coefficient of income per
capita points at a positive relationship with consumption, whereas price neg-
atively affects consumption (with a coefficient equal to -0.80). The coefficient
of lagged consumption is also positive and significant, thus pointing to a cer-
tain persistence in smoking behavior. The coefficient of the spatially lagged

19Data on the state cigarette tax rates were taken from the 58th version of the annual
compendium on tobacco revenue and industry statistics known as The Tax Burden on
Tobacco. Data on compensation per-employee were available from the Bureau of Economic
Analysis.

20All variables are in logarithms.
21Following Anselin and Lozano-Gracia (2008), we specify a variable bandwidth based

on the distance to the seven nearest neighbors.
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dependent variable is positive thus confirming the assumption of the bootleg-
ging effect. Smokers, or agents for them,22 living near the state border will
purchase their cigarettes in near-by states when there is a price advantage
for doing so.

Table 1: Estimation results of the cigarette demand equation.

Coefficient Std. Error t-stat P > |t|

ln(Iit) 0.1592 0.0360 4.4227 9.75e-06
W ln(Cit) 0.0026 0.0005 4.8824 1.05e-06
ln(Cit−1) 0.5941 0.0491 12.0883 1.22e-33
ln(pit) -0.8041 0.1029 -7.8145 5.52e-15

As a validation of our model, we tried to include the minimum price
variable considered in Baltagi and Levin (1986). In fact, if this minimum
price variable is the proper way to account for bootlegging effects, it will
be significant and our spatially lagged dependent variable would no longer
be significant. However, when we added the minimum price variable to our
model our spatially lagged “bootlegging” variable remained significant, while
the minimum price variable was not significant.23

A final point should be noted. In general, if a model contains a spatially
lagged dependent variable, and no other endogenous regressors, the elastici-
ties should be calculated with respect to the solution of the model for that
dependent variable - e.g., its reduced form. If, however, that model also
contains additional endogenous variables, and equations for these additional
endogenous variables are not available, elasticities can not be calculated un-
less very strong assumptions are made. In fact, those elasticities should be
calculated in terms of the solution for the corresponding system of equations.
If, in addition, that model contains nonlinearities, further complications in
the calculation of elasticities arise. In our case, in addition to a spatially

22If price advantages exist, boottleggers may purchase cigarettes in nearby states and
sell them to cigarette consumers in higher priced states.

23Results for this specification can be obtained by writing to the authors.
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lagged dependent variable, the model has an endogenous weighting matrix,
endogenous regressors such as prices, and nonlinearities! It is for these rea-
sons that we have not calculated elasticities.

6 Summary and Further Research Suggestions

In this paper we have specified a spatial panel data model that contains a spa-
tially lagged dependent variable in terms of an endogenous weighting matrix.
We suggested an estimator for the regression parameters and demonstrate
its consistency and asymptotic normality. To the best of our knowledge,
the present paper is the first attempt to formally establish the properties of
a model that contains a spatially lagged dependent variable in terms of an
endogenous weighting matrix.

We then apply our model to the estimation of a panel data model for
the demand for cigarettes. We specify a spatially lagged dependent variable
in terms of an endogenous weighting matrix that accounts for cross state
bootlegging in cigarettes. We find that the bootlegging effect is positive and
significant, suggesting that buyers cross state boards to purchase cigarettes
when there is a price advantage in doing so. As expected, the coefficient of
income per capita points to a positive relationship with consumption, whereas
price negatively affects consumption.

One suggestion for further research would be a Monte Carlo study which
focuses on the efficiency of our suggested estimator. Another would be a
study which focuses on approximations to the calculation of elasticities in
models such as ours.
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Appendix

Since PĤ∗
N

is symmetric idempotent, Ẑ ′NZN = Ẑ ′N ẐN . It then follows from

(6) and (32) that

(NT )1/2(δ̂ − δ) = NT (Ẑ ′N ẐN)−1(NT )−1/2Ẑ ′NQ0,NRNεN (47)

= [NT (Ẑ ′N ẐN)−1][(NT )−1Z
′
NĤ

∗
N ][NT (Ĥ∗′NĤ

∗
N)−1][(NT )−1/2Ĥ∗′NQ0,NRNεN ]

[NT (Ẑ ′N ẐN)−1][(NT )−1Z
′
NĤ

∗
N ][NT (Ĥ∗′NĤ

∗
N)−1][(NT )−1/2Ã′H ′NRNεN ]

where via (31) we have used H ′NQ0,N = H ′N .

Consider the first term in brackets on the third line of (47). Since ẐN =

PĤ∗
N
ZN and Ĥ∗N = HN Ã

(NT )−1ẐN ẐN = [(NT )−1Z
′
NHN Ã][NT (Ã′H ′NHN Ã)−1][(NT )−1Ã′H ′NZN ](48)

= [(NT )−1(Z
′
NHN)Ã][(NT )−1Ã′H ′NHN Ã]−1[(NT )−1Ã′H ′NZN ]

P→ [Q′
HZ
A][(A′QHHA)−1][A′Q

HZ
]

≡ [Q′
H∗Z

][(QH∗H∗)−1][Q
H∗Z

]

where the last line in (48) follows Assumptions 2, 3, and 7. Note that
Assumption 7 implies that QH∗H∗ is positive definite and QH∗Z has full
column rank, and so the quadratic form on the last line of (48) is positive
definite and therefore nonsingular. Therefore the inverse of the probability
limit of (NT )−1ẐN ẐN exists. Note that the expression on the last line of
(48) is the same as the expression given in (35) of Theorem 1.

Consider now the second and third terms in brackets on the third line of
(47). Assumptions 2, 3 and 7 imply

[(NT )−1Z
′
NHN Ã][NT (Ã′H ′NHN Ã)−1]

P→ Q′
H∗Z

Q−1
H∗H∗ (49)

Let K equal the product of the limiting forms of the first three bracketed
terms on the third line of (47):

K = [Q′
H∗Z

Q−1
H∗H∗QH∗Z

]−1Q′
H∗Z

Q−1
H∗H∗ (50)
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Now let Ψ̂N be the last bracketed term on the third line of (47), namely

Ψ̂N = (NT )−1/2Ã′H ′NRNεN (51)

Let

ΨN = (NT )−1/2A′H ′NRNεN (52)

= (NT )−1/2H∗′NRNεN

By Assumption 3 the elements of H∗N are uniformly bounded in absolute
value. By Assumption 7 part (c)

(NT )−1H∗′NRNR
′
NH

∗
N → QH∗RRH∗ (53)

where QH∗RRH∗ is a finite nonsingular matrix. Assumption 6, (52), (53) and
the central limit theorem (30) in Pötscher and Prucha (2000) imply

(NT )−1/2H∗′NRNεN
D→ N(0, QH∗RRH∗) (54)

By Assumption 2, Ã
P→ A. It then follows from (51) - (54), and Assumption

7 part (a) that Ψ̂N −ΨN
P→ 0. Thus, Assumptions 3, 6 and 7 part (a), and

the continuous mapping theorem,

(NT )−1/2Ã′H ′NRNεN
D→ N(0, QH∗RRH∗) (55)

Theorem 1 follows from (47) - (50), and (55).
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