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1 INTRODUCTION

1.1 General Remarks about Reinforced
Concrete Beam-Slab Systems

Reinforced concrete slabs terminating at edge beams are often
used for the floors of public and commercial buildings, multistory
housing, bridge decks, etc. Concrete is used for these structures
because no other material possesses a comparable combination of
low cost with high strength, ductility and resistance to abrasion,
corrosion and fire. Concrete slabs also provide adequate sound insu-
lation between stories in buiidings and can develop sufficient

resistance in shear, torsion and bending.

l1.1.1 Existing Design and Analysis
Procedures

The present practice for the design of reinforced concrete
beams and columns in the United States is to proportion the members
with respect to the ultimate strength of the section and to use
modified elastic methods to calculate the deformations. The 1971 ACI
Building Code allows both two way and flat slabs to be designed by
the same methods utilizing a section of the slab and an integral
spandrel beam between adjacent exterior columns as a shallow beam.
Although the slab and the spandrel beams proportioned by this method
are usually satisfactory, there is a possibility that the spandrel
beams may fail in torsion. Also, the method cannot account for the
influence of spandrel beam torsion on the load carrying capacity of

the slab. The conventional yield line theory may be used when



torsional hinges are not formed in the edge beams. Influence of
the spandrel beam torsion on slab capacity can be evaluated by using
the yield line analysis modified by Kemp and Wilhelm.(ZI).

Most codes of practice including the 1971 ACI Building Code
give permissible span/depth ratios as a rough guide for deflection

control (18)

. Thus, in the absence of an 'exact' elastic solution,
the designer is forced to rely on this rough guidance for deflection
control and to make moment calculations based on either the Direct
Design Method or Equivalent Frame Analysis. As a result, the designer
does not know the factor of safety against flexural cracking for the
slab and for the edge beams nor against the combined effect of torsion
and shear interaction for the edge beams. If the designer uses the
Conventional Yield Line Theory, he may provide excessive amount of
slab reinforcement which may not be of much use once torsional hinges
are formed in the edge beams.

Considering these difficulties, an improved design method
would make a significant contribution to the analysis and design of
floor slabs by providing the designer with (a) an elastic deflection
for the slab central section, (b) the flexural cracking load for the
slab, (c) proportions for the spandrels to provide an adequate and
economic factor of safety against flexure, torsion and shear and
(d) economic and reasonable amounts of slab reinforcement by using
the Modified Yield Line Theory which can account for the influence of
the spandrel beam torsion on the load carrying capacity of the slab.

Since this modified theory has been verified by experimental data for



square slabs only, additional data are necessary before such a method
can be established as a design method.

Once it is accepted that the torsional stiffness of the edge
beam is also one of the fundamental factors influencing the behavior
of slab-spandrel structures, then several questions arise:

1. What is the magnitude of this influence in the elastic and in-
elastic zones?

2., Is it possible to use statistical methods to separate torsional
stiffness effects from the effects of other parameters?

These questions must be resolved before any significant improvements

can be made in design procedure for slabs.

In light of this discussion along with the brief review of
various forces and displacements of the beam~slab structural system
and the review of feasibility of using micro-concrete models for exper-
imental work, the object and scope of this investigation is planned

accordingly as discussed in the subsequent sections.,

1.1.2 Generalized Forces and Displacements
of the System

Casting beams, columns and slabs monolithically leads to
considerable interaction between the individual components of the
structural system. This interaction induces various combinations of
bending, torsion and shear. The nature of these forces is primarily
governed by the three loading zones; e.g., elastic, cracking and
plastic zones which can be distinctly shown on a load versus dis-

placement diagram. When the structure enters the cracked zone from



the uncracked elastic zone, its sectional properties change, also
the internal resisting mechanism developed by the structure to ‘
sustain the external forces changes considerably. Even though these
external forces may be classified as the usual in-plane and normal
bending, torsion and shear types, the internal resisting mechanism
generated by the structure is a complex one that is not fully under-
stood. In addition, the magnitudes of the forces and displacements
induced in the system are significantly governed by the amount of
fixity provided at the joints and the geometry of the loading dia-
gram.

Slab deflections and spandrel beam torsional rotations as
indicators of structural behavior should be of concern to the
designer. These displacements depend on the load stages. First,
there is a range of maximum stiffness asgociated with small dis-
placements before the slab cracks; second, an increase of displace-
ments during cracking but before yield of the steel; third, a range
of loading where moment redistribution takes place because of plasti-
city and the displacements increase rapidly just before collapse.
While in-plane étrains caused by tenéile membrane action generally
occur in the slab, they are normally neglected in the formulation
of energy equations defining collapse modes for the yield line
theory. This leads to a conservative prediction of ultimate load,

particularly when the spandrel beams do not fail (19).



1.1.3 Applicability of Micro-Concrete
Modeling Technique

Whether consideration of a slab system is related to design
or research, the working (service) load behavior, crackiné*i;ad
and ultimate (failure) load for the structure are of primary con-
cern. It is now generally believed that structural models can be
used effectively for studying a wide range of parameters related
to each of these load stages, with some reservation regarding
cracking similitude (4). In the latter case reasonable simulation
has been established for scale reductions down to the order of 1/4.

As indicated by several case studies (16,25,28)

, micro-

concrete models predict reasonably well the deflections, modes of
failure and failure loads for beams, columns and slabs. These

indepth studies of materials, elastic behavior, cracking simulation,
inelastic behavior, etc., perfaining to this modeling technique

have resulted in a clearer understanding of its practical applicatioﬁs.
Thus, it is proposed to use the modeling technique in the current

investigation, as outlined in the following section of object and

scope of the present study.

1.2 Object and Scope of the Investigation

From the introduction it is clear that before new design
procedures for slabs can be established the influence of spandrel
beams, particularly their torsional characteristics, must be under-
stood. Previous work by Saunders (33) and Kemp and Wilhelm (21)

have established a new yield procedure which has been verified by a



limited number of tests on square slabs with varying edge beam
dimensions. Both the modified yield line method and the experimental
work need to be extended to the case of rectangular slabs with
spandrel beams. This extension of previous theoretical and experi-
mental work to the study of rectangular slab-spandrel systems is the
pfincipal objective of the present work. The results are expected

to provide a clearer insight into the behavior of such systems and
lay the foundation for design procedures in which the role of the
spandrel beams will be recognized.

In order to achieve this objective, the scope of the investi-
gation includes both an .analytical and an experimental phase. The
experimental work is intended to provide an understanding of the
behavior for a full range of loading of slab-spandrel structures
proportioned so that torsiomnal hinges would form in the spandrel
beams. Equally important, the experimental results are used to con-
firm the theoretical solutions.

The scope of the project is outlined below:

1, Three micro-concrete slab models were tested to failure
to observe the influence of spandrel beams on the behavior of rectan- -
gular slabs., The primary variables were the slab aspect ratio and
the depth of the edge beams. The aspect ratios (i.e., breadth to
length) were 1:1, 1:1,5 and 1:2. In the three models the spans of
the short side beams were 36 inches, 24 inches and 12 inches and the
depths were 4~1/2 inches, 3 inches and 4-1/2 inches, respectively.

The long edge beams were all 36 inches. The amount of steel, columns



dimensions, concrete strength and other parameters were held

constant.
The square slab model was a scaled down version of a slab

(33) and was used as a control specimen.

tested by Saunders

A statistical design procedure (for a reason explained in

Section 1.1) was developed for: (a) trend analysis to see if the
_data were in an elastic or plastic zone, (b) detection of sourcewise
variation to check if the deflections and rotations were signifi-
cantly the same for the prototypes and the models, (c) studying

the effects of independent variables (e.g., EI/aD ratio, torsional
stiffness of the edge beam, etc.) on the dependent variables (slab
central deflection, beam rotation, etc.) in the experimental data.

2. The mathematical inequalities and the governing equili-~
brium equation were developed to enable the use of the modified
yield line theory for predicting the moment capacity of rectangular
slabs. These mathematical inequalities could determine the failure
mode associated with the development of torsional hinges in the
spandrel beams or the development of negative yield lines at the
edges of the slab.

3. An elastic solution was developed for doubly symmetric
{i.e., square) slabs which can account for the special boundary
conditions imposed by slab edges being integral with spandrel beams
as well as more traditional boundary conditions. This theoretical

approach was intended primarily to predict and interpret the service

load stress resultants and deformations as well as to predict the



cracking load of slab-spandrel systems. The experimental results
of this study and others were used to verify the theoretical
method.

4, TFor the design purposes, limit state load factors for
flexural cracking of the edge beams, and the combined effect of
torsion and shear on spandrel beams were derived for square and
rectangular slabs under service loads. Also, the formulas for
width and depth of edge beams for square and rectangular slabs
were derived for design purposes. The results of a specific exam—-
ple were compared with the results obtained by Kemp and Wilhelm (21).

A new design method for slab-spandrel systems was originated
which combined an elastic solution and the experimental work with

the modified yield line method. Different parameters were studied

to obtaln an economical design for slab reinforcement.



2. LITERATURE REVIEW

2.1 Behavior of Reinforced Concrete Members
Subjected to the Generalized Forces

2.1,1 Factors Influencing the Behavior of
the Edge Beams

Shape of the loading diagram for the edge beam and the
amount of fixity provided at its ends are the two important factors
influencing its behavior as a member of the beam=-slab structural
system. These factors govern the location of a critical section in
flexure and the magnitude of load on the slab which cauées flexural
cracking in the edge beaﬁ. The present state of knowledge of the
load distribution diagrams, for various aspect ratios of the slab
in an elastic zone, is somewhat limited. In considering lower bound

(29) developed expressions

(39)

solutions to rectangular slabs, Prager
for thé shear on a éimply supported edge. Wood shows that this
is of constant intensity and not a triangular or trapezoidal distri-
bution for the edge beam loads. He recommended a load intensity of
ga/3 per unit length of the beam. His work is for the lower bound
solution for collapse of a simply supported beam and the load inten-
sity qa/3 may be close but noﬁ exactly the same as the one occurring
at the end of elastic zone. Kromm's work (37) has shown that for

a square plate this load intensity 1is nearly uniform (i.e. the load-
ing dlagram on the edge beam is approximately rectangular), for
higher values of a/h ratio. Thus, the cosine load harmonics trans-

mitted to the beam can be approximated to a single rectangular loop.

In his work the a/h ratio was 20, a value which is generally exceeded



in practice. But this work has the limitation of neglecting the
transverse contration ' ¢, ' making it inadequate to use as it 1s for
a wide range of rectangular slabs terminating in edge beams. (See
Section 4.4.2).

The second important factor influencing the behavior of the

edge beam is the amount of fixity provided at its ends. The amount

of fixity depends on condition of the joints between beams and columns,

the dimensions of the columns, their prestressing forces, etc. The
ACI Code (2 gives different moment distribution factors in the anal-
ysis of continuous beams because of the variable fixity effect.
Corley, Jirsa et al. (10) have considered this effect in the method
of 'equivalenf frame analysis of slabs'. When the slab is continuous
on the beams, the presence of adjacent panels increases the fixity.
Kemp and Wilhelm (21) used ACI moment coefficients to calculate the
negative moments developed at the column faces. In the present
investigation, enough prestressing force was used on the columns to
balance the vertical reactive forces at the corners. This could
improve the fixity effect on the edge beams and also simulate the ef-

fect of the load induced by the super-structure (See Section 3.6.1).

2.2 Shear and Torsion Interaction
In the design of reinforced concrete members subjected to
combined torsion and shear, it was a common practice to add the con-
ventional shear stress to the torsional stress, whether calculated

by elastic or plastic theory, and then to compare the total with the

10
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specified allowable stress. Many investigators have found this pro-
(13)

cedure unsatisfactory. Eroy and Ferguson tested beams under
torsion and shear. Their test results seem to fit well into the

circular interaction curve given by
&%+ %= 1.0
0 o

Nylander's work 13 confirmed this interaction equation. The Aus-
tralian Code adopted a more conservative approach given by a straight

line equation

T v
(o] (o]

Saunders, et.al., (33) have stated that, since both torsion and shear
basically induced in-plane stresses, there is more interaction between
torsion and'shear than between torsion and bending. This fact is
taken into consideration while deriving the design formulas for width
and depth of the e&ge beam of a square panel, as shown in Sections

4.4!3 and 4.4.4'

2.2 Yield Line Theory

Johansen is the acknowledged pioneer in this field. In the
year 1931 he provided the introductory theory and also an immense
number of practical examples to explain it. His original work in-
cludes important features like the 'energy or work method', the
'equilibrium method' and detailed analysis of the existing test data,
He discovered the presence of nodal forces and their use in the for=-

mulation of equilibrium equations. Until about 1950 there still
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remained one important question unanswered. This was that, although
either the work or the equilibrium method could be used to find the
most critical layout of a particular shape of pattern, it always
seemed possible to discover another shape of pattern, whose critical
layout gave an even lower failure load, The difficulty was resolved
by the concepts of upper and lower bound solutions of limit analysis.

Mansfield (1957) used the calculus of variations to find the
worst (critical) layout for a system of yield lines. His results were
the same as those obtained by Johansen using the nodal force concéﬁts.
His 'equilibrium method' gives conservative results of the failure
loads when membrane action is also predominant along with the flexural
one (39). In the same way, the conventional 'energy or work method'
fails to account for the work done by the membrane forces.

Kemp and ﬁilhelm (21) have suggested the modified yield line
approach for a failure mode in which torsional hinges are formed in
the edge beams along with the positive yield lines in the slab. They
illustrated the practical use of the approach by applying it to the
slab test of the University of Illinois. Their method is generally
applicable to a wide range of slab configurations and is not restricted
to square and rectangular slabs. Their theory is confirmed for square

panels, but the present state of knowledge is inadequate to predict

the failure mode of a rectangular slab-spandrel structural system.

2.3 Elastic Solutions

(37)

Timoshenko, et.al. prescribed elastic solutioms for rectangular slabs



and plates with edge conditions such as fixed edges, simply supported
edges, free edges and their different combinations. A solution is
also available for some EI/aD values in the case of a doubly symmetric
slab and plate elastically supported without torsion. But there is

no elastic theory derived for the composite beam-slab structure with
torsional effects. Wood (39) has stated the importance of this ana-

lytical work in the following words:

"For several years it has been doubtful whether it was worthwhile to
program computers for elastic behavior of composite action. It now
appears that this should definitely be undertaken, alongside a study

of plastic composite action."

Considering the importance of this elastic solution, it may
prove very useful to develop a general theory for doubly symmetric
and also for rectangular slabs having any of the following five
possible edge conditions (i) free edges, (ii) simply supported
edges, (i1ii) edges elastically supported without torsion, (iv)
edges elastically supported with torsion, and (v) fixed edges. The
detail analysis of the doubly symmetric case is given in Sections 4.2
and 4.3, whereas the service load requirements of the rectangular

panels are discussed in Section 7.2 and 7.3.

13
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2.4 Micro-Concrete Model Studies

2.4,1 Materials

Small scale models are becoming increasingly important in
research on structural concrete. They are very appropriate fér
studying slab-spandrel behavior because of the saving in time and
money during their fabrication. While the majority of model stud-
les have concerned themselves with the elastic and inelastic be-
havior of structures under static loads, small scale models have
occasionally been used to study the response of structures for some
unconventional fundamental variables existing in the specific cir=~

(30) used them to determine thermal

(26)

cumstances. Rocha and Silveira

stresses in concrete dams. Litle, Forcier et al. used them

(6)

for shell-buckling studies. Barges and Pereira

(11)

, also Dobbs
and Cohen tested small scale models to predict dynamic behavior
of the prototype structures. All these studies and many more have
shown a reasonable correlation between the prototype and the corre-
sponding model behavior.

Micro=-concrete models use type I or type III cement. Mirza,
White and Roll (28) have reported the properties of micro-concrete
model mixes using type III cement. Aldridge, et.al., ) have success-
fully fabricated micro-concrete models from type I cement. These
models may or may not have coarse aggregates, but the fine aggregates

are invariably present. Sabnis and White (28)

have used gympsum mor-
ters consisting of gypsum, sand and water. Their curing time is very

short (one day or less) but the main disadvantage is the strong



15

influence of moisture content on their mechanical properties. 1In
the present investigation, type I cement was used to fabricate the
models of the prototype structures made of type I cement.

Harris, Sabnis and White (16) conducted an in~depth study of
reinforcement for small scale models of concrete structures. Their
study involves a number of choices for model reinforcing steel in-
cluding round steel wires, square steel rods, cold rolled threaded
steel rods, plain rusted steel wires, custom deformed wires, etc.

A careful choice of model reinforcing, combined with the proper :an-
nealing process will result in imparting suitable properties for

each particular model study (16). In the model studies of slabs
terminating in edge beams, the main reinforcement in the beams should

be of straight rods (and not of the wires available in circular rolls)

to achieve higher order of the fabrication accuracy.

2.4,2 Elastic Behavior
Elastic models may be constructed of any material for which

the stress-strain relationship 1s essentially linear to the point of

(12)

anticipated maximum elastic strain of the prototype. Elstner
has tested elastic madels of f£lat plate and flat slab floor systems.

In micro-concrete, the compressive strength of the mix governs the

extent of the elastic zone and can be controlled accordingly <28).

This 1is one of the reasons for using micro~concrete mixes in the

behavioral studies of the slab-spandrel structural system. Harris,

(

et.al,, 16) have shown that the stress~strain curve of the reinforce-



ment is generally linear to a sufficient strain limit and does not
obstruct the elastic behavior of micro-concrete models. Therefore
the slab-spandrel models may have reinforcement selected from the
wide variety of locally availables steel wires and rods (See Section

3.3).

2.4.3 Cracking Simulation
A number of model tests (49,28) have been reported to

simulate cracking behavior of the prototype sfructure;;“’in general,
model specimens when compared with prototypes, exhibit greater crack-
ing strain énd more plasticity in temsion. Clark (9 reported that
for small models crack spacing was greater than that scaled from the
prototype, but the strains and crack-width could be predicted because

the material properties of both the model and the prototype were

known accurately.

(12) (28)

Tests conducted by Elstner s Mirza and others at
different research centers indicate that although the total number

of cracks decreases as the model size is reduced, the overall load
deformation characteristics under any loading combination (load-de-
flection, moment-rotation, torque-twist, etc.) can be reproduced with
reasonable accuracy in small-size models built from micro-concrete.
Load~deflection characteristic is one of the prime concerns of the

designer, making it appropriate to use small-size models during the

experimental investigation of the slab-spandrel systems.

16
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2.2.4 Inelastic Behavior

Inelastic or ultimate strength models have been increasingly
used in design and reseaxrch problems since the advent of the ultimate
strength theory. A number of successful tests have been reported
on the micro-concrete models constructed to simulate the inelastic
behavior of prototype slabs (12). Flat plates and slabs with quite
complex behavior were studied at different scales and with different
materials. At the Portland Cement Association a 3/4 scale reinforced
concrete model was tested (12). At the University of Illinois a 1/4
scale reinforced small aggregate concrete model and a 1/16 scale
reinforced micro-concrete model were tested (28). At M.I.T. three
1/28 scale reinforced micro~concrete models were studied. All these
tests required the selection of materials which exhibited the same
stress-strain characteristics as those of the prototype upto the yield
point and also in the post yielding ductility zone. The tests have
convincingly demonstrated the importance of micro-concrete models in
predicting the behavior of prototype structures.

Thus, the small-size micro-concrete models fabricated with
reasonable accuracy, coupled with good instrumentation, can be of

much help to the experimental investigator in the field of slab-span-

drel floor systems.

2.5 Previous Prototype Testing at W.V.U.

At the West Virginia University Concrete Research Laboratory,

three single panel large scale specimens consisting of a slab supported



by four edge beams and four columns were tested (33) to ultimate
load to observe their behavior and to obtain data for the doubly
symmetric case. These three specimens are referred to as prototype
specimens 1, 2 and 3. The three concrete mixes used had compressive
strengths of 3785, 4151 and 4892 psi respectively and the correspon-
ding split tensile strengths were 380, 389 and 500 psi at the time
of testing. The columns 1 x 1 foot square were 12 feet center to
center. Each one was prestressed to an initial load of 80 kips,
approximately 2 hours prior to testing. Relevant data pertaining

to steel spacing and yield strengths, which will be referred to very
often in this report, are summarized in Table 2.l. The slabs were
loaded uniformly with an airbag loading system and extensive test
data were recorded with the help of a digital strain indicator.

Part of the data to be used in the éﬁbsgquent research work are
given in the print-outs of Appendices C and D.

This prototype work can be used in various ways such as
verification of elastic analysis, to check instrumental and fabri-
cation accuracies of the model structures, to originate a new de-
sign procedure for the design of the slab-spandrel floor structures,

—

etc. as shown in the following chapters of this report.

18



Table 2.1 -Steel spacing and yield strengths

Item Spec 1

Slab edge steel two layers
#3 bar spacing
effective depth
yvield strength

#3 bar spacing
effective depth
yield strength

Slab center steel two layers
#3 bar spacing
effective depth
yield strength

#3 bar spacing
effective depth
yield strength

Beam steel
#6 corner bars
vield strength
stirrups 5" x 16" outside
bar size
spacing
yield strength

6"
2-3/4"
47,500

6-7/8"
3-1/8"
47,500

6"
2-5/8"
47,500

6-7/8"
3"
47,500

46,400

#3
4~3/8"
50,400

psi

psi

psi

psi

psi

psi

in prototype specimens

Spec 2 Spec 3
6-3/4" 5=1/4"
2-7/8" 2-7/8"
53,605 psi 53,605 psi
7=3/4" 6"

3-1/4" 3-1/4"

53,605 psi 53,605 psi

6-3/4" 6=3/4"
2-3/4" 2-3/4"
53,605 psi 53,605 psi
7-3/4" 7-3/4"
3-1/8" 3-1/8"

53,605 psi’ 53,605 psi

46,400 psi 46,400 psi

#2 f#2
4=3/4" 4"
49,830 40,100 psi

19
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3. EXPERIMENTAL INVESTIGATION AND
OBSERVED BEHAVIOR

3.1 Introduction

Experimental work was in the field of micro-concrete test-
ing. Several trial mixes were made and their compressive and ten-
sile strength properties observed. Locally available steel wires
and rods were suitably annealed and used as a model reinforcing
material. Typical problems such as prestressing of small columns,
mounting of light weight electrical gages, making of small stirrups
and cages of beams, etc., assoclated with the fabrication and testing
of small scale models required special attention, care and technique.

Three models of slabs terminating in edge beams were tested to
failure. They had aspect ratios of 1l:1, 1:1.5 and 1:2. They were
loaded uniformly with an airbag loading system. Their elastic and
inelastic behavior was studied. Deflection and torsional rotation
data was noted with the help of a digital strain indicator. Based
on this observed data, various load-deformation curves were plotted.
Using dimensional analysis, displacements of the prototype structure
were calculated and compared with the existing test data (33) and

also with the theoretical analysis results, details of which are giv-

en in Chapter 5.
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3.2 Design of the Micro-Concrete Mix

3.2.1 Fine Aggregates
Locally available Ohio River Sand was used as a fine

aggregate. It was carefully graded so as not to have an excessive
amount of very fine material which would have reduced the worka-
bility of the mix. A typical gradation curve is shown in Figure
3.1. All the particles passed through a standard U.S. sieve #4.
Casting of the slender columns whose "workable" cross sectional
areas were further reduced because of the presence of different re-
inforcing cages, made it essential to use this type of gradation
curve for the sand. ' The moisture content varied from season to
season and was experimentally determined for each batch of sand

before using it.

3.2.2 Compressive and Tensile Strengths
of Trial Mixes ’

The compressive and tensile strengths of a micro-concrete
mix depend on different variables such as, water/cement ratio,
aggregate/cement ratio, specimen size, maximum size of aggregate,
method and rate of loading, effect of differential curing, stat-
istical volume effects etc. From this list, only the first two
quantities (i.e. water/cement ratio and aggregate/cement ratio)
were varied so as to make a meaningful and appropriate choice of
the mix. Cylindrical molds 3 x 6 inch were used and the standard

ASEM(é) procedure adopted in casting and testing the specimens.
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Figure 3.1 Typical gradation curve for the Ohio River Sand
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Table 3.1 Compressive and tensile strengths of trial mixes

Mix Proportion Split Tensile Strenéﬁﬂw Compféssive
Number (psi) Strength (psi)
M7 1:4:0,70 422 3602

M8 1:4:0.65 433 3841 .
M9 1:4:0,75 418 3309

M10 1:4:0.80 391 3090

M1l 1:4,5:0.60 - 1580

M12 1:4,5:0.65 . - . 2108

M13 1:4,5:0.70 282 3156

M1l4 1:4,5:0.75 271 2740

M15 1:4.,5:0.80 341 3333

M16 1:3.5:0.60 421 4823

M1i7 1:3.5:0.65 406 4242

M18 1:3.5:0.70 361 3652

Note: Each reported strength is an average of four cylinders

tested after 28 days of curing.
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Strengths of the trial mixes reported in Table 3.1 were obtained

after 28 days of curing.

3.2,3 Elastic Properties of the Design Mix

The mix, M17, had a compressive strength of 4242 psi. Its
tensile strength was 406 psi., These values are within 5 percent
of the corresponding strengths of the prototype mix of specimen 2.
Thus the M17 mix was selected as the design mix.

Poisson's ratio was determined for the mix from the uniaxial
compression tests on 6 x 12 inch cylinders. Instruﬁentation con=-
sisted of two SR-4 wire strain gages mounted vertically in series
and two other gages from the same lot mounted horizontally in ser-
ies, In addition four dummy gages were fixed on the surface of an
unloaded 6 x 12 inch cylinder of the same mix and identical to the
test cylinder in all respects, for temperature compensation. The
gages were fully protected from moisture with the help of duco-
cement and a moisture-sealant. Each gage length was more than three
times the maximum size of the aggregates. The Poisson's ratio de~-
termined was 0.179. Thg test result; are summarized in Table 3.2,

The standard ASTM procedure is recommended to determine the
modulus of elasticity of a normal weight concrete (5). Exactly the

same procedure was followed for the designed micro-concrete mix,

The modulus of elasticity was found to be 2.60 x 106 psi.



Table 3.2 Determination of Poisson's ratio for the design mix M17

1 Average value of Poisson's ratio

"Serial Circumferential Strain
Number S.I. Box Reading Strain (x¢)

Set I/1 2684 -

2 2704 20

3 2725 21

4 2748 23

Set II/1 2700 -

2 2720 20

3 2738 18

4 2757 19

Longitudinal Strain
S.I. Box Reading Strain (Me¢)

0.1785

790
680
560
450
770
650
550
450

110
120
130

120
100
100

25

Poisson's1
Ratio

0.181
0.175
0.177

0.167
0.180
0.190
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3.3 Reinforcement

The principal characteristic of the prototype steel which
should be simulated in the reinforcement of micro~concrete models
is the stress-strain relationship at all load stages. Reinforce-
ment used in this investigation was chosen from a wide vériety of
wires purchased in small quantities from many sources. These
wires were tested In a tension-testing machine. Table 3.3 was used
to select their gage numbers. A small test program was planned to
study the annealing effects on ductibility and yield strength of
some of these wires. The results are given in Table 3.4. SR-4
wire strain gages were used to study the stress-strain relation-
ship. Typical curves before and after annealing are given in
Figure 3.2. A distinct yield plateau was observed for the annealed
wires.

Wires purchased in the form of circular coils were straight=-
ened by pulling them in a tightening wrench. Care was taken not
to exceed their elastic limits. On an average, the selected rein-
forcing material had a yield strength of 51.5 ksi with a well

defined plateau at this stress level.

3.4 Formwork and Reinforcement Cages

Laminated 3/4 inch plywood was used in constructing the
formwork. It met the usual requirements of rigidity and water-
tightness. The formwork was carefully designed to minimize errors

in construction of the models. It could be assembled and dismantled
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®. Before Annealing
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Figure 3.2 Typical stress-strain curve for steel



Table 3.3 Sizes for model réipforcement

Prototype Diameter Model Scale
Bar # (inch)

2 0.250 1:5

2 0.250 1:4

3 0.375 1:5

3 0.375 1:4

6 0.750 1:5

6 0.750 1:4

1 SWG = Standard Vire Gage

28

Diameter for SWGl for _ _

model steel model steel
(in.)

0.0500 17, 18

0.0625 16

0.0750 14, 15

0.0940 12, 13

0.1500 8, 9

0.1875 6, 7
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easily. Each separable part was numbered so as to locate its
position conveniently during reconstruction. The forms con-
sisted of 3 basic parts; a center section, four column forms

and four outside beam sections. Heavy diagonal bracings were
used to add to the rigidity of the structure, To attach the
rotational gages (see Section 3.6.3), 1/4 inch threaded rods
were inserted in the beam sections, It was necessary to remove
the forms at an early age of curing in order to prevent damaging
shrinkage effects on the specimens.

Assembly of a reinforcement cage may be done by welding,
brazing or soldering or by hand tying with fine wire. Heating
involved in the first three methods would have caused local
changes in the properties of the reinforcement, so the fourth
method was used. It was somewhat time-consuming but produced
cages with the desired rigidity. In a beam cage four corner bars
were made of two SWG #6 and two SWG #7 rods (see Table 3.3).
Stirrups consisted of SWG #16 wires, spaced 1.0l inch apart. They
were made by bending the wires on an ironm block of appropriate
size with machined corners. Four holes of 1/2 inch depth for the
four cormer bars were drilled in a 6 x 10 x 3 inch wooden block. A
central hole of 1/2 inch diameter going all along the width of the
block was used to insert a long threaded rod. To the other end of
the rod was an identical 6 x 10 x 3 inch wooden block. After pla-.
cing the four corner bars and the calculated number of stirrups in

between, these two end blocks could be fixed to the 1/2 inch



Table 3.4 Effect of Annealing on reinforcing wires

SWGi#9

Measured Diameter.,= 0.140 in.
Area = 0,01539 in

Yield Load Yield Stress

Treatment

Lb
As supplied
by the manu-
facturer 1100

Annegled at
1000°F for 60
minutes -

Annegled at
1000 F for 30

minutes -

Note: Values in the table are average of five specimens,
the form of circular rolls.

SWG#11
Measured Diametef = 0,1205 in.
Area = 0.1141 in

Yield Load Yield Stress

Lb ksi
840 73.6
520 45,6

SWG#12
Measured Diameter2= 0.100 in.
Area = 0.00786 in

Yield Load Yield Stress

Lb ksi
550 71.6
325 41,4
405 51,7

SWG#9 and SWG#12 are galvanized wires in
SWG#11 is a straight welding rod.

ot



threaded rod by means of four nuts. Then the stirrups were tied
to the corner bars. The ends of these bars were bent in the form
of standard hooks which gave the required fixity effect between
beams and columns,

A similar technique was used in assembling the column cages
except that instead of rectangular stirrups spiral reinforcement
was used. Mild steel #3 bars served as longitudinal reinforce-
ment. Typical beam and column cages are shown in Figures 3.3 and

3.4.

3.5 Test Specimens

Three single panel micro-concrete specimens consisting of a
slab supported by four edge beams and four columns were tested to
failure. The specimens were identical in all respects with the ex~
ceptions of span and depth of the short beams. This could help to
generalize the behavior of a slab-spandrel system having the aspect
ratio as a fundamental variable. The prestressing force on the
columns was also a variable, but it did not change the behavior of
the structure. ’In each specimen the magnitude of the prestressing
force was iarge enough to counter-balance the lifting effect at the
corners, which would have otherwise existed because of the presence
of vertical reactive forces.

For all the specimens the slab steel consisted of two layers
of center span steel and two layers of edge steel. The center

span steel was terminated before entering the beam, The edge
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steel was bent into the beam cage to achieve the required an=~
chorage effect at the junction. Half of the bars were of the
length determined by the bond length plus span/8, for the reason
that the negative moments near the slab central sections are
smaller compared to those at the edges. The bars were arranged
alternately as shown in Figure 3.5. The size and spacing of the
stirrups was adjusted to obtain an ultimate torque Tu approxi-
mately equal to the cracking torgue Tc in the long beams of the
specimens. The reinforcement spacing is given in Table 3.5. A
drawing of a typical beam section is shown in Figure 3.3.

The first specimen tested was a model of prototype specimen
2 (33), with a scale ratio of 1:4, A plan and section with dimen-
sions are shown in Figure 3.7, The prestressing force on each col-
umn was 5 kips. This resulted in the same intensity in model and
prototype columns. The results of the elastic theory, prototype

testing(33>

and the test of this model specimen 1 were compared

(see Sections 5.3 and 5.4). This helped verify the dependability of
the modeling technique. It also served to check fabrication accur~

acy and reliability of instrumentatien.

The second specimen was a rectang;l;; one (Figure 3.8) with

an aspect ratio of 1:2, The prestressing force on each column was
2.5 kips. Both long and short beams had 1-1/2 x 4-1/2 inch cross

sections, After observing the behavior of the short beams it was

decided to reduce their depth in the third specimen which was also

a rectangular type having an aspect ratio of 151.5, with a
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Table 3.5 Fabrication data

of model specimens

35

Item Spec 1 Spec 2 | Spee 3
E
Long Beams .
span ; 36" 36" | 36"
|
depth 4=1/2" 4=1/2" I 4=1/2"
! i
width 1-1/2" 1-1/2" ' 1-1/2" |
| t
| ! z
!Short Beams ' j
span i 36" 18" : 24" :
depth i 4=1/2" 4=1/2" 3"
width C1-1/2" 1-1/2" ‘ 1-1/2"
! i
fSlab Steel, 2 Layers1 ; f
' SWG #12 spacing 2,01"/2.26" | 2.00"/2.25" 2.02"/2.27"
|
| effective depth 3/4" avg. of | 3/4" avg. of 3/4" avg. of
| 2 layers 2 layers 2 layers
| yield strength 51.7 ksi 50.1 ksi + 52,7 ksi
| 2 I *
Beam Steel % !
i corner rods, 2 Of SWG #6, 47.3 ksi 47.3 ksi i 47.3 ksi
2 of SWG #7 ! | }
| stirrups . SWG #16 SWG #16 ' SWG #16 ;
: spacing i 1.01" 1.01" { 1.01" i
i vield strength | 51.5 ksi 51.5 ksi ' 51.5 ksi

1 Data for both positive and negative steels (each in two layers)

2 Effective cover for the stirrups was 1/4".
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prestressing force of 3.33 kips on each column. The long beams

had 1-1/2 x 4-1/2 inch cross sections and the short ones had

1-1/2 x 3 inch cross sections. The reduction in the depth was to
obtain the same span to depth ratio for both the long and short
beams, The geometric dimensions and structural properties involved

in fabrication of these models are summarized in Table 3.5.

3.6 Test Procedures

3.6.1 Prestressing of the Columns

All the columns were prestressed to simulate the loads of
a building above and also to counter-~balance the vertical reac-
tive forces at the corners caused by the slab. It also served to
reduce the rotation of the columns. In each case, the prestress—
ing force was applied approximately 2 hours prior to testing.
During the casting of each column 5/8 inch diameter steel tubes
40,75 inches long were embedded concentrically all along its
length of 41 inches, except the top 1/4 inch portion. The four
columns of the specimen were placed on a rectangular steel frame
made of four 41 x 4 x 3/4 inch plates attached to the Laboratory
floor. Four 1/2 inch diameter fully'threaded rods passing through -
the steel tubes were used to connect the specimen to the base
plates, In each case, the prestressing force was transferred to the
column through a load cell and the threaded rod by means of a hand-
tightened nut. Figure 3.9 gives a schematic of this prestressing

setup,
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General test setup
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3.6.2 Loading of the Test Specimen

The test specimens were loaded with a uniform load by means
of an airbag loading system. The airbag was restrained by a reac=
tion frame which was erected over the specimen., The frame consisted
of a 39 x 39 x 1/4 inch plate attached to the steel columns through
I-sections. The photographs of the test setup, which illustrate
the reaction frame are shown in Figures 3.10 and 3.11.

The airbag was connected to the airline through a regulator.
The pressure was supplied from the available air pressure pipe.lines.
An additional. air line connected the airbag to a pressure test cham-
ber so that the actual air pressure at the airbag could be measured.
The airbag was folded in such a way that its surface, connected to
the inlet and outlet air lines, was always in contact of the slab.
The load was measured by high and low load manometers. Loads less
than 225 psf were measured by the low load manometer, O0il with a
specific gravity of 0.827 was used in this manometer. High loads
(above 225 psf) were measured by a manometer filled with mercury.
The manometers were graduated in an increment of 1 psf. They were
connected to the pressure test chamber with a control valve which

could regulate pressure in the airbag at the desired load intensity.,

3.6.3 Recording the Beam Rotations
and the Slab Deflections

For specimen 1 the edge beam torsional rotations were
measured along one of the edge beams at the center line and at

distances of 6 inches and 12 inches from the center line, TFor
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specimens 2 and 3 torsional rotations were measured at the center
lines of the short and_long beams and also at the quarter points of
the long beams. These rotations were measured by a specially de-

(38)..

signed lightweight pendulum type rotation transducers using

bonded strain gages as the sensing elements (see Figure 3.9). The

gages used in the prototype testiﬁg (33

were heavier in weight com-
pared to those used in the model testing program. This decrease in
weight was necessary because of the smaller cross sections of the
Eeams in the models. Reduction in bending stress of the lightweight
g ages was partially compensated by a longer lever arm provided

by a longer aluminum strip compared to that of the heavier gage used

(33) A large amount of strain could be in-

in the prototype work.
duced in thg vicinity of the bonded strain gages by using a thinner
cross section at that portion of the aluminum strip. This arrange-~
ment increased the sensitivity of the gages. A typical gage was
tuned for an output of 28,000x¢ per radian of rotation, resulting
in an accuracy of about 1 percent in the angular measurement.
Deflections of the slab were measured at several locations
shown in Appendix B, They were measured by deflection transducers

(38) and using bonded strain gages as the sensing

described by Onysko
elements. They were tuned for an output of 2000 M€ per inch of de-
flection.

These sensitivities of 1 in 28,000 and 1 in 2000 for the

typilcal rotation and deflection gages respectively, were found

satisfactory for this experimental investigation. Condensed tables



of deflections and rotations are given in the Appendix B. These

tables were prepared from the data recorded by the automatic print-

out of the digital strain indicator of the Budd Instrument Company.

3.7 Test Results

Extensive test data were recorded during the course of this
investigation. They are summarized in Appendix B. An important
portion, which will be referred to frequently in the subsequent
discussion and for which different graphs (Figures 3.12 thru 3.16)

are plotted, is presented in Table 3,6 and Table 3.7.

3.8 Observed Behavior of the Test Specimens

The test specimens exhibited a particular trend in behavior
which was influenced mainly by the span and depth of the short
beams, the two fundamental variables in this experimental investi-
gation. The observed behavior of these specimens could help to
confirm some of the structural concepts. For example, in accord-
ance with the elastic theory, specimen ! which had the highest
aspect ratio (1l:1) showed minimum cracking strength in flexure but
had a maximum slope of the elastic portion of load versus deflec~
tion curve. On the other hand, specimen 2 which had the lowest
aspect ratio (1:2) exhibited the maximum cracking strength and the
minimum slope.

The model specimen 1 reproduced the lcad~deflection and

(33)

load~rotation characteristics of prototype with reasonable
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Table 3.6 Slab central deflections and beam central torsional
rotations for specimen 1

Applied load Deflectign Predictelerototxﬁf Rotation -4 Predicted Prototyp%'

(ps£) (inx10 °) Deflection (inxl0 (rad x 10 °) Rotation (rad x 10 )
15 - - 0.66 .466

30 5.5 15.54 1.20 847

50 9 25.41 2.00 1.412

70 14 39.6 2.00 1.412

90 15.5 43.8 4.00 2.824

110 19 53.7 5.33 3.76

130 22 60.8 6.42 4,54

150 26 73.5 7.54 5.334

170 29 82.0 8.66 6.12

190 32 90.5 - -

210 33.5 93.6 ~ -

245 45,5 128.8 - -

290 54 152.6 - -

1 See Section 5.2 for explanation of these predicted values



Table 3.7 Slab central deflection and beam central torsional rotation
for model specimens 2 and 3

Model Specimen 2

Load Stage Deflectigg Rotation _, Load Stage Deflectio Rotation -4
(psf) (in x 10 7) (rad x 10 ) (psf) (in x 10 7) (rad x 10 )
100 4.00 1.787 1200 57.5 11.62
210 8.00 2.235 1400 74.5 18.78
400 16.0 2.680 1500 80.0 19.66
620 26.0 5.361 1600 89.0 25.02
800 33.5 6.705 1700 104 33.52

1000 45.5. 10.72 1800 126 46.47

Model Specimen 3

Load Stage Deflectigg Rotation - Load Stage Deflectio Rotation -4
(psf) (inx 10 7) (rad x 10 ) (psf) (in x 10 ™) (rad x 10 )
50 5.00 2.238 600 57.5 -
100 8.50 4.467 620 60.0 22.34
132 11.0 - 680 69.0 26.40
170 4.0 - 730 79.0 30,00
200 15.0 8.500 800 85.0 31.30
270 21.5 - 880 104.5 44,31
300 29.0 - 940 122.0 46.50
350 32,5 - 1000 141.0 61.20
420 39.0 11.63 1100 165.0 76.00
470 44.0 12.97 1170 234.0 165.0
500 46.5 - 1230 291.0 330.0

570 53.0 21.95 - - -
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accuracy. Though the model beams had a smaller total number of
cracks, the overall cracking patterns displayed by -the model and

the prototype had a striking resemblance. A typical behavior asso-
ciated with specimen 2 was an early occurrence of flexural cracks

at the centers of the long beams. The specimen had the lowest
aspect ratio of 1:2 resulting in the predominance of one-way action
more in this specimen than..the other two. This was perhaps the
reason for this early crack formation. Or, it might have occurred
because of a typical distribution of load transmitted to the beams
by the slab. This behavior of the long beams is somewhat difficult:~
to explain at this stage, in the absence of results from the elasticv
theory. 1In specimen 3, reduction in the depth of the short beams
gave the desired results. Severe cracks caused by torsion and shear
were visible in the beams at sections near the columns. Also, bend-
ing and torsion cracks were formed all along the length of the beams
indicating a maximum utilization of the material and adequate bend
of the reinforcement.

In all the test specimens positive yield lines originated at
the center of the slab and started propagating along the paths pre=-
scribed by the yield line theory. It was possible to observe this
propagation phenomenon as it happened during the loading process.
Spandrel sections near the columns were heavily cracked, tending to
form torsional hinges at these locations., After removing the air-
bag, it was possible to observe flexural cracks caused by negative

moments in the slab. These cracks were formed on the top surface
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of the slab all along its junction with the edge beams., The
ultimate deflections of the specimens were very large (approx-
imately twice the depth of the slab). Thus, they exhibited the

ductile type of failure recommended by the ACI Bulilding Code.

3.9 Observed load-Deformation Curves

Based on the experimental data different load-deflection
and load-rotation curves are plotted for model specimens 2 and 3
(see Figures 3.12 thru 3.16). Characteristics of similar curves
for model specimen ! can be seen in Figures 5.3 and 5.5 which give
model prediction values obtained after multiplying the observed
model reading (deflection or rotation) by an appropriate dimen-
sionless constant. The detail discussion along with the statisti-
cal analysis of this model specimen 1 test data is given in
Appendix A, Figure 3.12 of the observed slab central deflection
of model specimen 2 shows clearly the elastic portion of straight
line up to 1125 psf. The same elastic limit is shown in all the
three graphs (Figures 3.12, 3.13 and 3.14) of this model specimen.
After the load'of 1125 psf the transition zone shown by the dotted
line starts in these load-deformation curves. The inelastic zone
starts at about 1325 psf. This zone continued until the final
collapse which took place at about 2200 psf after which the slab
could sustain no more load. The theoretical calculations based on
the yield line theory are given in Section 4,5.4. For specimen 2

the theoretical ultimate load is 1850 psf, a value nearly 25%



1800

Load stage (psf)

1500

1200

SCo

600

300

0 30

L— ~ = == — — —Theoretical Ultimate Load =

I | I |

Figure 3,12

60 90 120 150

Deflection X 157in. —
Slab central deflection, model specimen 2

50



1800

1500

1200

cCco

600

Load stage (psf)

300

e — e o. . Theoretical Ultimate Load

1 | I

51

10 20 _ 30 40
Torsional rotation % 10 radians e a
(center of long beam)

Figure 3.13 Torsional rotation,model specimen 2



Load stage (psf)

1800

1500

1200

900

600

300

s == — —— — —Theoretical Ultimate Load
L

l

52

20 40 62 &0

Torsional rotation x 10 radiane—a

Figure 3.14 Torsional rotation, model specimen 2

100



o — — —Theoretical Ultimate load .

1200 —

1000 p—

Load stage (psT)

E00—

500 |—

200 }—

| | |

53

Y €0 1zC i 120 =50

Deflaction z 10 1n¢ e

Slab central d=flection, model snecimen 3

14y
o
g
>
WD
A
.
r-J
w



e = —— Theoretical Ultimate Load
p——

1200 ¢

10CC

QAr
SO

N
Nl
b
.h
R

Load stage (psi) —e

~o0or

N ——

54

\d

y—
Q

0 &0 122 l“.‘.l.’z Lo
Tarsiornal rotaticn x 10 radian—e

Tigure 3.16 Torsional rotation, model specimen 3



55

smaller than the obsepvgd one because of the excessive membrane
action, as pointed out by Wood (18).

Similar curves are observed (see Figure 3.15 and 3.16) for
the load-deflection and load-rotation data of model specimen 3. As
indicated by these curves the elastic limit ended at about 575 psf
after which the transition zone (dotted portion) started. The in-
elastic zone was from about 700 psf onwards., The total collapse
occurred at 1600 psf. The yield line theory gives this ultimate load
value as 1260 psf (see Section 4.5.4), indicating the presence of
a significant membrane action as expected from this structural
system.

Recalling that model specimen 2 had dimensions of 36 x 18
inches whereas specimen 3 had 36 x 24 inches, one can expect larger
magnitudes of elastic and ultimate loads in specimen 2 compared to
the corresponding values of specimen 3, as shown by these curves,

Also, specimen 2 showed higher flexural cracking strength compared

to the specimen 3,
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4, THEORETICAL ANALYSIS

4.1 Introduction

Theoretical work undertaken for this investigation can be

divided into three major sections and their sub-sections as

follows:

1. Elastic solution of doubly symmetric (i.e. square)

case of flat plates and slabs,

(a)
(b)

elastically supported edges without torsion,
elastically supported edges with torsion and devel-
opment into free edges, simply supported edges, fixed

edges and elastically supported edges without torsion,

2. Service load requirements of doubly symmetric case,

(a)
(b)
(c)
(d)

flexural cracking of slab,
flexural cracking of edge beams,
torsion and shear requirements of edge beams,

design formulas for edge beams.

3. Inelastic analysis of rectangular and square panels

(a)

conventional yield line theory,

(b) modified yield line theory,

(c)

combination of above (a) and (b).

The analytical work given in 1l.(b), 2.(a), 2.(b), 2.(c), 2.(d)

and 3.(c) is not available in the literature and therefore will be

discussed in detail., The tested specimens of model and prototype

structures will be analyzed in the light of this theoretical work.



4.2 Elastically Supported Doubly Symmetric
Flat Plates and Slabs Without Torsion

4,2.1 Assumed Solution
The assumed solution is based on the theory of small deflec-
tions of laterally loaded flat plates. Accordingly, the deflectioms
are assumed to be small in comparison with the thickness of the slab.
At the boundary it is assumed that the edges of the slab are com—~
pletely free for in-plane movements; thus the reactive forces at the
edges are normal to the slab. A general differential equation for

the deflected surface of the slab can be written as:

64w Baw 84w - 9 4.1)
%t 7234 "D
Ix Gx%Y oy

To satisfy this differential equation and also the conditions of
symmetry, the following deflection function is assumed:

W= —3 [._(16x4 - 24a2x2 + 5a4) + (16y4 - 24a2y2 + Saa)]
768D

oe
+ 2z A _(cosh Y cos 2'X 4 cosh BIXE cos E‘IZ)
n=1.3.5 0 a a a a
9 b

co .

+ Z C (v sinh 2 o5 2E 4 x sinh 2= cos Eﬂl ) (4.2)

n a a a a
n=1,3,5

It consists of two parts i.e. a particular integral and a compli-
mentary function. Each one has interchangeable terms in x and y
to satisfy the requirement of the doubly symmetric structure. The
complimentary function is a solution of the homogeneous equaticn,

whereas, the particular integral satisfies.the governing equation
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4.1 . The summation constants A.n and Cn are to be chosen to suit

the boundary conditions under study.

Edge Beam
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Figure 4.1 Slab with elastically supported edges

The co-ordinate axes are chosen along the center lines of the
slab as shown in Figure 4.1. Loading is symmetric of uniform inten-
sity q. The beams are identical in all respects. In this part of
the solution, the slab is just resting on the beams with the edges
free to rotate in any plane. The construction is not assumed to be
monolithic, that is the slab and the beams are separately cast

without any torsional effect at their junction.

4.2.2 Boundary Conditions
The slab is simply supported on the beams. Edges are free to
rotate and there is no bending moment M& along the edges x = a/2,

Also the bending moment My along the edges y = a/2 is zero. The
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analytical expression for this boundary condition is

2 2 '
AW 9w
+ p :x =0
{:ay2 axz a (f.3)

y=3

The deflection of the slab along the edge is equal to the
deflection of the beam. The shear in the z direction transmitted

from the slab to the supporting beam is given by

3 3
Vv =
-y D[——“; r@-wZ3 J
ay oxayd  _ /2

So, the differential equation of the deflection curve of the beanm

will be

3
D[aw+(2y)9w ] [
3 = E1| (23
2y ) l . G
2

This equation represents the second boundary condition. The
algebraic and the hyperbolic functions contained in expression

of Equation 4.2 are developed in cosine series by using a Four-
ler expansion. Then, using the two boundary conditions of Equations

4.3, and 4.4 we arrive at a set of equations for the constants A.n

and Cn as shown in the next section.



4,2.3 Formation of the Simultaneous
Summstion Equations

The boundary condition of Equation 4.3 is satisfied by

partially differentiating the deflection function of Equation 4.2 .

azw azw
atr
y 2x

-9 2 _ 2
—gap (192y" - 48a")

2
nw ney nix _ on 2 nnx nry
+ Z A L(——a ) cosh o~ cos —= (--a) cosh === cos — ]

+ 50 frx @2 ginh WE oop BV 4 o DX [201 o BTV Y
n a a a a 2 =
ar, 2 nny
+y ()7 sinh = J}

+ 2L (192 x> - 48 a?)

2nm n
‘-E"C()Sh‘_w'i

ng ., 2 nw nrx nn
+ - (= oy —_ ony
S Cn { y a) sinh 5 ¢os — + cos 2 "

nr, 2 nnx
+ x (—;) sinh —;—]}
nn, 2 ny ny, 2 nnx nir
+ - (— nyy LA — nny
rs An [ ( a) cosh " + a) cosh 3 ¢os — ]

A1)
Using 12- = "n and y = a/2, boundary condition of Equation 4.3

yields:

nrm, 2 nnx nrx 2nn «
— —_— + =— cosh“n
ZAn ( a) cosh <, cos /= + ZCn cos — [_ ”

a nn2 ‘

+35 ("a-) sinh dn]
q a ,nw.2 nnx

+ B (192 5% - 48 ah) +p = O [- 7 (7 st 08T ]

2 nwx -

+r Z A [- (P-g-) cosh =  cos —/= 0

(4.5)
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Expressing (192x2 - 48a2) in a Fourier series as

.

768D
=L nrx

—_;3—— =(-1) 2 73 cos — =, Equation (5) leads to:

A_ {(ﬁ)2 (1 - ») coshxn}

+C_ {2”" cosh < + 3 (l‘él)2 sinh«_ (1 - p)}

n-1 2
_ 2mgqa
- » 7 303D (4.6)
A (1l -m) coshe_ +C [-23 cosh  + (1 = m) 2 sinh«
n n n Low n - 2 n]
n-1

- g (1) 2
- nu5 4.7)

In the same way, by using the appropriate derivatives of the

deflection function of Equation 4.2 , boundary condition of

Equation 4.4 gives:

gqa nmr 3 _. nnx nm 3 nix
A +DZAn {( a) smho(n cos —= + ( a) cosh 5 sin«cn}

hY

v, 3 nﬂx
+ D= Cn L( a) x sinh — sin-:(n

+ cos n:x {2<_:3__:)2 sinh-< £ (nn)z sinh-< + — ( COSho( }]
+ D(2 - Y_ZAn {- (Eg)3 s:[nh«tn cos amx _ (nﬂ')3 cosh —— nTx sin= }
na, 2 - nfx a ,nm3 nnx
+Z_Cn { ( a) sinh-(n cos — > ( a),_ cosh 2 sin-<n

- (_r_x_g_) sin« {%‘—r coshﬂg& + (3_3)2 x sinh n_:gc_}}]
=EI{%5- +ZA K_( ) cosh-( cos-—-—]

4
+ZCn ‘_-;— (B-g-) sinhA  cos _n_vr_x]} (4.8)
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Some of the terms of Equation 4.8: are expanded in half~range

cosine, series, for example:

cosh 2™ - Z Z 2m sin i cosh —-— ] cos inx (4.9)
a ak 2 a
i=1, 3 5
where K = (&2 ) + ( )
The Fourier expansion of any constant 1is
Const = Z . _@_nc_%:ﬁ sinP—;—r cos _n:lra_x
n=1,3,5

(a) Replacing the terms by their Fourier expansions,

(b) changing the dummy variable n to the variable i in the single
summation terms, (c) grouping together the terms that contain same
cos(ir x/a) as a factor and then (d) observing that Equation 4.8
‘is satisfied for any value of x, one can conclude that the coeffi-
cient by which cos(imx/a) is multiplied must be equal to zero for
each value of i. This procedure transforms Equation 4.8 into:

D( ) A {sinh Ay - (2 - w) sinh-(i - -E—I- (i“) coshdi}

+ D(—’%)2 C; {3 stnhat, + & 3) coshy = (2 - ») sinhey

i EL a 4im2
- (2 =M () coshe, - 33 ()" sinh<, }

nmi, 3 nm, 3
+ 3 ‘_{DAn (—;) sinotn - D(2 = n) An (—;) Sino(n

- D(2 = y) Cn Sindn (ntr Zmr)} (4iﬂ sin o

nw
= cosh -—2-)]

i

+ 2 [ {oc @ stnct_ - D2 - m ¢ ED sinee EH?}

2 4iw nvr 8 o, 1w nimw
X "z sino(i sinh > zl?z(a)(a) s;in.s(i cosh—z-]l

= "1% sm“i[zn 4] . (4.10)
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This equation is based on the second boundary condition of Equation

4.4

4.2,4 Coupled Equation and Computer Solution
Equation 4.7 and Equation 4.10 are the two uncoupled
equations having An and Cn as the only unknown quantities. The final
coupled equation in terms of Cn can be obtained by eliminating An.
Thus, this final equation will represent an infinite set of linear
simultaneous equations in the unknown Cl’ C3....C.,.

By Equation (4.7):

-1
1 1 { 2 a4§-1) s
ap = (1 ) cosh;(n ng w°D 2

»

2a a .
-C [—n— cosh«  + (1 - p) 5 31nh~(n]} (4.11)

This value of An is substituted in Equation 4.10 .
After a few pages of simplification, the final coupled equation
in terms of Cn becomes:

2 2EI
CiDﬁi sinh«xi {3 + x + 5 -7 c:othexi

+ 1—;E'(irv) (tanh <, - coth -(i)}

2 _2a _2(1-m pow
+ ZCnFl {Z(Z-N) nw a

nir K
4q 5
- TR 1O
By sind, 2Da ] 1-m api [(i ») tanh e,

+EL a1l , 4
B] Z[-cosh (-1) 2 —ﬁ% _:5_5] (4.12)
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_im _ir
= 2" - 00
‘n 2’ %1 a
K =« +p2
n n
3 4B
Fl -D s:Ln::(n ( P‘.n) =K sin -(i cosh c(n (4.13)

A computer program was written to solve Equation 4.1é‘.
Cl’ C3, CS’ C7 obtained by this solution are substituted in Equa-
tion 4.11 . Thus, all An and Cn values are known. The deflection
func:ion of Equation 4.2 is now completely defined. An expression
for bending moment at the center of the slab is developed in Equa-
tion 4.19 .

The accuracy of the theoretical and computer work completed

upto this step was checked with the help of the formulas given by

Timoshenko, (37 et.él. Excellent correlation was observed as shown

in the computer print-out of Appendix C.

A study was conducted to understand the convergence character-
istics of the An and Cn series and also their effects on deflections
and bending moments. Both series were found to converge very fast.
In some cases, the first term only gives deflection values correct
to three decimal places. Nevertheless, the computer program is
capable of generating the terms upto A7 and C7, the last one being

very small (of the order of 1044).



4.3 Analysis of Doubly Symmetric Flat Plates
and Slabs for all the Possible Edge Conditions

4,3.1 Assumed Solution

There are five possible edge conditions for the doubly
symmetric case. (i) Free edges (ii) Elastically Supported Edges
Without Torsion (iii) Elastically Supported Edges With Torsion
(iv) Simply Supported Edges (v) TFixed Edges. The assumed solu-
tion for the deflection surface of the slab should be such that de-
.flection at the edges must be zero in edge conditions (iv) and (v).
However, it must be finite and non-zero for the first three cases.
Also, the assumed deflection function should have derivatives
which yield zero bending moments at the edges for conditions (i),
(ii) and (iv) but finite non-zero values for (iii) and (v). A
careful study of the deflection function of Equation 4.2 will
show that it is capable of satisfying all these requirements, if
proper boundary conditions are used. Thus, this function is assumed
to be a possible solution of differential equation 4.1 . The

corresponding boundary conditions are discussed in the next article.

4.3.2 Boundary Conditions
The boundary condition given by Equation 4.3 1is not valid.
The torsional moment in the edge beam can be a non-zero value given
by ~-c( 32w/51c3y) along y = a/2., The right-hand-screw rule is
used for the sign convention. This torsional moment varies along

the edge, since the slab, rigidly connected with the beam, transmits
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continuousl& distributed twisting moments to the beam. The mag-
nitude of these applied momeqts per unit length is equal and oppo-
site to the bending moments M& in the slab, Hence, from a con-
sideration of the torsional equilibrium on an element of the beam,
the boundary condition can be expressed in the following analytical
form:

2 2 7 - .2
3w "W - _ 8 (2w
N5 v ow 5

a -
y= i y=

N

(4.14)

The boundary condition given by Equation 4.4 1is valid for
all five edge conditions. The differential equation of the deflec-
tion curve of the beam remains the same. A close study of the
boundary conditions given by Equations 4.4 and 4.14 reveals that
they can generate all the five edge conditions by using proper

combinations of EI and C values. For example, in edge condition

(1), free edges, EI = 0, C = 0; in edge condition (iv), simply

®, C=0, etc. Thus, the boundary condi-

supported edges, EI
tions given by Equations 4.4 and 4.14 are the most general type
and can be used for all the possible edge conditions of the doubly

symmetric system.

4.3.3 Formation of the Simultaneous Summation
Equations

The boundary condition given by Equation 4.14 can be re-

written as:

2 2 2
2 “w 2w c2 [a W
[--3_2}, + N‘3x2] s  Dax ayax:l a (4.13)
v=2 ' y=32
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A summation equation based on this boundary condition can be
evaluted by using the appropriate derivatives of the deflection
function w, After a few steps of simplification, the right hand

side of Equation 4.15 becomes:

C nw, 3 nirx _ (o3
-3 S An [ - ( a) cosh sinv(n ( a) sinh < cos ——]

a
C nr, 2 nrx T nrx
-3 ch [ - ( a) cosh == sin« (a) osh —= sin«
nw, 3 avx o, 2 nrx
- X sinh S s:i.m;(n ¢ a) sinh.<n cos

a nix
( ) cosho(ncos " ] (4.16)

Now, using procedures (a) to (d) given on page 62, after a few

pages of simplification, the boundary condition given by Equation
4,14 vyields the first summation equation. In the same way, the
boundary condition given by Equation 4.4 will yield another equ-

tion. These two uncoupled equations are as follows:

2iw a
i{( ) (1 = m) coshdi} +C{-—— coshdi+~§sinh-<i (l-p)}
i+1 9 aZ
+ (1) 2 175

C ir. 3 a .in,3
=A7 D stmhug 40 T \'_(—) sinhe; + 5 (51)° cosh« ]
4

C nw 3 C im
B{An (—a-) sin—< + C 238 ) sin« }[3 Vi :Ln,< cosh -—-]
n=1,3,5

nw

wlg

sin%, sinh

wir

c -
+ 2 Cn—ﬁ ( ) Sino(nL

n=1,3,5 1

8 nw nm
= 2K2 (— )( )sindi cosh—-z- 4.17)
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This is the 'GRH1' equation of the computer program. The 'GRH2'

equation based on Equation (4) is:

D( ) c:oshoki {(l-ﬂ‘) Tanh £ +£—I-(i—:)} A:l.

177D
i, 2 EI a ,in,2 41w
+06D) sinh«, {1 tp-S FED -5 a-m coth«, } €,

nm 3 4iw
+n=% s {(1 - N\)An + 2(1 - w) Fﬁ Cn} [—D sin o(n( a) Vi sin «¢§ cosh

+ 2 C F {(1 m[3 ten .2 21}

n=1,3,5

= —4&
i7 sin<y 2Da 4] (4.18)

4.3.4 Deflection Equation
The two uncoupled equations 4.17 and 4.18 are to be
solved for An and Cn in an open form, each set yielding a finite
number (say N) of simultaneous linear equations, each equation having
1 to CN' Thus, there will be 2N equations

each having 2N unknowns to be evaluated. It may be noted here that

all unknowns A1 to AN and C

it is not possible to eliminate any of the An or Cn summation constant
from Equations 4.17 and '4.18 . This is because these constants
appear both inside and outside of the summation terms as indicated by
Ai and A.n and Ci and Cn' This is contrary to Equations 4,7 and

4.10 which can be coupled in Equation 4.12 . The value of N to be
selected depends on the convergence of the An and Cn series and their

effects on the deflection function w. It is observed that the func-

tion is not affected at all because of A5 and CS’ both of them being
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of the order of 10-10. The computer print=-out given in Appendix C

shows that even A3 and C3 are of very small magnitude ( of the
order of 10-6and 10-7 respectively). Nevertheless, these values
are generated in the computer making the deflection function w and

its derivatives reliable enough for the further computations shown in

the following sections.

4.3.5 Bending Moment at the Center of Slab
The analytical expression for bending moment at the center of

the slab can be written as:

_ 2 2
Lt o0 = [-My]O,O =D [5%5 + P32 ] 0,0

After taking the appropriate derivatives of w and substituting

x=0, y=0, the expression becomes:
[ 154 = D]

=-dla+mrda+m >
n=1,3

2n (7

n g (4.19)

4.3,6 Torque Distribution Along Edge Beams
By using the boundary condition given by Equation 4.14 , the
required torque distribution may be written as:

2
[M - ‘D[ n g‘ﬁ] (4.20)

x_:a_
2
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2 2

W oW
axZ M3y
=3 _ 2 _ 4842
768D (192x 48a%)
+ Z A [(n") osh _u_;_c_ cos B‘;.Z. - (-I-l-:i-)2 cosh n_;ty_ cos %3{-]

oDl 2 nn nwx
+ > Cn { y(—a) sinh —Xa cos —=
vy 2nw nix nw nmx }
+ cos P [-——a h——+ x(— ) _a]

+ 2 (192y% - 48a%)

+ E_Cn{-x (P-g-)2 sinh _n_g_:_c_ cos Eﬁl

+ cos -EE—‘- L—ZZ—W cosh _t%g_ + y("pl—:;)2 sinh EEZ]}

nnx

- @n2 nmx oy a2 nny g BIX
+,u'2AnE (a) cosh S cos — +(a) cosh S cos —

Therefore the expression for the torque distribution becomes:

M 2 2 a ,nom2 an of
-%—5 (192y -48a)-D§Cn -2-(—;) sinh = cos-zz(l-p)

- Ty 2 o any g . 4 - nry 2n®@
DZAn(a) cosh = cos = (1-m ~DFC cos a(a

cosh -—i-)
Writing plq(192y2 - 48a2)/(768D) in a Fourier series, the required

expression for torque distribution along the edge beams will be:

n+l
2”-31-2(1)2 —%- cos—gz —DEAn (n—;t-)zcoshp-gcos-r}—g-z(l-n)

-DEC cos—-z\_z( )(1 )sinhl%T +2a cosh%

This is an expression of torque (say lb-ft/ft) transmitted to the

edge beam at any section y. If this expression is written as



t = £(cos P—gl), then the torque (say 1lb-ft) 'T' resisted by any

section y is given by

y y
- = oryy
T ftdy ff(cos a)dy
o o

4.3.7 Torsional Rotation of Edge Beams
The angle of rotation of any cross section of an edge beam
can be written as -(dw/dy). The right-hand-screw rule is used for
the sign of the angle. By differentiating the deflection function

of Equation 4.2 , the rotation is given by:

A A [_64y3 - 48a2y]

oy 768D
-2 A ar sinh oanx cosElj-’5 -E-[-rcosh—rl"—xsin n_rz]
n a a. a a a a
nodd
- Z C Lsinh oy cos nrx 4 y am cosh 2Y cos arx
n a a a a a
nodd
nnx om nrx
- x sinh e (—) sin - C%.21)

The expression for the torsional rotation of the beam central

section becomes:

3
3vj qa 2 [nn' nw nmw nn']
“I= = o - A ~—— 8inh == -« — sin —
[657 -a 48D nodd ® a 2 a 2
x=0,y= 7

nw nw
-ndd Cn [._sinh 5 + 3 cosh 2] (4.22)

[*}
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4.,3.8 Computer Program

A general computer program based on thils theoretical work
is written and incorporated in Appendix C. The program is capable
of analyzing an almost unlimited number of different structures,
each having an unlimited number of load stageé, for all the five
possible edge conditions, in one compilation only. The com-
pilation time of the program is 3.92 seconds, whille the execution
time is 0.24 second per structure per load stage. The computer
prints out slab central deflections, bending moments and all the
necessary data to be used for evaluating any set of generaliged
forces and displacements involved in the system. For example, the
summation constants An and Cn printed out by the computer are used
to compute torsional rotations of the beam central section as shown
in Appendix D. As discussed earlier, Equations 4.7 and 4.10
can be coupled in Equation 4.12 but Equations 4.17 and 4.18
must be solved in the uncoupled open form of 2N equations each
having 2N unknowns. So, the uncoupling effect involved in this
computer work ig accounted for by using an uncoupling correction
factor which is also printed out by the computer.

The elastic constants of the material, bending stiffness of
the slab, bending and the torsional stiffness of the edge beams,
load stage and the experimental value of deflection are the variables
to be supplied to the computer. All these variables are in kip
and foot units except the torsional stiffness and the experimental

deflection value which are in kip and inch units. In place of the
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experimental value of deflection one may use the values obtained
by formulas given in Reference (37) for the edge conditiomns (1),
(iv) and (v). Any arbitrary deflection may be used in the ébsence
of experimental and formula values so as to complete the execution
of the program, otherwise, the computer will give an error message
for missing data. Various uses of this computer program are illu-

strated while comparing theoretical and experimental results,

4.3.9 Accuracy of the Theoretical and
Computer Work

Considering the complex nature of the calculation procedure
and also of the subsequent computer programming, various checks
and counter-checks were used at different stages of the work.
Formulas of bending moments and deflections given in Reference (37)
served this purpose very effectively. Also, the experimental values
. of deflections and torsional rotations were compared to the corre-
sponding theoretical values as shown in the next chapter. The graph
comparing the values of the slab central bending moments as obtained
by the computer program and also by the formulas is given in
Figure 4.2. In the computer print-out shown in Appendix C, ana-
lyses numbered 1 and 2 are for free edges (EI/aD = 0, TS = 0),
thosenumbered 3 and 4 for elastic supports without torsion
(EI/aD =3.0, TS = 0), those numbered 5 and 6 for simple supports
(EI/aD = 99999-=-, TS = 0) and those numbered 7 and 8 for fixed

edges (EI/aD = 99999———, TS = 99999=~=), Excellent correlation is
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observed between the values obtained by the computer program and
the corresponding values given by the formulas ‘from Timoshenko,

(Jzz_as_shown_in Appendix C. Some difficulty experience in the

et.al.
case of fixed edges because of the two infinite values involved and
the slow convergence of the Ah and Cn series., Nevertheless, the
particular integrals and complimentary functions obtained by the
program check within 2 percent of the corresponding formula val-

ues, indicating the accuracy of the theoretical derivation even for
the fixed edge condition.

The over=all algebraic check used for this theoretical work
runs into several pages and need not be repeated here. The idea
behind this check is to use ¢ = 0 in Equations 4.17 and '4.18 then
to couple them in one equation (by eliminating Ah) to see that
the final coupled equation is the same as Equation 4.12 , Thus,
after establishing the reliability of this theoretical and computer

work, it was used to correlate the experimental data, as shown in

the next chapter,

4.4 Cracking Loads for Doubly
Symmetric Panels

4.,4.1 Flexural Cracking of the Slab
The serviceability of a structure is of prime importance to
the engineer and requirements such as deflection and crack control
must be met regardless of whether the ultimate strength or the work-

ing stress design is employed. The flexural cracking load of the
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slab can be calculated with the help of 1971 ACI Code (9.5.2.2)
and the computer program given in Appendix C. The required pro=-
cedure is to calculate the cracking moment Mcr by MEr = 2{; R
then to run the computer program for different load intensities
which can be done in one compilation only. The computer will
print the load stages and the corresponding slab central bending
moments and then select that load stage as a cracking load, at
which the printed moment is the same as Mcr'

For example, consider a normal weight concrete structure

similar to model specimen 1., Taking a unit strip at the center of

' the slab, the section modulus 2z per foot is z = bh2/6 =12 x 12/6
= 2 in3 per ft of slab. Fy= 7.5]¥E. = 7.5 . J4242 = 488 psi.
= 488 x 2 1b-in per ft
cr
= 488 x 2/12000 k-ft/ft
= 0.08133 k~ft/ft (4.23)

By the computer print-out of Analysis Numbers 54 and 55, the load
at which this Mcr = 0,08133 k-ft/ft occurs is obtained by linear

interpolation between the values of the two solutions;

For the Analysis Number 54: M = 0.0800668 k-ft/ft

0.290 k/ft>

q
0.0924910 k-ft/ft

For the Analysis Number 55: M

0.335 k/ft>

q



By linear interpolation:

. ) 0.08133 - 0.0800668
oy = 0-290 + (0.335 - 0.290) 55957575 = 0.0800668

= 0.29447 k/ft?
= 294.47 say 295 1b/ft?

Micro-concrete models tend to exhibit higher cracking strength (9).
The experimentally observed cracking load was approximately
330 lb/ftz. This ten percent increase in the observed value may
be attributed to several facts, e.g. (a) the formula for fr is
empirical, (b) the first crack was observed with the naked eye
with the possibility of skipping the earlier and true load inten-
sities and (c) the calculated cracking load is for the central
section of the slab and it may take some extra load for the crack
to propagate long enough so as to make itself visible. Never=-
theless, this procedure for calculating flexural cracking load

of the slab appears satisfactory for all practical purposes.

4.4,.2 Formula for Flexural Cracking
of Edge Beam

Torsional stiffness and EI/aD ratio are the two important
factors governing the behavior of a doubly symmetric structure of
slab terminating in edge beams, Magnitudes of these two factors
may vary considerably and it is difficult to come up with a gen-
eral formula for a flexural cracking load unless reasonably con-

servative values are assumed for shear forces, torques and
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bending moments. Using this approach it is possible to develop
formulas for the flexural cracking load and the permissible load
for the combined torsion and shear requirement of the edge beams.
The following is the derivation for the flexural cracking load
of the slab.

Total load 'W' on the slab = qaz. Vertical reaction 'Vs'
at each end of the beam = (w/8) + (R/2), where R is a reactive

force per column which is O.OGSqa2 or qa2/16 for design pur-

poses.
=N w_oo_ W
Ve =38 * 33 32 (4.23.4)

0o aa'u’ 3206-}
D +(2-M) —5
87 aJt"' avz K=

a
2

. -SN :é—oj
Ve=35 Vo- 53

Figure 4.3 Vertical load transmitted to edge beam

As shown in Figure 4.3, the vertical shear transmitted to the
edge beam by the slab 1s a curve consisting of the harmomic terms
of the cosine series and can be approximated by a rectangle be-

cause of the large magnitude of a/h ratio. Therefore, the load
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2

intensity on the edge beam is 6%%- X ;Q = 5W/16a per unit length.

(39)

(Wood has recommended W/3a as the probable load intensity).

Therefore the negative moment developed at the column faces

LW & swa
16a 12 192 (4.23.B)

On the basis of the ACI Building Code the modulus of rupture 'fr'

of concrete = 7.SJE€

2
SWa ! bd
L e Y o

cr
q. =7.5x 1902 ba? {f
cY 5 % 6 [»)
3.3
_ 4sba’ JE
as (4.24)

4.,4.3 TFormula for Combined Shear and Torsion
Edge Beam Requirements

The bending moment along the edge of the slab is transmitted
to the beam as a distributed torque. This torque distribution con-
sists of harmonic cosine terms (see the theoretical analysis), with
a maximum value at the center, and zero at the columns. The max-
imum value is absolutely maximum at 0.0513qa2 when the slab edges
are fixed (TS = &, EI = 0 ), Therefore, the maximum torque at any

section of the beam is always less than:



- 47 aa® [ 0.3722 - 0.0126 - 0.0036 - 0.0012]

3

= (,01456 qa (4.25)

Thus the maximum possible torque (occurring at the column faces) is
T = 0.01456 qa3. Considering a circular interaction between torsion

and shear, their combined requirement may be expressed as:

'Vu 2 vtu 2 '
q;o + q;—o < 1 (4.26)
c te

where Vu = nominal total design shear stress

= VU - 5W = 5qa2 (4 27)
@bd 32¢bd 32pbd *
\'s = nominal total design torsional stress

tu

My by ACI Code (1)
Gxsy .

Taking K = 3 according to the ACI Code and using T = 0.01456qa3,

_ 3 .x 0,01456qa>
tu P =Xy

3

0.04368qa
Veu T T g=xly (4.28)
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Substituting for v, and Veu in Equation 4.26 and after simpli-

fication, the expression for q becomes:

Q< 1

2 5 .2
a E_(32¢bdvc)

. (Q:04368a 2 s
gEx?yv,

v & 2 .’T as a consgrvative value
Ve = 6.25 {: for uniformly distributed torque along

the beam length, in the limit q becomes:

1

5
2 5 2 ,0.04368a .2
a [(32¢'bd2',[1t_" )+ (¢b2d06.25ﬁ:) :{

replacing d by 0.85d°, the final expression for q can be written as:

¢ = —100 b%d , (4.29)

a2 [84.48b% + 0.4884a°

When the total load intensity (including live and dead loads) on
the slab is less than the above q value, combined torsion and shear

requirement expressed in Inequality 4.26 will be satisfied.

4.4.4 Design Formulas for Edge Beam
Using the derived Equations 4.24 and 4.29 and required
safety factors, general expressions for width and depth of the

edge beams can be developed.
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Let fsf = Factor of safety against flexural cracking

fsts = Factor of safety against the combined effect of

the torsion and shear interaction.
By Equation 4.24 -
48bd>
= 0

fsfa3 (4.30)

q

and by Equation 4.29 =

100d%a_J I

2 (4.31)
fstsa 84.48b° + 0.4884a

Using # = 0.85, Equations 4.30 and 4.31 yield:

85abfsf

o b ——————
48fF 84.48b" + 0,4884a
stsm’

Substituting this value in Equation 4.30 the expression for b3

can be written as

3 2
b™ = 02 + Clb (4.32)
2 3
where C2 = qfstsa
2
C1 = aqfsts
1'782fsf\/ﬁj (4.34)

The slab transmits the load to the edge beam through the clear span
(ac). Also, the design section is at the end of the clear span.
Therefore, the use of clear span 'ac' in place of 'a' 1s justified.
In order to calculate the b and do parameters for the edge beams,

the final procedure becomes:
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3 2

(i) Calculate b by b~ = cy + clb

2 3
af rede

where ¢, =
2 (4.35)
308.2f_, /,CC

2
sts

1 (4.36)
1,782 \ﬁ:

acqf

C

1
As a first trial use b = (C2)3

(i1) Use the exact value of b (satisfying b3 = C2 + Clbz), in the

following equation and get d0

af fas %
= st ¢
4 [mmr—J (437

Two examples will be solved to illustrate this procedure.

Example 1:
!
Data: a, = 240" q= 1,55 psi ‘ﬁf 3600 psi
fsf = fsts =1
Required: b and do
Solution:

_ 1.55(240)°>

By Equation (4.35) CZ m = 1160
By Equation (4,36) C, = % = 3.48

1

First trial: b = (C,)3 = 10,9, try b = 11,0 in.

2)



2 3

b” = 121 b™ = 1331

R.H.S. of (b2 = C. + Clbz) 1s 1160 + 3.48 x 121 = 1581 > 1331

2

Second trial: b = 11.8, b2 = 139.5, b° = 1648

R.H.S. = 1160 + 3,48 x 139.5 = 1645 =% 1648 ok.
1.55 x 240

3 ks
By Equation 4.37 , do =[;8 x 11.8 x 60

= 25,1

Use edge beams 11.8 in. wide and 25.1 in. deep. Kemp and Wilhelm
have used 12 x 24 inch edge beams for the same data (21). If 11.8
is rounded to 12 for practical use, do will be slightly less than

25.1 by Equation 4.37 and may be taken as 24.

Example 2:
Data: Same as above except fsf = 1.1, fsts = 0.9
Required: b and do
3

1.55 x .81 x 240

308.3 % 1.1 x 60 _ 592

Solution: By Equation 4.35 , c2 =

_ 240 x 1,55 x 0.81
1 °T1.782 x 1.1 % 60
1
First trial: b= (C,)3 = 9.48, try b = 10 in., b2 = 100,

3

= 2.561

By Equation 4.3€¢ , C

b~ = 1000

R.H.S. of (b> = C, + c1b2> is 852 + 2.561 x 100 =

2
1108.1 >1000

Second trial: b = 10.47, b> = 109.5, b3

= 1145
R.H.S. = 852 + 2,561 x 109,5 = 1133 > 1145

Third trial: b = 10.41, b2 = 108.5, b> = 1131
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R.H.S. = 852 + 2,561 x 108.5 = 1130 = 1131 ok.

= 28.0

3.k
By Equation 4.37 , d 1.55 x 1.1 x 240 ']

o~ {48 x 10.41 x 60
Use edge beams 10.41 in., wide and 28 in. deep. In the given data
fst§<: 1 and fsf3>1. This is a condition in which torsional hinges
are forﬁed but the beam is strong in flexure. Such a structure

may be used by research workers studying torsional behavior of span-
drel beams. For a wider range of loads in which torsional hinges
are formed but the flexural cracking does not occur, one may use a
higher value of fsf but lower value of fsts' For example, if

fsf = 1,2 and fsts = 0.8 then the corresponding b and do values

will be 9.15 in. and 31.2 in. respectively.

4.5 Yield Line Analysis

The failure mode of a system consisting of a rectangular
slab terminating in edge beams can be explained by (1) Con-
ventional Yield Line Theory in which fallure is caused by the
formation of positive and negative yield lines in the slab, (2)
Modified Yield Line Theory given by Kemp and Wilhelm (21) in
which failure occurs as a result of the formation of positive yield
lines in the slab and torsional hinges in the edge beams, (3)
combined mode of failure in which positive yield lines are formed

in the slab, torsional hinges in only one pair of the two opposite

edge beams and two negative yield lines along the edges parallel to



" the remaining pair of edge beams.

4.5.1 Conventional Yield Line Theory
Equilibrium equation based on this failure mode can be

written as

3+ o—-——a +

(4.38)

{]’ —v5s | NalP
6v34

Y34

wxxxzzcrr; Edge Beams

+ Yield Lines

_———— - Yield Lines

Figure 4.4 Conventional mode of failure

Derivation of Equation 4,38 is given in Reference (19).

4.,5.2 Modified Yield Line Theory
Kemp and Wilhelm have given the details of this theory in
Reference (215. According to their discussion, the total load
carrying capacity of the beam-slab system results from the torque
carrying capacity of the beams and the ultimate moment capacity of

the isotropic slab along the path of positive yield lines. The
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equilibrium equation balancing actuating and resisting moments can
be written for each edge separately, leading to a general expression

for ultimate load based on this Modified Yield Line Theory.

BL Bl

_ 0 Tea ~Tua |

wZzzez Edge Beam

+ Yield Line

o Torsion Hinge

Figure 4.5 Failure mode -based on Modified Yield Line Theory

Let the ultimate torque carrying capacities of the four beams
be given by:

Tul = »mule of beam ad

Tuz = )Am-(LjZ of beam be

T , = ij3 of beam dc

ul3

T, = ij4 of beam ab (4.39)

ud
Moment equilibrium equations for the edges are as follows:
Edge ad: pm<L(1l + 2j1) = -é- q«L x ﬁiLz
1 2.2
po(l +23)) =g af’L (4.40)

Edge be: Am(l + 21,) = % qP‘ZLZ (4.41)
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2 2.2

Edge de: mL(l + 2j3) = q [-%- P3-<L (1L - ﬁl‘ ‘Bz) +%‘P§o(2L2(P1 * 32)]

s m(l 421, = % Qo(2P§L2 [3 - 2(F) + B)]

Edge ab: m(l + 23,) =+ a2(1 -B%? [3 - 24, +,)]

Eliminating unknown parameters Pl, PZ’ B., P& and using
)«34 = I1+ 2j, + n+ 2,
Mo = 1+2j1 +/1+212

equation containing ultimate load can be simplified to

_ gl j dizz _<fr 42
M4 { R W 3% )

For a square slab:

<=1, A= 1 Tui=Tu2=Tu3 = Tu4=Tu=ij3

j3 = Tu/ (mL) = C a new constant,

Ao = A&M by symmetry,

2
by Equation 4.46 , m = %L)‘z—{3+1 -1}2 ’2_2_

34
6m)§4
1=z
: 2
My = 2 [T+ 21, Mg = 41+ 215)

= 4(1 + 2C)
This value of)\§4 in Equation 4.7

24m(1 + 2C)
Q'—"I':Z'_'—

(4.42)

(4.43)

(4.44)
(4.45)

(4.46)

(4.47)

(4.48)

Equation 4.48 1is the same as the one derived by Kemp and Wilhelm
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by using the Energy Approach and a pgrticﬁlar design condition

T =T,
u C

4.5.3 Combined Mode of Failure

The slab=-spandrel structure may fail according to the Con-
ventional Yield Line Theory, the Modified Yield Line Theory or the
combination of these modes depending on the magnitudes of the var-
ious design parameters. In the combined mode of failure any two
opposite edges may fail because of the development of torsional
hinges in the beams and the remaining two because of the negative
yield lines in the slab. In general, any edge under consideration
will fail because of the presence of torsional hinges and not

because of the occurrence of negative yield lines, if
mi 2Tu
>—L (4.49)

Writing T = KT = K-l (b2d )5 J{' » the condition for
u c 3 o 4
formation of torsional hinges becomes:
2 Y
> 10b°d K J [
X 3L (4.50)

The appropriate value of K based on the designed reinforcement in
the beam can be used in Inequality 4.50 . If any two opposite
edges satisfy this inequality and the remaining two do not, a com=-

bined failure mode occurs; A general equation may be written as

&612 <€1p [» 2
6‘34 {j3 R R } (4.51)

34
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where € = \GQ

12
2 2
. if mi < (10b%d K JT /3L)
€ = Vi 0" Ve
= )\
12 12
2 v
- 1f mi > (10b%a k J¥ /31
€= Ay z o ¥le

Example:
Data: Doubly symmetric slab of clear span 57 inches
r
‘£= 3900 psi, b =d_ = 3 inches,

mi = 334 1lb-in/in, K = 1

Required: Failure mode of the structuressolution:
(ov’ax JF /31 =10 x 9 x 3% 1= 3900/ (3 x 57)
= 98,5 1b=-in/in
<334 1b-in/in
Inequality 4.50 is satisfied and the structure will fail accor-
ding to the Modified Yield Line Theory. These data are for the
"University of Illinois Slab'" analyzed by Kemp and Wilhelm (20).
They also reached the same conclusion that the slab must have failed

by a combination of positive yield lines in the slab and torsional

hinges in the edge beams.

4.,5.4 Analysis of Test Specimens
Yield Line patterns for the three micro-concrete models were
observed and traced carefully during the testing process. Model

specimen 1 was identical to prototype specimen 2 whose detailed



analysis is given in Reference (33) and will not be repeated here.
The model specimens 2 and 3 were found to fail by the combination
of positive and negative yield lines in the slabs, as expected
from the general condition mi-((lObzdoK .JT:/BL). Therefore,
Equation 4.38 will be used to analyze these specimens.

o = 0,5 for specimen 2

«< = 0,667 for specimen 3

For both the specimens: il = 12 = 13 = i4 =1

M=1, m = 146.5 1b-in/in

Y12= /1+:L1 + (1 +1, =2,828
2
Yo = Yayr Y3 = 8

Substituting these values in Equation 4.38 and solving for q:

q = 12.850 psi = 1850 psf for specimen 2,

q = 8.749 psi = 1260 psf for specimen 3.

These calculated values are shown on the graphs of load stage

vs. deformation (Figures 3.12 thru 3.16). The experimentally ob-

served ultimate loads were 25 to 30 percent higher than the corre-
sponding calculated values because of the presence of considerable
extra membrane effect usually associated with such type of failure

in which the beams do not yleld (19).
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5. COMPARISON OF THEORETICAL AND
EXPERIMENTAL RESULTS

5.1 Introduction

A general elastic theory of doubly symmetric flat plates and
slabs developed as a part of this research program is applied to the
" prototype (33) and the model slabs tested at West Virginia University.
The study indicates that the theoretical analysis accurately predicts
the elastic behavior of both the model and the prototype structures.
By using dimensional analysis, appropriate multipliers are developed
to convert the model variables of the homologous points to the corre-
sponding prototype values. The latter quantities termed as the
'model prediction values' are compared to the prototype test results,
thus establishing the reliability of the modeling technique. The
comparison also serves to check fabrication accuracy and dependability
of the instrumentation. The computer print-outs of the analysis of
these various structures at all the load stages are given in Append-
ices C and D. The print-outs also help to compare the theoretical

and experimental values at the particular integral and complimentary

function levels of the deflection function of Equation 4.2 .

5.2 Dimensional Analysis

The dimensionless multipliers to predict the prototype vari-
ables corresponding to those of the model and vice versa are derived

by using dimensional analysis. Equation 4.2 of the deflection



function indicates that 'w' can be expressed dimemsionally as:

4
) = [5-]
4

i S R
v YD p D ‘m

But [0} = (] = [Ea’]

E
i s (5.1)
Vo 9m 3n Ep

The ratio of slope at any section in the prototype to the slope

at the homologous section in the model is given by Equation 4.22

which shows:

3
- [55-]
8 3 3
Om D7/’p"*D “'m

But (0] = [En®] = [ka?]
E

2 q
L =R =B (5.2)
W W K

Equation 4.19 is used to find the moment ratio of the proto-

type and the model at any homologous point. By that equation, moment

per unit length can be dimensionally expressed as:

[1] = Taa?)
_b_ip_ (qaz)
M, (@ad)_
q a
= 2 B2

q

(5.3)
m “m
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These equations completely check with those given by Elstner (12).

Equation 4,17 1s used to obtain a dimensionless multiplier
to convert the torsional stiffness of the edge beam of the model
to the corresponding value of the prototype and vice versa. In
order that Equation 4.17 1is to be dimensionally correct, the fol-

lowing dimensional identity should be satisfied.

] - b &)

Ci is dimensionless as observed from the deflection function of Equa=-
tion 4.2,

R e B O R Y
When qp = Gy T - <§§>4 (5.4)

It may be noted that Equation 5.4A given by Chander, Kemp and Wil-
helm (8) will lead to the same results when (fc)p = (fc)m, which is
generally true in model testing.

Equations 5.1 , 5.2 and 5.3 will be used to compute the

dimensionless multipliers for a scale ratio 1:4 and the load intensity

a
£ = =
qp equals to the load intensity 9+ Thus, 2 4.0, U = Iy
Ep = 3,68 x 106, E, = 2.60 x 106. Therefore by Equation '5.1
\ 6
_P - 2.6 x 10 _
- b x T.68 % 10 2.8260

In the same way, by Equation 5.2 :

6
Op . g = 0.7065

60 x 10
sm .68

x 10

In the same way, by Equation 5.3 :

9%



=42 =16

o™

As a further check (in addition to the one of Reference (1l1)),
to this dimensional analysis work, the model variables were obtained

by using expressions of I, D, C, etc.

3
1..3 Eh
I=132% D=5 =R
) 2
C = 9925b3dfc 0-5¢1 - 0.7691 % + 0.2030 %-z ) (5.44)

These variables were employed in the computer program to calculate
the slab central deflections and bending moments at different load
intensities of Analysis Numbers1 43 thru 54. The deflections and
bending moments printed out by the computer are summarized in Table
5.1, which verifies the constants 2,8260 and 16.0000 derived earlier.
It may however be noted that in these coméutations Poiséon’s ratio
for the protot&pe is 0.16 whereas for the model it is 0.17. This
small difference has caused a slight deviation in the deflection

and the moment ratios from 2.8260 and 16,0000 respectively, which may

be observed from Table 5.1.

5.3 Slab Central Deflections

5.3.1 Theoretical, Prototype Specimen 2
and Model Prediction Values

The computer program based on the general elastic theory of

flat plates and slabs is given in Appendix C. This program is used

1 These Analysis Numbers are corresponding to those printed out by
the computer during the execution of the program of Appendix C.
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Table 5.1

Computer
Analysis
Number

43
44
45
46
47
48
49
50
51
52
53

54

Applied Load
(k/£t2)

0.030
0.050
0.070
0.090
0.110
0.130
0.150
0.170
0.190
0.210
0.245

0.290

Deflection LA

(in)

0.0052816
0.0088026
0.0123237
0.0158447
0.0193657
0.0228872
0.0264082
0.0299292
0.0334501
0.0369712
0.0431329

0.0510558

Summary of computer analysis of model specimen 1

Moment M
(k~ft/£t)

-0.0082828
~0.0138046
-0.0193264
-0.0248482
-0.0303699
-0.0358919
-0.0414137
-0.0469356
~0.0524572
-0.0579790
-0.0676422

-0.0800668
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to analyze the protﬁtype specimen 2. The Analysis Numbers 9 thru 34
of the computer print-out show all the important steps followed dur-
ing the execution of each load intensity. The twenty~five stages
for which the structure is analyzed are those observed in the pro=-

totype testing (33)

« The graph of theoretical central deflection
versus load intensity is a straight line (Figure 5.1) as expected
from the elastic theory. In the same figure the graph of experimen-
tally observed slab central deflection versus load stage is plotted
to the same scale. The modulus of elasticity for concrete given

by the 1971 ACI Code is used in the computer program. The model pre-
diction values given in Table 3.6 are also plotted in Figure 5.1
which shows that the elastic theory, prototype testing and the model

predictions give the same slab central deflections in the elastic

limit.

5.2.2 Theoretical and Model Test Results

The data obtained by means of the dimensional analysis work .
and the direct formulas of the slab bending rigidity, the beam bend-
ing and torsional rigidity, etc. are supplied to the computer to
analyze model specimen 1. These theoretical results are summarized
in Table 5.2. Test results are also incorporated in the same table
for direct comparison. The study shows a close agreement between
the theoretical and the corresponding experimentally observed values
in the elastic zone of model specimen 1, These experimentally ob-

served values when multiplied by 2.826 can predict the prototype
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Figure 5.1 Comparison of slab central deflection values of prototype specimen 2
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Table 5.2 Comparison of theoretical and observed results of

Computer

Analysis No.

43
44
45
46 -
47
48
49
50
51
52
53
54

model specimen 1

Applieé Load

(k/£t7)

0.030
0.050
0.070
0.090
0.110
0.130
0.150
0.170
0.190
0.210
0.245

0.290

Theoretical
Deflection (in)

0.0052816
0.0088026
0.0123237
0.0158447
0.0193567
0.0228872
0.0264082
0.0299292
0.0334501
0.0369712
0.0431329

0.0510558

Experimental
Deflection (in)
0.0055
0.0090
0.0140 Ve
0.0155
0.0190
0.0220
0.0260
0.0290
0.0320
0.0335
0.0455

0.0540

99

Theo ®
Exp b¥
0.96
0.98
0.88
1.02
1.02
1.04
1,02
1.03
1.02
1.10
0,95

0.95
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deflections with reasonable accuracy as illustrated in Figure 5.1.

5.3.3 Theoretical and Prototype Specimen 3

The elastic and sectional constants of prototype specimen 3
are supplied to the computer. The results of the analysis as printed
by the computer are given in Appendix C (Analysis Numbers 35 thru 42).
The eight load stages for which the structure is analyzed are those
observed in the laboratory test whose results are given in the print-
out of Appendix C. These experimentally observed and theoretically
calculated wvalues of the slab central deflections are plotted in
Figure 5.2. The small difference in the slopes of the elastic
straight line portions may be attributed to the fact that the modulus
of elasticity of concrete used in the theoretical analysis is de-
rived from the empirical formula of the 1971 ACI Code. Nevertheless,
the agreement between these theoretical and experimentally observed

values are satisfactory for all practical purposes.

5.4 Beam Central Torsional Rotation

5.4.1 Theoretical, Semitheoreticalz, Prototype
and Model Prediction Values

Equation 4.22 gives a general expression for the torsional

rotation of the edge beam central section. The equation is employed

2 Significance of the term 'semitheoretical value' and the detail
procedure to compute it, are given in the subsequent pages of this
- report.
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to compute both the theoretical and the semitheoretical values of
the rotational angle. The summation constants A, and Cn printed
during the execution of the general computer program of Appendix C
are used in Equation 4.22 to obtain the theoretical values. The
graph between these values and their corresponding load stages is a
straight line (Figure 5.3) as expected from the elastic theory. The
print-outs of Appendix C clearly show the characteristic of rapid

convergence of both An and Cn series. Therefore, the terms upto A3

and C3 only are used to calculate the theoretical rotations., These
terms are approximately of the order of 10-7. The higher order terms
are smaller than 10"'10 and are conveniently neglected.

As in the case of theoretical values, the semitheoretical ones
also involve computerization of Equation 4.22 which is carried out
in the subprogram of Appendix D. The summation constants An and Cn
of Equation 4.22 are those corresponding to the experimentally
observed slab central deflectlons. This technique of calculating the
semitheoretical values of any generalized force and displacement may
be summarized as follows:

(1) Compute the theoretical values of the constants Ass A3-------é,

, etc, and find theoretical Z.An as

An = A, + A3 + mm——————— s etec. (In the computer program
this S A, 1s denoted by 'TSUMAN', the abbreviatién of
'Theoretical Sum of An').

(1i) Calculate experimental value of Z A, (denoted by 'ESUMAN')

given by the equation:
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2%

. = 4a__
Vexpt - 76.8D T 2 ZA (5.5)

where wexpt is the experimentally observed central deflection
at the load stage q.
(1ii) Calculate the factor 'FT' by:
FT = Experimental :iAn/Theoretical =A . .(5.6)
(iv) Multiply Al’ A3 ———————— and Cl’ 03 —————— eté%igg step (iii)
and get the new quantities called the 'semitheoretical summ-—

[4

ation constants', Kl’ As ---------- and Ci, Cy ====~==--, etc.

(v) These semitheoretical constants A&, A; --------- and Cl, C; -
——=—, etc. of step (iv) are used in the expressions of any
generalized forces and displacements to calculate their 'semi-
theoretical values’.

As illustrated in Figure 5.3 and also in the computer program
of Appendix D, this technique of computing the semitheoretical values
is found to be successful not only in the elastic zone but also in
the inelastic portion of the load versus deformation curve. It may
be noted here that the elastic and related constants (such as M, E,
D, etc.) and also the sectional constants (e.g. area, moment of
inertia, section modulus, etc.) used in the expressions of generalized
forces and displacements are the same for both the elastic and in-
elastic zones. Inspite of this apparent limitation the technique is
capable of calculating the nonelastic values also because Equation

5.6 of factor 'FT' takes into account this change in the sectional

and elastic properties by automatically adjusting the numerator
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(Experimental :iAn). This is an introductory work of the tech-
nique with one example of its success. Further research is clearly
needed in this area.

The experimentally observed beam central torsional rotation
in prototype specimen 2 of Appendix D and the model prediction val-
ues of Table 3.6 are also plotted in Figure 5.3. The study indicates
a reasonable correlation between the theoretical, semitheoretical,
prototype observed and the model prediction values of the torsiomal

rotation of the spandrel beam.
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6. DESIGN PROCEDURE BASED ON THE EXACT ELASTIC SOLUTION
AND THE MODIFIED YIELD LINE THEORY

6.1 Design Procedure

This investigation leads to a new procedure for designing
slab-spandrel floor systems. Accordingly, the serviceability
requirements of the structure are satisfied by using the "exact"
elastic solution developed in Chapter 4, which enables the designer
to calculate immediate elastic deflections and also to proportion
the slab and the spandrel beams so as to obtain the desired factor
of safety ;gainst flexural cracking of the slab and also against
the flexural, torsion and shear cracking of the edge member. Rein-
forcement in the structure can be very conveniently and economically
designed by using the Ultimate Strength Design given by the Modi~
fied Yield Line Theory for which the required formulas are derived
in Chapter 4. The Ultimate Design Load for the slab may be obtained
by using the load factors given in the ACI Building Code or any
other suitable code. To start with, any rectangular area can be
converted to a suitable number of square panels. Further design pro-
cedure is summarized in the following steps.

l. Problem Statement: To design a single square panel supported
by spandrel beams and corner columns.
Glven: Dimensions of the columns, center distance (a or L) be-
tween the columns, compressive strength of the concrete (f;),

factor of safety against flexural cracking (fsf)’
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factor of safety against the combined torsion and shear
interaction effect (fsts)’ service live load intensity on

the slab (qL), load factors for dead and live loads.

Proportioning the Slab: Assume a slab thickness (h) which will
be checked after proportioning the spandrel beams. Deflection
control requirements of the ACI Building Code or any other
suitable code can give the first trial thickness of the slab.
Calculate clear span a, =a- column width; calculate dead load

qb and the total service load q = 9y + qp-

Proportioning the Spandrel Beam: Obtain width (b) of the beam

by Equation 4.32 , and the overall depth (do) of the beam by

Equation 4.37 .

To Check for the Permissible Deflection (wcode) and Cracking

Strength (Mcode): Calculate Ycode a/360 in, Mcode - frz

where 'fr',is the rupture modulus of concrete and 'z' is the

section modulus of the slab central section. Find w
actual

and M

ctual DY the computer program of Appendix C. If the

program is not available use:

= 0.0034qa’/D, M 2

actual 0.032qa

wactual

(These are the approximate values of deflection and bending

moment based on the elastic theory).
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: : <
See- that wactual wcode

< ™

M code

actual /fsf)’

if not, use a higher value of slab thickness and repeat steps

1 thru 4.

To Design the Reinforcement:

(1) Positive reinforcement in the slab is designed for the
moment m, given by the Modified Yield Line formula of
Equation 48 ,

_ 26m(1 + 2¢)
u L4

where 9, is obtained by using suitable load factors given
in the ACI Building Code or any other code.

(i1) Negative reinforcement in the slab is designed for the mo-
ment 'mi', which will give simultaneous formation of
torsional hinges in the beam and negative yield lines a-
round the periphery for the maximum utilization of the

reinforcement,
2 7
10b%4 K JF,
3L

mi from Equation 4.50

(iii) The torsional steel in the edge beam is designed for

1,2 T
T, = KT, = K 5(b d )54k
It should be noted that this equation is based upon the
ACI Building Code (ACI 318-71) and Commentary (1’2).

Here, Tc represents the cracking torque and not the ver-

tical axis intercept on the torque~reinforcement factor



curve (21).
Squa3
(iv) The flexural steel in the beam is designed for Mu = o3

(Equation 4.23.B.). Suitable load factors can be used in
computing the value of q,-

(v) The shear reinforcement in the beam is designed for the
shear force (VB) given by Equation 4.23.A , Vh =
5quazl32. If the spandrel beam is supporting the load of
the on-coming wall, proper provision should be made in
calculating 9, of Equations 4.23.,A and 4.23.B .

Thus, the magnitudes of torque and flexural shear of
the spandrel beam are known, from which shear and tor-
sional stresses can be computed, Then, the torsion and
flexural shear steel can be proportioned accordingly by
using the ACI Code (1), as shown in the following design

example.

6.2 Design Example

Problem Statement: Design a single square panel supported by

spandrel beams and corner columns 12 in. square and 12 ft. on

centers,

Given: f; = 4151 psi, factor of safety against flexural
cracking (fsf) = factor of safety against the combined
torsion and shear interaction effect (fsts) = 1,1

an arbitrary value

Live load intensity on the slab, q = 150 psf.
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Load factors 1.4 and 1.7 for the dead and live loads

respectively.

Proportioning the Slab: Assume slab thickness h = 4". The mini-

mum permissible thickness by the ACI Building Code (1) (Section
9.5.3.1) is 3-1/2 in.

Clear span a, = 12 - 1 =11 ft. = 132 in.

Dead load of the slab qp = 144 x 4/12 = 50 psf

Total service load q = 9y, + 9 = 150 + 50 = 200 psf = 1.39 psi

Proportioning the Spandrel Beam: Width of the beam is given by

Equation (4.32) b3 =c, +c b2

o &, 2t o
U ses?e 1.39 x 1.1% x 1323
2f g JE 1.782 x 1.1 x J4151
2
_aafg 132 x 1.39 x 1.1 _
©, *T.782% - 7 = 1.758
RALLITN 1.782 x 1.1 x J4151
1 1
First trial: b = (c2)3 = (177.101)3 = 5.6147 in.
2 3

try b = 5.8", b° = 33.64, b> = 195.11

R.H.S. of (b2 = ¢, + clbz) is 177.101 + 1.758 x

2
33.64 = 236.2 > 195.11

3

Second trial: b = 6.25", b2 = 39,06, b = 244.14

R.H.S. = 177,101 + 1.758 x 39.06 = 245.5 = 244.14

b =6.25 in. 3

1

}
By Equation 4.37 d =[q * far X acj], {1.29 x 1.1 x 1323
° L48 x b x/JE \fs x 6.25 x [4151

= 13.5 in.

k
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To Check for the Permissible Deflection (wcode) and Cracking

Strength (Mcode): Voode a/360 = 144/360

:'wbode = 0.4 in.

2
Mcode fr x z= (7.5J4151)(12 x 4°/6) 1b-in/ft of slab

= 1.290 k=ft/ft

sf
By the computer program of Appendix C, for q = 0.2 k/ftz,

Mcode

Voctual 9.1001 in.

Mactual = 0.921 k-ft/ft

If the computer program is not available, using approximate

elastic constants:

= 0.0034 qa*/D , = 0.032qa’, as explained earlier.

actual
In this example, q = 0.2, a = 12,0, D = 1675 (all in kip and

ft units).

- 4 -
Woctual (0.0034 x 0.2 x 127/1675) x 12 = 0.101 in.

Mactual = (0.0032 x 0.2 x 144) = 0.0922 k~-ft/ft

wcode and Mactual< (Mcode/fsf)

Slab thickness 4" is OK. Use spandrel beams of depth 13.5"

wéctual <

and width 6.25".

"‘iﬁ—’_,,_"_—’

SECTION A-A
------------ S
‘ ! ossible '
As __ L VA ; Torsion
' i| | Hinge
! ! ag=11 [°¢4
] c”
: H ##3 longitudinal bars,
' i four at four corners,
K | two at mid depth
[
1 P -

* e ac=11'—v\

Figure 6,1 Designed sections of the square panel,



5. To Design the Reinforcement:

(1) Positive reinforcement in the slab is designed for the

moment 'm', given by the Modified Yield Line formula
q = 24m(1 +2c) L c= Tu/mL

u L§
quL 2'1‘u
7 S

q, = 1.4 qp + 1.7qL = 1.4 x 50+ 1,7 x 150 = 330 psf
_ . 1.2 ;
T, = KI_ =K =5 (°d) 5JF

1 x-;- (6.25 x 13.5) 5 [4151

56,600 1lb-in = 4717 1lb-ft

5 x 122 2x 4717

54 12 = 1284 1b-ft/ft

= 1.284 k-ft/ft
(i1) Negative reinforcement in the slab is designed for the
moment 'mi', which will give simultaneous formation of tor-

sional hinges and the negative yield lines in the beams and

the slab respectively.

 100%d x JT
mi = L
3L

2« 13.5 x 1 x J&isl
3 x 144

_ 10 x 6.25

=785 1b-in/in = 0.785 k-ft/ft
(1ii) Torsional steel in the beam is designed for Tu = KTc =
56,600 1b-in = 4717 1b-ft, as calculated earlier. Details
of longitudinal torsional steel and the web reinforcement

for both torsion and shear are given in step (v) ahead.

112



(iv)

)]

** S T 36,000(4.75 + 10.5) 422

113

Flexural steel in the beam is designed for

M, = 5q,a°/192 = 5 x 330 x (12)°/192 1b~ft
= 14,820 1b-ft
(20) 2./
A standard procedure utilizing Mh = bd fcq(l - 0.59q)
etc. is used to calculate areaof flexural steel.
Shear reinforcement in the beam is designed for the shear

given by Equation 4,23.A..

v, = 5qu32/32 =5 x 330 x (12)2/32 1b

= 7500 1b.

The minimum torsional reinforcement required can be deter-

mined £rom the ACI Tentative Recommendations (20).
125 xys 2y
A, = web reinforcement =
t fy(xl + Vl) v, * 2,
Let x = 4,75 4in, vy = 10.5 in. Calculate the nominal tor-
sional and flexural shear magnitudes of steps (iii) and (v).
Vu _ 7500 - _ -

=100 psi < 2¢Jf = 2x0.85 x JGIS1 = 109.5 psi

hence no stirrups are required for flexural shear.
3T

u _ 3 x 56,600 169800
7 =Y. = = 322 psi
s ~ 552 = 135  39.06 % 13.5
A
e 125 x 6.25 x 13.5 322 = 0.01465

o At = 0.01465 x 6 = 0.0879 @ 6 in c/c, use #3 bar closed

stirrups.
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An equal amount of longitudinal steel must be provided.

Again using the Tentative Recommendations:

x, +y,
A =2x4 —1—;——1— =2x 0.11(3%&) = 0.560 in®

use six #3 longitudinal bars, four in the corners and two
at mid depth to satisfy both minimum ACI torsional
strength requirements and acceptable detailing require-~
ments.

In a similar manner the reinforcement can be designed
for the rest of the spandrel beam. The cross section of
the spandrel at the column face showing the reinforcement

is illustrated in Figure 6.1.
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7. TENTATIVE RECOMMENDATIONS FOR
~ THE RECTANGULAR PANELS

7.1 Introduction

The experimental investigation and the theoretical analysis
carried out for this research are used for recommending a tentative
design procedure for the rectangular panels of the slabs terminating
in edge beams. Modified Yield Line Theory can be conveniently used
in predicting failure loads and also for the provision of the eco-
nomic reinforcement in the slab and the edge beams. Difficulty is
experienced in proportioning the slab and spandrels for the service
load conditions, in the absence of 'exact' elastic solutions of
the rectangular panels. This difficulty is overcome by using the
procedure of Section 4.4.2 with appropriate modifications. For
example, in the absence of the elastic solution, instead of integra-
ting along the cosine curve (Figure 7.l), integration is carried out
along a straight line, thereby neglecting the shaded area, during

the calculation of maximum torque carried by the spandrel beam.

Fcty

Tqa

Figure 7.1 Torque distribution on the edge beam



Reduction in the torque value 1s justified because of the conser-
vative values of Tl used for TS = ©° , EI = ©¢° (i,e, fixed
edge) condition. The torque obtained by the exact intégration of
the cosine curve (of a square panel) will be checked with the
value calculated by integrating along the straight line, thereby
establishing the reasonableness of the later procedure.

Wood's recommendations (39)

are used for the design load
conditions of the edge beams. Formulas for the cracking loads
for the edge beams and also for their design widths and depths
are derived. Their reasonableness is checked with the width and
depth obtained by the more exact formulas of Section 4.4.4.

Based on this theoretical and experimental work, a procedure

is originated for the design of the rectangular panels. An illu=-

strative design example is given in Section 7.7.

7.2 Flexural Cracking Loads of the Edge Beams

As explained in Section 7.1, using Wood's recommendation (39):
q =S§ 1_ 1
Beam 2 1+B4+ B
a  aZ
using K, = 1 - L
1 1+24+ 8
a  aZ
anl
9Beam = "2 (7.1)
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long span 'B’

.t
short span 'a 0,0

per unit length

-
{

!

!

| deam

4 .
|

[}

1

|

t

y

o |
l L !
L = a when designing short beam

L = B when designing long beam
Figure 7.2 Rectangular panel

Negative moment developed at column faces = deamLZIIZ. In a

1imit of service load stage, this moment is equal to the flexural

cracking moment of the edge beam.
: b
dgeagl?/12 = (1.5 {5
2
’  bd
Ypeam 15 Vﬂ; —f% (7.2)
From the Equations 7.1 and 7.2 and using q on the slab as Aoy

the load intensity on the slab which causes flexural cracking in the

edge beam, is given by:
30bd’ ﬁc

q
cr alzKl

(7.3)




7.3 Formula for Combined Torsion and
Shear Edge Beam Requirements

As explained in Section 7.1, the maximum torque to which
an edge beam section is subjected, is given by:
L/2

T= S f£(t)'41'
[}

Integrating along the straight line (Figure 7.1)
2
T = T,qa L/4 (7.4)

This integration along a straight line instead of the cosine curve

will give the torque value for the square panel as:

T = 0.0513qa>(a)/4 = 0.0128qa>
The exact calculations (by integrating along the cosine curve) of
Section 4.4.3 have shown that:
T = 0.01456qa>
This small reduction in T is justified because, the later value
(T = 0.01456qa3) is already conservative based on IS = ©°
EI = © .

Using a circular interaction curve, the necessary condition

to be satisfied for the combined torsion and shear requirement, is

given by:
v v
2
@i+ =1 (7.5)
c te
q L
Vu Beam
where Vu = Jbd = 2§bd (7.6)
v = KT

118



119

2

-3 qua L 1
4 P Z X4y
3T1qa2L
T T 7.7
qak1
Substituting 9pean == Equation 7.6 becomes:
qak, qak,L
Va2 26bd ~ Tppd

Substituting for v, and Vtu in Equation 7.5 and after simplifica-

tion, the expression for q becomes:

q L

ak,L 3T,a 2 2
[‘wbdv (4¢zx1y v J
0

using x = b <

do the overall depth

y=
Vc = Z.IQ as a conservative value

Vtc = 6.25qﬂ¥ for a reason explained in Section 4.4.3

in a limit q is given by:
1

q=

aK; L 3T1a 1L 2 %
[ gy "]
49bd2 J§7 Zdef_
replacing d by 0.85do and after simplification

170 b%a 8 JE
q = (7.8)
2.2 2 2

aL/ 625K1b + 416.2T1a
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When the total load intensity (including live and dead loads) on
the slab is less than the above q value, combined torsion and shear
requirement expressed in Inequality 7.5 will be satisfied.

Note that T1 and L also b and do are different for the short and

long beams.

7.4 Design Formulas for Serviceability
of the Edge Beams

Equations 7,3 and 7.8 will be used to derive the expressions
for the widths and depths of both the short and long beams of a rec—~
tangular panel. Special consideration is to be given for the de-
sired factor of safety against the flexural cracking and the combined
torsion and shear requirement of the edge beams.

let fsf = factor of safety against flexural cracking
fsts = factor of safety against the combined effect
of the torsion and shear interaction.
* By Equation 7.3
.- sobd® JE

3 (7.9)
fsfaL Kl

By Equation 7.8
2 I
170 v%a 8 JE,

2,2 22 %
£, al [625K1b + 416.217a° ]

q = (7.10)
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Using $= 0.85, Equations 7.9 and 7.10 yield:

4 - (170 x O.85)bfstK1
0

2.2 2 2
30fSf 625K1b + 416.2T1a

substituting this value in Equation 7.9 and after simplification,

3 2
b Jf, £,¢K;(170 x 0.85)

q=
2 2,2 2.2
30afsts(625K1b + 416.2T1a )
3 2
b™ = ¢y + clb (7.11)
where 2 3.2

2
stsK1

¢ = ;

As explained in Section 4.4.4, use of clear span is justified in cal-

aqf

culating b and do values. The final procedure becomes:

(1) Calculate b by b3 = c, + ¢ b’

2 1
2 3.2
qf " _ a’T
where cy = sts ¢ 1 5 (7.12)
1'672K1fsf J]L-;_
2
a qf K
cl = csts 1l — (7.13)
F’
lolll‘fsfjc

1
As a first trial, use b = (c2)3
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(11) Use the exact value of b (satisfying b~ = c, + clbz), in the

following equation and get do

2
qa LK. f %
d = —cclsf d = b (7.14)
0 T o &

306 JE

The procedure can be used for any aspect ratio of a rectangular panel.
Different values of Ky» T1 for short beam, T1 for long beam, etc.
corresponding to different aspect ratios, are given in Table 7.1.
To check the reasonableness of this procedure, the example of Section
4.4.4 will be solved by Equations 7.12 thru 7.14 and the b and d
values thus obtained will be compared to those calculated by the more
exact procedure of Section 4.4.4 of square panels.
Example 1:

Data: a_, =B, = 240" q = 1.55 psi

£, =3600psi, f=£f_ =1

Required: b and do

Solution:

From Table 7.1, T, = 0.0513, K, = 0.667
155 x (240)3(0.0513)2

By Equation 7.12 , c; = T655°2-6,667 = 60 = 841
By Equation 7.13 , ¢ = 320X 133 x 0667 . 5.4,

1
First trial: b = (c2f§ = 9.4,

try b = 10" bZ = 100 b3

= 1000
3 2
R.H.S. of (b™ = ¢, + clb ) becomes

R.H.S. = 841 + 3.71 x 100 = 1212 > 1000

122



Table 7.1 Design table for the rectangular panels

= Deflection T. for the T, for the M = B.M. at K

Bla ¥ .ple 1 1 table 1
at the slab center short beam long beam the slab center

1.0 0.00378 ga*/p 0.0513 0.0513 0.0323 qa> 0.6667
1.1  0.00450 qa’/D 0.0581 0.0538 0.0370 qa 0.6979
1.2 0.00516 qa4/D 0.0639 0.0554 0.0419 qa2 0.7253
1.3 0.00573 qa’/D 0.0687 0.0563 0.0458 qaZ 0.7494
1.4  0.00621 qa/D 0.0726 0.0568 0.0489 qa’ 0.7706
1.5  0.00660 gqa®/D 0.0757 0.0570. 0.0515 qa’ 0.7895
1.6 0.00690 gqa*/D 0.0780 0.0571 0.0533 qaZ 0.8062
1.7 0.00714 qa®/D 0.0799 0.0571 0.0549 qa’ 0.8211
1.8 0.00735 gqa*/D 0.0812 0.0571 0.0561 gqa’ 0.8344
1.9 0.00747 qa*/D 0.0822 0.0571 0.0569 qa> 0.8464
2.0 0.00762 qa’/D 0.0829 0.0571 0.0577 qa’ 0.8571
oo 0.0833 qa’/D 0.0833 0.0571 0.0584 qa’ 1.0000

XA
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Second trial: b = 10.9, b> = 118,81, b> = 1295.03

R.H.S. = 841 + 3.71 x 118.81 = 1281 << 1295.03
By third trial b = 10.95 is OK. Using b = 11" do by Equation

(7.14) is calculated as:

3« 0.667]

o [1.55 x 240 x 240

- ¥ _
30 x 11 x 60 = (720)“ = 26.8

d
o

By Equations 7.12, 7.13, 7.14 b= 11",d° = 26.8", whereas
by the more exact procedure of Section 4.4.4, b = 11.8" d° = 25.1".
Thus, for the design purpose, this procedure of Section 7.4 may be
found sufficiently accurate to proportion the spandrel beams of rec-

tangular panels.

7.5 Bending Moment and Deflection Values
for Serviceability of the Slab

The detail analytical and experimental work on the square
panels (of Chapters 3,4,5 and 6) has shown that for a square panel
(0.032/0.0231) = 1.4 is a suitable factor to obtain a moment at
the center of a slab terminating in edge beams. In the same way,
the deflection factor is given by (0.0034/0.00126) ~ 3.0. Applica-
bility of these factors to the rectangular panels will be checked
by the experimental work carried out in this investigation.

Consider model specimen 3, B = 36 in, a = 24 in, aspect ratio
1:1.5.

Maximum B.M. at the center of the slab
= (0.0368 x 1.4)q(24)% = 29.7q 1b-in/in

= 336.4q 1b~in/ft.
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Cracking moment of the slab of this model specimen
M= (7.5 )chg?) = 488 x 2 = 976 1b-in/ft by Section 4.4.1.
q = 976/336.4 = 2,91 1b/in’
= 418 lb/ft2 < 540 lb/ft2 the observed cracking load of the .
specimen. Therefore the moment constant 1.4 can be safely used.
Consider model specimen 2, B = 36 in, a = 18 in, aspect ratio 2.
Maximum B.M. at the center of the slab
= (0.0571 x 1.4)q(18)% = 25.92q 1lb-in/in
= 311.04q 1lb-in/ft
Mcr for this specimen is also 976 1lb-in/ft
q = 976/311.04 = 3.122 1b/in’
= 450 1b/ft? < 1050 1b/ft® the observed cracking load of
this model specimen 3.

In the same way the deflection factor '3' is also found very
safe, once the cracking loads are in the permissible limit. The exper-
imentally observed slab central deflections (0.018 in for specimen 2
and 0.035 in for specimen 3) corresponding to their designed cracking
loads are very mpch safe as per the ACI Building Code e (which
states that for the serviceability, deflection wcode'EE a/360).

Table 7.1 is thus completed by using these deflection and bend-
ing moment factors of 3 and l.4 respectively. Tl values for the long
and short beams, given in the table are the conservative ones based
on TS = ® , EI = 0o as explained in Section 7.1 and 7.3. The load
factor Kl 1s also calculated and incorporated in thf same table, for

all the aspect ratios.
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7.6 Design Procedure for Rectangular Panels

This experimental and theoretical work leads to a new proce-
dure for designing slab-spandrel floor systems. Accordingly, the
serviceability requirements of the rectangular panel are satisfied by
using the work of Sections 7.1 thru 7.5, which enablés the designer
to calculate immediate deflections and also to proportion the slab
and the edge beams so as to obtain the desired factor of safety
against flexural cracking of the slab and also against the flexural,
torsion and shear cracking of the edge member. - The Ultimate Strength
Design given by the Modified Yield Line Theéry (for which required
formulas are derived in Chapter 4) can be very conveniently and
economically used to design the reinforcement. The ultimate load for
the slab may be obtained by using the load factors given in the ACI
Building Code or any other suitable code. The following steps explain
this design procedure.

1. Problem Statement: To design a rectangular panel supported by

spandrel beams and corner columns.

Given: Dimensions of the columns, center to center distances
(a and B) between the columns, compressive strength of the
concrete (f;), factor of safety against flexural cracking
(fsf)’ factor of safety against the combined torsion and

shear interaction effect (f___), Live load intensity on

sts

the slab (qL), Load factors for dead and live loads.

2. Proportioning the Slab: Assume a slab thickness (h) which will

be checked after proportioning the spandrel beams., Deflection



127

control requirements of the ACI Building Code or any other suit-
able code can give the first trial thickness of the slab., Cal-
culate the clear spans Bc = B -~ column width, a, =a- column
width and aspect ratio B/a. Calculate dead load qp and the total
service load q = qL + qp-

Proportioning the Spandrel Beams: Obtain width (b) of the beams

by Equation 7.11 . Use the appropriate values of Tl (Table 7.1)
and Lc for the short beam and the long beam. They will have diff-
erent widths. In the same way calculate the depths of the short
and long beams by using Equation 7.14 ., Use the appropriate Kl
value (from Table 7.1) for the aspect ratio of the slab.

To Check for the Permissible Deflection (wcode) and Cracking

Strength (Mcode): Calculate w

= af360 in M = f_z where
code T

code

'fr' is the rupture modulus of concrete and 'z' is the section

modulus of the slab central section. Find wtable and Mtable

by using Table 7.1,

: <
See that wtable wcode

M M

/£5)s

<
table code

if not, use a higher value of slab thickness and repeat steps 1
thru 4 .

To Design the Reinforcement:

(1) Positive reinforcement in the slab is designed for the moment

m, given by the Modified Yield Line formula of Equation 4.46

3

),i)lzz < M12 JP 2
* ()34 M !

6%34
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Appropriate values of ult;mate torques of the edge beams
should be used in this formula based on the Modified
Yield Line Theory.

(i1) Negative reinforcement in the slab is designed for the
moment 'mi', which will give simultaneous formation of
torsional hinges in the beam and negative yield lines
around the periphery for the maximum utilization of the

reinforcement,

1002 x JF,
mi = 3L from Equation 4.50 .

Calculate 'mi' parallel to the long and also the short

beam edges. Use higher value of the two.
(i1i) The torsional steel in the edge beam is designed for
T =KT = K-l (b2d )5Jf7 Explanation of this for-
u c 3 o < *
mula is given in Section 6.1,

(iv) The flexural steel in the beam is designed for
2
q aKlL
M o= e obtained from Section 7.2.
u 24
(v) The shear reinforcement in the beam is designed for the
' quaKlL
A
Mu and Vu formulas by using load factors from the ACI

shear V= . Obtain 'qu' of the slab, in above
or any other suitable code
From these torques, bending moments and shear force values
appropriate reinforcement in the beams can be designed, as shown

in Section 6.2.
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7.7 Design Example :

l. Problem Statement: Same as Section 6,2 except that the panel is
now rectangular 10 x 13 ft and f; = 3600 psi.

2, Proportioning the Slab: Assume slab thickness h = 4",

Clear spans are a, = 10 ~1=9 ft = 108 in.

B, = 13 - 1 =12 ft = 144 in,

[

aspect ratio = 13/10 = 1.3

Total service load q¢ = 200 psf = 1.39 psi as in Section 6.2,

3. Proportioning the Spandrel Beams: From Table 7.1, for the aspect

ratio 1.3, Kl = 0,749, T, = 0.0687 for short beam, T1 = (0,0563 for

1
long beam

(1) Width and depth of long beam: Lc = 144 in, Width of the

beam is given by Equation (7.11). b3 =c, + clb2
2 3.2

oo LT . L39x 1% x (108)% x 0.0563% _
2= 7 ek _JT, 1.672 x 0.749 x 1.1 % 60

a qu 2
. = sts'l 108 x 1.39 x 1,17 % 0.749 _ | g0
1 , 1.14 X 1.1 X 60 *

1.114f  JF

1 1
First trial: b = (cz) 3 =(811) 3 = 9,31 in.
try b = 10" b2 = 100 b° = 1000
R.H.S. of (b3 = ¢, + clbz) is

R.H.S. = 811 + 1.869 x 100 = 998 =~ 1000

b =10 in,
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2

qa 17K, £
By Equation 7.14 , d_ = —cclsf 4 = b
30b S,
2 ]
_ [L.39 x 108 x (144)% x 0.749 x 1.1 ]
30 x 10 x 60

11.92 in, say 12 in,
Provide long beam 10" wide 12" deep. These dimensions may be
revised after step 4.

(ii) Width and depth of short beam: lC = 108 in.

Width of the beam is given by b> = c, + ¢ b’
2 3
LT T ! _1.39 x 1.1% x 108% x (0.0687)2
2" et . JF 1.672 x 0.749 x 1.1 % 60
17sf V'e
= 1210
a qu K 2
cigts 1 108 x 1.39 x 1.17 x 0.749 _
¢ = = *T.1l4x 1.1 % 60 = 1.869
1L.114f ¢ Jf
1 1
First trial: b = (cz) 3 = (1210) 3 = 10.6
try b = 11" b2 = 121 b = 1331
R.H.S. of (b° = c, + ¢,b?) is
R.H.S. = 1210 + 1.869 x 121 = 1436 > 1331
2 3

Second trial: b = 11.2 b~ = 125.4 b~ = 1404.9
R.H.S. = 1210 + 1.869 x 125.4 = 1444 > 1404.9

By third trial b = 11.25 in. is OK.


http://U672x0.749xl.lx60

qa, 12
Kyfos 2
a = ‘: cls ] ,d 2 b

300 (T,
2

- ['1.39 x 108 x 108° x 0.749 x 1.1 ]!s

30 x 11.25 x 60

= 8,44 <« 11.25 Provide dO = 11,25 in.
Provide short beam 11.25 x 11.25 inches. These dimen-
sions may be revised after Step 4.

4. To Check for the Permissible Deflection (wcode) and Cracking

. 120
Strength (MCOde)' Yoode " a/360 = 360
o = 0,333 in.
code
' = = 2 -
Mcode = frz (7.5 x J3600) (12 x 4 /6) 1lb-in/ft of slab

= 1,2 k-ft/ft of slab

code
2
M. = (0.08578) x 0.2 x (10)% k-fe/ft
= 0.915< 1.09 OK.
_ 4
Wy1e = (0.00573)ga"/D
= (0.00573 x 0.2 x (10)%/1631) x 12 in
= 0.084 < 0.333 OK.
Mtable < (o ode/fsf)
wtable < wE:ode

Slab thickness 4 in. is alright and provide the edge beams of

the dimensions calculated above.

The remaining design procedure 1s similar to the one of Section

6.2 except that, one has to use the formulas for rectangular panels

given in Section 7.6.

131
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8. CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

This study of rectangular and square reinforced concrete floor

slabs which terminate at edge beams leads to the following conclusioms.

1.

The span and depth of the short beam, the two fundamental variables
in the experimental investigation, greatly influenced the defor-
mation magnitudes (Sections 3.7 and 3.9), cracking loads
(Sections 4.4 and 7.5), ultimate loads (Section 4.5.4) and the
behavior in general (Section 3.8) of the slab-spandrel struc-
tural system. This influence is manifested by means of:

(a) bending and torsional stiffnesses which govern the defor-
mation magnitudes and cracking loads, (statistical methods
can be used to separate the torsional stiffness effects from
those of the bending rigidity, as shown in Appendix A):

(b) ultimate torque which governs the type of failure modes
(Sections 4.5.3 and 4.5.4) and the magnitude of ultimate
load of the Modified Yield Line Theory (Sections 4.5.2 and
bo5.4)

The conclusions based on the experimental work are derived
from micro-concrete models which simulate the prototype behavior
as shown bv (i) the statistical analysis (Appendix A) of the ex-
perimental data (ii) the graphs of Figures 5.1 and 5.3 comparing

experimentally observed and theoretically calculated elastic
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deformations and (iii) experimental works of many other investi-
gators.
The Modified Yield Line Theory of Kemp and Wilhelm (21) is a
valuable contribution to the field of concrete technology. The
theory explains the failure mode of any geometric shaped (rectan-
gular, square, circular, hexagonal, etc.) slab which terminates.
in edge beams. This failure mode is a cembination of the posi-
tive yield lines in the slab and torsional hinges in the edge
beams, The present investigation verifies the theory for rectan-
gular slabs. Though the theory is equally applicable for a wide
range of non-rectangular slabs, experimental data are lacking to
verify it for these cases. Nevertheless, the theory can avoid the
pitfall of a false sense of security in the design of reinforced
concrete slabs terminating in edge beams. For example, the
conventional yield line calculations will end up in a much larger
magnitude of ultimate load than the one slab can actually sustain,
when a large amount of negative steel is provided in the slab
edges but the beams are not string enough against torsion. Also,
the design becomes uneconomical because of the excessive amount of
steel which does not play any appreciable role once the torsional
hinges are formed in the edge beams.

The two inequalities based on Equations 4.50 and 4.31 (or 7.10)
indicate when the structure will fail by the formation of torsion-
al hinges in the edge beams (Modified Yield Line Theory) and not

by the negative yield lines in the slab (Conventional Yield Line
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Theory). This failure mode will occur when:

(1) mi> IObZdOK\/;Z / (3L) of Equation (4.50)
where mi is ultimate yield moment of the slab per unit length
parallel to the edge beam, K is the ratio of ultimate to
cracking torque (Tu/Tc) for the edge beam and b, d_ and L
are width, overall depth and length of the edge beam.
This condition ensures the formation of torsional hinges
in edge beams prior to the yielding of negative steel in
the slab edges.
(ii) The safety factor fsts against the combined effect of torsion

and shear interaction is less than 1, i.e.

2 .
1004b dd\jg;

< 1.0 for square panel, (Equation 4.31)

qai\J%4.48b2 +0.4884a°

1706b°d, JF,
< 1.0 for rectangular panel,
2,2 2 2
qaclc.JEZSKlb + 416.2T1a (Equation 7.10)
(21)
The slab test at the University of Illinois (for

which mi > IObZdOK f; /(3L) as shown in Section 4.5.3 and
_ 100 x .85 x 3% x 3 x 3900 x 144

466 x 562\jé4.48 x 3% + 0.4884 x 562

fStS

< 1.0)

and also of the present investigation (in which

mi < 10b2d;K J;i /(3L) as stated in Section 4.5.3) provide



experimental proof for these inequalities which are based

on the concepts of Modified Yield Line Theory of Kemp and
Wilhelm (21). These test results verify that when torsional
hinges are formed in the edge beam along with the positive
yield lines in the slab, the Modified Yield Line Theory
correctly predicts the ultimate loads.

However, when the beams do not yield, large membrane
forces are developed resulting in ultimate loads which are
much larger than those predicted by the yield line method
which is based on a bending mechanism. This is in accor-
dance with Wood's observations (39).

For the first time, an elastic theory is developed (Sections 4.3.1
through 4.3.9), which can account for the special boundary condi-
tions imposed by slab edges being monolithic with the spandrel
beams of the square panels. These special boundary conditions
may be any combination of torsiomal and bending edge beam stiff-
nesses, both ranging between zero and infinity including .the
extremities. Comparison with existing formulas (of simply suppor-
ted, free, fixed and elastically supported edges) indicate the
reasonableness of the theory as shown in the computer print-out

of Appendix C and the comparison graphs of Figure 4.2. Also, the
theoretical results correlate well with those of the prototype and
model tests in the elastic region before cracking occurs. (See
Table 5.2, computer print-out of Appendix C and graphs of

Figures 5.1, 5.2 and 5.3). Thus, the theory can be reliably used
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to calculate elastic deformations and a set of generalized forces
of a square panel loaded with uniform density.

A detailed study of the existing design methods of slabs which
terminate at edge beams has shown that these methods fail to
account for the influence of torsional stiffness of edge beams on
load carrying capacity of the slab. Also, the important para-
meters such as elastic deformations of the slab, its flexural
cracking load, proportions for the spandrels (to provide an ade-
quate and economical factor of safety against failure caused by
flexure and combined torsion and shear interaction), and an -
economical and reasonable amount of slab reinforcement are not
adequately accounted for in these existing design methods. This
state of affairs may result in an unsafe or uneconomical struc-
tural design. The theoretical and experimental work of the
current investigation helps to overcome these difficulties and
leads to a new design procedure. Accordingly, the serviceability
requirement of the structure is satisfied by an elastic solution
and the formulas based on the theoretical and experimental work
of this investigation., The Modified Yield Line Theory of Kemp
and Wilhelm (21) is used to calculate ultimate load and to design
economic reinforcement of the structural system. This new pro-
cedure, to design reinforced concrete floor slabs which terminate
in edge beams, is summarized in the following steps, with appro-
priate references to the equation numbers, tables and sections of

this report,
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(1)

(i1)

Assume a slab thickness (h) of the square or rectangular
panel.

Calculate the width of the spandrel beam by

3. c, +¢C b2 Equation 4.32 or 7.11

2 1
qfitsaz
where C, = for square panel (Equ. 4.35)

308.2f Jf—c

b

2

137

_aqf
€)= _c_sts = for square panel (Equ. 4.36)
1.782fsf /fc
W gre®ol)
C2 = £ for rectangular panel (Equ. 7.12)

1.672K . Jf—c

2
acqfstsKI

C1 = for rectangular panel (Equ. 7.13)

1.116f ¢ JE)

where: b = width of the edge beam (in)
a, = clear span of short edge beam (in)
q = load intensity on the slab (psi)

K

1 load factor for edge beam (Table 7.1)

T

divided by qqz), defined in Figure 7.1

fsf and fsts = gafety factors as defined earlier

f; = gpecified compressive strength of concrete (psi)

| = torque constant i.e. (torque per unit length



(1i1)

(iv)

1
To solve this cubic equation use b = (02)3 as a first

trial, Values of Kl’ T1 for the short beam, and T1 for
long beam at different aspect ratios of slab are given in
Table 7.1.
Calculate the depth of the edge beam by:

. 1

qf a3 4

d = —sfc for square panel (Equ. 4.37)

° | 48b JEZ

qaclzKlfsf *
d >b for rectangular panel

° l30p q@’ °
¢ (Equ. 7.14)

where: do overall depth of edge beam (in)

1o

clear span of edge beam to be designed (in)
Other notations are defined earlier,

Note that in a rectangular panel b and do for the short

beam will be different than those of the 1053 beam.

Check that

w <w
actual code

Mactual < (Mcode/fsf)

where Voode ™ a/360, Mcode = frz.

Yactual and Mactual are obtained by the computer program
Cor by w__, . = 0.0034qa"/D and M eual = 0.032qa’ in ab-

sense of the computer program) for the square panel, and

w of Table 7.1, M

= = M
actual table actual table

of Table 7.1
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(v)

(vi)

for rectangular panel. If w d

< w an
code actual

(M

code_/fsf) <M 1 use higher value of 'h' and repeat

actua

the steps i through iv.

The positive reinforcement in the slab is designed for
moment 'm' given by the Modified Yield Line Theory:

2

qul ZTu
m= - for square panel (Equ. 4.48)
24 L
o212 D,z oy, i ] |
m= 3—§~—- 3+ u¢( 5 ) - - for rectangular
6X34 34 34

Negative reinforcement in the slab is designed for the

condition of the simultaneous formation of the torsional

hinges in edge beams and negative yield lines in the slab

edges, given by:

mi = IObZdOK,J@z /(3L) (Equation 4.50)

where: mi = ultimate moment of slab per unit length par-

allel to edge beam (1b-in/in)
K = ratio of ultimate to cracking torque of edge
beam (Tu/Tc)
b = width of edge beam (in)
do = overall depth of edge beam (in)

L = length of edge beam (in)

panel (Equ. 4.51)
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(vii) Calculate the amount of flexural, torsional and shear steel

in edge beams by using the formulas:

S s 43 ]

Mu = Squa /192

Tu = 5Kb2d f; /3 for square panel,

given in Section 6.1.

_ 2

Vu = Squa /32 —]

M = g akK 12/24 ]

u u 17

for rectangular panel,

=
]

skp2d JE /3
u oV'e
given in Section 7.6.

<
1

= quaKll/A

8.2 Recommendations

The following areas in the field of reinforced concrete floor
slabs which terminate at edge beams and its allied topics are recom-
mended for further investigation.

1. Extent the present investigation of square slabs to include the
solution of rectangular slabs which terminate in edge beams.

2. Test additional slabs to investigate collapse because of the for-
mation of torsional hinges in a pair of two opposite edge beams
and the negative yield lines in the slab at its junction with the

remaining pair.
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APPENDIX A
Computer Aided Statistical Analysis

of the Experimental Data



A.,1 Introduction

Model specimen 1 of the current investigation and the two
prototype structures referred to as prototype specimen 2 and pro-

totype specimen 3, tested at West Virginia University (33)

, consti-
tute a source of the experimental data. The observed slab central
deflections of the prototype structures and the model prediction
values at the homologous point are given in one data matrix of Table
A.l. The beam central torsional rotations of prototype specimen 2,
the semitheoretical values corresponding to the slab central de-
flection of prototype specimen 2 and the model prediction values of
the rotation for the same prototype structure are given in the
rotational matrix of Table A.2,

The two prototype structures are of different concrete mixes.
Therefore, in the deflection analysis, in addition to the column
effect of load stages, the row effect of different mixes and test
procedures 1s also studied. Thus, the deflection dependent variable
1s subjected to the different column treatment levels and also the
row~blocking effect simultaneously, making a modified RB-k design

appropriate for this deflection analysis. In this experiment, each

block is composed of one specimen subjected to all treatment levels.
(23)

(23)

So, it is unlikely that all the covariances will be equal
In this situation, using an exact multivariate approach, Box
found that the true distribution of the univariate F statistic can

be replaced by a conservative F-test. Therefore,'this modified pro-

cedure along with the follow-up T2 test, if found necessary, will
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be used.

The torsional rotation data is related to only one concrete mix,
that of prototype specimen 2., The three different methods to abtain
the rotational values are theoretically same through structural engi-
neering concepts. Whatever may be the differences between the rota-
tional values, at the same load stage, should be attributed to the
nuisance variables (e.g. shape and size effects of the aggregates,
unit weight effect, difference in instrumentation, etc.) and the row
treatment effect induced in the analysis because of the source-wise
variation in the data. The source of the data changes from row to
row, e.g. quantities in the first row (Table A.2) are derived from the
experimentally observed torsional rotations of model specimen 2, whereas
in row 2, the readings are of prototype specimen 2. This results in

the source-wise variation of the data. The design should give .the

level of significance of the row effect on the dependent variable under
study (i.e. torsional rotation of the beam central section). Statis-
tically speaking, the dependent variable (rotation) is subjected to the
column treatment (load stage) and the row effect (induced because of
the source»wisé variation). The RB~k design can separate the two
treatment effects. Therefore, the rotation data is also analyzed by
the modified RB~k design.

A general computer program is written which is useful for
RB~k design. The computer prints the following results.
(1) Preliminary quantities such as row means, column means,

column varianeces, row variances, etc.,
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(11) Cochran's 'C' for homogeneity of column:variances,
(iii) Cochran's 'C' for homogeneity of row variances,
(iv) ANOVA results of RB-k design,

(v) row and column variances for comparison,

(vi) d(i, j) matrix, F etc. for nonadditivity test,

nonadd
(vii) 'F' for linearity trend by orthogonal polynomial coefficients.
The structural significance of this statistical analysis is
also discussed in details. Considering the wide applicability of
this computer program; logic éiagram and suitable hints are given
for the prospective program users. Further analysis of the de-
flection data has shown that the univariate F statistic is to be
replaced by the conservative F-test which is to be followed by 'A
Posteriori' Tz test. Therefore, another computer program is written
and successfully used for the data analysis. The computer prints
all the important matrices (including the variance~covariance matrix)
and the final T2 value for the data. Accuracy of these programs is
tested with the help of a solved example of Reference (23). Both

give the same results as shown in the computer print-outs of Appen-

dix E.

A.2 Data Matrices

The data matrices of the slab central deflections and the
beam central torsional rotations are given in Table A.l and Table
A.2 respectively. The data cards to be supplied to the computer

are also given for each analysis.



Table A.l.

Slab Central Deflection (10 2in), RB-10 Design

b -~ Treatment Levels

Data Matrix

1 2 3 4 5 6 7 8 9 10
a. Blocks 30pst 50psf 70psf 90psf 110psf 130psf 150psf 170psf  190psf _ 210psf
(a;)
Prototype
specimen 3 1.23 2.23 3.40 4,20 5.4 6.10 7.30 8.30 9.60 10.4
(a,)
Prototype
specimen 2 1.15 2.00 3.00 3.476 4,645 5.545 6.445 8.143 8.648 9.65
(ajy)
"Model
Prediction 1.554 2.441 3.96 4,38 5.37 6.08 7.35 8.20 9.05 9.36
Data Cards - 1 3 10
2 Above Row-wise
3 =9, 7. =5. =3. =1 1. 3. 5. 9.

0sT1



Beam Central (Torsional) Rotation o

Table A.2. Data Matrix

b - Treatment Levels

4

Rad) RB-8 Design

1 2 3 4 5 6 7 8
a - Blocks 30psf S50psf 70psf  90psf 110psf  130psf 150psf  170psf
| (a))
Model Predic-
tion for spec.
2 0.8472 1.412 1.412 2,824 3.760 4,547 5.334 6.120
(a,)
Prototype ob-
served spec.
2 0.935 1.213 1.876 2.463 3.770 5.008 4.862 6.109
(aq)
Prototype
spec.2 from
experimental
Central ‘ :
Deflection 0.771 1.575 2.555 2.660 3.784 4,651 5.372 7.058
Data Cards: 1 3 8
2 Above Row-wise
3 -70 —50 "3 "1 1. 3 5.

I6T



A.3 Analysis

A.3.1 Preliminary Computations

k
The row means are computed by the formula Xi_ = :? xij/k'
i=1
The values pointed out by the computer are as follows:
Row 1 Row 2 Row 3
Deflection Data 5.815994 5.270196 5.774493
Rotation Data 3.282022 3.279499  3.553249
n
In general, column mean is given by X., = > X,./n.
. =1 1

All the column means for both deflection and rotation data may be

seen in the computer print-out of Appendix E.

n k
Grand mean = > Z xij /nk
=1 3=1

Grand mean for deflection data = 5.620224 and for rotation data
k

it is 3.371590. 1In general, i?P row variance = 2 (Xij - Xi )2/(k - 1)
j=1 ’
th ) 2 2
i~ column variance = > (X,, - X.,)“/(n = 1)
i=1 ij b

These variances as printed out by the computer are given in Appens

dix E.

A.3.2 Cochran's Test for Homogeneity
of Column Variances

Observed value of 'C' is given by:

k s
Cops = ( ?Zlargest)/ 2 ‘-"/j2

o
i=1
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For deflection data Co g = (0,1778764

b

for rotation data Co = 0,3933958,

bs
df for C are k and n - 1 1i.e. 10 and 2 for deflection data;

8 and 2 for rotation data. Table values are respectively 0.4450 and

0.5157. Cobs << CTable for both data. Therefore, the column
varlances are homogeneous, i.e.

2 _ 2 _ -

€11 T 612 i1k

A.3.3 Cochran's Test for Homogeneity
of Row Variances

Observed value of C is given by:

c = (22 largest)/ < r2
obs ] g ZE ‘j
j=1
For deflection data C = 0.376183,
obs
for rotation data C = 0.3621332.
obs

Table values of C for degrees of freedom 3, 9 and 3, 7 at < = 0,05
are respectively 0.5017 and 0.5367.

cobs < CTable

Therefore, the variances are homogeneous and the basic condition of

the analysis is satisfied.

A.3.4 ANOVA for RB-k Design

n k

SSTotal = ZE :Z (Xij - X..)
1 1

2



Table A.3 ANOVA for the Rotation Data RB-8.

Source

l, Between b-treat-
ment levels

SS df MS F

ke

82.38416  k-1=7 11.76917 128.56

2, Between a-Blocks 0.3960256 n-1=2 2.1629
3. Residue (k=1) (n~1)
= 14

4, Total 84.06183 n-1=23
** Highly Significant p < 0,01
Table A.4 ANOVA for the Deflection Data RB-10
Source SS df MS F
1. Between b-treat- *k

ment levels 228,0086 k-1=9 25.334 321;567
2, Between a-Blocks 1.484644 n-1=2 11.937
3. Residue 1.3922 (k-1) (n-1)

= 18

4. Total 231.2472 n-1=29
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SS between column treatment effects =--SSB

- .2
= SSpotal T 2 2 Xy =X

1 LI
SS between 'Blocks SSA or SSBlock

n - .2
=k > & -X)
1=1

Ssresidue = SsTotal - SSA - SSB

MS = SS/df in general, etc. These analytical expressions are
computerized. The results are given in the ANOVA tables numbered
A.3 and A.4, Table A.3 shows that for the rotation data blocking is
not significant. A conservative test would give the same result
making the other follow-up procedures unnecessary. On the contrary,
for the deflection data, the multivariate approach of conservative

F-test followed by 'A Posteriori' 'I‘2 test, is required.

Table A.5 ANOVA for Conservative F-test on the Deflection Data

Source SS df MS F
1. Between a-treatment

levels 1,484644 1 1.484644 2.13
2. Residue 1.3922 (n-1)=2 0.6961

J.F not significant.

The procedure for the T2 test 1is summarized in the following steps.
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(a)

(b)

(e)

(d)

(e)

Construct the 'B' row matrix by

B= () =Xy ) (X, =X,

"""" X -1y ~ Xp

Dimensions of 'B' matrix are 1 and (k - 1)
Construct the 'C' matrix of dimensions (k - 1) x K by

C(i, 1) = +1 1 == lto(tk-1)

C(d, k) = -1 i — 1to (k-1)
All the remaining elements of 'C' matrix are zero.
Construct a Variance-Covariance matrix (denoted by 'S') of

dimensions k x k by using
a2 _ 1 - 2 n 2
S(i, i) = (j n—-1 21 [:xij = ( 21 xi_‘]) /n]

i —w 1ltok
All the other remaining elements of 'S' matrix are generated by

N
s, 3) = f‘?j' = %1:1- [i Xij Xij/_ ( % xij)( nz Xij,)/rJ

1 1 1
i —+1ltok, j —sltokandi F j
Calculate 12 value by
;-

T2 = nB Sle
where S-; is anlinverse of Sy which is given by: Sy = csc’
BI and ¢’ are respectively the transpose matrices of B and C.
The calculated value of T2 will be compared with the value given
by

2 _ (a=D(k=1)

T "k F1 =<

» (k=1), (n-k+l)
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For the deflection data, calculated value of T2 is 39.888 as
shown in the computer print-out of Appendix E,. Tf for the same
data is 10.08 (at ¥ = 0,05) or 19.48 (at < = 0.01)

T2 > T% concluding that at least one contrast among means
is significant. That contrast is obviously the one between the
highest and the lowest means of row 1 and row 2 respectively.
To check the probable existance of a significant difference be-

tween the means of row 2 and row 3, the procedure of "Analysis

of Independent Samples when ¢, = 52" is used. Accordingly

1
2 2
=& -%)/ % . 5
1 2 +
n n 2 2
2 ; 2 2_51 + 5
where S; is a pooled variance given by: Sp = 5
il‘iz
When n, =n, =n, t=— ,df = (n-1)
252
n

Using means and variances (of row 2 and row 3) printed out by
the computer in Appendix E, the calculated value of t is 0,3999.

The table value of t is t = 2,262, which is higher than

9, 0.05
the calculated one. Thus, the '"Analysis of Independent Samples
when 6 = 6&" suggests that the contrast among means of

row 2 and row 3 is not significant.

- s e e - .. - . PRSP PR, - - —

" 'A,3,5 Comparison of Row and Column Variances

In the deflection data, 'a' blocks have very small variation

compared to the variation of 'b' treatment levels. ?i = 0,084 and
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A2 A
‘B = 8,42, The ratio of ‘b

in the rotation data the ratio of ;ﬁ/ ?ﬁ 1s also very large

2/ 2§ is very large. In the same way,
(3.89/0.013). These large ratios show that the 'blocking' effect is

very small compared to the column effect (i.e. loading stage effect).

These small row variances indicate that the individual differences
(23)

are unusual amongst the rows.

Further, the correlation coefficient

SSB - (krl)MSres

= x 100
SS
Total + MSres

is very large for both deflection and rotation data.

A2 _ 228,0086 - (10-1)0.0773
e.g. for deflection data w = 331.2472 F 0.0073 x 100

A2
w

= 98,2%
Thus, more than 98 percent variation in the deflection data is explained bv
b-treatment effects, whereas only less than 2 percent variation is caused
by blocking effect. This fact further indicates that the blocking

effect is not very significant.

A.3.6 Nonadditivity Test
This test is carried out to see the presence, if any, of the
interaction between the load stages and row effects. The following
computations are computerized.

n

DROW (I, 1) = > &, -X%)
1=1
n - —
DCOL (1, ) = 5> (X =X )

i=1
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Matrix [D(1, 1)} = [DRow (I, 1) * DCoL (1, J)]
Computer prints out this matrix which is a useful intermediate

step to check the bulk of calculations involved so far.

n k
Z Z D(I, J) * X(I, J)
i=1  j=1

SUM3

k
SUM4 = % S [DROW (I, J) ]2
1 1

SUM5 = f }k [ncm. (1, J) ]2
i ,

1

58 = (SUM3)%/(suMs * SUMS)

nonadd

Computer prints all these quantities.

Ssremainder = SSresidue - SSnonadd

Ss * (kn-k-n)/SS

Fnonadd i nonadd remainder

The calculated values of F 4’ given in Appendix E, for the de~-

nonad

flection and rotation data are respectively 0.08 and 0.75. The ta=-

bled wvalues Fl, Kn=Kk=n are as follows:

Fjl, 17 4.45 at « = 0,05

Fl, 13 4,61 at « = 0,05

Thus in both cases F < F The interaction effect is

nonadd Table"’

altogether absent and the models are 'Additive' type. This helps to
generalize the load stage effect for all the observations irrespec-

tive of the row location.



A.3.7 Orthogonal Polynomial Coefficients
to Test Linearity of the Data

The following procedure is computerized to find F* to test the

linear trend, if any, in the data.

(a)

(b)

The computer reads the following orthogonal polynomial coeffi-
cients (Cj values):

Deflection Data ""9. "'7- "'5. ""'3. _lc 1- 30 5. 7. 90

Rotation Data -7. -5, =3. -1, 1. 3. 5. 7.
k 2 - 2
= = kX *
SUM7 z (cj) > SSpy (X *n*k) / (n*SUM7)
j=1
MSY = SSBY , as df for SSB* is 1.

MS _ - e
res(lin) = (SSres + SSrow SSBY )/ (nk-n-1)

F, = MSy /MS

¥ )? the calculated values of Fy are:

res (lin
Deflection Data F, = -29.30508
Rotation Data F? = =22,96568

The large negative values of Fﬂ’ indicate the strong linear

trend in the data.

A.4 Computer Program and Hints to Its Users

In connection of this statistical investigation a general com-

puter program is written which can analyze an almost unlimited number

of different experiments based on RB-k design. 'k' value may be of

any magnitude large or small.
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END
102

= —.DECLARATION

101

READ NS, K,
X(1,J), ¢(J)

YES

N/

MSy, MS

CALCULATE SSBSIA

res(lin

y? EW etq.

NS=0

NO

FIND ROW MEANS,
COLUMN MEANS, X .. etc

FIND COLUMN
VARIANCES

FIND LARGEST COLUMN
ARIANCE & COCHRAN'S C

- — — ANOVA

CAL. SS SS

total’SSA’ B
FA’FB’FAB’ ete

NONADD

READ POLY. COE. C(J)
AND CALCULATE SUM7

CALCULATE SS

Ssrem’ Fnonad

nonadd
4° ete

CALCULATE DROW,
DCOL, D MATRICES

LOGIC DIAGRAM

TEST

CAL. ROW VARIANCES
AND COCHRAN'S C

l6l

4 - - - — LINEARITY TEST
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This program was tested by the solved example of Reference (23).
In one compilation, it can analyze an almost unlimited number of ex-
periments. The compilation time is 0.73 seconds and the execution |
time per experiment is less than 1 second, the later time actually
depends on n and k values, The program is written in the 'free for-
mat' system.. The data cards are to be arranged as follows:

(1) NS, K

(ii) Data Matrix Row-wise

(iii) Cj Values

(iv) O 0

For example the deflection data cards were-

(1) 3 10

(11) 1,23 2,23 ==———=e—e——e 9.05 9.36

(i1i) =-9. =7. =5, =-3. =~-1. 1. 3. 5. 7. 9.
(iv) O 0

The last card is used to terminate the program.

Another subprogram is written to calculate T2 values to be used
as a follow-up procedure of the conservative F~test. The program
generates all the important matrices (including the variance-covari=-
ance matrix), does appropriate multiplication and inversion of ma-

trices and prints the final T2 value along with the important

matrices.



A.S

Description

Dependent variable xij

Number of Rows (n)

Number of Columns (k)
n

Column Sums JZ X
i=1 1]

k
Row Sums z Xi

j=1
Column Means X,

Row Means Xi.
Column Variances ??
Row Variances gi.
Grand Mean <§..

Largest Column Variance

Largest Row Variance

~_Notations

3

Cochran's 'C' for Row Variance

Cochran's 'C' for Column Variance

Orthogonal Polynomial Linear Coeff.,

In Nonadditivity Test-

dg =X -X
<% -%
a4y =%, -X
dy * d,

ss

Computer Notation

X1, J)
NS

K

XDT(J)

XDTROW(I)

XBARDT(J)
XDTBAR(I)
VAR(J)
VARROW(I)
XBDD
VARLRG
VARRLG
COCROW
CCOCRN

C(J)

DROW(I, J)
DCOL(I, J)
D(I, J)

SSNOAD

163



Description

Fnonadd

Msres(lin)

"y

Variance-Covariance Matrix

T2 Value

Computer Notation

FNOADD
MSRESL
MSSIA

S(I, J)

TSQR

164



165

A.6 Structural Significance of the Statistical Analysis

The deflection data analyzed here is for the following exper-~
imental work.
(a) Prototype specimen 2
(b) Prototype specimen 3
(c) Prediction by model testing for specimen 2
The rotation data is for =
(a) Prediction by model testing for specimen 2
(b) Prototype specimen 2
(¢) From the experimental central deflection of the slab
of specimen 2
This statistical analysis has the following structurai significance:
(1) All the data has a strong linear trend suggesting that the

readings are in the elastic limit. (Analysis A.3.6 and A.3.7).

(ii) All the three sources listed above of the rotation data lead to
the same results. It is expected because they are all related
to the specimen 2 alone. (Analysis A.3.4, A.3.5, etc.).

(i11) The deflection data has a source-wise variation (conventional

F-test), but this variation is not very significant (conserva-

tive F-test, large magnitudes of Eﬁ / 2§ and ﬁz, insignificant

't' value, etc.). Part of this source-wise variatiom is due to

the presence of nuisance variability which cannot be removed by

this design procedure. The deflection data is for both speci-
mens 2 and 3, which have different values of E and torsional
stiffness (TS)., The deflection depends upon (EI/aD) ratio and

also on TS.
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EI _ EI _ 12 - D1

aD [ﬁh3 . ah3
a 2
12(1 - N"‘)J

» When both beam and

slab have the same E. Thus, the specimens 2 and 3 have the
same (EI/aD) value but different TS.

The effect of (EI/aD) on the slab central deflection
is much more predominant compared to the torsional stiffness
of the beam. Thus, we expect a little variation in deflec-
tion results as pointed out by this analysis. Such a diff-
erence is also seen in comparisons of other quantities
associated with the slab center of specimen 2 and of 3. For
example, the theoretical calculations have shown that for
specimen 2, the slab central bending moment is given by
M= 0.0302683qa2, whereas for specimen 3, M = 0.0302402qa2.

-Actually, these theoretical studies are the basis of grouping

the deflections of specimen 2 and of 3 in one data matrix but

under two separate blocks.
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APPENDIX B
Condensed Tables of Deflections

and Rotations
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Table B.l1 Experimental data of model specimen 1

Load Stage Deflection (in.) Rotation (Rad x 10-4)
(psf) 1 2 3 4 5 6. 7 8
30 0.0055 0,0035 0.0025 0.0025 0,0020 1.20 0.80 0.50
50 0.0090 0.005 0.0065 0.0050 0.0035 2.00 1,25 0.90
70 0.0140 0.008 0.0090 0.0090 0.0050 2.00 - 1.10
90 0.0155 0.011 0.0135 0.0095 0.0065 4.00 2.35 -
110 0.0190 0.0135 0.0145 0.0125 0.0075 5.33 3.00 -
130 0.0220 0.0185 0.0190 0.0170 0.0090 - - 2.10
150 0.0260 0,022 0.0210 0.0190 0.0115 - 3,90 2.65
170 0.0290 0.0245 0.0240 0,0220 0.0140 8.66 - 2.90
190 0.0320 0.0260 0.0285 0.0255 0.0175 - 4,50 -
210 0.0335 0.0305 0.0300 0.0265 0,0235 - 5.35 3.45
245 0.0455 0.041 0.0435 0.0340 0.0285 - 6.10 -
[ 18" ——x
[}
’ \\ 2
6"
Y;.- _—— e = ]
b 8 \ 8" Scale:
N\
4‘\‘ --3 1/11.43 Full size
y 7 '} ’
‘T::J (1 em = 4,5 in)
6 .J! 36"

Gage location diagram

- 36" -
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Table B.2 Experimental data of model specimen 2

Load Stage Deflections (in,) ’ Rotations (Rad x 10_4)
(psf) 1 2 3 4 5 6 7 8 .
100 0.004 0.0025 0.0020 0.0015 0.0025 1.787 1.110 -
210 0,008 0.0050 0.006 0.0045 0.0050 2.235 2.150 8,535
400 0.016 0.0155 | 0.0135 0.0115 0.0075 2.680 = 17.78
620 0.026 0.0225 0.,0215 0.016 0.0125 5.381 4,952 26.33
800 0.,0335 0.0310 0,028 0.022 0.0175 6.705 5.216 35.56
1000 0.0455 0.0415 0,039 0,028 0.0225 10.722 7.516 45.52
1200 0.0575 0.054 0.050 0.0365 0.027 11.620 8.220 56.18
1400 0.0745 0,0675 0.,0635 0.044 0.032 18.78 10.163 69.00
1500 0.0800 0.0725 0.0685 0.047 0.036 19.66 10.341 74,67
1600 0.089 0.081 0.0760 0.0525 0.0385 25.02 12.335 74.66
1700 0.104 0.0925 0.089 0.062 0.0455 33.52 15.812 93.89
1800 0.126 0.109 0.1075 0.0715 0.0545 46,47 - 32.314 95.39

9y

- S T ‘
| [
| 9
5¢ |
{ + ! Scale:
"
18 % 1/11.43 Full size
|
__-L _......-__1‘___.,_,_,"6 (1cm==4.5 in)
36“ :
: Gage location diagram
{
|
|
_ % 5
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Table B.3 Experimental data of model specimen 3

Load Stage Deflections (in.) Rotations (Rad x 10_4)
(psf) 1 2 3 4 5 6 7

50 0.005  0.0035 0.00I5 0.0005 0.0005 2.238 1.101

70 - 0,055  0.0025 0.0015 0,0025 2.682 1.312

100 0.0085 0.0080 0.0045 = 0.004 4,467 2,189
132 0.011 - - 0.0065 0.0035 - -

170 0.014  0.0105 0.0085 0.0065 0.0065 - 4,288
200 0.015  0.0135 0.0085 0.0085 0.0075 8.50  4.616
270 0.0215 0.0155 0.0155 0.0120 0,0125 - -

300 0.029  0.0195 0.0185 0.0155 0.0155 -~ -

350 0.0325 0.0230 0.022 0,018 0.019 - 5.691
420 0.039  0.0305 0.0275 0.022  0.0225 11.63  5.599
470 0.044  0.0335 0.0325 0.0285 0.0255 15.80  6.18
500 0.0465 0.0360 0.035  0.0305 0.0285 21.95 7,732
570 0.053  0.0395 0,0405 0.0335 0.031 21,95 10.515
600 0.0575 0.0435 0.0430 0.0370 0.034 - -

620 0.060  0.0475 0,0465 0.0395 0.036 22,34 10.541
680 0.069  0.0500 0.0535 0.0455 0.0425 26.40 12,639
730 0.079  0.0635 0.0635 0.0555 0.048 30.00 16.32
800 0.085  0.0675 0.0685 0.0585 0.053 31.3  16.56
880 0.1045 0.0815 0.083  0.072  0.0625 44,31 21.38
940 0.122  0.0930 0.097 0.088  0.075 46.50 23.99
1000 0.141  0,1060 0.1145 0,099  0.0855 61.20 32.11
1100 0.165  0.1280 0.1385 0.1165 0.1045 76.00 33.63
1170 0.23  0.1695 0.1975 0.160 0,143 165.0  70.62

1230 0.291 0.2115 0.243 0.197 0.1775 330.0 120.86



171

APPENDIX C
Main Computer Prggram of Elastic Analysis,
Printed Resuits for (1) Check for all the
Possible Edge Conditions (2) Prototype Specimen 2

(3) Prototype Specimen 3
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APPENDIX D
Main Computer Program and Printed

Results of Torsional Rotations
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APPENDIX E
General Computer Program for RB-k Design,
Printed Results for (1) Solved Example
in Reference (23) (2) Deflection Data

(3) Rotation Data
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ABSTRACT

In this report a new method to design reinforced concrete floor
slabs which terminate at edge beams is presented, The design pro-
cedure uses the Modified Yield Line Theory of Kemp and Wilhelm to ac;
count for the influence of torsional stiffness of edge beams on the
load carrying capacity of slab and also to provide the economic
reinforcement. Serviceability requirement of the structure is
satisfied by using the "exact" elastic solution and the experimental
and theoretical work of this investigation.

The necessary theoretical derivations of the "exact" elastic
solution of square panels, design formulas to proportion the span-
drels of both rectangular and square panels, ultimate equilibrium
equation of the Modified Yield Line Theory, formulas for factor
of safety against flexural cracking and combined effect of torsion and
shear interaction on edge beams, etc. are first time successfully
worked out and incorporated in this report. Also, two mathematical
inequalities are developed which represent necessary conditions for
the formation of torsional hinges in edge beams. Reasonableness of
these inequalities is.checked by the test data and observed behavior
of the structure.

Three micro-concrete models of rectangular and square slabs of
aspect ratios 1:1, 1:1,5 and 1:2 are fabricated and tested at the
Concrete Research Laboratory of West Virginia University. The

appropriate part of the test data is correlated with the previous
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prototype test results and also with the elastic theory developed
in this report, thus establishing the reliableness of these model
tests. Statistical methods are used to analyze the test data.

Thus, the observed behavior, well established elastic solution,
existing test data, statistical methods, sound concepts of the
Modified Yield Line Theory, etc. contribute to the development of
the simple and direct procedure to design reinforced concrete rectan-

gular and square slabs which terminate at edge beams.
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