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Chimera and chimera-like states in populations of nonlocally coupled
homogeneous and heterogeneous chemical oscillators
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West Virginia 26506-6045, USA
2Department of Chemistry, Bowdoin College, Brunswick, Maine 04011, USA

(Received 31 March 2016; accepted 26 August 2016; published online 23 September 2016)

Chimera and chimera-like states are characterized in populations of photochemically coupled

Belousov–Zhabotinsky (BZ) oscillators. Simple chimeras and chimera states with multiple and

traveling phase clusters, phase-slip behavior, and chimera-like states with phase waves are

described. Simulations with a realistic model of the discrete BZ system of populations of homoge-

neous and heterogeneous oscillators are compared with each other and with experimental behavior.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4962631]

The chimera state was first identified in a system of

identical phase oscillators, in which each oscillator was

coupled in an identical manner to other oscillators in

its neighborhood.1,2 A number of variations on the origi-

nal chimera state have been characterized, including

breathing chimeras, amplitude and amplitude mediated

chimeras, multiple phase-cluster chimeras, and traveling

phase-cluster chimeras.3–9 In this work, we demonstrate

the existence of a number of these states as well as new

states in an experimental system of photochemically cou-

pled Belousov–Zhabotinsky (BZ) oscillators, comple-

mented by computational studies of the associated model

system. We describe the similarities and differences of

chimera and chimera-like states in populations of nonlo-

cally coupled homogeneous and heterogeneous chemical

oscillators.

I. INTRODUCTION

Since its discovery, the chimera state has been exten-

sively investigated2–18 (for recent review, see Ref. 19), and it

has been found also to exist in systems of delay coupled and

globally coupled oscillators, as well as in a variety of net-

work structures.7,20–24 Although many theoretical studies

have focused on systems of phase oscillators, chimeras have

also been studied in networks with nodes that follow other

dynamics, including the Ginzburg–Landau, Lorenz,

Stuart–Landau, and FitzHugh–Nagumo systems.1,6,8,20,24,25

Experimental examples of chimera states were first

reported in 2012 in two different systems. One developed

a physical realization of a coupled map lattice,26 and the

other used photochemically coupled groups of BZ chemical

oscillators.27 Since then, chimera states have been observed

in systems of mechanically coupled metronomes,28 electro-

chemical metal-dissolution oscillators,29,30 electronic

frequency-modulated delay oscillators,31 electro-oxidation

of silicon,22,32 and delayed-feedback semiconductor lasers.33

In this work, we further explore chimera and chimera-

like states in experiments and the corresponding model sys-

tem. The experiments are carried out with the photosensitive,

ruthenium-catalyzed BZ reaction,34,35 where catalyst loaded

particles in catalyst-free reaction mixtures are used to form

populations of discrete chemical oscillators.27,36,37 The use

of the Ru(bpy)32þ catalyst allows the phase of each oscillator

to be perturbed with light from a spatial light modulator

(SLM). The gray level Ij of each oscillator, j ¼ 1; 2; :::;N, is

monitored with a CCD camera, which is used to determine

the light intensity from the SLM projected on each oscillator

/j according to the coupling relation

/j ¼ /0 þ
Xjþn

q¼j�n

KðIqðt� sÞ � IjðtÞÞ; (1)

where /0 is the background light intensity38 and s is the time

delay20,27,37 in the feedback from the neighboring oscillators

q to oscillator j. A coupling radius of n neighbors to each side

of an oscillator is used with the coupling function K ¼ K0

exp ð�jjq� jjÞ, where K0 and j are constants that govern

the effective coupling strength and range. The coupling

scheme allows the oscillators to be configured on a 1-D ring

with periodic boundary conditions. Further information about

the experimental set-up and procedure can be found in

Appendix A, Subsections 1–3.

Simulations of the nonlocally coupled chemical oscilla-

tors are carried out using the two-variable Zhabotinsky,

Bucholtz, Kiyatkin, Epstein (ZBKE) model for the BZ reac-

tion,39 modified to describe the photosensitivity of the

ruthenium-catalyzed discrete oscillator system:27,36,37

dXj=dt¼ f ðXj;Zj;qjÞþksðXj�XsÞþ/j=�1; dZj=dt¼gðXj;Zj;qjÞ
þ2/j, where f and g represent the non-photochemical com-

ponents of the BZ reaction, and Xj, Zj, and qj are [HBrO2],

[Ru(bpy)3þ
3 ], and the stoichiometric factor associated with

the j-th oscillator. The loss of HBrO2 from oscillator j to the

surrounding solution is described by the term ksðXj�XsÞ,
where ks is the exchange constant and Xs is the solution con-

centration, assumed to be constant.40 The photoexcitatory

feedback to oscillator j is /j, calculated according to Eq.

(1), where the gray levels Iq and Ij are replaced by Zq and

Zj, as the gray level is proportional to the concentration of

the oxidized catalyst concentration [Ru(bpy)3þ
3 ]. Further
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information about the model system and numerical proce-

dures can be found in Appendix A, Subsection 4.

II. SIMPLE CHIMERA STATES

A chimera state in a system of oscillators with equiva-

lent coupling can be broadly defined as a state made up of

two or more coexisting subgroups exhibiting different

dynamical behaviors, with one typically being incoherent in

nature. The simplest chimera state observed in our simula-

tions and experiments is composed of two groups, one with

phase-locked oscillators and the other with incoherent oscil-

lators. Examining the period distributions of the oscillators

offers insights into this and other chemical oscillator chimera

and chimera-like states. We also utilize a local order parame-

ter,14 defined as Rðj; tÞ ¼ 1
2mþ1
j
Pjþm

q¼j�m exp ðihðq; tÞÞj, with

m¼ 3, in characterizing the spatiotemporal evolution of the

chimera and chimera-like states.

Figure 1(a) shows a snapshot of a chimera state observed

in our experimental system, with synchronized oscillators,

j ¼ 9–17, coexisting with an asynchronous group, j ¼ 1–8

and j ¼ 18–40. The evolution of the synchronized group can

be seen in Fig. 1(b), where the local order parameter is plotted

as a function of time. The synchronized group exists for the

duration of the experiment (typically 30 min), with the group

size fluctuating as oscillators are recruited to and released

from the group.

A scatter plot of 25 consecutive values of the period of

each oscillator (Fig. 1(c)) shows a broad range of periods for

the incoherent oscillators. The period of the synchronized

oscillators is approximately constant over the same interval

of time. Figure 1(d) shows the period distributions of two

unsynchronized oscillators and one synchronized oscillator.

The synchronized oscillator has a shorter period and a

narrow period distribution compared with the incoherent

oscillators. The occurrence plot clearly identifies the two dif-

ferent groups associated with the chimera state.

Chimera states are observed in simulations of BZ sys-

tems with homogeneous and heterogeneous oscillator fre-

quencies. The natural period of the homogeneous oscillators

and mean period and standard deviation of the heterogeneous

oscillators in our simulations are 41.0 and 41.0 6 2.1, respec-

tively. Figure 2(a) shows the local order parameter as a func-

tion of time in a system with homogeneous oscillators. Large

variations in period are exhibited by the incoherent oscilla-

tors, j ¼ 1–13 and j ¼ 26–30, as shown in Fig. 2(b). Details

of the coherent and incoherent oscillations are shown in

the inset of Fig. 2(b), which gives the length of consecutive

periods of a synchronized oscillator (j¼ 20, red) and two

unsynchronized oscillators (j¼ 5, magenta; j¼ 30, blue).

The synchronized group has a constant, shorter period, and

the group exhibits distinct size fluctuations, as oscillators

join and are released from the group (Fig. 2(a)). Figure 2(c)

shows the local order parameter as a function of time for

simulations of a BZ system with heterogeneous oscillators.

Again, a synchronized region with a shorter, constant period

is seen adjacent to asynchronous regions, with oscillators

that have large variations in period, as shown in Figure 2(d).

The length of consecutive periods of a synchronized oscilla-

tor (j¼ 20, red) and two unsynchronized oscillators (j¼ 5,

magenta; j¼ 30, blue) is shown in the inset of Fig. 2(d). Size

fluctuations of the synchronized group are also seen in the

heterogeneous system; however, the heterogeneity gives rise

to a less well defined boundary between the synchronized

and asynchronous oscillators (Fig. 2(c)).

III. CHIMERA-LIKE STATES WITH PHASE WAVES

Figure 3 shows a type of behavior observed in our

experiments and simulations with heterogeneous oscillators

that we refer to as chimera-like states with phase waves.

FIG. 1. Experimental measurements

illustrating a simple chimera state in a

system of 40 coupled Belousov–

Zhabotinsky (BZ) oscillators. The

experiment was initiated with a phase

synchronized subset of the oscillators,

with the remaining oscillators having

an approximately random phase distri-

bution. The nonlocal coupling was

introduced at t¼ 300 s. (a) A snapshot

of the phase of each oscillator at

t¼ 515 s. (b) Space-time plot of the

local order parameter, Rðj; tÞ ¼ 1
2mþ1

j
Pjþm

q¼j�m exp ðihðq; tÞÞj, with m¼ 3.

(c) A scatter plot of 25 consecutive

periods for each oscillator. (d)

Occurrence plot of the periods of

three oscillators, one synchronized

(red) and two unsynchronized (blue,

green), j ¼ 10; 6, and 33, respectively.

Experimental conditions: [NaBrO3]

¼ 0.51 M, [Malonic acid]¼ 0.16 M,

[NaBr]¼ 0.08 M, [H2SO4]¼ 0.77 M,

n¼ 10, j ¼ 0:5; K0 ¼ 1:0, s¼ 30 s.
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FIG. 2. Simulations showing simple chimera behavior with 30 homogeneous and 30 heterogeneous BZ oscillators, with a period of 41.0 and a mean period and

standard deviation of 41.0 6 2.1, respectively. Each simulation was started with a random initial phase distribution of the oscillators. (a) Local order parameter as

a function of time for homogeneous oscillators. (b) Scatter plot of 500 consecutive periods for each oscillator in (a); inset shows the length of consecutive periods

of a synchronized oscillator (j¼ 20, red) and two asynchronous oscillators (j¼ 5, magenta; j¼ 30, blue). (c) Local order parameter as a function of time for het-

erogeneous oscillators. (d) Scatter plot of 500 consecutive periods for each oscillator in (c); inset shows the length of consecutive periods of a synchronized oscil-

lator (j¼ 20, red) and two asynchronous oscillators (j¼ 5, magenta; j¼ 30, blue). Note that the oscillator index is shifted by 5 oscillators from (c) to (d).

Numerical parameters: n¼ 10, j ¼ 0:4; s ¼ 35:0; K0 ¼ 6:3� 10�5, and /0¼ 5:3� 10�4.

FIG. 3. Experimental measurements illustrating chimera-like states with phase waves in a system of 40 coupled BZ oscillators. (a) Snapshot of the phase of

each oscillator at t¼ 1200 s. (b) Period scatter plot over 20 periods. (c) The distribution of periods for 20 consecutive periods for an oscillator in the phase-

wave group (j¼ 35, red) and for an oscillator in the incoherent group (j ¼ 24, blue). Simulations illustrating chimera-like states with phase waves in 40 coupled

heterogeneous BZ oscillators. (d) Phase snapshot showing coexisting phase waves at t ¼ 9:0� 104. (e) Period scatter plot over 500 consecutive periods. This

plot reveals the presence of several unsynchronized oscillators with a wide period distribution within the phase-wave region. (f) Period distribution for an oscil-

lator in a phase-wave region (j¼ 27, red) and in an incoherent region (j¼ 36, blue). Experiment parameters: j ¼ 0:6. Simulation parameters: j ¼ 0:4. Other

parameters as in Figs. 1 and 2.
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This state is composed of a phase-wave region of frequency

synchronized oscillators, with an approximately constant

phase difference between neighboring oscillators, coexisting

with a region of unsynchronized oscillators. The phase snap-

shot in Fig. 3(a) shows oscillators indexed j ¼ 34–48

(mod 40) to be in a phase-wave structure, while oscillators

indexed j ¼ 9–33 are asynchronous. The period scatter plot

in Fig. 3(b) shows that the period of the oscillators in the

phase wave is shorter, on average, than the period of the

unsynchronized oscillators. Figure 3(c) shows a histogram of

the period distributions of two of the oscillators, one in the

phase-wave region and one in the incoherent region. The

phase-wave oscillator has a shorter mean period and a nar-

rower period distribution compared with the incoherent

oscillator.

Chimera-like states with phase waves are also seen in

simulations with heterogeneous oscillators. Figures 3(d)–3(f)

show the corresponding behavior from a simulation in which

several phase-wave structures can be seen. Oscillators embed-

ded within the phase wave again have a shorter mean period

and a narrower period distribution than the unsynchronized

oscillators, as shown in Fig. 3(f), much like in the experimen-

tal system. The phase and period plots in Figures 3(d)

and 3(e) show that the regions of incoherent oscillators

and phase-wave oscillators are less well defined than in

simple chimera states. However, the region of frequency-

synchronized, phase-ordered oscillators coexisting with a

region of aperiodic oscillators is quite similar to a simple chi-

mera state, with frequency-synchronized, phase-synchronized

oscillators coexisting with a region of aperiodic oscillators.

We note that phase waves differ from splay states41–45

in that only a fraction of the oscillators are phase-wave syn-

chronized, while the remaining oscillators are unsynchro-

nized. We have not observed splay states in simulations with

heterogeneous oscillators or in our experiments; however,

with special initial conditions, we have observed stable splay

states in the homogeneous system. Simulations with 40 oscil-

lators exhibited splay states that were stable to small pertur-

bations, where the initial conditions were similar to the final

stable state.

IV. PHASE-CLUSTER CHIMERAS AND PHASE-SLIP
BEHAVIOR

Multiple phase-cluster chimera states, also known as

multi-chimera states, are composed of more than one phase

synchronized group of oscillators separated by incoherent

oscillators.16,18,37 The oscillators separating the synchro-

nized groups interact with the clusters and their immediate

neighbors. Figure 4(a) shows a 2-phase cluster chimera state

from a simulation with homogeneous oscillators, with the

incoherent oscillators indexed j ¼ 14–17 and j ¼ 32–37. The

size of the clusters fluctuates with time, as the synchronized

oscillators recruit neighboring unsynchronized oscillators

or lose terminal synchronized oscillators. The incoherent

oscillators have a much larger spread in period and a longer

mean period than the synchronized oscillators, as shown

in Fig. 4(b). Figure 4(c) shows the irregular variations in the

period of oscillator j¼ 33 with time. Phase-cluster and

multi-headed chimeras are also seen in the heterogeneous

model system and in experiments.27,37 Figures 4(d) and 4(e)

show, respectively, period scatter plots for 2-headed and

3-headed chimeras from simulations and an experiment.

Phase-slip behavior is characterized by oscillators peri-

odically slipping from phase clusters.46 Figure 5(a) shows a

snapshot of phase-slip behavior, oscillators j¼ 15, 16, 35,

and 36, in a system of homogeneous oscillators. This behav-

ior is strikingly similar to the phase-cluster chimera behavior

FIG. 4. Phase-cluster chimera states in

systems of homogeneous and heteroge-

neous oscillators. (a) Snapshot showing

the phase of each oscillator at t ¼ 1:80

�104 in a system of 40 homogeneous

oscillators. (b) Scatter plot of oscillator

periods for 1000 consecutive cycles.

(c) Period as a function of period number

for oscillator j¼ 33. (d) Period scatter

plot taken over 500 cycles from simula-

tions with 40 heterogeneous oscillators.

Both simulations were started with a

random initial phase distribution. (e)

Experimentally observed phase-cluster

chimera state. Period scatter plot

taken over 20 cycles in a system of

40 BZ oscillators. Simulation parame-

ters: j ¼ 0:4. Experiment parameters:

j ¼ 0:8. Other parameters and condi-

tions as in Figs. 1 and 2.
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in Fig. 4(a). As the oscillators slip between the clusters,

they have intermittent encounters with the clusters, causing

large variations in period, as shown in Fig. 5(b). The phase-

slip behavior leads to the oscillators having a longer average

period than the oscillators within the clusters. A plot of

the period of an individual slip oscillator in Fig. 5(c) shows

that the oscillator exhibits period-11 oscillations. While

the phase-slip behavior appears to be similar to a phase-

cluster chimera state,1,2 analysis of individual oscillators

reveals the coexistence of two groups of synchronized oscil-

lators with simple and complex periodicity. We note that

j ¼ 0:40 for the phase-cluster chimera state in Figs.

4(a)–4(c), while j ¼ 0:35 for the phase-slip behavior in Figs.

5(a)–5(c). The lower value of j leads to a larger range of

coupling and greater synchronization, resulting in fewer

oscillators between the phase clusters, which become phase

locked with complex periodicity.

Phase-slip states are also seen in model simulations with

heterogeneous oscillators. An example of phase-slip behav-

ior is shown in Figs. 5(d)–5(f), with periodic switching

between an in-phase cluster and a region of out-of-phase

oscillators. In Fig. 5(d), oscillators j ¼ 1–17 and j ¼ 32–40

form the synchronized group, while oscillators j ¼ 21–27 are

approximately phase locked. The oscillators in this phase-

locked region have a higher mean period than the synchro-

nized oscillators. Oscillators j ¼ 18–20 and j ¼ 28–31 show

a broader distribution of periods, corresponding to complex

periodicity behavior, as they move under the influence of the

phase-locked and synchronized groups (Fig. 5(e)). The peri-

odicity of this behavior is revealed by the spatial order

parameter plotted over multiple cycles, as shown in Fig. 5(f).

Characterization of phase-slip behavior in the experimen-

tal system is problematic due to experimental noise, making

the distinction between complex periodicity and aperiodicity

difficult. A 40 oscillator system was used in our experiments,

and the simulations with homogeneous and heterogeneous

oscillators in Fig. 5 also used 40 oscillator systems, suggesting

that size effects are not as important as the inherent experi-

mental noise. It is possible that the inherent experimental

noise causes complex-periodicity slip behavior to appear ape-

riodic in the experiments.

V. MIXED STATES

Regions of incoherent, synchronized, and phase-wave

behavior may interact to produce very complex behavior. The

probability of such mixed states generally increases as the num-

ber of oscillators increases. In addition, in larger populations of

oscillators, an initial random phase distribution may evolve to

reveal two categories of seemingly unsynchronized oscillators,

one that is aperiodic and another that is simply phase dispersed.

An example of this is shown in Figs. 6(a)–6(c) in a simulation

of 90 homogeneous oscillators. In contrast to the smaller homo-

geneous system shown in Fig. 2, this system exhibits two dis-

tinctly different types of behavior outside the synchronized

region. Groups of asynchronous oscillators, j ¼ 51–61 and

j ¼ 76–83, which have a broad distribution in period, are seen

immediately adjacent to the synchronized region. This asyn-

chronous behavior is similar to that in Fig. 2; however, outside

of this region, j ¼ 1–51 and j ¼ 84–90, the oscillators are sim-

ply phase dispersed and oscillate close to their natural period.

Figure 6(c) shows the period as a function of period number of

4 oscillators at different locations. The oscillator fartherest

from the synchronized phase cluster (j¼ 40, green) oscillates

with its natural period. Hence, although it is phase dispersed, it

is relatively unaffected by the synchronized oscillators in the

phase cluster or by its phase dispersed neighbors. Aperiodic

oscillations are exhibited by oscillators at the boundary of the

phase cluster, where the oscillations switch aperiodically

between approximately the natural period and the period of

the synchronized phase cluster. The oscillator farther from

the phase cluster (j¼ 58, blue) spends more time oscillating

approximately at its natural period (green), while the oscillator

closer to the phase cluster (j¼ 60, pink) spends more time

FIG. 5. Phase-slip behavior in systems

of homogeneous and heterogeneous

oscillators. (a) Snapshot showing the

phase of each oscillator at t ¼ 1:7� 104

in a system of 40 homogeneous oscilla-

tors. (b) Period scatter plot over 500 con-

secutive periods. (c) Period as a function

of period number for oscillator j¼ 15.

Simulation parameters: j ¼ 0:35. Other

parameters as in Fig. 2. (d) Phase snap-

shot taken at t ¼ 4:5� 105 in a system

of 40 heterogeneous oscillators. (e)

Period scatter plot over 500 consecutive

periods. (f) Local order parameter over

133 periods revealing higher order peri-

odicity of the oscillators adjacent to the

synchronized region. Simulation param-

eters: j ¼ 0:4. Other parameters as in

Fig. 2.
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oscillating approximately with the period of the synchronized

phase cluster (red). Of course, an oscillator within the phase

cluster (j¼ 66, red) oscillates with the synchronized period.

Hence, the aperiodicity arises from an interplay between the

synchronized oscillators at the boundaries of the phase cluster

and the phase dispersed oscillators, with the predominate

period shifting from the synchronized period (red) to the natu-

ral period (green) with increasing distance from the phase clus-

ter boundary.

We note that while the 30 oscillator system in Figs. 2(a)

and 2(b) exhibits only periodic synchronized oscillators and

aperiodic unsynchronized oscillators, as seen in typical exam-

ples of simple chimera states, a 40 oscillator system is large

enough to also exhibit some phase dispersed oscillators that

oscillate at approximately their natural period. The range of

the aperiodic oscillators at the boundaries of the synchronized

phase cluster is approximately equal to the coupling radius,

which is largely determined by the value of j in Eq. (1). The

system in Figs. 2(a) and 2(b) is small enough that the range of

aperiodic oscillators extends from one boundary of the syn-

chronized phase cluster to the other boundary.

An example of mixed dynamical behavior in a group

of 90 heterogeneous oscillators is shown in Figs. 6(d)–6(f). The

phase snapshot shown in Fig. 6(d) reveals a synchronized group

and regions of phase-wave activity, together with regions of

aperiodicity. A plot of the period of each oscillator is shown

in Fig. 6(e), where a number of regions with narrow period

distributions are separated by regions of asynchronous oscilla-

tors with broad period distributions. Oscillators j ¼ 1–18 and

j ¼ 22–28 have narrow period distributions with mean periods

less than the average natural period of the uncoupled oscillators

but greater than that of the synchronized group. Examination

of Fig. 6(d) shows that oscillators j ¼ 1–11 and j ¼ 22–28

form a pair of phase waves with opposite slopes. The remaining

oscillators, j ¼ 12–18, are effectively phase-locked to the

phase waves. Immediately adjacent to these regions of phase

locked behavior are asynchronous regions with broad period

distributions.

A synchronized region occurs for oscillators j ¼ 61–80.

Figure 6(f) illustrates that the period of the synchronized

oscillators is smaller than that of an oscillator in the phase-

wave region. In contrast to the homogeneous system, no

clear trend is seen in the distribution of period as a function

of distance from the synchronized group. Example oscilla-

tors are shown in Fig. 6(f), with one in the synchronized

group (red), one in a phase wave (green), an asynchronous

oscillator (blue) immediately adjacent to the synchronized

group, which shows a broad period distribution with no bias

toward the period of the synchronized group, and a phase

dispersed oscillator (light blue) with a mean period close to

its natural period.

Mixed behavior is typically not seen in simulations with

smaller numbers of oscillators. Similarly, in the experimental

system (N¼ 40) we have not observed long lived mixed

states. Transient combinations of synchronized, phase wave,

and asynchronous behavior have been observed but typically

last for only about 15 periods. This is likely the result of the

smaller number of oscillators and experimental noise.

VI. TRAVELING PHASE-CLUSTER CHIMERAS

In simulations of a system of 40 homogeneous oscilla-

tors, the chimera state with one phase cluster of

FIG. 6. Simulations of chimera behavior in larger systems of homogeneous and heterogeneous oscillators. (a) Snapshot of the phase of each oscillator at time

2:9� 105 in a simulation with 90 homogeneous oscillators. (b) The corresponding scatter plot for 500 periods of each oscillator. (c) Period as a function of

period number for 100 consecutive periods of 4 oscillators: j¼ 40 (green) oscillates approximately with its natural period, j¼ 58 (blue) and j ¼ 60 (pink)

exhibit aperiodic behavior, switching between the natural and synchronized periods, and j¼ 66 (red) oscillates with the synchronized phase cluster period. (d)

Snapshot of the phase of each oscillator at time 2:9� 105 in a simulation with 90 heterogeneous oscillators. (e) The corresponding scatter plot for 500 periods

of each oscillator. (f) Period histogram for four oscillators showing following behaviors: synchronized (j¼ 75, red), phase wave (j¼ 10, green), asynchronous

(j¼ 58, dark blue), and phase dispersed and periodic (j¼ 50, light blue). Numerical parameters, j ¼ 0:4, and other parameters as in Fig. 2.
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synchronized oscillators together with primarily asynchro-

nous oscillators is typically found to be stable for

the duration of the simulation. However, in a small number

of cases, the 1-phase cluster chimera is found to undergo a

transition, where the existing cluster region develops into

two new phase-cluster regions that are antiphase. In the cases

where a 2-phase cluster chimera state is formed, the state is

typically stable for the duration of the simulation. However,

occasionally another transition occurs in which three phase-

cluster regions develop, which are 2p=3 out of phase. In the

cases where a 3-phase cluster chimera state forms, the

entire pattern rotates around the ring of oscillators with an

approximately constant angular velocity. This traveling

phase-cluster chimera, once formed, persists for the duration

of the simulation. Similar phenomena are observed as N is

increased, with the number of transitions to higher cluster

states increasing and the traveling phase clusters occurring

with higher n-cluster states.

The transitions to increasingly higher n-cluster states and

a traveling 5-phase cluster chimera are illustrated in simula-

tions of a ring of 90 homogeneous oscillators, shown in

Fig. 7. A cluster of synchronized oscillators spontaneously

forms at t¼ 300, as shown in Fig. 7(a). The phase cluster is

made up of 13 6 2 oscillators and exhibits small size fluctua-

tions. A second cluster spontaneously grows from the first to

give a 2-phase cluster state at �0:6� 105. A third cluster then

grows from the recently formed cluster to give a 3-phase clus-

ter state at �0:8� 105. A 4-cluster state is formed from

another spontaneous growth event at �1:2� 105, which is

more persistent than the earlier states. It is a 2-headed,

2-phase cluster chimera with pairs of antiphase clusters. We

have been unable to discern any predictable timing pattern in

new cluster formation, either within or between simulations.

The formation of the 5-cluster state at �2:4� 105 ini-

tiates a drifting motion, with the pattern rotating counter-

clockwise around the 90-oscillator ring. Figure 7(b) shows

snapshots of the phase of each oscillator at four different

times corresponding to some of the states in Fig. 7(a). Figure

7(c) shows scatter plots of 500 periods of each oscillator,

with the states corresponding to the snapshots in Fig. 7(b).

As can be seen in Fig. 7(c-i), the oscillators each have

approximately the same period before the first phase cluster

is spontaneously formed. The synchronized oscillators within

a phase cluster exhibit an average period that is shorter than

the average natural period, as shown in Fig. 7(c-ii). Also

shown in this figure are the regions of aperiodic oscillators,

which occur at each end of the phase cluster.

The 4-cluster state, shown in Fig. 7(c-iii), reveals the

same period for the synchronized oscillators within the clus-

ters and a broad period distribution for the asynchronous

oscillators between the clusters. Formation of the fifth cluster

initiates the counter-clockwise motion of the 5-phase cluster

pattern, with phase differences of 2p=5 between clusters. In

the traveling phase-cluster pattern, each individual oscillator

exhibits intervals of periodic and intervals of aperiodic

behavior, as the clusters move through the oscillators.

FIG. 7. Simulations with 90 coupled

identical model BZ oscillators in a ring

configuration. (a) Local order parameter

R as a function of time. (b) Snapshot of

the phase of each oscillator at four dif-

ferent times: t ¼ 3:0� 103; 4:0� 104,

2:0� 105, and 3:2� 105. (c) Scatter

plot of each oscillator for 500 periods at

four different time intervals that are

near the times in (b). Simulations are

initiated with a random initial phase dis-

tribution and are carried out for �104

oscillation periods. Variations in other

system parameters such as j can lead

to traveling phase-cluster states with

different numbers of clusters and oscil-

lator occupancies. Simulation parame-

ters j ¼ 0:4, with other parameters as

in Fig. 2.
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Hence, each oscillator has approximately the same period

distribution, as shown in Fig. 7(c-iv).

The transitions giving rise to additional phase clusters

are observed in populations of 40 to 90 homogeneous oscil-

lators in our simulations, with the maximum number of clus-

ters increasing with increasing N. For N¼ 40, the maximum

number of clusters is three, whereas for N¼ 90, the maxi-

mum number is five, for the parameters in Fig. 7. In these

cases, the traveling phase clusters are observed when the

maximum number of clusters is attained. The linear velocity

of the rotation, defined as the number of oscillators divided

by the time required for one complete rotation of the pattern

around the oscillator ring, is found to be a decreasing func-

tion of N.

We have found no evidence of traveling clusters in a

4-cluster chimera state, which corresponds to the maximum

number of clusters observed with 70 � N < 90. We also

note that completion of all the transitions to the maximum

number of phase clusters does not occur in most simulations.

For example, in a set of 200 simulations with 40 homoge-

neous oscillators, using special initial conditions with a

group of synchronized oscillators, 29% of the simulations

resulted in a single transition to a 2-phase cluster chimera

state. A second transition to a 3-phase cluster chimera state

was observed in 10.5% of the simulations. Similar rotating

patterns have been observed in studies of nonlocally coupled

complex Ginzburg–Landau oscillators,6 although no equiva-

lent transition sequences were reported. Traveling phase-

cluster chimera states have not been observed in our

experiments and simulations with heterogeneous oscillators.

VII. DISCUSSION

The occurrence of chimera and chimera-like states

described in this paper is dependent on several key factors,

including the coupling decay constant j, the system size, and

the initial conditions. Figure 8 shows behavior observed with

different values of j for a 40-oscillator ring system with ran-

dom initial phase distributions (except for splay states and

phase waves). The value of j controls the range of nonlocal

coupling in our system, with smaller values corresponding to

stronger interactions over a greater range of nonlocal neigh-

bors. The various types of chimera and chimera-like states

generally occur for 0:3 � j � 0:6 in simulations of homoge-

neous and heterogeneous systems, while the range is some-

what larger in the experiments. For larger values of j, there

is insufficient nonlocal coupling to support the behavior, and

simple phase dispersed behavior dominates. For smaller val-

ues of j, the greater coupling range gives rise to the fully

synchronized state.

Multistability occurs across a range of j values, with

the fully synchronized state coexisting with other states,

particularly at lower values of j. For example, at j ¼ 0:4,

the homogeneous oscillator system exhibits the following

states: fully synchronized, chimera, phase-cluster chimera,

traveling phase-cluster, phase-slip, and splay state behavior.

The heterogeneous oscillator system at this value of j
exhibits these states and also the chimera-like state with

phase waves but does not exhibit the traveling phase-cluster

or splay states. The experimental system at j ¼ 0:4 exhibits

the same states as the heterogeneous model system; how-

ever, it has not been possible to identify phase-slip

behavior.

Special initial conditions can increase the probability of

finding a chimera state. For example, in the homogeneous

system, the probability of finding a chimera state increases

significantly with initial conditions that reflect the targeted

state,10,15 compared with a random initial phase distribution.

Increasing N leads to only a small increase in the probability

of finding a chimera state. In contrast, with heterogeneous

oscillators, using special initial conditions does not signifi-

cantly influence the probability of finding a chimera state,

while increasing N increases the probability.

Our observations of the different experimental chimera

and chimera-like states are mirrored by the behavior

observed in the simulations of the heterogeneous and

homogeneous oscillator systems, although several significant

differences exist. For example, splay states and traveling

phase-cluster chimeras have not been observed in the hetero-

geneous system or in the experiments. Also, the extent of the

periodic phase-dispersed region that coexists with coherent

and incoherent regions is smaller in both the experimental

system and simulations of the heterogeneous system com-

pared with the homogeneous system.

Each of the states observed in the experimental system,

once formed, normally lasts for the duration of the experi-

ment, which is typically about 30 min. Simulations are gen-

erally run for 2500 periods and, similarly, once formed,

states last for the duration of the simulation. Long term sta-

bility was tested by running simulations for 12500 periods

for each of the observed states in Fig. 8 for j ¼ 0:4. With

FIG. 8. Summary of the dynamical states observed in simulations of the

homogeneous and heterogeneous oscillator systems and the experimental

system for different values of j, indicated by the following symbols: fully

synchronized (red þ), synchronization clusters (black �), splay state

(orange �), chimera (black �), phase-cluster chimera (green �), traveling

phase-cluster chimera (blue �), chimera-like states with phase waves

(magenta �), phase slip behavior, (blue �). Multistability is exhibited at

many values of j. Simulations and experiments for all of the states except

splay states and phase-wave states (homogeneous system) were started from

random initial phase distributions. For splay states and phase-wave states,

simulations were started from a splay-state-like initial phase distribution.

Other experimental parameters are as in Fig. 1; other simulation parameters

are as in Fig. 2.
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the exception of the chimera-like states with phase waves

and the phase-cluster chimeras in the system of heteroge-

neous oscillators, each state, once formed, lasted for the

duration of simulation. The chimera-like states with phase

waves, such as that shown in Fig. 3(d), lasted for about 2500

oscillations, and then collapsed to a fully synchronized state

in the longer simulation. However, phase wave behavior

formed as part of a mixed state, such as that shown in Fig.

6(d), lasted for the duration of the longer simulation. The

existence of the traveling phase-cluster states and the associ-

ated transitions indicates that the phase-cluster chimera

states also may not be long-term stable. Other studies have

suggested that certain chimera states are long transients, with

the length of the transient increasing with the size of the

system.13,17,27

In all of the states observed, the asynchronous behavior

typically associated with a chimera is found to be localized, i.e.,

within the coupling radius of the ordered region. A phase-

dispersed state tends to occur beyond this region of influence,

although the distinction between the different apparently aperi-

odic regions is not immediately obvious from the phase snap-

shot. An analysis of the period or frequency distribution is

necessary to distinguish between these behaviors as well as

between the phase-cluster chimera and the complex-periodicity,

phase-slip behavior. The simple chimera state is but one of

many chimera and chimera-like states in systems of non-locally

coupled chemical oscillators.
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APPENDIX A: EXPERIMENTAL AND COMPUTATIONAL
PROCEDURES

1. Instrumentation

The experimental set-up consists of a modified video

projector (SLM) with a 440–460 nm band pass filter, beam

splitter, camera (CCD), computer (PC), and the reactor.

The camera and the modified projector are controlled via

the computer. The camera is placed above the beam splitter

and a 2 cm diameter reaction vessel to record images of the

state of each oscillator in real time. The set-up is shown in

Fig. 9.

The CCD camera is connected to a PC, which processes

the images and computes the feedback illumination for each

particle. The feedback illumination is applied through a spa-

tial light modulator (SLM). The light from the SLM passes

through the band-pass filter to a beam splitter that reflects the

light onto the particles in the reactor.

2. Preparation of ruthenium(II) catalyst-loaded beads

The catalyst solution of 25.0 mM Ru(bpy)2þ
3 is prepared

by dissolving 0.47 g of tris(2-20-bipyridyl)ruthenium(II)

chloride hexahydrate (98% complex) in 25.0 ml of doubly

distilled water. DOWEX 50WX2-100 ion exchange beads

(3.0 g) are mixed with 10.0 ml of 2.50 mM ruthenium(II) cat-

alyst solution (8:3� 10�6 mol/g resin). The mixture is stirred

at a low speed for 24 h and then filtered. The catalyst-loaded

particles are washed with distilled water before drying at

room temperature for 24 h.

3. Experimental procedures

Stock solutions of 1.0 M sodium bromide (NaBr), 1.5 M

sodium bromate (NaBrO3), and 3.0 M sulfuric acid (H2SO4)

are prepared with reagent-grade chemicals (Fischer Scientific)

and doubly distilled water. The solutions are stored at room

temperature. Malonic acid (MA) is prepared just before begin-

ning an experiment because it is not stable for periods greater

than approximately 24 h. The catalyst-free BZ solution is pre-

pared with 0.77 M H2SO4, 0.51 M NaBrO3, 0.08 M NaBr, and

0.16 M MA.

The catalyst-loaded particles are randomly distributed in

a BZ catalyst-free solution. The particles are positioned at

more than three diameters apart to eliminate local diffusive

coupling. The particles are in an oscillatory state under the

experimental conditions. Experiments are carried out with

40 particles, which oscillate independently before they are

coupled. The resulting initial conditions are close to a ran-

dom initial phase distribution, although not mathematically

random as in our model simulations. For special initial con-

ditions with synchronized oscillators, a group of oscillators

is synchronized by strongly coupling them with a low value

of j before introducing the regular coupling scheme. A com-

puter algorithm is used to align the camera and projector

coordinate systems to allow real-time feedback by illumina-

tion of individual oscillators. The particles are mapped onto

a virtual array, which is used to set up a desired network

with a defined coupling.

FIG. 9. Experimental set-up. The cam-

era (CCD), connected to the computer

(PC), records the position and intensity

of the catalyst-loaded beads in the

reactor. The image is processed by the

PC and feedback is applied via the spa-

tial light modulator (SLM) through the

filter. (b) Catalyst-loaded particles

recorded by the CCD camera.
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In the experiments, images are captured every 3.0 s with the

projected feedback briefly interrupted to allow image capture. A

background light intensity of 1.4 mW cm�2 is used for capturing

images. The variation in transmitted light intensity by individual

particles is monitored as a function of time. The observed oscil-

lations in light intensity are the result of ruthenium(II) (orange)

being oxidized to ruthenium(III) (green), which is then reduced

back to ruthenium(II). The molar extinction coefficient for

ruthenium(II) is higher than that for ruthenium(III), and the max-

imum in transmitted light intensity therefore corresponds to the

maximum in ruthenium(III) concentration. The captured image

is analyzed to determine the intensities, in gray level, associated

with each oscillator. The intensities are used to compute the

feedback based on the coupling scheme. The computed illumi-

nation is sent to the projector, which illuminates each particle

independently according to

/j ¼ /0 þ /fb;j (A1)

where /j is the projected light intensity, /0 is the back-

ground light intensity, and /fb;j is the computed feedback for

oscillator j.27,36,37

4. Simulation model and procedures

Simulations were carried out with the two-variable

ZBKE model39 modified to describe the discrete photosensi-

tive BZ oscillator system,27,36 where

�1

dXj

dt
¼ /j � X2

j � Xj þ �2cu2
ss þ uss 1� Zjð Þ

þ l� Xjð Þ
l� Zjð Þ

qaZj

�3 þ 1� Zjð Þ
þ b

� �
; (A2)

dZj

dt
¼ 2/j þ uss 1� Zjð Þ �

aZj

�3 þ 1� Zjð Þ
; (A3)

describe the chemistry of oscillator j. The variables Xj and

Zj and the constant qj represent [HBrO2], [Ru(bpy)2þ
3 ], and

the stoichiometric coefficient, respectively, associated with

oscillator j. The photo-excitatory feedback associated with

oscillator j is /j. Nondimensional model parameters are �1

¼ 0.11, �2¼ 1.7 �10�5, �3¼ 1.6 �10�3, c¼ 1.2, a¼ 0.10,

b¼ 1.7 �10�5, l¼ 2.4 �10�4, and a distribution in q that

gives a period of 41.0 6 2.1. The set of ordinary differential

equations are solved using the Euler method with a time step

of 0.001. The experimental period distribution is approxi-

mately Gaussian,40 and a Gaussian period distribution is

used in all simulations, with a standard deviation reflecting

typical experimental values.

Simulations were carried out with the ZBKE model to

check whether the photochemical coupling gives rise to any

amplitude effects in a chimera state, such as the mixed state

shown in Figs. 6(a)–6(c). The limit cycles of a synchronized

oscillator, an aperiodic oscillator, and a periodic but phase

dispersed oscillator were plotted for 30 periods. The three

limit cycles were indistinguishable when they were overlaid.

Blowups of the maximum and minimum in the two varia-

bles, X and Z, representing the autocatalyst HBrO2 and the

oxidized catalyst Ru(bpy)3þ
3 , respectively, were plotted to

determine the variation in the maximum amplitudes. The

maximum amplitudes of X and Z varied by less than 0.2%,

with the aperiodic oscillator showing the greatest variation.
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