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Abstract: Spatial dependence is one of the main problems in stochastic processes and can be caused 

by a variety of measurement problems that are associated with the arbitrary delineation of spatial 

units of observation (such as counties boundaries, census tracts), problems of spatial aggregation, 

and the presence of spatial externalities and spillover effects. The existence of spatial dependence 

would then mean that the observations contain less information than if there had been spatial 

independence. Consequently, hypothesis tests and the statistical properties for estimators in the 

standard econometric approach will not hold. Thus, in order to obtain approximately the same 

information as in the case of spatial independence, the spatial dependence needs to be explicitly 

quantified and modeled. Although advances in spatial econometrics provide researchers with new 

avenues to address regression problems that are associated with the existence of spatial dependence 

in regional data sets, most of the applications have, however, been in single-equation frame-works. 

Yet, for many economic problems there are both multiple endogenous variables and data on 

observations that interact across space. Therefore, researchers have been in the undesirable position 

of having to choose between modeling spatial interactions in a single equation frame-work, or using 

multiple equations but losing the advantage of a spatial econometric approach. In an attempt to 

address this undesirable position, this research work deals with the modeling and estimation issues 

in spatial simultaneous equations models. The first part discusses modeling issues in multi-equation 

Spatial Lag, Spatial Error, and Spatial Autoregressive Models in both cross sectional and panel 

data sets. Whereas, the second part deals with estimation issues in spatial simultaneous equations 

models in both cross sectional and panel data sets. Finally, issues related specification tests in 

spatial simultaneous equations models are discussed. 
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Modeling and Estimation Issues in Spatial Simultaneous Equations Models 

 

1. Introduction 

The investigation of regression residuals in the search of signs of a spatial structure is the 

first step in the analysis of spatial data. The usual graphical analysis tools and the residual 

mapping can provide the first indication that the observed values are more correlated than 

would be expected under random assignment. In this case, the presence of spatial clustering 

can be tested by using the spatial correlation tests such as Moran, Geary or G statistic, on 

the residuals. Although such tests can detect the presence of spatial clustering, however, 

they do not explain why such clustering occurs, nor do they explain which factors 

determine its shape and strength. In other words, the alternative hypothesis of spatial 

autocorrelation is too vague to be useful in the construction of theory. Rather, spatial 

autoregressive process, the process that expresses how observations at each location 

depend on values at neighboring locations –the spatial lag, is the relevant concept that 

formalizes the way in which the spatial association is generated (Anselin, 1992). 

Spatial dependence is one of the main problems in stochastic processes and can be 

caused by a variety of measurement problems that are associated with the arbitrary 

delineation of spatial units of observation (such as counties boundaries, census tracts), 

problems of spatial aggregation, and the presence of spatial externalities and spillover 

effects. The existence of spatial dependence would then mean that the observations contain 

less information than if there had been spatial independence. Consequently, hypothesis 

tests and the statistical properties for estimators in the standard econometric approach will 
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not hold. Thus, in order to obtain approximately the same information as in the case of 

spatial independence, the spatial dependence needs to be explicitly quantified and modeled. 

2. Spatial Regression Models 

The explicit inclusion of spatial dependence in regression models can be done in different 

ways. Anselin (2003), for example, attempts to extend the earlier work on spatial 

dependence and he notice that “the standard taxonomy of spatial autoregressive lag and 

error models commonly applied in spatial econometrics (Anselin, 1988) is perhaps too 

simplistic and leaves out other interesting possibilities for mechanisms through which 

phenomena or actions at a given location affects actors or properties at other locations”.  In 

this extension, he makes a distinction between global and local range of dependence which 

have implications for the econometric specifications of spatially lagged dependent variable 

(Wy), spatially lagged explanatory variables (WX) and spatially lagged error terms (Wu). 

The distinction between the global and local effects models depends upon the assumption 

on the underlying spatial process. The spatial regression models with global effects are 

based on the principle that the underlying spatial process on the analyzed data is stationary. 

This means that the spatial autocorrelation patterns of the data sets can be captured in one 

parameter only. The spatial regression models with local spatial effects, however, are based 

on the principle that the underlying spatial process on the analyzed data is non-stationary 

and hence spatial autocorrelation patterns of the data cannot be captured by one parameter 

only. Thus, when the spatial process is non-stationary, the coefficients of regression need to 

reflect the spatial heterogeneity.  

The conditional autoregressive (CAR) model and the simultaneous models, spatial 

autoregressive (SAR) and the spatial moving average (SMA), models are the most 
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commonly employed types of models in spatial statistics and spatial econometrics. In the 

conditional model, a random variable at a location is conditioned on the observations on 

that random variable at neighboring locations. The latter are treated as exogenous and can 

be exploited to construct optimal prediction for the random variable at unobserved 

locations (Anselin, 2003). The inverse covariance matrix for this model is constructed by 

2
I D where D is a binary spatial weights matrix. This type of model is appropriate 

for studies involving first-order dependency which are most common in spatial statistics. In 

the simultaneous models (SAR and SMA models), however, the focus is on the explanation 

of the complete interactions between all observations or locations observed simultaneously. 

The covariance structure in such models is compatible with the spatial ordering and the 

inverse covariance matrix is constructed by 2
I W I W where W is a row-

standardized spatial weights matrix. The simultaneity in these models follows from the 

nature of dependence in space which is two-directional. As a result, each location is in turn 

a neighbor for its neighbors, so that the effect of the neighbors has to be treated as 

endogenous (Anselin, 2003). The SAR model is appropriate for studies involving first-

order as well as second-order dependency which are most common in regional studies. This 

research also follows the regional studies tradition. In the next subsection, the spatial 

dependence (spatial global effects) will be discussed, first in the context of cross-sectional 

setting and then the extension to panel data will follow. 

2.1 Spatial Dependence in Cross-Sectional Models 

There are two distinct ways of incorporating spatial dependence into the standard linear 

regression models: as an additional explanatory variable in the form of spatially lagged 
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dependent variables (Wyj) (spatial lag), or in the error structure 
i j

E u u 0 (spatial 

error) (Anselin, 2001). 

Spatial Lag Model 

The spatial lag model combines the spatial dependence in the form of a spatial lag term 

with the usual linear explanation of a dependent variable by a set of explanatory variables. 

It is similar to the inclusion of a serially autoregressive term for the dependent variable in a 

time series context (Anselin and Bera, 1998; LeSage, 1999). This model is more 

appropriate when the focus of interest is the assessment of the existence and strength of 

spatial interaction. Anselin (1993) referred this model as the spatial autoregressive model 

with substantive spatial dependence. 

Formally, a spatial lag model, in the context of single equation and in a cross-

sectional setting, is expressed as:  

(1.1) y Wy Xγ u  

where y is an n by 1 vector of observations on the dependent variable, Wy is the 

corresponding spatial lagged dependent variable for weights matrix W, X is n by K matrix 

of observations on the explanatory variables, u is an n by 1 vector of error terms,  is the 

spatial autoregressive parameter and γ is a K by 1 vector of regression coefficients. The 

parameter  measures the degree of spatial dependence inherent in the data. As this model 

combines the standard regression model with a spatially lagged dependent variable, it is 

also called a mixed regressive-spatial autoregressive model (Anselin, 1998). 

The spatial single equation model in equation (1.1) can be extended to a system of 

spatially interrelated cross sectional equations corresponding to n cross sectional units. But, 

first note that a standard G system of equations can be written as:  
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(1.2) = + +Y YΒ XΓ U  

with 

 1 1 1,...,     = ,...,     = ,...,G K GY y y X x x U u u  

where yj is the n by 1 vector of cross sectional observations on the dependent variable in jth 

equation, xl is an n by 1 vector of cross sectional observations on the lth exogenous 

variable, uj is an n by 1 vector of error terms in the jth equation, and B and Γ  are 

correspondingly defined parameter matrices of dimension G by G and K by G, 

respectively.  B is a diagonal matrix. Following Kelejian and Prucha (2004), the spatial lag 

dependent variables can be incorporated in equation (1.2) as follows:  

(1.3) = + + +Y YΒ XΓ WYΛ U  

where W is an n by n weights matrix of known constants, andΛ  is a G by G matrix of 

parameters. Note that the spatial global spillover effects in the endogenous variables is 

modeled via WY, with Wyj representing the spatial lag in the jth equation for j = 1, … , G. 

The ith element of the vector of the spatial lag, Wyj, can be computed as:  

(1.4) 
1

n

ij ir rj

r

y w yW  

where  

   
1 when i and r are neighbors (adjacent)

0 otherwise
irw . 

Note that the spatial interactions in the system are determined by the nature of 

theΛmatrix. Specifying Λ  as not a diagonal matrix of parameters allows the jth 

endogenous variable to depend on its spatial lag as well as on the spatial lags of the other 

endogenous variables in the model. If, however, there is a theoretical reason to believe that 

the jth endogenous variable depends either only on the spatial lags in the other endogenous 
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variables in the model or only on its own spatial lag, thenΛ should be specified as a 

diagonal matrix or as an identity matrix, respectively.  

The system in equation (1.3) can be expressed in a form where its solution for the 

endogenous variables is clearly revealed. First, consider the following vector 

transformations:  

(1.5) 
+ + +

            vec

vec vec vec vec vec

vec vec vec

Y = YΒ XΓ WYΛ U

Β I Y Γ I X Λ W Y U
. 

Letting ,    vec , and vec ,   vecy Y x X u U it follows from equation (1.5) that  

(1.6) 
  

y Β I y Γ I x Λ W y u

Β I Λ W y Γ I x u
. 

The mixed regressive-spatial autoregressive specification given above can be 

interpreted in three different ways. First, in the specification given in equation (1.6), the 

interest is in finding out how each of variables in y relate to their values in the surrounding 

locations (spatial own lags), the values of the other endogenous variables in the 

surrounding locations (cross spatial lags) and the values of the other endogenous variables 

in the respective location, while controlling for the influence of other predetermined 

(exogenous) variables. The second perspective is when the interest is to detect the relations 

between the dependent variables y and the predetermined (exogenous) variables x, after all 

the spatial effects and the other endogenous variables effects are controlled for or filtered 

out. Formally, this can be expressed as: 

(1.7) 
 I-

y Β I Λ W y Γ I x u

Β I Λ W y Γ I x u
. 

The third perspective is the interpretation of the model in its reduced form. The reduced 

form is nonlinear and it clearly illustrates how the expected value of the dependent 
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variables at each location depend not only on the predetermined (exogenous) variables at 

the respective locations but also on the predetermined (exogenous) variables at all other 

locations. The reduced form is given by:  

(1.8) 
1 1

I- I-y Β I Λ W Γ I x Β I Λ W u . 

The expected or mean value can be computed by taking expectations on both sides of 

equation (1.8) as follows:  

(1.9) 

1

1

I-

            I-

E E

E

y Β I Λ W Γ I x

Β I Λ W u

. 

Since the mean of the error term is assumed to be zero, this gives:  

(1.10) 
1

I-E Ey Β I Λ W Γ I x . 

To continue with formulating the model in form more convenient to reveal its 

solution for the endogenous variables, consider equation (1.6). Let: 

 Β     andΒ I Λ W Γ Γ I . 

Then, equation (1.6) can be rewritten as:  

(1.11) 1 1

 in  reduced-formn n

y Β y Γ x u

y I Β Γ x I Β u
. 

From this general form of the spatial econometric model, various specifications can be 

generated. By imposing zero restrictions on various model parameters, Rey and Boarnet 

(2004), for example, have identified 35 different specification cases from their two-

equation spatial econometric model. In order to structure the taxonomy of the spatial 

econometric model, they considered three dimensions of simultaneity: feedback 

simultaneity; spatial autoregressive lag simultaneity; and spatial cross-regressive lag 
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simultaneity. Depending on the underlying theoretical arguments, each equation of the 

model contains either all or some or none of these dimensions. 

The system in equation (1.3) can also be expressed more compactly by imposing 

exclusion restriction on the parameters of the model. Particularly, let the vectors of nonzero 

elements of the jth column of B,Γ , and Λ be ,  ,  and j j jβ γ λ respectively. Again, let the 

corresponding matrices of observations on the endogenous variables, exogenous variables, 

and the spatially lagged endogenous variables that appear in the jth equation 

be ,  ,  and j j jY X WY respectively. Then equation (1.3) can be written as: 

(1.12) 
j j j jy Z δ u  

where  

 , ,  and , ,j j j j j j j jZ Y X WY δ β γ λ . 

Spatial Error Models 

A second way to incorporate spatial autocorrelation in a regression model is to specify a 

spatial process for the disturbance term. The disturbance terms in a regression model can be 

considered to contain all ignored elements, and when spatial dependence is present in the 

disturbance term, the spatial effects are assumed to be a noise, or perturbation, that is, a 

factor that needs to be removed (Anselin, 2001). Such spatial pattern in the residuals of the 

regression model may lead to the discovery of additional variables that should be included 

in the model. Spatial dependence in the disturbance term also violates the basic OLS 

estimation assumption of uncorrelated errors. Hence, when the spatial dependence is 

ignored, OLS estimates will be inefficient, though unbiased, the student t- and F-statistics 

for tests of significance will be biased, the R
2
 measure will be misleading, which in turn 

lead to a wrong statistical interpretation of the regression mode (Anselin, 1996). More 
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efficient estimators can be obtained by taking advantage of the particular structure of the 

error covariance implied by the spatial process. The disturbance term is non-spherical 

where the off-diagonal elements of the associated covariance matrix express the structure 

of spatial dependence. 

A spatial dependence model is more common in social science applications using 

cross sectional data due to the predominance of spatial interaction and spatial externalities 

as well as due to the poor choice of spatial units in such applications (Anselin, 1992). The 

dependence in the disturbance term can be expressed either as spatial autoregressive or as a 

spatial moving average spatial process. The most common specification, however, is the 

spatial autoregressive spatial process, although most tests for spatial error autocorrelation 

are the same for either form (Anselin, 1992). The spatial dependence in the disturbance 

term, thus, can be expressed using matrix notation as:  

(1.13) y Xγ u  

with 

 u Wu ε   

where u is assumed to follow a spatial autoregressive process, with  as the spatial 

autoregressive coefficient for the error lag Wu, and ε  n by 1 vector of innovations or white 

noise error, and the other notations as defined before. Equation (1.13) is the structural form 

of the SAR model which expresses global spatial effects.  The corresponding reduced form 

of the model can be specified as:  

(1.14) 
1

y Xγ I W ε  

with the corresponding error covariance matrix given as: 

(1.15) 
1 1 12 2

E uu I W I W I W I W . 



11 

 

The structure in equation (1.15) shows that the spatial error process leads to a non-zero 

error covariance between every pair of observation, but decreasing in magnitude with the 

order of contiguity. Note also that heteroskedasticity is induced in u, irrespective of the 

heteroskedasticity of ε , because the inverse matrices in equation (1.15) yields non-constant 

diagonal element in the error covariance matrix. 

An alternative structural form, the so-called spatial Durbin or common factor 

model, can be generated by pre-multiplying equation (1.14) by I W  and moving the 

spatial lag term to the right-hand side as: 

(1.16) y Wy Xγ WXγ ε . 

This spatial model has spatially lagged exogenous variables (WX) in addition to the 

spatially lagged dependent variable (Wy) and a well-behaved disturbance term ε . Equation 

(1.16), however, becomes a proper spatial error model only if a set of K nonlinear 

constraints on the parameters, the so-called common factor constraints,   (the 

product of the spatial autoregressive coefficient  with the regression coefficient γ should 

equal the negative of the coefficient of spatially lagged exogenous variables (WX), ), 

are satisfied. The spatial error model can also be expressed in terms of spatially filtered 

variables as:  

(1.17) I W y I W Xγ ε . 

The single equation spatial error model developed above can easily be extended to a 

system of spatially interrelated cross sectional equations corresponding to n cross sectional 

units. Assuming the spatial dependence in the error term, the system of simultaneous 

equations given in equation (1.2) can be expressed as: 

(1.18) = + +Y YΒ XΓ U  
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with  

(1.19) U WUC Ε  

where G

1 G j=1 1 G,  ...,  , diag , ,  ..., jWU Wu Wu C Ε ε ε  and the other notations as 

defined before. Note that 
j
 denotes the spatial autoregressive parameter in the jth 

equation and since C is taken to be diagonal, the specification relates the disturbance vector 

in the jth equation only to its own spatial lag. Since it is assumed 

that  and nE Eε 0 εε Σ I , the disturbances, however, will be spatially correlated 

across units and across equations.  

The system in equation (1.18) and (1.19) can be expressed in a form where its 

solution for the endogenous variables is clearly revealed. But, first consider the following 

vector transformations:  

(1.20) 

+ +

+ +

            vec

vec vec vec vec

vec vec vec vec

vec vec vec

Y = YΒ XΓ U

Y = YΒ XΓ UWC E

Β I Y Γ I X C W U E

. 

Letting ,    vec ,  vec , and  vecvecy Y x X u U ε E it follows from equation 

(1.20) that  

  

(1.21) 
or

,

y Β I y Γ I x C W u ε

y Β I y Γ I x u

u C W u ε

.  

The system in equation (1.21) can also be rewritten more compactly in a form that can 

reveal its solution for the endogenous variables as follows: 

(1.22) 
,y Β y Γ x u

u C u ε
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where 1,
G

n j jdiagΒ Β I C C W W , and the other notations as before. 

Furthermore, by imposing exclusion restriction on the system in equation (1.22), it can be 

expressed as: 

(1.23) 
,

,     1,...,

j j j j

j j j j j G

y Z δ u

u Wu ε
 

where  

 ,  and ,j j j j j jZ Y X δ β γ . 

Spatial Autoregressive Model 

When there are no strong a priori theoretical reasons to believe that interdependences 

between spatial units arises either due to the spatial lags of the dependent variables or due 

to spatially autoregressive error terms, the standard approach is to model the system with 

both effects included (Anselin, 2003).The spatial lag model and the spatial error model are 

discussed in the above two subsections separately. By combining these two models, the 

spatial autoregressive model with both the spatial lag and spatial error effects can be 

expressed as (all notations are as defined before): 

(1.24) = + + +Y YΒ XΓ WYΛ U  

with 

 U WUC Ε . 

Combining equation (1.11) and (1.22) gives the system in its more compact form as (all 

notations are as expressed before): 

(1.25) 
,y Β y Γ x u

u C u ε
. 
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Assuming that  and nG nGI Β I C  are nonsingular matrices with 1,  j = 1,...,Gj , the 

system in equation (1.25) can be expressed in its reduced form as: 

(1.26) 

1

1

,
nG

nG

y I Β Γ x u

u I C ε

. 

Since the innovations are assumed to be independently and identically distributed, that 

is,  and nE Eε 0 εε Σ I , the means and variance covariance matrices of the 

disturbance terms u,  and the endogenous variables y, are given, respectively, as follows: 

(1.27) 

11

11 1

0;        

;      

nG n nG

nG nG nG

E E

E E

u

y u

u uu Ω I C Σ I I C

y I B Γ x yy Ω I B Ω I B

. 

The endogenous variables as well as the disturbances are, therefore, seen to be 

correlated both spatially and across equation, and furthermore will generally be 

hetroskedastic. In this study, the spatial units are counties and each county has only a small 

number of neighbors and, in turn, it is only a neighbor to a small number of counties. The 

weights matrix W is a row standardized sparse matrix and hence the row and column sums 

of the weights matrix is bounded in absolute values. It is also assumed 

that
1

,  j = 1,...,G and n j nI W I B are bounded uniformly in absolute values, which 

imply that 
u

Ω and 
y

Ω are also bounded uniformly as it can easily be seen from the relations 

in equation (1.27). Thus, the degree of correlation between the elements of u and y are 

limited, which is a necessary condition for all large sample analysis (see Kelejian and 

Prucha, 1998, 2004). 
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  By imposing exclusion restrictions on the system in equation (1.24), the spatial 

autoregressive model can also be reformulated as follows (all notations are as defined 

before): 

(1.28) 
,

,     1,...,

j j j j

j j j j j G

y Z δ u

u Wu ε
 

where 

 , ,  and , ,j j j j j j j jZ Y X WY δ β γ λ . 

Following Kelejian and Prucha (2004), a set of instruments are utilized to estimate the 

spatial models in equations (1.11), (1.23) and (1.28) using the instrumental variable 

techniques. Let N denote the n by p matrix of those instruments and as suggested by 

Kelejian and Prucha (2004), N will be chosen as a subset of the linearly independent 

columns of (X, WX, …, W
s
X), where s is an integer such that 1 2s .  It is assumed that 

the elements of N are uniformly bounded in absolute value. Besides, N is full column rank 

non-stochastic instrument matrix with the following properties: 

1) lim ,  where  is a finite and nonsingular matrix

2) lim ,  where  is a finite matrix which has full column rank, j = 1,...,G

3) lim ,  where  is a finite m

j j

j j

NN NN
n

j

NZ NZ
n

j

NWZ NWZ
n

n

E

n

E

n

N N
Q Q

N Z
Q Q

N W Z
Q Q

1 1

atrix which has full column rank, j = 1,...,G

4) lim  has a full column rank, j = 1,...,G

5) lim ,  where  is a finite and nonsingular matrix, j = 1,...,

j j

n j j

NZ j NWZ
n

n j n j

n

n

n

N I W Z
Q Q

N I W I W N
Φ Φ G

Assuming that the matrix of exogenous (nonstochastic) variables X has full column rank, 

properties 1 and 2 are important to ensure the consistency of the initial two stage least 
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squares estimators. Property 2 also ensures that the instruments N allow the identification 

of the regression parameters 
jδ in equations (1.11), (1.23) and (1.28). Note that the 2SLS 

estimator for the parameters of the models in each of these equations is a generalized 

moments estimator corresponding to the moment conditions jE N u 0 . 

Let j j j j j j j j ju δ y Z δ u Z δ δ , then the condition that 
jNZQ has full column 

rank implies that lim lim
j j j

j j
n n

E E

n n

N u δ N Z
δ δ is zero if and only 

if
j jδ δ .Thus fulfillment of the rank condition for 

jNZQ ensures that the instruments N 

identify the true parameter vector 
jδ , j = 1,…,G, and the objective function is uniquely 

maximized at 
j jδ δ , at least in the limit. 

           Properties 3 and 4 are important in ensuring the consistency of the generalized two 

and three stage estimators, which are based on a Cochrane-Orcutt-type transformation of 

the models. Property 5 is used in deriving the limiting distribution of the initial two-stage 

least squares estimator from the untransformed model (see Kelejian and Prucha (2004) for 

details and proofs). 

2.2 Spatial Dependence in Simultaneous-Equations Panel Data Models 

When data is available across space and over time, spatial dependence can be incorporated 

into the standard simultaneous equations panel data models in a straightforward way.  

Spatial lag dependent variables, for example, can be written as follows (all notations are as 

given before):  

(1.29) y Zδ u   

where 
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1 1 1 1

2 2 2 2

        

       
;    diag ;    ;      

            

         

j

G G G G

and

y Z 0 δ u

y 0 Z 0 δ u
y Z Z δ u

y 0 Z δ u





     



. 

Note that  yj  is  nT x 1 vector of observations on the endogenous variable in the jth 

equation, , ,  j j j jZ Y X WY a matrix of dimension j j jnT by G1 -1+K1 G1   

, , ,j j j jδ β γ λ where 
jβ is 

jG1 -1by 1, 
jγ is

jK1 by 1, and
jλ is

jG1 by 1, and 
ju  is nT by 

1 vector of disturbance in the jth equation, for  j = 1, 2, ..., G .For the one-way error 

component model, the disturbance of the jth equation
ju  is given by: 

(1.30) 
j j ju Z μ ω  

where 

 1 2 11 11 1 1,  μ ,μ ,...,μ ,  and , ,..., ,..., ,...,n T j j j nj j j j Tj n j nTjZ I ι μ ω . 

Thus, 

(1.31) 
2 2

jl jljl j l n T n TEΩ u u ζ I J ζ I I  

where 
TI and 

nI are identity matrices with dimensions T and n, respectively, 
Tι is  a vector 

of ones of dimension T,  
TJ is a matrix of ones of dimension T and  denotes Kronecker 

product. 

In this case, the covariance matrix between the disturbances of different equations 

has the same one-way error component form. But, now there are additional cross equation 

variances components to be estimated. When one considers the whole model, the variance-

covariance matrix for the set of G structural equations is given by: 

(1.32) n T n TEΩ uu Σ I J Σ I I  
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where 2

jl
Σ ζ  and 2

jl
Σ ζ are both G x G matrices, and 1 2, ,...., Gu u u u is a 1 x 

nGT vector of disturbances with 
ju  defined in equation (1.30) for j = 1,2,…G. Before 

proceeding, it is helpful to define two matrices, P and H, which are useful in transforming 

the structural equations. Let P be the matrix which averages the observations across time 

for each individual and H be the matrix which obtains the deviations from individual 

means. Thus, 

 

,  where T
n T T

T
nT T n

T

J
I I

T

J
P Z Z Z Z I J J

H I P

1
.  

Now it is possible to transform the stacked system of equations in equation (1.29) 

by  and G GI H I P to get, respectively, 

(1.33)  and y Zδ u y Zδ u
    

 

where Gy I H y


, GZ I H Z


, and Gu I H u


; and Gy I P y


, 

   GZ I P Z


, and Gu I P u


. The W3SLS and B3SLS estimators can be obtained 

by performing 3SLS on these transformed equations using, respectively, 

 andG GI N I N
 

as sets of instruments, where  and N HN N PN
 

. 

Similarly, spatial dependence in the errors can be written as follows:   

(1.34) y Zδ u  

 T n Tu I W u I ι ω  

where 

                                                 
1
 P and H are idempotent, orthogonal and sum to the identity matrix. 
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1 1 1 1

2 2 2 2

        

       
;    diag ;    ;      

            

         

j

G G G G

and

y Z 0 δ u

y 0 Z 0 δ u
y Z Z δ u

y 0 Z δ u





     



 

with ,  j j jZ Y X , ,j j jδ β γ for j = 1,…,G and the other notations as given in 

equation (1.29). 

                In order to facilitate the modeling of spatial error dependence in the context of 

panel data, the data is arranged time wise. Apart from this difference in the arrangement of 

the data, the format is similar to equation (1.29) above.  Now consider the jth equation of 

the system in equation (1.34): 

(1.35) 
j j j jy Z δ u  

    j j T j ju I W u υ  

where   

(1.36) j n T j jυ I ι ω . 

The mean and the covariance of the innovation vector
jυ  can be given by: 

(1.37) 
2 2

0

j j j

j

j j T n n n

E

E
υ

υ

υ υ Ω J I I I
. 

From the second part of equation (1.35) it follows that 

(1.38) 
1

j T n j ju I I W υ . 

Thus, the mean and the covariance of ju can be given as follows: 
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(1.39) 

1 1

1 1

1 1

0

               

               

j j

j

j

j

j j T n j T n j

T n j T n j

T n j n j

E

E
u υ

υ

υ

u

u u Ω I I W Ω I I W

Ω I I W I I W

Ω I I W I W

 

where 
jυ

Ω is as given in equation (1.37). This can easily be extended to the whole model. 

But, first note that the variance-covariance of the innovations for the whole model can be 

given by: 

(1.40) 
1υ

Ω Σ P Σ H  

where 
1 TΣ Σ Σ . 

Thus, the variance-covariance matrix for the set of G structural equations is computed as: 

(1.41) 
1 1

,  for j = 1,...,GT n j n jE
u υ

uu Ω Ω I I W I W . 

Both spatial lag dependence and spatial error dependence can also be incorporated 

into the standard simultaneous equations models in the context of panel data. Recalling 

equations (1.29) and (1.34) the spatial autoregressive panel data model with spatial 

autoregressive disturbances can be formulated as follows (all notations and definitions are 

as expressed before):   

(1.42) 
,

T

y Zδ u

u I W u υ
 

with 

 n Tυ I ι ω   

where 
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1 1 1 1

2 2 2 2

        

       
;    diag ;    ;      

            

         

j

G G G G

and

y Z 0 δ u

y 0 Z 0 δ u
y Z Z δ u

y 0 Z δ u





     



. 

Note that  yj  is  nT x 1 vector of observations on the endogenous variable in the jth 

equation, , ,  j j j jZ Y X WY a matrix of dimension j j jnT by G1 -1+K1 G1   

, , ,j j j jδ β γ λ where 
jβ is 

jG1 -1by 1, 
jγ is

jK1 by 1, and
jλ is

jG1 by 1, and 
ju  is nT by 

1 vector of disturbance in the jth equation, for  j = 1, 2, ..., G . The variance-covariance of 

the innovations and the disturbances for this model are the same to those given in equations 

(1.40) and (1.41), respectively. 

 

3. Estimation Issues in Spatial Simultaneous-Equations Models 

The presence of a combination of feedback simultaneity, spatial autoregressive lag 

simultaneity and spatial cross-regressive lag simultaneity in spatial simultaneous equations 

models creates a number of complications of which the questions of whether or not each 

equation of the model is identified, the choice of estimators and the treatment of 

instruments are the most important ones (Rey and Boarnet, 2004).  The traditional rank and 

order conditions for identification, for example, are not applied if the system is expressed 

as (all notations are as defined before except now B is a matrix of coefficients whose 

diagonal elements are 1):  

(1.43) = + +YΒ XΓ WYΛ U . 

Pre- and post-multiplying the matrix of endogenous variables in equation (1.43) by two 

distinct coefficient matrices leads to two different reduced forms. Thus, this system as it 
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stands does not lend itself to the application of the traditional rank and order conditions for 

checking identification. If the models, however, are viewed as special cases of 

simultaneous equations that are nonlinear in endogenous variables, identification can be 

checked by checking for the following necessary conditions: 

1. All the endogenous variables in the model can be expressed in terms of the 

exogenous variables and the disturbance terms. This condition is fulfilled if 

matrices  and  nG n jI Β I W are nonsingular with 1j , for j = 1, …, G.  

2. The solution of the model for the endogenous variables in terms of the exogenous 

variables and the disturbance terms is unique. This condition is fulfilled if the 

instruments matrix N is selected in such a way that lim
j

n

E

n

N Z
 is a finite matrix 

which has full column rank for j = 1, .., G. 

3. The number of endogenous variables appearing on the right hand side of an 

equation must be less than or equal to the number of exogenous and lagged 

endogenous variables appearing in the model but not in that equations 

It is well known that the presence of endogenous variables on the right hand side of an 

equation in the simultaneous equations system violates the assumption of zero correlation 

between the regressors and the disturbance term upon which the unbiasedness or 

consistency of ordinary least squares (OLS) estimators are based.  For the same reason, the 

presence of the endogenous variables in their lagged form on the right hand side of an 

equation leads to biased and inconsistent OLS estimates. Besides, the existence of a 

spatially autoregressive error term in an equation leads to the inconsistency of OLS. Hence, 

an alternative estimation method must be used in order to obtain unbiased and consistent 
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estimator for the parameters of the spatial simultaneous equations models. One such an 

approach is the instrumental variables procedure suggested in Kelejian and Prucha (2004). 

3.1. Cross-Sectional Data Setting 

Kelejian and Prucha (2004) suggest limited and full information instrumental variable 

estimator for the parameters of a spatial simultaneous equation model and derive the 

limiting distribution of those estimators. In the case of limited information (single equation) 

estimation, they proposed a three step generalized spatial two-stage least squares (GS2SLS) 

procedure to estimate the unknown parameters in the jth equation of the model in equation 

(1.24).  The first step consists of the estimation of the model parameter vector
jδ  in 

equation (1.28) by two-stage least squares (2SLS) using the instruments N, where N is 

defined in reference to equation (1.28) above.  The resulting 2SLS estimator is given by: 

(1.44) 
1ˆ

j j j j jδ Z Z Z y  

where , ,
j N j j j

Z P Z Y X WY with , ,  jj N j N jY P Y WY P WY and 
-1

 =  NP N N N N  

is a projection matrix. Although ˆ
jδ is consistent estimator of

jδ ,it does not utilize 

information relating to the spatial correlation of the disturbance terms. These 2SLS 

estimates are used to compute estimates for the disturbances uj which in turn are used to 

estimate the autoregressive parameter
j
 in the second step of the procedure. The resulting 

2SLS residuals are hence given by: 

(1.45) ˆ
j j j ju y Z δ . 

In the second step, Kelejian and Prucha (2004) used the generalized moments procedure to 

estimate the spatial autoregressive parameter of the disturbances of the jth equation, for j = 
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1,…, G, of the model in equation (1.28). Note that from the relation in equation (1.28) we 

have: 

(1.46) 
j j j ju Wu ε  

and pre-multiplication by the weights matrix W gives: 

(1.47) 2

j j j jWu W u Wε . 

The following three-equation system is obtained from the relationships between equations 

(1.46) and (1.47):  

(1.48)    

2

2 2 2

2

2
2

2

                2

2

               

j j j jj j j j

j j

j j j jj j j j

j j

j j j j
j jj jj j

j j

n n n n

n n n n

n n n n

Wu Wu u Wuε ε u u

W u W u W u WuWε Wε Wu Wu

u W u Wu Wu
Wu W uu Wuε Wε

 

Taking expectations across equation (1.48):  

(1.49)   

2

2 2 2

2

2
2

2

                2

2

               

j j j jj j j j

j j

j j j jj j j j

j j

j j j j
j jj jj j

j j

n n n n

E
n n n n

n n n n

Wu Wu u Wuε ε u u

W u W u W u WuWε Wε Wu Wu

u W u Wu Wu
Wu W uu Wuε Wε

 

yields: 



25 

 

(1.50)    

2

2

2 2 2

2 2

22
2

2

2

2

0

j j j jj j

j j

j

j j j jj j

j j j

j j j jj
j jj j

j j

n n n

tr
E

n n n n

tr

n

n n n

Wu Wu u Wuu u

W u W u W u WuWu WuW W

W
u W u Wu Wu

Wu W uu Wu

 

and after rearranging: 

(1.51)      

2 2

2 2 2

2 2

2                                               

2                             

j j
j j

j j j j j

j j j j
j j

j j j

j j

EE

n n
n

E E
tr

E
n n n

n

Wu Wuu Wu
u u

W u Wu W u W u
Wu Wu W W

u Wu 2 2

2                    0
j j j j j j

j j

n

E E

n n

u W u Wu Wu Wu W u

 

 

(1.52)      

2 2 2

2                                               1

2                            

j

j j
j j

j j

j j j j
j j

j j
j

EE

n n
n

E E
tr

E
n n n n

E
n

Wu Wuu Wu
u u

W u Wu W u W u
Wu Wu W W

u Wu
u





2

2

2 2
 

                    0
j

j

j

j

j

j j j j jE

n n

W u Wu Wu Wu W u



 

Thus, the system in equation (1.52) can be rewritten as (j = 1,…,G): 

(1.53) 
1 j j j j j jα α  
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The parameter vector  
2 2

, ,j j j jα would be completely determined in terms of the 

relation in equation (1.53) if 
j
and

j
were known. Note that

j
and

j
are not observable. 

Following the suggestions in Kelejian and Prucha (2004), however, the following 

estimators for 
j
and

j
in terms of sample moments can be defined as: 

(1.54) 

2 2 2

2

, ,

,

2                                     -                 n

1
2                            -       tr

j j j j j j

j

j j j j

j j j j j

j j j j

n

n

u u Wu Wu u Wu

ο

u Wu Wu Wu

Ο W u Wu W u W u WW

u W u Wu Wu

     

   

   

    2
       -              0j jWu W u 

. 

Thus, given the estimates in equation (1.54), the empirical form of the relationship in 

equation (1.53) can be given by: 

(1.55) 
j j j jο Ο α ξ . 

Since
jο  and

jΟ  are observable and 
jα  is vector of parameters to be estimated, 

jξ can be 

viewed as a vector of regression residuals. Thus, the second step estimators of
j
 and 2

j  , 

say, ˆ
j
and

2ˆ
j , are nonlinear least squares estimators defined as the minimizer of:   

(1.56) 
2 2

2 2

j j

j j j j j j

j j

ο Ο ο Ο  

or 
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2 2 2

2 2

ˆ ˆ,  argmin

j j

j j j j j j j j

j j

ο Ο ο Ο . 

In the third step of the procedure a Cochrane-Orcutt type transformation is applied to the 

model in equation (1.28). More specifically, let:  

 ( )  and ( )j j j j j j j j j jy y Wy Z Z WZ . 

Then, equation (1.28) becomes: 

(1.57) ( ) ( )j j j j j jy Z δ ε  

If 
j
were know we could perform 2SLS on equation (1.57) to obtain the generalized 

spatial two-stage least squares (GS2SLS) estimator for
jδ . That is: 

(1.58) 
1ˆ ( ) ( ) ( ) ( )j j j j j j j j jδ Z Z Z y  

where ( )j jZ =
NP ( )j jZ and

-1
 =  NP N N N N .But, since in practical applications

j
  is 

not known, it is replaced with its estimate as defined in equation (1.56) and estimate the 

model in equation (1.58) using 2SLS. The resulting estimator is termed as the feasible 

GS2SLS and is given by: 

(1.59) 
1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

F

j j j j j j j j jδ Z Z Z y  

where ˆ( )j jZ =
NP [ ˆ

j j jZ WZ ] and ˆ ˆ( )j j j j jy y Wy . 

The three step GS2SLS procedure is applied in estimating the parameters of spatial 

simultaneous equation models when the spatial dependence is either spatial error 

dependence or both spatial error dependence and spatial lag dependence. When the spatial 
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dependence is only spatial lag type and if the disturbances are white noise, then, the second 

step and consequently the third step are not required. 

One of the limitations of the limited information (single equation) estimation 

technique is that it does not take into account the information provided by the potential 

cross equation correlation in the innovation vectors
jε . In order to use the information from 

such cross equation correlations, it is important to stack the equations given in equation 

(1.56) as follows: 

(1.60) ( ) ( )y Z δ ε   

where

1 1 1 1 1( ) ( ) ,..., ( ) , ( ) ( ) , ,...,  = ,...,
G

G G j j j G Gdiag andy y y Z Z

Recall from equation (1.26) that  and nE Eε 0 εε Σ I . Assuming that and Σ  

were known, equation (1.60) could be estimated using the instrumental variable technique. 

In that case, the resulting systems instrumental variable estimator of δwould be the 

generalized spatial three-stage least squares (GS3SLS) estimator which can be given by (all 

notations as defined before): 

(1.61) 
1

1 1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )n nδ Z Σ I Z Z Σ I y . 

Since in practical applications and Σ are not known, their estimators are required to 

obtain the feasible estimator forδ .The generalized moments estimators for
j
and

2

j  are 

defined in equation (1.56).  Note that
2

j  is the jth diagonal element ofΣ . Besides, a 

consistent estimator for Σ can be derived by combining equations (1.57) and (1.59) as: 

(1.62) 
2 1

ˆ ˆ ˆ , , 1,...,jl j l j l G
n

ζ ε ε  
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where ˆˆ ˆˆ ( ) ( ) F

j j j j j jε y Z δ . Then, the G by G matrix whose (j,l)th element is 2ˆ
jlζ  defines 

a consistent estimator forΣ  denoted by Σ̂ . Substituting Σ  with Σ̂ in equation (1.61) gives 

the feasible generalized spatial three-stage least squares (FGS3SLS) estimator forδ . That 

is: 

(1.63) 
1

1 1ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )F

n nδ Z Σ I Z Z Σ I y . 

 

 

 

 

 

3.2.Panel Data Setting 

The same procedure is also applicable to the panel data case with minor change in the 

arrangement of the data set and some changes in notations. Now, recall the spatial 

autoregressive panel data model with spatial autoregressive disturbances, from equation 

(1.42): 

(1.64) 
,

T

y Zδ u

u I W u υ
  

where 

 n Tυ I ι ω . 

As it is evident from equations (1.37)-(1.41), the variance-covariance 

matrix
uΩ depends on 2 2

1,  and ζ ζ . Thus, a feasible estimator for the parameter of the 

model requires consistent estimators of 2 2

1,  and ζ ζ . To this end, generalized moments 

estimators of 2 2

1,  and ζ ζ are defined in the following subsection. These generalized 

moments estimators generalize the generalized moments estimators given in Kelejian and 

Prucha (2004) for the case of a single cross section. First, the generalized moments 
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estimators of 2 2

1,  and ζ ζ in context of single equation are defined and then the procedure 

is generalized to system of simultaneous equations model.  

Consider the jth equation of the system in (1.64). The generalized moments 

estimators of 2 2

j 1,  and j jζ ζ are defined in terms of six moments conditions. These six 

moments conditions, for 2T , are given as follows:  

(1.65) 

2

2

1
                                         

1

1 1
    

1

1
                           

1

1
                                                    

j j j

T j T j j

j T j

j j

E
n T

E tr
n T n

E
n T

E
n

υ Hυ ζ

I W υ H I W υ ζ WW

υ H I W υ 0

υ Pυ
2

1

2

1

        

1 1
                  

1
                                        

j

T j T j j

j T j

E tr
n n

E
n

ζ

I W υ P I W υ ζ WW

υ P I W υ 0

. 

Note that since
jυ  are not observable,

1

1
j jE

n T
υ Hυ and 

1
j jE

n
υ Pυ do not represent the 

unbiased analysis of variance estimators of 
2 2

j 1 and jζ ζ , respectively. The 

innovations
jυ can, however, be expressed in terms of the disturbances and the disturbances 

in turn can be substituted by their estimated values which are observable. Thus, using the 

relations in the jth equation of (1.64), let:  

(1.66) 
2

j j j T j

T j T j j T j

υ u I W u

I W υ I W u I W u
. 

 Substituting the expressions in (1.66) for
jυ and T jI W υ into (1.65) gives the moments 

conditions in (1.65) in terms of the disturbances. That is: 
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(1.67)      

2

2 2 2

2

1
                                   

1

1 1

1

1
                    

1

1

j j T j j j T j j

T j j T j T j j T j j

j j T j T j j T j

j j T j j j

E
n T

E tr
n T n

E
n T

E
n

u I W u H u I W u ζ

I W u I W u H I W u I W u ζ WW

u I W u H I W u I W u 0

u I W u P u
2

1

2 2 2

1

2

                                                 

1 1
            

1
                               

T j j

T j j T j T j j T j j

j j T j T j j T j

E tr
n n

E
n

I W u ζ

I W u I W u P I W u I W u ζ WW

u I W u P I W u I W u 0

. 

After rearranging, this yields a system of six equations that can be expressed as:  

(1.68) 0j j j
 

where  

1

1

1

j j

T j T j

j T j

j

j j

T j T j

j T j

n T

n T

n TE

n

n

n

u Hu

I W u H I W u

u H I W u

u Pu

I W u P I W u

u P I W u

, 
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2 2 2

2                                                               1               0
1 1

2                      
1 1

T j T j
j T j

T j T j T j T j

j

EE

n T n T

E E

n T n T

I W u H I W uu H I W u

I W u H I W u I W u H I W u

2 2

              0
1

        0                0
1 1

2                                                   

j T j T j T j T j T j

T j T j
j T j

tr

n T

E E

n T n T

EE

n n

W W

u H I W u I W u H I W u I W u H I W u

I W u P I W uu P I W u

2 2 2

2 2

               0               1

2                                    0    

         0     

T j T j T j T j

j T j T j T j T j T j

E E
tr

n n n

E E

n n

I W u P I W u I W u P I W u
W W

u P I W u I W u P I W u I W u P I W u

          0

, and 

2

2

2

1

j

j

j

j

j

.  

 

The system in (1.68) consists of six equations involving the second moments 

of
2

,  and  j T j T ju I W u I W u .However, since ,j T ju I W u
2

and  T jI W u  

are not observable, the generalized moments estimators are defined in terms of sample 

moments. These sample moments are obtained by replacing the
ju ’s in (1.68) by their 

estimated values (
ju ), where the estimated disturbances are computed as:  

(1.69) ˆ
j j j ju y Z δ  
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where
jy  and 

jZ  are defined in equation (1.42) and ˆ
jδ is an estimator of

jδ  obtained by 

estimating the regression model in equation (1.64) by two-stage least squares(2SLS) using 

the instruments N.  After substituting 
ju by 

ju  the system in (1.68) becomes the sample 

analogue to (1.68) and can be expressed as:  

(1.70) j j j j jΟ α ο α  

where 

 

1

1

1

j j

T j T j

j T j

j

j j

T j T j

j T j

n T

n T

n TE

n

n

n

u Hu

I W u H I W u

u H I W u

ο

u Pu

I W u P I W u

u P I W u

 

 

 

 

 

 

, 
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2 2 2

2                                                             1                0
1 1

2                  
1

T j T j
j T j

T j T j T j T j

j

EE

n T n T

E E

n T n

I W u H I W uu H I W u

I W u H I W u I W u H I W u

Ο

  

   

2 2

                  0
1 1

      0                0
1 1

2                                    

j T j T j T j T j T j

T j T j
j T j

tr

T n T

E E

n T n T

EE

n n

W W

u H I W u I W u H I W u I W u H I W u

I W u P I W uu P I W u

     

  

2 2 2

2

                             0               1

2                                      0    

   

T j T j T j T j

j T j T j T j T j

E E
tr

n n n

E E

n

I W u P I W u I W u P I W u
W W

u P I W u I W u P I W u I W u P I

   

     2

,

       0               0
T j

n

W u

 

 

2

2

2

1

j

j

j

j

j

α , and j jα is a vector of residuals.  

 

 

Now, it is possible to define the unweighted and weighted generalized moments 

estimators of 
2 2

j 1,  and j jζ ζ . When equal weights are given to the moments conditions, 

the generalized moments estimators of
2 2

j 1,  and j jζ ζ , say, 
2 2

1
ˆ ˆ ˆ,  and j j jζ ζ  respectively, 

are defined as the unweighted nonlinear least squares estimators corresponding to (1.70). 

More formally, 
2 2

1
ˆ ˆ ˆ,  and j j jζ ζ are defined as the nonlinear least squares estimators that 

minimize:   
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(1.71) 
2 2 2 2 2 2

1 1

2 2

1 1

, , , ,

j j

j j j j j j j j j j j j j j

j j

ξ ξ ο Ο ο Ο   

or 

 

2 2 2 2

1

2 2

1 1

2 2

1 1

ˆ ˆ ˆ, ,  argmin ,

                                         1,1 , 0, , 0,

j j

j j j j j j j j j

j j

j j jc c

ο Ο ο Ο
. 

When the moments conditions are weighed by a weighing matrix, say,Φ , the generalized 

moments estimators of 
2 2

j 1,  and j jζ ζ , however, are defined as the nonlinear least squares 

estimators that minimize:  

(1.72)           
2 2 1 2 2 2 1 2

1 1

2 2

1 1

, , , ,

j j

j j j j j j j j j j j j j j j j

j j

ξ Φ ξ ο Ο Φ ο Ο   

or 

 

2 2 2 1 2

1

2 2

1 1

2 2

1 1

, ,  argmin ,

                                         1,1 , 0, , 0,

j j

j j j j j j j j j j

j j

j j jc c

ο Ο Φ ο Ο  
 

 

where 
2 2

1,  and j j j
   are the weighted generalized moments estimators of 

2 2

j 1,  and j jζ ζ  

respectively and jΦ  is the consistent estimator of jΦ  with jΦ  representing the variance 

covariance matrix of the sample moments at the true parameter values.  Recall that in this 
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research the sample moments at the true parameter values are given by the left hand side 

expressions on equation (1.65) with the expectations operator suppressed. Thus, 
jΦ  can be 

expressed by:  

(1.73)       

4

4

1

          2             2tr                            

        
2tr     2tr      tr1

            

                      tr

j

j

j

n

T
n n n

n

W W
0

ζ
W W W W0 W W W WW W

Φ

0 ζ
W W W W

0
+

   tr
n

WW W W

 

where
4

jζ and
4

1 jζ are as defined in equation (1.71) .When  
4

jζ and
4

1 jζ are replaced by their 

consistent estimators, say, 4

jζ and 4

1 jζ respectively, equation (1.73) becomes : 

  

(1.74)     

4

1

4

1

          2             2tr                            

        
2tr     2tr      tr1

            

                      tr

j

j

j

n

T
n n n

W W
0

ζ
W W W W0 W W W WW W

Φ

0 ζ
W W

0





+

   tr
n n

W W WW W W

 

jΦ  is consistent estimator of 
jΦ  provided the estimators for 2 2

j 1 and jζ ζ are consistent. 

Now, consider once again the jth equation of the system given in (1.74) and recall (1.39). 

If
2 2

j 1,  and j jζ ζ were known, then the generalized spatial two-stage least squares 

(GS2SLS) estimator of 
jδ can be given by:  
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(1.75)                  

1
1 2 2 1 2 2

1 1

1
1

1 1
2 2

1

1
1 1

2 2

1

ˆ ( , , ) ( , , )

   ( , )

                    ( , )

   

j j

j

j

j j u j j j j j u j j j j

j j j T n j n j j

j j j T n j n j j

υ

υ

δ Z Ω ζ ζ Z Z Ω ζ ζ y

Z Ω ζ ζ I I W I W Z

Z Ω ζ ζ I I W I W y

1
1 2 2 1 2 2

1 1
  ( ) ( , ) ( ) ( ) ( , ) ( )

j jj j j j j j j j j j j jυ υ
Z Ω ζ ζ Z Z Ω ζ ζ y

 

where ( )j jZ =
NP ( )j jZ with ( )

j j T n j j
Z I I W Z ,

-1
 =  NP N N N N  

,and ( )
j j T n j j

y I I W y . But, since in practical applications 2 2

j 1,  and j jζ ζ are 

not known, their estimators as defined in (1.71) or (1.72) are used instead. The resulting 

estimator is termed as feasible generalized spatial two-stage least squares estimator and is 

given by:  

(1.76)         
1

1 2 2 1 2 2

1 1
ˆ ( ) ( , ) ( ) ( ) ( , ) ( )

j j

F

j j j j j j j j j j j j jυ υ
δ Z Ω ζ ζ Z Z Ω ζ ζ y       . 

The variables ( )j jy and ( )j jZ can be viewed as the result of a spatial Cochrane-Orcutt 

type transformation of the jth equation of the model in (1.74).  That is, pre-multiplication of 

the first and the second parts of the jth equation of (1.74) by T n jI I W  gives (j = 

1,…, G):  

(1.77) ( ) ( )j j j j j jy Z δ υ . 

One of the limitations of this estimator in (1.75), however, is that it does not take 

into account the information provided by the potential cross equation correlation in the 

innovation vectors
jυ . In order to use the information from such cross equation 

correlations, it is important to stack the equations given in (1.77) as follows:  

(1.78) ( ) ( )y Z δ υ  
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where

1 1 1 1 1( ) ( ) ,..., ( ) , ( ) ( ) , ,...,  = ,...,
G

G G j j j G Gdiag andy y y Z Z

Note that the mean of the innovation vector υ  is zero. Recall also from (1.40) that   

1E
υ

υυ Ω Σ P Σ H , where 
1 ,   TΣ Σ Σ

2   ,
jl

with Σ  

2 2 2 2

1 1
 and hence 

jl jl jl jl
TΣ Σ all G by G matrices. Assuming that 

 and 
υ

Ω were known, the system in (1.78) could be estimated using instrumental variable 

estimation technique. The resulting systems instrumental variable estimator of δwould be 

the generalized spatial three-stage least squares (GS3SLS) estimator and can be expressed 

as:  

(1.79) 
1

1 2 2 1 2 2

1 1
ˆ ( ) ( , ) ( ) ( ) ( , ) ( )

υ υ
δ Z Ω ζ ζ Z Z Ω ζ ζ y . 

However, since  and 
υ

Ω  are not known in practical applications, their estimators are 

required to obtain a feasible estimator forδ . The generalized moments estimator for  can 

be obtained from (1.72) and since  
υ

Ω is composed of 2 2

1 and ζ ζ its estimator can also be 

obtained from (1.72). Besides, consistent estimators of 2 2

1 and ζ ζ  and hence of  
υ

Ω can be 

derived by combining (1.76) and (1.77) as (j, l =1,…,G): 

(1.80) 

2

2

1

ˆ( ) ( ) ( ) ( ) 1

ˆ( ) ( ) ( ) ( )

F F

jl j j j j j l l l l l

F F

jl j j j j j l l l l l

n T

n

ζ y Z δ H y Z δ

ζ y Z δ P y Z δ

   

   
. 

Then, the G by G matrix whose (j,l)th element is 
2

jlζ defines a consist estimator for 

Σ denoted by Σ and the G by G matrix whose (j,l)th element is
2

1 jlζ defines a consistent 

estimator for 
1Σ denoted by

1Σ
 .Thus,   
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(1.81) 1υ
Ω Σ H Σ P   . 

Replacing  and 
υ

Ω by 2 2

1 and ( , )
υ υ

Ω Ω ζ ζ   in (1.79), hence, yields the feasible 

generalized spatial three-stage least squares (FGS3SLS) estimator which can be expressed 

as:  

(1.82) 
1

1 2 2 1 2 2

1 1
ˆ ( ) ( , ) ( ) ( ) ( , ) ( )F

υ υ
δ Z Ω ζ ζ Z Z Ω ζ ζ y       . 

4. Specification Tests 

 

Specification tests form one of the most important areas of research in econometrics 

(Hausman, 1978). Once the system of simultaneous equations is specified, there is an 

opportunity to test both coefficient restrictions and asymptotic orthogonality assumptions. 

When there are more instruments than needed to identify an equation, a test can be done to 

investigate whether the additional instruments are valid in the sense that they are 

uncorrelated with the error term.  This is commonly known as test of the overidentifying 

restriction.  To explain this, consider the jth equation of the system of simultaneous 

equations given in this study:  

(1.83) 
j j j j j j

y = Yβ X γ u  

where Yj is a vector of Gj-1 included right-hand endogenous variables, Xj is a vector of kj 

included predetermined variables, uj is disturbance term, and the vector of Kj excluded 

predetermined variables is given by X*j. 

 Anderson and Rubin (1950) was the first to develop the procedure for testing the 

overidentifying restriction based on the asymptotic distribution of the smallest 

characteristic root (
j

λ ) derived from LIML estimation.  Their likelihood ratio test statistic 

is base on n(
j

λ -1) which under the null hypothesis is distributed as Chi-squared with (Kj-



40 

 

(Gj-1)) degree of freedom which is equal to the number of overidentifying restrictions.. 

That is,   

(1.84) n2

j j j
LR χ K G 1 λ 1  

where n is the sample size and all other notations are as defined above. A large value for 

LR is an indication that there are exogenous variables in the model that have been 

inappropriately omitted from the jth equation. This test statistic, however, is difficult to 

compute. Hausman (1983) proposed an alternative test statistic based on Lagrange 

multiplier principle which is asymptotically equivalent but easier to compute. This test 

statistic is obtained as 2

unR , where n is the sample size and 2

uR is the usual R-squared or the 

uncentered R-squared of the regression of residuals from the second-stage equation on all 

included and excluded instruments. In other words, simply estimate equation (1.83) by 

2SLS, GMM, LIML or any efficient limited-information estimator and obtain the resulting 

residuals, ˆ
ju . Then, regress these on all instruments and calculate 2

unR . The statistic has a 

limiting chi-squared distribution with (Kj-(Gj-1)) degree of freedom which is equal to the 

number of overidentifying restrictions, under the assumed specification of the model. 

  One potential source of misspecification in spatial econometric models comes 

from spatial autocorrelation in the dependent variable or in the error term or in both.  

Anselin and Kelejian (1997) proposed Moran’s I statistics based on residuals that are 

obtained from an instrumental variable (IV) procedure such as 2SLS in a general model 

that encompasses endogeneity due to feedback simultaneities as well as spatial 

autoregressive /or cross-regressive lag simultaneities. Following Anselin and Kelejian 

(1997), this statistic is specified as:  
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(1.85) *

0

ˆ ˆ

ˆ ˆ

u Wu
I n

S u u
 

where n is the sample size, û  is the IV residuals, W is the spatial weights matrix, and S0 is 

the usual normalizing factor given by 

0

n n

ij

i j

S w . 

Note that for a row standardized spatial weights matrix, S0 is equal to n because each row 

sums to one. Hence equation (1.85) is simplified to:   

(1.86) * ˆ ˆ

ˆ ˆ

u Wu
I

u u
. 

Anselin and Kelejian (1997) shows that  

 
1

22 0,
D

n I N  

where  

(1.87) 2 2

2 2 2

1 1

4

2 u

S
A

S S
 

with S1 and S2 finite constants such that  

 1 lim
n n

ij
n i j

S w n , and 

 2  lim
n

S tr W W W W n ,  

2

u
 is error variance, and  

 
1

1 1lim .j j X j jA p n u WZ n Z P Z n Z W u  

Replacing S1, S2, A by their finite sample counterparts, respectively 

 1
ˆ

n n

ij

i j

S w n  

 2
ˆ  S tr W W W W n  
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1

1 1ˆ .j j X j jA n u WZ n Z P Z n Z W u  

and 2

u
 by its consistent estimator, 2ˆ ˆ ˆ

u u u n  in equation (1.87) would give a consistent 

estimator for 2 , say 2ˆ . 

With 2 replaced by its consistent estimator 2ˆ , an asymptotic test can be constructed such 

that the null hypothesis of no spatial autocorrelation may be rejected at the  level of 

significance if  

 
1 2

ˆ

n I
z  

where z  is the value of the standard normal variate corresponding to . 
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