










model relative to the κ ¼ 29=6 (red) and κ ¼ 7=3 (blue). So
long as the bend frequency is high enough (signal type IV),
and the amplitude large enough (subtypes b,c), it is possible
to distinguish between the different hardening mechanisms.

E. Learning from a nondetection

Information is gained from any measurement that leads
to a posteriori distribution that is different from the prior
distribution. In Fig. 8, we show the prior and posterior
distributions of A; fb, and κ, as above, but now recovered
from running on a signal that contains only noise. These
distributions are shown for three different choices of

amplitude prior—model A, model B, and uniform in A.
It is clear that these distributions are significantly altered
from the priors, showing that we can learn about astro-
physical model space even lacking a GW detection.
The primary result from PTA searches for a stochastic

GW background is typically quoted as an upper limit on the
amplitude A. Unsurprisingly, for the signal analyzed in
Fig. 8, the 95% upper bound on A depends on the choice of
prior. For model A, A95% ¼ 9.95 × 10−15; for model B,
A95% ¼ 1.99 × 10−15; and finally, for a uniform prior in A,
A95% ¼ 6.83 × 10−15. We see, then, that model A leads to
the most conservative upper bounds. Note that these

FIG. 6 (color online). Prior and posterior distributions for the three GW parameters, A; fb, and κ, recovered using four different
amplitude priors. Along the diagonal are plotted the one-dimensional prior and posterior distributions for (from top) A, fb, and κ. The off
diagonals show the 2-d posteriors. The priors used are, clockwise from top left: model A, model B, uniform in lnA, and uniform in A.
The simulated signal had A ¼ 4.0 × 10−15, fb ¼ 10−8 Hz, and κ ¼ 10=3. It is clear the prior that is uniform in A leads to strong biases in
the recovered parameter values. Thus, although this prior is a good choice for producing conservative upper limits, it has limited utility in
parameter estimation studies.
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bounds are for spectral models that allow for a bend in the
spectrum; the limits assuming purely GW-driven evolution
are almost an order of magnitude lower. We will now
explore precisely how much information we gain by a
nondetection for the two astrophysical models.
To quantify exactly how much we can learn in this case,

we compute the information gain (in bits) as the Kullback-
Leibler (KL) divergence [56,57] between the posterior and
prior distributions. If the posterior matches the prior, we have
learned nothing from the data. The larger the difference, the
more we have learned. The KL divergence between the
posterior, pð~xjdÞ, and the prior, pð~xÞ, is given by

KLðpð~xjdÞjjpð~xÞÞ ¼
Z

pð~xjdÞ log
�
pð~xjdÞ
pð~xÞ

�
d~x: ð27Þ

This quantity can be calculated via thermodynamic integra-
tion, and is equal to

KLðpð~xjdÞjjpð~xÞÞ ¼ Eβ¼1½lnpðdj~xÞ� − lnpðdÞ; ð28Þ

which is the expectation value of the log likelihood minus
the log evidence. For the case illustrated in Fig. 8, the KL
divergences between posterior and prior are KLmodel A ¼
308.1� 0.4 bits and KLmodel B ¼ 304.6� 0.4 bits. These
numbers encode the information we have learned about both
the signal and the noise parameters. One way to get a rough
estimate of what we learned about the signal model is to
compare the information gain for the signal and noise model
to the information gain for the noise model alone, which
comes out to KLnoise model ¼ 301.2� 0.4 bits, suggesting an
information gain of ∼7 bits for model A and ∼3 bits for
model B. To properly isolate the information gained about
the astrophysical models, we need to perform the integral in

Eq. (27) over only the prior and posterior of the signal
parameters A; fb, and κ. The functional form of the prior
distributions is known, so this presents no difficulty. For the
posterior distributions, we perform a three-dimensional
kernal density estimation smoothing of the posterior dis-
tributions derived from our Markov chains. The kernal
density estimation is applied to chain samples that are
mirrored at the prior boundaries to reduce edge effects.
We then use these smoothed distributions to numerically
integrate Eq. (27). We find that, for model A the information
gain for the spectral model is KL ¼ 1.5� 0.08 bits, while
for model B the information gain is KL ¼ 0.7� 0.04 bits.
These numbers are significantly smaller than the crude
estimate obtained by taking the difference between the noise
and signal models, but this is not surprising—we know that
there are significant correlations between the noise param-
eters and the signal parameters, and the information measure
is not additive. While these information gains are not large,
they show that the posterior and prior distributions are
measurably different, and that we begin to learn about the
astrophysical models driving the SMBH mergers even
before a detection is made. As a point of comparison, the
information gain for model A is equal to the information
gained about cosmological models in going from the 7 year
Wilkinson Microwave Anisotropy Probe (WMAP) data set
to the 9 year data set, but is significantly less than the 30 bits
gained in going from the 9 year WMAP maps to the higher
resolution Planck maps [58].
As the signal-to-noise ratio grows, the information gain

grows. For the strong signal examples shown in Fig. 6, the
information gains are KL ¼ 3.1� 0.2 bits for model A and
KL ¼ 4.8� 0.2 bits for model B. In this instance we learn
more about model B since the amplitude of the simulated
signal is large compared to what is predicted by the model,
so there is a greater difference between the prior and
posterior distributions.
An alternative way of seeing that we learn something

about the astrophysical models from a nondetection is to
compare the evidence for models that include a bend in the
spectrum to those that assume a purely GW-driven evolu-
tion. For the noise-only data sets used to generate Fig. 8, the
log Bayes factor in favor of there being a bend in the
spectrum is ln BF ¼ 18.7� 0.5 for the model A amplitude
prior and lnBF ¼ 3.5� 0.5 for the model B amplitude
prior. These results say that a nondetection of GWs by a
PTA with the sensitivity of our simulated array would rule
out purely GW-driven evolution of the these merger
models. Scaling back the sensitivity of the simulated array
by a factor of two (increasing the timing noise from 200 to
400 ns) to get something closer to the NANOGrav
sensitivity in 2015, yields ln BF ¼ 5.6� 0.5 for the model
A amplitude prior and lnBF ¼ 1.4� 0.4 for the model B
amplitude prior. At this lower sensitivity there would still
be strong evidence for non-GW-driven evolution for model
A, but not for model B.

FIG. 7 (color online). The Bayes factors between a GW model
with free parameters A and fb and fixed κ ¼ 10=3, and models
with fixed κ ¼ 29=6 (red) and κ ¼ 7=3 (blue). The simulated
signals (described in Table I) all had κ ¼ 10=3. The amplitude
prior used here was the model A prior. The signals are arranged
along the x axis in order of ascending detectability. A Bayes
factor larger than unity indicates a preference for the κ ¼ 10=3
model. For the most detectable signals, there is a clear preference
for the correct model.
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IV. SUMMARY

Pulsar timing arrays are likely to detect a stochastic GW
background from SMBH binaries before the end of the
decade [15]. The astrophysical processes that drive SMBH
binaries toward merger are not fully understood, and are
largely unconstrained by observations. Processes such as
stellar scattering can drive the binaries through the sensitive
band of PTAs more quickly than GWs, leading to a
diminution of the GW signal. This may make the detection
of GWs more challenging, but also opens up a new avenue
for learning about the astrophysics of SMBH mergers
through measurement of the spectral shape.

We have shown that a simple model for the spectrum,
described in Eqs. (8) and (13), is useful for the detection of
GW backgrounds that are generated by SMBH binaries
which are driven by more than one type of mechanism
within the pulsar timing band. This model can also be used
in parameter estimation studies to characterize this GW
background.
We found that the choice of prior on the amplitude can

significantly impact parameter estimation, and that the
commonly used uniform prior in amplitude leads to
especially large biases. A prior that is uniform in the
logarithm of the amplitude was found to be a far better
choice.

FIG. 8 (color online). Prior and posterior distributions for the three GW parameters, A; fb, and κ, recovered by analyzing simulated
data that contain only white noise. Along the diagonal are plotted the one-dimensional prior and posterior distributions for (from top)
A, fb, and κ. The off diagonals show the 2-d posteriors for all combinations of these three parameters. The amplitude priors are,
clockwise from top left: model A, model B, and uniform in A. Note that, even in the absence of a GW signal, the posterior
distributions are substantially different from the priors. This indicates that we can learn about astrophysical models even if no
detection is made.
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We have shown that pulsar timing observations can be
used to distinguish between models that are characterized
by different priors on the amplitude of the GW background.
In future work, we plan to extend this study to more
detailed models that make predictions about the slope
parameters and the bend frequencies.
Finally, we have illustrated that information is gained

about astrophysical models, even when no detection
is made.
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