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Cumulant functions in optical coherence theory

C L MEHTA*

Physics Department, West Virginia University, Morgantown, WV 26506-2063, USA
* On leave of absence from the Physics Department, Indian Institute of Technology, New
Delhi 110016, India

Abstract. Cumulant functions are introduced to describe the statistical state of a radiation
field. These functions are simply related to the optical coherence functions but have some
interesting features, It is shown that if the cumulant functions of all orders greater than some
number N, vanish then they also vanish for all orders greater than 2. Thermal field is the only
field having this property. This property holds whether the field is described by a classical
stochastic process or by a quantum density operator. Further the particular operator ordering
used in defining these cumulant functions for the quantized field affects only the second order
cumulant function. To describe the statistical state of a vector field such as partially polarized
or unpolarized radiation, one would need to introduce cumulant tensors.

Keywords. Cumulant functions; optical coherence; Marcinkiewicz theorem.

1. Introduction

In classical description of optical coherence, one considers the radiation field to be
governed by a stochastic process. One then introduces the coherence functions (Mandel
and Wolf 1965)

G (g, . -y X V1o -+ 5 Y) = CA¥(X) « o A*CE) A1) - A(y")>il)

where (), denotes the stochastic ensemble average. The field variable A(x) is the
appropriate analytic signal (Gabor 1946) representing the field at the space-time point
x. For simplicity we consider first the scalar fields such as that of acompletely polarized
radiation. Generalization to vector fields is straightforward.

In quantum description of the optical coherence, on the other hand, one specifies the
statistical state of the radiation field by a density operator p. The coherence function
G™m" of order m+ n is then defined as (¢f. Glauber 1963)

~
G(m'n)(xly LRI axm; Yis o oo ’yn)
= </’i(—)(x1) FE /"i(")(xm)la(_'-)(yl) e ‘;i(+)(yn)>a (2)

where f’i‘*’/\(x) and A7)(x) are the positive and negative frequency parts of the field
operator A(x)at the space time-point x. The angular brackets { >, denote the quantum
statistical average

(05 = e (30). 3)

t In this paper we denote all operators by a circumflex so as to distinguish them from c-number variables.
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Making use of the diagonal coherent state representation of the given density
operator (Sudarshan 1963; Mehta 1967), it is possible to rewrite (2) so that the quantum
expectation on the right side is expressed as a statistical average over a c-number weight
function. We may therefore consider the coherence functions G™™ in either the
classical or the quantum description as essentially the moments of the field variable. In
quantum description, however, the operators A (x) and A7)(y) in general do not
commute (Schweber 1961), and therefore the order in which these operators are
arranged while defining the moments is important. In definition (2) above, we have used
the normal ordering, i.e. the ordering in which the creation operators stand to the left of
the annihilation operators*. 1f, on the other hand, a different ordering is used in
defining the coherence functions, one may use an appropriate c-number weight
function for such an ordering (Mehta 1968; Agarwal and Wolf 1970). The quantum
coherence functions are then the correspondingly ordered moments of the field
operator. ' |

Most optical sources emit radiation through thermal excitations, in which case the
underlying stochastic process is Gaussian. It is well known that in such cases the second
order coherence function G 1) determines all the higher order ones (Mehta 1970). This
is not so in general. For example when the light originates in stimulated emission, such
as from a laser, the underlying stochastic process is not Gaussian. Thus in general the
complete statistical properties of the radiation field can only be specified by the
coherence functions G™™ of all orders.

Related to coherence functions one may also consider quantities which are
analogous to the cumulants or the semi-invariants well known in probability theory (cf.
Rice 1945). Besides the fact that these cumulant functions determine the statistical
properties of the field as much as the coherence functions do, it is found that they have
some other interesting features. In particular, we show that except for the second-order
cumulant function, these functions do not depend on the ordering in most cases: The
normally ordered, antinormally ordered, or the Weyl ordered cumulant functions of
order other than 2 are all identical. In §2, we introduce the cumulant functions and
obtain the relation between these and the coherence functions. It is also shown that the
particular operator ordering used in defining the cumulant generating functional
affects only the second order cumulant function. In §3, we show that the only field for
which cumulant functions beyond a certain order all vanish is a thermal field for which
the underlying stochastic process is Gaussian. Finally in §4, we consider the
generalization to vector fields, thereby introducing cumulant tensors.

2. Optical cumulant functions

Analogous to the characteristic function (Davenport and Root 1958; Lukacs 1960) in
probability theory, we introduce the normally ordered characteristic functional

Cy ({4}) = <exp [[Ax) A7 (x)dx] exp [~ [ 1*(x) AP (x)dx] D, 4)

where x denotes the space-time point r, t. The cumulant generating functional X}, ({1})

* It may be noted that the negative frequency part of the field operator contains creation operators while the
positive frequency part contains annihilation operators.
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is defined as
Ay ({A}) = log C({A}). , (5)

The characteristic functional Cy ({A}) can be expanded in terms of the coherence
functions [equation (2)]

@ -1y
G- 3 ).J...JGW’(xl,...,xm;yl,...,y,,)

A1) - o) A* (1) - A* )y - Ay, ©)

where it is understood that G = 1. We define the cumulant functions K™ as the
coefficients in the analogous expansion of the cumulant generating functional

® -1y
= 5 L[ [xmen, i)

mazo min!

A(xy) - o AXm)A*¥(py) - - AF(n)dXy .. Y, )]

where it is understood that K©©® = 0. The coherence function G™™ may be obtained
from the characteristic functional by taking functional derivatives:
(_ l)n 6m +n
(m, n) . ’ e Yn) = C l .
T B P TALL]

=0

The cumulant functions are also obtained in a similar way

. ' _ ) (_l)nam-h:
K™ )(X1> s X3 Vs o5 Yn) = [51(3‘1) L 82X (v,

Ay ({l})] - O

(2}=0

Making use of the relation (5) we may obtain relations between the coherence
functions and the cumulant functions. For example one may readily verify that

G0 (x) = K0 (x), ’ (10a)
GV (x; y) = KU D(x; y) + KB O () KO D (y), (10b)
and in general
G™™ (X1, .oy Xows Vis v+ = s Vn)
=Y KUsk) (x()5 V) - - - KUB) (x5 v (10c)

where j, + ... +j, =m, ki + ... +k =n, x(; denotes the set of j points xy, . . . , X;
and y denotes the set of k points y,, . .., yx. The sum on the right side includes all
possible different partitions of the space-time points Xy, Y- These relations may also
be inverted and one could express the cumulant functions in terms of coherence
functions. Thus for example one finds that

K10 (x) = G1 O (x), (11a)
K@V (x; ) = GV (x5 5) = GO ()G D (), (11b)
K®9(xy,x,) = G*V(xy, x5) — GO (x) GO (xz), (11c)
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K3V (xy, %55 p) = G (xg, x5 ) = G40 (x )G P (3 y)
6D ()6 13 9) = 6% (51, %) 61 )
+2610(x)GH O (x)GON ) (11d)

etc. As a direct consequence of the definition of these cumulant functions we find that
these functions satisfy the hermiticity property

K(m’")(xh LR ] xm;yla I | yn) = [K(n'"')(yh v syn;xl, .. ,xm ]*' (12)

Further since the coherence functions satisfy wave equations in each of the space time
variable x;, ..., X, OF Yy, - . ., ¥y, the cumulant functions also satisfy similar wave
equations. '

In place of the normal ordered characteristic functional, one may also consider other
orderings such as Weyl or antinormal ordering etc. (Mehta 1968; Agarwal and Wolf
1970). We thus define the characteristic functional

C({A}) = Cexp { [ (A AT (1) = *() 4 ()] dxc} ), (13)

C,({4}) = ({exp [~ [ 2*() A" (x)dx]} {exp [ [ Ax) A7 (x)dx}]), (14)
and the corresponding cumulant generating functionals

Ay ({A}) = log Cy({A}), (15)

A, ({4}) = log C,({1}). (16)

The Baker-Housdorff identity, which holds for any two operators A and B which
commute with their commutator, reads (Messiah 1961)

etef = exp{d+ B+4[4, B]}. (17)

From the fact that the cumutator [A(™) (x), A*)(y)] is 2 c-number, (Schweber 1961), it
therefore follows that

exp{ [ A(x) A7) (x)dx} exp { — [ A*(x) A" (x)dx}
= exp { [ [A) A7) (x) — A*(x) A (x)] dx}

x exp {—4 [ [A)A* ()[4 (), AP ()] dxdy, o 8)
= exp { — [ A*(x) A" (x)dx} exp{ [ 1(x) A (x)dx}
x exp { — [ [ A)A*G)[A7(x), A ()] dxdy}. (19)
Hence from (15) and (16) we find that
Hy ({A}) = A, ({AD) =4 [ [ A 2*()[A ) (x), A1) ] dxdy, (20)
= 2, ({2}) = [ JAG)A*()[ A7) (x), AP ()] dxdy. (21)

On expansion of (20) and (21) we find that the normal ordered, Weyl ordered and the
antinormal ordered cumulant functions are all identical except for K***), where we find
that

KD (x; y) = KV (5 p) + (1/2)[A7 (%), A ()], (22)
= K&V 060 +[A7(x), AP ()] (23)
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3. Marcinkiewicz theorem
In this section we prove the following theorem: If the cumulant functions K™ vanish
identically for all m and n for which m + n > N, then they also vanish for all m and n for
which m+n > 2. v

This result is a consequence of the positive definiteness of the density Operator pand
follows from an application of Marcinkiewicz theorem.
Proof: Since the cumulant functions K™ of order m +n > 2 are identical whether we
consider the normal, Weyl or the antinormal ordering in our definition (see §2 above), it
suffices to restrict our discussion to antmormally ordered functions. The antinormal
ordered characteristic functional is given by

C,({A}) = tr[pexp {— [ A*(x) A" (x)dx} exp {[ A) AT (x)dx}].  (24)
It is possible to rewrite (24) in the form '

C,({A}) = [, ({v})exp{ — [ A*(x) V' (x)dx} exp { [ A(x) V¥ *(x)dx} dZ{v}(,2 )

where ¢,({v}) is the weight function (Mehta and Sudarshan 1965; Kano 1965)

Bllo) == OBl e

Here | {v} ) is the coherent state, N is the number of active modes (degrees of freedom)
and V'(x) is the eigenvalue of the operator A‘*)(x) in the coherent state I{v}>. Since p is
a positive definite operator, the weight function ¢, is non-negative for all values of {v},
and hence C, ({1}) would satisfy all properties of a characteristic functional applicable
to classical probability density functions. In particular we make use of the
Marcinkiewicz theorem (Marcinkiewicz 1939; Richter 1956; Lukacs 1960) and
conclude that the theorem stated in the beginning of this section holds*. _

We thus find that if all cumulant functions beyond a certain order vanish identically
then the cumulant generating functional can at most be a quadratic. Further if the field
is stationary, the cumulant functions of the type K'' @, K(® 1) K(2,0) K(0,2) 4155 yanish.
Hence in such a case the only non-vanishing cumulant function is of the type K*» V) and
the cumulant generating functional is given by

H({A}) = — [ [KD D (x; y)A()2*(y)dxdy. (27)

This is the familiar situation of a thermal field where the underlying stochastic process
is Gaussian.
4. Cumulant tensors

In the above dlscussmn we have restricted our consideration to scalar fields, i.e. when
the field operator A(x) is a scalar. This is adequate as long as we are considering

* Note that we could not directly apply the Marcinkiewicz theorem in the case of characteristic functional for
normal ordering, since the weight function ¢ ({v}) which is the diagonal coherent state representation of p is
not necessarily positive throughout. Similar is the case for Weyl ordering.
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polarized radiation. This consideration may readily be generalized to unpolarized or
partially polarized radiation by taking the field operator A(x)as a vector. In this case the
characteristic functional would be defined as

Co({}) = <exp [[ A (AT ()dx] exp [~ [Ar )ALV (xydx]>. (28)

When we expand Cy({A}), we would now include coherence tensors rather than
coherence functions '

o —1) ‘
Cy{i)= L ( )j---jGﬁ'ﬁ’.".).,fm;jl,...,j"(xu---,xm;yi,---,yn)

mazo minl
Ay (xq) - - A (xm)AE (1) - - A¥(yn)dxy ... Yy (29)

Analogously, while expanding the cumulant generating functional

5] —1)"
A, ({2}) =log Cy({AN = % ( )j-~-jKﬂ'ft".’.,im;jl,...,j,(xl,---,xm;yl,.--,yn)

=, min!
L (%y) - Ay o)A 1) - A ()dxy - d (30)

we obtain the cumulant tensors. Relations analogous to (10), (11) and (12) may readily
‘be written down for cumulant tensors.
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