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Abstract

Searching Harder, Localizing Better, Classifying Faster:
Optimizing Fast Radio Burst Detection And Analysis

Kshitij Aggarwal

Fast Radio Bursts (or FRBs) are millisecond-duration transients of extra-
galactic origin. They exhibit dispersion caused by propagation through an ion-
ized medium, and quantified by Dispersion Measure (DM). Around 800 FRBs
(24 repeaters) have been discovered; so far, 24 FRBs have been confidently as-
sociated with a host galaxy. In this thesis, we discuss multiple new FRB search
and analysis techniques and the corresponding tools that enable us to search
for FRBs harder, localize them better, and classify candidates faster.

We discuss five open-source software suites that can be used in FRB anal-
ysis. These suites are used to distinguish between FRBs and radio frequency
interference (RFI), model FRB properties, search for periodic activity, calcu-
late the probability of an association between an FRB and the host galaxy, and
unify data processing across multiple data formats.

We then present a robust comparative analysis of clustering algorithms to
group candidates from Realfast transient search system at the Karl G. Jansky
Very Large Array. We design a performance metric that optimizes for a few pure
clusters, i.e., clusters with either astrophysical or noise candidates. We show
that using sky location along with DM/time improves clustering performance,
and propose a strategy that can be used to decide which clustering algorithm
is most fit for a particular application.

We present a dense sample of bursts from the repeating FRB 121102, dis-
covered using our software. Using the Arecibo Telescope, we detected 133
bursts in 3 hours of data observed at 1.4 GHz. We determine the properties of
the bursts using robust spectro-temporal modeling. We find that the bursts are
band-limited, with a lack of emission below 1.3 GHz. We find the wait time dis-
tribution to be log-normal in form with a peak at 75 s. Poissonian and Weibull
distributions do not describe the burst rate distribution well. The cumulative
energy distribution can be described using a broken power-law model, with the
break at (2.3± 0.2)× 1037 ergs and a high-energy slope of −1.8± 0.2.

Motivated by the banded nature of FRB 121102 bursts, we perform a simu-
lation study to show that commonly used analyses of band-limited FRBs lead
to observational biases. We show that all the observed shapes in the energy
distributions of repeaters can be explained using these biases. We then rec-
ommend techniques to correct these biases: modeling burst spectra to robustly
estimate the intrinsic properties, and using bursts that are within the observing
band for energy distribution analyses.

Finally, we discuss the Realfast search and analysis pipeline, compare it
to the search pipelines on single-dish telescopes, and highlight the advantages of
using an interferometer. Primarily, every detection with Realfast comes with
a precise localization that can be used to associate the FRB to a host galaxy.
We then discuss five repeating FRBs that were localized using Realfast.
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Chapter 1

Introduction to Fast Radio Transients

Fast radio transients, as the name suggests, refer to a class of astronomical

events that satisfy the following two properties: they are “fast”, i.e., duration less

than 1 second, and detectable at radio frequencies (Lorimer & Kramer, 2004). These

can be further classified into several commonly discussed varieties, e. g. radio pul-

sars, rotating radio transients (RRATs), and fast radio bursts (FRBs). All of these

transient classes share some similar observable characteristics, for instance their pulse

durations and emission frequency. The origin of radio pulsars and RRATs is under-

stood to be neutron stars (Lorimer & Kramer, 2004), while for FRBs that is still

debatable (e. g. Petroff et al., 2019). Pulsars are rapidly rotating neutron stars that

emit a radio pulse at every rotation. RRATs are a type of pulsars, but not all the

pulses are detectable from them (Burke-Spolaor & Bailes, 2010). Therefore, it appears

as if they emit single-pulses separated by minutes to hours(McLaughlin et al., 2006).

Pulsars have been detected in the Milky Way, nearby globular clusters and Magel-

lanic clouds. The spectral luminosity of pulsars and RRATs typically ranges between

1016 to 1021 erg s−1 Hz−1, making it impossible to detect these sources at cosmological

distances with the current radio telescopes. FRBs, on the other hand, appear to be

the brighter cousins of pulsars and RRATs, with spectral luminosities greater than

1027 erg s−1 Hz−1 (Petroff et al., 2021). But unlike pulsars and RRATs, (repeating)

FRBs have not yet shown any underlying periodicity in consecutive bursts. All of

these transients have been detected at radio frequencies between 100 MHz and 8 GHz

(Lorimer & Kramer, 2004; Pastor-Marazuela et al., 2021; Gajjar et al., 2018; Petroff

et al., 2021; Cordes & Chatterjee, 2019; CHIME/FRB Collaboration et al., 2019).
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This chapter aims to introduce and summarise the very broad and rapidly evolv-

ing field of FRBs. We will touch on the basic concepts while also covering the broad

width of the latest results. To limit the length of this chapter, we do not dwell on

the depth of different results and instead provide relevant references that a curious

reader can use for further reading.

1.1 Basic terminology

Before discussing the observable properties of radio transients and then diving

deeper into a discussion of FRBs, it is helpful to define the standard terminology that

will be repeatedly used throughout this chapter and in the thesis.

1. Frequency and time: Frequency refers to the radio frequency (or frequency

channel) at which the observations were performed. Time refers to the time (or

time sample) when the observations were performed.

2. Spectrogram: A two-dimensional data array, consisting of intensity (radio power)

at each time sample and frequency channel. We show an example of this in the

bottom two panels on the left in Figure 1.1 (see Section 1.6.1).

3. Time series and pulse profile: The frequency-averaged array of intensities as a

function of time is referred to as a time series (top row in Figure 1.1). When

this time series is made for data consisting of a pulsar or FRB signal, that pulse

might also be seen in the time series. Suppose the effect of dispersion is first

corrected (see Section 1.2) before the time series is generated. In that case, the

pulse might be visible in the time series and is referred to as a pulse profile (top

right plot in Figure 1.1).

4. Bandwidth, bandpass, and spectra: Bandwidth is the range of contiguous fre-

quencies that are observed. The time-averaged array of intensities generated

from the spectrogram is called the bandpass and it shows the response of the

telescope receiver across the bandwidth. When this time-averaging is done on

a dedispersed spectrogram with only the burst signal, then the pulse intensity
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Figure 1.1: Figure showing a simple simulated spectrogram. The two-dimensional
panels in the lower row represent the spectrogram of data, with frequency on the
vertical axis and time on the horizontal axis. The dispersed signal can be seen in
the left spectrogram, while the signal in the right spectrogram has been corrected
for dispersion or dedispersed. The one-dimensional plots (or time-series) in the top
row have been generated by averaging the spectrogram along the frequency axis and
showing the burst profile. The one-dimensional plot on the right shows the spectra of
the signal generated by time-averaging the dedispersed burst signal. Figure generated
using burstfit (Aggarwal et al., 2021a), also introduced in Chapter 4.

with respect to frequency can be observed. We refer to this as the spectrum

(right-most plot in Figure 1.1).

5. Signal or burst: The astrophysical signal or intensities originating from a pulsar

or FRB in the data.

6. Signal-to-noise ratio: It is defined as the ratio of the signal intensity to that of

the standard deviation of data without the signal, typically abbreviated as S/N.

It can be used to estimate the statistical significance of a signal. A signal with

higher S/N has lesser chance probability of occurrence due to random noise,

and would therefore have higher probability of being astrophysical.
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1.2 Propagation effects

A transient signal, traveling through the cold ionized plasma of the interstellar

medium (ISM) or intergalactic medium (IGM), undergoes four observable effects:

dispersion, scattering, scintillation and Faraday rotation (Lorimer & Kramer, 2004).

We discuss the first two effects here. FRB emission is dispersed in time, where the

pulse arrival time varies as an inverse square relation with frequency. This introduces

a frequency-dependent delay in the FRB signal, that can be written as:

∆t(ms) ≈ 4.15× (ν−2
lo − ν−2

hi )×DM, (1.1)

where ∆t(ms) is the time delay across the observing band with ν−2
lo and ν−2

hi as the low

and high frequency of the band (in GHz). Here, DM is called the dispersion measure

and can be defined as the integral of the electron density to the source at a distance

(d), i.e.,:

DM =

∫ d

0

ne ds, (1.2)

where ne is the free electron density along the path traveled by the signal. DM is

often quoted using the units of cm−3 pc and can be used to derive valuable insights

about the distance and origin of the pulse. The left and middle plot in the bottom

row of Figure 1.1 show the spectrogram with dispersion and after the data has been

corrected for dispersion or “dedispersed”.

Fluctuations in the electron density in the ISM can lead to radio waves getting

deflected. Due to this, waves originating from the same source can take paths of

multiple lengths to reach the observer on Earth. Hence, some waves arrive later as

they travel along a longer path. This is called scattering. In the simple case of a

thin, infinite scattering screen (Scheuer, 1968), this effect can be approximated to

convolving a one-sided exponential to the FRB pulse. In this case, the decay time of

the exponential tail (τ) scales with the frequency (ν) as,

τ ∝ ν−4. (1.3)
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The exponential tail in the right pulse profile in Figure 1.1 shows the effect of scat-

tering. The scattering index (-4) depends on the scale of turbulence in the ISM. In

reality, the measured scattering indices can vary significantly from the fiducial (-4)

index.

1.3 Fast radio bursts

Fast radio bursts (FRBs) are bright (few Janskys), millisecond-duration radio

transients of extragalactic origin (Lorimer et al., 2007). We discuss the properties of

FRBs in Section 1.4. Briefly, the dispersion of FRB signals is greater than what can

be accounted for by the free electrons in the Milky Way disk and its halo, using the

models of the Milky Way galaxy (Cordes & Lazio, 2002; Yao et al., 2017; Prochaska &

Zheng, 2019). Therefore, FRBs are extragalactic in origin and the source of this resid-

ual dispersion is attributed to the intergalactic electrons (electrons between galaxies)

and possibly to the host galaxy of the FRB (see Section 1.7).

1.3.1 Brief history of FRBs

FRBs were discovered in 2007, with the discovery of FRB 010724 or the “Lorimer

Burst” during a single-pulse search of archival data from Parkes Radio Telescope

observing the Small Magellanic Cloud (SMC; Lorimer et al., 2007). Expecting that

the dispersion measure of sources in SMC would be higher than the DMs of Galactic

pulsars, this search included DMs much higher than were typically used at that time

(see Section 1.6 for details on single-pulse searches). FRB 010724 was serendipitously

detected as an extremely bright pulse, with a luminosity much higher than seen from

pulsars and with a DM much higher than that expected from Milky Way along that

line of sight. This was soon followed by detection of more such bursts, but again with

data from Parkes Telescope (Thornton et al., 2013), leading to speculations regarding

the astrophysical nature of these sources. This was put to rest by the detection of

FRB 121102 with Arecibo Telescope, again with large DM, millisecond duration, and

large flux, characteristic of the bursts detected with Parkes Telescope (Spitler et al.,
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2014).

Hundreds of hours of follow-up observations of these FRBs were performed

with several radio and multi-wavelength telescopes, but no repeat burst or multi-

wavelength emission was detected (Lorimer et al., 2007; Petroff et al., 2015). Then,

Spitler et al. (2016) reported detection of additional bursts from FRB 121102 during

follow-up observations, making it the first (of now many) repeating FRBs and one

of the most studied FRBs to date. This provided the valuable opportunity to follow

up this FRB and study it in greater detail. Using follow-up observations with the

Jansky Very Large Array (VLA) and a novel millisecond imaging search technique

(see Chapter 6 for more details), it was detected and localized to a dwarf galaxy at

a redshift of 0.19, solidifying the extragalactic origin of FRBs. This localization also

led to the detection of persistent radio emission co-located with this FRB (Chatterjee

et al., 2017; Tendulkar et al., 2017; Marcote et al., 2017).

The following years witnessed the commissioning of commensal FRB search

systems, i.e., systems that piggy-banked on the normal observations at the radio tele-

scope and continuously searched for FRBs. Some such systems are: GREENBURST

at GBT (Agarwal et al., 2020b), ASKAP (Shannon et al., 2018), CHIME/FRB

(CHIME/FRB Collaboration et al., 2018), Realfast at VLA (Law et al., 2018,

2015), ALFABURST at Arecibo (Foster et al., 2018), Deep Synoptic Array (DSA)

(Hallinan et al., 2019), etc. This increased the pace of FRB discoveries, with the

discovery of more repeating and non-repeating FRBs, driven primarily by large field-

of-view telescopes like CHIME and ASKAP (Amiri et al., 2019; CHIME/FRB Col-

laboration et al., 2019; Fonseca et al., 2020; Shannon et al., 2018; Bannister et al.,

2019). Then, two repeating sources, FRB 121102 and FRB 180916, were found to

exhibit periodicity in their burst activity (CHIME/FRB Collaboration et al., 2020a;

Rajwade et al., 2020b), which was shown to be frequency-dependent in the case of

FRB 180916 (Pastor-Marazuela et al., 2021; Pleunis et al., 2021a; Aggarwal et al.,

2020).

This was followed by a wave of FRB localizations by ASKAP, DSA, and VLA

that started to build a population of host galaxies (see Section 1.7 and Chapter 6;
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Ravi et al., 2019; Law et al., 2020; Bannister et al., 2019). But even after more than

a dozen localized FRBs, no other FRB was found to be co-located with a persistent

radio source. The observed DMs and redshifts of the localized FRBs were also used

to constrain the baryonic content of the universe (Macquart et al., 2020). The FRB-

like burst from a Galactic magnetar (the soft gamma-ray repeater SGR 1935+2154)

in April 2020, accompanied by a hard X-ray burst, gave conclusive evidence that

at least a sub-population of FRBs could originate from magnetars (Bochenek et al.,

2020; CHIME/FRB Collaboration et al., 2020b; Kirsten et al., 2021a; Li et al., 2021;

Ridnaia et al., 2021; Mereghetti et al., 2020). Finally, the large sample of FRBs

detected at 400–800 MHz by CHIME/FRB provided a large catalog of FRB sources,

facilitating studies of FRB population (The CHIME/FRB Collaboration et al., 2021a;

Pleunis et al., 2021b). Currently, around 800 non-repeating FRBs and 20 repeating

FRBs have been discovered. Finally, very recently, another repeating FRB has been

found to be co-located with a persistent radio source, with FRB and its host properties

very similar to that of the first repeater, FRB 121102 (Niu et al., 2021a).

It is worth noting here that FRBs were discovered because Lorimer et al. (2007)

decided to search their data up to a higher DM value than was typically done at

the time. This was made possible by the advances in computing infrastructure, de-

velopment of single-pulse search algorithms, improved understanding of pulsars in

Milky Way, and most importantly by a desire to detect pulsars outside our Milky

Way galaxy. This search opened a gateway to the world of highly dispersed pulses

that originated from far away galaxies, leading to this exciting field of FRBs. This

story exemplifies the process of advancement of human knowledge: small incremental

innovations when accumulated over a long time lead to a revolutionary discovery or

invention i.e., it converts something that was an “unknown unknown” into something

that is now a “known unknown”.
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1.4 What we observe

A seemingly simple FRB pulse demonstrated in Figure 1.1 consists of a wealth

of information. In this section, we discuss some observable properties that can be

extracted from a typical FRB detection. As will be apparent by the end of this section,

FRBs show a wide variety in all these properties, making it difficult to understand

their origins and classify them into sub-populations.

1.4.1 Dispersion measure

As discussed in Section 1.2, the FRB signal undergoes a frequency-dependent

delay as it propagates through the ionized plasma on its way from the unknown

source to the radio telescope on Earth. The DM (see Eq 1.4) acts as a proxy for

the distance to the source. The DM of FRBs is higher than that expected from the

ionized plasma in that line of sight from the Milky Way disk and halo (Lorimer et al.,

2007; Prochaska & Zheng, 2019; Cordes & Lazio, 2002). FRBs have shown a wide

range of DM values, ranging from around 90 to 3000 pc cm−3 (Bhardwaj et al., 2021a;

The CHIME/FRB Collaboration et al., 2021a). The observed dispersion (or DMobs)

of the FRB (from a source at a cosmological redshift z) consists of contributions from

the medium it encounters between the FRB source and the Earth. This includes

(starting from FRB source and moving to Earth): Local environment of the FRB

(DMlocal), host galaxy and halo (DMhost), intergalactic medium (DMIGM), foreground

galaxies (DMfg), Milky way halo (DMMWhalo) and Milky Way disk (DMMW) so that

DMobs(z) = DMMW + DMMWhalo + DMfg(z) + DMIGM(z) +
DMhost + DMlocal

(1 + z)
. (1.4)

Of these, DMMW can be estimated using the electron density models of the Milky

Way (Cordes & Lazio, 2002; Yao et al., 2017). DMMWhalo has been estimated to be

between 50 and 80 pc cm−3 (Prochaska & Zheng, 2019). DMhost is typically assumed

to be 50 pc cm−3, while DMforeground has been recently estimated for some localized

FRBs (Prochaska et al., 2019; Simha et al., 2021). Finally, DMIGM can be related to
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FRB redshift and is discussed in Section 1.5.1.

1.4.2 Scattering

FRBs show a wide variety of scattering timescales (discussed in Section 1.2),

ranging from no scattering to tens of milliseconds of scattering at 1.4 GHz. More

interestingly, unlike pulsars, the scattering timescales of FRBs are not related to the

Galactic latitudes (Cordes & Chatterjee, 2019). This implies that the majority of

scattering in FRBs originates from extragalactic gas, but it is to be noted that only

30% of the FRBs show scattering (Cordes & Chatterjee, 2019). The large catalog of

FRBs recently published by CHIME/FRB (The CHIME/FRB Collaboration et al.,

2021a) reported evidence in favor of a large population of FRBs with scattering time

larger than 10 ms at 600 MHz.

1.4.3 Pulse width

The observed pulse width is typically considered to be a convolution of intrinsic

width and instrumental broadening factors. For a Gaussian pulse, it is given by:

W =
√
W 2

int + t2samp + ∆t2DM + ∆t2DMerr + τ 2
s , (1.5)

where tsamp is the sampling time of observation, ∆tDM is the dispersive delay across

an individual frequency channel, ∆tDMerr represents the dispersive delay due to de-

dispersion at a slightly incorrect DM, τs is the scattering timescale and Wint is the

intrinsic width of the pulse. Pulse width is usually measured at 50% of the peak

(Lorimer & Kramer, 2004), but for complex pulse structure, it is common to quote

the equivalent width of a top-hat pulse with the same integrated flux. Figure 1.2 shows

two pulses with the same integrated flux but different peak fluxes and widths. A top-

hat pulse with the same integrated flux is overlaid on both, showing the equivalent

width.
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Figure 1.2: Two pulse profiles with the same integrated flux, i.e., fluence, but different
pulse widths. Top-hat pulses with the same fluence are overlaid on both profiles,
showing each real pulse’s equivalent width.

1.4.4 Flux density and fluence

Flux density is the spectral power received by a detector of unit projected area

(Condon & Ransom, 2016). The commonly used units of flux density are Jansky,

where,

1 Jy = 10−26 W m−2 Hz−1. (1.6)

For pulsars and FRBs, flux and fluence are commonly reported properties. Fluence

is defined as the total integrated flux, i.e

F = SpeakWeq =

∫
pulse

S(t)dt, (1.7)

where, Speak is the peak flux of the profile, Weq is the equivalent width, and S(t) is

the pulse profile. Figure 1.2 shows two pulses with the same fluence but different

peak fluxes and widths, along with top-hat pulses of the same fluence.

1.4.4.1 Radiometer equation

The radiometer equation can be used to estimate the expected root-mean-square

fluctuation (σs) in the time series (Condon & Ransom, 2016; Lorimer & Kramer, 2004;
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Petroff et al., 2019):

σs =
Tsys

G
√
np∆νtsamp

, (1.8)

where Tsys is the system temperature (including sky temperature), G is the antenna

gain, ∆ν is the receiver bandwidth, np is the number of polarizations and tsamp is the

data sampling interval.

The S/N of a pulse obtained from a dedispersed time series can then be con-

verted into physically meaningful quantities (like flux density) by calibrating the time

series. This is usually approximated by comparing the root-mean-square fluctuations

of the time series to that obtained from radiometer equation.

1.4.5 Repetition

Most FRBs are found to be one-off events, i.e., even after hundreds of hours

of follow-up search, no other repeat burst has been detected with properties similar

to the original burst (Lorimer et al., 2007; Petroff et al., 2015; The CHIME/FRB

Collaboration et al., 2021a). This limits the opportunities to study and follow-up

these FRBs. But interestingly, so far, around 24 FRBs have been found to emit

multiple bursts, i.e., repeat (Spitler et al., 2016; Petroff et al., 2021; CHIME/FRB

Collaboration et al., 2019; The CHIME/FRB Collaboration et al., 2021a; Fonseca

et al., 2020; Kumar et al., 2019). Repeaters, therefore, prove to be a valuable source

to gain insight about FRBs, as radio and multi-wavelength follow-up detections can

be accumulated with more observations. Hundreds of bursts from two of the most

studied repeaters, FRB 121102 and FRB 180916, have been detected by more than a

dozen different radio telescopes, and multi-wavelength upper limits have been placed

using many other telescopes around the world (Law et al., 2017; Chatterjee et al.,

2017; Cruces et al., 2020; Pastor-Marazuela et al., 2021; Li et al., 2021; CHIME/FRB

Collaboration et al., 2020a; Scholz et al., 2020; Aggarwal et al., 2021a; Pearlman

et al., 2020; Platts et al., 2021).

Follow-up observations have revealed that even repeaters show a variety of prop-

erties: periodicity in burst activity (see Section 1.4.6), bandlimited emission (see
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Chapters 4 and 5; Pleunis et al., 2021b; Aggarwal et al., 2021a; Kumar et al., 2021c),

extremely faint bursts (Kumar et al., 2019), a variety of host galaxies (Marcote et al.,

2017; Marcote et al., 2020, also see Section 1.7.1), presence of a persistent radio

counterpart (Chatterjee et al., 2017; Marcote et al., 2020; Law et al., 2021b), wide

range of burst rates (CHIME/FRB Collaboration et al., 2019; Li et al., 2021; Pastor-

Marazuela et al., 2021), burst detection from 100 MHz to 8 GHz (Pleunis et al., 2021a;

Pastor-Marazuela et al., 2021; Gajjar et al., 2018; Zhang et al., 2018), non-Poissonian

burst rate (Oppermann et al., 2018; Cruces et al., 2020; Aggarwal et al., 2021a),

complex energy distribution (Aggarwal, 2021; Aggarwal et al., 2021a; Li et al., 2021;

Pastor-Marazuela et al., 2021), frequency drift among components (or “sad trom-

bone” effect; Hessels et al., 2019; Gajjar et al., 2018), wide range in observed and

inferred host DMs (Tendulkar et al., 2017; Marcote et al., 2020; CHIME/FRB Col-

laboration et al., 2019), etc. Figure 1.3 shows the spectrogram of nine FRB 121102

bursts detected with Arecibo Telescope, adapted from Chapter 4. Even in this small

sample, the variety in burst morphology can be easily observed.

In summary, although there is no clear consensus regarding the origin of repeat-

ing FRBs, repeaters are the ideal source for localization as discussed in Section 1.7

and Chapter 6. As a result, it is likely that the discovery and localization of more

repeaters will contribute significantly to the understanding of the FRB population.

1.4.6 Periodicity

Motivated by the possibility of a neutron star origin of FRBs and drawing

comparisons of FRB bursts to those from Galactic pulsars (especially giant pulses from

young pulsars), periodicity searches are typically conducted on the bursts detected

from repeating FRBs (Lorimer & Kramer, 2004; Lorimer et al., 2007; Petroff et al.,

2019). Any underlying periodicity (millisecond to minutes duration) in the bursts

would provide strong confidence in the neutron star models, at least for repeaters.

So far, no repeater has shown any such millisecond to minutes scale periodicity in

the bursts, even after extensive searches and a large number of burst detections (Li

et al., 2021; Cruces et al., 2020; Pastor-Marazuela et al., 2021; Aggarwal et al., 2021a;

12



1000

1500

F
re

q
(M

H
z)

B121 B6 B57

1000

1500

F
re

q
(M

H
z)

B46 B108 B31

−25 0 25

Time (ms)

1000

1500

F
re

q
(M

H
z)

B43

−25 0 25

Time (ms)

B93

−25 0 25

Time (ms)

B133

Figure 1.3: Dynamic spectra of nine bursts of FRB 121102, dedispersed at DM =
560.5 pc cm−3. For each burst, the top panel shows the burst profile obtained by
averaging along the frequency axis, and the right panel shows the burst spectra ob-
tained by averaging the burst data along the time axis. The white horizontal lines
show the channels masked due to Radio Frequency Interference (RFI). The color scale
of each spectrogram has been set from mean to 3 times the standard deviation of the
off-pulse region. Figure adapted from Chapter 4.
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Zhang et al., 2018). Recently, a multi-component FRB showed evidence of sub-second

periodicity in its components (The CHIME/FRB Collaboration et al., 2021b). But

it is yet to be seen if this FRB is a repeater and if other bursts from this FRB are

consistent with this period.

In addition, progenitor models that favor a compact binary system (neutron

star-neutron star, neutron star-black hole, neutron star-white dwarf, etc.) also predict

a longer-term period in the FRB emission envelope. A similar long term period in

burst activity has been observed for the two most observed repeaters: FRB 121102

and FRB 180916, with the former showing a period of 157 days (with a duty cycle

of 56%; Rajwade et al., 2020b), while the latter with a period of 16 days (and a

duty cycle of 20% at 400 MHz; CHIME/FRB Collaboration et al., 2020a). It has

also been shown that the phase of peak burst rate and the duty cycle of FRB 180916

is frequency dependent, with higher frequency bursts arriving earlier in phase with

narrower activity window, as compared to lower frequency bursts (Pastor-Marazuela

et al., 2021; Pleunis et al., 2021a; Aggarwal et al., 2020). A clear consensus is yet to

be reached on the origin of this periodicity, although many binary and slow precession

models have been proposed to explain it.

1.4.7 Repeaters vs non-repeaters

The properties of repeating and non-repeating FRBs can be compared to under-

stand whether these two populations have a common origin. It has been observed that

repeater pulses tend to be temporally wider than non-repeaters. Repeaters also have,

on average, narrower bandwidths than non-repeaters (Pleunis et al., 2021b). Also,

repeaters usually show complex burst morphology comprised of multiple peaks, where

the peak frequency of emission of individual components drifts downward in frequency

as time progresses (Hessels et al., 2019). Non-repeaters have not demonstrated this

downward-drifting so far. These differences could be due to beamed emission, where

highly-beamed FRBs are less easily observed to repeat but are abundant enough to

be detected as non-repeaters (Connor et al., 2020). It is also possible that this is

due to a propagation effect: plasma lensing or circumbinary medium in the case of
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a binary system (see Cordes et al., 2017; Main et al., 2018; Bilous et al., 2019), or

it may be intrinsic to the two separate populations. A larger sample of repeater

and non-repeater bursts, detected across multiple frequencies and with different tele-

scopes, would be essential to probe these differences further. Moreover, Gardenier

et al. (2021) used population synthesis analysis to show that some of the observed

differences in these properties could be due to selection effects and argue that a sin-

gle source population comprising of repeating FRBs can describe some early results

of CHIME/FRB observations (CHIME/FRB Collaboration et al., 2019). A similar

analysis applied on the first CHIME/FRB catalog might provide more constraining

results (The CHIME/FRB Collaboration et al., 2021a).

1.5 What we derive

In this section, we discuss some FRB properties that can be inferred using the

observed properties mentioned in the previous section.

1.5.1 DM derived distance

Dispersion measure can be used to constrain the distance to the FRB. The

different sources of DM mentioned in Eq. 1.4, can be estimated, derived, or assumed

using independent techniques, and the final component, i.e., DMIGM can be related to

the redshift of the source using “Macquart Relation” (Macquart et al., 2020; Inoue,

2004), by assuming standard cosmological parameters. A crude rule of thumb used

to relate DMIGM (in units of pc cm−3) and z is: z < DMIGM/1200 (Ioka, 2003; Inoue,

2004).

1.5.2 Luminosity and energy

The observed fluence and the estimated (or measured) distance to the FRB

can be used to constrain the isotropic equivalent luminosity (and energy) of the

burst. Depending on the spectrum of the burst and the simplifying assumptions

made regarding it, there can be three primary ways to estimate the burst energy
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from fluence (S) and distance (DL). Assuming a broadband flat spectrum source,

the energy contained in a burst can be referenced to the center frequency (νc) of the

observation (Zhang, 2018; Li et al., 2021),

E = 4π10−23

(
DL

cm

)2(
S

Jy s

)( νc

Hz

)
erg. (1.9)

But, FRBs (especially repeaters) are generally bandlimited, with a Gaussian-like

spectrum (Aggarwal et al., 2021a; Pastor-Marazuela et al., 2021; Pleunis et al., 2021b).

In that case, they are neither broadband nor flat spectrum, and therefore the previous

definition cannot be used. In such cases, the observable bandwidth of the FRB is

typically used. But, as is shown in Chapter 5, this can lead to observational biases in

the energy distribution analysis. Therefore, the third technique is to model the FRB

spectra and use the fitted bandwidth (FWHM) instead of the visible bandwidth:

E = 4π10−23

(
DL

cm

)2(
S

Jy s

)(
FWHM

Hz

)
erg. (1.10)

The shape of the luminosity function of FRBs is currently not well understood but

shapes like power-law, normal distribution, and Schechter function have been used

(James et al., 2021; Luo et al., 2020a).

1.5.3 FRB rate and source counts

The all-sky rate of FRBs has been of interest since their discovery (Lorimer

et al., 2007; Thornton et al., 2013; Shannon et al., 2018). This is because the vol-

umetric rate of FRBs can be compared to the rate of other known transients (like

a core-collapse supernova, gamma-ray bursts, etc.) to infer the source and intrinsic

population of FRBs indirectly. FRB rates are typically calculated as an all-sky rate

above a sensitivity limit, rather than a volumetric rate as the redshift distribution of

FRBs is unknown (Petroff et al., 2019; Connor et al., 2020). In the simplest case, the

all-sky rate of a telescope of sensitivity Smin, with instantaneous field-of-view1 Ω deg2,

1Here, we have assumed that the whole telescope field-of-view has a constant sensitivity. This
is generally not true as the shape of the beam is not flat. Beam shape can be accounted for while
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that observes for T days and detects N FRBs would be,

R(> Smin) = 4π

(
180

π

)2(
N

ΩT

)
sky−1day−1. (1.11)

Assuming FRBs as standard candles (i.e., with constant luminosity L) and

distributed uniformly in a Euclidean universe, the observed flux (S) of FRBs at a

distance r can be written as S = L/(4πr2). Further, assuming there are N FRBs

detectable with a telescope of sensitivity (Smin) within that volume, the constant

density (ρ) of sources would be, ρ = N(> Smin)/(4πr3/3).

Using the above two equations, we get: N(> Smin) ∝ S
−3/2
min . Using Eq 1.11, we

can relate the rate with the minimum detectable flux: R(> Smin) ∝ S
−3/2
min . This can

be written more generally as,

R(> Smin) ∝ Sγmin, (1.12)

where the source count index γ = −1.5 for Euclidean geometry (Petroff et al., 2019).

Eq 1.12 can also be used to scale the rates for different telescopes with different

detection thresholds to a common flux density,

R(> Smin) = R0

(
Smin

S0

)γ
, (1.13)

where, R0 and S0 are the FRB rate and minimum detectable fluence for a given

telescope. But, when combining rates from different telescopes, many other factors

need to be accounted for: frequency of observation, beam pattern, bandpass, Radio

Frequency Interference (RFI) environment, parameters of search pipeline, etc. As the

FRB spectra are generally not independent of frequency, the spectral index2 of the

bursts also needs to be taken into account. Further, it has been shown that the source

count index of FRBs can deviate from the Euclidean assumption (The CHIME/FRB

estimating the FRB rate, see Law et al. (2015); Deneva et al. (2009).
2Spectral index is defined as the slope of the power law relation between the observed flux and

frequency of observation, i.e: Sν ∝ να. Here, Sν is the flux of the source, ν is the frequency of
observation and α is the spectral index.
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Figure 1.4: Flow diagram of a single-pulse search pipeline.

Collaboration et al., 2021a; James et al., 2021; Lawrence et al., 2017), and hence

needs to be modeled carefully.

1.6 How to search for FRBs?

This section discusses some standard steps used to search for fast radio tran-

sients (FRBs or RRATs or single-pulses from pulsars). Given the wide range of

properties of FRBs, it is necessary to make sure that the search pipeline is sensi-

tive to detecting FRBs across the whole range of properties. Figure 1.4 shows the

typical steps in an end-to-end workflow for single-pulse detection, starting from data

recording to identifying if a candidate is an FRB or a result of RFI.

1.6.1 Data acquisition

Figure 1.5 shows the typical steps in the data acquisition system of any radio

telescope. Before any search can be performed, the first step is to record the electro-

magnetic waves from a particular part of the sky. This is done using radio telescopes,

which convert the electromagnetic waves into electrical signals and encodes the re-

ceived information in voltages (Lorimer & Kramer, 2004; Condon & Ransom, 2016).

The response of the telescope receiver (or feed) is measured over a range of frequen-

cies, i.e., bandwidth. Therefore, for any observation, the intensity of signals at only

the frequencies within the bandwidth is measured. These voltages are then digitized

using an analog to digital converter (ADC), which samples the voltage amplitude at a

rate that is twice the highest frequency of the bandwidth (i.e., Nyquist rate; Shannon,

1949). For an observation centered at 1.4 GHz, with a bandwidth of 800 MHz, the

highest frequency would be 1.8 GHz. In this case, the ADC would have to sample
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Figure 1.5: Flow diagram of a data acquisition system.

the analog voltages at 3.6 GHz, i.e., with a time resolution of 27 ns.

These digitized voltages are then fast Fourier transformed (FFT) to obtain the

frequency-dependent intensities. The frequency resolution after the FFT is inversely

proportional to the length of the FFT. Therefore, in the case of an N -point FFT,

N time samples of digitized voltages are fast Fourier transformed into N frequency

channels, followed by the FFT of the next set of N time samples (in case of non-

overlapping FFTs), and so on. This results in a two-dimensional frequency-time

spectrogram, with N frequency channels, each of resolution: bandwidth / N . The

resulting time resolution would be N times the sampling time of the ADC. So, a

4096-point FFT of our previous example would result in a time resolution of 1.13µs

and frequency resolution of ∼195 kHz. This is followed by a multiplier, where the

complex voltages obtained after FFT are converted into intensities.

Such high time and frequency resolution observations are essential for studying

transients like pulsars and FRBs that show variations at milliseconds and kHz scales.

These data can then be saved to disk or downsampled by averaging adjacent time

and frequency samples. This is then searched for dispersed pulses described in the

next section.

1.6.2 Single-Pulse search

The following processing steps are applied on the spectrogram obtained from

a radio telescope to search for transient signals with unknown dispersion measures,

widths, and fluence. Figure 1.6 shows the typical sequence of these steps.
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Figure 1.6: Flow diagram of a typical single-pulse search pipeline.

1.6.2.1 RFI mitigation

Artificially generated (human-made) radio signals that contaminate the ob-

served data (spectrogram) are usually referred to as Radio Frequency Interference

(or RFI). Multiple sources of RFI exist: mobile phones, power transmission lines,

artificial satellites, radio towers, radar, etc., and are a ubiquitous problem for all the

radio telescopes around the world. Some naturally occurring signals like lightning

can be a source of contamination in the radio data. RFI can be grouped in two ways,

based on its variability and extent. Based on its variability, it can be classified into

time-varying or frequency-varying RFI and based on its frequency extent, it can be

divided into narrowband (narrow frequency range) and broadband (present in all or

most of the observing frequencies) RFI. RFI signals are usually much higher in inten-

sity than the astrophysical signal (usually orders of magnitude stronger) and therefore

reduce the sensitivity of search, if not mitigated. Time and frequency varying RFI

can also mimic the dispersion of pulsars and FRBs and thus lead to false detections

by automatic search and classification systems.

Naturally, radio astronomers have developed numerous techniques to mitigate

RFI signals. The methods developed to improve the sensitivity of single-pulse searches

can be grouped into two categories:

1. Thresholding: A constant threshold is applied to a section of the spectrogram,

and any outlier lying outside the threshold range is considered to be RFI. This
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is followed by using the same procedure on the next section of spectrogram and

so on. Typically, a section of the spectrogram is chosen to consist of all the

frequency channels within a range of time samples, similar to a non-overlapping

running window in time. In some cases, this thresholding is applied multiple

times with successively decreasing values of threshold on the same section of

data to identify low-level RFI (CHIME/FRB Collaboration et al., 2019; Buch

et al., 2016; Nita & Gary, 2010). There are several techniques to estimate this

threshold value. The common steps of these techniques are:

• Assume that underlying data follow a certain distribution. Gaussian is

the most common assumption here, but Chi-square and Gamma distribu-

tions have also been used depending upon the observing setup and data

processing pipeline.

• Average along time to obtain a bandpass (i.e., intensities with respect to

frequencies).

• For a range of frequency channels (or a window) estimate the mean and

standard deviation.

• Set the threshold to a multiple of standard deviation plus the mean of the

window.

• Compare the intensities in that window with this threshold and flag any

data with intensity higher than the threshold.

• Shift the window to the next set of frequency channels in the bandpass,

and repeat the above three steps.

To use a simple example, assuming the data follow a Gaussian distribution,

the standard deviation can be robustly estimated using the Median Absolute

Deviation (see, e.g., Leys et al., 2013), and then the threshold can be set to

3 or 5 times that value. Higher moments of data and other assumptions on

the data distribution have also been used (Nita & Gary, 2010). This technique

is primarily used to identify and mitigate narrowband and frequency variable
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RFI.

2. Zero DM subtraction: As RFI signals originate from terrestrial sources and

do not travel through the ionized plasma in the galaxy or the ISM, they do

not show the frequency-dependent dispersion discussed earlier (see Section 1.2).

This is not true for pulsars or FRBs, which show dispersion in their signal

based on where in the galaxy they are or how far the source is. Therefore, one

commonly used technique to mitigate broadband RFI is to generate a zero-DM

time series (i.e., without de-dispersing the data and just averaging the frequency

channels) and subtracting it from the original data. Broadband RFI will lead

to peaks in the zero-DM time series and would be subtracted out. This was

originally proposed by Eatough et al. (2009).

After identifying the RFI samples, the next challenge is to replace them with

values that do not bias the statistics of the underlying data. This is typically done

by replacing the data with mean, median, or some other estimator that provides a

robust estimate of the average level of the underlying data.

1.6.2.2 Dedispersion and averaging

As mentioned, the signals from pulsars and FRBs are dispersed when they are

observed on Earth (see Sections 1.2 and 1.4.1). The value of the DM of FRBs is not

known a priori, and therefore needs to be determined. Moreover, this dispersion effect

needs to be corrected during the search so that the signal present across different

frequency channels can be combined and therefore detected at higher significance

(see Figure 1.7). Therefore, during the single-pulse search, the original spectrogram

is dedispersed at multiple values of DMs. The observed values of FRB DMs range

from 100 pc cm−3 to 3000 pc cm−3, so typically hundreds to thousands of values of

DMs are searched between a range of 10 pc cm−3 to 10000 pc cm−3. This is followed

by frequency averaging, where a time series is generated at each DM trial and then

searched for an outlier. Figure 1.7 shows this process for three trial DM values for a

simulated pulse with DM=500 pc cm−3. Dedispersing the data at a DM close to the
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intrinsic DM value of the pulse results in the highest possible S/N, with lower S/N

when the pulse is dedisperesed at DM values that are far from the intrinsic DM.

Dedispersion at each trial DM requires manipulating all the samples in the

spectrogram. For each DM, the time delay at each time sample needs to be corrected

at each frequency channel. This is, therefore, the most computationally expensive

step in any single-pulse search pipeline. Due to the independent nature of dispersion

correction at each sample, this process can be significantly improved from a paral-

lelized GPU implementation that can dedisperse chunks of data in parallel. Several

dedispersion algorithms have been developed: tree dedispersion (Taylor, 1974) and

Fast Dispersion Measure Transform (Zackay & Ofek, 2017). They provide computa-

tional efficiency at the tradeoff of sensitivity, DM trial width, or require some prior

transformations.

More DM trials translate to the detected DM being closer to the astrophysical

DM, leading to a stronger detection. But more DM trials lead to more computations

(scaling linearly with the number of DMs for brute force dedispersion implementa-

tion). Typically, DM trials are chosen based on a predefined fractional sensitivity loss

between adjacent trials after considering observing factors like the width of the pulse,

sampling time, frequency resolution. This process is described in detail in section 2.3

of Levin (2012).

1.6.2.3 Baseline estimation

Due to instrumental effects, sky background variance, RFI, or other factors, the

mean level of the intensities in the data can vary with time (on seconds to minutes

timescale). When such data are dedispersed, and frequency averaged to form time

series, it can lead to baseline variations. This can make the search less sensitive by

reducing the significance of the transient, making it difficult to identify the signal.

Typically, this baseline is removed by estimating the mean (or its more robust coun-

terpart, median) of a running window and subtracting it. Outliers in the time series

can bias this baseline estimation, so sometimes samples above a specified threshold

are ignored first (akin to RFI threshold) before the mean is estimated (Barsdell,

23



F
lu

x

DM=0

S/N=6

−0.4 −0.2 0.0 0.2 0.4

Time (s)

1300

1400

1500

1600

F
re

q
u

en
cy

(M
H

z)

DM=500

S/N=13

−0.4 −0.2 0.0 0.2 0.4

Time (s)

DM=700

S/N=8

−0.4 −0.2 0.0 0.2 0.4

Time (s)

Figure 1.7: Figure showing the result of dedispersing a simulated pulse at multiple
trial DM values. The intrinsic DM of the simulated burst was 500 pc cm−3. The top
row shows the frequency averaged time series of data dedispersed at DMs mentioned
on the top left. The bottom rows show the spectrogram of the dedispersed data. S/N
of each time series is also mentioned at the top left. We can see that dedispersing the
pulse at the DM of 500 pc cm−3 results in the highest S/N. Figure generated using
burstfit.

2012). An unfortunate consequence of this is that it lessens FRB search sensitivities

to longer bursts. This is because typical baseline windows are 1 to a few seconds long,

so it would remove the signals as long as or longer than this scale. Therefore, longer

baseline windows are usually preferred to avoid this.

1.6.2.4 Normalization

The baseline subtracted time series is usually normalized by dividing the data by

its standard deviation. Again, a robust estimation of standard deviation is preferred.

As mentioned during the discussion of RFI mitigation (Section 1.6.2.1), one of the

commonly used methods is to calculate median absolute deviation and use that to

estimate standard deviation (Leys et al., 2013). Following normalization, the signal-

to-noise ratio can be measured directly from the amplitude of the time sample, as the

standard deviation has been scaled to be one.
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1.6.2.5 Matched filtering

The samples with a signal-to-noise ratio above a predefined threshold can be

considered as potentially interesting candidates. But the detection significance of

pulses wider than a single time sample can be improved by applying an additional

processing step. This is called matched filtering or boxcar convolution search (Lorimer

& Kramer, 2004; McLaughlin & Cordes, 2003). The time series obtained after the

previous step is convolved with boxcar (or top-hat) filters of varying widths. For each

case, samples in the time series that exceed the threshold are identified and reported

as candidates. This is repeated for the dedispersed time series generated at all DM

trials. Figure 1.8 shows S/N and the resulting time series, after a simulated pulse is

convolved with boxcar filters of varying widths. As we can see, for this pulse with

intrinsic width of 39 samples, the highest S/N is obtained for matched filters with

nearby widths.

This process improves the S/N of wider pulses and makes them detectable. This

can also be understood using the following example: consider that the dedispersed

and normalized time series contains an astrophysical pulse of width W samples, with

the amplitude of each sample as S (assuming a boxcar shaped pulse for simplicity).

Here, if S is greater than the S/N threshold, then this pulse will be detected. But if

S is less than this threshold, then following a convolution with a filter of width W ,

the S/N of the pulse will be higher at S
√
W , which might be greater than the S/N

threshold, making it detectable. Realistically, the boxcar width would not match the

width of the transient perfectly, but using convolution at multiple widths ensures that

the pulse is detected at a boxcar width closer to the intrinsic value.

1.6.3 Clustering

Following the above search steps, the single-pulse search pipeline reports can-

didates with S/N greater than the threshold. For each candidate, it reports the trial

dispersion measure, trial width, and time sample of the pulse. In the case of an

interferometer, it might also report the sky location of the transient (see Chapter 3
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Figure 1.8: Figure showing the result of applying match filtering with boxcars of
various widths to a simulated pulse. The signal to noise (S/N) and filter width (in
samples) is provided on the top left of each plot. The intrinsic width of the pulse
was 39 samples. Filter widths close to this pulse width result in the maximum S/N.
Figure generated using burstfit.

and Law et al., 2018). A bright astrophysical event might trigger the pipeline at

multiple values of this trial space and can therefore lead to hundreds or thousands

of candidates per true event. This is because nearby DM or width trials will detect

the same transient, but with lower significance, that might still exceed the detection

threshold3. Therefore, it is necessary to group all these redundant candidates together

and only post-process the highest significant detection from the group. This is done

using a clustering algorithm. For a single dish telescope, where only DM and time

information is available, a friends-of-friends-based algorithm is typically used (Pang

et al., 2018; Deneva et al., 2009; Barsdell, 2012). A simpler clustering technique could

specify a maximum distance for each parameter, and candidates that lie within that

specified distance of each other are considered part of a cluster. In the case of interfer-

ometers, the sky location of each candidate can also be used for clustering. A robust

comparison of several clustering algorithms is provided in Chapter 3 and Aggarwal

et al. (2021c).

3The following notebook provides a simple calculation to estimate the number of candidates ex-
pected for a single-pulse search pipeline: https://github.com/KshitijAggarwal/rfclustering/

blob/main/notebooks/ncands_vs_snr.ipynb
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1.6.4 Classification

Single-pulse search pipelines, as described above, can generate hundreds to thou-

sands of candidates every day, depending upon the RFI environment, observing setup,

trials searched, number of beams, etc. (Law et al., 2018; Agarwal et al., 2020b;

Gupta et al., 2021). Each of these candidates exceeded the detection threshold of the

pipeline, but that does not guarantee astrophysical origin. As discussed previously,

RFI can also lead to false candidates, and even after applying extensive RFI mitiga-

tion techniques, more than 99% of all candidates generated from a search pipeline are

still due to RFI. Therefore, each candidate has to be classified into RFI or astrophys-

ical (FRB or pulsar). This has been traditionally done using human resources: i.e.,

the researchers working on the search system usually classify each candidate manu-

ally. This task becomes unsustainable for hundreds of candidates every day, and with

the search pipelines running commensally. Therefore, machine learning techniques

have been developed to classify candidates into FRB or RFI automatically. Some of

these techniques are: Random Forests used in Foster et al. (2018) and Wagstaff et al.

(2016); Convolutional Neural Networks used in Agarwal et al. (2020a) and Connor &

van Leeuwen (2018), etc. Machine learning algorithms can be carefully designed to be

highly accurate and robust. Moreover, with techniques like self-supervised learning,

it is possible to retrain these algorithms with new data for improved performance

with minimal human labeling. Finally, the candidates classified as astrophysical by

the machine learning algorithm are visualized and manually verified (see Section 6.5

and Figures 6.2 and 6.3).

1.6.5 Sensitivity analysis of search

Until now Section 1.6 has discussed various processing steps involved in a single-

pulse search. It is essential to understand the recovery rate or efficiency of the de-

tection pipeline. A simple estimate of the theoretical sensitivity of the search can be

made using the radiometer equation (see Section 1.4.4.1). In this case, S/N thresh-

old times the root-mean-square fluctuation is used as the sensitivity limit. But only
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after properly accounting for systematics due to the search, inferences about the un-

derlying properties of the FRB population can be drawn. One way to do this is to

create simulated models of all the steps in the pipeline and estimate the efficiencies

directly from it. This is challenging as it requires perfect models of the instrumenta-

tion and software pipeline. A more commonly used technique is to inject simulated

FRBs with a range of properties in the search pipeline and estimate the percentage of

those that are correctly identified after each step and at the end (Gupta et al., 2021;

Agarwal et al., 2020b). Simulated FRBs can be injected directly into the voltage data

or added to the intensity data. They can have variations in DM, width, scattering

timescale, fluence, spectral bandwidth, profile shape, etc., inspired by the expected

variation in the transients that are being searched. Instrumental effects like bank

drops and packet loss can also be simulated. At the end of the search step and then

after the classification step, the percentage of injected FRBs that are recovered can

be estimated. It can also be studied how this recovery rate varies with respect to any

specific parameter (DM, width, etc.).

1.7 Localization of FRBs

As discussed in Section 1.4, the detected sample of FRBs show a wide variety of

properties, and there is no clear consensus on their progenitors (see Section 1.8). To

understand and constrain the progenitors of FRBs, it is necessary to study the host

galaxies of these FRBs and their local environments. The localization region (or the

possible region of sky from which an FRB could have originated) of an FRB detected

by a single dish telescope is usually several arcminutes wide, depending on the size

of the beam and S/N of the FRB. Given the estimated distance to the FRB (see

Section 1.5.1), this region can contain hundreds of galaxies, detectable in sensitive

follow-up optical observations (Eftekhari & Berger, 2017). Such a large localization

region makes it impossible to associate an FRB to a particular host galaxy for almost

the whole FRB sample currently known, except the lowest DM FRBs (Bhardwaj

et al., 2021a,b). Even in the case of the lowest DM FRBs, precise localization is
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critical to study the local environment of the FRB.

Sub-arcsecond localization enables the identification of the FRB host galaxy,

which further enables the estimation of the redshift of the FRB (as the redshift of the

galaxy can be determined using photometry or spectroscopy). This can then be used

to estimate the luminosity of the FRB and derive meaningful insights into the DM

contributions of host and ISM (see Section 1.4.1). It can also be used to understand

the DMIGM-z relation (Pol et al., 2019; Hackstein et al., 2020; Zhu & Feng, 2021;

Zhang et al., 2021; Hackstein et al., 2021; Batten et al., 2021), its variance (Macquart

et al., 2020; Bhandari & Flynn, 2021), and study the halo of any foreground galaxy

that intersects the line of sight of the FRB (Prochaska et al., 2019; Simha et al., 2021).

A sample of host galaxies can then be compared against other known transients, as

we discuss later.

Further, a better understanding of the local environment of FRBs is essential,

as it can differ significantly from the broader properties of the FRB host galaxy. For

instance, an FRB that lies in a star-forming galaxy might not lie in a star-forming

region, or an FRB might lie near a region of high magnetic field (Tendulkar et al.,

2017, 2021). The offset of FRB position itself from the center of the host galaxy can

be compared against the offset distribution of other transients to draw conclusions

about FRB sources (Heintz et al., 2020; Bhandari et al., 2021). The precise position

of the FRB also enables multi-wavelength follow-up and archival search to identify

any temporally and spatially co-located transient or persistent emission throughout

the electromagnetic spectrum. We discuss this further in the following subsections.

Therefore, sub-arcsecond localizations, enabled by interferometers like VLA,

ASKAP, and DSA, are key to better understanding the FRBs and their progenitors.

We discuss the techniques to localize FRBs, and some FRBs localized using VLA in

Chapter 6.

1.7.1 Host galaxy population and local environment

As of this writing, 24 FRBs have been localized or associated to a host galaxy,

of which 8 are repeaters (Chatterjee et al., 2017; Bannister et al., 2019; Ravi et al.,
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2019; Macquart et al., 2020; Bhandari et al., 2021; Law et al., 2020; Marcote et al.,

2020; Ravi et al., 2021; Heintz et al., 2020; Prochaska et al., 2019). Bhandari et al.

(2021) used a sample of 16 FRBs with secure host association (6 repeating and 10

non-repeating) and analyzed their host galaxy properties. They find that the FRB

hosts are, in general, massive and moderately star-forming, and their masses are offset

from the star-forming main-sequence. Further, FRB hosts do not track stellar mass

and star formation rate in field galaxies in the local universe. Interestingly, hosts of all

three localized repeating FRBs lie in the star-forming region. However, there appears

to be no significant difference in the host properties of repeating and non-repeating

FRBs. The global properties of FRB hosts are statistically indistinguishable from

core-collapse supernovae and short gamma-ray bursts hosts and different from long

gamma-ray bursts and super-luminous supernovae. The detection of FRB-like burst

from Galactic magnetar and localization of an FRB to a globular cluster demonstrates

that much is still to be learned about broader FRB host population (Bochenek et al.,

2020; CHIME/FRB Collaboration et al., 2020b; Bhardwaj et al., 2021a).

Using sub-arcsecond localizations and high-resolution HST observations, the

local environment of some FRBs has also been studied (Mannings et al., 2021; Ten-

dulkar et al., 2017, 2021). FRBs lying in spiral galaxies appear on or near the spiral

arms. Most FRBs do not lie in regions of elevated local star-formation rate and stellar

mass surface densities in comparison to the mean global values of the host galaxy. It

has been found that both FRB 180916 and FRB 121102 are offset from a nearby star-

forming knot in their galaxy by around 200 pc (Tendulkar et al., 2021; Bassa et al.,

2017). This is problematic for young magnetar models as such sources are found

closer to their birth sites. For FRB 180916, the observations are compatible with a

high-mass X-ray binary or gamma-ray binary with an O-type or B-type companion

star (Tendulkar et al., 2021).

1.7.2 Persistent radio emission

The localization of the first repeating FRB, FRB 121102, also enabled its asso-

ciation with a co-located persistent radio source (PRS; Chatterjee et al., 2017). The
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PRS is compact (projected size < 0.7 pc), persistent (non-bursty) with a luminosity

of L1.4 GHz = 2 × 1029 ergs s−1Hz−1, comparable to a low luminosity AGN. The spec-

trum of the PRS is relatively flat (spectral index ∼ 0.07) to 8 GHz and declines above

that cutoff (Chatterjee et al., 2017; Marcote et al., 2017; Resmi et al., 2021), and the

emission is consistent with isotropic incoherent synchrotron radiation. Although the

probability of chance coincidence of this PRS with that of FRB position is small, it

is yet unknown if the presence of PRS has implications for FRB emission. Soon after

the discovery of this PRS, theoretical models were proposed connecting the source of

FRB121102 and PRS (Kashiyama & Murase, 2017; Beloborodov, 2017; Margalit &

Metzger, 2018; Metzger et al., 2019). But the next dozen or so localized FRBs do

not have any associated PRS, down to luminosities much lower than that of PRS of

FRB121102. Therefore FRB 121102 was considered an outlier in this population.

Recently, the localization of FRB 190520 using VLA has found it to be associ-

ated with a PRS (see Chapter 6; Niu et al., 2021a). This implies that a sub-population

of FRBs have an associated PRS, which can be revealed only in a large sample of

localized FRBs and corresponding deep radio observations of those fields. Law et al.

(2021b) use the population of localized FRBs, with meaningful constraints on possible

PRS, to show that there is no strong evidence to show that repeating FRBs are more

likely to be associated with a PRS than apparently non-repeating FRBs. Further,

they show that the presence of PRS for an FRB can be predicted based on the active

repetition rate and excess dispersion measure attributed to FRB local environment.

1.7.3 Multi-wavelength emission

Localization of FRBs also enables their multi-wavelength follow-up. This is

useful as several progenitor models predict a transient or persistent multi-wavelength

counterpart with the FRB. Therefore any detection of co-located emission would

increase the confidence in such models (Burke-Spolaor, 2018). But thus far, extra-

galactic FRBs have not yielded any reliable coincident detection at other wavelengths

(Scholz et al., 2016; Scholz et al., 2020; Pearlman et al., 2020). It is also possible that

the FRB sources are too distant and below the detection threshold of the current
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high-energy telescopes.

The only confirmed counterpart of any FRB is the hard X-ray and soft gamma-

ray burst from the Galactic magnetar SGR 1935+2154, which was also temporally

coincident with the FRB (Bochenek et al., 2020; CHIME/FRB Collaboration et al.,

2020b; Kirsten et al., 2021a; Li et al., 2021; Ridnaia et al., 2021; Mereghetti et al.,

2020). This unambiguously established that at least some FRBs originate from mag-

netars. Conversely, FRBs can be searched at the sites of other known transients.

No FRB has been detected in association with GRBs, even after several attempts

(Madison et al., 2019; Men et al., 2019; Palliyaguru et al., 2021; Hilmarsson et al.,

2020; Guidorzi et al., 2020). Searches for FRBs from super-luminous supernovae have

also not been associated with an FRB (Law et al., 2019).

1.8 FRB progenitor models

The vast range of observational properties for the currently known sample of

FRBs makes it difficult for any one model to unify the FRBs as originating from

a single source class. Therefore, it is likely that there are multiple populations of

FRBs, so models can also be divided based on the properties they explain. Naturally,

a large number of models have been proposed to explain FRBs (Platts et al., 2019),

ranging from the relatively familiar, such as magnetic reconnection on magnetars (Lu

& Kumar, 2018) or giant flares from young magnetars (Lyutikov et al., 2016), to the

exotic, such as axion star phenomena (Iwazaki, 2014) and cusps from cosmic strings

(Costa et al., 2018).

Based on time- and frequency-resolved FRB sub-structures, there is evidence

for phenomenological divisions in FRBs, possibly pointing to at least two classes of

FRB progenitor. A number of these populations may be associated with ambient

or bursty X-ray emission (Burke-Spolaor, 2018). Two leading theories have emerged

among the many progenitor models based on FRB energetics, pulse timescales, and

occurrence rates. The theories point to either material around a large BH or a young

magnetar as the FRB engine. Both repeating and non-repeating FRBs appear to
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remain broadly consistent with these models, although we have limited information

about FRB environments that are required to put the models to the test. Either

way, any progenitor model would have to explain at least the mechanism for the

high brightness temperatures (> 1032K) and short (millisecond and in some cases

microsecond) duration of the bursts, which indicate a coherent emission mechanism

and compact emission region (Zhang, 2020).

1.8.1 Black Hole models

Almost all FRB-generating BH models have two things in common: the BH

must be accreting at least at some minimum level, and its mass must be either

intermediate or supermassive (e.g., 105M� or higher) to have a gravitational energy

reservoir sufficient enough to produce the luminosities seen from FRBs.

To give a specific example, one model (Zhang, 2017) uses the interaction of

gasflow from a 104 − 106M� BH with the magnetosphere of a foreground neutron

star to generate FRBs. FRB121102’s pulses can be explained if the source of this

gasflow is a low-luminosity accreting BH, provided it ejects a nearly isotropic disk

wind outflow with a varying ram pressure (Zhang, 2018).

Other BH models have used similar mass requirements but with different phys-

ical mechanisms, showing that FRBs can be generated from coherent emission in

strong plasma turbulence excited by a relativistic electron jet (Romero et al., 2016;

Vieyro et al., 2017), or from the jet-confining regions in the accretion disk of an

intermediate-mass BH (Katz, 2017). Here, the narrow collimated beam is similar

to the jets emitted by an AGN, micro-quasars, or a GRB. Collisions of large super-

conducting dipoles around slowly accreting supermassive BH can also form FRBs

(Thompson, 2017).

1.8.2 Young magnetar models

Pulsar-related phenomena are an attractive descriptor for FRB emission, as our

galaxy contains many similar pulse emitters. To scale the neutron star energies up to
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the level of FRBs, one needs a large magnetic field (i.e., magnetar) and large rotational

spin-down energy (i.e., the magnetar must be young). FRB121102’s PRS may indicate

a luminous pulsar wind nebula (Kashiyama & Murase, 2017; Beloborodov, 2017;

Margalit & Metzger, 2018; Metzger et al., 2019; Lyubarsky, 2014). This expanding

magnetized nebula (created by the same outburst which caused the FRB) can also

explain all the observed properties (size, flux) of the persistent source associated

with the FRB121102 (Margalit & Metzger, 2018). Another model explains the origin

of FRBs from the synchrotron maser emission produced by flare ejecta from young

magnetars (Metzger et al., 2019). The Galactic FRB may have been due to one such

magnetar model (CHIME/FRB Collaboration et al., 2020b; Bochenek et al., 2020).

1.9 Open questions

We have described the enigmatic phenomenon of FRBs, their observational and

derived properties, key results in our quest to understand them better, some progen-

itor models that try to explain them, and most importantly a detailed description of

how an FRB search is performed, so we can detect more of these sources. Detecting

and then localizing a large number of FRBs appears to be the most promising way of

uncovering exotic FRBs that will challenge the proposed theoretical predictions and

simultaneously provide a better understanding of this population. The CHIME/FRB

instrument has been prolific in the detection aspect of FRBs (The CHIME/FRB

Collaboration et al., 2021a), but larger samples at other frequencies will also provide

complementary information. Large field-of-view telescopes like DSA will be promising

in this regard. The second aspect is the localization of FRBs, which interferometers

like VLA and ASKAP have pioneered, and this population will increase rapidly in

the coming months and years.

We have come a long way from the discovery of the “Lorimer Burst”. We have

answered many questions, and with every answer uncovered new questions. We know

a lot more about FRBs than one could have imagined 15 years ago, but this journey

is just getting started. Here are some of the puzzles still to be resolved:
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1. Is there a single population of FRBs? Are repeaters and non-repeaters two

separate populations?

2. Do all FRBs have the same progenitors? If not, do different progenitors explain

the diverse populations, or can a single progenitor describe these seemingly

different populations?

3. Is the presence of PRS an indicator of a particular sub-population of FRBs (

e. g. FRB 121102-like FRBs)?

4. What observable traits do host galaxies of FRBs have? Are they similar to any

other known transient?

5. What causes periodicity in the burst activity of some repeaters? And why are

all repeaters not periodic?

6. What is the underlying energy distribution of repeating FRBs? What is that

of the population of all FRBs?

7. Do FRBs have multi-wavelength emission associated with them? If so, why

have we not detected it?

1.10 Thesis outline

In this thesis we will discuss several advancements that we made over the course

of last four years to better search, localize, classify and analyse the FRBs. These

are organized as follows. We discuss some open source software for FRB search

and analysis in Chapter 2. We then talk about analysis to develop and compare

clustering algorithms for Realfast system at VLA in Chapter 3. This is followed by

the search and analysis of a sample of bursts from FRB 121102 detected in data from

Arecibo Telescope, in Chapter 4. Chapter 5 highlights some observational biases in

the detection of bandlimited FRBs, and Chapter 6 discusses the Realfast pipeline

and some FRBs localized using the Realfast system. Finally, we conclude and make

predictions in Chapter 7.
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Chapter 2

Software

In this chapter we discuss some open-source software that we have developed

to assist in single pulse search and analysis of FRBs.

2.1 Fast Extragalactic Transient Candidate Hunter (FETCH)

fetch (Agarwal et al., 2020a) is a set of eleven deep learning models that can

be used to distinguish FRBs from RFI in real-time. All the models are combinations

of two convolutional neural networks each with varying architectures. It was trained

on data from telescopes at Green Bank Observatory but is designed to be robust to

data from different telescopes, observing configurations (frequency, bandwidth, etc.)

and RFI environments. This was achieved using a carefully designed training and

pre-processing strategy. All the models in fetch have a recall and precision above

99.5% on the test dataset, and it was successfully able to recover all real FRBs above

an S/N of 10 in ASKAP and Parkes data. fetch has since then been used to discover

many new FRBs and re-detect pulses from many known repeating FRBs and pulsars

(Agarwal et al., 2020b; Aggarwal et al., 2020; Law et al., 2020; Kumar et al., 2019;

Aggarwal et al., 2021a; Bhandari et al., 2021; Pleunis et al., 2021a; Kumar et al.,

2021c; Pearlman et al., 2020; Rajwade et al., 2020b; Majid et al., 2020; Kirsten et al.,

2021b,a; Niu et al., 2021a; Ravi et al., 2021). fetch is openly available on Github1.

1https://github.com/devanshkv/fetch
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2.2 Burstfit

burstfit is a python package to do robust spectro-temporal modeling of single

pulses from FRBs or pulsars. It provides a framework to model any spectrogram

consisting of any complex FRB or pulsar pulse using robust methods. It can eas-

ily incorporate any user-defined python function to model the profile, spectra, and

spectrogram and is not limited to the available functions with the package. Modeling

using burstfit broadly consists of the following five steps:

• Data Preparation: Consists of extracting the relevant raw data around the burst

time, normalizing it to zero mean and unit standard deviation and flagging the

RFI channels.

• Single-component fitting: Fits the pulse profile followed by the spectra. Then

using the fitted estimates, it tries to model the spectrogram. All the fitting at

this stage uses scipy.curve fit.

• Statistical Tests: Performs tests to compare the on-pulse residual data to off-

pulse noise. If the two distributions are found to be statistically similar, then

the fitting process is terminated, and more components are not fit; otherwise,

more components are fit by repeating the previous step.

• Multi-component fitting: Fits all the components of the spectrogram together

using scipy.curve fit and the fitted values of parameters from the previous

stages as the initial estimates.

• MCMC: Runs a full-scale Markov Chain Monte Carlo on all the parameters to

obtain the posterior distribution of the parameters.

See Section 3.5 of Aggarwal et al. (2021a) for more details. burstfit is openly

available on Github2.

2https://github.com/thepetabyteproject/burstfit
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2.3 FRB Periodicity Analysis (FRBPA)

frbpa (Aggarwal et al., 2020) is a python package to perform periodicity analy-

sis on FRB bursts. It can be used to search for periodicity in the activity of repeating

FRBs, as has been observed for FRB 121102 and FRB 180916 (see Section 1.4.6 and

CHIME/FRB Collaboration et al., 2020a; Rajwade et al., 2020b). It provides three

periodicity search techniques: Pearson Chi-square test (CHIME/FRB Collaboration

et al., 2020a), Minimum fractional width of folded profile (Rajwade et al., 2020b)

and Quadratic-Mutual-Information-based periodicity search technique (Huijse et al.,

2018). frbpa also consists of functions to visualize the periodicity and the exposure

time for a given repeater. frbpa is openly available on Github3.

2.4 Calculating Association Probability of FRBs (CASP)

casp is a python package to calculate the chance association probability of

FRBs to that of host galaxies. It implements the procedure described in sections 2

and 3 of Eftekhari & Berger (2017) to calculate the probability without and with using

the estimated redshift of the FRB. The first approach assumes a Poisson distribution

of radio sources across the sky. It calculates the chance coincidence probability using

the number density of galaxies above a limiting r-band magnitude. In the second ap-

proach, the number density of galaxies at a given redshift is calculated by integrating

the optical luminosity functions. It also implements the approach of Bloom et al.

(2002, Sec. 6.1) to estimate the chance coincidence probability using r band magni-

tude and the expression given by Hogg et al. (1997). See Section 6.1 and Appendix

of Aggarwal et al. (2021b) for more details. casp is openly available on Github4.

3https://github.com/KshitijAggarwal/frbpa
4https://github.com/KshitijAggarwal/casp
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2.5 Your Unified Reader (Your)

The data output from radio telescopes is in one of the two commonly used

formats: psrfits (Hotan et al., 2004) and Sigproc filterbank5 (Lorimer, 2011).

Software developed for transient searches often only works with one of these two

formats, limiting their general applicability. Therefore, researchers have to write

custom scripts to read/write the data in their format of choice before beginning any

data analysis relevant to their research. This has led to the development of several

python libraries to manage one or the other data format (like pysigproc6, psrfits7,

sigpyproc8, etc). Still, no general tool exists which can work across data formats.

2.5.1 Statement of need

Your (Your Unified Reader) is a python-based library that unifies the data

processing across multiple commonly used formats. Your was conceived initially to

perform data ingestion for The Petabyte FRB search Project (TPP), which will uni-

formly search a large number of datasets from telescopes around the world for FRBs.

As this project will process data in different formats from multiple telescopes world-

wide, a unified reader was required to streamline the search pipeline. Your implements

a user-friendly interface to read and write in the data format of choice. It also gener-

ates unified metadata corresponding to the input data file for a quick understanding

of observation parameters and provides utilities to perform common data analysis

operations. Your also provides several state-of-the-art radio frequency interference

mitigation (RFI) algorithms (Agarwal et al., 2020b; Nita & Gary, 2010), which can

now be used during any stage of data processing (reading, writing, etc.) to filter out

artificial signals.

Published as Aggarwal et al. (2020)
Contributing authors: Devansh Agarwal, Joseph W Kania, William Fiore, Reshma Anna
Thomas, Scott M. Ransom, Paul B. Demorest, Robert S. Wharton, Sarah Burke-Spolaor, Dun-
can R. Lorimer, Maura A. Mclaughlin, Nathaniel Garver-Daniels

5http://sigproc.sourceforge.net/
6https://github.com/demorest/pysigproc
7https://github.com/scottransom/presto/blob/master/python/presto/psrfits.py
8https://github.com/FRBs/sigpyproc3
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Your can be used at the data ingestion step of any transient search pipeline

and can provide data and observation parameters in a format-independent manner.

Generic tools can thus be used to perform the search and further data analysis. It

also enables online processing like RFI flagging, decimation, subband search, etc.;

functions for some of these are already available in Your. It can also be used to

perform analysis of individual candidate events (using Candidate class): generate

candidate data cutouts, create publication-ready visualizations, and perform GPU

accelerated pre-processing for candidate classification (Agarwal et al., 2020a). It also

consists of functions to run commonly used single-pulse search software Heimdall9

(Barsdell, 2012) on any input data format.

Your will benefit not only experienced researchers but also new undergraduate

and graduate students who otherwise have to face a significant bottleneck to un-

derstand various data formats and develop custom tools to access the data before

any analysis can be done on it. Moreover, Your is written purely in python, which

is a commonly used language within Astronomy. It also comes with comprehensive

documentation10 and example notebooks11 to make it easier to get started.

Your uses the matplotlib library (Hunter, 2007) for plotting, and also makes

use of various numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), scikit-image

(Pedregosa et al., 2011), numba (Lam et al., 2015) and Pandas (Reback et al., 2021;

Wes McKinney, 2010) functions. Your also leverages several functions in the As-

tropy package (Astropy Collaboration et al., 2013; Price-Whelan et al., 2018): fits

(astropy.io.fits), units (astropy.units), coordinates (astropy.coordinates) and time (as-

tropy.time).

9https://sourceforge.net/projects/heimdall-astro/
10https://thepetabyteproject.github.io/your/
11https://github.com/thepetabyteproject/your/tree/master/examples
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Chapter 3

Robust Assessment of Clustering Methods

for Fast Radio Transient Candidates

3.1 Chapter Overview

As discussed in Section 1.6, fast radio transient search algorithms identify signals

of interest by iterating and applying a threshold on a set of matched filters. These

filters are defined by properties of the transient such as time and dispersion. A real

transient can trigger hundreds of search trials, each of which has to be post-processed

for visualization and classification tasks. In this chapter, we have explored a range of

unsupervised clustering algorithms to cluster these redundant candidate detections.

We demonstrate this for Realfast, the commensal fast transient search system at

the Very Large Array. We use four features for clustering: sky position (l, m), time

and dispersion measure (DM). We develop a custom performance metric that makes

sure that the candidates are clustered into a small number of pure clusters, i.e, clusters

with either astrophysical or noise candidates. We then use this performance metric

to compare eight different clustering algorithms. We show that using sky location

along with DM/time improves clustering performance by ∼10% as compared to the

traditional DM/time-based clustering. Therefore, positional information should be

used during clustering if it can be made available.

We conduct several tests to compare the performance and generalisability of

Published as Aggarwal et al. (2021c)
Contributing authors: Sarah Burke-Spolaor, Casey J. Law, Geoffrey C. Bower, Bryan J. Butler,
Paul B. Demorest, T. Joseph W. Lazio, Justin Linford, Jessica Sydnor, Reshma Anna-Thomas
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clustering algorithms to other transient datasets and propose a strategy that can be

used to choose an algorithm. Our performance metric and clustering strategy can

be easily extended to different single-pulse search pipelines and other astronomy and

non-astronomy-based applications.

3.2 Introduction

One of the significant difficulties when seeking fast-transient radio signals is

the load of candidates that results from a transient search: it is common for a search

algorithm to return millions to billions of candidates from a survey, only a few of which

end up being genuine (the rest being thermal noise and radio-frequency interference—

RFI). Even one bright event, whether astrophysical or artificial, can generate many

hundreds of separate candidates. This is because search algorithms iterate over a

set of matched filters and identify transients that exceed the detection threshold.

Clustering algorithms to account for this effect are of dire importance to any radio

transient search pipeline. A rigorous study of an effective clustering algorithm for

fast-radio-transient searches is the primary purpose of the study reported here.

Here we briefly discuss the various steps in a single pulse search pipeline (see

Section 1.6 for a detailed discussion). When searching for a radio transient, neither its

dispersion measure nor width (i.e., duration) are known. Therefore, one must search

over a range of DMs and widths to carry out a full-sensitivity search. DM values at

which to search are chosen by considering the expected decline in signal-to-noise (S/N)

ratio, due to pulse broadening, at the adjacent DMs (Cordes & McLaughlin, 2003;

Levin, 2012). To summarise, a standard fast-transient-search pipeline dedisperses the

data at various trial DMs, averaging all the frequencies to obtain a one-dimensional

time series, followed by convolution using boxcar filters of various widths. Candidate

pulses are identified by searching for peaks above a pre-decided threshold, with the

S/N of a candidate determined from an estimate of the signal strength with respect

to the standard deviation within the region defined by the boxcar filter width. Dedis-

persing at an incorrect DM, or using a boxcar filter of incorrect width, would reduce
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the S/N of the pulse. As previously noted, any event can lead to multiple candidates

being detected by the search pipeline if the S/N remains above the threshold at the

incorrect DM or boxcar width.

This process can lead to a substantial number of redundant candidates caused by

a single event. Clustering is performed on these candidates to automatically combine

such events at the end of the search pipeline. Some algorithms that are currently in

common use are friends of friends (FoF) and DBSCAN (Ester et al., 1996; Deneva

et al., 2009; Barsdell, 2012). However, few clustering algorithms have been rigorously

tested.

Throughout this chapter, our primary motivation was to identify the optimal

clustering algorithm for single-pulse searches, in particular in searches for fast radio

bursts (FRBs).

The Realfast system at Very Large Array (VLA) is one such commensal

fast transient search system (see Chapter 6). The Realfast pipeline focuses on

searching for transients at multiple DMs and trial widths, each of which is then

post-processed. A total intensity (Stokes I) image is formed for each trial DM and

width. Point sources in these images with S/N greater than a pre-set threshold trigger

the detection pipeline. The data corresponding to each candidate are then saved to

disk and is classified using a Deep Learning based classifier (Agarwal et al., 2020a).

Visualizations that show the radio image, spectrogram, spectra, and profile of the

candidate are then generated. These visualizations also consist of other relevant

candidate parameters: signal to noise ratio (S/N), DM, width, relative sky position

with respect to the pointing center, scan number, etc., and are used for follow-up

inspection.

In this chapter, we use Realfast data as a test-case to explore and compare

candidate-clustering techniques. We also generalize our results to apply to single-dish

telescopes, which do not have spatial (sky-location) information to use in a clustering

algorithm. This chapter is laid out as follows: In §3.3 we provide a more detailed

motivation for the need for clustering and a discussion of clustering methodologies.

§3.4 describes the data used for testing the algorithm, followed by methods explained
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in §3.5. The results of the analysis are presented in §3.6, followed by discussion and

conclusion in §3.7 and §3.8, respectively.

3.3 Clustering

As mentioned previously, clustering is implemented between the search and the

candidate processing steps of the pipeline. In the Realfast system, after clustering,

we choose the maximum S/N candidate from each cluster, and only those are analyzed

in the candidate processing step. We also consider all the unclustered candidates as

individual clusters of size one and pass them onward for processing.

In this section, we discuss the need to use clustering in the context of a single

pulse search pipeline. Further, we use the following terminology throughout this

chapter:

• Event: The actual physical occurrence of an astrophysical transient (e. g., FRB,

pulsar) or Radio Frequency Interference (RFI).

• Candidate: A single detection reported by a search pipeline. It typically consists

of a set of properties (sky location, DM, time, etc). Candidates may be triggered

by random thermal noise or associated with an event. Multiple candidates can

be associated to a single event.

• Observation: A set of candidates generated after the search pipeline is run on

some data. It can be real or simulated and can have candidates associated with

FRB or RFI or both.

• Dataset: A set of observations.

• Cluster: A group of candidates (or members) with the same labels assigned by

a clustering algorithm.

• Member: Candidates within a cluster.

• True Labels: Each member of a cluster is associated with an event. We refer to

this event as the true label of that member.
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• Real/FRB/Transient: Event, cluster, or member associated with an astrophys-

ical transient.

• RFI: Event, cluster, or member that is not astrophysical.

3.3.1 Expected number of candidates from a single astrophysical event

As explained in the previous section, following search parameters are reported

for each candidate detected by the Realfast search pipeline: DM, time of occurrence

of the candidate, relative sky position with respect to the pointing center (l, m), S/N,

and width. Moreover, for each event, the pipeline can return multiple candidates at

nearby (incorrect) values of DM, width, and time. The observed S/N of a candidate

detected at a trial DM, width, sky location is given by (assuming no other losses,

etc.)

S/Nobserved = S/Noptimal.Fwidthloss.Fbeamloss.FDMloss, (3.1)

where S/Noptimal is the S/N of the candidate when there is no loss. Fwidthloss is the

loss due to incorrect boxcar width (Cordes & McLaughlin, 2003), Fbeamloss is the loss

due to position of candidate within the primary beam of the telescope, and FDMloss is

the loss due to incorrect DM value (Levin, 2012, §2.3).

Using this equation, we can calculate the number of candidates that will trigger a

single pulse search system for an astrophysical event. For instance, we assume a VLA

L-band (1–2 GHz) configuration with 256 frequency channels and a time resolution of

5 ms, and that Realfast system is used to search for transients. We then search for

DMs from 0 pc cm−3 to 3000 pc cm−3 and set Fdmloss = 0.95, i.e, up to a maximum

of 5% loss in sensitivity between DM trials. Using this, and assuming an intrinsic

pulse width of 30 ms, we can compute the DM array (Levin, 2012, §2.3). We also

assume tscatt = 0 as it is line-of-sight dependent and is typically small. We set our

boxcar search widths to 5 ms, 10 ms, 20 ms, and 40 ms and S/N detection threshold

at 8. Figure 3.1 shows the number of candidates detected with respect to input S/N

of the transient for two different values of transient DMs and widths. Here, we have

also assumed that the candidate is at the center of the beam, therefore the Fbeamloss
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Figure 3.1: The number of candidates generated by a single pulse search pipeline
for events with varying S/N. Different colors represent different intrinsic widths of
the transient, and different line styles show different DMs. Observing and search
configuration similar to that of Realfast at L-band was chosen (Sampling time: 5 ms,
Number of frequency channels: 256, Bandwidth: 1 GHz, DM range: 0 to 3,000pc cm−3,
Boxcar widths: [5 ms, 10 ms, 20 ms, 40 ms], S/N threshold: 8). See Section 3.3.1 for
more details.

is 1. This figure clearly shows that the number of candidates detected by the pipeline

can be large even for one event. This can overwhelm the real-time systems that are

responsible for post-processing these candidates and writing their data to disk, hence

motivating the use of clustering algorithms.

3.3.2 Unsupervised Clustering

In this chapter, we have taken the approach of unsupervised clustering. Here

we briefly discuss unsupervised clustering and some of its caveats. Unsupervised

clustering is the method used to find meaningful clusters from an unlabeled dataset,

i.e., a priori information about number of clusters and the true cluster assigned for

each candidate is not known (Jain et al., 1999). This is in contrast to supervised

clustering for which this information is available. In this analysis, we do not know

the clustering information of the candidates, therefore we opted for unsupervised

clustering.

Unsupervised clustering is typically done by estimating the “distance” or “simi-

larity” between different candidates, with the aim that candidates with low “distance”

might be similar and belong to the same cluster. The clustering algorithms we dis-
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cuss in this chapter use standard search pipeline features, without any expensive

pre-processing, and can find reliable clusters in real-time. In some cases, physically

meaningful relations between features could also be computed to enhance clustering

performance, however we do not employ these here (Pang et al., 2018, §3.2).

The caveat to this approach is that unsupervised clustering techniques can be

harder than supervised methods to tune for specific datasets. Also, due to the lack

of true labels, it is difficult to evaluate the clustering performance. We discuss the

above caveats further in Section 3.5.

3.3.3 Clustering RFI

Strong RFI events can also overwhelm the real-time pipelines by generating a

large number of candidates, sometimes at all DM trials. Even though we use multiple

filtration techniques to mitigate RFI, some signals still reach the pipeline’s clustering

step. Narrow-band RFI can lead to many candidates at all DMs in the DM grid

(and, because of the resulting time shift of the peak, corresponding time bins). In

some cases, the RFI appears as a strong localized source in the radio image and

hence is present as a dense cluster of points in the image plane (for instance, this

can happen with a sufficiently high-altitude satellite). Therefore, we can leverage the

clustering algorithm to cluster those thousands of triggers into one cluster, reducing

the computational load by orders of magnitude. As it is not feasible to manually

label RFI examples into multiple clusters, we cannot evaluate clustering algorithms’

performance on identifying separate RFI clusters. Instead, we only estimate clustering

performance on FRB clusters. This is further discussed in Section 3.5.3.

3.4 Data

Here we describe the details of our dataset and the features we used for cluster-

ing. We used Realfast data to generate a dataset containing representative RFI,

and used simulated FRBs to generate a dataset with representative candidates. We

then combined the two datasets and applied four different pre-processing techniques
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(downsampling and normalization) on the features of the candidates to simulate 250

observations, consisting of candidates from both real and RFI events.

3.4.1 Feature Selection for Clustering

As mentioned in Section 3.2, the pipeline reports a set of measured parameters

for each candidate that satisfies the S/N threshold criterion. For our clustering anal-

ysis, we cluster based on DM, time (as is the standard with most past FRB searches),

and sky position (with relative direction cosines represented by l and m as angular

distances from the observation’s pointing center) of the candidates. Candidates asso-

ciated with an FRB event are expected to be densely located in l and m, as the FRB

originates from a specific location in the sky. They would also show an expected S/N

decrease in adjacent DM and time values (see Section 3.3.1) and would be closer for

those parameters. On the other hand, RFI is randomly spread across this parameter

space, but strong RFI can show a trend in DM and time if detected at multiple DMs.

3.4.2 RFI database

In this analysis, we used data from various commensal and commissioning ob-

servations of Realfast system (project codes: 19A-242, 20A-330, 19B-223, 20A-163)

in which the standard Realfast pipeline detected only RFI candidates. This data

spans a range of array configurations and other observing and search parameters (fre-

quency, bandwidth, image pixel size, etc.). To create candidates representative of

the real-time pipeline, we re-ran the Realfast transient search on this data with

the pipeline using default search parameters (Law et al., 2018, 2020). As clustering

performance is expected to be sensitive to the RFI environment, we selectively chose

datasets with a variety of RFI types. These datasets are representative of the broad

range of RFI we have seen at VLA and therefore form a robust sample of RFI for our

analysis. This procedure was used to generate RFI candidates from 13 observations,

with a few to ∼ 6000 candidates each. We manually verified that all these candidates

were RFI and saved parameters relevant for clustering for each candidate (§3.4.1).
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Table 3.1: Parameter distributions of simulated FRBs

Parameter Distribution Range/Values

S/N Uniform 10, 40
DM (pc cm−3) Uniform 10, max search dma

Width (ms) Uniform 1, 40 (ms)
Frequency Uniform L, S, C, X

Array configuration Uniform A, B, C, Db

Sky position (l, m) Uniform -fov/2, fov/2c

a max search dm is the maximum DM searched for a given
configuration

b Maximum baseline lengths for the four configurations (A,
B, C, D) are 36.4 km, 11.1 km, 3.4 km, 1.03 km.

c fov is the field of view at the randomly chosen frequency.

We will refer to this as the RFI dataset.

3.4.3 Simulating and Injecting FRBs

We also generated a dataset of “real” candidates, representing our signals of

interest. This was done by generating simulated data (with standard radiometer noise

for different array configurations, observing, and search parameters) and injecting

simulated transients. The distribution of parameters used for injecting transients

is given in Table 3.1. We searched this simulated data using Realfast system

with real-time search configuration to generate candidates. We saved the relevant

parameters of all the candidates, and manually verified them to make sure that each

candidate corresponds to the injected transient. We discarded any observation with

less than four candidates. This procedure was used to generate real candidates from

114 simulated observations (with one transient injected in each observation). We will

refer to this as the FRB dataset.

3.4.4 Test Dataset

To evaluate the performance of various clustering methods (described in Sec-

tion 3.5.1), we generated a test dataset. We used this dataset to compare the perfor-

mance of different pre-processing techniques, and also during hyperparameter tuning
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(see Section 3.5.2).

The test dataset consists of multiple observations, each containing some RFI

candidates and some FRB candidates. We enforce that each observation has one

transient event, and so all FRB candidates in an observation would be associated

to that single event. Therefore, a perfect clustering algorithm should form only one

FRB cluster per observation. To generate such an observation, we randomly chose

one observation each from the RFI and FRB dataset pool. We then randomly select

X% of RFI candidates (where X is sampled from a uniform distribution between 20-

100) from the RFI observation, all the FRB candidates from the FRB observation,

and concatenate their features. We then randomise the order of the examples. This

creates a set consisting of both RFI and FRB candidates. All observations with less

than 10 total number of candidates were discarded. Using this process, we created

250 observations containing RFI and FRB candidates, which formed our test dataset.

3.4.5 Pre-processing

Pre-processing is the procedure that takes the event features and converts them

into indexed parameter ranges such that all the parameters will be equally weighted

in terms of their importance in the clustering.

As explained in Section 3.4.1, we use DM, time, l and m as features for cluster-

ing. Therefore, for each candidate in each observation of our database, we save these

four parameters along with the image S/N of the candidate. After clustering, we use

S/N to decide the representative candidate from each cluster. We convert the abso-

lute value of DM to an index based on its index in the DM array for each candidate.

Similarly, we also convert the time value (in seconds) to an index, based on the sample

number corresponding to that time from the start of that processing segment. We

also convert l and m (which is the offset of the candidate from primary beam center)

to corresponding pixel values, using the synthesized beam size. Therefore, we convert

all the features to corresponding indices. This is necessary as otherwise, different

scales of different features might bias the distance estimates required in clustering.

The transient events we are interested in appear as a point source in the sky.
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Therefore, all the candidates from that transient should constitute a small range of l

and m index values. We downsampled the l and m values of all the candidates to in-

crease the sky density of candidates, which might enhance the clustering performance.

We tried downsampling factors of 1, 2 and 4 (henceforth referred to as DS1, DS2 and

DS4 respectively). Although we have scaled all the features to their corresponding

indices, we also evaluated clustering performance on standardized data (i.e, with zero

mean and unit variance, hereafter referred to as Norm). Throughout the chapter,

we report the performance of all the algorithms on all these different pre-processing

techniques. We also try to determine the pre-processing technique which leads to the

best clustering performance.

3.5 Methods

3.5.1 Clustering Algorithms

We compare eight algorithms to cluster our test dataset: K-means, Mean Shift,

Affinity Propagation, Agglomerative Clustering, DBSCAN, Optics, HDBSCAN, and

Birch. For all except HDBSCAN, we use the implementation of these algorithms

in scikit-learn (Pedregosa et al., 2011; Buitinck et al., 2013). We use the python

implementation of HDBSCAN by McInnes et al. (2017). We briefly discuss the details

of these algorithms and their hyperparameters in Section 3.9.1. We refer the reader

to the respective papers and scikit-learn documentation for more details.

3.5.2 Hyperparameter Tuning

Each clustering algorithm has several input parameters that can be used to

control the algorithm’s clustering process and speed. These input parameters are

called hyperparameters. Some algorithms are very sensitive to the choice of these

hyperparameters while others are robust to a range of hyperparameters. Our aim is

to find the hyperparameters for each algorithm, which leads to the best clustering

performance (called optimal hyperparameters). The following three techniques are
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typically used to obtain the optimal hyperparameters: brute force grid search, ran-

dom sampling, and Bayesian optimization. Grid search involves generating a grid

of points covering the whole parameter space uniformly. The performance metric

is then calculated on all the grid points, and the hyperparameter combination with

the maximum value of the metric is chosen. In random sampling, the hyperparam-

eter combinations are randomly chosen from a distribution of parameters. Bayesian

optimization uses Bayesian techniques to parse the parameter space and obtain the

optimal hyperparameter combination.

Random sampling has been shown to be better than brute force grid search

(Bergstra & Bengio, 2012). This is because, in most cases, only a few hyper-parameters

really matter, the importance of which changes with different datasets. This makes

grid search a poor choice for searching for hyper-parameters for different datasets.

Therefore, we opted to use random sampling. Also, because our parameter space is

not very large, we decided not to use Bayesian optimization. Section 3.9.2 shows

the ranges and various possible values of different hyperparameters that were tried

for each algorithm. Whereever necessary, we used a random state of 1996 in the

algorithms for reproducibility.

3.5.3 Performance Metric

The general idea of using a performance metric is to have a common reference

point to rank the effectiveness of clustering algorithms (and their hyperparameters).

The one with the maximum value of the metric has the best general performance.

Critical to this idea is a clear statement of our goals. Our primary measurable

goals with clustering are the following:

1. Avoid missing a genuine event due to clustering. This can happen due

to over-aggressive clustering that identifies FRB candidates as false members of

an RFI cluster. As only the highest S/N member from each cluster is processed

further, assigning FRB members to RFI clusters will lead to FRB candidate not

passing further in the pipeline. This can happen if there are RFI candidates

52



with S/N higher than that of the FRB candidates.

2. Each event of interest should be singly identified. All candidates from

one FRB event should be clustered into one cluster, rather than many small

separate clusters representing a single event of interest. This is to minimize the

number of candidates that are passed to the pipeline for post-processing and

classification.

To represent these goals, we have developed the following metric. A higher value of

the metric is favourable. We use homogeneity, completeness, v-measure and recall to

calculate the metric (hereafter referred to as score). In the following, an FRB cluster is

defined as a cluster containing one or more FRB candidates, obtained after clustering.

In the following discussion, we follow the terminology defined in Section 3.3.

3.5.3.1 Homogeneity

Homogeneity is the measure of purity of the clusters with respect to true labels,

i.e it estimates if each cluster contains only members of a single class (i.e either

FRB or RFI). We calculate homogeneity for each observation in the test dataset. As

we are primarily interested in performance on FRB candidates, and as RFI can be

clustered into multiple clusters (for which we don’t have true information), we define

homogeneity only for FRB clusters in the observation. For each FRB cluster, we

calculate the ratio of the number of FRB candidates in that cluster to total number

of candidates in that cluster. Homogeneity (h) is the weighted average of all these

ratios, weighing them by the number of candidates in the cluster. Hence,

h =
1

NT

∑
i

ni
FRB

niT
niT

=
1

NT

∑
i

ni
FRB

,

(3.2)

where i represents the ith FRB cluster, and the sum is over all the FRB clusters. ni
FRB

is the number of FRBs in the ith FRB cluster, niT is the total number of candidates
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in that cluster. NT =
∑

i n
i
T is the total number of candidates in all FRB clusters.

h can be between 0 (when all FRB candidates are left unclustered) and 1 (when all

FRB clusters contain only FRB candidates).

3.5.3.2 Completeness

Completeness is used to estimate if all members of a given class are assigned to

the same cluster. We calculate completeness for each observation in the test dataset.

We define completeness for FRB clusters, and a high completeness score will minimize

the number of clusters the FRB candidates are clustered to. For each FRB cluster,

we calculate the ratio of the number of FRB candidates in that cluster to the total

number of FRB candidates. Completeness (c) is equal to the weighted average of all

these ratios, weighing them by the number of candidates in the cluster1. Hence,

c =
1

NT

∑
i

ni
FRB

N
FRB

niT , (3.3)

where i represents ith FRB cluster, and the sum is over all the FRB clusters. ni
FRB

is

the number of FRBs in ith FRB cluster, N
FRB

is the total number of FRB candidates

in that observation. NT =
∑

i n
i
T is the total number of candidates in all FRB

clusters. c will be very small if all FRB candidates are assigned different clusters,

and 1 when all FRB candidates are clustered into one cluster.

3.5.3.3 V-measure

V-measure is the harmonic mean between homogeneity and completeness. This

is used as we want all the clusters to be pure and favor minimum number of clusters.

Therefore, we want to maximize both homogeneity and completeness. V-measure (v)

will be 1 when both h and c are 1 and will be 0 if either of those is 0. Hence,

v =
2hc

h+ c
. (3.4)

1We include unclustered candidates as a single cluster in this case, while unclustered candidates
were ignored while calculating homogeneity.
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We calculate h, c, v for each observation in the test dataset and take a weighted

average of all v ’s (weighting by the total number of candidates in that observation)

to get an estimate of V-measure for the whole dataset (V ).

3.5.3.4 Recall

Recall is the fraction of FRBs that are recovered after clustering. After cluster-

ing, only the candidates with maximum S/N in each cluster are processed further in

the pipeline. Therefore, if the clustering algorithm clusters FRB candidates together

with high S/N RFI candidates, then the FRB will not be recovered from that cluster

and might be missed. Therefore, recall (R) is defined as the ratio of the number

of observations in the dataset for which FRB was recovered to the total number of

observations in the dataset.

3.5.3.5 Score

Score is defined as the product of recall (R) and total V-measure (V ).

Score = R× V. (3.5)

We use this score to compare the clustering performance of different algorithms and

find the optimal hyperparameters for each clustering algorithm.

3.5.4 Advantages of this metric

We have defined the above metric with respect to FRB and RFI clusters, but

it can be easily generalized to any application with goals generally similar to those

laid out in Section 3.5.3. This metric ensures that the information in relevant clus-

ters is not missed by overaggressive clustering while still minimizing the number of

clusters formed. There are some advantages of this metric over other clustering met-

rics available in the literature (for a detailed comparison using a similar metric see

Rosenberg & Hirschberg, 2007): 1) It is independent of the clustering algorithm, size
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of the dataset, number of classes, and clusters. 2) It can appropriately use one (or

more) base class (here FRB) to evaluate the clustering performance with respect to

true labels, considering all data points of the relevant class. 3) Using homogeneity

and completeness, V-measure gives importance to both pure clusters and minimum

number of clusters. 4) By adequately weighting individual metrics, it is possible to

concisely evaluate the clustering performance across multiple examples, in the form

of a simple number (score).

3.6 Results

3.6.1 Optimal Hyperparameters

We show the maximum score obtained for each algorithm after hyperparameter

search in Figure 3.2. Henceforth in this chapter, we will refer to these hyperparameters

as “optimal hyperparameters”. This figure shows that Mean Shift has the maximum

score, out of all the eight algorithms. Table 3.2 shows these optimal hyperparameters

for each algorithm.

Figure 3.3 shows the distributions of scores at various hyperparameter values,

for each combination of algorithm and pre-processing. Although not crucial to hy-

perparameter selection, the distribution of scores gives an insight into the robustness

of the algorithm to the choice of input hyperparameters. In some cases, the scores

vary between the full range of 0 and 1, while in others, the distribution is very narrow

around high scores. The algorithms for which the score distributions peak around a

high value should be more robust to the input hyperparameters than those for which

the peak is at a middle or even low value of score. In the latter case, only a small

range of hyperparameters would lead to a high score.

3.6.2 Effect of data processing

As mentioned in Section 3.4.5, we also repeated the above experiment after

pre-processing the data in two ways: downsampling the l and m indices and data
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Figure 3.2: Maximum score obtained after random hyperparameter search (at the
optimal hyperparameters) for each algorithm and pre-processing combination. Opti-
mal hyperparameters for each case are given in Table 3.2. DS refers to downsampling
applied to l and m indices. Norm refers to normalization of the four features (see
Section 3.4.5)
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Table 3.2: Optimal hyperparameters obtained for different algorithm and pre-processing
combinations.

Algorithm Hyperparameter DS1 DS2 DS4 Norm

Affinity Propagation affinity euclidean euclidean euclidean euclidean
random state 1996 1996 1996 1996

damping 0.974 0.965 0.985 0.881
preference -884 -222 -219 -202

Agglomerative n clusters 5 7 6 3
affinity euclidean manhattan euclidean euclidean

compute full tree auto auto auto auto
linkage ward average ward ward

Birch n clusters 5.000 7.000 6.000 10.000
threshold 0.341 0.876 0.676 0.957

branching factor 13.000 56.000 85.000 77.000
DBSCAN min samples 2 2 2 2

eps 14.163 14.726 14.615 1.082
metric chebyshev chebyshev chebyshev cityblock

algorithm auto auto auto auto
leaf size 23 21 35 38

HDBSCAN min samples 5 5 5 5
metric euclidean euclidean euclidean cityblock

min cluster size 2 3 2 9
cluster selection method eom eom eom eom

allow single cluster True True False True
KMeans algorithm full elkan full auto

n clusters 5 6 6 3
n init 13 15 28 26

random state 1996 1996 1996 1996
Mean Shift bandwidth 16.416 32.750 19.350 1.229

bin seeding True False True True
cluster all True True True True

Optics min samples 2 2 2 2
eps 14.782 14.376 14.551 1.095

metric minkowski chebyshev minkowski cityblock
min cluster size 8 6 6 8

p 14.672 - 11.009 -
cluster method dbscan dbscan dbscan dbscan

xi - - - -
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Figure 3.3: Violin plots of score vs. pre-processing for different clustering algorithms.
Each violin plot shows the distribution of scores obtained at various hyperparameters
evaluated during random hyperparameter search. Different sub-figures represent dif-
ferent algorithms (Sections 3.5.2, 3.6.1). DS refers to downsampling applied to l and
m indices. Norm refers to normalization of the four features (see Section 3.4.5).
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normalization. We show the results for this in Figures 3.2 and 3.3. As can be seen

from Figure 3.2, there is no clear trend of clustering performance for different pre-

processing cases. We also note that the shape of the score distribution remains the

same across different downsampling factors for a given algorithm. This indicates that

downsampling doesn’t have a significant contribution to the clustering performance.

3.6.3 Evaluating performance on clean data

So far, we have evaluated the performance of clustering algorithms on data with

real RFI candidates along with simulated FRB candidates. This, as stated earlier,

was a reasonable approximation of the candidates from real observations. Usually,

in the case of a real transient, the pipeline only gets triggered at candidates from

real transient, and no RFI is seen (either because of the amplitude of real transient

or because low-level RFI is flagged). Therefore, here we report the performance of

these clustering algorithms (at the optimal hyperparameters) on a dataset containing

candidates only from a real event and no RFI. This is done to test the generalisability

of these clustering algorithms on data without RFI. This would also serve as an

independent test on unseen datasets for which the hyperparameters of the algorithms

weren’t tuned.

3.6.3.1 Completeness on Clean data

We use the same procedure as described in Section 3.4.3, to generate a dataset of

100 observations with candidates from one simulated FRB each. We randomly chose

the parameters of the simulated FRBs and observing configurations, as explained

earlier and discarded any observation with less than ten candidates.

We use completeness (see Section 3.5.3) to report the clustering performance on

this dataset. As there is no RFI candidate in this dataset, homogeneity would always

be one and therefore is not a useful metric in this case. Here, a perfect clustering algo-

rithm should generate just one cluster per observation for which completeness would

be maximum, declining as the number of clusters increase. The overall completeness
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Figure 3.4: Completeness of different algorithms on clean data i.e without any RFI
candidate (Section 3.6.3). High completeness score is better and would imply that
the FRB candidates are clustered in a minimum number of clusters for each of the
100 observations. Each algorithm was evaluated at its optimal hyperparameters (Ta-
ble 3.2). DS refers to downsampling applied to l and m indices. Norm refers to
normalization of the four features (see Section 3.4.5).
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for a dataset is the average of all the completeness values from 100 observations, each

weighted by the number of candidates in the observation.

Figure 3.4 shows the overall completeness score of each algorithm. DBSCAN,

HDBSCAN, Mean Shift and Optics have the highest completeness score. It is to

be noted that the completeness score of these four algorithms was worse when the

data was pre-processed to zero mean and unit standard deviation (i.e Norm). On the

contrary, downsampling the image features did not show any significant effect (with

a notable exception of DS4 for HDBSCAN).

3.6.4 Benchmarking

We evaluated the clustering speed of all clustering algorithms at their optimal

hyperparameters. To do this, we generated an observation with a varying number

of candidates consisting of random values for the four features. We then ran all the

clustering algorithms on those observations and recorded the time taken for just the

clustering step. We did this test with optimal hyperparameters obtained for all four

pre-processing cases. As the clustering speed is primarily dependent on the number of

candidates to be clustered, we didn’t use real data for this test. We show the result of

this test in Figure 3.5. The time taken did not vary significantly with parameters from

different pre-processing cases, so we only show results using optimal hyperparameters

for DS1 in this figure. DBSCAN and HDBSCAN are the fastest of these algorithms,

while Affinity Propagation, Mean Shift, and Optics are the slowest, by at least an

order of magnitude.

3.7 Discussion

3.7.1 Feature Importance

It is worth understanding the impact of feature selection on our outcome, as

some features are expected to be more important than the others (Guyon et al., 2005;

Dash & Liu, 2000). We use a Random Forest classifier (Breiman, 2001), implemented
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Figure 3.5: Time taken to cluster (in seconds) for each algorithm at their optimal
hyperparameters. Different colors represent input data with different number of can-
didates. Results are shown only at optimal hyperparameters for DS1. DBSCAN and
HDBSCAN are much faster than algorithms like Mean Shift and Affinity Propagation
(Section 3.6.4).

in scikit-learn, to estimate the relative feature importance of the four features,

(DM, time, l, m), in determining accurate clusters.

We used the test dataset (see Sec. 3.4.4) without any pre-processing, containing

candidates from 250 observations (hereafter we refer to this data as DS1). We knew

the true labels (RFI and FRB) for each candidate in those 250 observations. For each

observation, we trained a Random Forest classifier (at the default input parameters)

using all the candidates in that observation. From the trained classifier, we then used

feature importances to obtain the relative feature importance of each of the four

features. This attribute of the Random Forest classifier calculates Gini importance

(Breiman, 2001) for each feature, which is representative of the importance of feature

during classification. We repeated this for all the observations in our test dataset.

To estimate the total feature importance, we averaged all the importance for each

feature weighing each by the number of candidates in that observation. The total

importance obtained is shown in Figure 3.6. As can be seen from this figure, l and m

(sky position indices of the candidate) contribute much more towards classification
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Figure 3.6: Importance of each feature, determined by training a Random Forest
classifier to classify each observation into RFI and FRB. We trained the classifier
individually on all observations in the test dataset and took a weighted average of
the individual feature importance to obtain the above plot. l and m contribute much
more towards classification than DM and Time (Section 3.7.1).

than the DM and Time indices of the candidates. A caveat to this simplistic analysis

is that classification of all candidates into two classes, FRB and RFI, is not the same

as clustering them into multiple clusters. The two cases would have been similar

if all the RFI candidates could be assigned to a single cluster, which is not true.

Therefore, even though this analysis shows that sky position contributes much more

to classification, we suspect that the relative contribution of DM and Time for the

clustering task would be higher than what is obtained here.

3.7.2 What if I only use DM and time for clustering?

In Realfast system, we search for transients on the radio image. Therefore,

for each candidate we get DM, Time, l and m information. But in many experiments,

typically the ones using a single dish telescope or the ones not performing an image-

based transient search, only DM and time information is available for each detected

candidate. Therefore, in those cases, only DM and time can be used to cluster the

candidates together.

We tested the clustering performance using only DM and time to cluster the

observations in our test dataset. We used the optimal hyperparameters (listed in Ta-

ble 3.2) on the test dataset to evaluate this for all pre-processing cases. We also tested

64



the clustering performance using only l and m indices to cluster our test dataset. As

discussed in the previous section, the relative importance of sky positions is much

higher than that of DM and time for a classification task. Therefore, clustering using

only sky positions should give better scores than using just DM and time.

We show the results of these two tests in Figure 3.7 along with the scores when

all four features are used for clustering. We only show scores for one pre-processing

case (DS1), as results with other pre-processing techniques were also similar. As can

be seen from this figure, scores obtained using just sky positions (red curve) or DM

and Time (blue curve) follow each other closely. Using sky positions shows minor

improvement in score for most of the algorithms. Using all four features, as expected,

gives the highest score that is ∼ 10% better than the other two cases.

This test highlights the importance of using sky positions along with the stan-

dard DM-time features to identify clusters of candidates originating from the same

event. Therefore, if the sky position information is available for a candidate, it should

also be used while clustering in the pipeline. With more and more interferometers

(like ASKAP and DSA-110) implementing a Realfast like search for transients on

radio images in the future, it would be useful for them to incorporate sky position

information to cluster candidates in their respective pipelines.

As careful readers would have noticed, a caveat to this test is that in clustering

with two parameters, we didn’t do a hyperparameter search to obtain the optimal

hyperparameters that maximize the score using those two features. Instead, we used

the hyperparameters that were optimal when four features were used. A full hyper-

parameter search using two parameters might lead to a different set of parameters

that might improve the score further. But even with this simple test, it can be noted

that only using sky positions for clustering gives an improvement in score in almost

all cases.

We have demonstrated in this and the previous section that sky positions are

overall more important for clustering than DM and Time. This could be because RFI

candidates are more likely to span a wide range of time and DM values, which might

overlap with those of FRB candidates, while they are still localized in the radio image.
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Figure 3.7: Score vs. algorithms for two feature clustering. Different colors represent
different sets of features used to perform the clustering. We evaluated the scores on
the test dataset. Results with DS1 pre-processing are shown here (Section 3.7.2).

Therefore, it is less likely (though still possible) for RFI to be very close to an FRB

in the radio image. Similarly, RFI may be highly variable in frequency/time space,

whereas in a radio image even unfocused (near-field) RFI will show up as contiguous

streaks or other similarly structured patterns in images. Regardless of the reason for

this, however, we have demonstrated here that when possible, sky positions should

be used for clustering candidates.

3.7.3 But which algorithm should I use?

There are several considerations when deciding what algorithm to use based on

the comparative analysis we have presented here.

• Maximum Score: As discussed in Section 3.5.3, we want the clustering algo-

rithm to meet our application-specific goals; of not missing a genuine event and

singly identifying FRB candidates. Our performance metric (called score) max-

imizes when these goals are met. Therefore, we could search for a set of optimal

hyperparameters for each clustering algorithm, that gives the maximum score.

All algorithms, except Affinity Propagation, have an optimal score above 0.95
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(Figure 3.2).

• Generalisable: The clustering algorithm needs to generalize to various types

of data it can encounter in the pipeline. By testing the algorithms and optimal

hyperparameters obtained in the previous step on an independent dataset, one

could quantify the algorithms’ generalisability. To be more application-specific,

we tested this on a dataset with observations containing candidates only from a

real event, without any RFI, and computed the completeness as the performance

metric. Only four algorithms, DBSCAN, HDBSCAN, Mean Shift, and Optics

gave completeness above 0.9 in this test (Figure 3.4).

• Speed: Finally, the clustering algorithm would only have a limited amount of

time to cluster candidates. Therefore, even for a large number of candidates,

it should not exceed the limited time constraint. In our specific application

for Realfast, clustering is performed on candidates generated from small seg-

ments of data that are tens of seconds long. Based on the other pipeline steps,

clustering shouldn’t take longer than a few seconds. The number of candidates

detected by the search step typically varies between a few to thousands of can-

didates for a segment. Based on these requirements DBSCAN, HDBSCAN,

Agglomerative, and K-means can be used (Figure 3.5).

As an example using the Realfast system, selecting the algorithms using the

above three steps, we conclude that either DBSCAN or HDBSCAN can be used

for clustering Realfast data. Based on the results in Figures 3.4 and 3.7 we can

further infer that DBSCAN is better than HDBSCAN. As reported earlier, we didn’t

notice any improvement by using different pre-processing techniques, therefore no pre-

processing is favored (Figure 3.2). Based on the results of this analysis, Realfast

system changed from HDBSCAN to DBSCAN in the real-time search pipeline. A

similar procedure can also be used to choose the clustering algorithm for any other

single-pulse search pipeline or even for a more general clustering application.
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3.8 Conclusions

In this chapter, we have compared eight different unsupervised algorithms to

cluster candidates generated by single-pulse search pipelines. We have also analyzed

the effects of various pre-processing techniques on the data. We used real RFI from

Realfast system and simulated FRB candidates to test different algorithms. We

have developed a performance metric to quantify clustering performance. This met-

ric makes sure that FRBs are not missed due to overaggressive clustering while still

minimizing the number of clusters formed. Using a random hyperparameter search,

we obtained optimal hyperparameters, which maximizes this metric for different algo-

rithms. We test all the algorithms with optimal hyperparameters on an independent

dataset consisting of only FRB candidates to evaluate the generalisability of different

algorithms. We also estimated the average clustering time for various algorithms on

a dataset of varying sizes. Finally, we have proposed a strategy that can be used to

choose a clustering algorithm, using various tests mentioned earlier. We apply this

strategy to obtain a clustering algorithm appropriate for Realfast system. This

strategy can also be used at other single-pulse search systems to obtain the optimal

clustering algorithm. Our strategy is generic enough to be used for other clustering

applications. Our performance metric can also be used in other clustering applica-

tions where clustering information for only one cluster of interest is available, out of

an unknown number of true clusters. We have also demonstrated that using spatial

features for clustering improves the clustering performance compared to the tradi-

tional approach of just using DM and time features. All the scripts used in this

analysis are openly available in a Github repository2.

2https://github.com/KshitijAggarwal/rfclustering
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3.9 Appendix

3.9.1 Clustering Algorithms

Here we give a brief overview of all the clustering algorithms used in this analysis

and some details and potential advantages/disadvantages of each algorithm for our

clustering application.

3.9.1.1 K-means

K-means (Macqueen, 1967) algorithm is one of the most widely used clustering

algorithms. It is extremely easy to implement and computationally very efficient.

Given an input number of clusters, the algorithm randomly initializes centroids for

each cluster. Each example is then assigned a cluster based on the distance from that

centroid. A new centroid is then computed for each cluster, and all examples are

reassigned to the new centroids. This process is repeated till a convergence criterion

is met. The main challenges with K-means are that it is not good at identifying

non-spherical clusters and requires the number of clusters as input, both of which

limit its ability to generalize on different datasets. As K-means starts with an initial

random assignment of cluster centroids, the output clusters can also be sensitive to

the initial choice of these centroids.

3.9.1.2 Mean Shift

Mean Shift (Comaniciu & Meer, 2002) is a centroid based algorithm, similar to

K-means, but it doesn’t require a number of clusters as input. The algorithm assumes

that the data is drawn from an underlying probability density function and tries to

estimate it using Kernel Density Estimation. Then, it calculates a centroid for each

data point using the kernel and iteratively updates the centroid to be the mean of the

points within a given region. Each update is defined by a mean shift vector, which

always points towards the direction of maximum increase in density. At convergence,

the centroid will be placed at the nearest highest density peak of the density function.
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The same process is repeated for each data point, and the data points which lead to

the same high-density peaks are then assigned to the same cluster.

The method of calculating the mean depends on the choice of the kernel. Hence,

the key parameter here is the bandwidth of the kernel used. Therefore, Mean Shift

only requires one hyperparameter, although the final clustering results are very sensi-

tive its value. For example, a low bandwidth would form very narrow kernels, which

might lead to a large number of small clusters, while a very large bandwidth might

lead to just one big cluster. This algorithm automatically sets the number of clusters,

based on the bandwidth, and can also model complex shaped clusters. But it is not

highly scalable as it requires multiple nearest neighbor searches, and due to random

initialisation it might not produce reproducible results.

3.9.1.3 Affinity Propagation

Affinity Propagation (Frey & Dueck, 2007) is based on the concept of “message

passing” between data points. It tries to find “exemplars”, i.e, members that are

representative of clusters. It uses the similarity between all pairs of data points,

and simultaneously considers all data points as potential exemplars. It starts by

calculating a similarity matrix, which can be defined as the negative squared distance

between two data points. The diagonal of this matrix is set to a constant, called

“preference”, which is an input hyperparameter. Preference determines how likely a

particular data point would be to become an exemplar. The algorithm then calculates

three matrices, called Responsibility, Availability, and Criterion Matrix. This is the

“message passing” step.

The “responsibility” quantifies how well suited a point k is to be the exemplar for

point i, considering all other potential exemplars for i. The “availability” quantifies

how “appropriate” it would be for i to pick k as exemplar, considering other points

preference for k. The details of the algorithms are given in (Frey & Dueck, 2007).

Both these matrices are iteratively updated, till a convergence criterion is met. The

Criterion Matrix, which is the sum of Responsibility and Availability matrices, is then

used to assign clusters.
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Affinity Propagation’s advantage is that it doesn’t require the number of clusters

as input, but the algorithm is computationally complex and can be slow on large

datasets.

3.9.1.4 Agglomerative clustering

Agglomerative clustering (Franti et al., 2006) is a type of hierarchical clustering.

Hierarchical clustering algorithms start with each example being a different cluster

and then merge the ones that are closer until there is only one cluster. Therefore,

they can form a hierarchy of clusters (at various distances), which is represented as

a tree. A linkage criterion (see Section 5.1 of Jain et al., 1999) is used to decide

the merge strategy. The merge strategy minimizes or maximises a certain distance

criterion between pairs of unmerged clusters, to determine when to merge clusters.

To determine the clusters from this cluster hierarchy, one has to choose a level

or a cut in the tree. This can be done by providing the number of clusters as input

hyperparameter. Although it is computationally expensive, fast implementations of

this algorithm exist (Mullner, 2013), which we haven’t explored in this chapter. As

was the case with K-means, the main challenge with this algorithm is to choose the

number of clusters. In an application where the number of clusters itself can vary,

this algorithm might not generalize well.

3.9.1.5 DBSCAN

Density Based Spatial Clustering of Applications with Noise, or DBSCAN (Ester

et al., 1996), is a density-based clustering algorithm. It assumes that clusters lie in

dense regions. It primarily requires two input hyperparameters: a density threshold

(MinPts) of a core point and a radius (ε) of its neighborhood. A point that has at

least MinPts adjacent points in its ε neighborhood is considered a core point. Core

points and their neighborhood are considered dense regions that form clusters, and

overlapping dense regions are merged into a single cluster. Any point that is neither

a core point nor falls within the neighborhood of a core point is classified as noise.
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Therefore, DBSCAN doesn’t require the number of clusters as input. The sizes

and shapes of clusters can vary based on the choice of ε and the metric used to compute

the distances between points. A potential disadvantage of DBSCAN is the difficulty

to tune the input parameters, which the clustering performance is very sensitive to.

Also as DBSCAN assumes a constant density, it might not perform well when there

are clusters of varying densities in the data.

3.9.1.6 Optics

Ordering Points To Identify the Clustering Structure or Optics (Ankerst et al.,

1999), is a density-based clustering algorithm. Similar to DBSCAN, Optics requires

two hyperparameters: ε and MinPts, although ε is not necessary (and is set to a large

number by default). It uses the following distances: core distance (minimum radius

required to classify a given point as core point) and reachability distance (calculated

by comparing the distance between two core points and their core distances) to order

points. The reachability distance for points in a cluster would be low. The Optics

algorithm builds a reachability graph, which assigns each sample a reachability dis-

tance. A post-processing procedure is applied to the reachability plot to determine

clusters. This procedure can be very sensitive to the input parameters. In a reachabil-

ity graph, different clusters would appear as valleys. So, by identifying these valleys,

it is possible to identify clusters. This can be done by looking for steep slopes in this

graph, or by extracting all clusters at a fixed value of distance (which would result

in DBSCAN like clusters for a given ε). Therefore, this algorithm processes several

different distance parameters at the same time (in contrast to DBSCAN, which works

at a fixed ε), after which an appropriate ε can be chosen. An advantage of Optics

is that it can find clusters of varying density. Like other density-based algorithms,

Optics doesn’t require the number of clusters as input and can also find non-spherical

clusters.

72



3.9.1.7 HDBSCAN

Hierarchical Density Based Spatial Clustering of Applications with Noise or

HDBSCAN (Campello et al., 2015; McInnes et al., 2017; McInnes & Healy, 2017),

is very similar to Optics, i.e., it takes the approach of DBSCAN but extends it by

varying the values of ε. It does so by converting DBSCAN into a hierarchical clustering

algorithm by effectively running DBSCAN at every possible value of ε, and forms a

hierarchical tree that shows the clustering output. By parsing through the tree, going

from one large cluster to many smaller clusters, HDBSCAN constructs a tree with

persistent clusters based on its only hyperparameter: minimum cluster size. It then

uses a stability criterion to extract the final clusters from the cluster tree.

In contrast with DBSCAN, HDBSCAN therefore uses multiple values of ε (or

cuts in the hierarchical tree) and is thus able to identify clusters of varying densities.

This overcomes the main limitations of DBSCAN, to find the optimal value of ε and

the inability to form clusters of varying densities. As noted, HDBSCAN takes in only

a minimum cluster size hyperparameter, eliminating the need for ε.

3.9.1.8 Birch

Balanced Iterative Reducing and Clustering using Hierarchies or Birch (Zhang

et al., 1996) is a hierarchical clustering algorithm used typically on very large datasets.

It is local, which means that the clustering decision is made without scanning all data

points and existing clusters. In most cases, it requires only two scans of the whole

database. It uses a Clustering Feature (or CF) which consists of summary of statistics

for a given sub-cluster. Summary statistics in CF are used to calculate the distance

between two sub-clusters, the radius (average distance of members from the centroid)

and the diameter (average pairwise distance within a cluster) of a CF. It therefore

doesn’t require all the data in the sub-cluster to be saved to perform clustering.

Using these CFs it creates a CF-Tree (CFT). Each node of a CFT consists of

multiple CFs. The Birch algorithm has two hyperparameters: branching factor and

threshold; the former limits the number of CFs (or sub-clusters) in a node of CFT,
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while the latter limits the distance for a new sample to be a part of an existing CF. A

node of the CFT consists of a CF for each branch. The terminal nodes of a CFT are

then clustered using another clustering algorithm (Agglomerative Clustering in our

case) to obtain the final clusters. Depending on the algorithm used, it might require

other hyperparameters like number of clusters.

3.9.2 Parameter Ranges for Hyperparameter tuning
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Table 3.3: Hyperparameter ranges explored for different clustering algorithms using
random sampling. Random uniform sampling was used to sample hyperparameters
for all the parameter ranges/values.

Algorithm Hyperparameter Range/Values

Affinity Propagation affinity euclidean
random state 1996

damping 0.5, 1
preference -1000, -200

Agglomerative n clusters 2, 10
affinity euclidean, manhattan, cosine

compute full tree auto
linkage complete, average, single, warda

Birch n clusters 2, 10
threshold 0.1, 20

branching factor 10, 100
DBSCAN min samples 2, 10

eps 0.5, 15
metric euclidean, chebyshev, cityblock,

manhattan, canberra, hammingb

algorithm auto
leaf size 20, 40

HDBSCAN min samples 2, 5
metric euclidean, chebyshev, cityblock,

manhattan, canberra, hamming
min cluster size 2, 10

cluster selection method eom, leaf
allow single cluster True, False

KMeans algorithm auto, full, elkan
n clusters 2, 10

n init 10, 30
random state 1996

Mean Shift bandwidth 10, 40c

bin seeding True, False
cluster all True, False

Optics min samples 2, 10
eps 0.5, 15

metric minkowski, euclidean, chebyshev, canberra,
cityblock, manhattan, hammingb

min cluster size 2, 10
p 1, 15d

cluster method dbscan, xie

xi 0, 1

a ward only works with euclidean affinity
b eps range of 0.1 to 1 was used with hamming metric, and a range of 0.1 to 4 was used with

canberra metric
c bandwidth of 1 to 10 was used for normalised pre-processing case
d eps range of 0.1 to 1 was used with hamming metric, and a range of 0.1 to 4 was used with

canberra metric
e Value of eps was used only with dbscan method, and value of xi was used when xi was selected

as cluster method

75



Chapter 4

Comprehensive analysis of a dense sample

of FRB 121102 bursts

4.1 Chapter Overview

In this chapter, we present an analysis of a densely repeating sample of bursts

from the first repeating fast radio burst, FRB 121102. We reanalysed the data used by

Gourdji et al. (2019) and detected 93 additional bursts using our single-pulse search

pipeline. In total, we detected 133 bursts in three hours of data at a center frequency

of 1.4 GHz using the Arecibo telescope, and develop robust modeling strategies to

constrain the spectro-temporal properties of all the bursts in the sample. Most of the

burst profiles show a scattering tail, and burst spectra are well modeled by a Gaussian

with a median width of 230 MHz. We find a lack of emission below 1300 MHz,

consistent with previous studies of FRB 121102. We also find that the peak of the

log-normal distribution of wait times decreases from 207 s to 75 s using our larger

sample of bursts, as compared to that of Gourdji et al. (2019). Our observations do

not favor either Poissonian or Weibull distributions for the burst rate distribution.

We searched for periodicity in the bursts using multiple techniques, but did not detect

any significant period. The cumulative burst energy distribution exhibits a broken

power-law shape, with the lower and higher-energy slopes of −0.4±0.1 and −1.8±0.2,

with the break at (2.3 ± 0.2) × 1037 ergs. We provide our burst fitting routines as a

Published as Aggarwal et al. (2021a)
Contributing authors: Devansh Agarwal, Evan F. Lewis, Reshma Anna-Thomas, Jacob Cardinal
Tremblay, Sarah Burke-Spolaor, Maura A. McLaughlin, Duncan R. Lorimer
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python package burstfit1 that can be used to model the spectrogram of any complex

FRB or pulsar pulse using robust fitting techniques. All the other analysis scripts

and results are publicly available2.

4.2 Introduction

As mentioned in Chapter 1, both repeating and non-repeating FRBs show a

variety of spectro-temporal features and polarization properties: frequency modu-

lation, sub-millisecond structure, drifting sub-pulses, varying polarization position

angle, etc (Shannon et al., 2018; Farah et al., 2019; Luo et al., 2020b). Detection of

multiple bursts from repeaters (like FRB 121102) have facilitated detailed studies of

their properties and their environment. However, even after extensive follow-up and

detection of hundreds of bursts from FRB 121102, the intrinsic emission mechanism

remains uncertain, and many progenitor models have been proposed to explain the

observational results. As theoretical models lack robust predictions for the observed

properties of bursts, several empirical techniques have been employed to model the

observed properties of the bursts. Some of those are: (1) using Weibull and Poisson

distributions to model the clustering of repeater bursts; (2) using a truncated and

broken power-law to model the flux-density distribution; (3) using 2D Gaussians to

model the burst spectro-temporal properties; (4) using Gaussians convolved with an

exponential tail to model scattering; (5) using a statistical spectral index to com-

pare burst rates at multiple frequencies; (6) using signal-to-noise and structure to

maximize DM, etc. (for further details, see Li et al., 2021; Cruces et al., 2020; Pastor-

Marazuela et al., 2021; Gourdji et al., 2019; Hessels et al., 2019; Houben et al., 2019;

Gajjar et al., 2018).

In view of all these considerations, it is necessary to detect and carefully investi-

gate a large number of bursts from the repeaters to improve the understanding of their

emission mechanism. In this chapter, we reanalyze the observations for FRB 121102

previously reported by Gourdji et al. (2019) and present the detection of an additional

1https://github.com/thepetabyteproject/burstfit
2https://github.com/thepetabyteproject/FRB121102

77

https://github.com/thepetabyteproject/burstfit
https://github.com/thepetabyteproject/FRB121102


93 bursts, for a full sample of 133 bursts in these observations. We detail a thorough

burst modeling procedure and report extreme frequency modulation in burst spec-

tra and a dearth of burst emission below 1300 MHz. We present and compare the

updated burst energy and wait-time distributions and demonstrate how these esti-

mates change dramatically for an incomplete search. We also perform exhaustive

short-period periodicity tests to detect any possible rotational period as predicted by

neutron star-based progenitor models. We also discuss various differences between

our single-pulse search pipeline and the one used by Gourdji et al. (2019) to explain

the extra bursts detected in our search (see Section 4.6.6).

This chapter is laid out as follows: In §2 we briefly discuss the data used in this

chapter and discuss the search and spectro-temporal modeling procedure in §3. We

then present our modeling results in §4, followed by a discussion of those results and

conclusions in §5 and §6.

4.3 Data

The data reported here were originally collected, searched for FRBs, and re-

ported by Gourdji et al. (2019). Here we provide only a brief summary of the data

used in this analysis, and refer the reader to Gourdji et al. (2019) for further details.

The observations were carried out with the 305-m William E. Gordon Telescope at

the Arecibo Observatory with the L-Wide receiver and recorded using the Puerto

Rican Ultimate Pulsar Processing Instrument (PUPPI). FRB 121102 was observed

with 800 MHz bandwidth at a center frequency of 1375 MHz on MJDs 57644 and

57645 for 5967 s and 5545 s respectively. The data were coherently dedispersed at

a dispersion measure (DM) value of 557 pc cm−3 during the observations and were

recorded with 1.56-MHz channel bandwidth and 10.25-µs sampling resolution. The

data used for this study were further decimated to 12.5-MHz channel bandwidth with

64 total channels and 81.92-µs sampling interval.
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4.4 Methods

4.4.1 The Petabyte Project

Characterizing the diversity and event rates of FRBs as a function of observing

frequency is critical for understanding their nature, the extreme emission physics

responsible for FRB and pulsar emission, and the relationship between these two

classes of objects. Many surveys have sought comprehensive estimates of these values,

all using different observing frequencies, telescopes, and search algorithms but without

characterizing the completeness of their search. The Petabyte Project3 (TPP) aims to

address these issues to provide robust event rate estimates and discoveries in several

petabytes of new and archival radio data. TPP will perform a uniform search for

FRBs in an unprecedented amount of archival data and better probe transients closer,

farther, and at higher radio frequencies than previous searches. Our search will have

a robust internal assessment of completeness, allowing us to confidently project the

frequency-dependent rates of FRBs and other transients.

TPP will use Your (a recursive acronym for “your unified reader”; Aggarwal

et al., 2020) to ingest the data and heimdall (Barsdell, 2012)4 to search it for single

pulses. The deep learning-based classifier fetch (Agarwal et al., 2020a)5 is then used

to classify the candidates identified by heimdall. The data will be searched up to a

DM of 5000 pc cm−3 (or more, if possible) and a pulse width of 32 ms. This pipeline

can easily be modified to search for higher DMs and pulse widths, in specific cases.

All the candidates above a signal-to-noise ratio (S/N) of 6 classified as astrophysical

by fetch will be manually verified. The maximum DM and the pulse width to be

searched is governed by the observing frequency, data resolution, and GPU memory

and hence would be dealt with on a case-by-case basis. The data and results presented

in this chapter were analyzed under TPP, using an early version of the TPP pipeline.

In the following subsection, we discuss the details of the single-pulse search pipeline

used in this analysis.

3https://thepetabyteproject.github.io
4https://sourceforge.net/projects/heimdall-astro
5https://github.com/devanshkv/fetch
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4.4.2 Single-Pulse Search

Within Your, we used your heimdall.py which runs heimdall on the psr-

fits data files collected by PUPPI for the single-pulse search. We used two search

strategies: (1) DM range between 450–650 pc cm−3 with a DM tolerance6 of 1% and

(2) DM range between 10–5000 pc cm−3 with a tolerance of 25%, with a maximum

pulse width of 84 ms in both cases (note that the widest FRB 121102 pulse reported

at this frequency had a width of ∼35 ms, see Cruces et al., 2020). The searches re-

sulted in 1,428 and 11,276 candidates, respectively. For each candidate, we extracted

a segment of the data (which we hereafter refer to as a “cutout”) centered at the

arrival time (referenced to the top of the observing band) as reported by heimdall

with a time window equal to twice the dispersion delay using your candmaker.py.

We then used spectral kurtosis RFI mitigation with a 3σ threshold (Nita & Gary,

2010) to identify and excise frequency channels corrupted by RFI (see Figure 4.2 for

fraction of bursts for which a frequency channel was flagged due to RFI) and used this

cleaned data to create dedispersed frequency-time images where a factor of width/2

was used to decimate the time axis. We created the DM–time image by dedispersing

the data from zero to twice the reported DM and simultaneously decimating the time

axis as above (for more details on the candidate pre-processing, see Agarwal et al.,

2020a). These cutouts are then used by fetch to label FRBs and RFI, and were also

manually verified. In total, we found 133 bursts with DMs consistent with that of

FRB 121102 (i.e., between 550-580 pc cm−3) with 93 new bursts as compared to the

previously published results. We highlight some important differences between our

single-pulse search pipeline and the one used by Gourdji et al. (2019) in Section 4.6.6

to explain the new burst detections. We did not detect any bursts at other DMs. Our

search missed one burst, B33, reported by Gourdji et al. (2019), probably because it

was weak and narrowband (see Section 4.6.7 for caveats of our search). Figure 4.1

shows the dynamic spectra of some of the bursts. Candidate cutouts for all the bursts

6DM tolerance is the acceptable sensitivity loss between DM trials for a single-pulse search (for
further details, see Aggarwal et al., 2021c; Levin, 2012)
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Figure 4.1: Dynamic spectra of six bursts, dedispersed at DM = 560.5pc cm−3. For
each burst, the top panel shows the burst profile obtained by averaging along the
frequency axis, and the right panel shows the burst spectra obtained by averaging
the burst data along the time axis. The white horizontal lines show the channels
masked due to RFI. The color scale of each spectrogram has been set from mean to
3 times the standard deviation of the off-pulse region. The ranges of 1D plots are
different for individual plots. Burst numbers are mentioned on the top right of each
subplot.

are available on Github7.

4.4.3 Completeness Limit

We define the completeness limit as the pulse energy (also known as fluence)

value above which any burst emitted during the observation would be detected. De-

termining the completeness limit of any single-pulse search is, therefore, essential to

defining the sample of bursts to be used for statistical analyses. The most robust

method of determining the completeness limit involves an exhaustive injection anal-

ysis. In such analyses, simulated transients (with varying properties) are injected on

background data, and by analyzing the transients that were recovered (or missed),

one can determine the completeness limit of a search (Li et al., 2021; Gupta et al.,

2021; The CHIME/FRB Collaboration et al., 2021a; Agarwal et al., 2020b; Farah

et al., 2019). Such an analysis requires access to a large amount of native-resolution

data observed with the same telescope and observing configuration as the search data.

7https://github.com/thepetabyteproject/FRB121102
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Figure 4.2: The fraction of bursts for which a frequency channel was flagged due to
RFI.

As we had access to decimated data for just two observations, we could not do

such an injection analysis. We, therefore, estimate the completeness limit from the

radiometer equation. We use a conservative approach by including the effect of RFI

mitigation, which reduces search sensitivity. We flagged more than 35% of data for

many candidates due to RFI, leading to a usable bandwidth of 500 MHz. Using this

smaller bandwidth and nominal pulse width of 1 ms, the fluence limit above an S/N

of 8 is 0.0216 Jy ms. We use bursts with fitted fluence above this limit in the burst

sample analysis.

4.4.4 Spectro-temporal Burst Modelling

To measure the properties of the bursts in our sample, we perform spectro-

temporal modeling of all the detections. We model each component of the bursts’

spectra with a Gaussian function and the profile using a Gaussian convolved with

a one-sided exponential function to represent the Gaussian pulse and the scattering

tail. Therefore, we model each component of the burst (at an observing frequency f

and time t), using the following function,

F(f, t;S, µf , σf , µDM, σt, τsc) = S × 2.355σf

×Pf (t;µDM, σt, τsc)

×G(f ;µf , σf ). (4.1)
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Here, S is the fluence of the component, G is the Gaussian function to model the

spectra

G(x;µx, σx) =
1

σx
√

2π
exp

(
− 1

2

(x− µx)2

σ2
x

)
, (4.2)

and P is used to model the profile. For bursts with scattering, we use the Gaussian

convolved with a one-sided exponential function (McKinnon, 2014),

Pscat
f (t;µDM, σt, τsc) =

1

2τsc

{
1 + erf

[
t− (µDM + σ2

t /τsc)

σt
√

2

]}
× exp

(
σ2
t

2τ 2
sc

)
exp

(
t− µDM

τsc

)
, (4.3)

where the mean of the Gaussian pulse after accounting for the dispersion delay at

that respective frequency,

µDM = µt − 4.148808× 103 DM
( 1

f 2
− 1

f 2
top

)
s. (4.4)

Here ftop is the highest frequency in the band (in MHz), f is the frequency of a

channel (in MHz) and µt is the mean of the Gaussian pulse at ftop. At each frequency

channel, the scattering time scale

τsc(f) = τsc

(
f

fref

)−4

. (4.5)

In this expression, fref is the reference frequency and is set to be 1 GHz. The ex-

ponent (–4) is assuming a normal distribution of plasma-density inhomogeneities.

Finally, we defined Pf (t;µDM, σt, τsc) to be a Gaussian G(t;µDM, σt) for τsc/σt < 6,

and Pscat
f (t;µDM, σt, τsc) for τsc/σt > 6. We used this value for the cutoff in order to

maintain numerical stability while calculating Equation 4.3.

It follows from the above discussion that our model F is generated using seven

parameters: S, µf , σf , µt, σt, τsc and DM. Using this model we fit the burst spectro-

grams, as described in the next section.
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4.4.5 burstfit

While fitting for complex FRB bursts is an arduous task, we scrupulously au-

tomate the entire procedure and present it as python package burstfit8. burstfit

provides a framework to model any spectrogram consisting of any complex FRB or

pulsar pulse using robust methods. It can easily incorporate any user-defined python

function(s) to model the profile, spectra, and spectrogram and is not limited to the

functions we have implemented for this current analysis. burstfit primarily consists

of the following five steps.

4.4.5.1 Data Preparation

First, we dedispersed the burst spectrogram at the DM obtained from the single-

pulse search. This DM is usually accurate enough to correct for most of the dispersion.

We cut out a time window of 200 ms encompassing the burst from this dedispersed

spectrogram and normalized this data to zero mean and unit standard deviation using

the off-pulse region. Both the cutout and normalized data were then used for fitting.

We also masked all the channels flagged as RFI during the search and candidate

pre-processing so as not to influence the fitting procedure.

4.4.5.2 Stage 1: Single-component Fitting

In this first stage of fitting, we used scipy.curve fit9 to perform the fits and

got an initial estimate of the fitted parameters. We created the time-series profile

by summing along the frequency axis, and modelled it using S × Pf (t;µt, σt, τsc).

We then used the fitted values of µt and σt to identify the time samples with the

burst signal and average them to produce the burst spectra. We normalised this

spectra to unit area, and modelled it using G(f ;µf , σf ). Following this, we modelled

the complete spectrogram. We first generated the model spectrogram by stacking

Nf model pulse profiles (S × Pf (t;µDM, σt, τsc)) together, where Nf is the number of

8https://github.com/thepetabyteproject/burstfit
9This routine is a part of the python-based scipy package. We used version 1.5.2 of this package

in our analysis.
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frequency channels. Note that the mean of each profile was already corrected for the

dispersion delay at that respective frequency. This gave us a scattered and dispersed

spectrogram at a given set of profile parameters and a DM.

We then multiplied this spectrogram with the model spectra to obtain the model

spectrogram. Additionally, we clipped the model spectrogram at the estimated sat-

uration level (see Section 4.4.5.6) and masked the RFI channels. Using this model

we fit for all the seven parameters in F(f, t; S, µf , σf , µt, σt, τsc) along with DM by

comparing the model with the dedispersed cutout spectrogram obtained in the pre-

vious step. Again, we used scipy.curve fit for fitting, and used the estimates from

individual profile and spectra fits as initial guesses for the parameters.

4.4.5.3 Stage 2: Statistical Tests

Following Stage 1, we obtained the residual spectrogram by subtracting the

fitted model from the original spectrogram. Then we performed several statistical

tests (see, e.g., Kramer et al., 1994) to compare the properties of on-pulse residual

with respect to the off-pulse regions in the original spectrogram. We performed

the following three comparisons: left off-pulse vs. right off-pulse, on-pulse vs. left

off-pulse, and on-pulse vs. right off-pulse. We used the following four tests (all

implemented within scipy): Kolmogorov-Smirnov test (for distribution comparison),

F-test (for variance comparison), T-test (for mean comparison), and Kruskal test (for

median comparison).

We considered the two distributions similar if at least two of the four tests had

a p-value above 0.05 (i.e. we did not have significant support for the non-similarity

of the distributions). Comparing left off-pulse with right off-pulse region gave us

confidence in our choice of off-pulse region. We terminated the single component

fitting procedure if either of the off-pulse vs. on-pulse comparisons demonstrates that

the distributions are similar. If the distributions were different, we used the residual

spectrogram and repeated Stage 1 and 2 to fit another component and compared

the on-pulse residual with off-pulse data. We kept fitting for components until the

statistical tests pass or until a maximum of five components is reached.
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4.4.5.4 Stage 3: Multi-component Fitting

In cases where multiple components were found, we performed another stage of

the fitting. Here, we generated a combined model consisting of all the components and

fit for all components by comparing our model with the original spectrogram. This

combined model (Fall) was generated by summing together the individual component

models (Fi) for all N components,

Fall =
N∑
i

Fi. (4.6)

Again, we used scipy.curve fit for fitting. Here, the fit results of the individual

component fits from previous stages were used as the initial guess for the parameters

in curve fit.

4.4.5.5 Stage 4: MCMC

While scipy.curve fit is sufficient for fitting in many scenarios, in our testing

we found that the estimates and the errors reported by scipy.curve fit were not

robust for our purposes. In many cases, the errors reported by scipy.curve fit

were possibly underestimated, and fitted results were highly susceptible to the choice

of input parameter bounds. This was especially true for low-significance bursts and

multiple-component bursts, where the least-squares-minimization technique struggles

to find a good solution. Therefore, we added another stage to our fitting procedure

and used a Markov Chain Monte Carlo (MCMC) to obtain the final fitting results. We

used the results of previous stages (that used scipy.curve fit) as initial estimates

to determine the starting positions of the walkers for the MCMC. An advantage of

the MCMC procedure is that it provides the full posterior distribution of all the

fitted parameters, which we could then use to estimate the errors and further follow-

up analysis of the burst sample. We used the Goodman and Weare affine invariant

sampler (Goodman & Weare, 2010) as implemented in emcee (Foreman-Mackey

et al., 2013). We used uniform priors for all the parameters, with the ranges of the
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priors given in Table 4.1. We used the log-likelihood function

lnL = −0.5
∑(S − Fall

σ

)2

, (4.7)

where S refers to the original spectrogram, Fall refers to the model, and σ is the off-

pulse standard deviation of the measured spectrogram. The sum is over all the pixels

in the two spectrograms. We used autocorrelation analysis to determine when the

MCMC has converged10. We then estimated the burn-in11 using the autocorrelation

time and used the remaining samples to determine the fitting results. To decide if

scattering was present in a burst, we used the percentage of samples with τsc/σt < 6.

If this percentage was greater than 50%, we concluded that scattering was not present

(or was very small) in that burst. We do not report scattering timescales for such

bursts.

We generated corner plots and fit-result plots to verify the quality of the fits, as

shown in Figures 4.5 and 4.6. We provide all the results (output parameters, corner

plots, fitting-result plots, etc.) from our analysis in a Github repository.12

4.4.5.6 Handling data saturation

The data we use in this analysis were recorded as 8-bit unsigned integers. Hence,

the data range lies between 0–255, and any signal brighter than 255 is clipped at this

value. We noticed data saturation for two bursts (B6 and B121), and hence this effect

has been incorporated in our burst modeling. The spectrograms are subtracted by

the off-pulse mean (µoff) and divided by the off-pulse standard deviation (σoff). While

making the spectro-temporal model, we clip the values greater than (255−µoff)/σoff .

This effect is visible in Figure 4.3 for burst B121 where the red dot-dashed curve

and green dotted curve show the fit to the burst spectra with and without clipping,

10See https://emcee.readthedocs.io/en/stable/tutorials/autocorr for details.
11To avoid the phenomenon known as “burn-in”, where there is a high degree of correlation

between neighboring samples in each MCMC chain, the initial values are typically discarded. This
is especially important if the MCMC was initialized at a low probability region in the parameter
space. Therefore, if the initial samples are not discarded, then those might bias the posterior
distributions of MCMC samples. See section 7 of Hogg & Foreman-Mackey (2018) for more details.

12https://github.com/thepetabyteproject/FRB121102
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Table 4.1: Priors used in the MCMC fitting.

Parameter Minimum Maximum

S 0 500×max(time series)×σfit
t

µf –2×Nf 3×Nf

σf 0 5×Nf

µt 0.8×µfit
t 1.2× µfit

t

σt 0 1.2×(σfit
t + τfit

sc )
τsc 0 1.2×(σfit

t + τfit
sc )

DM 0.8×DMfit 1.2×DMfit

Superscript fit refers to the values obtained using fits done
in previous stages. Nf refers to the number of frequency
channels. time series refers to the 1-D array obtained
by summing the dedispersed cutout spectrogram along the
frequency axis. Subscripts t and f are used for profile and
spectra parameters.

respectively. The fit performed without considering the saturation underestimates

the burst’s spectral width, leading to an underestimated burst energy.

4.4.5.7 Caveats to our fitting analysis

There are some caveats to our fitting procedure that are worth noting here.

First, as with any model-dependent fitting, our analysis and results are dependent on

the choice of the functions we use to model the data. We described those functions and

our motivation for using them in Section 4.4.4, but these are not the only proposed

methods to model the spectrogram of an FRB. The spectrum of an FRB can also

have power-law-like behavior (CHIME/FRB Collaboration et al., 2020b), and some

other pulse broadening functions can also be used besides the exponential tail used

to model the scattering effect (Bhat et al., 2004).

Second, the emission of some bursts in our sample was present only in the top

part of the band. In many such cases, the emission appeared similar to the tail of

a Gaussian function, with the mean lying outside our observing band. Although we

allowed for such a mean value to be estimated with the MCMC procedure, our fitting

results for such bursts would inevitably be unconstrained. We therefore mark such

bursts with a † in Table 4.2 to highlight this.
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Figure 4.3: Plots of spectra and fits in case of data saturation. Blue solid line shows
the spectrum of burst B121. The spectrum shows saturation between 1250 MHz and
1550 MHz, and any real structure in the spectrum is lost between those frequencies.
The red dot-dashed line shows the model spectrum obtained when the fitting pro-
cedure incorporates the effect of saturation, while the dotted green line shows the
spectrum obtained without considering saturation. The red curve better estimates
the shape of the spectrum (assuming that the spectrum can be modeled using a Gaus-
sian function), while the green curve underestimates the fluence and frequency width.
See Section 4.4.5.6 for more details.
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Figure 4.4: Flowchart showing the various stages of fitting in burstfit. See Sec-
tion 4.4.5 for details.
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Table 4.2: Properties of the first 10 bursts. See Appendix for the full table.

Bursta µf σf S µt
b σt τ c DM

ID (MHz) (MHz) (Jy ms) (MJD) (ms) (ms) (pc cm−3)

B1∗ 1560+30
−30 210+40

−40 0.09+0.02
−0.02 57644.408906976(1) 0.0+0.02

−0.02 1.9+0.3
−0.3 565.3+0.4

−0.4

B2∗ 1200+10
−10 50+10

−10 0.043+0.007
−0.007 57644.40956768(1) 1.35+0.05

−0.05 - 562.4+0.8
−0.8

B3.1† 2900+300
−600 800+300

−200 0.6+0.7
−0.3 57644.409673699(3) 0.4+0.2

−0.2 1.3+0.7
−0.7 566.8+0.8

−0.9

B3.2† 1100+300
−1400 1000+2000

−1000 0.09+0.13
−0.04 57644.40967384(2) 0.3+1.4

−0.2 0.3+0.7
−0.1 564.7+1.5

−0.4

B4† 3100+200
−600 550+80

−110 2+4
−2 57644.410072889(4) 1.1+0.2

−0.2 0.3+0.2
−0.1 564+1

−1

B5† 2100+900
−1600 2700+900

−1200 0.19+0.05
−0.04 57644.410157834(4) 0.7+0.3

−0.3 1.0+0.4
−0.3 562.1+0.7

−0.6

B6.1 1393+7
−7 183+7

−7 0.47+0.02
−0.03 57644.411071954(1) 1.09+0.03

−0.04 - 562.3+0.2
−0.1

B6.2 1417+4
−5 102+5

−4 0.33+0.03
−0.02 57644.4110719755(9) 0.57+0.03

−0.02 - 560.9+0.2
−0.1

B7.1† 3100+200
−300 430+60

−80 10+20
−10 57644.412240214(5) 0.7+0.3

−0.4 0.8+0.4
−0.4 569+3

−3

B7.2† 1460+20
−20 90+30

−20 0.09+0.01
−0.01 57644.41224043(2) 1.9+0.9

−1.0 1.2+0.6
−0.5 569+3

−2

B8† 3000+200
−600 700+100

−100 1.1+1.5
−0.7 57644.414123628(4) 1.0+0.3

−0.3 0.8+0.4
−0.3 567.5+0.9

−0.7

B9∗ 1430+10
−10 75+9

−9 0.076+0.003
−0.003 57644.41447161(2) 2.0+0.6

−0.6 0.4+0.6
−0.6 564+2

−2

B10 1630+10
−10 82+8

−8 0.1+0.01
−0.01 57644.414475391(7) 1.4+0.3

−0.3 0.5+0.3
−0.2 562+3

−3

1σ errors on the fits are shown on superscript and subscript of each value in the table. For µt, the error
on the last significant digit is shown in parenthesis.

a Burst IDs are chronological. Individual component number (N) for multi-component bursts are ap-
pended to the burst IDs. Bursts modeled only using curve fit are marked with ∗. Note that the
errors on these bursts could be unreliable and may be either under or over-estimated. Bursts that
extend beyond the observable bandwidth can also have unreliable estimates of spectra parameters and
fluence (see Section 4.4.5.7). We mark those bursts with † to indicate that their fluence and spectra
parameters could be unconstrained.

b µt is the mean of the pulse profile in units of MJD. This can be considered as the arrival time of the
pulse. It is referenced to the solar system barycenter, after correcting to infinite frequency using a DM
of 560.5pc cm−3.

c τ is referred to 1 GHz.

Third, in some cases, the MCMC procedure was unable to find a robust solu-

tion. This was due to the presence of RFI, which could not be removed as the FRB

signal coincided with the channels heavily corrupted by RFI. It also occurred when

there was significant baseline variation in the data close to a weak FRB pulse. This

could dominate the MCMC likelihood estimate, and therefore the procedure could

not converge on a solution. For such cases, we only used scipy.curve fit to perform

the fits, and we modified the fitting bounds to obtain a visually good fit. We highlight

these in Table 4.2 with ∗, and note that the values could be unreliable.

4.5 Results

As mentioned previously, we tripled the number of published bursts from these

two observations to 133, by detecting 93 new bursts. Dynamic spectra for some of
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Figure 4.5: Results of spectro-temporal fits on two bursts (B93 and B67). The first
column shows the original (normalized) dynamic spectra of the bursts. The burst
can be seen in both cases towards the top of the band. B93 shows two components,
separated by around 10 ms. The middle column shows the noise-free model spectro-
grams that best fit the original data. The last column shows the residual spectrogram
obtained by subtracting the model from the original data. The residual spectrogram
in both cases shows noise-like data with no remaining artifacts. See Section 4.4.5 for
details of the fitting procedure.

the high-significance bursts are shown in Figure 4.1.

We used the burst modeling procedure described in the previous sections to

estimate spectral and temporal properties for all the bursts. Figure 4.5 shows the

fitting results for two bursts. Comparing the three columns, we can see that the

modeled bursts look similar to the original burst signal and the residuals are noise-like,

indicating that the models assumed for the burst spectrogram provide satisfactory

fits. Figure 4.6 shows the posterior distribution of the burst properties obtained

using MCMC for B67. The 1D plots show the parameter histogram, while the 2D

plots show correlations between parameters. The properties of the bursts are given

in Table 4.2.

4.5.1 Burst sample properties

We used the converged sample chains from the MCMC fitting for each burst

to generate a cumulative corner plot with the whole burst sample properties. To do

this, we randomly selected 1000 samples from the final 25% of the MCMC chains and
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Figure 4.6: Corner plot generated using the MCMC samples obtained after fitting
B67. The 1D histograms show the histogram of individual parameters, while the 2D
plots show the correlations between parameters. The shaded and darkened region in
1D and 2D plots correspond to 1 σ. µt is in units of milliseconds and is with respect
to MJD=57645.41732241795. The value of µt is referenced to the observatory site
(Arecibo Observatory) and at the top of the frequency band i.e. 1774.53125 MHz.
See Sections 4.4.5 and 4.5 for more details.

92



then concatenated such samples from all the bursts. We then generated a corner plot

using these samples, as shown in Figure 4.713. We can now use Figure 4.7 to infer

trends in various spectro-temporal properties of FRB 121102. Table 4.3 shows the

summary statistics of all the bursts obtained from this analysis. We can see that the

spectra of the bursts typically peak around 1650 MHz, and there is a dearth of burst

emission below 1300 MHz. Most of the burst spectra peak within the top part of our

observing band (i.e 1550–1780 MHz). This behavior possibly extends further to higher

frequencies, as is evident from many burst spectra that increase towards the top part

of the observing band with their spectral peak possibly lying outside our observing

band. Interestingly, Platts et al. (2021) have recently reported complex bifurcating

structures in some FRB 121102 bursts below 1250 MHz using higher-resolution data.

It is, therefore, possible that the emission of FRB 121102 shows a different behavior

below these frequencies, which might also vary with time.

As already noted by Gourdji et al. (2019), FRB 121102 shows a variety of

spectral widths. Using our modeling, we observe that most bursts are frequency-

modulated and have a typical frequency width of ∼ 230 MHz. The bursts also show

a wide range of intrinsic pulse widths, from 0.4 ms to 20 ms, and various scattering

timescales, up to 3 ms. The median dispersion measure of the bursts we observe was

564pc cm−3, with a 1σ variation of∼ 4 pc cm−3. This variation in DM is also apparent

in Figures 4.7 and 4.8. This value is consistent with the other published estimates

(Li et al., 2021; Platts et al., 2021; Cruces et al., 2020; Gourdji et al., 2019). We also

did not see any strong correlation between any two burst properties from Figure 4.7.

Several of the bursts from this sample also show the characteristic sub-burst drift in

frequency during the burst duration, sometimes referred to as the “sad-trombone”

effect (Hessels et al., 2019). We did not detect any evidence of upward drifting as

predicted by some FRB models (Cordes et al., 2017), and reported by Platts et al.

(2021).

Many bursts in our sample show multiple components, and we estimated the

13Note that this corner plot is different from the one in Figure 4.6. Figure 4.6 shows the samples
from MCMC fit on only one burst, while Figure 4.7 shows the cumulative samples obtained from
MCMC fit on all the bursts.
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Table 4.3: Results from the burst
sample analysis. The values rep-
resent the median values with 1σ
errors.

Parameter Units Value

µf MHz 1608+100
−200

σf MHz 102+130
−30

S Jy ms 0.13+0.13
−0.05

σt ms 1.1+0.9
−0.5

τ ms 0.7+0.9
−0.4

DM pc cm−3 564+5
−3

properties of these components using our fitting procedure. Nine bursts in our sample

show two components, while there is one burst with three components (see Table 4.2).

We also note that it is difficult to differentiate between multiple closely spaced bursts

and different components from single bursts. This is further complicated by the de-

tection of a very wide (∼35 ms) burst reported by Cruces et al. (2020). As there is no

clear consensus on how to resolve this, we visually identified some bursts as compo-

nents of a nearby burst and reported them as such in Table 4.2. We consider all the

components as individual bursts for all the following analysis except the cumulative

energy distribution analysis.

Figure 4.8 shows the scatter plots of various burst properties with respect to the

burst time. The bursts from two observations are shown in different colors, and the

time is referenced to the first burst of the respective observation. The burst properties

do not show any temporal evolution at the seconds-to-minutes time scale. We also did

not observe any distinction between the distribution of properties of bursts detected

on two consecutive days.
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Figure 4.7: Corner plot generated using samples from the MCMC fit for all the
bursts. The 1D histograms show the distribution of individual parameters for all the
FRB 121102 bursts, while the 2D plots show the correlations for different parameters.
The shaded and darker regions in 1D and 2D plots correspond to 1 σ. See Section 4.5
for more details.
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Figure 4.8: Scatter plots of fitted property of the bursts versus the fitted time of
the burst. The data from the two observations are shown in different colors, with
MJD 57644 in red and MJD 57645 in blue. µt is referred to the first detected burst
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4.6 Discussion

4.6.1 Cumulative energy distribution

Energy distributions can provide useful intuition into the emission mechanism

of the source. Regular pulsar emission typically shows a log-normal distribution,

whereas giant pulses show power-law cumulative distributions (Burke-Spolaor et al.,

2012). Crab giant pulses have how evidence that the index depends on pulse width and

energy, with flatter indices for weaker and shorter pulses (Karuppusamy et al., 2010;

Popov & Stappers, 2007; Bera & Chengalur, 2019). High-energy magnetar emission

has been described by power-law distributions with γ ranging from roughly −1.6 to

−1.8 (Cheng et al., 2020). Previous studies of FRB 121102 energy distributions have

used a single power-law fit (N(> E) ∝ Eγ) to model the cumulative distribution and

have obtained different values of γ ranging from −0.7 in Law et al. (2017), −1.1

in Cruces et al. (2020), −1.7 in Oostrum et al. (2020) and −1.8 in Gourdji et al.

(2019). Another well-studied repeating source, FRB 180916, shows γ = −1.3 at

400 MHz, although recent observations have reported a flattening of the power-law
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at lower energies (Chawla et al., 2020; Pastor-Marazuela et al., 2021). We calculate

the isotropic energy (E) of a burst as,

E = 4π10−23

(
DL

cm

)2(
S

Jy s

)( σf
Hz

)
erg. (4.8)

Here, DL is the luminosity distance to FRB 121102, 972 Mpc, as reported by Ten-

dulkar et al. (2017). S and 2.355 σf are the fitted fluence and FWHM of the Gaussian

spectra.

To make the cumulative energy distribution, we choose only bursts for which

the ±1σ bounds on the spectral peak fell within our observing band. This was done as

our fluence estimates obtained from fitting are reliable for bursts within our band and

because we are incomplete to the population of bursts that are partially outside our

band (Aggarwal, 2021). Therefore, from a total of 133 bursts, we obtained 60 bursts

that satisfied this criteria. For each of the 60 such bursts, we used the posterior

distribution of bandwidths and fluences from the MCMC based fitting analysis to

calculate the distribution of energies (using Eq. 4.8). We then randomly sample one

energy from the burst energy distributions of each of the 60 bursts and generate a

cumulative energy distribution using those 60 energies. We repeated this process 1000

times and thereby generated 1000 cumulative energy distributions.

The previous studies of the cumulative energy distribution of FRB 121102 have

reported a break in power-law with a flattening towards low energies (Gourdji et al.,

2019; Cruces et al., 2020). Also, it was visually evident in our data that the cumulative

distribution flattened towards low energies. Therefore, a single power-law would not

have been sufficient to accommodate the burst energy distribution. Therefore, we

used scipy.curve fit to fit each of these 1000 energy distributions with a broken

power-law of the form,

N(≥ E) =

Escale

(
E

Ebreak

)α
, if E < Ebreak

Escale

(
E

Ebreak

)β
, if E > Ebreak.

(4.9)

Here, α and β are the two power-law indices, Ebreak is the break energy, and Escale
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is the energy scaling. Figure 4.9 shows the cumulative energy distributions above an

estimated completeness of 5.8 × 1036 ergs, calculated from the aforementioned com-

pleteness limit on the fluence, 0.0216 Jy ms (Section 4.4.3), and median bandwidth

(2.355σf ) of the bursts i.e. 240 MHz. It also shows (in red) the power-law fit to each

cumulative energy distribution.

The median of the distribution of fitted power-law indices and break energy

(with 1σ errors) are given by α = −0.4 ± 0.1, β = −1.8 ± 0.2 and Ebreak = (2.28 ±
0.19)× 1037ergs. This break at Ebreak could indicate the actual completeness energy

limit of our observations, and we might therefore be incomplete to the bursts with

energies below Ebreak. This could be due to the incompleteness of our observations

to the weak, band-limited bursts. The bursts above this energy are well fitted by the

power-law of index β = −1.8 ± 0.2. The break in energy distribution has also been

reported for other repeating FRBs (Pastor-Marazuela et al., 2021). It is worth noting

that our higher-energy power-law index β is also consistent with the power-law index

estimated by Gourdji et al. (2019) above a completeness threshold of 2 × 1037 ergs.

In the context of pulse-energy distributions, the similarity of the power-law indices

of FRB 121102 with both those of Crab giant pulses and magnetar pulses might also

imply a common origin (Lyu et al., 2021).

4.6.1.1 Testing for a high-energy break

Figure 4.9 shows that two high-energy bursts deviate from the power-law fits.

This has also been seen in Crab giant pulses, where this behavior was speculated to

be due to supergiant pulses (Mickaliger et al., 2012). We therefore tested the presence

of a high-energy break in the power-law (between 5−9×1037 ergs). We assumed that

the break energy estimated above to be the completeness threshold, and only used

the energies greater than that value. Then we repeated the bootstrapping method

to fit the cumulative distribution of the remaining bursts using: a single power-law

and a broken power-law. Note that in this test we were only fitting the bursts with

energy greater than 2.3× 1037ergs.

The fitted slope obtained for the single power-law fit was −1.8+0.1
−0.2. The fitted
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Figure 4.9: Cumulative energy distribution of bursts above our completeness limit of
5.81 × 1036 ergs. The grey points show the cumulative energy distributions created
by bootstrapping the burst energies. The red lines show the broken power-law fit to
each of these cumulative energy distributions. See Section 4.6.1 for more details.

slopes (below and above the break energy) for the double power-law fit were −1.8+0.2
−0.2

and −0.5+0.1
−0.3 with fitted break energy of 7.8+1.5

−1.9 × 1037ergs. The power-law slope

obtained in the single power-law fit (and the lower energy slope in case of double

power-law fit) was consistent with the higher energy slope reported earlier (β =

−1.8±0.2). We also found that the reduced chi-square value for the single power-law

case was 1.2+2.0
−0.6, while that for the double power-law fit was 0.08+0.08

−0.03. This indicates

that the double power-law fit model over-fitted the data, and so a single power-law is

sufficient. This test gives further confidence that above the energy of 2.3× 1037ergs,

bursts from FRB 121102 follow a single power-law with slope β = −1.8 ± 0.2, and

that there is no evidence for a higher energy break in the energy distribution.
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4.6.2 Wait-time distribution

The left panel in Figure 4.10 shows the distribution of wait times between bursts,

which follows a bi-modal distribution as also seen in previous studies (Li et al., 2019a;

Gourdji et al., 2019). On wait times greater than 1 s, we use scipy.curve fit to

fit a log-normal function to the main distribution, finding a peak at 74.8 ± 0.1 s.

The peak of our wait-time distribution is significantly lower than the 207± 1 s peak

found in this data by Gourdji et al. (2019), due to our increased sample of bursts

filling in the wait-time gaps. As more bursts are discovered in an observation of

constant length, the average time between bursts decreases, lowering the peak of the

wait time distribution. Our findings most closely match the wait-time distribution

of Zhang (2018), which peaks at ∼ 67 s; while the original paper did not report an

exact peak, we used their publicly available data14 to perform our wait-time analysis.

These similarities suggest that careful single-pulse searches using machine-learning

algorithms allow us to obtain a robust sample of bursts that accurately reflects the

burst population.

As in previous studies (e.g., Li et al., 2019a; Katz, 2018; Gourdji et al., 2019),

we find a smaller population of bursts with sub-second separations. However, unlike

the previously reported distributions, which cluster around tens of milliseconds, our

sub-second burst separations span the range of tens of milliseconds up to nearly one

second without as clear of a break between the two distributions. For this analysis,

we assume that each closely spaced pair of bursts is composed of two separate bursts

instead of components of a single broader burst, leading to the larger distribution of

short wait times compared to other papers. This assumption will not drastically alter

the fitted log-normal distribution since the sub-second wait-time population is small,

and their removal will not significantly alter the shape of the main distribution. As

in Gourdji et al. (2019) and Li et al. (2019a), we find that the wait time between

bursts and their relative fluences are not correlated.

To quantify the change in the wait-time peak as a function of the number of

bursts in a sample, we perform the same wait-time analysis for a random selection

14Table 2, accessible at https://doi.org/10.3847/1538-4357/aadf31
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of our bursts over a range of burst numbers, as seen in the right-hand panel of Fig-

ure 4.10. Each point represents a fit to 300 random selections of that number of

bursts, with the error bars representing the standard deviation of all of the fitted

peaks. Our findings show the expected effect that as more bursts are included in a

sample from a constant-length observation, the average time between bursts will de-

crease along with the fitted wait-time distribution peak. We find that the distribution

of fitted wait times peaks exponentially decays with added bursts with a timescale of

∼ 29 seconds. We observe the same effect in the Zhang (2018) dataset, which shows

a timescale of ∼ 25.5 seconds. The peak obtained by Gourdji et al. (2019) using

this data is shown in the figure and matches with our fitted exponential curve. We

perform a similar analysis by filtering out the lowest fluence bursts from our sample

and find that the wait time peak increases as the minimum fluence limit is increased,

and weaker bursts are excluded. This serves to explain the higher wait-time peaks

calculated by previous papers with fewer bursts and higher fluence limits.

4.6.3 Short-period periodicity search

In this section we discuss the results of various periodicity searches tested on

this burst sample to search for a short-period periodicity (millisecond to hundreds of

seconds).

4.6.3.1 Difference Search

We first perform a periodicity search on the burst times (µt in Table 4.2) by

calculating the differences between consecutive pulse times and searching over a range

of trial periods to determine how many differences are evenly divisible, within some

tolerance, by this period. We searched over trial periods starting with the minimum

difference between pulses, in integer divisors down to the minimum difference divided

by 256, after removing all differences less than 50 ms, in both the full set of pulses and

100 trials where only three-quarters of the bursts were randomly selected (to sample

a more complete range of minimum differences). Differences less than 50 ms were
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Figure 4.10: Left: the wait time distribution for both observations is plotted in gray,
with the fitted log-normal function peaking at 74.8±0.1 s. The individual observations
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removed, since potential single bursts with widths greater than 30 ms have been re-

ported from FRB 121102 (e.g. Katz, 2018), and the distinction between whether these

bursts are single multi-component bursts or separate bursts is unclear. Furthermore,

shorter trial periods are much more likely to return false positive results. To allow

for a variety of possible emission mechanisms for FRB 121102, including a broad or

multi-component pulse profile, we searched phase tolerances ranging from 1% to 50%.

At any given phase tolerance, a trial period is considered to fit a difference between

two pulses if the difference is an integer multiple of the trial period, within an error

equal to the phase tolerance.

We also searched 1000 simulated time series of identical length, with the same

number of pulses distributed randomly, using the same methodology in order to gauge

the significance of any detected periodicities. By searching for periods in a set of

bursts with no underlying period, we can evaluate whether our period search finds a

real periodicity in the data, or if it is a coincidence. Above a 50% tolerance, we get

many more pulse matches in all of the random timeseries than we do with the real

data, likely due to the FRB pulse distribution not following a random distribution

(see Figure 4.10 for the distribution of pulse arrival time differences).

The most significant period found was 658.838 milliseconds, which fit nine pulses

at a tolerance of 3%, with a false alarm probability (FAP) of 0.3% for random trials

at that tolerance. However, considering all 50 tolerance values searched over two

observations, the effective FAP is 30%, and we therefore conclude that no periodicity

can be detected through this differencing method.

4.6.3.2 Fast Folding Algorithm

We ran a fast folding algorithm (FFA) on each observation using riptide

(Morello et al., 2020). Unlike the periodicity search in the previous section which

uses the calculated pulse arrival times, riptide searches for periodic signals in the

entire dedispersed time series. This allows us to efficiently search over a greater range

of trial periods, and will not be affected by issues such as missing bursts, or consid-

ering closely spaced individual bursts as a single multi-component burst. However,
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while it is more sensitive to weak, time-averaged periodic emission, it is less sensitive

to periodicities only found in the detected single pulses. The FFA folds each dedis-

persed time series over a range of trial periods to create an integrated pulse profile.

For each observation, we searched time series with DMs ranging from 550 pc cm−3 to

580 pc cm−3 and at periods greater than 500 ms (the approximate period at which

folding algorithms are more sensitive than Fourier techniques; see Parent et al., 2018)

and less than 20 s (to ensure a sufficient number of pulses across the observation for a

pulsed detection). We used 1024 output bins, with boxcar filters providing sensitivity

to pulses with widths ranging from 1 to 300 ms.

First, candidates due to RFI, such as periods at exact integers and known RFI

frequencies, were removed. Of the remaining candidates, a signal-to-noise cutoff of

10σ was applied for a total of 1,250 candidate periods between the two observations.

We then folded the relevant dedispersed time series for each candidate using

the prepfold command from the PRESTO (Ransom, 2011) package at the candidate

period and DM identified by riptide. We allowed prepfold to search in DM in

order to determine which candidates had signal-to-noise ratios which peaked for DMs

inside of the searched range. We expanded our acceptable DM range from 520 to 610

pc cm−3 to allow leeway in prepfold’s search, leaving 91 periodic candidates in total.

We visually inspected these profiles and found that all were consistent with RFI or

noise, with no evidence of emission at the same phase over time or frequency. We

compared the candidate periods found by the algorithm on both observations, and

found that the only common periods were caused by RFI.

4.6.3.3 frbpa

We used frbpa (Aggarwal et al., 2020) to search for a short-period periodicity

using the burst times (MJDs). We used two methods: search to find the period

that minimizes the fractional width of folded profile (Rajwade et al., 2020b) and

a Quadratic-Mutual-Information-based periodicity search technique (Huijse et al.,

2018). In the first method, we phase-coherently folded the burst times between trial

periods and generated a set of profiles consisting of the source activity with respect
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to the trial period phase. We then measured the width of the source activity in each

folded profile. Low width would indicate that source activity is concentrated in a small

set of contiguous phase windows, indicating the presence of periodic activity (Rajwade

et al., 2020b). The second method uses quasi-mutual-information to estimate the

period. It has been shown to be robust to noise and works well on sparsely sampled

data as well (Huijse et al., 2018). We searched for periods between 1–1000 seconds

on bursts from the two days individually and did not recover any significant period.

4.6.3.4 Lomb-Scargle

We also used timeseries.LombScargle from the astropy library (Astropy

Collaboration et al., 2013; Price-Whelan et al., 2018) to search for periods ranging

from 100 ms to 1000 seconds on the bursts from the two observations separately.

Note that sensitivity to 100-ms periods requires sampling frequencies higher than the

traditional Nyquist limit. This is possible because the effective Nyquist frequency for

unevenly sampled data set is much smaller than the traditional limit (VanderPlas,

2018). The most significant periods are approximately 118 and 179 milliseconds.

However, false alarm probabilities of around 3% and 26%, respectively, indicate that

the detected periods are unlikely to be real. We therefore we conclude that we did

not detect any significant periodicity in the bursts using the Lomb-Scargle method.

4.6.4 Burst Rate

Previous observations of FRB 121102 have found significant evidence for pulse

clustering on short time scales, where the burst separations deviate from a Poissonian

distribution (Oppermann et al., 2018; Oostrum et al., 2020; Cruces et al., 2020). The

Weibull distribution, as described in Oppermann et al. (2018), is a modification of

the Poisson distribution, with a shape parameter k describing the degree of pulse

clustering. Clustering is present for k < 1 with lower values corresponding to more

clustering, while k = 1 reduces to the Poissonian case; a value of k � 1 causes the

distribution to peak more sharply at the event rate and indicates a periodic signal.
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A better understanding of the burst statistics may help us understand the progenitor

of FRB 121102 and help strategize the timing of future observations.

Figure 4.11 shows the cumulative probability density of the wait times between

consecutive bursts, fitted to the Weibull and Poisson cumulative density functions

as defined by Oppermann et al. (2018). The fitted values are given in Table 4.4,

as well as the reduced chi-squared statistic and the coefficient of determination, r2,

which ranges from zero to one with a value of one representing a perfect fit. In Fig-

ure 4.11, we also plot the values of the reduced chi-squared statistic for the Poisson

and Weibull distributions when fitted to only the wait times longer than a range of

chosen minimum wait times. We observe that both the Poisson and Weibull distribu-

tions fit the main population of longer wait times much better than the entire set of

bursts. The Weibull distribution’s ability to account for clustering allows it to have a

significantly better fit when including shorter wait times, as its reduced chi-squared

statistic is a factor of 18 smaller than that of the corresponding Poisson distribution

(see Table 4.4). However, the Weibull distribution is only slightly favored over the

Poisson distribution when fitting only longer wait times. We find that the reduced

chi-squared statistic is equal to 0.368 for the Weibull fit to wait times greater than

one second, indicating that the distribution is overfitted. These findings may indi-

cate that the main distribution of bursts with longer wait times roughly follows a

Poissonian distribution, while the entire burst rate distribution cannot be accurately

described with solely a Poisson or Weibull distribution. This may result from our

decision to consider each burst as a separate burst rather than a sub-component of a

broad burst.

In addition to their observations, Cruces et al. (2020) used the original dataset

from Gourdji et al. (2019) to study the burst rate statistics and found that the addi-

tion or removal of the sub-second wait time population in each dataset significantly

impacts the extrapolated burst rate behavior. In each case, removing these short wait

times led to the fitted Weibull shape parameter k increasing towards one, further indi-

cating that the main distribution of pulses may follow a Poissonian distribution while

the shorter distributions do not. However, the sample used in Cruces et al. (2020)
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Table 4.4: Fitted burst rate distributions.

Rate (hour−1) k χ2 r2

Poisson (all) 65± 8.4 · · · 495 0.953
Weibull (all) 42± 9 0.63± 0.07 27.5 0.970

Poisson (δt > 1s) 41± 1.6 · · · 1.076 0.994
Weibull (δt > 1s) 46± 1.5 1.16± 0.04 0.368 0.997

The posterior values for the Poisson and Weibull distributions as
well as the reduced chi-squared statistic and r2 value, fit both to
the entire set of wait times as well as only wait times greater than
one second. The errors represent 1 σ uncertainties.

only had two sub-second wait times; our more extensive sample of short wait times al-

lows us to confirm this behavior with more statistical significance. In Figure 4.12, we

plot the fitted burst rates for the Weibull and Poisson distributions and the Weibull

shape parameter k as a function of minimum wait time. As the minimum wait time

increases, both burst rates converge to a rate of roughly 45 bursts per hour. We also

find that the fitted value of k increases with the minimum wait time, reaching a value

of k = 1 at a minimum wait time cutoff of roughly 0.1 s.

4.6.5 Implications for progenitor models

Based on our results, any progenitor model proposed for FRB 121102 would

have to explain the following observations: (1) band-limited emission; (2) varying

peak emission of the spectra and its lack below 1300MHz; (3) median scattering

timescale of 0.7 ms, with a maximum value of around 2 ms; (4) rapid variability

of these three properties at second timescales. Further, some of these observations

have also been reported for other FRBs (Kumar et al., 2021c; Shannon et al., 2018;

Pastor-Marazuela et al., 2021).

4.6.6 Comparison to previous work

In this chapter, we have presented 93 additional bursts detected on reprocessing

the data presented in Gourdji et al. (2019). Figure 4.13 shows the distribution of

properties of new bursts detected with our pipeline as compared to the ones already
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Figure 4.11: The cumulative wait time distributions fitted by the Poisson (blue solid
lines) and Weibull (green dashed lines) distributions for the entire sample of wait times
(left) and for the population of wait times greater than one second (middle). The fitted
values for the Poisson distribution for the left and middle plots are r = 65 hr−1 and
r = 41 hr−1 respectively. The fitted values of the Weibull distribution are k = 0.634,
r = 42 hr−1 and k = 1.162, r = 46 hr−1 respectively. Right: The reduced chi-squared
statistic of the Poisson and Weibull fits, when fitted to wait times greater than the
minimum wait time. While the middle and right panels show that both the Weibull
and Poisson distributions fit the longer wait times well, the left panel shows that
neither distribution accurately fits for the larger sample of sub-second wait times.
The right panel shows that pulse clustering starts to impact the fits once wait times
shorter than ∼ 50 ms are considered.
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Figure 4.12: Left: the fitted burst rate per hour for the Poisson (blue) and Weibull
(green) distributions as a function of the minimum wait time used in the fitting. As
the minimum wait time increases and we begin to sample only the main distribution
of wait times, the burst rates converge to roughly 45 bursts per hour. Right: The
Weibull shape parameter k as a function of minimum wait time. The fitted value
increases with the minimum wait time, and black dotted lines have been added to
indicate that the Weibull parameter increases to a value of 1.0 at a minimum wait
time of 0.1 seconds.
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published by Gourdji et al. (2019). We performed Kolmogorov-Smirnov (KS) tests

to compare the distributions of fitted parameters of old versus the new bursts. The

distribution of S, σt and DM are similar, while those for µf , σf and τ are different.

This indicates that the searches carried out by Gourdji et al. (2019) missed bursts

that span the entire range of these parameter values, rather than just the weaker

bursts.

Recently, Li et al. (2021) reported a large sample of bursts from FRB 121102 de-

tected using the Five-hundred-meter Aperture Spherical radio Telescope. The mean

of the wait-time distribution estimated from that larger sample of bursts (70 ± 12s)

is consistent with what we report in Section 4.6.2. They also did not detect any

short-term periodicity, similar to our findings. Further, they report a bimodal energy

distribution for FRB 121102. Aggarwal (2021) highlighted that this bimodality dis-

appears when burst bandwidth, instead of center frequency of the observing band, is

used to calculate the energy. Moreover, the burst bandwidths reported in Li et al.

(2021) were estimated visually, and not using a fitting procedure. This can lead to

observational biases that will make the interpretation of intrinsic energy distributions

difficult (Aggarwal, 2021).

All the tools and software used in our pipeline are independent of the ones

used in the original work (Gourdji et al., 2019). This brings the critical question

of understanding why our pipeline detected more bursts or why the original work

missed the bursts. While an exhaustive comparison of the two pipelines using a

standard dataset consisting of simulated FRBs is beyond the scope of this chapter,

here, we try to investigate the reasons for different results based on our understanding

of the software used. We discuss three reasons that might contribute to very different

recovery rates15 of the two pipelines.

15By recovery rate, we mean the percentage of transients (above the completeness limit) correctly
identified by the software. A perfect pipeline would have a recovery rate of 100%, indicating that it
can detect all transients present in the data.

109



1000 2000 3000

µf (MHz)

0.000

0.001

0.002 PKS=0.01

1.5 2.0 2.5 3.0

log10(σf (MHz))

0

1

2 PKS=0.00

−1 0 1

log10(S (Jy ms))

0

1

PKS=0.13

0 1 2 3

σt (ms)

0.0

0.5

PKS=0.84

0 1 2 3

τ (ms)

0.0

0.5

1.0
PKS=0.01

560 565 570 575

DM (pc cm−3)

0.00

0.05

0.10
PKS=0.96

Figure 4.13: Normalized histogram of burst properties. New bursts detected in this
analysis are shown in green, while the ones published by Gourdji et al. (2019) are
shown in blue. For all the bursts, the properties shown here were estimated using
the fitting procedure described in Section 4.4.5. We did a KS-test to compare the old
and new burst distributions, for all the properties, with p-values obtained from these
tests given on the top right of each plot.

4.6.6.1 Threshold signal-to-noise ratio

Although Gourdji et al. (2019) used a S/N threshold of 6 for the search, they dis-

carded candidate groups with a maximum S/N less than 8. We used a S/N threshold

of 6 in our search. Therefore, they would have missed low S/N candidates.

Assuming that the higher energy power-law slope of -1.8 (estimated in Sec-

tion 4.6.1) is intrinsic to FRB, we can estimate the expected ratio of number of bursts

with S/N greater than 6 to that above a S/N of 8. This is given by (6/8)−1.8 = 1.7.

The observed ratio of the number of bursts above S/N of 6 (N= 133) to that above

S/N of 8 (N= 70) is: 133/70 = 1.9. This implies that we detected more bursts be-

tween S/N of 6 and 8, than expected from the power-law distribution of energies. But,

it is important to note that this simple estimate relies on the following assumptions:

1. Our observations are complete to bursts with S/N < 8. But the flatter energy

distribution at low energies indicates that this might not be true.

2. The fluence and energy distributions are similar. This is true only when there is

no incompleteness due to banded nature of the burst spectra (Aggarwal, 2021).
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3. The burst energy distribution can be modeled by a single power-law, even at

low energies.

Further, we now estimate the number of purely noise candidates we expect

above a S/N greater than 6 in our search. The chance probability of a purely noise

candidate with S/N greater than 6 is P= 9.9 × 10−10. The number of trials in our

search can be calculated by:

Ntrial = NDM

10∑
i=0

Ntime

2i
, (4.10)

where, Ntrial is the total number of trials in our search, NDM is the number of trial

DMs (65, between 450–650 pc cm−3 at a tolerance of 1%) and Ntime is the total

number of time samples in the data (∼ 3 hrs at a time resolution of 81.92-µs). The

sum is over the boxcar widths searched (20 to 210, doubling at each step). Therefore,

we expect P×Ntrial ∼ 20 purely noise events, with a S/N greater than 6, for these

number of trials. But number of events we detected with S/N > 6 in our single pulse

search were 1,427 (with 133 FRB and 1,294 RFI candidates).

This shows that we detected much more candidates above a S/N of 6 than

expected from pure Gaussian noise, implying that data is non-Gaussian. Most of the

candidates we obtained were due to RFI, which is expected. It is possible that some

weak events are still misidentified, however this will not influence the results of our

analysis.

4.6.6.2 Single-pulse search software

Gourdji et al. (2019) used single pulse search.py (Ransom, 2011) to search

for the bursts, and manually verified the candidates. In contrast, we used Heimdall

for the single-pulse search, and Fetch for classification. Keane & Petroff (2015)

highlight several steps at which a single-pulse search pipeline might miss a transient.

A few such steps are sizes of boxcar convolutional kernel, spacing between DM trials,

the position of the boxcar convolution with respect to the phase of the pulse, clustering
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of redundant candidates, etc. Although recovery rates for both these search softwares

have been shown to be >90% in their respective pipelines (Patel et al., 2018; Agarwal

et al., 2020b; Gupta et al., 2021), a thorough comparison of the two search strategies

has so far not been done.

4.6.6.3 RFI mitigation and classification

Gourdji et al. (2019) used a different RFI mitigation strategy than our pipeline.

They used the classifier (sps) presented in Michilli et al. (2018) to filter the RFI

candidates and then manually verified the remaining 125 candidates to search for

real pulses. sps was designed specifically to search for Galactic single pulses in a

LOFAR survey. Features in LOFAR data would be very different from the data used

in this study. This is primarily due to different observing bands (1.4GHz for this

study, compared to 100MHz for LOFAR), RFI environment, telescopes, and observing

backends. Moreover, the dispersion in FRB pulses is typically much larger than that

seen in Galactic transients. Due to these differences, it is not possible to translate the

performance of sps on LOFAR data to the data used in this chapter. Michilli et al.

(2018) mention the use of specially designed filters for such datasets on which sps was

not trained, but they did not report the performance of these filters on any such data.

Agarwal et al. (2020a) and Connor & van Leeuwen (2018) also highlight that it is

non-trivial to generalize a machine learning algorithm to unseen data without rigorous

pre-processing and injection tests. It is therefore possible that sps missed to correctly

identify real pulses that were correctly detected by single pulse search.py.

As mentioned previously, we used spectral kurtosis for RFI mitigation (Nita

& Gary, 2010) and used fetch for classification. It is known that very strict RFI

flagging can lead to a reduced recovery rate, as the RFI algorithm might flag real

signal as RFI (Rajwade et al., 2020a). Spectral kurtosis is robust to astrophysical

signals and performs better than the simple median-based RFI thresholds (Nita &

Gary, 2010). fetch was developed to be robust to different telescopes, observing

configurations and RFI environments (Agarwal et al., 2020a). We accomplished this

by a carefully designed pre-processing and training strategy. We also showed that
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the performance of fetch remains consistent on unseen data. This has been further

established by the new FRBs discovered using fetch on different telescopes (Kumar

et al., 2019; Law et al., 2020; Aggarwal et al., 2020; Rajwade et al., 2020b; Kumar

et al., 2021c; Pleunis et al., 2021b; Kirsten et al., 2021b).

4.6.6.4 General comments

As mentioned in Section 4.4.3, a robust analysis of any single-pulse search soft-

ware and pipeline requires exhaustive injection analysis. Such an analysis can high-

light the percentage of transients recovered with respect to various physical parame-

ters of interest, like DM, width, phase, etc. These metrics are essential in understand-

ing possible inefficiencies and estimating the completeness of any single-pulse search.

Such analysis done for specific pipelines that use Heimdall has reported a recovery

rate of > 90% (Agarwal et al., 2020b; Gupta et al., 2021). While our pipeline is not

identical, it is very similar to the one reported by Agarwal et al. (2020b). On a less

diverse dataset, the recovery rates for single pulse search.py were also reported

to be > 90% (Patel et al., 2018), but a more rigorous analysis would better assess the

robustness of this search software.

Additionally, if a machine learning classifier is deployed in a single-pulse search

pipeline, then it is necessary to estimate the recovery rate for the classifier itself. Such

rigorous analyses have been performed for some classifiers (Agarwal et al., 2020a;

Gupta et al., 2021), and provide insights into their recovery rate estimates. The

robustness of a classifier to unseen data should also be carefully investigated (or

verified by manual inspection), before reporting the completeness of any search. While

human recovery rates for visual classification of thousands of candidates have not been

estimated for FRBs, similar estimates are present in computer vision literature. Here,

the neural networks (a top-5 error rate of 3.5%) routinely outperform humans (a top-5

error rate of 5.1%) in image classification tasks (He et al., 2015; Russakovsky et al.,

2014).

Further, as most of the bursts detected in this sample are narrow-band (i.e.,

present only in a part of the frequency band), traditional searches might still miss
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bursts. Sub-banded searches would be more sensitive to detect such band-limited

bursts, especially at wide-band systems (R. Anna-Thomas et al. 2021, in preparation;

Kumar et al., 2021c; Gourdji et al., 2019).

4.6.7 Caveats

Finally, it is appropriate to highlight and reiterate four main caveats to the

analysis presented in this chapter. (1) The data used in this analysis was downsampled

to 64 frequency channels. We did not have access to the native resolution data;

therefore, all the search and analysis was performed on downsampled data. The

sensitivity of single-pulse search would be higher on native resolution data; therefore,

our pipeline may have missed some pulses. (2) We only performed a search on the

data that averaged over the full bandwidth to create timeseries. Given the band-

limited nature of many bursts, a sub-band search on this data might reveal weaker

and narrower bursts. (3) As mentioned previously, our estimate of completeness

limit is not robust, as such a robust estimate requires injection analysis that was not

possible with the available data. (4) The reported properties of the bursts depend

on the assumption that burst spectra and profile follow the assumed functional forms

used for fitting.

4.7 Conclusions

This chapter presents a dense sample of FRB 121102 bursts detected at L-

band using Arecibo Observatory, analyzed as a part of The Petabyte Project. More

importantly, we report 93 new bursts detected with our single-pulse search pipeline, as

compared to the published results (Gourdji et al., 2019), making a total of 133 burst

detections in 3 hours of data. We have developed a robust burst fitting procedure

to model the spectro-temporal properties of FRBs and provide it as a user-friendly

python package burstfit16. We use the MCMC procedure implemented in burstfit

to estimate the properties of all the bursts in our sample. We find that the burst

16https://github.com/thepetabyteproject/burstfit
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spectra can be well modeled using a Gaussian function, with a median width of

230 MHz and a median peak at 1608 MHz. Most of the burst emission is present in

the top of our band, and there is a lack of emission below 1300 MHz, consistent with

other published results (Gourdji et al., 2019; Platts et al., 2021). Many bursts also

show a scattering tail, with a median timescale of 0.7 ms. Some bursts show complex

structures like multiple components and frequency drift. The wait time distribution

of the bursts shows two distributions, at millisecond and second timescales. The latter

of the two follows a log-normal distribution, with the peak at 74.8 s, consistent with

other published results (Zhang, 2018). We further note that the peak of the wait time

changes significantly based on the number of bursts in an observation. We find that

both Poisson and Weibull distributions fit the burst rate distributions at long wait

times (> 1 second) equally well, and neither accurately describes the whole burst

rate distribution. We did not detect any short-period periodicity in the bursts. The

cumulative burst energy distribution is well modeled by a double power-law with a

break. We find the value of low and high-energy slopes to be −0.4±0.1 and −1.8±0.2

with a break at (2.3± 0.2)× 1037 ergs. Our analysis reveals that only the bursts that

are completely within the band should be used for energy distribution analysis. We

discuss some possible differences between our single-pulse search pipeline and the one

used by Gourdji et al. (2019), to explain the different results obtained using the two

approaches. All the analysis scripts and results presented in this chapter are openly

available in a Github repository17 for the community to use in their repeater burst

analyses.

4.8 Appendix

Table 4.5 shows the fitted properties (with 1σ errors) of all the bursts reported

in this analysis.

17https://github.com/thepetabyteproject/FRB121102
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Table 4.5: Properties of all the bursts presented in this analysis.

Bursta µf σf S µt
b σt τ c DM

ID (MHz) (MHz) (Jy ms) (MJD) (ms) (ms) (pc cm−3)

B1∗ 1560+30
−30 210+40

−40 0.09+0.02
−0.02 57644.408906976(1) 0.0+0.02

−0.02 1.9+0.3
−0.3 565.3+0.4

−0.4

B2∗ 1200+10
−10 50+10

−10 0.043+0.007
−0.007 57644.40956768(1) 1.35+0.05

−0.05 - 562.4+0.8
−0.8

B3.1† 2900+300
−600 800+300

−200 0.6+0.7
−0.3 57644.409673699(3) 0.4+0.2

−0.2 1.3+0.7
−0.7 566.8+0.8

−0.9

B3.2† 1100+300
−1400 1000+2000

−1000 0.09+0.13
−0.04 57644.40967384(2) 0.3+1.4

−0.2 0.3+0.7
−0.1 564.7+1.5

−0.4

B4† 3100+200
−600 550+80

−110 2+4
−2 57644.410072889(4) 1.1+0.2

−0.2 0.3+0.2
−0.1 564+1

−1

B5† 2100+900
−1600 2700+900

−1200 0.19+0.05
−0.04 57644.410157834(4) 0.7+0.3

−0.3 1.0+0.4
−0.3 562.1+0.7

−0.6

B6.1 1393+7
−7 183+7

−7 0.47+0.02
−0.03 57644.411071954(1) 1.09+0.03

−0.04 - 562.3+0.2
−0.1

B6.2 1417+4
−5 102+5

−4 0.33+0.03
−0.02 57644.4110719755(9) 0.57+0.03

−0.02 - 560.9+0.2
−0.1

B7.1† 3100+200
−300 430+60

−80 10+20
−10 57644.412240214(5) 0.7+0.3

−0.4 0.8+0.4
−0.4 569+3

−3

B7.2† 1460+20
−20 90+30

−20 0.09+0.01
−0.01 57644.41224043(2) 1.9+0.9

−1.0 1.2+0.6
−0.5 569+3

−2

B8† 3000+200
−600 700+100

−100 1.1+1.5
−0.7 57644.414123628(4) 1.0+0.3

−0.3 0.8+0.4
−0.3 567.5+0.9

−0.7

B9∗ 1430+10
−10 75+9

−9 0.076+0.003
−0.003 57644.41447161(2) 2.0+0.6

−0.6 0.4+0.6
−0.6 564+2

−2

B10 1630+10
−10 82+8

−8 0.1+0.01
−0.01 57644.414475391(7) 1.4+0.3

−0.3 0.5+0.3
−0.2 562+3

−3

B11 1550+10
−10 100+10

−10 0.074+0.008
−0.007 57644.414878803(4) 0.8+0.2

−0.2 0.3+0.2
−0.1 560.3+0.9

−0.9

B12 3100+200
−300 450+60

−80 20+20
−10 57644.41537809(1) 1.9+0.5

−0.5 1.5+1.3
−0.8 569+3

−4

B13 1692+13
−9 90+20

−10 0.14+0.01
−0.01 57644.416314736(5) 1.5+0.2

−0.2 0.6+0.3
−0.2 572+1

−1

B14 1260+10
−10 67+9

−8 0.13+0.02
−0.02 57644.41830674(8) 3+1

−1 1.6+0.6
−0.5 562+6

−5

B15.1† 1550+10
−10 80+10

−10 0.07+0.01
−0.01 57644.418309206(7) 0.9+0.3

−0.3 0.8+0.5
−0.4 565+2

−1

B15.2† 2000+1000
−1000 3000+1000

−1000 0.12+0.03
−0.04 57644.418309273(2) 0.2+0.2

−0.1 0.7+0.2
−0.2 569.4+0.4

−0.5

B16† 3100+200
−600 510+60

−110 6+9
−5 57644.420508580(4) 1.2+0.2

−0.2 0.5+0.3
−0.2 570+2

−2

B17 2000+1000
−2000 3000+1000

−1000 0.15+0.05
−0.04 57644.42110545(1) 1.5+0.6

−0.5 0.7+1.0
−0.4 570+1

−2

B18∗ 1530+30
−30 140+30

−30 0.046+0.008
−0.008 57644.426303862(4) 1.5+0.1

−0.1 - 564.8+0.8
−0.8

B19∗ 1330+30
−30 160+20

−20 0.11+0.02
−0.02 57644.42721003(2) 1.9+0.8

−0.8 1.6+0.5
−0.5 564+1

−1

B20† 2900+400
−1000 1000+2000

−400 0.23+0.47
−0.08 57644.427376859(4) 0.7+0.3

−0.3 0.6+0.5
−0.3 565.6+0.8

−0.6

B21† 3100+200
−400 600+100

−100 3+7
−2 57644.42794036(2) 4.2+0.9

−1.0 1.8+1.7
−0.8 576+4

−5

B22† 3000+300
−700 700+100

−200 1.3+1.7
−0.9 57644.428593784(8) 1.9+0.4

−0.4 1.5+0.6
−0.6 568+2

−2

B23 1699+14
−9 70+20

−10 0.089+0.009
−0.008 57644.430170170(2) 0.7+0.1

−0.1 0.3+0.2
−0.1 569.0+1.0

−1.0

B24∗ 1670+20
−20 80+20

−20 0.0384+0.0007
−0.0007 57644.430170303(1) 0.02+0.05

−0.05 1.2+0.3
−0.3 563.0+0.5

−0.5

B25 1750+1380
−70 200+390

−60 0.16+3.67
−0.03 57644.430171419(4) 1.4+0.2

−0.2 0.7+0.3
−0.3 568+1

−1

B26 1470+10
−10 110+20

−10 0.096+0.009
−0.009 57644.431295361(4) 0.8+0.2

−0.2 0.5+0.2
−0.2 565.6+0.7

−0.7
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B27 1340+70
−1400 1000+2000

−1000 0.17+0.11
−0.09 57644.43223490(2) 2.0+1.0

−0.7 1.1+0.5
−0.4 570+2

−2

B28 1750+40
−20 100+20

−10 0.14+0.03
−0.02 57644.432242722(1) 0.59+0.05

−0.05 0.16+0.09
−0.05 561.3+0.5

−0.5

B29 1680+1440
−30 130+480

−40 0.06+1.5
−0.01 57644.434045197(4) 0.6+0.2

−0.2 0.4+0.4
−0.2 562+1

−3

B30 1440+10
−10 100+20

−10 0.12+0.01
−0.01 57644.43636575(2) 2.1+0.6

−0.5 1.2+0.5
−0.4 568+2

−3

B31 1502+6
−6 100+8

−7 0.19+0.01
−0.01 57644.438794966(4) 1.6+0.1

−0.2 0.5+0.1
−0.1 566.6+0.7

−0.7

B32 1410+8
−8 79+9

−8 0.14+0.01
−0.01 57644.43884518(1) 1.7+0.3

−0.4 0.6+0.4
−0.3 564+1

−1

B33 1480+20
−20 120+20

−20 0.08+0.01
−0.01 57644.439212855(8) 1.2+0.3

−0.4 0.6+0.6
−0.3 563.0+1.0

−1.0

B34† 2600+600
−1400 2000+1000

−1000 0.27+0.1
−0.06 57644.440688613(5) 1.3+0.4

−0.4 1.0+0.4
−0.3 567.0+0.8

−0.9

B35 1707+5
−5 61+6

−5 0.24+0.01
−0.01 57644.442997729(6) 2.8+0.2

−0.2 0.7+0.4
−0.2 575+3

−3

B36† 3100+200
−400 470+70

−90 10+20
−10 57644.44358918(2) 3+2

−1 2+2
−1 574+11

−6

B37 1410+20
−20 130+30

−20 0.065+0.007
−0.008 57644.443590029(3) 0.58+0.11

−0.09 0.14+0.1
−0.04 562.8+0.5

−0.4

B38 1620+20
−20 110+20

−20 0.1+0.01
−0.01 57644.445225058(7) 0.9+0.5

−0.5 1.9+0.7
−0.9 567+2

−2

B39 1500+10
−20 130+10

−10 0.057+0.01
−0.006 57644.446788124(1) 0.21+0.04

−0.04 0.12+0.13
−0.05 560.9+0.1

−0.2

B40 1590+10
−10 81+11

−9 0.12+0.02
−0.02 57644.447567822(8) 1.1+0.5

−0.4 2.0+0.8
−0.7 560+3

−3

B41∗ 1379+1
−1 31+1

−1 0.4+0.02
−0.02 57644.44772750(2) 0.8+0.2

−0.2 3.0+0.2
−0.2 559+2

−2

B42 1670+10
−10 110+20

−20 0.099+0.009
−0.008 57644.449915568(3) 0.9+0.2

−0.2 0.4+0.2
−0.2 566.0+0.8

−0.7

B43 1683+12
−9 120+20

−10 0.22+0.01
−0.01 57644.451605444(1) 0.79+0.1

−0.09 0.9+0.1
−0.1 568.2+0.5

−0.5

B44† 3100+200
−400 520+50

−70 11+13
−7 57644.452389712(6) 1.8+0.3

−0.3 1.1+0.5
−0.5 569+2

−4

B45 1710+1490
−60 160+470

−70 0.07+1.81
−0.02 57644.453937473(4) 0.9+0.2

−0.4 0.5+0.4
−0.2 562+1

−1

B46 1371+2
−2 61+2

−2 0.41+0.01
−0.01 57644.454477404(8) 2.8+0.2

−0.2 0.6+0.1
−0.1 569.6+0.8

−0.8

B47 900+800
−1100 2000+1000

−2000 0.15+0.04
−0.09 57644.457883227(3) 0.5+0.1

−0.1 0.23+0.14
−0.09 561.9+0.3

−0.2

B48.1† 2900+300
−1200 600+2500

−100 1+15
−1 57644.464507488(7) 0.4+0.4

−0.3 0.7+0.6
−0.3 565+4

−2

B48.2† 0+1300
−500 500+500

−400 0.7+26.2
−0.6 57644.4645075(2) 0.9+3.2

−0.6 0.7+3.6
−0.4 600+100

−200

B49.1 1660+10
−10 140+20

−10 0.49+0.03
−0.03 57644.46475893(1) 8.3+0.5

−0.5 2.0+0.7
−0.6 568+4

−4

B49.2 2400+700
−1400 2000+1000

−1000 0.16+0.05
−0.04 57644.464759903(1) 0.2+0.1

−0.1 0.6+0.2
−0.1 561.3+0.3

−0.2

B50 1460+10
−10 90+10

−10 0.13+0.02
−0.01 57644.46476275(1) 1.3+1.0

−0.9 1.7+0.6
−0.8 561+2

−2

B51† 2500+600
−900 1000+1000

−700 0.3+0.2
−0.2 57644.465729923(7) 1.4+0.6

−0.4 1.2+0.5
−0.4 569+1

−1

B52 1667+5
−4 73+6

−5 0.185+0.009
−0.009 57644.466222289(4) 1.4+0.1

−0.2 0.6+0.2
−0.2 570+1

−1

B53 1720+30
−20 120+30

−20 0.19+0.03
−0.02 57644.468095365(4) 1.5+0.2

−0.2 1.1+0.3
−0.3 572+1

−1

B54∗ 1600+600
−600 100+100

−100 0.0+0.1
−0.1 57644.47117767(7) 0+10

−10 0.9+0.2
−0.2 560+40

−40

B55 1650+10
−10 100+10

−10 0.13+0.01
−0.01 57644.474717918(6) 1.4+0.3

−0.2 1.3+0.5
−0.5 570+2

−2
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B56 1706+4
−4 54+6

−5 0.16+0.01
−0.01 57644.477082041(3) 0.9+0.2

−0.1 0.9+0.2
−0.2 560+2

−2

B57 1530+6
−6 186+6

−6 0.254+0.006
−0.005 57645.4110889611(4) 0.48+0.03

−0.02 0.21+0.02
−0.02 561.75+0.06

−0.06

B58 1462+6
−6 78+6

−5 0.129+0.008
−0.008 57645.411651653(4) 0.9+0.1

−0.1 0.4+0.1
−0.1 564.4+0.6

−0.7

B59 1537+5
−4 68+4

−4 0.2+0.01
−0.01 57645.411889086(9) 2.2+0.4

−0.3 1.1+0.3
−0.3 568+2

−2

B60.1 3000+300
−1000 440+80

−220 4+6
−4 57645.412281872(4) 0.8+0.2

−0.1 0.3+0.3
−0.2 566+2

−2

B60.2 2300+900
−600 500+300

−300 0.4+1.6
−0.2 57645.412281990(6) 0.9+0.6

−0.5 2.5+0.6
−0.5 561+2

−2

B61† 1000+1000
−1000 2800+900

−1100 0.25+0.08
−0.07 57645.41286869(2) 2.0+2.0

−1.0 2+2
−1 580+3

−13

B62 1570+10
−10 110+10

−10 0.12+0.01
−0.009 57645.413644740(5) 1.3+0.2

−0.2 0.6+0.3
−0.2 567+1

−1

B63 1280+10
−10 86+11

−9 0.1+0.01
−0.01 57645.41609534(1) 0.8+0.2

−0.2 0.6+0.2
−0.1 562.0+0.8

−0.9

B64† 2000+1000
−1000 3000+1000

−1000 0.32+0.09
−0.09 57645.41639521(1) 1.4+0.5

−0.5 3+1
−1 564+3

−2

B65 1550+10
−10 110+20

−10 0.091+0.009
−0.009 57645.416564818(6) 1.2+0.2

−0.2 0.6+0.3
−0.2 566.0+1.0

−1.0

B66 1440+10
−10 120+10

−10 0.105+0.009
−0.008 57645.417467306(6) 1.6+0.2

−0.2 - 567.7+0.7
−0.7

B67 1640+30
−20 180+30

−30 0.099+0.009
−0.008 57645.417897463(2) 0.8+0.1

−0.1 0.3+0.1
−0.1 564.8+0.5

−0.5

B68† 2000+1000
−1000 2000+1000

−1000 0.2+0.05
−0.06 57645.419005902(8) 1.0+0.6

−0.5 0.9+0.4
−0.4 567.9+0.9

−1.3

B69 1450+20
−10 80+10

−10 0.059+0.009
−0.009 57645.41920745(1) 0.7+0.3

−0.3 0.5+0.3
−0.2 564+1

−1

B70† 3100+200
−500 600+100

−100 0.9+1.7
−0.6 57645.419896226(4) 0.8+0.3

−0.3 0.8+0.4
−0.3 564+1

−1

B71 1378+5
−4 78+5

−4 0.34+0.02
−0.02 57645.420265931(9) 1.0+0.2

−0.2 2.6+0.2
−0.2 561.1+0.9

−1.0

B72† 3100+200
−500 700+200

−100 1.2+3.4
−0.8 57645.420600439(9) 1.2+0.7

−0.8 2+1
−1 559+2

−2

B73† 3100+200
−500 600+100

−100 2+3
−1 57645.420679524(7) 1.5+0.6

−0.8 1.7+0.8
−0.7 575+3

−3

B74† 3100+200
−400 520+100

−90 5+12
−4 57645.420752363(6) 1.2+0.8

−0.6 1.9+0.7
−0.9 551+11

−2

B75† 2200+800
−1400 2700+900

−1200 0.39+0.07
−0.08 57645.421284056(4) 0.9+0.3

−0.3 1.8+0.3
−0.3 567.6+0.9

−0.7

B76 1410+10
−350 90+20

−10 0.05+0.111
−0.006 57645.421290699(5) 0.42+0.25

−0.09 0.14+0.42
−0.05 561.6+0.6

−0.5

B77 1312+5
−5 51+6

−6 0.12+0.01
−0.01 57645.42161300(2) 1.3+0.5

−0.5 0.7+0.2
−0.2 566+2

−2

B78 1170+20
−40 80+40

−10 0.11+0.03
−0.02 57645.42184846(1) 0.9+0.3

−0.2 0.28+0.14
−0.08 562.4+0.7

−0.9

B79 1702+4
−4 57+6

−5 0.18+0.01
−0.01 57645.421872443(3) 1.2+0.2

−0.2 1.7+0.3
−0.3 568+2

−2

B80 1601+7
−8 81+8

−7 0.13+0.01
−0.01 57645.422454976(3) 0.5+0.3

−0.2 1.3+0.2
−0.3 564.4+1.0

−0.8

B81 1720+390
−10 60+310

−20 0.05+0.1
−0.01 57645.423009490(6) 0.78+0.08

−0.18 0.6+0.1
−0.2 563+8

−5

B82† 3100+200
−400 580+60

−70 4+4
−2 57645.424145870(2) 1.3+0.1

−0.1 - 569.2+0.7
−0.7

B83† 2400+700
−1300 2000+2000

−1000 0.15+0.07
−0.04 57645.424617988(6) 0.7+0.3

−0.3 0.4+0.2
−0.2 564.7+0.7

−0.5

B84† 3000+300
−700 600+100

−200 1+3
−1 57645.425478263(8) 1.0+0.8

−0.6 1.7+0.9
−0.9 563+2

−3

B85∗ 1310+20
−20 130+20

−20 0.11+0.02
−0.02 57645.426746546(2) 0.01+0.06

−0.06 2.0+0.4
−0.4 566.1+0.2

−0.2
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B86 1550+10
−10 80+10

−10 0.067+0.009
−0.008 57645.426792398(7) 0.6+0.4

−0.3 0.9+0.3
−0.3 563+1

−1

B87 1760+440
−50 190+200

−50 0.2+0.38
−0.03 57645.426922532(4) 1.4+0.2

−0.2 0.9+0.3
−0.3 571.1+0.9

−0.9

B88.1 2000+1000
−1000 2000+1000

−2000 0.17+0.06
−0.06 57645.427338932(7) 0.7+0.4

−0.3 1.0+0.7
−0.5 561+2

−4

B88.2 1460+20
−10 130+20

−20 0.11+0.01
−0.01 57645.427339178(9) 2.4+0.4

−0.3 - 561+1
−2

B89 1479+8
−8 120+8

−7 0.18+0.01
−0.01 57645.428904793(6) 2.4+0.2

−0.2 - 569.0+0.7
−0.8

B90 1420+40
−500 120+2790

−30 0.09+0.11
−0.02 57645.42990044(2) 2.4+0.6

−0.6 0.8+0.6
−0.3 565+2

−2

B91 1476+9
−9 81+10

−8 0.12+0.01
−0.01 57645.43034452(2) 3.1+0.4

−0.4 - 572+2
−2

B92 1721+4
−4 39+6

−4 0.17+0.02
−0.02 57645.43044763(1) 2.6+0.8

−0.7 3+1
−1 580+10

−10

B93.1 1591+9
−9 106+10

−9 0.126+0.008
−0.008 57645.430622487(3) 1.2+0.1

−0.2 0.4+0.2
−0.2 565.3+0.8

−0.9

B93.2 1620+10
−10 120+20

−20 0.13+0.01
−0.01 57645.430622591(7) 1.7+0.3

−0.3 0.8+0.4
−0.3 564+2

−2

B94† 3100+200
−600 500+60

−120 7+10
−6 57645.431306274(4) 1.1+0.2

−0.2 0.6+0.4
−0.3 565+2

−4

B95 1693+11
−8 90+20

−10 0.095+0.007
−0.007 57645.431478373(2) 0.69+0.08

−0.08 0.22+0.12
−0.08 563.5+0.6

−0.5

B96† 2000+1000
−2000 2800+800

−1100 0.2+0.06
−0.05 57645.43254531(2) 2.1+0.8

−0.9 0.9+0.6
−0.3 565+2

−1

B97† 2900+400
−800 800+500

−200 0.3+0.4
−0.1 57645.433086695(3) 0.6+0.4

−0.4 1.0+0.4
−0.4 562.4+0.9

−0.5

B98 1667+7
−7 67+8

−7 0.094+0.01
−0.009 57645.434330453(5) 1.1+0.2

−0.2 0.7+0.3
−0.3 559+2

−2

B99† 2000+1000
−2000 2800+800

−1100 0.13+0.03
−0.03 57645.440066847(4) 0.8+0.2

−0.2 0.3+0.2
−0.1 565.8+0.4

−0.4

B100 1688+4
−4 62+5

−5 0.154+0.008
−0.007 57645.440814641(2) 1.0+0.1

−0.1 0.5+0.2
−0.2 567.0+1.0

−1.0

B101∗ 1510+20
−20 130+20

−20 0.042+0.006
−0.006 57645.441999925(3) 0.87+0.02

−0.02 - 568.6+0.4
−0.4

B102 2000+1200
−300 300+300

−200 0.2+2.7
−0.1 57645.442100164(8) 2.1+0.4

−0.4 0.8+0.6
−0.4 564+2

−2

B103 1470+10
−10 90+10

−10 0.08+0.01
−0.01 57645.44263325(1) 1.4+0.3

−0.3 0.6+0.5
−0.3 562+1

−1

B104∗ 1460+60
−60 90+20

−20 0.07+0.09
−0.09 57645.4427413(1) 0+2

−2 2.1+0.5
−0.5 569+8

−8

B105 1670+10
−10 110+20

−20 0.095+0.008
−0.007 57645.444480955(2) 0.51+0.1

−0.09 0.5+0.1
−0.1 565.4+0.5

−0.5

B106 1480+7
−8 97+10

−9 0.16+0.01
−0.01 57645.444919472(7) 2.0+0.2

−0.2 0.5+0.2
−0.1 566+1

−1

B107 2800+300
−1000 370+70

−260 10+10
−10 57645.445443070(5) 1.2+0.3

−0.3 0.9+0.4
−0.4 561+3

−2

B108 1488+4
−4 83+4

−4 0.141+0.006
−0.006 57645.448802883(2) 0.66+0.03

−0.03 - 561.1+0.3
−0.3

B109 1460+5
−5 87+5

−5 0.24+0.01
−0.01 57645.449987035(8) 2.8+0.2

−0.2 - 568+1
−1

B110∗ 1620+10
−10 100+10

−10 0.1+0.01
−0.01 57645.451201066(8) 1.7+0.4

−0.4 1.3+0.5
−0.5 561+2

−2

B111 1469+6
−6 58+7

−6 0.109+0.01
−0.009 57645.45198993(1) 1.6+0.2

−0.2 0.5+0.2
−0.1 563+2

−2

B112 1442+4
−5 68+4

−4 0.142+0.008
−0.008 57645.453426198(4) 0.59+0.08

−0.07 0.4+0.07
−0.06 563.1+0.6

−0.6

B113 1699+4
−4 68+6

−5 0.29+0.01
−0.01 57645.453639067(4) 2.5+0.1

−0.2 0.6+0.3
−0.2 569+2

−2

B114 1570+20
−20 110+20

−20 0.07+0.01
−0.01 57645.453640216(3) 0.3+0.2

−0.1 1.4+0.3
−0.3 566.5+0.7

−0.8

Continued on next page
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Table 4.5 – continued from previous page

Bursta µf σf S µt
b σt τ c DM

ID (MHz) (MHz) (Jy ms) (MJD) (ms) (ms) (pc cm−3)

B115 1730+30
−10 90+20

−20 0.19+0.03
−0.02 57645.454258102(7) 2.3+0.3

−0.3 0.9+0.6
−0.4 569+3

−3

B116∗ 1480+40
−40 260+60

−60 0.08+0.02
−0.02 57645.4544929400(9) 0.05+0.07

−0.07 1.4+0.3
−0.3 565.7+0.2

−0.2

B117 1580+20
−20 130+30

−20 0.1+0.02
−0.01 57645.45736147(1) 1.8+0.9

−0.8 1.8+0.8
−0.8 563+3

−3

B118 1580+30
−20 130+30

−20 0.1+0.02
−0.01 57645.45736147(1) 1.7+0.9

−0.8 1.8+0.9
−0.8 563+3

−3

B119 1670+60
−20 170+60

−30 0.21+0.04
−0.02 57645.458536220(6) 1.2+0.4

−0.3 2.6+0.5
−0.5 569+2

−2

B120 1690+1040
−30 130+380

−30 0.09+0.87
−0.01 57645.459103357(6) 0.8+0.3

−0.5 1.2+0.5
−0.4 566+2

−2

B121.1 1612+2
−2 90+2

−2 0.394+0.007
−0.007 57645.460053270(1) 0.82+0.04

−0.04 0.25+0.06
−0.07 562.1+0.2

−0.2

B121.2 1321+2
−3 178+2

−2 1.73+0.02
−0.02 57645.4600533283(4) 0.95+0.02

−0.02 0.36+0.02
−0.01 561.98+0.03

−0.03

B121.3 1181+9
−11 93+9

−8 0.35+0.03
−0.02 57645.460053409(4) 1.22+0.09

−0.07 - 561.6+0.2
−0.3

B122 1405+4
−4 71+5

−5 0.22+0.01
−0.01 57645.462106655(9) 2.3+0.2

−0.2 0.5+0.2
−0.1 565+1

−1

B123∗ 1690+20
−20 90+20

−20 0.09+0.02
−0.02 57645.462556118(6) 1.1+0.4

−0.4 2.0+0.6
−0.6 567+3

−3

B124 1560+10
−20 150+20

−20 0.094+0.008
−0.008 57645.464052738(3) 1.0+0.2

−0.2 0.5+0.2
−0.2 565.3+0.5

−0.6

B125 1600+10
−10 140+20

−20 0.121+0.01
−0.009 57645.464188555(4) 1.2+0.2

−0.2 0.7+0.2
−0.2 564.4+0.8

−0.8

B126 1600+1190
−60 230+2380

−90 0.07+0.13
−0.02 57645.464503855(6) 0.9+0.4

−0.5 0.9+0.6
−0.4 567+2

−2

B127 2000+1000
−1000 2000+1000

−2000 0.19+0.06
−0.11 57645.465133243(7) 0.8+0.4

−0.4 1.2+0.6
−0.5 566.0+1.9

−0.7

B128† 1000+1000
−1000 2700+900

−1500 0.25+0.05
−0.09 57645.466100959(6) 1.1+0.2

−0.2 0.9+0.3
−0.3 567.0+0.7

−0.9

B129 1710+1380
−20 90+450

−30 0.11+4.56
−0.02 57645.466379997(5) 1.0+0.3

−0.3 1.3+0.4
−0.4 573+2

−3

B130† 2000+1000
−1000 3000+1000

−1000 0.18+0.05
−0.05 57645.46833947(1) 1.4+0.4

−0.4 0.6+0.4
−0.2 565.5+1.0

−0.8

B131 1460+10
−10 90+10

−10 0.08+0.01
−0.01 57645.47236212(1) 1.1+0.4

−0.3 0.7+0.3
−0.3 564+1

−2

B132 1720+80
−20 100+70

−20 0.09+0.03
−0.01 57645.474138540(3) 0.7+0.1

−0.1 0.4+0.2
−0.2 561+1

−1

B133 1740+180
−50 230+110

−40 0.22+0.1
−0.03 57645.474448229(4) 1.7+0.2

−0.2 0.7+0.3
−0.3 570.6+0.7

−0.7

1σ errors on the fits are shown on superscript and subscript of each value in the table.

For µt, the error on the last significant digit is shown in parenthesis.

a Burst IDs are chronological. Individual component number (N) for multi-component

bursts are appended to the burst IDs. Bursts modeled only using curve fit are marked

with ∗. Note that the errors on these bursts could be unreliable and may be either under

or over-estimated. Bursts that extend beyond the observable bandwidth can also have

unreliable estimates of spectra parameters and fluence (see Section 4.4.5.7). We mark

those bursts with † to indicate that their fluence and spectra parameters could be

unconstrained.

b µt is the mean of the pulse profile in units of MJD. This can be considered as the arrival

time of the pulse. It is referenced to the solar system barycenter, after correcting to

infinite frequency using a DM of 560.5pc cm−3.

c τ is referred to 1 GHz.
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Chapter 5

Observational effects of banded repeating

FRBs

5.1 Chapter Overview

Recent observations have shown that repeating Fast Radio Bursts (FRBs) ex-

hibit band-limited emission, whose frequency-dependent amplitude can be modeled

using a Gaussian function. In this chapter, we show that banded emission of FRBs

can lead to incompleteness across the observing band. This biases the detected sam-

ple of bursts and can explain the various shapes of cumulative energy distributions

seen for repeating FRBs. We assume a Gaussian shape of the burst spectra and used

simulations to demonstrate the above bias using an FRB 121102-like example. We

recovered energy distributions that showed a break in power-law and flattening of

power-law at low energies, based on the fluence threshold of the observations. We

provide recommendations for single-pulse searches and analysis of repeating FRBs to

account for this incompleteness. Primarily, we recommend that burst spectra should

be modeled to estimate the intrinsic fluence and bandwidth of the burst robustly.

Also, bursts that lie mainly within the observing band should be used for analyses

of energy distributions. We show that the bimodality reported in the distribution of

energies of FRB 121102 by Li et al. (2021) disappears when burst bandwidth, instead

of the center frequency of the observation, is used to estimate energy. Sub-banded

searches will also aid in detecting band-limited bursts. All the analysis scripts used

Published as Aggarwal (2021)
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in this chapter are available in a Github repository1.

5.2 Introduction

Fast radio bursts (FRBs) show a wide variety of properties (see Chapter 1). It

is an ongoing effort to disentangle the properties arising from the FRB source itself

(i.e., intrinsic) to those introduced due to various selection effects. Two properties

associated primarily with repeating FRBs are sub-burst drifting and band-limited

emission (Hessels et al., 2019; Law et al., 2017). In this chapter, the effect we focus

on is the band-limited emission of repeaters and discuss various observational biases

caused by it.

The source of the band-limited nature of FRB emission is currently not under-

stood. However, there exist multiple progenitor and propagation models that try to

explain the band-limited nature of FRBs (Simard & Ravi, 2020; Beniamini & Kumar,

2020; Metzger et al., 2019; Lu & Kumar, 2018; Cordes et al., 2017). Further, it has

been reported that the emission of the first repeating FRB, FRB 121102 favors 1600

MHz, and there is a lack of emission observed below 1200 MHz (Aggarwal et al.,

2021a; Platts et al., 2021). It is unclear if the emission behavior changes below that

frequency and is below the detection threshold or is just not present (Platts et al.,

2021). Similar banded2 emission has also been reported for other repeating FRBs

(Pastor-Marazuela et al., 2021; Li et al., 2021; Aggarwal et al., 2021a). Further, it

has been reported that the peak emission frequency appears to be random. Also,

ultra-wideband observations have shown that there is no evidence for oscillations in

the spectra, i.e the burst emission is present only within the narrow envelop and is

not simultaneously present at any other frequency (Kumar et al., 2021c; Law et al.,

2017). The periodicity in burst activity and its frequency dependence further compli-

cates the interpretation of this effect (Pastor-Marazuela et al., 2021; Aggarwal et al.,

2020).

1https://github.com/KshitijAggarwal/banded_repeater_analysis
2We use “band-limited” and “banded” emission interchangeably across this chapter. Both of

these refer to the finite bandwidth emission of the bursts.
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Energy distribution of repeating FRBs also show a variety of shapes and features

like: a simple power-law, broken power-law, smooth flattening of power-law at low

energies, etc (Cruces et al., 2020; Li et al., 2021; Aggarwal et al., 2021a; Pastor-

Marazuela et al., 2021). The shape of the energy distribution can provide important

information about the emission mechanism of the FRB source. Giant pulses from

neutron stars and high energy emission from magnetars has been described using

a power-law distribution (Bera & Chengalur, 2019; Cheng et al., 2020). A similar

power-law index for FRBs with that seen from neutron stars might imply a common

origin. In some studies of repeaters, the deviation of energy distribution from a

simple power-law has been attributed to the intrinsic emission process of the FRB.

But, in this chapter, we demonstrate that many of the observed shapes of the energy

distributions, can be attributed to biases due to the band-limited nature of emission

of repeaters. It is therefore necessary to account for these biases, before making

conclusions about the intrinsic nature of FRB emission.

We start by discussing our modeling methods in §2, followed by results demon-

strated using an example in §3, and discuss the implications in §4. We then conclude

with some recommendations in §5.

5.3 Methods

This section briefly discusses the methods we used to model the FRB spectra

and various observational effects. We follow a two-step approach: 1) Simulate a

population of FRBs with spectral properties described by predefined functions, 2)

Estimate the detectable FRBs from this sample based on a sensitivity threshold.

5.3.1 Generating a population of repeater bursts

Previous studies have shown that the spectra of repeating FRBs can be modeled

using a Gaussian function (Pleunis et al., 2021b; Aggarwal et al., 2021a; Kumar et al.,

2021c; Law et al., 2017). Therefore, we assume that the repeater burst’s spectra

follow a Gaussian function, parameterized by a mean (µf ) and a standard deviation
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Figure 5.1: Figure showing some simulated spectra modeled using a Gaussian func-
tion. The mean and standard deviation has been sampled from a Uniform distri-
bution. The energy distribution is assumed to be a power-law with a slope of -1.8.
The left panel shows the detected spectra, while the right panel shows the ones that
weren’t detected, using a constant fluence threshold. The observing band is shown in
red. Spectra that had enough energy within the band were detected, while the ones
without enough signal within the observing band were not detected. See Section 5.3.2
for more details.

(σf ). We also assume that µf and σf itself follow a predefined distribution (Gaussian

or Uniform). Finally, we assume that the cumulative energy distribution follows a

power-law with a slope (α). We then draw 50,000 samples from the above three

distributions each to represent 50,000 bursts from a repeater. We convert the energy

into an intrinsic fluence using its spectral bandwidth and assuming a nominal distance

to the source.

5.3.2 Applying selection effects

Next, we aim to determine the bursts that a given observational system will

detect. To simplify the analysis, we ignore the effect of any signal lost due to

non-idealized dispersion measure (DM) and boxcar search step (see Aggarwal et al.,

2021a,c; Agarwal et al., 2020b; Keane & Petroff, 2015, on details of those effects),

and only consider two selection effects: observational bandwidth and fluence limit.

Due to the limited observing bandwidth of most instruments and the distribution of

burst spectra across a wide frequency range (see Figure 5.1), the observed fluence of

the burst will depend on the fraction of the burst spectra that lies within the obser-

vational band. Therefore, for each simulated burst, we estimate its observed fluence
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by integrating the spectra (using the bursts’ µf and σf ) within the limits of observing

bandwidth. Therefore, assuming Gaussian spectra of the form,

G(ν;µν , σν) =
1

σν
√

2π
exp

(
− 1

2

(ν − µν)2

σ2
ν

)
, (5.1)

where ν is the observing frequency. The observed fluence is given by:

Sobs = Sint

∫ νend

νstart

G(ν;µν , σν)dν, (5.2)

where Sint and Sobs are the intrinsic and observed burst fluence, νstart and νend are

the start and end frequency of the observing band. If the burst spectra lie primarily

within the bandwidth, then the integral in the above equation will be close to one,

and so the observed fluence will be very similar to the intrinsic fluence. As the

fraction of burst signal outside the band increases, the observed fluence will get lesser

as compared to intrinsic fluence.

If this observed fluence is greater than the fluence threshold of the search

pipeline, then the burst will be detected. Therefore, out of the population of bursts

that do not lie primarily within our observing band, we are sensitive to detect only

the bright ones (as illustrated in Figure 5.1). This will introduce strong selection

effects in the properties of the detected bursts.

5.3.3 Estimating Fluence and bandwidth

Typically, the detected bursts’ fluence (and then energy) is determined only

from the signal visible in the observing band. This is done using the signal-to-noise

(S/N) ratio obtained from the de-dispersed and frequency averaged time-series profile

of the burst. However, this procedure underestimates the intrinsic fluence of the burst,

as it is sensitive to signal present only in the observing band. On the other hand,

if we model the observed spectra using a Gaussian function, then the total fluence

(including the signal not visible in the band) can be estimated and determined (see

section 3.5 of Aggarwal et al., 2021a). Using this burst modeling, it is possible to
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obtain a more robust estimate of the intrinsic fluence of the burst (i.e., Sint).

Similarly, the bandwidth of the bursts is typically determined by manually

identifying the range of frequency channels in which the burst signal is visible. For

band-limited bursts that lie on the edge of the band, this would lead to underesti-

mation of the burst bandwidths. Again, suppose we model the burst spectra using

a Gaussian model. In that case, we can accurately determine the full width at half

max (FWHM) of all the bursts robustly, even if only a small fraction of burst spectra

is within the observing band. We use the following equation to estimate the isotropic

energy of the bursts from the fluence (F), bandwidth (FWHM), and distance (DL) of

the bursts

E = 4π10−23

(
DL

cm

)2(
F

Jy s

)(
FWHM

Hz

)
erg. (5.3)

Henceforth, we refer to the S/N derived fluence as FS/N, and energies estimated

using FS/N and manually identified bandwidth as ES/N. We will use Ffit and Efit when

the fluence and energy are determined using fitting.

The above three steps give us a sample of simulated and detected repeater bursts

that can now be compared to infer the observational biases and incompleteness, with

some assumptions on the intrinsic (µf , σf , α) and observational (fluence threshold

and bandwidth) parameters. This is explored in the next section.

5.4 Results

Here we consider a simple example to report some of the observed effects of

the band-limited nature of burst spectra. We consider an FRB 121102-like repeater

observed at varying detection thresholds. We assume the following intrinsic properties

for this repeater: cumulative energy distribution follows a single power-law with a

fixed slope (α=-1.5), a distance of 972 Mpc, normal distribution of µf with mean

1650 MHz and standard deviation of 250 MHz, and normal distribution of σf with

mean of 300 MHz and standard deviation of 250 MHz. We also assume that our

observing bandwidth is 800 MHz with a center frequency of 1375 MHz. The choice
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of these values is inspired by the observed properties of FRB 121102 reported by

Aggarwal et al. (2021a). We then observe this repeater at three different fluence

limits (i.e. sensitivity limit of the observing system) of: 0.02 Jy ms, 0.1 Jy ms and

0.4 Jy ms. As discussed previously, some of these bursts will not be detected by

the search system, as not enough burst signal is present within the band. In the

following sub-sections, we discuss three unique observational effects observed for this

simulated repeater. We also try to explain the various observed properties of the two

most studied repeaters so far: FRB 121102 and FRB 180916, in the context of the

incompleteness due to the banded nature of their bursts.

5.4.1 Cumulative Energy Distribution

Many different shapes and slopes have been reported for the cumulative en-

ergy distribution of repeater burst energies (Aggarwal et al., 2021a; Pastor-Marazuela

et al., 2021; Cruces et al., 2020; Law et al., 2017). Here we discuss how telescope sensi-

tivity plays a crucial role in determining the observed shape of the cumulative energy

distribution by influencing the bursts that are detected by the system.

The bottom row of Figure 5.2 shows the cumulative energy distribution of bursts

detected with two different fluence thresholds. Red pluses show the intrinsic power-

law, green crosses show the ES/N for the detected bursts, and blue triangles represent

the Efit of the detected bursts. The trend of blue triangles and green crosses points

deviate significantly from a simple intrinsic power law due to the absence of weak

bursts that are not detected. Notably, the shape of observed cumulative energy

distribution changes with sensitivity thresholds. As the sensitivity of the observations

decrease (left to right in Figure 5.2), the observed distributions deviate from a single

power-law to a broken power-law, which appears as a smooth turn at even lower

thresholds. The broken power-law is similar to what has been seen for FRB 121102

(Cruces et al., 2020; Aggarwal et al., 2021a) while the smooth turn in power-law was

reported for FRB 180916 (Pastor-Marazuela et al., 2021). Here, we have shown that

both these effects can occur due to the band-limited nature of repeater bursts.
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Figure 5.2: Energy distributions of bursts detected at varying fluence thresholds.
Different columns show different fluence thresholds - left: 0.02 Jy ms, right: 0.4 Jy ms.
Top: Histogram of burst energies. Intrinsic energies of the bursts are shown in blue
and show the single power-law, while those of detected bursts are shown in green. In
this case, the burst energies are estimated using FS/N (i.e using fluence derived from
signal to noise of the burst; see Sections 5.4.1 and 5.4.2). Bottom: Cumulative energy
distribution of bursts. Red pluses show the intrinsic energy distribution that follows
a power-law with a slope of -1.5. The other three colors show detected bursts. Green
crosses represents energies estimated using FS/N. Blue triangles and cyan circles are
with energies estimated using fitting. Blue triangles shows all the detected bursts,
while cyan circles only shows bursts that were primarily within the observing band.
Solid lines show a single power-law fit, and dotted lines show a broken power-law
fit. The vertical dashed lines shows the break energy for the broken power-law fit.
Values in legends report the fitted slope for single power-law fit, and high energy
slope for broken power-law fit. As we can see, due to inaccurate energy estimation
and missed bursts, the energy distributions can deviate significantly from the intrinsic
distribution. See Section 5.4.2 for more details.
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5.4.1.1 Challenges

Various possible shapes of the observed cumulative distribution make it chal-

lenging to interpret and infer intrinsic FRB properties. A break in the power-law, if

present, might indicate the real completeness limit of the system. This can be ob-

served by the green crosses in the bottom-left plot of Figure 5.2. The higher energy

slope appears similar to the intrinsic one. Therefore, a break in observed power-

law might indicate that the higher energy power-law follows the intrinsic shape and

may be used to draw inferences about the intrinsic properties of the FRB. A smooth

turnover in cumulative distribution (right panel of Figure 5.2), on the other hand,

renders a completeness limit derived from such an analysis inaccurate, and even the

higher energy slope might not represent the intrinsic distribution of energies. Even

the distribution of Efit might not reflect the real power-law, as the detection threshold

would also bias it.

5.4.1.2 Using in-band bursts

When using Efit, although we are using the correct fluences of the bursts, we

still would have missed a population of weak bursts that were not primarily within

our observing band (see Section 5.3.2). Therefore, we would detect a larger sample

of bright bursts, which will make the energy distribution flatter. We can account for

this by analyzing only the in-band bursts, i.e., the bursts whose spectra lie primarily

within our observing band3. These bursts are labeled as in-band-Efitand shown as

cyan circles in Figure 5.2. These in-band bursts provide a more robust and reliable

estimate of the distribution of burst energies, even when the observations are not very

sensitive. This is because our observations are complete to the in-band bursts, and by

using fitting to determine burst properties, we have mitigated both selection effects

listed earlier (see Section 5.3.2). The slope of the in-band burst energies follows the

intrinsic distribution. But, if the distribution shows a turnover or flattening, then

even this method cannot be used to estimate the intrinsic power-law slope of the

3A similar condition was also used by Aggarwal et al. (2021a) to select the bursts for cumulative
energy distribution analysis.
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bursts reliably.

5.4.2 Energy Distribution

Continuing the previous example, the top row in Figure 5.2 shows the histogram

of ES/N for two fluence thresholds. Again, the intrinsic cumulative distribution of

burst energies follows a power-law. The detected energy distribution again changes

significantly with the fluence threshold, and even in this simple case, it shows a variety

of shapes. All of these shapes can be attributed to the missed bursts and inaccurate

estimates of burst energies. Using Efit leads to distributions that are more similar

to the intrinsic one, and using Efit for only in-band bursts would be an even more

accurate representation of intrinsic distribution.

5.4.3 Distribution of spectral parameters

We consider two choices of intrinsic distributions for both µf and σf : Uniform

and Normal, and observed the respective distributions of the detected bursts (see

Figure 5.3). The µf distribution of detected bursts follows a normal-like distribution

for both intrinsic distributions. µf distribution for FRB 121102 has been reported to

be an asymmetric normal distribution, with a negative skew, i.e., with a tail towards

lower frequencies being drawn out (Aggarwal et al., 2021a). The FRB emission also

prefers higher frequencies in the 1.4 GHz observations. This cannot be recovered

using a uniform intrinsic distribution of µf , as in this case, the recovered distribution

would peak at the center of the observing band (bottom left panel in Figure 5.3).

On the other hand, if the intrinsic µf distribution is normal, with its mean present

towards the top of the center frequency of the observing band, then an asymmetric

normal distribution is recovered. The recovered µf distribution of our simple example

also shows a negatively skewed distribution (top left panel in Figure 5.3). This is

because fewer bursts will be detected towards the higher part of the band. In this

case, the peak of the recovered distribution will lie close to the peak of the intrinsic

distribution. Hence, based on results presented in Aggarwal et al. (2021a), we can
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Figure 5.3: Distribution of mean (µf ) and standard deviation (σf ) of burst spectra.
The intrinsic distribution is shown in yellow, and the distribution of bursts detected at
various fluence thresholds is shown in red and blue. The top panels consider a normal
intrinsic distribution of µf and σf , while bottom panels assume a uniform intrinsic
distribution. Vertical dotted lines mark the observing band. See Section 5.4.3 for
more details.
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infer that the intrinsic µf distribution of FRB 121102 bursts could be normal, with

a mean of ∼ 1600 MHz.

The observed normal distribution of σf reported by Aggarwal et al. (2021a) can

also be explained only by an intrinsic normal distribution of σf and is not recovered

by a uniform distribution of σf . This can also be seen in the right panels in Figure 5.3.

5.4.4 Calculating Energy

As mentioned previously, we used Eq. 5.3 to estimate the energy of the burst.

This equation uses the burst bandwidth along with the fluence to estimate the energy.

This formalism is the way to estimate the burst energy when the emission is not broad-

band. Under the assumption that emission is broad-band, a standard technique to

estimate energy from fluence uses center frequency of the band, instead of burst

bandwidth (Zhang, 2018). This is given by,

E = 4π10−23

(
DL

cm

)2(
F

Jy s

)( νc
Hz

)
erg, (5.4)

where νc is the center frequency of the observing band. Recently, Li et al. (2021) used

this latter definition of energy and found that the burst energy of FRB 121102 follows

a bimodal distribution, using a large sample of bursts. We re-calculated the burst

energies using the burst bandwidths and fluences reported in their Supplementary

Table 1 (Li et al., 2021) and compared them with the energies used by Li et al.

(2021).

Figure 5.4 shows the distribution of energies calculated using these two tech-

niques. The distribution of energies does not show any bimodality when burst band-

widths, instead of center frequency, are used to estimate energies. Moreover, the

resulting distribution of energies is similar to the ones shown in Figure 5.2, implying

that this result is likely affected by band incompleteness. The method of using cen-

ter frequency to estimate burst energy makes two key assumptions: 1) Emission is

broadband, 2) Spectral index is zero, i.e the emission does not depend on frequency.
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But, the emission from repeaters is characteristically band-limited and Gaussian-like.

Therefore, none of these two assumptions are valid for repeating FRBs and so burst

bandwidths should be used to estimate energy.

Figure 5.5 shows the distribution of energies (derived using burst bandwidths) of

FRB 121102 bursts detected with FAST and Arecibo (Aggarwal et al., 2021a; Li et al.,

2021), along with the recovered distribution of detected bursts using some fiducial

values for intrinsic properties similar to the simulation example discussed earlier.

Therefore, our analysis shows that the observed shapes in the energy distributions of

FRB 121102 can occur due to observational effects caused by bandedness along with

a normal distribution of the peak and width of the burst spectra. Notably, both these

effects were reported for the bursts presented in Li et al. (2021) and Aggarwal et al.

(2021a).

We performed power-law fits on the cumulative distribution of energies (derived

using burst bandwidths) from FRB 121102 bursts detected by FAST. We only used

the bursts above the energy of 1.2× 1037 ergs, estimated from the 95% completeness

limit (0.06 Jy ms) of FAST observations reported by Li et al. (2021) and mean burst

bandwidth of FAST bursts (200 MHz). We fitted these bursts using a single power-law

and a broken power-law. The fitted slope for single power-law fit was −0.716±0.002.

The slopes (below and above the break energy) for the broken power-law fit were

−0.693±0.001 and −1.12±0.02 with a fitted break energy of (1.05±0.02)×1038 ergs.

The high energy slope is consistent with the results of Cruces et al. (2020), while they

are inconsistent to those reported by Aggarwal et al. (2021a). It should be noted

that the energies of FAST bursts were not corrected for the incompleteness due to

banded nature of bursts. Further, the fluences were derived using S/N and not using

fitting. As discussed, both these effects could lead to the incorrect estimation of

energy distribution for this sample.
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Figure 5.4: Energy distribution of FRB 121102 bursts reported by Li et al. (2021).
The top panel shows energies calculated using the center frequency of the band (i.e.,
1.25 GHz), while the bottom panel shows energies calculated using the bandwidths
of the bursts. Vertical dashed line represents the 90% completeness limit of FAST
observations estimated by Li et al. (2021). The bottom distribution does not show
the bimodality seen in the top figure.
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Figure 5.5: Energy distributions of repeater bursts. The left panel shows the his-
togram of energies, and the right panel shows the cumulative distribution of those
energies. Blue triangles represent FRB 121102 bursts reported by Li et al. (2021),
where we used burst bandwidth to estimate the burst energy. Green circles show the
in-band FRB 121102 bursts reported by Aggarwal et al. (2021a). Red crosses show
the bursts that were detected using the simulation example discussed in Section 5.4.
Black dashed lines shows the 90% completeness limit of FAST observations (Li et al.,
2021). The distribution of the observed FRB 121102 energies is very similar to those
recovered using simulations. See Section 5.4.4 for more details.
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5.5 Discussion

The results presented in the previous section caution against estimating com-

pleteness limits without accounting for the variety of spectral properties of the FRB,

especially repeaters. It further complicates the interpretation of energy distributions

and properties intrinsic to the FRB. Two main challenges stand out due to the band-

limited nature of repeater bursts: 1) Detecting the band-limited bursts, 2) Robust

estimation of fluence and bandwidth of bursts that are only partially within the ob-

serving band. In the following subsections, we discuss these two challenges.

5.5.1 Observing bandwidth and sub banded searches

One possible technique to mitigate the first challenge listed above is to have a

large observing bandwidth. A larger observing bandwidth would make it more likely

for the burst spectra to fall within the observing band and aid in detecting more

bursts.

Another way is to perform subband searches instead of searching full observa-

tional bandwidth (R. Anna-Thomas et al. 2021, in prep; Kumar et al., 2021c). The

observing band is divided into multiple subbands, on which a single-pulse search is

then performed. This strategy is more sensitive to weak band-limited single pulses

that will not exceed the detection threshold with a more traditional full-band single-

pulse search.

For the example presented in the previous section, we estimated the increase

in the number of detected bursts using a subband search as compared to a full band

search. We divided the observing band into four subbands of 200 MHz each and

then performed the single-pulse search. We detected more bursts for all the three

fluence threshold cases (an increase of 5, 16, and 41%). More bursts, as expected,

reduced the observational biases and resulted in recovered properties that were more

representative of the intrinsic distributions.
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5.5.2 Calculating fluences and bandwidths

The second challenge listed earlier was a robust estimation of fluence and band-

width of detected bursts. There is no agreed-upon method to estimate the fluence

of the bursts as mentioned previously (see Section 5.3.2); signal within the observing

band is typically used to estimate burst fluence. In some cases, this signal has been

modeled using a power-law, a Gaussian, or a running power-law (The CHIME/FRB

Collaboration et al., 2021a; Pleunis et al., 2021b; Aggarwal et al., 2021a) to estimate

the burst fluence and other properties. This is because different FRBs show different

spectral properties. In this analysis, we have assumed repeater spectra to be Gaus-

sian, as has been reported by observational campaigns on the most studied repeaters

(Li et al., 2021; Aggarwal et al., 2021a; Platts et al., 2021; Pastor-Marazuela et al.,

2021; Law et al., 2017). The advantage of assuming a functional form for the spectra

is that it enables the estimation of fluence and bandwidth of the burst signal, even if

the whole burst is not visible in the band (Aggarwal et al., 2021a). This can provide

a robust estimate of the intrinsic fluence and bandwidth of the burst if the assumed

functional form is correct.

5.5.3 Estimating intrinsic properties

It is now possible to establish a hierarchical framework to infer the intrinsic

properties of the repeater bursts. Such a framework would require the following

ingredients: 1) observed (or preferably fitted) fluences of the detected bursts from

a repeater, 2) completeness limit of the observing system estimated using rigorous

injection analysis (Agarwal et al., 2020b; Gupta et al., 2021), 3) DM grid (or DM

tolerance) used in single pulse search, 4) Boxcar widths searched. It would need to

assume a distribution for burst energies, a spectral shape, and optionally an intrinsic

DM and width distribution.
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5.5.4 Effects of power-law slope

We also tested the effect of power-law slope on the energy and spectral parame-

ter distributions of the detected bursts. We re-analyzed the example listed above with

two more power-law slopes: −1.2 and −1.8, and observed the recovered distributions.

We did not detect any significant difference in the results for these two power-law

slopes with respect to the ones presented earlier, for a slope of −1.5. The cumulative

distribution of energy showed a similar flattening and turnover with decreasing sensi-

tivity. The in-band bursts still provided a more robust and accurate estimate of the

intrinsic slope. The burst energy distributions also showed similar shapes as reported

in Section 5.4.2.

5.6 Conclusions

In this chapter, we have discussed various observational effects that can arise

due to the banded nature of the spectra of repeating FRBs. Primarily, the banded

nature of burst spectra leads to a non-uniform completeness limit across the observing

band. This is because many bursts that lie primarily outside the observing band will

not be detected. Therefore, contrary to what is typically understood, the search

pipeline is not complete to all the fluences above the sensitivity limit determined

using traditional injection analysis (Agarwal et al., 2020b; Gupta et al., 2021; Pastor-

Marazuela et al., 2021). This incompleteness must be accounted in the analysis that

is used to determine the intrinsic properties of the FRB. Also, it is challenging to

estimate the intrinsic fluence and bandwidth of bursts that lie on the edge of the

observing band. We assumed the spectra to have a Gaussian shape and simulated

bursts from an FRB 121102-like source. We then showed that the energy distribution

of the detected bursts looks substantially different from the intrinsic distribution and

might show peculiar shapes. We also showed that modeling the burst spectra using

a Gaussian to determine the intrinsic fluence and bandwidth provides more robust

results than traditional approaches.

A normal intrinsic distribution of µf and σf can explain the observed distribu-
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tion seen for FRB 121102 (Aggarwal et al., 2021a), if the peak of the µf distribution

lies towards the higher frequency end of the observing band. We point out that burst

bandwidths, instead of center frequency, should be used to estimate the energy of the

banded repeaters from fluence. We also showed that the bimodality in the energy

distribution of FRB 121102 bursts reported by Li et al. (2021) disappears when the

energy is estimated using burst bandwidths instead of the center frequency of the

band. Based on our tests, we can make the following recommendations for single

pulse search and analysis of repeater bursts:

1. Fluence and energies derived using fitting should be preferred over the ones es-

timated from signal to noise of the burst. Moreover, only the bursts whose peak

and bulk of the emission lie primarily within the observing band (i.e., the in-

band bursts) should be used to make inferences about the intrinsic distribution

of energies and other properties of the FRB.

2. If the cumulative energy distribution shows a break in the power-law, then

the higher energy power-law could follow the intrinsic distribution. A smooth

turnover in the power-law will probably not represent the intrinsic distribution

in the absence of a break. Even still, if the observations are not very sensitive,

it might be impossible to recover the intrinsic properties of the repeater (see

Section 5.4.1). Moreover, these effects depend on the observed fluences from

the source. An energetic repeater, which is also close to us, might be easier to

interpret than one that is further away.

3. Subbanded searches are more sensitive to such band-limited bursts and will aid

in resolving some of the observational biases listed in this chapter.

4. Analysis to determine the search pipeline completeness should incorporate band-

limited spectra of FRBs in the simulated FRB injections.

We note that these conclusions apply only to band-limited transient emission, i. e.

they might not necessarily apply to situations where the intrinsic burst bandwidth is
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much greater than the bandwidth of the observing hardware in use. All the analysis

scripts and notebooks used in this work are provided in a Github repository4.

4https://github.com/KshitijAggarwal/banded_repeater_analysis
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Chapter 6

Localizing FRBs with Realfast

6.1 Chapter Overview

In Chapter 1, we discussed several advantages of localizing FRBs. Briefly, lo-

calization region for an FRB can be approximated to the beam shape on the sky.

Localizing an FRB enables the identification of its host galaxy, determination of the

redshift of the FRB, the study of the local environment, accurate estimation of lu-

minosity, calculation of various dispersion contributors along the line of sight of the

FRB, improvement in DMIGM-z relation, multiwavelength follow-up, etc. This makes

localization a key ingredient to uncover the still-hidden processes that give rise to

FRBs. Currently, several localization systems are in place around the world that can

search and localize FRBs to sub-arcsecond precision: DSA, ASKAP, V-FASTR, and

VLA (Hallinan et al., 2019; Bannister et al., 2019; Law et al., 2018, 2015; Wayth et al.,

2011). This chapter starts with a brief comparison of interferometers and single-dish

radio telescopes, followed by an FRB search using interferometers. It then describes

the Realfast system on the Jansky Very Large Array. We also discuss some FRBs

that the Realfast system has localized.

6.2 Interferometers vs Single Dish Telescope

The beam size (θHPBW) of a single-dish telescope observing at a center frequency

(with corresponding wavelength λ) can be approximated to be: θHPBW ∼ λ/D, where

D is the diameter of the telescope (Condon & Ransom, 2016). On the other hand, the

synthesized beam size of an interferometer is θHPBW ∼ λ/B, where B is the largest
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separation between two antennas of the interferometer. Typically, the diameter of

radio telescopes is a few to tens of meters, while the baselines of interferometers can be

several kilometers in length. Therefore, the synthesized beam size of an interferometer

can be several hundred times smaller than that of the single-dish telescope, enabling

precise localization.

Survey speed with an interferometer, i.e speed at which an interferometer can

cover a certain amount of sky at a certain sensitivity, scales as: Nb(AeNa/Tsys)
2(λ/D)2.

Here, Nb is the number of beams, Ae is the effective area of an antenna element, Na

is the number of antennas in the interferometer, Tsys is the system temperature, λ is

the wavelength of observation and D is the diameter of an individual antenna. This

speed scales roughly with the square of the product of the number of dishes and their

diameter. Therefore, VLA surveys are almost 40 times faster than Green Bank Tele-

scope, assuming all other factors are equal (Cordes, 2008; Law et al., 2011). Instead

of forming a beam, interferometers measure the visibilities by correlating signals from

different antennas in the array. This has the added advantage of better interference

rejection, which is not possible for single-dish radio telescopes.

6.3 Transient search using interferometers

There are primarily two approaches to perform transient searches using interfer-

ometers. One approach is beamforming, where different synthesized beams are formed

at different positions in the sky, each providing a stream of data. In this case, the

data stream from the individual beam can be processed independently, similar to the

processing applied on the output of a single dish telescope. To fully cover the pri-

mary beam (of HPBW ∼ λ/D) using synthesized beams (of HPBW ∼ λ/B), where

D is the diameter of an individual dish and B is the maximum baseline of the in-

terferometer, N ∝ (B/D)2 beams or pixels would be needed. Considering B to be

25 m (diameter of a VLA antenna) and D to be 1000 m would imply that 1600 beams

would be needed. For larger baselines (i.e., D > 10, 000 m), hundreds of thousands

of beams would be required to cover the entire field of view. Each beam would then
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need to be processed independently. Hence, the total computational complexity is

O[NtNfNDMNpix], where Nt, Nf , NDM and Npix are number of time samples, number

of frequency channels, number of DM trials searched and number of pixels/beams

formed. For a large number of beams this makes it highly compute-intensive.

The second, and more commonly used approach, is to compute “visibilities,”

i.e., the correlation of electromagnetic waves between pairs of antennas. The data

rate of visibility data scales as the number of baselines (pairs of antennas), i.e Nbl =

Nant(Nant − 1)/2, while still consisting of same information as the beamformed data.

Therefore, the visibility data rate is independent of the number of beams or pixels

in the image. The visibilities can then be dedispersed and Fourier transformed to

form images. At this stage, the data rate for beamforming approach and imaging

approach would be same, but the computational complexity for imaging approach is

O[NtNDM(NfNbl+N
2
pix log2(N2

pix))]. The first term here is to dedisperse the visibilities

and the second term is from 2d FFT for imaging. For large baseline interferometers

like VLA, this approach would be orders of magnitude less computationally expensive

as the beamforming approach.

6.4 Realfast pipeline

Realfast is the commensal, fast-transient search system at the Jansky Very

Large Array. It leverages the approach of fast interferometric imaging to search for

fast transients in data from VLA, in observations at frequencies 1–10 GHz. Interfer-

ometric imaging has been shown to be computationally efficient and maintains ideal

sensitivity (Law et al., 2011; Law & Bower, 2012; Law et al., 2015, 2018). In this

section we briefly describe the Realfast search pipeline (see Figure 6.1), and draw

comparisons to a typical single-pulse search pipeline described in Section 1.6 (see Law

et al., 2018, for more details).
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Figure 6.1: Realfast transient search pipeline. The green boxes denote different
processing steps and orange diamonds denote decision points. The purple boxes
slanted to the right denote sources of data and those slanted to the left denote output
data products. The dashed lines show iterations over trail search values of dispersion
measure and sampling time. Figure adapted from Law et al. (2018).
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6.4.1 Correlator

The first step is the correlation of voltage data streams from the VLA anten-

nas. This is performed in two stages by a field-programmable gate array system

called WIDAR, and a compute cluster known as correlator backend (Perley et al.,

2011). Typically, the correlated data is averaged to around 1–5 s, in the correlator.

Realfast reconfigures the correlator to preserve the fast-sampled correlated data

product (with a sampling time of 5 or 10 ms), which is then transferred over to the

Realfast computing cluster. This distribution of visibilities is done using vys and

vysmaw, which is a protocol to distribute and consume VLA data (Pokorny & Law,

2017).

6.4.2 Data Segment

Realfast reads and processes data in short time segments. Consecutive seg-

ments overlap to keep a uniform sensitivity for dispersed signals that might lie at

the edge of a segment. The segment size is decided based on the largest duration on

which mean visibility subtraction is accurate, i.e., the inverse of the fringe rate (of

the order of seconds). Each segment is therefore independent and can be processed in

parallel. It is useful to note here that this data has one extra dimension of baseline,

in addition to the three dimensions with time, frequency channel, and polarization,

for a single dish telescope.

6.4.3 Calibration

Calibration solutions generated by the online calibration system TelCal are then

applied to the data. Antennas and polarizations with very low gain amplitudes are

also flagged here. In the case of potential astrophysical candidates, CASA is used to

apply the calibration products. This is discussed in Section 6.5.
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6.4.4 RFI Mitigation

Multiple RFI mitigation strategies are applied to this data. Some of these are

similar to what was discussed in Section 1.6.2.1, i.e., large deviations in frequency

channels and time integrations are identified and flagged. This is applied for each

baseline and polarisation. Next, large deviations in complex visibilities across all

baselines for each frequency channel, integration and polarization, are filtered out

and flagged. This filter is unique to interferometers. Interference local to a subset of

antennas will affect only some baselines (pairs of antennas) and can be removed.

6.4.5 Mean visibility subtraction

Millisecond integrated images are much less sensitive than the minutes to hour-

long integrated images that are usually generated with interferometers (∼10 mJy in

∼10 ms; see Law et al., 2018). Therefore, at this sensitivity, roughly two persistent

sources are detectable per square degree (Becker et al., 1995). By subtracting the

mean of the visibilities in time (for each segment), constant sources in the images can

be removed, eliminating the need for source catalogs. This leaves only the transients

with millisecond-scale variability in the images. It is those non-persistent emissions

which we then seek to identify through the transient search procedure below.

6.4.6 Dedisperse and Resample

Now, the visibilities are dedispersed for the specified values of DMs in the DM

grid. Similar to Section 1.6.2.2, the DM array is generated by defining a sensitivity

loss between adjacent DM trials. In Realfast, this loss is set to a default value

of 5%. To search for wider candidates, the visibilities are resampled in time by the

corresponding width. The widths used in the Realfast are 1, 2, 4, and 8 samples,

respectively.

Therefore, data in each segment is independently searched for each DM in the

DM list and resample factor in the width list. The visibilities are resampled in time

at the specified value of width and then dedispersed at the given value of the DM
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trial. Both these operations are performed for time-frequency data present for each

baseline and polarization. These functions are written as kernels with numba1 (so

that they can be run on multi-core CPUs), and their GPU implementation (rfgpu2)

is used in the realtime system now.

6.4.7 Imaging: project baselines, grid visibilities, Fourier transform

The next step is to generate the image using visibilities. This reconstructs the

sky brightness and is needed to search for and localize the FRB. The sky bright-

ness can be obtained by Fourier transforming the visibilities. This is done using Fast

Fourier Transform (FFT) as it has lower computational requirements than traditional

Fourier Transform implementations. But FFT requires data to be present in a uni-

formly spaced grid. Therefore, the visibilities are first transformed and gridded to a

uniform grid.

Given a time of observation, the position of the target source and observation

frequencies, the baselines of antennas are projected to the uvw co-ordinates. The uvw

co-ordinates are chosen such that the w -axis is along the source direction, with uv

plane orthogonal to it and v axis points to the North Celestial Pole (Thompson et al.,

2017; Anantharamaiah et al., 1989). Then the visibilities are gridded using a simple

pillbox gridding algorithm at each time step.

Then a 2d inverse FFT is performed on these gridded visibilities to form an

image, for each DM and width trial, at each time step (or integration). No primary

beam correction is applied, and images are not deconvolved to remove the effect of

the point-spread function. The signal to noise of each image is calculated by using

the amplitude of the peak pixel in the image and the standard deviation of the image.

S/N values that are larger than the threshold are then reported as candidates, and

their metadata is returned for further processing.

1https://numba.pydata.org/
2https://github.com/realfastvla/rfgpu
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6.4.8 Clustering

For each candidate above the S/N threshold, the pipeline reports the following

parameters: S/N, DM, width trial, time of candidate, location in the image (l,m).

As discussed in detail in Chapter 3, each real event can trigger the pipeline to re-

turn hundreds to thousands of candidates, and therefore all these are clustered using

DBSCAN (Ester et al., 1996). This process is similar to what was discussed in Sec-

tion 1.6.3 and has been discussed in detail for the Realfast system in Chapter 3.

After clustering, the candidates with maximum S/N in each cluster are returned and

processed further for visualization and classification.

6.4.9 Visualizations and Classification

At this stage, each candidate metadata is used to reprocess the visibilities to

generate a candidate visualization plot. Figure 6.2 shows example of one such plot

for FRB180916 (Aggarwal et al., 2020). It shows the candidate parameters, radio

image, spectrogram with the candidate’s dedispersed pulse, spectra, and time series.

SNR (im/k) refers to image S/N and Kalman score of the FRB (Zackay, in prep).

Time-frequency spectrogram extracted for the maximum pixel in the radio image, for

each candidate, is then pre-processed and provided to fetch, a deep learning-based

classifier (Agarwal et al., 2020a), to classify the candidate into RFI or FRB.

6.4.10 Data Cutout

For each candidate obtained above, raw visibilities for a time window around

the candidate are temporarily saved. This data could be several GB per candidate.

Therefore, if, on further investigation, the candidate is found to be RFI, then the

data corresponding to the candidate is deleted. In contrast, those that are potentially

astrophysical are saved for further analysis and refinement (see Section 6.5).
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Figure 6.2: Realfast realtime candidate detection plot of FRB 180916. The meta-
data corresponding to the candidate and the observation is shown in the top left. The
left plots show the radio image, formed by dedispersing and resampling the visibilities
at the trial DM and width value. The middle and right panels show the spectrograms
along with the time series and spectra of the data around the burst. The top panel in
the middle column shows the histogram of signal-to-noise ratios in that observation.
RR and LL represent the two polarisations.
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6.4.11 Candidate Database and Portal

All the metadata of candidates, along with the search parameters, and informa-

tion of VLA observation on which Realfast was run, is saved in a central elastic-

search3 based database. It also contains the statistical properties of each candidate.

The candidate visualizations and metadata is displayed on the Realfast portal4,

where the Realfast team members can verify the candidates and label them for

further analysis. Candidate information for some candidates is also made publicly

available on the portal.

6.5 Realfast Post-Processing

Candidates marked for further refinement on the Realfast portal go through

a series of offline analyses to refine the parameters and improve the detection signifi-

cance. Notebooks to perform this analysis are available on Github5.

6.5.1 Refinement of properties

The first step is the automatic refinement triggered when a Realfast team

member marks a candidate as interesting or astrophysical on the portal. This process

reruns the image search on the candidate data cutout, but with a finer DM grid (with

a fractional sensitivity loss of 1% as compared to 5% for the real-time search), larger

image size (if possible), and only searches DMs around the detected DM of the can-

didate. The highest S/N candidate recovered in this search is then visualized using a

refinement plot. Figure 6.3 shows one such refinement plot for the FRB 180916 can-

didate presented in previous section. This plot shows visualizations complementary

to the original candidate plot and therefore assists the Realfast team to decide if

further analysis is required on the candidate.

Candidates that are found interesting are then refined manually. Several meth-

ods are again tried on the candidate data cutout: finer DM grid, larger image size,

3https://www.elastic.co/elasticsearch/
4search.realfast.io/
5https://github.com/KshitijAggarwal/realfast_analysis/tree/master/refineloc
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Figure 6.3: Realfast refinement plot of FRB 180916. Some relevant metadata is
shown in the top right. Radio images are shown on the right column. Left column
shows (top to bottom): dedispersed time series, dedispersed spectrogram, original
spectrogram (not dedispersed), and DM-time of the candidate. S/N of various sub-
bands is also shown, along with the respective time series.

varying flagging thresholds, sub-band search, etc. (Law et al., 2020). The significance

of an astrophysical transient should improve when dedispersed at a DM closer to the

DM of the candidate (see Chapters 1 and 3). Further, the noise-like events or RFI

will not be reproduced when flagging, or image gridding parameters are changed. If

the transient signal is present only in a subband, then a sub-band search on only the

relevant frequencies will improve the detection significance of the candidate. Candi-

dates that show improvements on refinement are then considered astrophysical and

then imaged using CASA.

150



6.5.2 CASA calibration and Imaging

As mentioned, calibration and imaging done during the real-time search make

several assumptions to save time and maintain the real-time processing ability. Fur-

ther, the point spread function of the interferometer is not deconvolved from the

image, which makes the images more difficult to visually interpret and model.

We dedisperse the raw data cutout of the astrophysical candidates and identify

the time segments corresponding to the burst signal. These time segments are then

saved to a separate file. These two steps are done using sdmpy6. We then convert

this file to a measurement set (MS) to be then read by Common Astronomy Software

Application (CASA; McMullin et al., 2007).

We download the VLA calibration pipeline solutions corresponding to the ob-

servation with the candidate and apply those calibration and flagging tables to the

burst cutout data using CASA task applycal. After calibration, we use CASA task

tclean to generate the image and estimate the signal-to-noise ratio of the image. As

the FRB signal could be in a subband, we search different spectral window ranges

to find the spectral window range that generates the image with the highest S/N.

We then use CASA task imfit around the rough position of the candidate to fit an

ellipse to the source in the radio image and measure its centroid location, peak flux

density, and 1σ image plane uncertainties. This provides us with the burst position

and its statistical error.

6.5.3 Deep imaging

As mentioned previously, the VLA correlator also saves visibilities with a coarser

time resolution (1 to 5 seconds) for the whole observation, in parallel to the high time

resolution (10 ms) data around the burst. These slow-sampled visibilities can then

be calibrated, flagged, and imaged to generate deep radio images to search for any

persistent radio emission co-located with the FRB position (Law et al., 2020; Bhandari

et al., 2021; Niu et al., 2021a). Using the same calibration tables for deep imaging

6https://github.com/demorest/sdmpy
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and for fast-transients ensures linked systematics for both timescale images.

6.5.4 Astrometry

To estimate the systematic errors on the burst (and any persistent radio source)

position, we use the deep images and compare the sources detected in the deep radio

image to those listed in the optical PanSTARRS survey DR1 (Chambers et al., 2016).

We use the pyse source finding package (Spreeuw et al., 2018) on the deep radio image

formed by concatenating all the available VLA observations of this field. We identify

the sources above a significance of 10σ in the radio image. We then search for these

sources in PanSTARRS survey DR1 using psquery7 (and a search radius of a few

arcseconds) and calculate the offset between the optical positions and positions from

our deep radio images. We can then estimate the systematic uncertainties on our

radio positions from the median and 1σ offset of these cross-matched sources.

If there is no short-timescale phase variation after calibration, these systematic

uncertainties can also be used for burst position. This should be true if the phase-

reference switching is performed frequently enough and is consistent with the phase-

coherence timescales for the VLA.

6.6 Realfast Localizations

The Realfast system has been running commensally on all L, S, C and X

band observations since early 2020, and has so far searched for a total of 100 days (49

at L, 21 at S, 18 at C and 12 at X band). It is currently the only real-time coherent-

imaging interferometric search system in the world. The prototype Realfast system

was used for the first localization of an FRB, FRB 121102 (Chatterjee et al., 2017).

The Realfast team has collaborated with the CHIME/FRB, ASKAP, and

FAST teams to follow up and localize the repeating FRBs discovered by these instru-

ments. Although the CHIME/FRB instrument has the highest discovery rate of any

FRB instrument currently in operation, it has poor localization ability, with local-

7https://github.com/realfastvla/psquery
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ization regions that are typically a few of arcminutes in radius (The CHIME/FRB

Collaboration et al., 2021a). Similarly, FAST can detect very faint FRBs but again

cannot localize them to arcsecond precision (Niu et al., 2021b). Therefore, VLA can

be used to follow-up repeating FRBs discovered by these telescopes, where the Re-

alfast system can search for (and localize) the bursts, and slow-sampled visibilities

can be used to image the sky and search for persistent radio emission simultaneously.

This section describes some FRBs localized using Realfast, along with the unique

properties of these FRBs. Table 6.1 lists the properties of all these FRBs and their

host galaxies.

Table 6.1: Properties of FRBs localized using Realfast.

Properties FRB 190520 FRB 180301 FRB 20201124A FRB 190614D

DM (pc cm−3) 1210.3±0.8 536+8
−13 420±10 959.2±5

DMISM NE2001 (pc cm−3) 60 152 76 83.5

RA (J2000) 16h02m04.266s 06h12m54.42s 05h08m03.50s 4h20m18.13s

Dec (J2000) −11d17′17.33′′ +04d40′15.9′′ 26d03′37.71′′ +73d42′24.3′′

Position error (′′) 0.1 0.6 1.9 0.8

Fluence (Jy ms) 0.03–0.33 4.9+0.5
−0.4 2.4±0.1 0.62±0.07

Pulse width (ms) 13.5±1.2 7+2
−3 < 10 5

Host Galaxy

Redshift 0.241 0.3304 0.098 0.63±0.12

M∗(109M�) ∼0.6 2.3±0.6 30+2
−3 ∼3.9

SFR (M�/yr) 0.41 1.93±0.58 1.7±0.56 -

PRS

Luminosity (W Hz−1) 3.0× 1022 < 2.0× 1022 < 3.0× 1021 < 3.0× 1022

Lum. Freq. 3.0 GHz 1.5 GHz 1.4 GHz 1.4 GHz

RA (J2000) 16h02m04.259s - - -

Dec (J2000) −11d17′17.38′′ - - -

Reference Niu et al. (2021a) Bhandari et al. (2021) Ravi et al. (2021) Law et al. (2020)

Position error refers to the error on the position of the FRB. M∗ and SFR refer to the stellar

mass and star-formation rate of the host galaxy. Lum. Freq. refers to the frequency at which

the luminosity of the PRS (or an upper limit) has been reported.
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6.6.1 FRB 190614D

FRB 190614D was detected serendipitously on 14 June 2019, during the obser-

vation of a CHIME repeater FRB20180814B (Law et al., 2020). This FRB had a DM

of 959 pc cm−3, which was much larger than the DM of the source being followed up

(189 pc cm−3). It was very faint with a fluence of 0.64 Jy ms, and has the highest

DM of any localized FRB so far. Repeat bursts from the source were not detected

in 15 hours of VLA and 153 hours of the CHIME/FRB observations. Follow-up ob-

servations with Keck and Gemini revealed a pair of galaxies potentially associated

with the FRB. Both the galaxies are at a photometric redshift of 0.6 with r-band

magnitude of ∼23 mag, but with different color and stellar mass. The two galaxies

are broadly consistent with Milky Way like stellar mass and star formation rates. No

persistent radio emission was seen associated with this FRB down to a luminosity of

3× 1022 W Hz−1 at 1.4 GHz.

6.6.2 FRB 190520

FRB 190520 was discovered with the FAST as part of the Commensal Radio

Astronomy FAST Survey (Li et al., 2019b) at 1.05-1.45 GHz in May 2019 (Niu et al.,

2021a). Follow-up observations of this FRB with FAST between April and September

2020 led to a detection of 75 bursts in 18.5 hrs with a mean DM of 1210.3±0.8 pc cm−3,

indicating that it is an active repeater. We observed this FRB with VLA during the

second half of 2020 and detected nine bursts (3, 5, and 1 at L, S, and C band, respec-

tively). Deep radio images generated using slow sampled data from VLA revealed the

presence of a persistent radio source co-located with this FRB. The flux of this PRS

at the S-band was measured to be 202± 8µ Jy. This makes FRB 190520, the second

FRB, after FRB 121102, with a co-located persistent radio source.

Optical follow-up of this position using CFHT/MegaCam found a galaxy (J160204.31–

111718.5) at the location of the FRB. Subaru/MOIRCS observations show that

the FRB and PRS lie on the periphery of this galaxy. Spectroscopic observations

with Palomar 200-inch Hale Telescope and the Low-Resolution Imaging Spectrome-
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ter (LRIS) at the Keck I Telescope show that the redshift of this galaxy is 0.241, with

a star-formation rate of ∼0.41 M� yr−1 and a mass of ∼6 ×108M�, making it a dwarf

galaxy with high star-formation rate.

Considering the dispersion contributions from the Milky Way (Cordes & Lazio,

2002) and from IGM (for this redshift) implies a very large host DM of DMhost ∼
900 pc cm−3. This demonstrates that the distribution of host DMs of FRBs can have

a long tail, which might add considerable variance to the estimates for the DMIGM.

Further, the co-located PRS, star-forming dwarf galaxy, high repetition rate, and

high host DM make FRB 190520 a clear analog of FRB 121102, implying that some

correlations might exist between these properties.

6.6.3 FRB 180301

FRB 180301 was discovered during Breakthrough Listen observations with Parkes

Telescope (Price et al., 2019) at a DM of 512 pc cm−3. Then, in sensitive follow-up

observations with FAST, it was found to emit repeat pulses (Luo et al., 2020b). FAST

observations revealed that this FRB shows a diversity of polarization position angle

swings.

We performed follow up observations of this FRB with VLA, in which the Re-

alfast system detected one burst at L band, with VLA in C-configuration. Follow-

up optical observations with Nordic Optical Telescope and Gemini Telescopes and

archival Pan-STARRS images at the localized position from VLA revealed a faint

galaxy PSO J093.2268+04.6703 as the host of this FRB, with a high association

probability. The redshift of this galaxy is 0.3304, and the FRB lies at the outskirts

of this galaxy (projected offset 11 kpc). It is a star-forming galaxy with a star forma-

tion rate of ∼1.93 M� yr−1 and a mass of ∼2.3 ×109M� (Bhandari et al., 2021). No

persistent radio emission was detected co-located with the FRB down to a luminosity

of 2× 1022 W Hz−1 at 1.5GHz.

155



6.6.4 FRB 20201124A

In March 2021, the repeating source FRB 20201124A was reported to be in

an active state (CHIME/FRB Collaboration, 2021; Lanman et al., 2021). Over the

next few months, repeat bursts were detected from this FRB by multiple telescopes

between frequencies 700 MHz and 2 GHz (Kumar et al., 2021b,a; Xu et al., 2021;

Pearlman et al., 2021; Law et al., 2021a; Wharton et al., 2021; Spitler & Hilmarsson,

2021; Herrmann, 2021; Main et al., 2021; Kirsten et al., 2021c), followed by localiza-

tion reported from several interferometers (Law et al., 2021a; Wharton et al., 2021;

Marcote et al., 2021; Day et al., 2021). We performed VLA observations of this

source in April 2021 at L and C band and detected one burst with a signal to noise

ratio of 26, DM of 420±10 pc cm−3, consistent with the published values of around

413 pc cm−3. We measured the burst fluence to be 2.4±0.1 Jy ms, and localized it

with an uncertainty of around 2′′ (dominated by systematics). The burst was found

to be associated with the galaxy SDSS J050803.48+260338.0 (hereafter J0508+2603),

with a high association probability (Ravi et al., 2021).

The host galaxy of this FRB is young and extremely massive with a mass of

1010.5 M�, and is at a redshift of 0.098. Interestingly, it is more massive than the

host galaxy of any other repeating FRB. A deep radio image formed using C band

observations showed a compact radio source with a peak flux density of 221±15 µ Jy,

co-located with the FRB position. Further analysis by Ravi et al. (2021) revealed that

persistent emission is extended on scales greater than 50 mas and found its properties

to be consistent with the star-forming rate of around 1.7 M� yr−1 in the galaxy.

Similar conclusions were reached using ASKAP observations of this source by Fong

et al. (2021).
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6.7 VLA/Realfast detection of burst from FRB180916.J0158+65

and Tests for Periodic Activity

In this section, we report on the detection of a burst from FRB 180916 by

Realfast/VLA and present software for interpreting FRB periodicity. We demon-

strate a range of periodicity analyses with bursts from FRB 180916, FRB 121102 and

FRB 180814. Our results for FRB 180916 and FRB 121102 are consistent with pub-

lished results. For FRB 180814, we did not detect any significant periodic episodes.

The Realfast-detected and other high-frequency bursts for FRB 180916 tend to lie

at the beginning of the activity window, indicating a possible phase-frequency re-

lation. The python package frbpa can be used to reproduce and expand on this

analysis to test models for repeating FRBs.

6.7.1 Realfast Detection of FRB 180916

One of the repeating fast radio bursts (FRBs), FRB 180916, has been found to

have periodic episodes of higher activity, with a period of 16.35 days (CHIME/FRB

Collaboration et al. 2020a, hereafter PR3). Its bursts are clustered in a 4-day phase

window, with some cycles showing no bursts, while others show multiple bursts.

On April 23 at 20:11 UTC, we used the Realfast commensal fast transient

search system at the Karl G. Jansky Very Large Array (VLA) to observe FRB 180916.

We detected a burst with an S/N of 13 at a DM of 349.8 pc cm−3 (Aggarwal & Realfast

Collaboration 2020, hereafter rfATel). The Realfast system localized the burst in

real-time to a location of J2000 R.A.= 01h58m00s.634, Decl.=65◦43′00′′.6331. The

position of this burst is consistent with the reported localization by EVN (Marcote

et al., 2020), given the VLA localization precision of 0.8′′. The details of the burst

were reported in rfATel.

Published as Aggarwal et al. (2020)
Contributing authors: Casey J. Law, Sarah Burke-Spolaor, Geoffrey Bower, Bryan J. Butler,
Paul Demorest, Justin Linford, and T. J. W. Lazio
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6.7.2 Periodicity Analysis Techniques

Since the discovery of periodicity in the activity of FRB 180916, many observa-

tories have reported detections of bursts from this FRB (Chawla et al., 2020; Marcote

et al., 2020; Pilia et al., 2020; Scholz et al., 2020; Sand et al., 2020). In total, 19 bursts

have been detected at telescopes other than CHIME from FRB 180916. This, along

with the bursts reported by PR3, leads to a sample of 51 bursts that have been used

in the analysis reported here.

Following the procedure in PR3 and considering a period of 16.35 days, we

generated the phase histogram of all published bursts from FRB 180916 (Fig. 6.4,

top panel). Most of the bursts lie within a 4 day (or 4/16 = 0.25 phase) phase

window from phase 0.4 to 0.6. Our VLA detection lies at a phase of 0.3, which is the

earliest phase at which a burst has been detected so far. The addition of bursts from

telescopes other than CHIME makes the phase distribution more symmetric. We also

generated the phase histograms at other periods within the period error reported by

PR3, which resulted in a similar conclusion.

We used three tests to search for episode periodicity in this burst sample. First,

we used the Pearson Chi-square test done by PR3. Second, we followed the approach

of Rajwade et al. (2020a) to search for the period with a folded profile of minimum

fractional width. We also use the Quadratic-Mutual-Information-based periodicity

search technique (Huijse et al., 2018) implemented in P4J8 to search for a period in

these bursts. All three search techniques were used on all 51 bursts and also on 32

CHIME bursts. Following PR3, we also searched for a periodicity after binning the

data to obtain just the “activity days”.

All the scripts developed for periodicity search and phase analysis reported here

are available as a python package frbpa9. frbpa has various functions that can be

used to search for periodicity in the activity of repeating FRBs. It can also be used

to visualize the dependence of the burst MJDs and observations on phases.

8https://github.com/phuijse/P4J
9https://github.com/KshitijAggarwal/frbpa
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6.7.3 Results and Discussion

For all the methods listed above, we recovered a period that was consistent with

the results of PR3, using all the bursts and using just the “activity days”. We also

extended the analysis of aliasing in PR3 to include bursts from all other telescopes.

As the periodicity at all the frequencies is expected to be the same, the standard

deviation of the burst phases should be minimum at the optimal period (or its alias),

which was found to be the case at the published period10.

We also used frbpa to search for periodicity in two other active repeaters:

FRB 121102 (R1), and FRB 180814 (R2). Rajwade et al. (2020a) reported a period

of 157 days in R1 using a sample of 235 bursts detected over a time span of 7 years. We

used P4J to search for periodicity on this sample and recovered a period consistent

with their results. For R2, we used 21 bursts detected by CHIME11. We did not

detect any significant period, using all the three techniques for periodicity search on

these bursts. Moderately significant detections at activity windows of 33, 45, 90, and

138 days were observed. Further burst detections are needed to verify the periods

reported for this FRB.

We also note that for FRB 180916, the bursts detected at high frequency (i.e.,

above 600 MHz; detected using VLA and Effelsberg) are at a lower phase value than

most of the low-frequency bursts (Fig. 6.4, top panel). This indicates that there

may be a correlation between frequency and phase, where high-frequency emission

is suppressed at higher phase values. Although these high-frequency observations

have good coverage within the activity phases (Fig. 6.4, bottom panel) with good

sensitivity, the detections have only occurred at phase <0.4. This cannot be explained

by the models which invoke an interacting neutron-star-binary system to explain the

periodicity. These models predict a wider activity window at higher frequencies, as

high-frequency photons are generally transmittable (Ioka & Zhang, 2020).

Therefore, more high-frequency observations across different activity phases

10We also followed these methods after including the openly available but unpublished CHIME
burst sample from https://www.chime-frb.ca, which lead to similar conclusions

11https://www.chime-frb.ca
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Figure 6.4: Burst detection and observation histograms for FRB 180916, assuming a
period of 16.35 days. Different colors represent different observatories. Top: Stacked
histogram of the detected bursts relative to phases for all published FRB 180916
bursts. The black dots show the total observation duration for each phase, summed
for all the telescopes in the bottom panel. Bottom: Stacked histogram of observation
duration with respect to phase.

would be imperative to comment on the periodicity at high frequency. Moreover,

with the detection of more bursts from FRB 180916 and other repeaters in the future,

a more confident analysis of plausible periodicity (and phase-dependent burst rates)

in their activity would be possible.
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Chapter 7

Conclusion

We have discussed several novel techniques and software to optimize the search

and analysis of FRBs. We summarize these, provide some context on how these tools

have impacted the research in the past years, and update the progress that has been

made since these projects were published. We also make some predictions regarding

the field of FRBs and the exciting science that lies ahead.

7.1 Open source software

In Chapter 2, we discussed five open-source software packages that we developed

to aid in FRB analysis. Each package is provided as a well-documented and tested

library that is easy to install and use for any researcher. The motivation behind all

of them was essentially the same. We wanted to perform some FRB analysis for a

project and could not find any standard tool. So we decided to write our software,

use it for the project and make it available for the community to use.

fetch is a set of deep learning classifiers that can be used to classify FRBs and

RFI, in real-time, with high accuracy. It has already been used to discover new FRBs

and detect hundreds of bursts from known repeating FRBs. burstfit was initially

developed to perform spectro-temporal modeling on FRB 121102 bursts detected us-

ing Arecibo Telescope, but can be used to model any FRB (or pulsar) robustly, using

any user-defined or standard functions. Since then, it has also been used to model

FRBs detected by Realfast and GBT. frbpa can be used to search for periodicity

in FRB activity and visualize it. It was used in the analysis to demonstrate frequency

dependence in the periodic activity in FRB 180916 bursts and measure the period in
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bursts detected at 100 MHz with LOFAR and at 1.4 GHz with Apertif. casp pro-

vides the code to estimate the chance coincidence probability of FRBs with the host

galaxy. Bayesian frameworks have now been developed that will provide a more ro-

bust estimate of association probability, especially in the case of populated fields with

multiple nearby galaxies of varying brightness. your (Your Unified Reader) provides

an extensive framework to unify data processing across commonly used data formats

for pulsar and FRB analysis. It has tools to visualize data and candidates, perform a

single-pulse search, RFI mitigation, convert between data formats, pre-process can-

didates, etc. It is being used in the analysis of several currently unpublished FRBs

for a range of interesting applications.

7.2 Clustering Realfast candidates

In Chapter 3, we discussed a robust assessment of eight unsupervised clustering

algorithms to cluster the candidates generated by the Realfast search pipeline. As

mentioned in that chapter and Section 1.6, any single pulse search pipeline searches

for transients in data by applying a set of matched filters based on FRB properties like

dispersion and width. This can lead to thousands of triggers from an event (RFI or

astrophysical) that can overwhelm the post-processing system. Therefore, clustering

these redundant candidates is essential for any search pipeline. We used real RFI

from Realfast system and simulated FRB candidates to test different algorithms.

For each candidate, we used four features: DM, time, sky location provided by the

Realfast pipeline.

A challenge with clustering candidates from a single pulse search is that candi-

dates generated due to RFI cannot be easily assigned to individual clusters, so true

clusters for RFI candidates are not available. In this chapter, we developed a custom

performance metric that can use the information about FRB clusters to evaluate the

overall performance of clustering algorithms. It is based on the criterion that can-

didates should be found in only a small number of clusters, and each cluster should

contain only FRB or RFI candidates, i.e., we optimized to form a small number of
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pure clusters.

We then used this clustering metric to perform a random hyperparameter search

and comparison on these eight clustering algorithms. We tested the generalisability

of these algorithms by testing them on an independent dataset with only FRB candi-

dates. Finally, we compared the average clustering time of each algorithm on datasets

of varying sizes. Using these tests, we concluded that DBSCAN and HDBSCAN could

be used for clustering candidates generated by Realfast system. We subsequently

deployed the DBSCAN algorithm on the commensal Realfast system. We also

showed that incorporating spatial features (unique to image-based single-pulse search

systems on interferometers) improves the clustering performance compared to the

traditional approach of just using DM and time features.

We also proposed a generic strategy that can be used to choose a clustering

algorithm for single pulse search systems. It can also be used in other clustering

applications. Our performance metric can especially prove useful in applications

where the clustering information for only one cluster of interest is available out of an

unknown number of true clusters.

7.3 Analysis of FRB 121102 bursts

In Chapter 4, we presented a dense sample of 133 bursts from the repeating

source, FRB 121102, detected in 3 hours of observations at L-band using Arecibo

Observatory. Importantly, this sample includes 93 additional bursts as compared to

the analysis presented by Gourdji et al. (2019) using the same dataset. These data

were searched using the pipeline being developed for The Petabyte Project (Aggarwal

et al., 2021a). This pipeline uses your, heimdall and fetch to read the data, search

for transients and classify the candidates automatically. We developed burstfit to

analyze the properties of all the bursts presented in this work and provided it as a

user-friendly python package (also see Chapter 2). We use the MCMC procedure

implemented in burstfit to obtain the burst properties.

The burst spectra were well modeled using a Gaussian, with a median band-
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width of 230 MHz and a median peak of 1608 MHz. The burst emission favored the

top of our observing band, with a lack of emission below 1300 MHz. Many bursts

also showed a clear scattering tail, with a median timescale of 0.7 ms. The wait time

distribution of bursts showed two peaks: one around 10 ms and the other near 70 s.

The latter distribution follows a log-normal distribution, with a peak at 74.8 s, con-

sistent with other observations that analyzed a dense sample of FRB 121102 bursts.

We also found that the burst rate distribution of bursts with wait times longer than

one second was fit equally well by Poisson and Weibull distributions. We searched

the burst times and data for a millisecond to minute timescale period, using many

techniques, but did not detect any significant period. We show that the bursts pri-

marily within the observing band should be used for energy distribution analysis.

The cumulative burst energy distribution was well fit using a double power-law, with

a break. The low and high energy slopes were −0.4±0.1 and −1.8±0.2 with a break

at (2.3± 0.2)× 1037 ergs.

Finally, we compared our single-pulse search pipeline to that used by Gour-

dji et al. (2019) and argued that the following reasons could have led to different

results: threshold signal-to-noise ratio, single-pulse search software, RFI mitigation,

and classification. We further discussed that recovery rates of the software used in our

analysis had been studied in detail and shown to be > 90% (Agarwal et al., 2020b;

Gupta et al., 2021), while the ones used in Gourdji et al. (2019) have not been tested

as rigorously.

7.4 Biases due to banded nature of repeater bursts

The previous section and Chapter 4 showed that the bursts of FRB 121102 are

band-limited and can be well modeled by a Gaussian function. In Chapter 5, we high-

lighted the observational biases that arise due to this banded nature of FRB 121102,

or any other repeater bursts. These biases lead to non-uniform completeness of obser-

vations across the observing band and can significantly impact the observed energy

distribution of detected bursts. This is because the bursts that do not lie primarily
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within the observing band will not be detected. Therefore, a single completeness limit

value typically derived using injection analysis is insufficient in the case of banded

repeaters. Further, a second bias can occur when estimating the energies of the de-

tected bursts. A significant fraction of the emission envelope for many bursts might

lie outside the observing band. In this case, just using the fluence and bandwidths

observable within the band would lead to incorrect estimation of the burst energies.

We used an FRB 121102-like simulation example and demonstrated the above

biases using it. We also showed that the observed distribution of mean and standard

deviation of FRB 121102 spectra shown in Chapter 4 could be recovered using a

normal intrinsic distribution of these parameters. We highlight that burst bandwidths

instead of the center frequency of observation should be used to convert fluences to

energies, as repeater bursts are band-limited and characteristically do not have a flat

spectrum. We then showed that the bimodality reported in the energy distribution

of FRB 121102 bursts detected by Li et al. (2021) disappears when burst bandwidths

are used to estimate energies.

We showed that the observed shapes in the energy distribution of FRB 121102

and FRB 180916 can be explained using these biases. Based on our tests, we made

the following recommendations for single pulse search and analysis of repeater bursts

to overcome these biases. Primarily, the fluence and bandwidth of bursts should be

derived using the fitting. The fitting procedure can incorporate the burst emission

that lies outside the observational band based on the functional form of the spectra.

Secondly, only the bursts that lie primarily within the observing band should be used

for energy distribution analysis. We showed that observations are more likely to be

complete to this sample of in-band bursts than the larger detected sample of bursts.

Subband searches will be more sensitive to band-limited bursts, and the analysis that

determines search pipeline completeness should incorporate this banded nature of

burst spectra.
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7.5 Localizing bursts using Realfast

In Chapter 6, we discussed the FRB search and localization procedure for Re-

alfast. Sub-arcsecond localizations are crucial to understanding the progenitors,

host galaxies, and environments of FRB and are possible only with interferometers

like VLA, DSA, and ASKAP. Interferometric fast imaging is feasible for long-baseline

interferometers like VLA, as compared to beamforming, where tens of thousands of

beams would be required. We described the Realfast search pipeline, compared it

to a typical single-pulse search pipeline (discussed in Section 1.6), and highlighted

many steps unique to interferometers. Interferometers enable better RFI removal, as

interference local to a set of antennas can be removed by finding outliers across the

baselines.

By performing mean subtraction in time (over seconds timescale), constant

radio sources can be removed, and a simple threshold can be used to detect the

fast transients in the images. Realfast receives correlated visibilities at a time

resolution of 5 ms or 10 ms. It then calibrates the data, flags the RFI, and performs

mean subtraction on it. This is followed by dedispersion and resampling of the data

based on the trial DM and width values. It then generates the radio images and

searches for outliers above the threshold on these images. Clustering (see Chapter 3)

and classification (see Chapter 2) is then performed on the candidates, which are then

visualized on the Realfast portal for human verification.

Interesting candidates are refined (automatically and manually) by changing

and fine-tuning the search parameters to better classify them into RFI or astrophys-

ical. Finally, astrophysical candidates are calibrated and imaged using CASA, and

their precise position is determined. Slow sampled (1-5 s resolution) data from the

correlator are used to generate deep radio images to search for any persistent radio

emission co-located with the FRB, and systematic uncertainties are estimated by

comparing the positions of sources in deep radio images to their corresponding posi-

tions from optical surveys. We then discussed five repeaters that have been localized

using Realfast.
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FRB 190614D was discovered and localized by the Realfast system to a pair

of galaxies at a photometric redshift of 0.6. The two galaxies are broadly consistent

with Milky Way like stellar mass and star formation rates. Repeat bursts from this

source were not detected follow-up observations with VLA and CHIME/FRB. No

persistent radio emission was seen associated with this FRB.

FRB 190520, discovered with FAST, was localized to the outskirts of a dwarf

star-forming galaxy at a redshift of 0.24. It is only the second FRB, after FRB 121102,

to have a co-located persistent radio source. Moreover, the implied host DM of

this FRB is extremely high (∼900 pc cm−3), challenging the notion of using simple

approximations for host DMs to infer relationships between intergalactic DM and

redshift of FRBs.

FRB 180301, discovered with Parkes telescope, was localized to the outskirts of

a star-forming galaxy at a redshift of 0.33. No persistent radio source was found with

this FRB.

FRB 20201124A, discovered with CHIME/FRB, was localized to an extremely

massive galaxy at a redshift of 0.098. A compact radio source found co-located with

this FRB was consistent with the star-formation of this galaxy and is therefore not

similar to the PRS associated with FRB 121102 and FRB 190520.

Finally, FRB 180916, discovered and shown to have periodic burst activity with

CHIME/FRB, was localized to a position consistent with the published results. We

performed several periodicity tests by compiling all the bursts from this FRB available

at the time and provided it in a python package frbpa. We reported that high-

frequency bursts lie earlier in phase as compared to the bursts detected at lower

frequencies. This was later shown to be true in extensive observational campaigns

using Apertif, LOFAR, and CHIME.

7.6 Past and future of FRBs

A little over four years ago, when I started my graduate studies, the FRBs

field looked very different from what it is today. Just over 20 FRBs were known
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at that time, of which only one was a repeater. FRB 121102 had become the first

FRB to be localized a few months before. Moreover, it introduced another FRB

property, a co-located persistent radio source, that researchers promptly added to

their list of FRB observables. At the time of writing, around 800 FRBs have been

detected, of which 24 are repeaters and 24 FRBs (8 repeaters) have been associated

to a host galaxy. Any predictions made in 2017 about the future of FRBs would have

considerably underestimated the wealth of results that followed, primarily driven

by the commissioning of new instruments. Moreover, it is difficult to predict the

impact of new instruments on a young research field like that of FRBs, where every

discovery can significantly impact the fundamental understanding. Many of the five-

year predictions made in 2019 in an FRB review (Petroff et al., 2019) were realized,

and the predictions were revised in 2021 (Petroff et al., 2021).

Our imaginations limit us from predicting something exotic and wildly out-of-

the-box as we tend to extrapolate from the known. Therefore, many of the predic-

tions seem overly conservative in hindsight. This leads to “surprising” results. Some

FRB results that can be categorized as surprising are: detection of repeating pulses

from an FRB (FRB 121102), FRB associated with PRS (FRB 121102, FRB 190520),

detection of an FRB-like burst within our Galaxy (FRB 200428), sub-second period-

icity in burst components (FRB 20191221A), an FRB localized to a Globular Cluster

(FRB 20200120E), an FRB with extremely high host DM (FRB 190520) and FRB

with periodic burst activity (FRB 121102, FRB 180916). All of these results were

made possible when a previously unexplored part of transient space was probed: high

sensitivity (FAST), MJy bursts (STARE2), large field-of-view (ASKAP and CHIME),

interferometers (localization using VLA), novel algorithms (search for periodic emis-

sion), etc. Framed this way, it sounds remarkably similar to the unexplored space of

high DMs (and single-pulse transients) probed by Lorimer et al. (2007), which led to

the discovery of the first FRB! It also serves as a reminder to actively seek out avenues

that are still untapped, as those carry the potential for remarkable discoveries.

In the future, the number of discovered and localized FRBs will continue to in-

crease rapidly, leading to the classification of the population into several sub-classes
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based on common properties (like repetition, morphology, luminosity, host galaxy,

local environment, width, periodicity, etc.). More localizations (with VLA, ASKAP,

DSA, and CHIME-outriggers) will play a key role in understanding the progenitors

of FRBs, while more discoveries (with GBT, FAST, CHIME, Apertif) will improve

the understanding of the FRB population. Wideband searches and high-resolution

searches will probe deeper into the FRB emission and reveal the yet-unseen fre-

quency and temporal structures. We will discover more exotic sources, perhaps with

extremely high (or low) local DM, unusual hosts, unexpected (or delayed) multiwave-

length counterparts, weird pulse profiles, etc.

With the rapid advancement in computing hardware and software and rapid

development of machine learning (ML), it is reasonable to predict that ML will sup-

port a lot of FRB discoveries in the future. Improved algorithms for FRB searches

(dedispersion, matched filtering, RFI removal, etc.) implemented on cutting-edge

hardware will further accelerate this pace.

In line with the title of this thesis, upcoming instruments like CHORD, DSA-

2000, SKA, and CRACO, and the FRB community as a whole will search harder for

FRBs, localize them better, classify them faster and make our understanding stronger

in the coming years. As the number of sources (and host galaxies) accumulate, so

can the number of exceptions to the traditionally understood properties of FRBs. A

unified theory might emerge that beautifully connects the range of observed proper-

ties, but there is no guarantee. In either case, embracing the exceptions, building on

the known concepts, and sometimes letting go of the traditional theories may prove

the only path forward, similar to what was done after “Lorimer Burst” was detected.

169



Bibliography

Agarwal, D., Aggarwal, K., Burke-Spolaor, S., Lorimer, D. R., & Garver-Daniels, N.

2020a, MNRAS, 497, 1661

Agarwal, D., Lorimer, D. R., Surnis, M. P., et al. 2020b, MNRAS, 497, 352

Aggarwal, K. 2021, ApJL, 920, L18

Aggarwal, K., Agarwal, D., Lewis, E. F., et al. 2021a, ApJ, 922, 115

Aggarwal, K., Burke-Spolaor, S., Tejos, N., et al. 2021b, ApJ, 913, 78

Aggarwal, K., Law, C. J., Burke-Spolaor, S., et al. 2020, Research Notes of the

American Astronomical Society, 4, 94

Aggarwal, K., & Realfast Collaboration. 2020, The Astronomer’s Telegram, 13664, 1

Aggarwal, K., Agarwal, D., Kania, J. W., et al. 2020, Journal of Open Source Soft-

ware, 5, 2750. https://doi.org/10.21105/joss.02750

Aggarwal, K., Burke-Spolaor, S., Law, C. J., et al. 2021c, ApJ, 914, 53

Amiri, M., Bandura, K., Bhardwaj, M., et al. 2019, Nature, doi:10.1038/s41586-018-

0867-7. https://doi.org/10.1038/s41586-018-0867-7

Anantharamaiah, K. R., Cornwell, T. J., & Narayan, R. 1989, Synthesis imaging in

radio astronomy, 6, 415

Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. 1999, in Proceedings

of the 1999 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’99 (New York, NY, USA: Association for Computing Machinery), 49–

60. https://doi.org/10.1145/304182.304187

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, Astronomy &

Astrophysics, 558, A33

170

https://doi.org/10.21105/joss.02750
https://doi.org/10.1038/s41586-018-0867-7
https://doi.org/10.1145/304182.304187


Bannister, K. W., Deller, A. T., Phillips, C., et al. 2019, Science,

doi:10.1126/science.aaw5903. https://science.sciencemag.org/content/

early/2019/06/26/science.aaw5903

Barsdell, B. R. 2012, PhD thesis, Swinburne University of Technology

Bassa, C. G., Tendulkar, S. P., Adams, E. A. K., et al. 2017, The Astrophysical

Journal, 843, L8. https://doi.org/10.3847/2041-8213/aa7a0c

Batten, A. J., Duffy, A. R., Wijers, N. A., et al. 2021, MNRAS, 505, 5356

Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559

Beloborodov, A. M. 2017, ApJ, 843, L26

Beniamini, P., & Kumar, P. 2020, MNRAS, 498, 651

Bera, A., & Chengalur, J. N. 2019, MNRAS, 490, L12

Bergstra, J., & Bengio, Y. 2012, J. Mach. Learn. Res., 13, 281

Bhandari, S., & Flynn, C. 2021, Universe, 7, 85

Bhandari, S., Heintz, K. E., Aggarwal, K., et al. 2021, arXiv e-prints,

arXiv:2108.01282

Bhardwaj, M., Gaensler, B. M., Kaspi, V. M., et al. 2021a, ApJL, 910, L18

Bhardwaj, M., Kirichenko, A. Y., Michilli, D., et al. 2021b, ApJL, 919, L24

Bhat, N. D. R., Cordes, J. M., Camilo, F., Nice, D. J., & Lorimer, D. R. 2004, ApJ,

605, 759

Bilous, A. V., Ransom, S. M., & Demorest, P. 2019, The Astrophysical Journal, 877,

125. https://doi.org/10.3847/1538-4357/ab16dd

Bloom, J. S., Kulkarni, S. R., & Djorgovski, S. G. 2002, AJ, 123, 1111

171

https://science.sciencemag.org/content/early/2019/06/26/science.aaw5903
https://science.sciencemag.org/content/early/2019/06/26/science.aaw5903
https://doi.org/10.3847/2041-8213/aa7a0c
https://doi.org/10.3847/1538-4357/ab16dd


Bochenek, C. D., Ravi, V., Belov, K. V., et al. 2020, Nature, 587, 59. http://dx.

doi.org/10.1038/s41586-020-2872-x

Breiman, L. 2001, Mach. Learn., 45, 5. https://doi.org/10.1023/A:

1010933404324

Buch, K. D., Bhatporia, S., Gupta, Y., et al. 2016, Journal of Astronomical Instru-

mentation, 5, 1641018

Buitinck, L., Louppe, G., Blondel, M., et al. 2013, in ECML PKDD Workshop:

Languages for Data Mining and Machine Learning, 108–122

Burke-Spolaor, S. 2018, Nature Astronomy, 2, 845

Burke-Spolaor, S., & Bailes, M. 2010, MNRAS, 402, 855

Burke-Spolaor, S., Johnston, S., Bailes, M., et al. 2012, MNRAS, 423, 1351

Campello, R. J. G. B., Moulavi, D., Zimek, A., & Sander, J. 2015, ACM Trans. Knowl.

Discov. Data, 10, doi:10.1145/2733381. https://doi.org/10.1145/2733381

Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, arXiv e-prints,

arXiv:1612.05560

Chatterjee, S., Law, C. J., Wharton, R. S., et al. 2017, Nature, 541, 58. https:

//doi.org/10.1038/nature20797

Chawla, P., Andersen, B. C., Bhardwaj, M., et al. 2020, ApJL, 896, L41

Cheng, Y., Zhang, G. Q., & Wang, F. Y. 2020, MNRAS, 491, 1498

CHIME/FRB Collaboration. 2021, The Astronomer’s Telegram, 14497, 1

CHIME/FRB Collaboration, Amiri, M., Bandura, K., et al. 2018, ApJ, 863, 48

CHIME/FRB Collaboration, Andersen, B. C., Bandura, K., et al. 2019, ApJL, 885,

L24

172

http://dx.doi.org/10.1038/s41586-020-2872-x
http://dx.doi.org/10.1038/s41586-020-2872-x
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2733381
https://doi.org/10.1038/nature20797
https://doi.org/10.1038/nature20797


CHIME/FRB Collaboration, Amiri, M., Andersen, B. C., et al. 2020a, Nature, 582,

351

CHIME/FRB Collaboration, Andersen, B. C., Bandura, K. M., et al. 2020b, Nature,

587, 54

Comaniciu, D., & Meer, P. 2002, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24, 603

Condon, J. J., & Ransom, S. M. 2016, Essential Radio Astronomy

Connor, L., Miller, M. C., & Gardenier, D. W. 2020, MNRAS, 497, 3076

Connor, L., & van Leeuwen, J. 2018, AJ, 156, 256

Cordes, J. M. 2008, in Astronomical Society of the Pacific Conference Series, Vol. 395,

Frontiers of Astrophysics: A Celebration of NRAO’s 50th Anniversary, ed. A. H.

Bridle, J. J. Condon, & G. C. Hunt, 225

Cordes, J. M., & Chatterjee, S. 2019, ARA&A, 57, 417

Cordes, J. M., & Lazio, T. J. W. 2002, arXiv Astrophysics e-prints, astro-ph/0207156

Cordes, J. M., & McLaughlin, M. A. 2003, ApJ, 596, 1142

Cordes, J. M., Wasserman, I., Hessels, J. W. T., et al. 2017, ApJ, 842, 35

Costa, R., Gordin, J. E. B., & Weltman, A. 2018, arXiv:1807.01976, arXiv:1807.01976

Cruces, M., Spitler, L. G., Scholz, P., et al. 2020, Monthly Notices of the Royal

Astronomical Society, 500, 448. https://doi.org/10.1093/mnras/staa3223

Dash, M., & Liu, H. 2000, in Proceedings of the 4th Pacific-Asia Conference on Knowl-

edge Discovery and Data Mining, Current Issues and New Applications, PADKK

’00 (Berlin, Heidelberg: Springer-Verlag), 110–121

Day, C. K., Bhandari, S., Deller, A. T., Shannon, R. M., & Moss, V. A. 2021, The

Astronomer’s Telegram, 14515, 1

173

https://doi.org/10.1093/mnras/staa3223


Deneva, J. S., Cordes, J. M., McLaughlin, M. A., et al. 2009, ApJ, 703, 2259

Eatough, R. P., Keane, E. F., & Lyne, A. G. 2009, MNRAS, 395, 410

Eftekhari, T., & Berger, E. 2017, ApJ, 849, 162

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. 1996, in Proceedings of the Second In-

ternational Conference on Knowledge Discovery and Data Mining, KDD’96 (AAAI

Press), 226–231

Farah, W., Flynn, C., Bailes, M., et al. 2019, MNRAS, 488, 2989

Fong, W.-f., Dong, Y., Leja, J., et al. 2021, ApJL, 919, L23

Fonseca, E., Andersen, B. C., Bhardwaj, M., et al. 2020, ApJL, 891, L6

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306

Foster, G., Karastergiou, A., Golpayegani, G., et al. 2018, MNRAS, 474, 3847

Franti, P., Virmajoki, O., & Hautamaki, V. 2006, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 28, 1875

Frey, B. J., & Dueck, D. 2007, Science, 315, 972. https://science.sciencemag.

org/content/315/5814/972

Gajjar, V., Siemion, A. P. V., Price, D. C., et al. 2018, ApJ, 863, 2

Gardenier, D. W., Connor, L., van Leeuwen, J., Oostrum, L. C., & Petroff, E. 2021,

A&A, 647, A30

Goodman, J., & Weare, J. 2010, Communications in Applied Mathematics and Com-

putational Science, 5, 65

Gourdji, K., Michilli, D., Spitler, L. G., et al. 2019, The Astrophysical Journal, 877,

L19. https://doi.org/10.3847/2041-8213/ab1f8a

Guidorzi, C., Marongiu, M., Martone, R., et al. 2020, A&A, 637, A69

174

https://science.sciencemag.org/content/315/5814/972
https://science.sciencemag.org/content/315/5814/972
https://doi.org/10.3847/2041-8213/ab1f8a


Gupta, V., Flynn, C., Farah, W., et al. 2021, MNRAS, 501, 2316

Guyon, I., Gunn, S., Ben-Hur, A., & Dror, G. 2005, in Advances in Neural In-

formation Processing Systems, ed. L. Saul, Y. Weiss, & L. Bottou, Vol. 17

(MIT Press), 545–552. https://proceedings.neurips.cc/paper/2004/file/

5e751896e527c862bf67251a474b3819-Paper.pdf
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