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ABSTRACT: This paper discusses spatial autocorrelation in mode choice models, 

including what kind of bias it introduces and how to remedy the problem. The research 

shows that a spatially autocorrelated mode choice model, not uncommon because of, in 

terms of transit characteristics homogeneous neighborhoods, systematically overestimates 

transit trips from suburban transit-unfriendly areas and underestimates transit trips in the 

transit-friendly city center. Adding a spatial lag term into the model specification avoids 

the bias, however, it also changes sampling approaches, requires higher quality household 

forecast data and complicates forecasting. 
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1. INTRODUCTION 

Pickrell's controversial study on new rail starts finds strong evidence that planners not 

only underestimated operation and capital cost, but also overestimated ridership for new 

federally funded rail system (Pickrell 1989). Kain (1992) supports these findings. Along 

the lines of the above authors, this paper discusses a potentially systematic bias in transit 

ridership forecasts, which stems from spatial autocorrelation in the mode choice model. 

Failure to account for spatial autocorrelation would lead to overestimates of ridership 

originating in nontransit-friendly, mostly suburban, neighborhoods and underestimates of 

ridership from transit-friendly urban areas. Since new federally funded rail projects, 

studied by Pickrell, typically serve the commuter market from the suburbs to the CBD, 

this bias could explain at least some of the inflated ridership estimates. 

Why can a mode choice model be spatially autocorrelated? Like in time series 

data, where the dependent variable might be a function of its own time lag, the dependent 

variable in spatial data series might be a function of its own spatial lag as well. Spatial 

autocorrelation is often the case when neighborhoods are homogeneous. For instance, 

since transit ridership depends on both service attributes and accessibility, which are not 

expected to differ significantly between neighboring areas, it is easy to imagine that the 

knowledge of mode share in surrounding areas adds information for determining mode 

share in the study area. Therefore, spatial autocorrelation would be empirically supported 

if mode share changes gradually and not abruptly from one zone to another, and if zones 

with high transit mode share and low transit mode share are clustered together as it is the 
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case with the CBD and suburbs, respectively. Data is not spatially correlated, if the spatial 

distribution of mode share is a random event. 

Few spatially autocorrelated discrete choice models have been estimated because 

of its computational complexity (Pinske et al. 1998). However, as will be shown later in 

this paper, some "tricks" can be used to circumvent the problems of estimating a full 

spatially autocorrelated model. 

The next section shows theoretically how a spatially autocorrelated mode choice 

model would lead to a biased estimate. After that, a potential solution for estimating a 

spatially autocorrelated mode choice model is introduced in general terms. The following 

sections then discuss some technical issues of the spatially autocorrelated mode choice 

model, such as weight matrices, sampling and estimation. Ultimately, three tests to find 

evidence of spatial autocorrelation in mode choice data are shown and forecasting is 

discussed. The paper will conclude with some remarks regarding future empirical 

research needs. 

 

2. WHAT IS THE PROBLEM? 

The problem can be best described as an omitted variable bias. To see that, consider the 

following true model 

v = x β + z µ + ε        (1) 
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where v is a latent variable, such as the utility from transit use, x is an n x 1 vector of one 

mode choice determining socio-economic or trip characteristic, such as income, age, 

gender, auto availability, in-vehicle travel time, out-of-vehicle travel time, wait time, trip 

cost or distance to transit, n is the number of household observations, β is the regression 

coefficient, and z is an n x 1 vector of an omitted, but relevant neighborhood variable, 

such as "transit-friendliness", which is difficult to measure empirically with µ the 

corresponding regression coefficient. The error term is ε with E(ε) = 0 and Var(ε) = σ2.1 

The estimated model, which does not include the omitted variable z, looks as follows: 

v = x β + ε         (2) 

The estimator b for the regression coefficient β is: 

b = (x' x)-1 x' v  

    = (x' x)-1 x' (x β + z µ + ε) 

    = [(x' x)-1 x' x] β + [(x' x)-1 x' z] µ + (x' x)-1 x' ε 

    = β + [(x' x)-1 x' z] µ + (x' x)-1 x' ε      (3) 

And the expected value for the estimator b is: 

E(b) = E{β + [(x' x)-1 x' z] µ + (x' x)-1 x' ε} 

        = E(β) + E{[(x' x)-1 x' z] µ} + E[(x' x)-1 x' ε] 

        = β + [(x' x)-1 x' z] µ 

        = β + [Cov(x, z)/Var(x)] µ       (4) 

                                                 
1 To limit matrix algebra operations and make the argument more understandable, the model was chosen in 
such a way that there is only a vector x with one independent variable, besides the omitted variable, instead 
of a matrix X with several independent variables. The conclusion of the paper is also valid with more than 
one RHS variable (again, besides the omitted one), the math to show this theoretically, however, would 
become more complicated. 
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The estimator b is biased by the term [Cov(x, z)/Var(x)] µ. Assuming that the latent 

variable v is disutility for using transit, z is chosen so that µ > 02 and x is transformed in 

so that Cov(x, z) > 03, then the bias term [Cov(x, z)/Var(x)] µ > 0 and the estimator b will 

be upwardly biased (see Equation 4).4 As a result, an individual vi takes on only the right 

value as long as zi = z* for all observations i = {1, . . . , n} and with an average transit-

friendliness z* = (Σ zi)/n. The bias of the estimator b adjusts the whole regression to 

improve the overall fit of the model, while omitting the term (z µ). If zi < z*, which would 

be the case in the transit-friendly central city, it can be seen that disutility vi will be 

overestimated, causing the estimated mode choice for transit use to be lower than in 

reality. In suburban locations, on the other hand, where zi > z*, vi will be too low, which 

biases the outcome to a higher number of estimated transit users compared to the true 

ridership. 

Figure 1 graphically displays the relationship between vi and zi. It is obvious, that, 

if the estimated mode choice model has omitted a variable such as transit-

(un)friendliness, then the estimated regression coefficient is consistently biased, and the 

model would overestimate transit use in the less transit-friendly areas, as it is the case in 

suburbs. 

This is a far reaching discovery, since mode choice models likely depends on a 

factor such as "transit-(un)friendliness", which is extremely difficult and costly to 

                                                 
2 In above case z would be increasing if the environment becomes more transit-unfriendly. 
3 If Cov(x, z) > 0 and z are chosen that µ < 0, then Cov(v, z) < 0 and Cov(x, v) < 0. This means that x is 
transformed so that a smaller xi increases vi and, therefore, that all xj are inverse measures of transit support 
such as income or travel cost/time. 
4 Similar arguments, with the same results, can be made for the other cases µ > 0 and Cov(x, z) < 0, or µ < 0 
and Cov(x, z) > 0 and Cov(x, z) < 0, respectively. 
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quantify. Typically used approximations of transit-(un)friendliness, e.g. residential 

density and distance to transit are poor proxies and still leave an omitted variable bias. 

Most major new public transit projects in the last 25 were light or heavy rail lines 

connecting the suburbs with the CBD, offering a commuting alternative for professionals 

living outside of the city, but working in the city center. A consistent bias resulting in 

overestimating transit riders in the suburbs could lead to significantly wrong forecasts 

that incorrectly encourage support for new rail construction. 

 

vi (transit 
disutility) 

 city  z*  suburb 

 
FIGURE 1: Relationship between transit disutility vi and transit-(un)friendliness zi of the 

household observation i for the true model including the variable zi, as well as the 

estimated model omitting the variable zi. 

 

vi = xi b 

vi = xi β + zi µ 

zi (transit-unfriendliness) 
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3. THE REMEDY 

Again, let the true model be as shown in Equation 1: v = x β + z µ + ε. This time, 

however, a spatial lag model is estimated: 

v = ρ W v* + x β + ε       (5) 

with v* being the actual mode choice which is a function of the latent variable v, W a 

spatial weight matrix and ρ the regression coefficient for the spatial term. Then the 

estimator, r, of the regression coefficient, ρ, is the following expression: 

r = [(W v*)' (W v*)]-1 (W v*)' (v - x b) 

  = [(W v*)' (W v*)]-1 (W v*)' (x β + z µ + ε - x b)   (6) 

If (W v*) is strongly correlated with the omitted variable z, which is not unlikely, then b is 

unbiased, since no variable is omitted anymore. This means that E(b) = β and 

E(r) = E{[(W v*)' (W v*)]-1 (W v*)' (x β + z µ + ε  - x b)} 

        = E{[(W v*)' (W v*)]-1 (W v*)' z µ + [(W v*)' (W v*)]-1 (W v*)'  ε} 

        = E[(z' z)-1 (z' z) µ + (z' z)-1 z' ε] 

        = E[µ + (z' z)-1 z' ε] 

        = E(µ) + E[(z' z)-1 z' ε]  

        = µ + (z' z)-1 z' ε       (7) 

Equation 7 is like the regular regression coefficient outcome, except, as it is the case in all 

spatial regression models, that the estimator r has a simultaneous equation bias, because 

the error term [(z' z)-1 z' ε] is correlated with the endogenous variable v and its expected 

value is non-zero. Therefore, a OLS regression estimation would be inconsistent. 

However, this is a discrete choice model, based on either a logit or probit approach, 



 8

which cannot be estimated with simple OLS techniques. The method to estimate this kind 

of model is maximum likelihood, resulting in a consistent value for r. 

The procedure above can be compared with the instrumental variable procedure. 

But the spatial lag term (W v*) is both an instrumental variable, as well as a "reversed" 

instrumental variable. (W v*) is an instrumental variable in the sense that it is an 

instrument for z, which is difficult to get data on. On the other hand, (W v*) is also 

correlated with the endogenous variable, which is in some way the opposite of an 

instrumental variable that would be used to avoid correlation with the LHS. 

 

4. THE SPATIAL WEIGHT MATRIX 

One important practical issue concerns how to design a spatial weight matrix W that has 

purely the purpose to define the spatial relation among households and is used to 

calculate the weighted average of the actual mode choice v*. For travel demand 

forecasting models the whole study region is typically divided into hundreds or even 

thousands of travel analysis zones (TAZ), which are unique geographic areas, often 

aggregated census tracts with a similar number of households as well as compatible 

spatial attributes. Each household used for estimating mode choice belongs in one TAZ. 

However, a TAZ has more than one sampled household. 

If, in fact, each household would be its own zone, then the weight matrix would 

be based on the traditional spatial rook or queen contiguity between the locations of the 
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households.5 With more than one household in each TAZ, however, neighborhood 

relations between households have to be defined somewhat differently to what is tradition 

in spatial analysis.6 The easiest way to construct a spatial weight matrix is to use all the 

households in the same TAZ as immediate neighbors, but none of the households in any 

other TAZ. This leads to another problem. Since the household data is sampled and, thus, 

does not represent the complete population, it makes sense, against the convention of 

spatial weight matrices, to make each household also its own neighbor. Consequently, the 

weight matrix has values on its main diagonal axis. As long all households belonging to 

the same TAZ are next to each other, the weight matrix W will consist of diagonal blocks 

with values, because households are only spatially correlated within the same zone. With 

increasing sample size in each zone, it does not make any difference whether to include 

the main diagonal values or not.  

When (W v*) is calculated based on the above weight matrix definition, it can be 

found that it is just the zonal average of v*. For instance, taking transit mode choice for 

v*, (W v*) would be the percent of transit use in the TAZ. It is indeed conceivable that 

this average mode choice is strongly correlated with transit-(un)friendliness. Another way 

to justify the use of (W v*) is best expressed allegorically: Transit use is contagious. This 

can be thought of in two ways: 

� A household is more likely to use transit if all its neighbors use transit, because the 

conditions of using transit in the area are good and the household will find out. 

                                                 
5 Rook contiguity is defined as two neighbors sharing a common border. Queen contiguity adds a spatial 
corner relationship between two neighbors without a common border. An example for a queen contiguity 
would be the two states Arizona and Colorado. 
6 I want to emphasize that there is no right weight matrix, only better and worse ones. 
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� If people plan to use transit, they are more likely to move into an area where other 

people already use transit, because, again, the conditions of using transit are good. 

Another, more complex spatial weight matrix design would be to include all the 

households of neighboring TAZs as well, following either a rook or queen relationship. 

The result would be an average of mode choice v*, weighted by a factor based on the own 

TAZ and all of the neighboring TAZs. These weights could come from the number of 

households in each zone, the size of the TAZ, the length of the border, or they could be 

just a generic value, such as 50% for the own TAZ and the remaining 50% distributed 

equally between the neighboring zones. As seen above, the main diagonal of W will again 

contain values. 

The last possible approach for a weight matrix is to not use TAZs at all, and 

instead to take distances between the sampled households. However, this requires more 

geographic information, such as x and y coordinates, which should not be difficult to get 

but might violate the privacy rights of the sampled household. As discussed in the next 

section, it will also put additional stipulations on sampling and is not very practical. 

 

5. SPATIAL SAMPLING 

Without any spatial structure, a random sample should be a representative of the 

population. If it is known that the population is spatially autocorrelated, as it is expected 

with virtually any spatial data sets, then the sample should reflect this fact. This requires 

not only that the mean and standard deviations of each characteristic in the sample for the 
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whole study area is equal to the mean and standard deviation of each characteristic in the 

complete population, but also, that this is true for all spatial subareas (TAZs). Therefore, 

sampling for household surveys needs to be done on the "lowest" spatial level, e.g. zones. 

In practice the difference between standard and spatial sampling is that the survey 

participants are not drawn from the population of all households, but instead from the 

spatial subset of this population, such as zones. 

Standard deviations for household characteristics should be smaller at the zone 

level compared to the whole study area. Therefore, the sample size for each zone can be 

less than it would be for the study area. And it is not expected that the total sample size 

will increase significantly, but rather that the observations will have a more even spatial 

distribution. 

In order to make a conceptually different distance based weight matrix compared 

to a spatial contiguity weight matrix, it is important that the sampled households are 

approximately equally spaced and that they are not clustered. The easiest sampling 

approach would be to lay a grid above the study area and draw from each grid square one 

or any other fixed number of households. This is similar to the stratified systematic 

unaligned point sample approach (McGrew et al. 1993). 

 

6. THE ESTIMATION 

A discrete choice model with a spatial lag term of the general form y = ρ W y + x β + ε is 

difficult to estimate, because the latent variable y is recursive and, at the same time 
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cannot be directly observed. However, the model in Equation 5 is slightly different in the 

sense that, instead of the latent variable v, the observed LHS variable v* is included on 

the RHS of the equation. This minor change makes a major difference for running the 

regression, because the model becomes what is in the literature called a conditional 

spatial discrete choice model. But, while estimating a conditional spatial discrete choice 

model is simpler to estimate, the trade-off is, that forecasting becomes more cumbersome. 

A conditional discrete-choice model is best estimated with the regular logit         

or probit approach. The only difference is one additional term on the RHS, which is        ρ 

(W v*). Therefore it is preferable to first compute (W v*) and then to run the regression to 

derive an estimator for ρ together with β. This can be done using any econometrics 

software capable of logit or probit model estimation. 

 

7. THREE TESTS FOR SPATIAL AUTOCORRELATION 

The goal is to account for all spatial autocorrelation with relevant independent variables, 

such as personal, household, neighborhood and/or commute characteristics. However, 

this cannot always be achieved. Furthermore, some relevant variables cannot be easily 

observed, such as transit-(un)friendliness. Therefore, the regression model might remain 

spatially correlated. How can it be known if the model is spatially correlated, or if all 

relevant variables are included? Three tests are discussed here to answer this question. 

The first more general test is for a discrete-choice model modified version of the 

traditional Moran's I (Kelejian et al. 2001). This test is a spatial version of the Durbin-
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Watson test and detects spatial autocorrelation by analyzing the residuals. The test 

statistics is normally distributed and looks like: 

I = Q/σq ~ N (0, 1)        (8) 

Q is the weighted cross-product of the residuals Q = (e' W e), and σq represents a 

normalization factor. 

Alternatively, a different Moran's I can be used (Pinske et al. 1998). However, this 

time the statistics now follows the chi-square distribution: 

LM = (u' W u)2/T ~ Chi-square (1)      (9) 

In this version of Moran's I, the residuals u are standardized. 

However, just like the Durbin-Watson test, both Moran's I statistics are unspecific 

and can therefore not to be trusted too much if a reasonable alternative exists. 

The last, probably easier and more precise approach is to use an LR test for an 

omitted variable (Greene 1997). The principle behind the test is to compare the fit of the 

restricted model without the spatial lag variable (H0) to the unrestricted model with the 

spatial autocorrelation term (HA): 

H0: v = x β + ε 

HA: v = ρ W v* + x β + ε       (10) 

Then the likelihood ratio of the restricted log-likelihood function (LR) to the unrestricted 

function (L) follows a chi-square distribution with one degree of freedom for one 

restriction: 
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LR = -2 (ln LR - ln LU) ~ Chi-square (1)     (11) 

In summary, there are three different methods to test for existence of spatial 

autocorrelation in the model. Two modified Moran's I tests use the residuals of the model 

to detect spatial autocorrelation. The LR test compares the fit of the model with the 

spatial lag variable to the model without it, and finds if the non-inclusion of the spatial 

autocorrelation term is equivalent to omitting a relevant variable. 

 

8. FORECASTING 

Unfortunately, the conditional discrete choice model does not have a simple algebraic 

solution, as one finds in the unconditional model: 

y = ρ W y + x β 

y - ρ W y = x β 

(I - ρ W) y = x β  

y = (I - ρ W)-1 x β 

y = (I + ρ W + ρ2 W2 + ...) x β  

y = x β + ρ W x β + ρ2 W2 x β + ...      (12) 

The basic structure, however, is the same for both models. Disutility v will be some 

function of spatially lagged household, neighborhood and trip characteristics, summarized 

in x, as well as the error term: 

v = f(ρ, W, β, x, ε)        (13) 
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The solution for v and the forecast for actual mode choice v* can only be obtained by 

simulation. The first step is to compute v1 = x b without the spatial lag term. Then the 

actual mode choice decision v1* = g(v1) can be derived depending on v1. After that, v1* 

will be used to calculate the second round of v and v*, which is v2 = r W v1* + x b and v2* 

= g(v2). These above steps will be repeated until v = vm-1 = vm, and final mode choice is 

then v* = g(v). 

Equation 12 shows the spatial impact of the mode choice outcome will depend on 

the household, neighborhood and trip characteristics of all spatially lagged households. 

This makes sense, because a neighborhood's household composition adjusts after its 

transportation system has changed. At the same time, since household and trip 

characteristics have additional weight, accurate household forecasts may require the 

model to have the transportation system an endogenous variable. A "quick and dirty" 

shortcut would be to transfer the mode share value from similar neighborhoods to the 

neighborhood where the transportation system is changed, since, as seen above, (ρ W v*) 

represents the average percentage of people using transit. 

 

9. CONCLUSION 

This paper presented strong theoretical evidence that mode choice models can suffer from 

spatial correlation. This spatial autocorrelation will bias the model forecast systematically 

by overestimating transit ridership in transit-unfriendly neighborhoods, such as the 

suburbs, and underestimate transit ridership in transit-friendly central cities. 
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 This paper also discussed the design of a spatial weight matrix and issues of 

spatial sampling, it showed three tests for how to detect the presence of spatial 

autocorrelation in discrete choice models, and it introduced an approach to account for 

spatial autocorrelation in mode choice models so that transit ridership can be forecast 

more accurately. 

The final proof that mode choice model is spatially autocorrelated, however, must 

be left to empirical research. Using the 1990 PUMS data set for the New York City 

metropolitan area, which covers the states of Connecticut, New Jersey and New York and 

consists of 58 zones, the author currently analyses if work trip mode choice decisions are 

spatially autocorrelated. 

 It would be up to the transportation planning and travel demand forecasting 

community to incorporate the findings of this paper into their work in order to improve 

the quality of future transportation studies, which is crucial for informed and good 

decision making. 
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