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Abstract

This paper proposes a method that tests for the existence of low-value spatial clustering while accounting for the influence
of high-value clustering. Although the method was developed in reference to the Tango test, it can be extended to other testing
methods. The simulation results showed that the proposed method is able to effectively detect low-value clustering with sub-
stantially lower rates of type I errors than those of the Tango test, while maintaining comparable statistical power. Applying the
method in a case study of leukemia in Minnesota demonstrated an overall tendency toward low-value clustering of leukemia
mortality for males but provided inconclusive results for females.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Bias; Low-value clustering; Relative risk; Trimmed mean

1. Introduction

Detecting general spatial clustering, explicitly de-
termining the types of spatial cluster(s), and eventually
locating them have been widely applied in epidemi-
ology (Lawson and Denison, 2000). According to
Marshall, spatial clusters are foci of particularly high
incidence or hot spots that are unlikely to happen by
chance (Marshall, 1991). Marshall also pointed out
that low-value foci or cool spots should be included in
this definition. In spatial epidemiology, when a cluster
exists, there is an overall tendency toward clustering,
which is normally a prerequisite for further study
(Cuzick and Edwards, 1990). Many spatial epidemi-
ologists have stressed the importance of identifying

∗ Corresponding author. Tel.:+1 304 293 8540;
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E-mail address: glin@wvu.edu (G. Lin).

and quantifying spatial clustering of elevated risks,
as they often provide the basis for the allocation of
medical and health resources and etiological clues for
disease treatment and prevention (Elliot et al., 2000).
Nevertheless, there are several reasons why low-value
clustering should also be identified and these issues
examined from the opposite perspective.

First, low-value clustering or cool spots are indica-
tive of healthy communities. After detecting low-value
clustering, we can further investigate what makes peo-
ple in a particular clustered area less likely to have a
certain disease. The lesser likelihood of disease might
result from environmental factors in the geographic
area that enhance immunity to a specific disease or
from genetically endowed resistance among people
in the community. Many genetic studies indicate that
some ethnic groups are genetically marked as being
more resistant to certain diseases, such as malaria (Hill
et al., 1991; Aitman et al., 2000). In many parts of

0001-706X/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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world, ethnicity or ancestral origins can be identified
geographically, and geographic surveillance of disease
cool spots along the dimension of genetic susceptibil-
ity is likely to unpack genetic risk factors for various
diseases.

Second, properly detecting low-value clustering can
also reveal that a particular prevention program may be
at work in a set of communities. For example, regional
disease-incidence rates often change in response to
health-prevention, environmental, and health-care fac-
tors. Normal regions may become high- or low-value
clustered regions, and high- or low-value clusters may
disappear or exchange positions between each other.
Effectively monitoring these potential changes is cru-
cial for the geographic evaluation of intervention and
prevention programs (Elliot et al., 2000; Lawson and
Kulldorff, 2000), which may provide lessons for other
communities seeking to eliminate geographic inequal-
ity in health.

Finally, investigating potential cool spots may re-
veal environmental and cultural processes that operate
at a regional or a community level. At the regional
level, when geophysical environments are similar, the
surveillance of kwashiorkor cool spots, for example,
may provide clues for good dietary practices (WHO,
1999). At the community level, population mixing,
which describes places with varying degrees of con-
tact between infected and uninfected persons, has been
positively associated with the hypothesis of an infec-
tious origin of leukemia. If high rates of leukemia
are found in places where many immigrants mix with
longtime residents, low-rates of leukemia would be
expected in places with little or no population mixing.
There are many diseases for which environmental and
cultural causes are suspected (e.g., familial Mediter-
ranean fever), and isolating factors that contribute to
low-value disease clustering will help to verify or nul-
lify etiological agents.

Even though testing for the existence of low-value
clustering seems a straightforward application of
general clustering tests, few spatial epidemiologists
have undertaken it, and there are several conceptual
and testing issues that need to be addressed up front.
First, some spatial events, such as infectious diseases,
may not necessarily have low-value clustering (Elliot
et al., 2000). The West Nile virus, for instance, was
originally concentrated along the coastal regions of
the mid-Atlantic states in the US in 1999 and 2000

(Marfin et al., 2001); we cannot presume, however,
that at that time all other parts of the US were all
cool spots with low-value clustering. In this case,
low-value clustering does not inherently exist, at least
at the outbreak of the virus. Second, some clustering
methods have been expressly designed for identifying
high-value clustering, and, consequently, may not al-
ways be suitable for testing low-value clustering. The
scan test ofKulldorff (1997), which tests the existence
of one (high-value) cluster within a study area, is an
example. Third, some general spatial clustering and
autocorrelation tests, such as Moran’s I and Tango’s
CG, cannot distinguish the existence of low-value
clustering from that of high-value clustering (Lin,
in press). In this case, a one-sided clustering test
would be needed to supplement these test statistics
(Lin, 2003).

In this paper, we propose a one-sided testing
method for detecting low-value spatial clustering.
Following the general approach of spatial epidemi-
ology (Elliot et al., 2000; Lawson, 2001), we use
the concept of relative risk, which is defined by the
ratio of the region-specific mean and expected count.
We first discuss some aspects of general low-value
clustering and then provide a testing method based
on the Tango test for rare diseases (Tango, 1995). In
Section 3, we use simulated data to compare type I
errors and the statistical powers between the proposed
method and the Tango test. We then provide a case
study of leukemia mortality in Minnesota inSection 4,
which is followed by concluding remarks in the final
section.

2. General tests for high and low-value clustering

Unlike high-value clustering, which has no upper
(value) limit, the lower limit of the disease rate is 0
or no occurrence. This difference has several impli-
cations. First, it is generally unnecessary to consider
low-value outliers because there is no negative value
involved. If there is a statistically significant cluster
with a low disease rate, it is unlikely to be attributed to
outliers, especially when the disease is rare. Second,
to avoid the situation in which there is no inherent
low-value clustering, rare infectious diseases should
not used for testing, because they will not likely oc-
cur in most study areas where people are not infected.
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Third, the detection of low-value disease clustering
tends to be more sensitive to the influence of spatial
outliers and high-value clustering.

Consider a study area found to have a general ten-
dency toward low-value clustering. Upon closer ex-
amination, however, a hot spot with a relative risk of
about 0.15% is found to have a significant leverage on
the mean or the average disease risk of 0.05%. If the
hot spot, which certainly has not occurred by chance,
is deleted or replaced with values around the mean,
the tendency of low-value clustering would be reduced
to the point of statistical insignificance. This is essen-
tially the problem of comparing means for overlap-
ping groups, a problem that also arises in a high-value
clustering test. However, the potential impact of a
low-value cluster on the detection of high-value clus-
tering is generally less severe than that of a high-value
cluster on the detection of low-value clustering. To
develop a robust low-value clustering test, it is nec-
essary to first reduce the potential bias resulting from
the influence of high-value clustering.

Extending Marshall’s definition, the existence of ge-
ographically cool spots can be viewed as abnormally
low-values clustered somewhere within the study area.
If there is no cluster of an abnormally high value, or a
hot spot, the null hypothesis of no low-value cluster-
ing (or a constant disease risk across the study area)
would be appropriate for a low-value clustering test.
However, hot and cool spots often co-exist within a
single study area, which may lead to an upward bias
of the relative risk from the null hypothesis of a spa-
tially constant mean.Ord and Getis (2001)noticed this
problem, and they followed a common method for par-
titioning means into nonoverlapping groups (Calinski
and Corsten, 1985; Looney and Jones, 2003). In this
case, the partitions are made within a distance range
and the rest of the study area, but the influence of hot
spots remains a potential problem. The unresolved is-
sue is how to properly define the null hypothesis such
that it incorporates both spatially constant risk and the
potential existence of hot spots. Rather than partition-
ing means, we propose to “partition” the null hypoth-
esis that distinguishes the null hypothesis of (a) no
spatial clustering (or a spatially constant risk) from
the null hypothesis of (b) the existence of a hot spot
without a cool spot.

If we simply use the spatially constant mean, ora,
as the null hypothesis, the existing test methods, such

as the Whittemore’sW (Whittemore et al., 1987), the
GetisG (Getis and Ord, 1992), and the TangoCG, may
not be appropriate for detecting low-value clustering,
because the mean events in a particular region may
not be proportional to the population in the region. By
making this distinction, the null hypothesis for testing
cool spots becomesa ∪ b. When the null hypothesis
of a∪ b is rejected, for instance, the null distributions
undera ∪ b should be adjusted for potential upward
bias. If there are only a few outliers, it may be easier
to delete them. If there are hot spots, we may not
know about them until a cluster test is implemented,
and we usually cannot delete hot spots from testing
anyway. Herein, we propose a conditional replacement
method for reducing the potential impact of hot spots
or outliers. Although the proposed method is generally
applicable to several testing methods, our discussion
is based on the TangoCG, because it is a general
test that encompasses several testing methods (e.g.,
WhittemoreW, OdenI, and RogersonR) (Rogerson,
1999).

Tango’s spatial clustering test is an extension of his
one-dimensional time-series clustering test (Tango,
1995). Given a population size ofξi and a disease
count of ni at region i for a study area that hasm
regions, letr = (r1, . . . , rm) andp = (p1, . . . , pm),
where ri is the proportion of theith regional count
to the total count andpi is the proportion of theith
regional population to the total population. Under
Tango’s null hypothesis that all the relative risks are
equal, the Tango statistic

CG = (r − p)tA(r − p) (1)

approximately follows a gamma-distribution, whereA
= (aij), aij = e−dij/τ , dij is the distance between region
i and regionj, andτ is a constant. TheP-value of the
Tango statistic can be approximately computed by

P{CG > c} ≈ 1 − I

(
ν + TG

√
2ν

2
,
ν

2

)
(2)

where the incomplete gammaI(x, φ) is defined by

I(x, φ) =
∫ x

0

tφ−1

Γ(φ)
e−tdt

and TangoTG (the standardizedCG) is defined by

TG = CG − E(CG)√
var(CG)
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with

E(CG)= 1
n
tr(AVp), var(CG) = 2

n
tr(AVp)

2, and

v= [tr(AVp)
2]3

[tr(AVp)3]2

where tr(M) is the trace of a squared matrixM and
Vp is the matrix with theith diagonal entrypi(1−pi)

and the (i,j)th entry –pipj for i 
= j.
Tango’sCG, like a Chi-square test or a test similar

to Moran’s I, is a two-sided test. It can be used to
detect both high- and low-value clustering, but there is
no way to determine if a detected clustering tendency
is attributable to a hot spot, a cool spot, or both (Lin,
in press). To make theCG a one-sided test, we need
to reduce any potential effect from the other side (i.e.,
potential hot spots). Assuming that the relative risks of
any normal regions areλ0, then the relative risk in a hot
spot is greater thanλ0, and the expected value within
the hot spot is greater than its population timesλ0.
Since the null hypothesis for low-value clustering does
not exclude the presence of hot spots, it is necessary
to eliminate the influence of hot spots when testing
for the existence of cool spots.

As mentioned earlier, when the observed countni
at regioni is greater than the expected countλ0ξi, it
could result from either a random high within normal
regions or the clustered high within a hot spot. Since
the clustered high is not normal, its effect should be re-
duced before testing for low-value clustering. It is dif-
ficult, however, to determine beforehand if high-value
regions in a study area are clustered or not. One way to
deal with this uncertainty is to use the knownλ to gen-
erate random numbers to replace high-value regions.
Theoretically, we can always generate a disease dis-
tribution that resembles the actual disease pattern by
using thisλ. It turns out that if randomly high-values
are replaced with a set of randomly high numbers, the
overall effect in normal regions will remain the same;
if the numbers in the clustered high regions are re-
placed with a set of randomly high numbers, the bias
caused by high-value clustering can be reduced. It is,
therefore, reasonable to blindly replace all the values
above the known riskλ0 with random numbers greater
thanλ0. This strategy can be implemented by replac-
ing all the regions withni > λ0ξi with a Poisson
random variablePi (with parameterλ0ξi) that is also
greater thanλ0ξi, whereλ0 is the real disease rate for

the normal regions. With this replacement scheme, po-
tential bias due to spatial outliers or hot spots can be
reduced while retaining randomly low values in other
regions. A less-biased estimator can, therefore, be ob-
tained with the risks for all regions becoming closer
to λ0. If λ0 is unknown, a trimmed mean can be used
to estimateλ0. For example, a 10% of trimmed mean
can be obtained by cutting off the top and the bottom
10% observed relative risks and then calculating the
mean (seeDevore, 1999, p. 32).

3. Simulation

Since Tango’s spatial clustering test originated from
Tango’s one-dimensional clustering test, we thought it
would be worthwhile to use a one-dimensional simu-
lation to demonstrate the importance of distinguishing
between the null hypotheses of no clustering and no
low-value clustering. For the purposes of the simula-
tion, we fixed the disease rateλ0 for normal regions
at 0.0001, and independently generated the population
at regioni (i = 1, . . . , 100) from the closest integer of
the Γ (104, 0.1) distribution. Hence, the mean of the
population of any region was 105 with a standard er-
ror of 103. The distance between regionsi and j was
based on a straight line, ordij = |i−j|. Without loss of
generality for the test results, letτ = 1 or the average
distance between two adjacent area unit, thusaij =
e−|i−j|. We began our simulation by examining type I
errors of the Tango and the low-value clustering tests
against the null hypothesis of no low-value clustering
in the presence of hot spots only. We then evaluated
the statistical power of the two tests when there was
at least one cool spot. Finally, we compared the pow-
ers of these tests by combining the spatial structures
from the previous simulations.

The upper panel ofFig. 1displays the values of rel-
ative risks in the simulations with one, two, or three
hot spots generated over a range ofδ values from 0 to
1 in increments of 0.01. Whenδ = 0, the highest rel-
ative risk was identical toλ0; whenδ = 1, the highest
relative risk was twice as much asλ0. In this way, type
I errors for the low-value clustering test were based
on the presence of one, two, or three hot spots, and
the relative risk of the center point within a hot spot
increased gradually from 100 to 200% of the relative
risk R = 1. In the case of one hot spot, we inserted a
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Fig. 1. Acceptance rates for low-value clustering in the presence of hot spots.

hot spot at the midpoint as shown inFig. 1a(i.e., if
|i− 50| < 6,Ri = 1+ δ|i− 50|/6; otherwiseRi = 1,
whereδ ∈ [0,1] defines the strength of the cool spot,
and 50 is the midpoint). For eachδ selected in our
simulation, we repeated 10,000 runs, and the results
at the 5% level were computed based on theP-values
of the related statistics for each run. The lower panel
of Fig. 1 displays the corresponding results.

In the presence of a hot spot, the test of low-value
clustering consistently accepted the null hypothesis for
all δs, with the acceptance rate being around 0.95. The
acceptance rates of Tango’sCG were at the acceptable

level of 0.95 only when there was no hot spot or the
strength of the hot spot was very small (δ was close
to 0). As the strength of the high-value clustering in-
creased, the acceptance rate forCG decreased rapidly;
nearly reaching 0 whenδ was close to 1. There was
little difference in type I errors in the presence of addi-
tional (i.e., two or three) hot spots. These results sug-
gest a clear inverse relationship between the strength
of a hot spot and the type I error rate ofCG: when
hot spots existed, the rejection rate of TangoCG is
much greater than the test level if it is used to detect
low-value clustering.
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We also evaluated the powers of these tests and
their effectiveness in detecting low-value clustering
(Fig. 2). The results showed that all of the clustering
tests were very effective, having an acceptance rate of
0.95 when there was no clustering orδ = 0; the accep-
tance rates of the corresponding null hypotheses were
all close to 0 when there was low-value clustering
or δ was close to 1. The statistical powers increased
slightly when two or three cool spots were inserted.
In all cases, the statistical powers ofCG and the
low-value clustering test were almost identical. How-
ever, since the results fromCG was unable to distin-
guish high- from low-value clustering, the results from
the low-value clustering test represented an impor-
tant information gain, which unambiguously rejected
the null hypothesis of no low-value clustering and,

Fig. 2. Acceptance rates for low-value clustering in the presence of cool spots.

thus, concluded its existence. The proposed low-value
clustering test were indeed supplementary toCG.
Like CG, the low-value clustering test was likely to
be significant in the presence of a cool spot; unlike
CG, it was rarely significant if there was a hot spot
only.

Finally, we simulated situations in which both cool
and hot spots existed (Fig. 3). The results from the
Tango test consistently registered a greater statistical
power than did the low-value clustering test. This dif-
ference in statistical power could be explained in two
different ways. First, the greater power of Tango’s test
is to be expected, because this test considers the exis-
tence of either cool or hot spots as clustering whereas
the low-value clustering test only considers the ex-
istence of cool spots. The lower statistical power of
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Fig. 3. Acceptance rates for low-value clustering in the presence of both hot and cool spots.

the low-value clustering test is compensated for by
greater information gain or less ambiguity. Second,
the power gap between the two tests can be evalu-
ated using differentδ values, and the area in which
a false rejection of the null hypothesis may fall can
be determined. In the case of one cool and one hot
spot, the rejection rate of no clustering fromCG was
greater than the conventional level of 95% whenδ was
greater than 0.72, but the low-value clustering test did
not reach this level untilδ was greater than 0.91. This
discrepancy indicates that between a weaker cool spot
range (i.e., between 1.72 and 1.91 times of the rela-
tive risk), CG may signify significant clustering that
may be due to the effects of high-value clustering.
Taken these two explanations together, the low-value
clustering test is an effective one-sided test that could
be used as an alternative toCG when there is a need
to reduce abnormal effects caused by hot spots and
outliers.

4. Minnesota leukemia case study

We chose leukemia to test our proposed method, be-
cause its etiological causes are largely unknown and
because epidemiologists can learn ecological risk fac-
tors from both cool and hot spots. Extensive studies
have related environmental factors and agrochemicals
to leukemia incidence and mortality, but no conclu-
sive geo-environmental leukaemogens have been re-
ported (Boyle et al., 1996; Wartenberg, 1998). For
our case study, we selected the 5-year (1992–1996)
county-level leukemia-mortality data from the Min-
nesota Cancer Surveillance System, which records the
number of deaths due to leukemia separately for males
and females. According to the US National Cancer
Institute, the 5-year (1990–1994) leukemia mortality
rate in Minnesota for white males was the second high-
est in the US, or about 11% higher than the national
average, and that for white females was ranked 23rd,



286 G. Lin, T. Zhang / Acta Tropica 91 (2004) 279–289

or just slightly higher than the national average. We
used the county-level populations for the state from
the 1990 US Census to analyze leukemia mortality
rates for both males and females. We compared the
1990 Census populations with the 1994 county esti-
mates (the mid-year of 1992–1996) and found very
small changes in population for most of the counties.
For this reason, we decided to use the Census data
rather than the estimates. We used Euclidean distance
to measure geographic proximity and setτ = 35 miles,
which is about the average distance between any two
centroids of adjacent counties. We also experimented
with τ values between 20 and 50, but the results were
not very sensitive within this distance range.

Figs. 4 and 5displayed the geographic distribu-
tions of the 5-year male and female leukemia-mortality
rates. The mortality rates were grouped into seven per-
centiles, with roughly an equal number of counties
within each percentile-category. The average mortal-
ity rates for males and females per 1000 were 0.80 and
0.55, respectively, with the total number of deaths dur-
ing the 5-year period being 1718 for males and 1226
for females. Among the 87 counties, two reported a
zero death rate for females, but none reported a zero

Fig. 4. Male leukemia mortality rates per 1000 in Minnesota.

death rate for males. The highest death rate for males
was 1.87 per 1000, more than double the correspond-
ing mean; the highest death rate for females was 0.89
per 1000, or 1.62 times the corresponding mean. For
males, there appeared to be clusters of both high and
low values. The high-value cluster seemed to be lo-
cated around the central west, and the low-value clus-
ter seemed to be located along the lower Minnesota
River basin in the central south. The picture for fe-
males was less evident, having no apparent geograph-
ical pattern.

In this case study,λ0 was unknown, making it nec-
essary for us to estimateλ0 as the true value in the pro-
posed low-value clustering test. Given the emphasis
of our study, we used a 10% trimmed mean (Devore,
1999) to derive a less biased mean as the estimated
value ofλ0 (denoted bŷλ). Because this method could
still be biased from the trueλ0, we assessed the sen-
sitivity of the P-values based on a range ofλ values
from 0.9λ̂ to λ̂. In other words, a range of downward
λ values was used to correct any potential upward bias
resulting from the existence of high-value clusters.
Theλ̂ values for males and females were 0.000796 (or
7.96 deaths per 10,000) and 0.000546, respectively,

Fig. 5. Female leukemia mortality rates per 1000 in Minnesota.
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Fig. 6. TheP-values for testing low-value leukemia clustering in Minnesota.

which were not very different from the average rates
of 0.000801 for males and 0.000550 for females.

Taking the male and femalêλ values to be the true
values, theP-values of the low-value clustering test
were computed repeatedly 10,000 times. We consid-
ered the medians of those repeatedP-values to be the
most trustworthy, and they are displayed inFig. 6 in
the natural log scale. Note that the smaller theP-value,
that is, the more negative the value along the log scale,
the greater is its significance. A logP-value greater
than 3 would not be significant at the probability level
of 0.05, and a logP-value greater than 4.6 would not
be significant at the probability level of 0.01.

Overall, theP-values for males were very small, be-
ing less than 0.001 (e−8 ≈ 0.003) anywhere between
0.9λ̂ and λ̂. As theλ values decreased, theP-values
of the low-value clustering test increased, and become
less significant. Because a potential abnormally hot
spot would cause an upward bias from the trueλ0, a
correction would lead to a less significant result. In
any case, the influence of a potential biased mean in a
range of 10% upward, which was evaluated by a range

10% downward ofλ, will not lead to a different out-
come. We, therefore, concluded that there is an overall
tendency of low-value spatial clustering among males
who died from leukemia during the study period.

For females, however, the results were not signifi-
cant at the 0.01 probability level anywhere from the
estimatedλ to 10% less. In addition, theP-values were
very sensitive to the shifts inλ values. When theλ
fell within 8% of theλ̂ value, the results were signifi-
cant at the 0.05 level; when theλ value shifted beyond
8%, the results were no longer significant. Since the
sample was fairly large and the estimated mean could
easily be biased upward by 6–7%, we used a more
conservative confidence level of 0.01. Consequently,
the existence of cool spots could not be concluded for
females in general.

5. Concluding remarks

In this paper, we have provided a method to test
for low-value spatial clustering. When the expected



288 G. Lin, T. Zhang / Acta Tropica 91 (2004) 279–289

disease risk was known, the proposed conditional re-
placement method was effective in reducing a poten-
tial overestimate of the disease rate due to the pres-
ence of regions of structurally high value. Although
the simulations and the data example were in reference
to the Tango test, the conditional replacement method
can be applied to other clustering tests. In the presence
of a hot spot, the type I error rate based on the null
hypothesis of the low-value clustering test was much
lower than that based on the Tango test. The powers
of the two tests, however, were almost identical in the
presence of a single cool spot only. When both hot and
cool spots coexist, the Tango test has a greater statisti-
cal power, which also was also accompanied by a loss
of information. In this regard, the low-value clustering
test can be used not only for testing the tendency for
low-value clustering but also for supplementing other
general clustering tests to reduce false alarms. This is
especially the case when there is a suspicion of which
clustering tendency (high or low) contributes more to
a significant test result.

Whenλ was unknown, as in the case of leukemia
mortality in Minnesota, we first estimated the true dis-
ease rate for normal regions by using a 10% trimmed
mean. Because, according to our null hypothesis, hot
spots may exist, this estimated disease rate for normal
regions may be biased upward. This means that the
trueλ0 may be less than the estimated value. For this
reason, we evaluated a range ofλ values. The exis-
tence of low-value clustering was concluded for males
but not for females. Based on these results, we specu-
late that a low level of population mixing in the rural
counties along the lower Minnesota River may reduce
the chance of infection through contact. It is also pos-
sible that the residues of pesticides may spatially vary
in terms of intensity and interaction the with drainage
system. These are some of the research questions war-
rant further epidemiological studies by using a focused
test and other covariates.

Several methodological issues also warrant further
investigation. First, even though the focus of our
study was on low-value clustering, our method can
be equally applied in high-value clustering tests. Sec-
ond, a better method is needed to empirically derive
an estimator that is sufficiently close to the trueλ.
Furthermore, when the study area is part of a larger
region, the risk at the regional level should not be
ignored. In our empirical case, the rate of mortality

in males due to leukemia was 11% higher than the
national average; if a hot spot with a highly excessive
mortality rate was presented in the study area, we
might want to account for it first before estimating
the true mean. Third, covariates may still be consid-
ered by using covariate-related statistics, such as the
scan test (Kulldorff, 1997). Finally, it will be impor-
tant to determine how the critical region is bounded
or affected by an estimatedλ value in extending our
method to other clustering tests.
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