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Abstract.  There has been a recent resurgence of interest in biproportional adjustment 
methods for updating and interpreting change in matrix representations of regional 
structures, most commonly input-output accounts.  Although the biproportional method, 
commonly called the RAS technique in the input-output literature, has been shown to 
have a number of theoretically appealing properties, various alternatives do exist.  In this 
paper, we develop and assess empirically a number of alternatives, comparing 
performance and examining attributes of these adjustment methods.  Two of these are 
sign-preserving updating methods for use when tables contain both positive and negative 
entries.  One of these is shown to generate less information gain than Junius and 
Oosterhaven’s generalized RAS method which was formulated to deal with matrices with 
both positive and negative values.  Overall, while the RAS method continues to be 
commonly used and its choice is often rational, alternative methods can perform as well 
or better along certain dimensions and in certain contexts.  

 

 



  -2-

1. Introduction� 

Biproportional adjustment techniques are commonly used in a variety of modeling 

frameworks and in areas as diverse as demography, transportation research, and 

economic analysis.  In input-output analysis, a particular form of biproportional analysis 

was developed and introduced to the literature by Stone (1961) and Stone and Brown 

(1962).  Their objective was to devise a procedure that could be used to update a given 

input-output (IO) table without having to generate a completely new set of interindustry 

data.  The method they devised, which has come to be known as the RAS method, 

generates new IO coefficients for a target year using a prior year table in conjunction 

with target year total intermediate industry inputs and outputs, and total industry outputs.  

Hence, this method is able to produce estimates of 2n pieces of information using just 

3n pieces of new information. 

Bacharach (1970) later showed that the RAS procedure generated a solution 

equivalent to minimizing information gain (see Theil 1967) expressed in terms of the 

prior and target year IO coefficients.  Hewings and Janson (1980) recast the updating 

procedure more generally in terms of finding matrix solutions that minimize particular 

measures of fit.  They also show, inter alia,  that minimizing information gain given by   

 ln ij
ij

ij

qq a��  

results in the solution ln lnij ij i jq a � �� � � , which can be converted directly into 

ij i ij jq ra s� , with ln r ��  and ln s �� .  This, of course, is in the form of the traditional 

RAS solution.   
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The RAS procedure has thus been shown to have some desirable qualities.  First, 

the result can be described in information gain language.  As Bacharach (1970) notes, 

“one estimates the unknown matrix as that value which, if realized, would occasion the 

least ‘surprise’ in view of the prior”.  The target matrix is, in this sense, as “close” as 

possible to the prior.  Second, the pre- and post-multiplicands have clear-cut effects that 

have motivated some to offer economic interpretations.  Third, the RAS procedure 

preserves the signs of the original matrix elements. And fourth, the iterative solution for 

the RAS method is simple to understand and relatively straightforward to compute.  

These last two qualities are somewhat interrelated.  Even when the original matrix is non-

negative, negative elements can appear in the updated matrix.  When non-negativity 

constraints “are imposed, the simple iterative adjustment is no longer available …. the 

resultant problem makes heavy demands on computer time and programming ingenuity” 

(Lecomber, 1975). 

These qualities notwithstanding, the information gain measure of closeness 

remains but one of many possible specifications (Bacharach 1970) and, as Lecomber 

(1975) notes, “‘closeness’ is not a very clearly defined concept.”  Indeed, one can offer a 

counterpoint to each of the motivations for using RAS listed above.  First, just as 

different location analysis problems demand differing objective functions (such as min-

max, max-min, and max cover), minimizing information gain may well not be the 

preferred objective function for IO matrix updating.  Second, economic interpretations 

followed the introduction of the method, and might well follow the introduction of other 

methods.  And third, although an iterative and computationally accessible solution is 

convenient, present-day computer hardware and software development have been rapid 
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over the past two decades, such that a reassessment of computational constraints might 

well be productive.   

In this paper, we review previous matrix updating formulations, and develop and 

empirically assess the traditional approaches along with a new set of alternatives for this 

problem as it arises in the context of input-output modeling.  We compare the 

performance and attributes of these alternatives to one another and to the commonly 

applied RAS method. 

 

2. The Traditional RAS Method 

For notational simplicity, let ija A� be the known IO coefficients matrix, and let 

ijq Q�  be the new matrix that is the target of the procedure.  Let u , v , and x be a column 

vector of intermediate outputs, a row vector of intermediate inputs, and a column vector 

of total outputs corresponding to the target year, respectively.  Then the RAS procedure 

can be expressed generally as ( , , , )Q f A u v x� .  The iterative procedure is defined by the 

following steps, where superscripts on variables denote the iterative step corresponding to 

the temporary values for those variables. 

The first step is to compute the intermediate output values that would have been 

observed had there been no change in the intermediate IO structure, or 1u Ax� .  The 

changes that have occurred in the intervening period are responsible for differences 

between u  and 1u .  Let � �
11

1 ˆ ˆr u u
�

� , where ^  denotes diagonalization.  Then our first 

estimate of the new IO structure will be 1
1Q r A� .  The row sums of 1Q x now equal the 

known values in u .  The column sums of 1Q x , however, will typically not equal the 
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known values of intermediate industry inputs, v .  The next step in the iterative procedure 

is thus to calculate 1 1 ˆv eQ x� , where e is a summing vector.  Let � �
11

1 ˆ ˆs v v
�

� and compute 

the next estimate of Q as 2 1
1Q Q s� .  Column sums of 2Q x  are now equal to v , but the 

row sums are no longer necessarily equal to u .  Follow the format of the steps described 

above to compute successive estimates of mr and ms .  The procedure will normally 

converge to a stable estimate of Q after a relatively small number of steps.   

One might reasonably ask why, given the available data, one does not update the 

matrix of intermediate transactions directly, and then derive the associated new 

coefficients matrix. Okuyama et al (2002) suggest that because the RAS adjustment 

process “operates on the A matrices, the adjustment process is conservative, making only 

the minimally necessary adjustments to ensure agreement with the vectors u and v.” 

 

3. Alternative Formulations 

Lecomber (1975) presented the RAS approach along with three alternative 

minimands (see Almon 1968, Friedlander 1961, Matuszewski et al 1964) to be 

used in the matrix adjustment procedure.  In this paper, we present Lecomber’s 

alternatives along with six additional minimands.  To simplify presentation, 

variables , ,  , , and A Q x u v denote the input-output coefficients table for the prior 

period, the estimate of the coefficients table for the target period, and the gross 

output, intermediate output, and intermediate input vectors for the target year, 

respectively. 
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Model 1:  Absolute Differences 

The objective in Model 1 is to minimize the sum of absolute differences 

between prior and target period element pairs.   

 

min

. .   for all j

 for all i

0  for all i,j

ij ij

ij j j
i

ij j i
j

ij

z a q

s t q x v

q x u

q

� �

�

�

�

��

�

�
 

A linearized version of Model 1 is more efficient computationally: 

 

� �

 

min

. . for all j

            for all i

 for all i,j

 for all i,j

, , 0  for all i,j

ij ij

ij j j
i

ij j i
j

ij ij ij

ij ij ij

ij ij ij

z t t

s t q x v

q x u

t a q

t q a

q t t

� �

�

�

� �

� �

�

�

� �

� �

�

��

�

�  

This model can therefore be solved optimally using commercial linear programming 

software. 

Model 2:  Weighted Absolute Differences 

All differences in Model 1 are given equal weight, irrespective of 

coefficient size.  Since accuracy in large coefficients is generally a higher priority 

than accuracy in small coefficients, an alternative approach is to weight some 

deviations more heavily than others in the objective function.  Model 2 weights 

the absolute differences by the prior year coefficient value, which has the effect of 

weighting more heavily differences in larger coefficients.  This approach is 
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consistent with the spirit of weighted absolute difference (WAD) measure of 

inter-matrix distance included in Lahr (2001).  However, there is an important 

distinction.  In estimating the new matrix, we generate a new matrix as close (by 

some definition) as possible to the prior.  When the method is evaluated, however, 

we seek a matrix that is as close as possible (adjudged by alternative matrix 

distance measures) to the observed target year table.  When differences in a 

minimand are weighted by coefficient size, an implicit expectation is that large 

coefficients should not experience large changes.   Although there is some 

empirical evidence of a tendency towards temporal coefficient stability (see 

Tilanus 1966), we are aware of no empirical evidence concerning the stability of 

coefficients relative to coefficient size.1  The weighted absolute differences 

measure is expressed as: 

 

min

. .   for all j

 for all i

 0  for all i,j

ij ij ij

ij j j
i

ij j i
j

ij

z a a q

s t q x v

q x u

q

� �

�

�

�

��

�

�
 

The following linearized version of this problem is as follows: 

 

� �

 

min

. . for all j

           for all i

 for all i,j

 for all i,j

, , 0  for all i,j

ij ij ij

ij j j
i

ij j i
j

ij ij ij

ij ij ij

ij ij ij

z a t t

s t q x v

q x u

t a q

t q a

q t t

� �

�

�

� �

� �

�

�

� �

� �

�

��

�

�  
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Again, this linear formulation can be solved optimally using commercial software. 

Model 3:  Normalized Absolute Differences (Matuszewski 1964) 

A third alternative is to modify the weighting in Model 2.  Model 3 is attributed to 

Matuszewski et al (1964), and is a normalized version of Model 1.  In this formulation, 

differences in large coefficients will contribute less to the value of the objective function 

than will equally sized differences in small coefficients.  This imposes a greater penalty 

on changes in small coefficients, resulting in updated matrices whose changes are more 

concentrated in the larger coefficients. 

 

ij

min

. .   for all j

 for all i

0  for all i,j

ij ij

ij

ij j j
i

ij j i
j

a q
z

a

s t q x v

q x u

q

�

�

�

�

�

��

�

�

 

An element ija  cannot not be zero, or this fraction is undefined.  In instances where this 

assumption is violated, some modification is necessary.  As with the previous models, a 

linearized version of Model 3 may be structured: 

 

� �

 

,

min

. . for all j

   for all i

for all i,j

for all i,j

, 0 for all i,j

ij ij

ij

ij j j
i

ij j i
j

ij ij ij

ij ij ij

ij ij ij

t t
z

a

s t q x v

q x u

t a q

t q a

q t t

� �

�

�

� �

�

�

�

�

� �

� �

�

��

�

�  
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Model 4:  Squared Differences (Almon 1968) 

A fourth alternative is Model 4, Almon’s (1968) formulation, which is a squared 

differences version of Model 1.  There is no explicit differential weighting according to 

coefficient size.  Since differences will always be less than unity, squaring the differences 

results in a nonlinear weighting of coefficient change by size.  That is, larger changes are 

weighted in less than proportion to their size. 

 

� �
2

min

. .   for all j

 for all i

0 for all i,j

ij ij

ij j j
i

ij j i
j

ij

z a q

s t q x v

q x u

q

� �

�

�

�

��

�

�
 

Model 4 poses a solution challenge since there is no way to linearize the problem.  

There is commercial software to solve non-linear optimization problems, but current 

capabilities are not equivalent to those for linear programs.  Although it is possible to 

solve some instances of non-linear problems, solutions can be local rather than global 

optima.  Indeed, despite computational advances, capabilities to solve non-linear 

optimization models still may not be adequate to the task. The experiments in this paper 

will provide a good indication of the viability of non-linear formulations in this context. 

Model 5:  Weighted Squared Differences 

 Model 5 weights the squared differences by the size of the corresponding 

coefficient, weighting changes in larger coefficients more heavily than those in smaller 

coefficients.  Otherwise, its properties are identical to that of Model 4. 
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� �
2

ij

min

. .   for all j

 for all i

q 0 for all i,j

ij ij ij

ij j j
i

ij j i
j

z a a q

s t q x v

q x u

� �

�

�

�

��

�

�
 

Model 6:  Normalized Squared Differences (Friedlander 1961) 

Model 6, Friedlander’s minimand, amounts to a normalized version of Almon’s 

formulation, and thus it shares most of Model 4’s properties. 

 

2

ij

( )
min

. .   for all j

 for all i

q 0 for all i,j

ij ij

ij

ij j j
i

ij j i
j

a q
z

a

s t q x v

q x u

�
�

�

�

�

��

�

�

 

Although Lecomber (1975) suggests that “the Friedlander minimand is perhaps the most 

appealing”, there is again an inverse weighting imposed on differences in large 

coefficients, and solutions are not likely to be global optima. 

Model 7:  Global Change Constant 

Although we generally expect input-output coefficient change to be marked by 

some degree of substitution, a growing regional economy might be expected to exhibit 

uniformly increasing coefficients.  Model 7 accounts for this possibility by assigning a 

global proportional change constant that minimizes the sum of errors ( )�  in A Q� �� � . 
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min ( ) ( )

. .  for all i

for all j

0
, 0  for all i

, 0  for all j

i i i i
i i

ij j i i i
j

ij j j j j
i

i i

j j

z

s t a x u

a x v

� � � �

� � �

� � �

�

� �

� �

� � � �

� �

� �

� �

� �

� � � �

� � �

� � �

�

�

�

� �

�

�  

Model 8 : RAS 

Model 8 is the equivalent optimization representation corresponding to the 

traditional RAS approach.  In the context of the properties of the other minimands, 

changes in large estimated coefficients are weighted more heavily than in small estimated 

coefficients. 

 

min ln

. .   for all j

 for all i

0 for all i,j

ij
ij

ij

ij j j
i

ij j i
j

ij

qq a

s t q x v

q x u

q

�

�

�

��

�

�

 

Again, this model can be solved approximately using the iterative technique described 

previously. 

Model 9:  Sign Preserving Absolute Difference Formulation 

Junius and Oosterhaven (2002) recently studied the problem of updating a matrix 

with both positive and negative entries.  Model 9 is a reformulation of Model 1 in which 

the signs of matrix elements are preserved.  Additionally, equal valued changes 

contribute more strongly to the objective function when associated with large 

coefficients.  In this formulation, ij ij ija y q� .  This problem is given by: 
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min 1

. .   for all  j

  for all i

0 for all i,j

ij ij ij ij ij
i j

ij ij j j
i

ij ij j i
j

ij

z a y a a y

s t y a x v

y a x u

y

� � � �

�

�

�

�� ��

�

�
 

The linear equivalent to this model is: 

 

� �min

. . for all j

for all i

1  for all i,j

1 for all i,j

, , 0 for all i,j

ij ij ij

ij ij j j
i

ij ij j i
j

ij ij

ij ij

ij ij ij

z a t t

s t y a x v

y a x u

t y

t y

y t t

� �

�

�

� �

� �

�

�

� �

� �

�

��

�

�  

Although Models 1 and 9 will generate identical solutions with respect to objective value 

performance, the resulting matrix coefficients may differ because of alternate optima. 

 In developing Models 1-6, we presented unweighted, weighted, and normalized 

versions of the minimands.  In the sign-preserving context, however, neither a weighted 

( � �min ij ij ij ijz a a t t� �

� ��� ) nor a normalized absolute difference minimand 

(
� �ij ij ij

ij

a t t

a

� �

�

�� ) makes any intuitive sense.  With the former, the differences would be 

weighted by a negative value for negative original coefficients, and with the latter, the 

differences would be weighted by values of 1.0 or –1.0.  Both possibilities would lead to 

a maximization of differences associated with negative coefficients. 
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Model 10: Sign Preserving Squared Differences 

Model 10 is the squared difference version of Model 9, so it also preserves the 

signs of the original matrix elements.  Equal changes in large coefficients are weighted 

more heavily, but in less than proportion to their size.  Again as in Model 6, ij ij ija y q� . 

� � � �
2 22min 1

. .   for all j

  for all i

0 for all i,j

ij ij ij ij ij
i j

ij ij j j
i

ij ij j i
j

ij

z a y a a y

s t y a x v

y a x u

y

� � � �

�

�

�

�� ��

�

�

 

 Eight of the ten updating methods are clearly interrelated.  The methods involve 

weighting and normalization of change terms, which are absolute squared, and sign 

preserving or not (sign floating). Table 1 summarizes the relationships among these eight 

approaches.2 

 
Table 1.  Interrelationships among input-output updating methods 
 

Absolute Squared Absolute Squared
Unweighted Model 1 Model 4 Model 9 Model 10

Weighted Model 2 Model 5
Normalized Model 3 Model 6

Sign PreservingSign Floating

 
 
 

4. Empirical Assessment 

 To assess the relative performance of the alternative matrix updating methods 

presented in the previous section, we used four primary matrix comparison methods.  For 

comparing entire matrices, we calculated Theil’s U (Theil 1971), the weighted absolute 

difference (WAD, Lahr 2001), and a somewhat less commonly used index of fit, C, 

introduced by Roy, et al (1982) in the context of evaluating input-output aggregation 
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error.  Finally, we used standardized total percentage error (STPE) for multiplier 

assessment (see Miller and Blair, 1985).  In all instances, we compared the estimated 

target year table, Q, to the known target year table.  Since the prior year table is no longer 

used, and for notational simplicity, A refers hereafter to the known target year table.  

Theil’s U, and the WAD are defined as follow: 

� �
2

2
ij ij

ij

a q
U

a
�

�

��

��
 

� �
ij ij ij

ij ij

a a q
WAD

a q

�

�

�

��

��
 

The C index is the difference in entropy between the target year and its estimate as a 

proportion of the target entropy, as follows: 

ˆ AQ

A

H H
C

H
�

�  

where   logQ ij ijH q q� ���  and  logA ij ijH a a� ��� .  The formula for 

standard total percentage error is:  

ˆ
100 ij ij

ij

a q
STPE

a
�

�

��

��
 

The 23-sector US data drawn from Miller and Blair (1985) for 1967 � 1972 and 

for 1972 � 1977 were used in this analysis.3  The results are presented in Tables 2, 3, 

and 4.  Error levels are ranked, both individually and cumulatively.  For solutions, we 

used LINGO, a commercial optimization software package operating on a Pentium 4 at 

1.8 GHz with 512 MB RAM PC, solution times and statistics are shown in Tables 5.  

Solution times are omitted for the linear formulations, as all of these solved in seconds or 
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less.  Solution times for nonlinear models are substantial, even though the analysis was 

based only on 23 sectors.  While software and hardware have indeed advanced 

significantly, solutions for large matrices still appear to consume inordinate amounts of 

time for non-linear models. 

 

Table 2.  Matrix Updating Results:  US 1967 � 1972 

STPE Rank WAD Rank Theil's U Rank C Rank
Model 1 8.969 6 0.013 7 0.335 7 0.042 7 6.8 8
Model 2 9.597 8 0.012 5 0.335 8 0.032 4 6.3 7
Model 3 4.873 1 0.014 8 0.198 1 0.004 1 2.8 2
Model 4 8.277 4 0.012 3 0.310 4 0.053 9 5.0 5
Model 5 9.301 7 0.012 6 0.331 6 0.035 5 6.0 6
Model 6 43.125 10 0.116 10 1.235 10 0.191 10 10.0 10
Model 7 17.352 9 0.015 9 0.339 9 0.042 6 8.3 9
Model 8 7.013 2 0.011 1 0.261 2 0.024 3 2.0 1
Model 9 8.305 5 0.012 4 0.310 5 0.023 2 4.0 3

Model 10 8.275 3 0.012 2 0.309 3 0.048 8 4.0 4

Average 
Rank

Combined 
Rank

 
 
 
Table 3.  Matrix Updating Results:  US 1972 � 1977 

STPE Rank WAD Rank Theil's U Rank C Rank
Model 1 1.054 3 0.014 4 0.174 5 0.002 1 3.3 2
Model 2 1.854 8 0.020 9 0.235 9 0.010 2 7.0 7
Model 3 1.538 6 0.014 3 0.166 4 0.030 8 5.3 5
Model 4 32.889 10 0.119 10 1.265 10 0.084 10 10.0 10
Model 5 1.653 7 0.020 7 0.207 8 0.028 7 7.3 8
Model 6 1.157 5 0.011 2 0.125 2 0.016 5 3.5 4
Model 7 6.718 9 0.020 8 0.190 7 0.033 9 8.3 9
Model 8 0.725 1 0.009 1 0.100 1 0.010 3 1.5 1
Model 9 1.037 2 0.015 5 0.158 3 0.012 4 3.5 3

Model 10 1.147 4 0.019 6 0.187 6 0.022 6 5.5 6

Average 
Rank

Combined 
Rank
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Table 4.  Summary Updating Performance, Both Periods 

 

Overall
67-72 72-77 Average

Model 1 8 2 5 4
Model 2 7 7 7 6
Model 3 2 5 4 3
Model 4 5 10 8 9
Model 5 6 8 7 7
Model 6 10 4 7 8
Model 7 9 9 9 10
Model 8 1 1 1 1
Model 9 3 3 3 2
Model 10 4 6 5 5

Combined 
Rank

 
 

Table 5.  Solution Statistics 
US 66-72

Model Objective Status Iterations
4 0.023 local 943 55
5 0.002 local 1674 172
6 0.465 local 529 122
10 0.024 local 2054 100

US 72-77
Model Objective Status Iterations

4 0.003 local 616 35
5 0.000 local 1522 142
6 0.257 local 1082 78
10 0.003 local 2815 271

Solution 
Time (min)

Solution 
Time (min)

 
 

Ideally, a single model would outperform the rest uniformly.  Indeed, the 

combined rankings of the models in Table 4 indicate that the RAS approach performed 

best not only overall, but for both updated matrices.  There are several cases, however, in 

which a model ranked highly for one period but performed poorly for the other.  There 

also are cases in which RAS did not rank highest for all measures of fit.  This lack of 

consistency suggests that the suitability of a particular model formulation for a given 

transition period will be a function of the distinct nature of that inter-period structural 

change. In evaluating the remaining models, then, we might well place a higher value on 

those that performed relatively consistently well for the two periods.   
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Models 1 and 3, absolute differences and normalized absolute differences, each 

ranked second for one transition period, but ranked much lower for the alternate period.  

In the case of Model 1, its performance for 1972 � 1977 was quite strong, but for 1967 

�1972, it ranked a very poor eighth, while Model 3 ranked as low as fifth for 1972 

�1977.   Model 9, the sign-preserving absolute differences model, was thus second best 

overall, ranking third in both updating trials.  The strong performance of Models 9 bodes 

well for its use in cases where sign preservation is needed.  Of course, this conclusion can 

only be tentative until the models are tested on matrices with both positive and negative 

entries. 

A final result of note is the poor performance of Models 4, 5, and 6, variants of 

the squared differences models.  Models 4 and 6 performed even worse for one period 

each than did Model 7, the global change constant model. Given their nonlinearity, the 

explanation may lie in the possibility of local rather than global solutions for these 

models.4   

 

5. Matrices with Negative Values 

To gain preliminary insight into the problem where negative entries are present in 

the matrices, we analyzed the example used by Junius and Oosterhaven (2002).  Table 6 

presents the relevant data and results for our analysis.  The data include the original table 

that was to be updated, the updated tables using a) traditional RAS, b) Junius and 

Oosterhaven’s GRAS, c) sign preserving absolute differences, and d) sign preserving 

squared differences.  Since Junius and Oosterhaven chose to maintain consistency, to the 

greatest degree possible, with the minimum information gain objective, Table 6 also 
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presents the information gain measures associated with each updating method.  The RAS 

method is known to behave erratically in the presence of negative values, and as 

expected, it performed most poorly (generated the largest information gain value), 

followed by Model 9, the GRAS method, and Model 10.  Since there is no known true 

matrix for the hypothetical example, we can only assess performance on the basis of 

information gain.   

Although what can be said definitively concerning these results is limited, we can 

conclude at the very least that: 1) there are available matrix updating methods that are 

superior to RAS in some instances; and 2) the GRAS procedure does not generate a 

minimum information gain solution, since Model 10 generated a feasible solution with a 

smaller information gain value.  Nevertheless, given the nonlinearity of Model 10, it is 

once again subject to non-global solutions for a given problem, and it may be 

computationally intractable for problems of any substantial size.  The GRAS solution is 

much simpler computationally, and generates an information gain value close to that of 

Model 10 and far better than that of the RAS. 

Table 6.  Negative Entries Assessment 
Original Table RAS (J&O) Table

0.778 0.200 0.294 1.500 0.937 0.238 0.353 1.500
0.222 0.600 0.471 -0.500 0.286 0.762 0.602 -0.385
-0.222 0.000 0.118 -0.500 -0.222 0.000 0.045 -0.115

Model 9 Absolute Differences Table Model 10 d Differences Table
0.633 0.150 0.456 3.000 0.648 0.179 0.400 2.992
0.167 0.450 0.544 -1.000 0.196 0.421 0.560 -1.003
-0.200 0.000 0.000 -1.000 -0.244 0.000 0.040 -0.989

Information Gain
GRAS (J&O) Table Model 9 0.642

0.877 0.228 0.348 1.120 Model 10 0.536
0.282 0.772 0.628 -0.100 GRAS 0.540
-0.158 0.000 0.024 -0.015 RAS 0.908  
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6. Summary 

This paper set out to re-examine a range of alternatives to the RAS, biproportional 

matrix updating procedure.  The study was motivated by a consideration of the reasons 

why the RAS method ultimately became the approach of choice for updating input-output 

models.  Given a wide range of possible minimands in an optimization framework, we 

sought to determine whether advances in computer hardware and software might have 

offset the convenience of the iterative biproportional solution.  Further motivation for the 

study came from an interest in alternative procedures that could accommodate matrices 

containing both positive and negative entries. 

The performance of the sign-preserving alternatives was encouraging, suggesting 

that they might be well useful for matrices with both positive and negative elements.  

This is especially true for Model 9, since it is linear and can be solved easily. Model 10 

was shown to outperform the GRAS method in terms of information gain, but only in the 

small table example. Solutions for Model 10 may not be feasible for matrices of much 

larger size.  The relative utility of Models 9 and 10 and of the GRAS method given 

negative values awaits further analysis. 

In combined ranks, none of the alternative minimands outperformed the RAS 

approach when all values in the matrices were positive.  Further, despite substantial 

advances over the last three decades, nonlinear formulations continue to stretch 

computational and methodological limits, and global optima are not assured.  The results 

of our analysis, albeit limited in variety of matrices studied, suggest that while the RAS 

method continues to be commonly used and its choice is often rational, alternative 

methods can perform as well or better along certain dimensions and in certain contexts. 
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Endnotes 

                                                 
�Earlier versions of this paper were presented at the Fourteenth International Conference on Input-Output 
Techniques, October 10-15, 2002, Montreal, Canada, and the 49th meeting of the Regional Science 
Association, International. The authors wish to thank the participants of those meetings and anonymous 
reviewers for helpful comments. 
 
1 Thanks to an anonymous reviewer for raising this issue.  Further work oriented toward identifying 
theoretically desirable characteristics of matrix updating models is clearly warranted. 
 
2 A reviewer notes that absolute and squared differences can be grouped into the same category, the Hölder 

norm at the power p:  
p

ij ij
i j

a q��� with p varying from 1 to infinity.  Likewise, the difference 

weighting term could be represented generally by adding the term m
ija , i.e., 

pm
ij ij ij

i j

a a q���  with m 

varying from -1 to 1. 
 
3 Preliminary analyses using the 49-sector Washington state data for 1963 � 1967 and 1967 � 1972 
generated similar results for the linear models, but exceedingly long solution times for the nonlinear 
formulations.  We therefore present results only for the US table analyses. 
 
4 The additive components of Theil’s U were also computed. The RAS approach results in a near-zero bias 
estimate for the 1972�77 update, but an observable bias for the US 1967�72 update, although all models 
generated observable bias estimates for that period.  The most striking variance proportion was associated 
with Model 3 for the early period matrix pair, but there were almost universally larger variances for the 
later matrix pair.  This indicates an error structure that is correlated with the actual values for this period, 
suggesting that structural change processes in the later period were fundamentally different than in the 
earlier period. 
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