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Ge Lin 

A Spatial Logit Association Model 
for Cluster Detection 

In this paper, I propose to set out a logit spatial association model for bina y spatial 
events and develop a scan algorithm to search for spatial associations. I extend the 
traditional logit model with a spatial autocorrelated component so that the model in- 
cludes not only known risk factors, but abo spatially autocorrelated regions as control 
or explanatory factors. The case study of West Virginia lung cancer shows that the 
model eflectively captures cool and hot spots in lung cancer mortality. 

1. INTRODUCTION 

Categorical models in spatial association analysis differ from traditional spatial as- 
sociation models in several important ways. First, categorical data analysis is based on 
frequencies or counts; hence, the number of observations in each cell in a multiway 
table is an important factor in determining goodness-of-fit statistics. In calculating 
Moran’s I for crime rates, for example, it does not matter if an observed rate is 1/1000 
or 100/1OO,OOO as long as the rate is one per thousand, but these rates are likely to 
make some difference in a categorical statistic, such as the chi-squared test, because 
it evaluates the deviance between the observed and expected frequencies (Agresti 
1990; Raftery 1995). Second, traditional spatial statistics are typically affected by val- 
ues from adjacent or nearby areas, and they often ignore the diagonal elements in the 
spatial weight matrix, suggesting that deviations between observed and expected val- 
ues in each of the regions are ignored (Rogerson 1999). A spatial categorical model, 
by the nature of model estimation, would always include spatial (adjacent areas) and 
non-spatial (diagonal) components. Third, since multiway frequency tables are the 
basis for categorical data analysis, covariates, such as sex or age groups can be incor- 
porated as parts of a categorical model testing process (Dig& 2000). The traditional 
spatial autocorrelation statistical tests, in contrast, are not designed to include covari- 
ates. It is, therefore, desirable to have a set of spatial statistical tests for categorical 
data analysis. 
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Even though statistical analysis for categorical data was introduced to geography in 
the late 1970s, its applications to spatial associations and cluster analyses are few. The 
logit model-a special case of the categorical model-is a case in point. Besag (1972) 
proposed a theoretical model of space-time autologistic regression for point data, in 
which a logit of a given attribute at a spatial point is modeled as a conditional proba- 
bility of point attributes nearby. Haining (1982; 1983) introduced this model to geog- 
raphy by reanalyzing some classical data in Hagerstrand (1967). However, due to the 
complicated estimation method at the time and the lack of a goodness-of-fit statistic, 
Besag’s conditional autologstic regression, to my knowledge, has never been used in 
practical applications in geography. Moreover, this model cannot be directly applied 
when specific point locations are unknown, in which case spatial analysts often resort 
to dummy variables at an aggregated spatial unit to capture regional effects (Senior, 
Williams, and Higgs 1998; Lin 2000). 

Early work by Fingleton (1983a; 1983b) sparked an opportunity for extending the 
traditional logit model to spatial logit models using aggregated data. With an empha- 
sis on introducing loglinear models, Fingleton fitted the classical Lansing Woods 
point data for the presence and absence of oak or hickory trees on a grid. In the 
model fitting process, Fingleton employed the concept of spatial autocorrelation and 
included the observed and expected numbers of oak trees within a number of grid 
cells to adjust for the chi-squared test. However, since the adjustment is only made at 
the global level, the test cannot be used to identify spatial clustering. In addition, in 
order to properly adjust for the chi-squared statistics, the model requires pre-testing 
the spatial relationship between distance range and the existence of a given tree 
species similar to determining distance range in variogram estimation. Nevertheless, 
the test represented a significant advance in attempting to bring spatial information 
into the modeling process. Comparing the small but significant step of Fingleton and 
relatively steady progress in the development of traditional spatial association models 
(e.g., autocorrelation), Wrigley (1985,307) commented on the need to narrow the ap- 
parent knowledge gap between traditional autocorrelation research and new methods 
for categorical data analysis. 

Recently, there has been some progress in bridging this gap. Dubin (1995; 1997) 
specified and developed an estimation routine for a logistic model with spatial depen- 
dence. To model firms’ behaviors for adopting innovations, Dubin used spatial dis- 
tance between firms as an information matrix to capture the spatial dispersion 
process. Like a linear regression with a spatial lag, Dubin’s model is likely to correct 
model bias when explaining firms’ behaviors, but it cannot reveal location-specific 
spatial association. More recently, Leyland et al. (2000) tested spatial effects of event 
data (deaths) within a multilevel modeling framework (see Best, Ickstadt, and 
Wolpert 2000 for a Bayesian version of the model). Based on a log-linear model con- 
trolling for age and sex, these researchers modeled mortality due to neoplasm at the 
postal code level while controlling spatial association effects by the row-standardized 
spatial weight matrix at an aggregated geographical level (postal code group). The 
spatial multilevel model includes potential covariates (e.g., age, sex) and the spatial 
context (e.g., neighbors), thus representing a significant advance to modeling multi- 
variate spatial events. However, similar to the models of Dubin (1995) and Fingleton 
(1983b), this model accounts for spatially correlated events rather than the explicit 
revelation of location-specific spatial association or clustering. 

In this paper, I set out a spatial logit association model for a binary spatial event at 
an aggregated spatial unit. I extend Fingleton (1983b), Dubin (1995) and Leyland et 
al. (2000) to capture spatial clustering. I adopt the definition of spatial clustering as 
either significantly high or low rates of clustering (Marshall 1991), a definition differ- 
ing from local spatial association (Sokal, Oden, and Thomson 1998). The latter in- 
cludes potential negative spatial association or the juxtaposition of high next to low 
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values, while the former does not. In the following sections, I first describe the logit 
and spatial logit models and then demonstrate their utility using West Virginia lung 
cancer data. Finally, I offer some concluding remarks with regard to the applications 
and limitations of the model. 

2. LOGIT MODEL FOR LOCAL SPATIAL ASSOCIATIONS 

The logit model is often used to assess the effect of relative risk or the odds of suc- 
cess versus failure. Here the success (case) is a generic term to describe an event, 
which can be an undesirable event such as disease or crime. Fienberg (1977) sets out 
a general formulation for the logit model as a Generalized Linear Model (Nelder and 
Wedderburn 1972; McCullagh and Nelder 1989). For a categorical variable of mor- 
tality (dead = 1, alive = 2)  by race (e.g., white = 1, black = 2, Hispanic = 3) ,  for ex- 
ample, the saturated logit model for the expected number of cases or deaths (Mrl) 
versus noncases or alive ( Md) for each specific race group r can be written as: 

where C is the grand mean, and r is the index of race. C,, pertains to race-specific ef- 
fects relative to the grand mean of log-odds. Suppose that, instead of racial groups, 
we treat this Poisson realization over a total of n regions indexed by i, the numbers of 
observed cases (Mi,) and noncases (M, )  for spatial unit i can be described by the sat- 
urated logit model: 

Like equation ( l ) ,  C is a constant for the overall effect of cases and Ci, parameters 
are marginal effects for n - 1 regions. C and C i ,  are subjected to ANOVA-like nor- 
malization constraints. Unlike equation (I), the category of Cil is based on region (i = 
1 to n )  rather than race or any other potential non-spatial categorical variables. This 
model has a very close connection to the commonly seen logistic regression or linear 
logit model (Wrigley 1985). If all the frequencies in (2) are disaggregated to individ- 
ual observations, we have Y,, Yz,. . . .YN independent binary random variables indexed 
by g with the probability of having a case Pr(Y, = 1) = Pg for the gth individual. The 
logit, which is the logistic transformation of the probability of having a success, is: 

where Xgi denotes the ith region categorical covariate and pi is the corresponding co- 
efficient measuring the regional effect. Equation ( 3 )  is constrained in such a way that 
the only covariates are n - 1 regional dummy variables. It can be easily shown that 
equations ( 2 )  and ( 3 )  are equivalent. Based on model ( 3 ) ,  Diggle (2000) added a spa- 
tial component S(x) to account for unexplained spatial variation. Similarly, a spatial 
component can be added in equation ( 2 )  to make it a spatial logit model. 

However, equation ( 2 )  has already been saturated, and it does not have any statisti- 
cal power, except in that it fully describes the relative strength and magnitude for 
cases and noncases in each region relative to C. For this reason, statisticians often 
start with the independence model, where region specific coefficients (C,,) in ( 2 )  are 
dropped. The resultant model, which is often used as the null hypothesis (Ho), tests 
whether all the Cil parameters in (2) are zero. If they are, cases among various spatial 
units are independent, i.e., 
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log(Mi,/Mi2) = C (4) 

As demonstrated in Appendix A, this test can be achieved through the evaluation of 
the goodness-of-fit statistic via the likelihood ratio test statistic (L2) for a given num- 
ber of degrees of freedom (df). 

When the independence model does not fit, known risk factors can be included: 

where P k  are the coefficients for potential risk factors (xk), or ecological variables per- 
taining to each region. We have seen this type of model in revealing region- or 
metropolitan-specific mobility, where region-specific risk factors could be push fac- 
tors, such as economy, crime, and amenity factors. If an autocorrelated regional effect 
is suspected, while not knowing any potential risk factors, the spatial association 
terms can be used in place of risk factors in (5) :  

where pi is the coefficient for spatial effect indexed by the ith region and its neighbors 
covered by wi in a spatial weight matrix W. If wi = 1, the region is adjacent to i inclu- 
sive (i.e., including the ith region itself), and 0 otherwise. Equation (6) is the so-called 
spatial-autocorrelated logit model, because the only explanatory variables are adja- 
cent areas. In both equations (5) and (6), the number of risk factors and the number 
of regional vectors cannot exceed n - 1, the maximum number of parameters for the 
saturated model. Hence, we have n - 1 potential degrees of freedom for (6). Regions 
covered by each wi would be spatially associated if its inclusion improves the model fit 
substantially. In a more general case, we can include both risk factors and regional au- 
tocorrelated terms by combining (5) and (6): 

Again, the sum of the risk factors k and spatial associations i in (7) cannot exceed the 
maximum number of degrees of freedom n - 1, or (k  + i) < (n - 1). 

In all the above equations, additional sample categories can be included by subdi- 
viding the sample into several categories (e.g., age, sex, time). For example, when an 
additional category (e.g., sex) is included in (7) we have an independence model not 
only between spatial units, but also between the control groups (e.g., male/female). 
The corresponding spatial logit model is: 

where the p subscript indexes person specific characteristics, which in this case is sex 
(s). CS1 represents marginal effects for subgroups indexed by s ,  which can interact 
with both potential risk factors and spatial associations: 

In equation (9), p @ k  and piswi are parameters for interaction terms indexed by k p  
and ip respectively. Again, the sum of k,  i, ks, si terms should be less than (n*s - 1). 
The task is to identify potential local spatial associations using the remaining number 
of degrees of freedom. 
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When the traditional autocorrelation tests are compared with the spatial logit asso- 
ciation model, they complement each other. Moran’s I and Getis-Od G test for global 
autocorrelation whereas the LISA and Gi (G,*) test for local association. Although 
these test statistics serve their purposes well, the result from a local test is separated 
from the corresponding global test. In other words, a significant result from a local 
test does not necessarily translate into the significant P-value for the corresponding 
global test (Anselin 1995). In some situations, it is desirable to evaluate the results 
from both the global and the local tests when making statistical inference about local 
associations (Sokal et al. 1998; Ord and Getis 2001; Tiefelsdorf 2002). The spatial 
logit model is complementary to these traditional test statistics, because it is a model- 
based test, and there is no separation between local and global tests. When a model is 
rejected by the likelihood ratio test at the global level, at least one statistically signifi- 
cant parameter must exist at the local level. Conversely, if there is a region covered by 
a statistically significant local association parameter, the likelihood ratio test must be 
significant. The evaluation of local parameter estimates, which could be assisted by 
various spatial test statistics, is an integral part of model testing process. 

3. SPATIAL ENUMERATION ALGORITHM FOR LOCAL ASSOCIATIONS 

When little is known about potential risk factors, searching for local spatial associa- 
tions is a way to identify hot or cool spots on one hand, and to uncover potential risk 
factors on the other. Here, a hot spot refers to spatial clustering of high values or ele- 
vated events, while a cool spot refers to clustering of low values or less frequent 
events (see Figure 1). For cluster detections, equation (6) can be applied to test the 
strength of spatial logit associations. In this case, we have n - 1 potential spatial asso- 
ciations to be tested using some of the n - 1 degrees of freedom-the number of 
logits (n )  minus the number of linearly independent parameters (2 - 1 = 1). Since 
the likelihood ratio chi-squared test can compare two alternative models with a 
nested parameter structure (Appendix I), we can design an enumeration algorithm to 
sequentially search for a potential set of spatial associations by retaining one signifi- 
cant association while searching and testing for the next one. 

First, the existence of the independence model is tested. If this model is rejected, 
wi (for i = 1 to n - 1) can be sequentially entered into the model to test for the exis- 

FIG. 1. Hot Spot Illustration. NOTE: Cases and noncases are generated randomly shown in empty grids. 
HI is a center grid with elevated cases, and H,s are high value grids adjacent to H i .  
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tence of local associations. A significant s atial cluster captured by pi will reduce the 

During the first step of searching, there might be multiple significant local associa- 
tions, and only the one with the largest G2 reduction is selected. Once the most sig- 
nificant pi is selected, the wi vector corresponding to this term is dropped from the 
next round of search for the second most significant local association term. This 
process is analogous to the forward stepwise search in a linear regression model. The 
only difference here is that in stepwise regression, the search is for significant inde- 
pendent variables, whereas in this enumeration algorithm the goal is to search for au- 
tocorrelated regions using a pre-specified structure. Suppose that PI, which 
corresponds to adjacent regions covered by wl,  is selected in the first round of n - 1 
searches. Then wi+l is constrained and the search process for w2 to w , - ~  is repeated 
for n - 2 times for the second most significant local association. Once the second 
local association is identified, its corresponding wi is dropped from the search set and 
the n - 3 searches proceed in the third round. This search process will stop when an 
additional pi will no longer improve the model fit, which will be reflected by an in- 
significant parameter and weak contribution to the reduction of G2 for one df. The 
theoretical upper limit of the number of searches could reach (n - l)!. 

In reality, n - 1 local associations are unlikely, as they would represent n - 1 pock- 
ets of distinct hot or cool spots, which is equivalent to fitting the saturated model. An- 
other way to look at this is through the interpretation of parameter estimates. A 
positive and significant pi means that the ith region and its neighbors are a hot spot or 
in an excessive pocket of cases as opposed to noncases. The inclusion of this parame- 
ter will significantly improve the model fit relative to the independence model. A 
negative and significant pi, in contrast, means that the inclusion of the ith region and 
its neighbors as a “cool” spot improves the model fit significantly. Since significant as- 
sociations tend to be clustered, once the most significant pocket of regions is in- 
cluded, some potential pockets adjacent to the most significant one are not likely to 
be significant. Suppose that in Figure 1, H stands for high values while empty cells 
are values that are randomly distributed. If the pocket of excessive values centered at 
the ith region is the most significant, then a pocket centered at a region adjacent to 
the ith region (Hi,)  is less likely to be significant, even though it would have been sig- 
nificant if the ith region were not included. Hence, the number of local spatial associ- 
ations are not likely to be more than the number of units (n) dvided by the number 
of neighbors. 

To illustrate this point, I randomly generated population-at-risk and sample events 
based on the 10 by 10 lattice in Figu’re 1 with the population and sample means being 
2,000 and 50, respectively. The distance between each grid cell centroid is one mile, 
and the weight matrix is based on the queen’s rule for the 0-1 adjacent matrix. For 
this random sample, the likelihood ratio chi-squared statistic is 111.16 with 99 df, 
which is not enough to reject the independence hypothesis between sample events. I 
then randomly raised the number of events by 50 to 60 percent around a non-bound- 
ary 3 by 3 grid. In other words, if h = 50, then an elevated risk would correspond to 
h = 75 to 80 for a hot spot. This time, the G2 increases to 208.78 with 99 df, a signif- 
icant deviation from the independence model. To search for this local association, I 
used the enumeration algorithm described above. In this particular case, the largest 
likelihood ratio chi-squared test is found at the center (Hi) for G2 = 108 with 98 df. 
With wHi being included, any additions of wi centered at Hi, are not significant. The 
sole hot spot being identified is encircled by the 3 by 3 cells around the center Hi. 

Since the autocorrelated spatial logit model is a special case of the well-defined 
standard logit model, it may not be necessary to do the standard power test. However, 
to double-check if the Ho also applies spatially, I used the same lattice from Figure 1 
to randomly generate cases from 1 to 3 with an exposure or at-risk population of 

likelihood ratio chi-squared statistic (G r ) with one additional degree of freedom. 
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around 1,000. This simulation was repeated 1,000 times, and each time the enumera- 
tion algorithm was invoked to search for potential logit spatial associations. The sim- 
ulations did not reject any independence model when cases and noncases were 
generated randomly. 

4. EMPIRICAL EXAMPLE 

To apply the logit spatial association model, I selected the age-adjusted number of 
deaths due to lung cancer for the fifty-five counties in West Virginia. The data set, 
which was originally compiled by the National Cancer Institute, covers a twenty-five- 
year period (1970 to 1994) and is disaggregated by sex, number of deaths, and at-risk 
population. The standardization is over the twenty-five-year period with the number 
of alive equal to the number of population-at-risk minus the number of deaths. 

As a part of the exploratory analysis, I started with the spatial and sex inde- 
pendence model, in equation (9), without any known risk factors: log(Mk(l)/Mis(2)) = 
C,, + Cpiui + Cp,wj with all p terms being set to zero. In this model, s indexes sex, 
an if cscf, is the parameter for sex with male as the reference category. This model says 
that lung cancer cases are spatially independent, and the difference in sex is propor- 
tional to the spatial pattern by a factor of cscf, for females. This model was rejected at 
G2 = 215 with 108 df (P-value < 0.0001). To include spatial neighbors as an autocor- 
related component, the enumeration algorithm was invoked to search for all signifi- 
cant pi. Since it is possible that local spatial associations exist for both males and 
females, or for just one of the sex groups, the search should include the interaction 
terms between sex and wj, and the likely outcomes are that pi is significant for both 
males and females or for males or females only. 

Table 1 lists results starting with the independence model. Note that in fitting a 
model, the smaller the deviance or G2 the better. To evaluate each model, I compare 
the reduction of G2 for a given number of df. With Model I being the baseline, Model 
I1 to Model V each improves the fit of the model significantly at the P < 0.01 level for 
one degree of freedom over the previous model. For example, Model I1 improves G2 
by 31 percent ([215.25 - 148.90]/215.25) over the rejected independence model. 
Model 111, which includes Lincoln County and its adjacent counties, improves the 
model to 109 G2 = 109 with 106 df. At this level, the hypothesis that the model with 
one local association term does not fit the data cannot be rejected. However, it does 

TABLE 1 
Results of Model Fitting Using a Forward Stepwise Searching Procedure 

G(n 0x1 044 P4" P I 7  Pa G2 df G:-G:-, 

Model I 
Model I1 
Model 111 
Model IV 
Model V 
Model VI 
Model VII" 
W, counties 

0.322 
0.322 0.654 
0.322 0.68 
0.322 0.683 
0.322 0.671 
0.322 0.726 
0.317 0.727 

Pendleton 

215.24 108 
148.9 107 63.34"" 

1.254 108.79 106 41.11"" 
1.231 1.178 99.05 105 9.74"" 
1.14 1.171 0.894 92.05 104 7"" 
1.128 1.167 0.883 0.891 86.71 103 5.31" 
1.131 1.168 0.867 0.893 86.68 103 5.34" 

Lincoln Logan Doddridge Grant 

NOTE: "'P-value at the 0 . O l F f i c a n t  level: 'P-value at the 0.05 significant level. 0,; in model VII applies to males only while other ps apply 
to both males and females. other models (I to VI) are for both sexes. 

1. I used Bayesian information criteria (BIC) to check all of the models in Table 1 (Raftery 1986). All of 
the models had negative BIC values, suggesting that they are generally acceptable in terms of sample size. 
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not mean that the model fits very well. Hence, the subsequent models are not only 
designed to improve model fit, but also to reveal other potential local associations.' 
Indeed, the goodness-of-fit statistics for Models VI and VII are almost identical ( P  < 
0.021) compared to Model V, but the Pl7 term in Model VII applies only to males. In 
other words, Model VII attributing the cool spot at Doddridge County to males only 
is equivalent to Model VI attributing it to both males and females. However, since 
Model VII narrows the covariate to males and gains more information than it does 
from VI, Model VII could be preferred. To be conservative, however, I chose Model 
V with P < 0.01 as the final model, which captures four local association terms in two 
clusters: one low rate cluster (cool spot) around Pendleton and Grant Counties, and 
one excessive rate cluster around Lincoln and Logan Counties (see Figure 2). 

The interpretations of parameters follow the typical logit model. All ps and Cs are 
in exponential terms or odds ratios. C,,!, is the odds ratio for females as opposed to 
males. Females are about one-third as likely as males to die from lung cancer. Those 
in counties adjacent to Lincoln (covered by w4) and Logan (covered by Coun- 
ties are respectively 1.128 and 1.167 times as likely to die from lung cancer as those in 
the grand mean, or the reference group. In other words, everything else being equal, 
a person regardless of sex is 12.8 percent ([1.128 - 1]*100) more likely to die from 
the disease than a person from counties not covered by any clusters. Similarly, one 
can evaluate cool spots centered on Grant and Pendleton Counties.2 

FIG. 2. Odds Ratios of West Virginia Lung Cancer Hot and Cool Spots 

2. If a single coun? contributes most to a hot or cool spot, the effect could be from an outlier, a spatial 
unit that independent y appears in the study area but its value is extremely high or low. Althou h formal 
testing methods require a new test statistic, an analyhcal treatment of spatial outliers can be fevelo ed 
based on a deleted residual method by comparin two likelihood ratio tests. Under a spatial logit modefkg 
framework, if a single region contributes most to 8 e  elevated risk within a pocket of high value regions, the 
addition of this region is likely to result in a significant1 large deviance pullin away from the clustered 
area as a whole. I used this method to systematicall evaLate diagonal units, an% found that none of them 
reduce the deviance so such that the identified hotjdool spots became insignificant. All of the models were 
implemented with S +. Program codes and data are available upon request. 
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In addition, Logan and Lincoln Counties are two overlapping hot spots, meaning 
that counties covered by both have even greater odds-1.316 (1.128 * 
1.167). Likewise, counties covered by both wS3 (centered at Pendleton County) and 
wzl(centered at Grant County) are overlapping cool spots with an odds-ratio of 0.641 
(0.726*0.883). The overlapping nature of parameterizations is quite helpful because 
it does not treat counties within a clustered area equally. This feature is distinctly dif- 
ferent from other local spatial statistics. For example, the Getis and Ord (1992) Gi* 
test is able to identify local associations, but the values of G: cannot be inferred 
jointly even if the two are adjacent. In the case of the male sample, (he local Gi*s are 
positive and significant for Logan and Boone Counties, suggesting a cluster around 
these two counties that cover roughly the same area as the Lincoln-Logan cluster. 
However, the magnitude of the excess cannot be evaluated for counties covered by 
both G,*-Boone and G,*-Logan. As for slight differences in terms of cluster coverage, 
we should remember that Gi* is a rate-based statistic test (occurrence versus at-risk 
population), while pi is an odds ratio-based statistical test for a given model. In addi- 
tion, Gi* is calculated for males only as opposed to males and females in pi. 

As indicated in equation (7), potential risk factors can be included in the model. 
For exploratory purposes, I examined potential relationships betyeen excessive 
deaths due to lung cancer and coal mine activities, because areas around Logan are in 
the cluster of intense coal mining activities. I included the total number of coal mine 
workers in 1990, and this variable was not significant in Model VII. This result is ex- 
pected, as the employment variable only reflects a particular year, while the number 
of deaths covers the twenty-five-year period. People die from lung cancer long after 
they are exposed to carcinogenic air-particulates. In addition, coal mine workers tend 
to retire to nearby counties, and the spatial association could capture the spatial lag 
due to migration (Sabel et al. 2000). Also explored was population density as a proxy 
for human activities, or air quality, and this variable was not significant. In the ab- 
sence of county-level data with potential risk factors, such as smoking patterns and air 
quality, the autocorrelated spatial logit model fits the data fairly well. 

and 

5. CONCLUSIONS 

This paper sets out a spatial logit model that accounts for both spatial associations 
and potential risk factors. The model is autocorrelated because the explanatory vari- 
ables of regional logits are neighboring regions, and it is a logit model because it can 
incorporate likely covariates within the subgroups and known risk factors similar to 
the conventional logit model. The parameter estimates from the model explicitly re- 
veal spatial clusters in terms of odds ratios. These odds ratios account for sample size 
in each spatial unit and overcome some of the potential problems associated with 
sample size in LISAs and Getis-Ord G, as well as the global Moran’s I (Besag and 
Newel1 1991; Oden 1995; Bao and Henry 1996). Like local Gj’ and spatial chi- 
squared (&) tests, the spatial logit model includes the diagonal elements in the spatial 
weight matrix, which is able to reveal spatial clustering by including all the spatial 
units within the cluster. Since traditional spatial test statistics such as Moran’s I and 
LISA are exploratory in nature, while the spatial logit model is a model-based test 
that relies on exploratory data analyses, the two approaches are complementary. As 
spatial statistics make inroads from geography into other social and biological sci- 
ences, the need for the logit spatial association model is likely to increase. 

As pointed out by Diggle (2000), when a spatial stochastic model broadly fits the 
available data, any autocorrelated spatial structure represents the unexplained varia- 
tion. In this regard, although the logit spatial association model is designed to identify 
“hot” or “cool” spatial logits, it can be useful in identifylng the cause of spatial auto- 
correlation of unknown origin. In the case study, the cluster of excessive deaths due 
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to lung cancer was not really centered at the counties with the highest mining activi- 
ties. However, this effect is, perhaps, more meaningful. Rather than die directly from 
the long-term exposure to air-particulates, people often die from lung cancer long 
after they are exposed to air-particulates (Pope et al. 2002). When the time series-air 
quality and mining data are lacking or cannot reflect the spatial dispersion process of 
moving to a nearby county, the spatial associations uncovered by the logit spatial as- 
sociation model make more sense. 

Even though the spatial logit model is used to detect clustering of spatial events, 
the model can also be used to account for the unobserved autocorrelated effect. For 
example, to model mobility over various spatial units, such as towns, one may find 
that individuals from certain towns are more likely to move than those from other 
towns even though various individual mobility factors such as age, education, income, 
and number of siblings are controlled. What might be at work are the network effects 
that are often unobservable from survey data. To account for spatial autocorrelated 
logits in terms of moving and staying, we can use the enumeration algorithm to search 
for pockets of spatially autocorrelated movers as additional controls in a logit or logis- 
tic model. This process will not only remove some potential bias due to the spatial lag 
(Anselin 1988), but also explicitly reveal spatial clusters of movers. The latter, in turn, 
will assist researchers to unravel additional explanatory variables. 

Any statistical model is based on a set of assumptions. First, the logit spatial associ- 
ation model is based on a Poisson realization for spatial events with binary outcomes. 
When the sample size is too large, any events, even the spatially random ones, tend to 
be significant, because the likelihood ratio chi-squared test only evaluates the de- 
viance between a model and the observed data. In the case of a large sample, an ad- 
ditional term often improves the model fit, but such an improvement may be trivial in 
terms of the information gained. One may need to consider Bayesian information cri- 
teria and a variety of goodness-of-fit criteria (Raftery 1995). Second, like Gi* and local 
R,  this logit model does not differentiate between the contributions of the reference 
unit and its adjacent area units. In some cases, a single outlier might cause a signifi- 
cant local effect. An algorithm accounting for the effect of outliers or single regions 
effect is more appropriate in a loglinear model than the logit model (Lin 1999). 
Third, the reference surface for the spatial logit spatial association model is the grand 
mean based on the independence model, and it is very similar to Gi*. However, Ord 
and Getis (2001) demonstrated that the reference surface, similar to the univariate t- 
test for two groups, might be more desirable in some situations. Fourth, even though it 
is possible to use a distance matrix along with a distance function (e.g., exponential or 
power), the spatial adjacency weight matrix was used in part to avoid repeat or multiple 
testing problems (Tango 2000). Future research needs to investigate the effects of dif- 
ferent weight matrices and different reference surfaces. Finally, the current version of 
the logit spatial association model only includes two outcomes, but this association can 
be extended to multinomial logit models with three or more outcomes. 

APPENDIX I 

According to Agresti (1990, 95-96), when the total N is large, -2L2 follows chi- 
squared distribution with the degrees of freedom being the difference in the dimen- 
sions of parameter spaces under two alternative hypotheses (e.g., Ho and Ha). Since 
the predicted logits and expected frequencies can be derived from parameter esti- 
mates, the likelihood ratio chi-squared statistic can be easily calculated: 

G2 = 2C( Observed)log( Observed/Expected) 

where the summation is over all cells, and the expression is -2 times the logarithm of 
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the likelihood (L'). In the case of n regions with my and rkii denoting the observed and 
expected frequencies respectively for ith unit (i = 1 to n.I andjth category ( j  = 1 or 
2), we have 

with the degrees of freedom being the number of logits minus the number of linearly 
independent parameters. For the saturated logit model (2) ,  the df = 0; for the inde- 
pendence logit model (log[Mi,/Mi2] = C), the df = n - 1. The likelihood ratio chi- 
squared statistic is: 

-2[L2(H,-Independent model) - L2(Ho-saturated model)]. 

Since the 2L2 for the saturated model = 0, this expression equals G2 for the indepen- 
dence model with n - 1 df. The task of comparing the two models is, therefore, 
equivalent to evaluating the difference in G2 for the two models. This model compar- 
ison strategy applies to any two alternative models with a nested parameter structure. 
In this particular case, the independence model is the alternative one, and it is nested 
under the saturated model with n - 1 fewer parameters than the saturated model. 
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