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Abstract         
 

 Decentralized Synergetic Control of Power Systems  

 

by 
Taoridi Ademoye 

Doctor of Philosophy in Electrical Engineering 

West Virginia University 

Professor Ali Feliachi, Ph. D., Chair 

 

The objective of this dissertation is to design decentralized controllers to enhance the transient stability 

of power systems. Due to the nonlinearities and complexities of the system, nonlinear control design 

techniques are required to improve its dynamic performance. In this dissertation a synergetic control 

technique is being proposed to design supplementary controller that is added to the exciter of the 

generation unit of the system. Although this method has been previously applied to a Single Infinite 

Machine Bus (SMIB) system with high degree of success, it has not been employed to systems with multi 

machine. Also, the method has good robust characteristic like that of the popular Sliding Mode Control 

(SMC) technique. But the latter technique introduces steady state chattering effect which can cause wear 

and tear in actuating system. This gives the proposed technique a major advantage over the SMC. In this 

work, the method is employed for systems with multi machine. Each of the machines is considered to be 

a subsystem and decentralized controller is designed for each subsystem. The interconnection term of 

each subsystem with the rest of the system is estimated by a polynomial function of the active power 

generated by the subsystem. Particle Swarm Optimization (PSO) technique is employed for optimum 

tuning of the controller’s parameters. To further enhance the performance of the system by widening its 

range of operation, Reinforcement Learning (RL) technique is used to vary the gains of the decentralized 

synergetic supplementary controller in real time. The approach is illustrated with several case studies 

including a SMIB system with or without a Static Var Compensator (SVC), a Two Area System (TAS) with 

or without an SVC, a three –machines-nine-bus system and a fifty machine system. Results show that the 

proposed control technique provides better damping than the conventional power system stabilizers 

and synergetic controllers with fixed gains.   
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Chapter 1 

Introduction  

1.1 Problem Statement 
The electric power system is known to be one of the most intrinsic complex interconnected systems 

that constantly changes in structure as a result of disturbances, load changes, faults and addition of 

new devices or equipment.  The quality of life of the citizens of any nation has often been associated 

with the amount of electric power consumption of that nation and electricity is known to play a 

major role in the growth and sustenance of its development and because of this significant 

importance,  it is expedient to  guarantee the reliability and stability of the system. Due to more 

stringent regulation reforms and more demand for electricity, the complexity of electric power 

system has increased stupendously and many of its components are forced to operate at points 

close to their stability limits. Also, due to increase in complex nature, a power system is considered 

to be a large-scale multiple-input multiple output system, which comprises of subsystems that are 

distributed over a large geographical area. This makes the objective of stabilizing the entire system 

a difficult task [1]. To maintain a stable and reliable service, the electric grid must remain rigid, 

unperturbed and capable of withstanding a variety of disturbances. This has been a crucial concern 

when considering or evaluating the behavior of a power system. 

According to IEEE / CIGRE joint task on Stability Terms and Definitions [2], power system stability 

is defined as the ability of an electric power system,  for a given operating condition, to recover or 

regain a state of operating equilibrium after subjection to a physical disturbance,  with most system 

variables bounded so that the entire system remain intact. These disturbances might be due to load 

changes, loss of long transmission line or trip of large generator(s) from the electric grid. 

The ability of the power system to maintain synchronism when exposed to a severe transitory 

disturbance is known as transient stability. Stability depends on both the initial operating state of 

the system and the severity of the disturbance. Transient stability analysis examines the dynamic 
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behavior of power system electrical networks, electrical loads, and electro-mechanical equations of 

motion of the interconnected generators for as much as several seconds following a disturbance. 

This analysis is done using many levels of modeling details. Mathematical formulation is governed 

by differential algebraic equations (DAE) that represent the dynamics of the generators in 

connection with the grid. These generators are electromechanical systems that are required to run 

in synchronism. Under normal operating conditions, an electrical power system is near equilibrium, 

with only minor deviations from true-steady state conditions caused by small variations in the 

loads.  

 

Due to large disturbances on the power system, such as a short circuit, there are significant, almost 

instantaneous, variations in the rotor speeds of some generators in the system. Consequently, 

lightly damped electro-mechanical modes of oscillation may be exacerbated. During the oscillations 

activated by these modes, kinetic energy of rotating masses is exchanged between the generators 

while electric power flows through the network [3]. The power swings further produce oscillations 

in voltages and currents which can lead to damage of equipment or disruption in monitoring 

devices if the oscillation is sufficiently large. Oscillations in voltages can also lead to voltage limit 

violations causing protective devices to trip and forcing equipment outages. Two types of 

oscillations are of more concern [3]: 

• Local modes or machine-system modes are associated with the swinging of the units at a 

generating station with respect to the rest of the power system. The term local is used 

because the oscillations are localized at one station or a small part of the power system, 

typically with a frequency of Hz21− . 

• Interarea modes are associated with the swinging of many machines in one part of the 

system against machines in the other parts. They are caused by two or more groups of 

closely coupled machines being interconnected by week ties. Typical frequency range of 

such oscillations is Hz11.0 − . 

Control is an important element to maintain the stability of an interconnected power system. Power 

system controls greatly affect the damping of electric power angle oscillation. Because of the 

necessity of guaranteeing power system stability and the effort of the control elements in achieving 

that, numerous form of control structures or/and techniques are being explored and employed. 

Control elements can be installed on generators, transmission lines, and distribution side. In this 

dissertation, elements (controllers) are installed on generators and transmission lines to ensure the 

stability of the entire grid network. 
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As the electric power system is growing rapidly, the dynamic performance of the controls, and the 

method of analyzing the stability of the system is also evolving. The design and implementation of 

control techniques to improve the stability of large scale power systems is becoming more 

intriguing and challenging. 

 

One way of improving system stability is via excitation system [4]. The excitation system can 

regulate the terminal voltage of the generator when it is used with an automatic voltage regulator 

(AVR). With supplementary control, excitation system can also render oscillation damping to power 

systems. Another way of enhancing system stability is via the use of Flexible Alternating Current 

Transmission (FACTS) devices [5]. They are based on high-voltage and high-speed power 

electronics devices. They increase the controllability of power flows and voltages improving the 

utilization and stability of existing systems. The range of FACTS devices includes thyristor based 

applications, e.g. Static Var Compensator (SVC) and Thyristor-Controlled Series Capacitor (TCSC) 

and the conventional High-Voltage Direct Current (HVDC) transmission systems, and Gate Turn-off 

(GTO) based applications, e.g., Static Synchronous Compensator (STATCOM). The FACTS device 

utilized in this work is SVC. 

 

Most control techniques available for designing excitation’s supplementary controller of power 

systems are based on linearization of the system’s model around an operating region. This may not 

provide a pragmatic solution to the stability problem. A significant large disturbance may poise 

danger to the system stability because the nonlinearities in the system cannot be adequately 

compensated for.  Hence, the need for nonlinear control designs tools.  Complete centralized control 

scheme is also infeasible due to difficulties in transfer of information among various components of 

the system because of the physical distance, which may lead to unnecessary increase in the cost of 

transmission of electricity [24]. Hence, the needs for a decentralized control scheme. Design of 

controller using nonlinear control techniques is becoming popular as a result of its ability to 

improve control performance beyond what can be accomplished with linear control techniques.  

 

1.2 Approach 
 

The control methodology adopted in this dissertation is as follow. On the excitation control, we 

designed supplementary controller using synergetic control technique to enhance the transient 
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response of the power system. The method has been previously applied to a SMIB system [33], and 

it was shown through simulation that the controller gives a better performance than the 

conventional power system stabilizer. Also, the method has good robust characteristic like that of the 

popular Sliding Mode Control (SMC) technique. But the latter technique introduces steady state 

chattering effect which can cause wear and tear in actuating system. This gives the proposed technique a 

major advantage over the SMC. In this dissertation, the technique is adopted to develop decentralized 

controllers for multi machine power systems. Firstly, each generator in the system is first 

considered as a subsystem within the entire electric power system. Mathematical model of each 

subsystem is achieved by a set of algebraic differential equations (ADE), which also include 

coupling among subsystems. The coupling term between each subsystem and the rest of the system 

is assumed to be a polynomial function of the active power generated by that subsystem. Synergetic 

control technique is then employed to each subsystem. The parameters of this controller are 

properly tuned with the aid of the Particle Swarm Optimization (PSO) technique.  

 

To further enhance the performance of the system by widening its range of operation, Reinforcement 

Learning (RL) technique is used to vary the gains of the decentralized synergetic supplementary 

controller in real time. Instead of having pre-selected constant parameters for the controller, the 

optimum values of the parameters are obtained at first using PSO, and then some of these 

parameters are re-adjusted through RL. The approach is illustrated with several case studies including 

a SMIB system with or without a Static Var Compensator (SVC), a Two Area System (TAS) with or 

without an SVC, a three –machines-nine-bus system and a fifty machine system. Results show that the 

proposed control technique provides better damping than the conventional power system stabilizers  

 

 

1.3 Overview 
This dissertation consists of the following chapters: 

• Chapter 1: Introduction 

• Chapter 2: Literature Review 

• Chapter 3: Synergetic Control Approach and Application to Power Systems 

The chapter presents an overview of synergetic control technique. Comparison is made 

between this technique and sliding mode technique. The technique is employed to design 

decentralized excitation supplementary controller to enhance the transient stability of 
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power systems and the designed controller was implemented on a Single Machine Infinite 

Bus (SMIB), three machine nine bus, two area and fifty machine systems. 

• Chapter 4: Coordination of Synergetic Excitation and SVC Damping Controllers 

This chapter presents a way of improving the performance of the designed synergetic 

controller by the addition of Static Var Compensator (SVC) device to a node in the system, 

designing a supplementary controller for this device and simultaneously tuning the gains of 

the two controllers using PSO technique. The technique is employed successfully on two 

area, and SMIB systems. 

• Chapter 5: Decentralized Synergetic Control with Variable Structure 

Reinforcement learning scheme is presented and employed to vary some of the gains of the 

synergetic controller. The results show improvement in the performance of the controller 

for generator exciter in a multi machine system. 

• Chapter 6: Summary and Conclusion 

This chapter summarizes the merit of the developed nonlinear control and the 

improvements achieved by designing nonlinear decentralized damping controls using the 

proposed technique. Suggestion for future work is also provided. 

• Appendix: A-D include system benchmark data, and E includes MATLAB computer codes. 

 

All case studies presented in the transient stability enhancement part are performed with the help 

of the Power Analysis Toolbox (PAT), a simulation package developed by the Advanced Power and 

Electricity Research Center (APERC) at West Virginia University [46]. 
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Chapter 2 

Literature Review 

 

In this chapter, a literature survey of previous studies relating to damping of oscillation in electric 

power systems is presented. The survey is organized as follow. In section 2.1 work related to 

transient stability enhancement is presented. In section 2.2 the objective of this dissertation is 

detailed. 

 

2.1 Literature Survey 
The prevention of electric power systems from loss of synchronism after the occurrence of a large 

disturbance is of great interest. Stability study of power system oscillations depicts that power 

systems comprise of many modes of oscillation as a result of interactions among various 

components of the system. Many of these oscillations are due to swinging of the rotor of some of the 

synchronous generators in the system. If these oscillations are not quickly damped, the stability of 

the system can be loss. One pragmatic way of enhancing the stability of synchronous generator is 

via excitation system equipped with supplementary controller [3]. Excitation control provides 

efficient voltage control and ensures system’s stability when subjected to large disturbance. 

  

Supplementary control is often added to actuators in power system to improve the dynamic 

performance of the system.  It gives additional input signal to actuator (exciter or FACTS devices) to 

dampen oscillations in power systems. The initial notions of supplementary control were 

established in [10]. The most popular or proven one is the Power System Stabilizer (PSS). It 

consists of wash-out and lead-lag stages. The wash-out stages, comprising of a stabilizer gain and a 

time constant (also known as wash-out time constant), acts to bring the steady state of the input 

signal of the PSS to zero. The lead-lag stage (comprising of two first order phase compensation) on 

the other hand provides component of electric torque in phase with speed deviation. The most 
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common input to this controller are shaft speed deviation, integral of electric power and the 

terminal frequency [3].  These inputs are local measurements of each generator and thus the 

controller can operate without the need for remote signals from other generators. 

The performance of a PSS depends on the values of its parameters.  Many researchers have been 

focusing on ways of tuning these parameters to aid the effectiveness of the controller. Most of the 

tuning approaches are off-line, many of which are based on eigen value analysis where linearized 

state space model of the system are first obtained, and then computation is done based on the 

model [11]. In [12], frequency domain robust control is employed to design new PSS structure. The 

approach is based on unstructured uncertainty model which make use of optimization over a class 

of stabilizing controllers to force a closed loop transfer function to be as close as possible  to the 

desired one [13]. Linear adaptive control has been implemented in [14] for retuning the PSS 

parameters. And in recent years, more sophisticated off-line tuning techniques based on 

evolutionary algorithms have been developed for tuning controller parameters. The advantages 

have the merit of simultaneously tuning the parameters through the framework of multi-objective 

optimization problem. Genetic Algorithms (GA) have been employed in [15, 16], Tabu Search (TS) 

optimization technique in [17], and Particle Swarm Optimization (PSO) in [18]. Also in recent years, 

Reinforcement Learning (RL) technique is utilized for on-line tuning of gains of conventional PSS 

[19, 20]. 

The control schemes discussed above only deal with small disturbances about an operating point. 

For large disturbances the pre-fault, fault on, and post fault operating points may differ and in spite 

of  the success achieved through the course of the researches listed above, PSS may not perform 

properly during certain contingencies. Also, because of the system to be controlled (power system) 

is highly nonlinear in nature; the need for developing nonlinear control algorithms is growing 

immensely. 

Many nonlinear control schemes have been applied previously with various degrees of 

accomplishment. Some of them are the direct feedback linearization techniques [21, 22] in which 

the nonlinearity terms is canceled using some form of transformation. To perform this, a large 

control effort is usually required. Application of direct feedback linearization technique is also 

extended to multi machine power system [23]. To obtain decentralized controller, the 

interconnection bounds between generator and the rest of the system is considered to be a 

polynomial function of absolute rotor angle and speed deviation. Simple linear relationship 

between excitation field voltage and internal voltage of the generator is assumed in order to obtain 
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bound on the coupling term. The proposed technique is implemented on two machine infinite bus 

system with objective of maintaining stability of the system under occurrence of large fault. 

 

Backstepping method has also been employed with great success [24, 25]. In [24], backstepping 

with Particle Swarm Optimization tuning technique is presented. Backstepping controller with 

variable gains is developed and tested on a two area system in [25]. Although a decentralized 

backstepping controller is designed for each generator, the gains were varied using a centralized 

reinforcement learning algorithm which makes the entire control structure not to be completely 

decentralized.  

A methodology based on the sliding mode technique is proposed in [26]. The basic notion of the 

technique was established in [27]. The technique involves defining or finding a stable and invariant 

sliding surface (or hyperplane) and synthesizing a controller to steer the motion of the system onto 

the surface. The dynamical behavior of the system when confined to the surface is known as ideal 

sliding surface .The major advantages of this technique are twofold: reduction in order of the 

system, and the insensitivity of the motion of the system, after being confined to the surface, to 

parameter variations implicit in the input channel [28]. Despite good robust characteristic, this 

control usually introduces steady state chattering effect that can cause wear and tear in actuating 

system. 

 

Another concept similar to the sliding mode technique is the novel synergetic control technique. 

The techniques are similar in the steps taken to synthesize the control signal: constructing a stable 

surface, and designing a controller to force system trajectories to this surface. But they differ in the 

manner the trajectories are being forced to reach the surface. In the case of sliding mode, the 

trajectories are forced to reach the surface within a finite period of time. This introduces 

discontinuity into the control function. But in the case of synergetic control, the transition is done 

exponentially (in a smoothen version). This eliminates the problem of chattering that is a major 

setback for sliding mode technique. However, it may take a bit longer period of time for a system 

with synergetic controller to stabilize.  

 

Some major works that have been previously done with this technique are: the analysis of 

synergetic control approach is detailed in [29] and the advantage of the method over sliding mode 

approach is given in [30], the synergetic control strategy is developed for nonlinear speed control 

of a Permanent Magnet (PM) synchronous motor for DC-DC boost converters [31, 32], a nonlinear 
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power system stabilizer is developed for a single machine infinite bus [33]. None of these papers 

have addressed the decentralized synergetic control design problem. 

 

Coordination between controllers also plays a crucial role once the controllers are in action at the 

same time. Following a contingency in the system, lack of coordination of among various controllers 

acting together may yield unpleasant performance of the entire system. For instance, a system 

having exciter and FACTS device like SVC may behave poorly or destabilize if the two 

supplementary controllers (for the exciter and the SVC) are not properly coordinated. Some works 

on coordination of SVC and exciters are presented in [34, 35]. The approaches employed in this 

work are based on a linearized model of the system which may not adequately capture the 

complexity in the dynamics of the system. 

 

2.2 Objective of the Dissertation 
The main concerns addressed in this work are 

• Utilize a nonlinear control technique to design excitation’s supplementary controllers. The 

method employed in this work is synergetic control technique. 

• Obtain a procedure for optimally tuning the parameters of the designed controller 

• Implement the proposed controller on a Single Machine Infinite Bus system, and multi 

machine systems 

• Coordinate the supplementary controllers to the excitation and SVC systems by 

simultaneously tuning their parameters. 

•  Enhance the stability of the system under different operating conditions. This is achieved 

by varying some of the parameters of the synergetic controller. 

• Compare the proposed control performance with the existing power system stabilizer 

(PSS) 
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Chapter 3 

Synergetic Control Design Approach 
and Application to Power Systems 
 
 In this chapter, the technique of synergetic control design is introduced in 3.1.  The procedure of 

obtaining the control law is given in 3.3. Three examples are given to show the effectiveness of the 

technique. The application of the technique to power systems is illustrated from 3.2 to 3.5. Problem 

formulation for generator is given in 3.3. Particle Swarm Optimization, PSO, technique for function 

optimization is discussed in detail in 3.4. The purpose of this technique is to obtain optimum set of 

gains for synergetic controller. Single machine infinite bus, three machine nine bus test system, two 

area system and fifty machine system are presented in section 3.5 for implementation of the 

proposed techniques. 

 
 
3.1 Synergetic Control 
 
Synergetic control was developed by Kolesnikov and his coworkers [36]. It is a progressive 

approach in the area of control systems. The approach is often referred to as the stabilization and 

control via system restriction and manifold invariance [29].  The major idea of the concept is to 

confine the motion or trajectories of the system to a manifold (or hyperplane). This includes forcing 

the system onto the manifold in case it is not on the manifold already. The control problem 

addressed in this work is basically stability (i.e. damping any oscillation that may arise due to 

disturbance in the system) and since the system is forced by the synergetic controller to take the 

characteristics of the manifold, the manifold has to be constructed in such a way to ensure that the 

closed loop system behavior is stable. The design approach can thus be said to comprise of two 

major steps: the construction of a stable manifold (or hyperplane); and the synthesis or design of a 

controller so that the trajectories of the system are forced onto, and subsequently remain on, the 

hyperplane. The objective of the controller can be seen as the one that causes the manifold to be 

invariant and attractive. 



11 
 

 

The technique of synergetic control is similar to that of Sliding Mode Control (SMC) in the way the 

manifold is being constructed. However, it differs from SMC technique in the manner the system is 

forced to reach the manifold. In the case of SMC, the system is forced to reach the manifold in a 

finite period of time which introduces some form of discontinuities in the control action and thus 

creating chattering on the manifold. This chattering can cause wears and tears in the actuating 

components of the system. But in the case of synergetic control, the system is caused to reach the 

manifold in an exponential manner and thus removing chattering effect. 

 

3.2 Procedure of Synergetic Control 
As mentioned in the previous section, the synergetic control design procedure follows the 

Analytical Design of Aggregated Regulators (ADAR) method. The steps involved in the control 

design are summarized as follow [30] 

 

Assume the system to be controlled is delineated by a set of nonlinear equation of the form: 

 

),( uxfx =    (3.1) 

 

where x and u are the system state variable vector and the input vector respectively. The 

procedure is started by defining a macro-variable as a function of the state variables: 

 

)(xϕϕ =    (3.2) 

 

The characteristic of the macro-variable can be selected in accordance to the control specifications. 

For example, to regulate or stabilize the output of the system. The manner the macro-variable is 

defined or formulated determines how the system behaves once it reaches the manifold.  The 

process can be repeated to formulate as many macro-variables as the number of control channels 

(for instance, two macro-variables are required for a system with two input channel). It has been 

shown in [29], that (3.3) is a solution of the optimum problem whose objective function is given in 

(3.4) 

 

0=+ϕϕK    (3.3) 
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∫=
ft

t

tLJ
0

),,( ϕϕ 

   (3.4) 

where  },{ 0 ftt are the initial and final time, and L is defined as: 

 

   ϕϕϕϕϕϕ TT KKtL += ),,(   (3.5) 

 
 
and K is a design parameter that specifies the time it takes the macro variable to converge to zero 

or evolve into the manifold, which can also be viewed as the  speed at which the system variable 

reaches the manifold. By substituting (3.1) and (3.2) into (3.3) we can obtain 

 

0),( =+
∂
∂

=+
∂
∂ ϕϕϕϕ uxf

x
Kx

x
K 

   (3.6) 

 

By defining an appropriate macro-variable and choosing the parameter K , the control output can 

be derived from (3.6). 

There is no unique way of constructing the manifold. The manner the manifold is constructed 

depends on the type of problem (regulation or tracking) and determines the quality of the 

performance of the controller. The method adopted in this work, the same as the one adopted in 

Slotine [37], is illustrated with the help of the examples given below.  

 

Example 1: Consider a linear time invariant system whose dynamics is defined by the state space 
given below: 
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   (3.7) 

 
Assuming we want to move the state of the system from any initial point ( ), 2010 xx to a location of 
particular interest ( ), 21 ff xx . This is known to be a regulatory problem. New variables known as 

error variables, are defined as: fxxx 111 −=  , and fxxx 222 −= . And (3.7) can be re-written as: 
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where   
 

  
)(

)(

2221212

2121111

ff

ff

xaxaf
xaxaf

+−=

+−=

       (3.9) 

 

The macro variable is usually defined as a polynomial differential function of the error variable. The 

degree of the polynomial is 1−n  with n being the order of the system i.e. in general case; the macro 

variable is defined as: 

 

    
,)( 1

1 x
dt
d n−+= λϕ

         (3.10).  

 
In the case of the system defined by the equation in (3.7) or (3.8), the micro variable is defined as: 
 

       11 xx λϕ += 
 (3.11) 

 
The solution to (3.6) is given as: 
 

    
t

Ke
1

)0(
−

= ϕϕ  (3.12) 

 
where )0(ϕ is the initial value of the macro variable. We can also see that as ∞→t , 0=ϕ ,which 

when substituted into (3.12) will produce a manifold given by: 

 

  011 =+= xx λϕ 
 (3.13) 

 

For the manifold defined in (3.13) to be stable, 0>λ . The solution of (3.13) will produce, 

021 == xx and thus fxx 11 =  and fxx 22 = . Thus, the control input obtained when (3.6) is solved 

is said to have forced the system to the manifold. 

 

Example 2:  Consider a nonlinear system whose dynamics is given by the following differential 

equation: 
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uxxxx =++ 4sin5
2

2
1  αα  (3.14) 

 

where 1α  and 2α  are known constant parameters. This equation can be written in state space form 

as: 

uxxxx
xx
xx

+−−=

=
=

1
5
22

2
313

32

21

4sinαα





 (3.15) 

 

Where ,1 xx = xx =2  and xx =3  are the state variables. The control design objective for the 

system (3.15) is to regulate the state to the origin of 3R . Using the procedure described in the 

example above to construct the manifold, we have 

 

1
2

2

2

1
2

321 )2()(),,( x
dt
d

dt
dx

dt
dxxx λλλϕ ++=+=

 (3.16) 

 

The synergetic control law is obtained by solving the first- order differential equation, 

 

0),,(),,( 321321 =+ xxxxxxK ϕϕ  
(3.17) 

Solving this differential equation for u , we obtain 

 

1

2

231
5
22

2
31 )2()12(4sin x

K
x

K
x

K
xxxu λλλλαα −+−+−+=

  (3.18) 

 

With λ chosen to be 5, the effect of varying K  is showing in Figure 3.1. Figure 3.2 depicts the effect 

of varying λ with K set to 0.1 and Figure 3.3 shows the trajectory of the state variables for 5=λ  

and 1=K . The initial condition of the system is }2,3,5{ −− and the values of the model parameters 

1α  and 2α  x are 2.25 and -0.187 respectively. 
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We can see from Figure 3.1 that for a constant value of λ , the settling time increases and the 

overshoot decreases with increase in K , and from Figure 3.2 that for a constant value of K , the 

settling time decreases and the overshoot increases with increase in λ . Thus, the choice of these 

two variables has tremendous effect on the performance of the closed loop of the system.   

 

 

 
Figure 3.1: Trajectory of variable 2x for different values of λ  

 

 

 

Figure 3.2: Trajectory of variable 2x for different values of K  
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Figure 3.3: Trajectories of the system variables for 1,5 == Kλ  

 

 

  As mentioned earlier, the manner in which the macro-variable is formulated depends on the 

nature of the system we are working with. The next example shows another way of formulating the 

macro-variable. 

 

Example 3:  Consider the nonlinear dynamical system [38] 

 

101
3

121 )0(,)1(1 xxxxx =−++=
 (3.19) 

 

20212 )0(, xxuxx =+=
 (3.20)    

          

The objective is to determine a controller that globally stabilizes the system.  For this example, both 

Synergetic Control and Sliding Mode techniques are employed in order to compare the performance 

of the controllers synthesized by the two approaches. 

 

Sliding Mode Technique 

As it has been stated earlier, this technique involves defining a stable manifold or hyperplane (or a 

sliding surface), and synthesizing a controller that will force the system onto the manifold. The 

hyperplane used in this example is defined as: 
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0,)()( 1 >+= λλϕ x
dt
dx

 (3.21) 

 

The controller to be synthesized using this technique consists of two parts: the equivalent and the 

discontinuous parts i.e. deq ututu += )()( . Where equ , and du are the controller’s equivalent and 

discontinuous parts respectively. The equivalent part of the controller is obtained from the solution 

of (4) 

 

0=ϕ  (3.22) 

 

Equation (3.23) is known to be the dynamic of the system on the sliding surface. This equation 

ensures the invariance of the surface i.e. once the trajectories of the system reach the surface; they 

are bound to remain on it. By solving (3.23) we can obtain equ to be: 

 

0))1(3( 1
2

1211 =+−+=+= xxxxx  λλϕ  

 
))1(1)()1(3( 3

12
2

11 −+++−−−=∴ xxxxueq λ
  (3.23) 

 

The discontinuous or the switching component of the controller is obtained using the η - 

reachability condition [38, 2]. This part of the controller is to guarantee that the trajectories of the 

system are forced onto the sliding surface. Therefore, the switching part of the controller is given 

as: 

 

)sgn(ϕη−=du  (3.24). 

 
η is a strictly positive constant. Its value determines the time at which the system’s trajectory will 

reach the surface. 

NB: The reachability condition may be written mathematically as: 

 

0lim      and       0lim
-00

><
→→ +

ϕϕ
ϕϕ


  (3.25) 
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The controller obtained above, i.e. deq uuu += will ensure that this condition is satisfied. Define a 

Lyapunov function for the state ϕ as: 

 

2

2
1)( ϕϕ =V

 (3.26) 

 
The derivative of this function will give  

ϕηϕ −≤2

2
1

dt
d

,     and integrating from 0 to ft , we have  

ff tt ηϕϕ −≤− )0()(  

Therefore, the time it takes the trajectory of the system to reach 0=ϕ , represented by ft , satisfies 

 

η
ϕ )0(

≤ft
  (3.27) 

 
Therefore, for this example, the control law that forces the system’s trajectories onto the manifold 

(or sliding surface) and ensures they stay on that surface afterward is given as: 

 

)sgn())1(1)()1(3( 3
12

2
11 ϕηλ −−++−−−= xxxxu   (3.28). 

 
Synergetic Control Technique 

Using the same macro-variable or hyperplane defined in (3.21), the controller is obtained from the 

equation of evolution given (3.17). The control law is obtained as: 

 

)1)1(3)()1(1()1( 2
1

3
121 K

xxxx
K

u ++−−++−+−= λλ

  (3.29) 

 

The simulation of the two control laws, (3.28) and (3.29) are depicted in the Figures 3.4, 3.5, 3.6 

and 3.7. The initial states of the system are assumed to be 3)0(,2)0( 21 −== xx , and the value of λ  

is taken to be equal 5. The control objective is to bring the states of the system to the origin 

(equilibrium point). To implement the controller expressed by (3.28), two different values of η (

)2,0=η are used. The first value of η is the case when only the equivalent part of the controller is 
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used. The simulation result of this case is depicted in Figure 3.4. It can be shown from this Figure 

that the system’s trajectories are parallel to the sliding surface and they will never be able to  

 

 

 

Figure 3.4a: The hyperplane for 0=du  

 

 

 

 
Figure 3.4b: Variable 1x  for 0=η  
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Figure 3.4c: Variable 3x  for 0=η . 

 
 
 
 
 

 
Figure 3.5a: The hyperplane for 5,2=η  
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Figure 3.5b: Variable 1x  for 5,2=η  

 
 
 
 

 
Figure 3.5c: Variable 2x  for 5,2=η  
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Figure 3.6: System response when the control law synthesized by using synergetic control approach is employed. The  
value of k is taken to be 1. 
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Figure 3.7: System response when the control law synthesized by using synergetic control approach is employed. The value of 
K is taken to be 0.1. 
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reach it. In order to bring or force them onto the surface, the discontinuous part of the controller 

has to be present, i.e. 0>η . Figures 3.5 shows the system’s trajectories and the hyperplane for 

5 and ,2=η . 

 

We can see from Figure 3.5 that increasing the value η will cause the trajectories of the system to 

reach the surface as quickly as possible. But this will cause the chattering effect to be more 

pronounced. The results of the simulation when the controller expressed by (3.29) is used to 

stabilize the system are depicted in Figures 3.6 and 3.7 for 0=K  and 1.0=K respectively. It can 

be seen from these Figures that chattering effect is completely removed when this controller is 

employed. 

 

3.3 Power System Problem Formulation 
    

   In general the complete differential-algebraic model of any power system can be written as [3]: 

 

    ),( Vxfx =  (3.30) 

 
 

     ),( VxIYV =   (3.31) 

 

where the parameters are represented as: 

 

• x -state vector of power system model 

• V - bus voltage of the system 

• I -current injection vector into the system 

• Y - admittance matrix, including constant impedance loads and the modification due to 

faults in the system 

 

Both functions ),( Vxf and ),( VxI are nonlinear and their values can be obtained if the operating 

condition ),( Vx is given. The initial values of (3.30) and (3.31) are 0 and ),( 00 VxI  respectively. 

A multimachine power system consists of several synchronous generators connected through 

transmission lines. A decentralized damping controller is to be designed for this system. To design a 

decentralized controller, each machine needs to be modeled as a decoupled subsystem. The 
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decoupling is obtained by estimating the effect of the rest of the system on this particular machine 

with a quadratic function of the active power generated by it. Throughout this study, each 

generator or subsystem is modeled by a third-order single axis model.  

 

 

3.3.1 ith-machine model 

 The dynamical model of the thi  generator with excitation control is given as [39, 40]: 

 
Mechanical Equations: 
 
 

)1)(()( −= tt ioi ωωδ   (3.32) 
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   (3.33) 

 
 

Generator Electrical Dynamic: 
 
 

qiqidididifdi
doi

qi IEIxxtE
T

E ))()((1 ′−′−−
′

=′
   (3.34) 

 
 

Electrical Equations: 
 
 

)()( tuktE ficifdi =
   (3.35) 
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1
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1
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)sin()(
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=   (3.39) 

 
Synchronous generator and transmission line variables are given in Table 3.1. 
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Let eioioio P,1, =ωδ  be the desired values for the power angle, angular speed and the active power 

of the i-th generator, and denoting by:  

ioiix δδ −=1 , 12 −= iix ω , and eioeii PPx −=3  

the dynamic model of the thi  subsystem can be written as: 

 

ioi xωx 21 =    (3.40) 

i
i

i
i

i
i x

H
x

H
Dx 322 2

1
2

−−=                        (3.41) 

 

Table 3.1: Synchronous parameter and transmission line variables 

iδ       ---   Rotor angle in radians 

iω      ---   Speed of the generator in p.u. 

mioP    ---  Mechanical input power in p.u., assumed to be constant 

)(tPei ---   Active electric power delivered by the generator in p.u. 

iD       ---  p.u. damping constant 

iH      ---   Inertia constant in seconds 

qiE′     ---   Equivalent EMF in the excitation coil in p.u. 

fdiE   ---    Transient EMF behind the quadrature axis 

doiT ′    ---    Direct axis short circuit time constant 
)(tQei --    Reactive power of the generator in p.u. 

diqi II , --    Quadrature and direct axis currents 

cik      ---    Gain of the exciter 

fiu      ---    Controller input to the exciter 

didi xx ′, --   Direct axis reactance and transient reactance 

ijB             Elements of susceptance matrix 
 

 

By differentiating (3.36) and substituting (3.34), (3.35), (3.37) and (3.39) into derived derivative 

we have 

 

qiqiqiqiei IEIEP  ′+′=
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This can be written as 
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 (3.42) 

 

Let us define a new variable fiv   as: 

 

ieidoimioqidididifiqicifi xQTPIIxxuIkv 2)( ′−−′−−=
  (3.43) 

 
and let us denote the coupling term between the thi  subsystem and the rest of the system  by: 
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By substituting Eqs. (3.44) and (3.45) into (3.43) we have 
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  (3.45)  

 
 
Getting fiu  from (3.44) is feasible since 0≠qiI in the normal working region of a generator.  Eq. 

(3.42) is obtained with the assumption that eiomio PP = .  It includes information pertaining to the 

entire system. It is being considered as an external disturbance to the subsystem and it is modeled 

as a polynomial function of the active power generated by this subsystem, i.e. 2
3231 iiiii xcxcd +≈ , 

where ic1  and ic2 are unknown constants to be determined using adaptation law [24, 41].  
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3.3.2 Controller Design 
 
In this section, a decentralized synergetic controller is designed. Given a subsystem described by 

Eqs. (3.40), (3.41) and (3.45), a macro-variable for the ith generator is defined using the procedure 

of Slotine and Li [17] as: 

 

    ;)( 1
2

2

2

iiii x
dt
d

dt
d ααϕ ++=

   (3.46) 

 

For the manifold that will evolve from Eq. (3.45) to be stable, 0>iα .Substituting (3.40) and (3.41) 

into (3.46), we can re-express the macro-variable as: 
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   (3.47) 

 

The dynamic of the evolution of the macro-variable for the ith subsystem is given as: 

 

       0=+ iiiK ϕϕ    (3.48) 

 
By substituting Eq. (3.47) and its derivative into Eq. (3.48) we have 
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   (3.50) 

 

this gives 

 

i
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23
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  (3.51) 

 

By substituting Eq. (3.45) into (3.51) we have 
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Let us define 2
3231 ˆˆˆ

iiii xcxcd +=  , where ic1ˆ   and ic2ˆ are the estimate of ic1  and ic2 . The objective is 

to approximate the coupling term using adaption law and let us define a Lyapunov function as: 
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   (3.53) 

 

 where  i1Γ  and i2Γ  are adaptive gains. By differentiating (3.53) we have  

 

iiiiiiiii ccccccV 2
1

222
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   (3.54) 

 
Let define 

 

iiii xc 311̂ ϕΓ=
   (3.55) 

2
322ˆ iiii xc ϕΓ=

   (3.56) 

 

By substituting (3.45), (3.55) and (3.56) into (3.54) and solving for fiv  to make (3.54) negative, we 

can obtain 
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Substituting (3.51) into (3.35) reduces V into 

 

01 2 <−= i
iK

V ϕ

   (3.58) 

 



30 
 

Hence, the system is guaranteed to be stable. fiv  can be considered to consist of two terms: The 

first term is to move and restrict the variables of the ith  subsystem to the manifold of interest, i.e. 

0=ϕ ; while the second term is to cancel out the coupling effect  on the ith  subsystem. By 

substituting (3.43) into (3.57), the exciter input can be obtained as: 
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(3.59) 

 

By appropriate choice of the controller gains,  ,iα i1Γ , i2Γ iK  and cik , the power angle oscillations 

can be damped effectively. From the example illustrated above, it was shown that the performance 

of the system depends on the controller parameters. To obtain optimal results the controller’s gains 

are tuned using Particle Swarm Optimization (PSO) algorithm. This method is discussed in detail in 

the next section. 

 

3.4 Particle Swarm Optimization 
Particle Swarm Optimization is an evolutionary algorithm developed by James Kennedy and 

Eberhart [6] as a technique used to solving nonlinear continuous-variables optimization problems. 

It is a technique inspired by social behavior and movement of birds, insects or fish. The search 

algorithm is based on cooperation and contention among the population members. The goal is to 

obtain optimal regions of a complex search space through interaction of individuals in a population 

of particles. The algorithm works by first creating a ‘population’ of random solutions (also known 

as candidate solutions or particles). Each candidate solution of population has an adaptable 

velocity, according to which it moves in search space. Furthermore, each candidate has the capacity 

to remember the best position (or fitness) of the search space it has ever visited. Its movement is a 

conglomeration of acceleration toward its best previously visited position. The other best value 

tracked by PSO is called ‘global best value’, which is the best value or fitness found so far by any of 

candidate in the neighborhood of the candidate. The major concept is to alter the position and 

velocity of each candidate toward its local and global best locations at each time step. Consequently, 
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after number of time steps the particle among populations are found to have gathered around one 

or more of the optima and tends to locate the global optima among all. 

Unlike the other evolutionary algorithms like Genetic Algorithm (GA), PSO has a well-balanced and 

flexible mechanism to improve the ability to locate the best local and global positions [43]. Some of 

the advantages of PSO over other optimization techniques are [44]: 

 

• The quality of the solution obtained from this technique is independent of the initial 

population 

• It has more effective memory capability (local and neighboring best) 

• It can overcome the untimely convergence problem and improve the search capability 

• It has less parameters to adjust 

• It is more flexible, robust and easy to implement 

• It is less vulnerable to getting trapped on local minimal 

 

Throughout the course of this study, PSO is utilized to electric power system to obtain the optimal 

value of the synergetic controller parameters. Some definition of the terminologies of PSO is given 

below: 

Particle )(tiΩ : A candidate solution (controllers’ parameters) at iteration t . The size of each 

particle is the sum of the controllers’ parameters. For the synergetic controller designed in the 

previous section, the number of parameters of the thi controller is 5. Thus for a system of n number 

of controllers, the size of each particle ( p ) is n5 . 

Population: A set of m particles )}(...);(;)({ 21 ttt mΩΩΩ , where m  is the number of candidate 

solutions. 

Objective function )(tJi : function use to determine the fitness of thi controller at tht iteration. 

Individual best )(* tiΩ : Also known as local best. It is the best value of fitness that this particle has 

achieved up to tht iteration. 

 

   tJtJtt iiiiii ≤Ω≤ΩΩ=Ω ττ )),(())((:)({)( **
     (3.60) 

 

   ))(()( ** tJtJ iii Ω=    (3.61) 
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Global best )(** tΩ : The best position (or fitness) for all particles among all individual local best 

positions. 

 

   
},...,1)),(())((:)({)( ****** nitJtJtt iii =Ω≤ΩΩ=Ω

   (3.62) 

 

 The steps of the PSO technique are delineated below: 

• Initialization 

1) Set the time counter t  , performance evaluation counter c , and their maximum values 

maxt , maxc   

2) Generate arbitrarily m particles and velocity for each of these particles. These values 

are generated from the following given information: the size of each particle p , the 

population size m , the admissible range for controller parameters max
,

min
, , jjjjjj φφ  

 

                      
mjjpjjjjjjjjjj ,,2,1,,,2,1max

,,
min
,  ==≤≤ φφφ

   (3.63) 

 
and the admissible range of velocity 

 

                     
max
,,

max
, jjjjjjjjj vvv ≤≤−

   (3.64) 

 
Where 

 

                     µ
φφ min

,
max
,max

,
jjjjjj

jjjv
−

=
   (3.65) 

 
 and µ is the number of interval in thjj dimension. 

 

3) For each particle, determine the fitness, then search for the best values among all the 

fitness values and set this value as the global best fitness )(** tJ and the particle that 

gives this fitness value as the global best position )(** tΩ i.e. )()(),()( ** tttJtJ iiii Ω=Ω=  

and )](...)(min[),( **
1

** tJtJctJ n=  
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4) Set 1,1 +=+= cctt  

 
• Update the velocity using the following equation  

        ))1()1(())1()1(())1(()( ,
**
,22,

*
,11,, −−−+−−−+−Ψ= ttrcttrctvtv jjjjjjjjjjjjjjjjjj φφφφ   (3.66) 

 

          
χχχ 42

2
2 −−−

=Ψ

   (3.67) 

 

where 

         4,21 >+= χχ cc , )(*
, tjjjφ and )(**

, tjjjφ are local best and global best parameters of controller. 

• Updating the position 

As a result of velocities update, each particle changes its position according to the following 

equation 

)()1()( ,,, tvtt jjjjjjjjj +−=φφ          (3.68) 

 

Update the position )](),(),([)( ,2,1, tttt mjjji φφφ =Ω  for pj ,2,1=  

• Individual and global best update 

Using the updated position, each particle evaluates its objective function and new individual 

best )(* tJi  and associated *
iΩ for each i are determined from (3.60) and (3.61). Eq. (3.62) is 

used to determine the global best i.e. to find )),((),( **** ctJctJ Ω= . If 

 

)1,1(),( **** −−≤ ctJctJ          (3.69) 

 

then the fitness has improved, and the parameters are updated, set 1+= cc and proceed to 

the next step. Otherwise, update )(),,( **** tctJ Ω and set 0=c . Then proceed to the next 

step 

• Stopping criteria 

The search process will terminate if one of the following conditions is satisfied: 
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1) If the counter has attained its maximum number, maxcc =  and the best global solution 

),(** ctJ can no longer be improved. The optimal solution is considered to be the current

)(** tΩ . 

2) If the maximum allowable iteration is reached, maxtt = . 

 

3.5 Case Studies 
 

Single Machine Infinite Bus 

In this case study, a single machine infinite bus is considered. The model consists of a single 

generator connected to infinite bus via two parallel transmission lines [3]. Dynamic loads are 

connected at bus 2. The parameters of the component of the system are specified in the Appendix. 

The study is presented to illustrate the potentiality of the proposed controller during and after 

contingency in the system. The results are compared with the traditional Power System Stabilizer 

(PSS). The schematic diagram of the system is depicted in Figure 3.8. The goal is to improve the 

system transient stability by designing excitation controller.  

Supplementary control signal is used to add damping to the oscillations of the system. This signal is 

implemented via excitation control [45]. Three different control strategies are analyzed. These 

strategies are synergetic controller with excitation control, PSS with excitation control, and 

excitation control with no supplementary signal.  
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Figure 3.8: Single Machine Infinite Bus System 
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The parameters of the synergetic controller are obtained by PSO technique. A three phase fault 

occurs on the first transmission line at time st 2.0= . The fault is cleared at st 27.0=  and the line is 

reconnected at st 36.0= .  The objective function used in the determination of the fitness of each 

particle for the PSO is defined as: 

 

2
3

2
2

2

0 1 )()()( T

t
VkkkJ ∆+∆+∆= ∫ ωδ

  (3.70). 

Where TV∆  is the deviation of the terminal voltage of the generator and ,, 21 kk and 3k are weighing 

factors. After initializing the system and running the PSO algorithm, the optimum controller’ 

parameters for the synergetic damping controller are given as: 

,3131.10=λ  ,228.0=K 1=ck  
 
Figures 3.9, 3.10 and 3.11 show comparison between the proposed controllers, PSS, and the simple 

exciter. The parameters for the exciter can be found in the appendix. PSS consists of two stage lead-

lag with a wash out stage (3.65). 
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The gains of the PSS are tuned using PSO techniques and the result obtained is: 
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ssG
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  (3.72) 

 
The proposed controller effectively dampens the oscillation and modulates the voltage. Better 

performance is achieved when compared to that of the PSS. The values of the function described in 

(3.70) are 0.116, 0.1865 and 2.276 for the system with synergetic controller, PSS, and with only 

simple exciter respectively. 

 



36 
 

 
Figure 3.9: Power angle of the generator (SMIB System) 

 
 
 
 

 
Figure 3.10: Angular speed of the generator (SMIB System.) 
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Figure 3.11: Terminal voltage of the generator (SMIB system). 

 
 
 
 
Three Machine Nine Bus Test System 
 
In this case study, the popular 9-bus 3-machines WSCC system is considered.  Synergetic controllers 

are implemented as supplementary signals to exciters of the machines at buses 1, 2 and 3. An 

inductive load is added at bus 8 to test the performance of the controller to nonlinear loads. The 

line diagram of the system is depicted in Figure 3.13. The parameters of the exciters can be found in 

the Appendix. 
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Figure 3.12: Three Machine Nine Bus Power System 
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The system is tested for tolerance of a three phase fault on transmission line 6-9. A three phase 

fault occurred at 0.5 seconds. The fault is cleared after 20 milliseconds and the line is re-connected 

at 0.54 seconds.  Figures 3.13-3.17 show comparison between the proposed controllers, and PSS.  

The gains of the PSS are tuned using PSO techniques and the result obtained is: 
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And the parameters of the synergetic damping controllers are obtained to be: 
 

Gen.1: 5.1 ;15.0;0.15  ;1  ;0.9 1121111 ===Γ=Γ= ckKα   

Gen.2:  5.1 ;015.0;0.18 ;4  ;0.9 2222122 ===Γ=Γ= ckKα  
Gen.3: 5.1 ;015.0;0.21;3 ;0.7 3323133 ===Γ=Γ= ckKα   

 
The decentralized synergetic controllers dampen the rotor angle oscillations more effectively, and 

the generators are able to reach the synchronous speed faster when compared with the PSS 

performance (Figures 3.13 to 3.17). The objective function used in the determination of the fitness 

of each particle for the PSO for each of the generators is defined as: 
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i VkkkJ ∆+∆+∆= ∫ ωδ  (3.76) 

 

And the value of this function for each of the generators is given in Table 3.2 below. 
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Figure 3.13: Relative rotor angle (degree) 2 - 1 ( 3-Machine Nine Bus System) 

 
 
 
 
 
 

 

 
Figure 3.14: Relative rotor angle (degree) 3 - 1 ( 3-Machine Nine Bus System) 

 
 
 
 

0 1 2 3 4 5 6 7 8
46

48

50

52

54

56

58

60

62

64

time (second)

R
e
la

tiv
e
 a

n
g
le

  
 δ

2
1
 (

d
e
g
)

 

 

Synergetic

PSS

0 1 2 3 4 5 6 7 8
35

40

45

50

55

60

65

70

time (second)

R
e
la

tiv
e
 a

n
g
le

  
 δ

3
1
 (

d
e
g
)

 

 

Synergetic

PSS



40 
 

 
Figure3.15: Speed of generator 1. (3-Machine Nine Bus System) 

 
 
 
 
 
 
 

 
Figure 3.16: Speed of generator 3. (3-Machine Nine Bus System) 
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Figure 3.17: Speed of generator 3.  (3-Machine Nine Bus System) 

 
 
 
 

Table 3.2: The value of the optimization function 

Generator Synergetic Control PSS 

Gen. 1 0.009253 0.3238 

Gen. 2 0.004278 0.3231 

Gen. 3 0.01111 0.3269 
 

 
 
 
Two Area System (TAS) 
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with transient model and equipped with simple exciter. Two cases are being considered under this 
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3.18. For this case, a three phase fault is applied on line 3 – 101 at time  1.0=t second and cleared 
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gains of the PSS had previously been tuned by using Genetic Algorithms (GA) [16]. The transfer 

functions of the PSS of the generators are: 

 

2

2

2 )155.01(
)7109.01(

201
2016.47)(

s
s

s
ssG

+
+

+
=

 

 

2

2

3 )08431.01(
)15.01(

201
20300)(

s
s

s
ssG

+
+

+
=

 

 
 
With the synergetic controllers’ gains chosen to be: 
 
Gen.2: 172.3,775.0;045.65;5.18;21.19 2222122 ===Γ=Γ= ckKα  
 
Gen.3:  75.1;943.0;5.0;076.112;1.20 3323133 ===Γ=Γ= ckKα

  
 Figures 3.19 to 3.23 show the comparison between the proposed controller and the PSS. The rotor 

angle differences between generators 3 and 4 with respect to generator 1 are depicted in Figures 

3.19 and 3.20 respectively. The speed of generators 2 and 4 are shown in Figures 3.21 and 3.23. 
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Figure 3.18: Single line diagram of two area system 
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Figure 3.19: Relative rotor angle (degree) 3 - 1for case I (TAS) 

 
 
 
 
 

 
Figure 3.20: Relative rotor angle (degree) 4 - 1for case I (TAS) 
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Figure 3.21: Speed of generator 2 for case I 

 
 
 

 

 
Figure 3.22: Speed of generator 3 for case I (TAS) 
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Figure 3.23: Deviation in tie line power (TAS) 

 

 

 
Figure 3.24: The interconnection terms of generators 2 and 3 
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from these Figures that the system is unstable when PSS is employed as the supplementary 

controllers. Controller signals of generator 2 and 3 are shown in Figure 3.27. 

 

 
Figure 3.25: Relative rotor angle (degree) 3 - 1 for case II (TAS) 

 
 
 

 
Figure 3.26: Relative rotor angle (degree) 4 - 1 for case II (TAS) 
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Figure 3.27: Synergetic excitation control signals for Generators 2 and 3 
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Figure 3.28: Fifty Machine System Single Line Diagram 
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Fifty Machine System 

In this case study, the proposed controller design is implemented on the standard mid-sized 

benchmark system. The system consists of 50 generators, 44 are classical, and 6 are transient 

models [52]. The single line diagram for this system is depicted in Figure 3.28. Complete data 

pertaining to generators and exciter data are given in appendix E. Four nonlinear controllers are 

implemented on generators at buses 93, 104, 110 and 111. The parameters of these controllers are 

tuned with PSO algorithm. 

 

A three phase fault is applied on transmission line 6 – 9 at 0.1 sec, the fault is cleared and the line is 

reclosed at 0.25 sec. Comparison is done between synergetic control and power system stabilizer. 

The gains of the PSS are obtained from survey on tuning PSS gains using PSO technique [13]. The 

gains of the synergetic controllers and that of the PSS are given in Tables 3.2 and 3.3 below. 

 

 
Table 3.3: Parameters for synergetic Controllers 

Gen.  # Bus # α  
1Γ  2Γ  K  ck  

1 93 65 23.25 31 0.895 3.5 
2 104 53.5 61.3 28.5 0.705 1.75 
5 110 65 23.25 31 0.895 3.5 
6 111 53.5 61.3 28.5 0.705 1.75 

 

 
 

Table 3.4: Parameters for PSS tuned by PSO 
Gen. # Bus # 

wK  wT  1T  2T  
1 93 93.4223 3.4140 0.59 0.39 
2 104 28.3032 1.6609 1.01 0.35 
5 110 81.3726 8.5178 0.38 0.28 
6 111 7.1390 0.5353 0.99 0.40 

 
 
 

In Figures 3.29 and 3.30 synergetic controls damps the rotor oscillations effectively when 

compared with PSS tuned by PSO, and simple exciter with no damping controller. Controller signals 

for generators 2 and 6 and their corresponding terminal voltages are depicted Figure 3.31 and 3.32 

respectively.  
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Figure 3.29: Relative rotor angles (degree) 6 – 1, 2 – 6 (Fifty Machine System) 

 

 

 

 
Figure 3.30: Relative rotor angle (degree) 2 – 1 (Fifty Machine System) 
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Figure 3.31: Excitation control signals for Generators 2and 6. (Fifty Machine System) 

 

 

 
Figure 3.32: Terminal voltages of Generators 2and 6 (Fifty Machine System) 
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In all the four case studies presented in this chapter, decentralized synergetic controllers are 

designed explicitly for the excitation model.  The coupling terms between the machines are 

modeled locally and treated as external disturbance to each of the machines for the second, third 

and fourth studies. The proposed damping controller is implemented successfully and the results 

obtained when compared with that of PSS show that the proposed controller is more effective.  
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Chapter 4 

Coordination of Synergetic Excitation 
Controller and SVC Damping 
Controller 
 
 
In the previous chapter, the concept of synergetic control is discussed and the technique is 

employed to design decentralized controller for power system. The effectiveness of the technique is 

also discussed. In this chapter, decentralized synergetic controller is coordinated with SVC 

supplementary controller to enhance the transient stability of the power system.  

 

4.1 Static Var Compensator 
 

FACTS technology concepts advance the use of power electronic device to improve the stability of 

the exiting power system [13].  The devices can be utilized in the prevention of voltage collapse, and 

enhancements of transient stability and damping of system oscillations. They can enable increase in 

the transfer of power with little or minimum changes in the system generations or transmissions. 

Different type of FACTS system is available today. The FACTS device or system that is utilized in this 

work is Static Var Compensator (SVC). The term “static” is used to indicate the absence of moving or 

rotating component in the device. The most common topology is the fixed capacitor – thyristor 

controlled reactor type as depicted in Figure 4.1. The SVC consists of a capacitor bank, a thyristor 

controlled reactor, and a transformer that connects the SVC to the high voltage power system. The 

device is capable of controlling the voltage of the bus to which it is connected. The current flowing 

through the inductor is adjusted by modifying the firing angle α of the thyristor. As a result of this, 

the reactance of the SVC can be change from inductive to capacitive. The range of the firing angle is 

],
2

[ ππ
,
2
π

 for inductive reactance and π for capacitive reactance.  
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Figure 4.1: SVC Equivalent Circuit Model 

 

The bus where SVC is connected can be considered to be a generator bus where injected active 

power is equated to zero and the required reactive power is computed through load flow algorithm. 

The desired steady state values at the SVC bus are obtained as follow: 

 

*)(
b

b

V
jQI =

   (4.1) 

IjXVV Tb +=    (4.2) 

V
IjB =

   (4.3) 

L

C

L

svc X
X
X

B
π

παα
α

)2()2sin(2
)(

−−−
=

   (4.4) 

 
 

where bQ and bV are the injected reactive power and bus voltage as determined by the load flow 

algorithm, I is the current into the bus, V is the voltage across the SVC, TX is the reactance of the 

transformer, and svcB is the equivalent admittance of the SVC. The actual admittance of SVC is 

obtained from the pre-calculated look up table using the values of LX and CX and the range of the 

firing angle. The dynamic of the thyristor firing delay is approximated by a first order block with 

the delay time constant assumed to be about 3 msec. PI controller is employed to set the firing 

angle within its range. This controller is termed the internal controller of the SVC. 
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In order to improve the performance of the SVC, a damping supplementary controller is designed. 

The input to this controller can be local signals such as bus voltage, active power flow or the line 

current. It can also be remote signals such as generator speed or difference between speeds of two 

generators belonging to different power system area.  In this work, the structure of the SVC 

supplementary controller adopted is lead-lag compensator (see Figure 4.2) 

 

 

 

 

 

 

 

 
Figure 4.2: Structure of the SVC – based supplementary controller 

 

 

The controller consists of a gain block, a washout block and two-stage phase compensator. The 

wash out block provides the high –pass filtering function that permits signals associated with 

oscillations in input signal to pass unaltered and the phase compensation acts to provide the 

necessary phase – lead characteristics to compensate for any phase lag between the input and the 

output signals. . The output signal outU is fed into the SVC internal controller.  The proportional and 

the integral gains of the controller are fixed at 20 and 0.3 respectively. The output of this controller 

modifies the firing angle of the thyristor and this translates into modification in the susceptance of 

the SVC.  

The SVC is coordinated with synergetic excitation controller by simultaneously tuning the gain of 

the SVC supplementary controller and the parameters of the synergetic controller using PSO 

technique.  The approach is implemented on single and multiple machine power system. 

 

4.2 Single Machine Infinite Bus 
A single machine infinite bus system with AC transmission link is analyzed in this case [3]. The 

system is given by nonlinear differential and algebraic equations including generator, SVC with 

supplementary controller, load and an infinite bus. The schematic diagram of the system is shown 
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in Figure 4.3 and parameters for generator and line reactance are given in Table 4.1. The main 

function of Static Var Compensator is to increase transmittable power by regulating the bus voltage 

and suppressing power oscillations. 
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Figure 4.3: Single Machine Infinite Bus System with SVC 

 

 

The generator is modeled by a third- order single axis model as: 

Mechanical equations: 

 

)()( tt o ωωδ ∆=∆ 
  (4.5) 
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Generator electrical dynamics: 

 

))()()((1)( tEIxxtE
T
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′

=′
 (4.7) 

 

Electrical equations: 

 

)()( tuktE fcf =   (4.8) 
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By substituting (4.11) in (4.9) and differentiating the result we have: 
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Where 

 

svce
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os BP
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x
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  (4.16) 

 

By defining ox δδδ −=∆=1 , 12 −=∆= ωωx , mee PPPx −=∆=3 , and representing the 

interaction between the generator  and the rest of the system  as 2
3231 xcxcd += ,with  1c and 2c

unknown constant but to be determined by using adaptation law, (4.5), (4.6) and (4.15) can be 

expressed as: 
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Table 4.1: Parameters of Generator and Transmission Lines 
Leakage reactance (p.u.) 15.0=lx  
Resistance (p.u.) 003.0=ar  
d-axis reactance (p.u.) 81.1=dx  
q-axis reactance (p.u.) 494.1=qx  
d-axis transient reactance (p.u.) 3.0=′dx  
d-axis open circuit time constant (sec) 0.8=′doT  
Inertia constant (sec) 0.4=H  
Reactance AC line (p.u.) 93.01 =Lx  
Reactance AC line (p.u.) 5.02 =Lx  
Transformer + line reactance 2.0=Tx  

dsxxx ′,, 21  Td xxx +′=1  

212 // LL xxx =  

SVCds Bxxxxx 2121 −+=′  
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33
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where fv is a new variable defined as: 

 

2)( xQTPIIxxuIkv oedomqdddfqcf ω′+−′−−=
   (4.20) 

 

We can see from (4.20) that the mapping from fu  to fv  is invertible, except when 0)( =tIq , which 

is not in the working region of the generator. 

 

4.2.1 Controller Design 
Synergetic Excitation Controller 

The procedure of synergetic control technique has been discussed in detail in the previous chapter.  

By defining the macro-variable to be: 
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where 0>α  is a design parameter, and following the procedure explained in chapter 2, the control 

input signal fu can be obtained as: 
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where:  

 
2
3231 ˆˆˆ xcxcd +=

  (4.23) 

311̂ xc ϕΓ=
   (4.24) 

322ˆ xc  ϕΓ=
   (4.25) 

 

The parameters of the synergetic controller are 21,,, ΓΓKα and ck .  

 

SVC Supplementary Damping Controller 

The structure of the damping controller adopted in this work has been discussed in the previous 

section. The SVC supplementary controller gains are SK , 1,TTws and 2T . 

 

Both of these controllers are coordinated together by simultaneously tuning the parameters of the 

synergetic controller and the gains of the SVC supplementary controller using particle swarm 

optimization. The objective function J to be optimized by PSO is given as: 

 

2
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where TV∆  and svcV∆ are the deviations in the terminal voltage of the generator and the SVC bus 

voltage respectively. ],,,,,,,,[ 2121 TTTKkK swScΓΓ= αφ , 321 ,, kkk  and 4k are weighing factors. 

The following scenarios are presented to illustrate the effectiveness of the approach proposed here. 

• Effect of short circuit fault. 

• Effective of level of power generation. 

Effect of short circuit fault: This scenario show the effectiveness of the coordination of the two 

controllers when a three phase short circuit fault occurs on one of the AC transmission lines. The 

proposed approach is compared with: 

• Only SVC supplementary damping controller is present [51]  

• Only Synergetic controller is present at the exciter side [47]  

• Only power system stabilizer is present at the exciter side. 

 

In each of the four cases, the generator is also equipped with a static exciter [3]. The parameters of 

the exciter can be found in the Appendix. The three phase fault occurs on transmission line 2 – 3 

(Figure 4.3) at 0.5 sec. The fault is cleared by removing the line after 40 msec, and the line is 

reconnected after 60 msec. Table 4.2 depicts the tuned controller gains. Figures 4.4 and 4.5 depict 

the relative angle and the speed of the generator. 

 

 

 

Table 4.2: Damping Controller Gains for SMIB System 
SVC Supplementary 

Damping Controller 
PSS Controller Synergetic Controller Synergetic Controller 

with SVC 

1749.80=SK  775.13=SK  3131.10=α  3564.3=SK  

wsT =6.4087 41.1=wsT  228.0=K  9978.9=wsT  

1687.01 =T  154.01 =T  1=ck  7009.01 =T  

4753.02 =T  033.02 =T   009.72 =T  
   5.13=α  
   75.0=K  
   5.3=ck  
   9677.71 =Γ  
   4808.82 =Γ  
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Figure 4.4: Power angle of the generator 

 

 

 

 

 
Figure 4.5: Speed of the generator 
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Effect of level of power generation: In this scenario effect of low power generation to high power 

generation is looked into. Load flow solution for each bus is obtained for each set of power 

generation. Figures 4.6 and 4.7 depict power and speed deviation.  

 

 

 
Figure 4.6: Effect of low to high generation power on the system electric power 

 

Figure 4.7 shows the effect of low to high power generation on performance of coordination of 

synergetic controller and SVC supplementary damping controller. Figure 4.9 shows the impacts on 

the terminal voltage of the generator. 

 

 
Figure 4.7: Effect of low to high generation power on speed of the generator 
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Figure 4.8: Effect of low to high generation power on terminal voltage of the generator 
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Figure 4.9: Two Area System with SVC device 

 

A two area four machine system is considered for this study. The single line diagram for this system 

is shown in Figure 4.9. The two areas are identical with two parallel tie lines which transfer 400 

MW from area 1 to area 2 in normal operating condition.  Generators parameters can be found in 

[3]. Simple exciter is installed in each of the four generators. 
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Synergetic damping controller for multimachine system [47] had been discussed in the previous 

chapter. The dynamics of the thi generator is given as: 

 

ioi xx 21 ω=
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where id , the interaction between the thi generator and the rest of the system, is given as: 
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The synergetic damping controller obtained is given to be: 
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where ic1̂ and ic2ˆ  are given as: 

 

iiii xc 311̂ ϕΓ=   (4.31) 

 
2
322ˆ iiii xc ϕΓ=   (4.32) 

 

The definition of each of the variables is given in Table 4.1.  In this study, synergetic controllers are  
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installed on generators 2 and 3, and a SVC is placed at bus 101. A supplementary controller is  

designed for the SVC using the structure described in the previous section. The input signal to this  

controller is the tie line power in one of the lines connecting the two areas together. The 

parameters of the two synergetic decentralized controllers and the gains of the SVC damping  

controller is then simultaneously tuned using PSO to obtain their optimum values. The objective  

function to be optimized is given as: 
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  (4.33) 

 

 
A three phase fault occurs on line 3 -101 at 0.1 sec. The fault is cleared by removing the line at 0.190  

sec. The line is then reconnected at 0.24 sec. Two cases are considered in this study. The first case is  

when only synergetic controllers are installed at generators 2 and 3 [47]. The second case is the  

coordination of these controllers with the SVC damping controller. The results obtained for the two  

cases are given below: 

 
Synergetic controllers without SVC. 
 
Generator   2:  

7813.30,0618.18,32.5,946.0,5519.27 2221222 =Γ=Γ=== ckKα  
 
Generator 3: 

3819.0,4021.36,7895.5,8806.0,8901.28 3231333 =Γ=Γ=== ckKα  

 
Synergetic controllers with SVC 
 
Generator 2 

8233.4,309.14,5628.3,5801.1,2376.30 2221222 =Γ=Γ=== ckKα  
 
Generator 3 

1182.8,4854.35,7237.5,2720.1,2058.29 3231333 =Γ=Γ=== ckKα  
 
SVC Supplementary Controller 

655.7,7655.0,10,5949.3 21 ==== TTTK wss  
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The results obtained are simulated and compared to each other. Comparison is also made with 

previous study when PSSs are installed at generators 2 and 3 [16].  The results of the simulation are 

shown in the Figures 4.10 to 4.15. Figures 4.10 and 4.11 show the relative angles between 

generators 3 and 1 and between generator 4 and 1. 

 

 
Figure 4.10: Relative power angle (degree) 3 - 1 

 

 

 

 
Figure 4.11: Relative power angle (degree) 4 - 1 
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Figure 4.12: Tie –line power deviation on line 3 – 101 

 

The deviation in power transfer through one of the AC transmission lines connecting the two areas 

together is depicted in Figure 4.12. The speed of generators 2 and 3 are also depicted in Figures 

4.13 and 4.14 respectively. 

 

 
Figure 4.13:  Angular speed of generator 3 
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Figure 4.14:  Angular speed of generator 4 

 

 

In summary, simultaneous tuning of decentralized synergetic controllers and SVC supplementary 

controller using PSO algorithm is proposed in this chapter. For each of the machine, a decentralized 

synergetic controller is explicitly designed. A lead lag compensator is employed as the SVC 

supplementary controller. The interaction of each machine with the rest of the system is modeled 

locally and treated as external disturbance to it. The method is tested successfully on a SMIB-FACT 

system and on a two area four machines system with the SVC included in the middle of the lines 

connecting the two areas together. The results, when compared with the previous works [47, 16], 

give better performance.  
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Chapter 5 

Decentralized Synergetic Control with 
Variable Structure 
 
 
5.1 Reinforcement Learning 
 

In this chapter, decentralized synergetic controller with variable parameters is proposed to 

improve on the performance obtained when a fixed control structure is employed in chapter 2. 

Synergetic control design techniques have been applied and tested to give better performance than 

conventional power system stabilizers [33, 47, 48]. In [33], the technique was employed to design a 

nonlinear control for a Single Machine Infinite Bus (SMIB) system. In [47], decentralized synergetic 

controllers were designed by the authors to dampen power oscillations. The controller’s outputs 

are fed as a supplementary signal to the exciter of the generator. 

 

In [48], decentralized synergetic controllers are coordinated with SVC-damping controllers. PSO 

technique is employed in both [47, 48] to obtain optimal value for each of the controller’s 

parameters. In this paper, PSO is chosen to select optimal values of the controller parameters and 

RL is added so as to improve the performance of the controllers for a wide range of the system’s 

operating conditions. PSO technique is selected over other computational intelligent algorithms like 

Genetic Algorithms (GA) because of its computational efficiency, robustness and its simplicity of 

implementation [49, 44].  The RL tool is employed to vary some of the parameters of the 

controllers. 

 

Some previous work on the application of RL methods in power system stability improvement are 

reported in [19], [20], [50], [7], [8], [25]. In [19, 20], RL was applied to adjust the gains of the 

conventional PSS, which is based on linearized model of the system. In [50], and [7], it was applied 

to dynamic brake controllers and thyristor controlled series capacitors (TCSC), respectively. The 
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method is also applied in [8] for load frequency control and in [25], for power oscillation control by 

adjusting the gains of adaptive decentralized backstepping controllers.  Although the primary 

controllers, the adaptive backstepping controllers, are decentralized, the RL is not. This makes the 

entire algorithms, RL and backstepping controllers, not completely decentralized. In this paper, a 

completely decentralized algorithm is employed. Both the synergetic controllers and the RL are 

decentralized. 

 

In this dissertation, the Q- learning type of RL is implemented. This is simply because of its 

independence on the model of the system, and its suitability for step-by-step incremental 

computation. In general, any “agent” that utilizes RL technique tries to learn behavior by interacting 

with its environment in order to annex experience and learn to act in an optimal way. This learning 

is done iteratively. RL assumes that the environment is divided into a finite state and described by a 

set of state }{S .At each step, the “agent” observes the current state ts  of the system, and selects an 

action a from a set of actions }{A at time t . The agent is rewarded immediately after taken this 

action. This reward 1+tr is given from a set of rewards }{R , and it quantifies the effectiveness of the 

action taken. The action will affect the environment and takes it to a new state 1+ts . The interaction 

between the agent and the environment is repeated until the desired goal is accomplished. The goal 

of RL is to find a policy, a matching between states and actions, which will result in maximum 

expected discounted long- term reward or return.  The expected discounted return is given as: 

 

1
0

++

∞

=
∑= kt
k

k
t rR γ

. (5.1) 

 

The variableγ , whose value is between 0 and 1, is known as discounted rate. It indicates the 

significance of the future reward in the decision making process. If the value is set to 0, only the 

immediate reward is taken into consideration by the agent, but when the value is a 1, all the future 

rewards are put into account. Each RL comprises of two major functions: the state value function, 

which is the expected return when starting at state ts  using policy ),( asπ ; and the action value 

function, which is the expected discounted return when starting at state ts  taken action ta  and 

using policy ),( asπ . It is also known as Q-function and its value is given by the following equation: 
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The RL method tries to find the optimal policy *π  that will maximize the action function (5.2). One 

of the algorithms that can be employed is the Q-learning algorithms. It is model independent. It 

gains experience by interacting with the environment to update the value function, (5.2), at every 

time step. The update is done with the bellman optimality equation which is given as: 

 





 −+=∆ +++

a
ttttt asQasQrQ ),(),(max 111 γα

  
 (5.3) 
 
Where α , )10( <<α  is a constant step-size that denotes the amount of corrected error. The steps 

of the Q-learning algorithm are summarized below: 

 

• Initialize ),( asQ  for all the states and actions 

• Repeat for each run of the algorithm 

Initialize s . Repeat for each step 

Take action a based on policy determine by 1Q . 

Observe 1+ts  and r . 

Modify Q based on (5.3). 

1+= tss  
• Repeat until the desired goal is achieved or the terminal state is reached. 

 

In this paper, the RL is employed to adjust or vary parameters iλ and iK  of the synergetic 

controller of each sub-system. The state of RL is the Integral Time Absolute Error (ITAE) given in 

(5.4). The update of the action value of each sub-system is done every s5.0  and the action is taken 

by increasing or decreasing the values ii K,λ  by a value corresponding to the absolute value of the 

active power deviation at that time step. 
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dtVPJ Tiiei
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t
i ][ 321

0

∆+∆+∆= ∫ κωκκ
  

 (5.4) 

Where 1κ , 2κ  and 3κ  are weighing values and are given as 200, 500 and 10 respectively. The 

immediate reward is given as a function of the state as: 

 

Reward = -50Ji 

 (5.5) 
 
The proposed technique is implemented on a two area system. The simulation results are obtained 

using PAT [46]. The results are presented in the next section. 

 

5.2 Problem Formulation 
The combination of RL and synergetic control is employed to dampen power system oscillations 

through the excitation of the generator. In a multimachine system, each generator is considered as a 

decoupled sub-system, and a decentralized controller is designed for each sub-system. The coupling 

effect of the rest of the system on the sub-system is considered as an external disturbance to the 

sub-system. It is estimated as a quadratic function of the active power generated by sub-system. 

PSO technique is utilized to initialize the value of the parameters of the controller. These initial 

values are considered to be the nominal values of the parameters. Then, RL is employed at higher 

level to vary some nominal parameter values of the controller within a certain range. The effect of 

RL is to adapt the controller to varying operating conditions and uncertainties of the external 

disturbance.  

 

5.2.1 
thi  subsystem model 

Each sub-system is modeled by a third –order single axis modeled. The state space model of the thi  

sub-system is given by the following equations: 

 

ioi ωωδ ∆=∆  . (5.6) 
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 Where: 
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 (5.9) 
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 (5.10) 
 

id  is the coupling term that connects the thi  sub-system to the rest of the system and ∆  denotes 

deviation from the nominal state. 

 

5.2.2 Controller Design 

The objectives are to define a stable and invariant manifold, and to come up with a control that 

will steer the system trajectories and forces them to remain on this manifold. Given a sub-system 

described by (5.6), (5.7) and (5.8), a macro-variable is defined, using the procedure of Slotine and Li 

[37], as follow: 

 

iii dt
d δλϕ ∆+= 2)(

  
 (5.11) 
 
For the manifold, 0=iϕ , that will evolve from (5.11) to be stable, 0>iλ . By substituting (5.6) and 

(5.7) into (5.11), the macro-variable can be re-written as: 
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 (5.12) 
 
The dynamic of the evolution of the macro-variable for the thi  sub-system is given as: 
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0=+ iiiK ϕϕ
. (5.13) 

 

Denoting iδ∆ , iω∆  and eiP∆  by ix1 , ix2  and ix3 respectively and by substituting (11) and its 

derivative into (12) we can obtain: 
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This gives: 
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By substituting (5.8) into (5.17) we can obtain 
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Assuming that the coupling term id  can be estimated by equation (18) where ic1  and ic2  are two 

unknown constant parameters: 

 
2
3231 iiiii xcxcd +≈   

 (5.19) 

 

The method of adaptation can be employed to approximate this coupling term. Let us define
2
3231 ˆˆˆ

iiiii xcxcd += , where ic1̂  and ic2ˆ  are the estimate values of ic1 and ic2  respectively. To obtain 

these values, we define a lyapunov function as follow: 
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where i1Γ  and i2Γ  are adaptation gains. Differentiating (5.20), we have: 
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Let define 
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for fiv  we have: 
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By substituting (5.22), (5.23) and the derivative of (5.12) into (5.21) we have 
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By substituting (5.24) into (5.28) we have 
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Hence, the system is guaranteed to be stable. The controller output fiu  can be obtained from (5.9) 

and (5.24) as: 
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In the next section, the method of setting the optimal values of the controller parameters is briefly 

discussed.  The parameters of the controller to be set are iK that determines speed at which the 

system trajectories are forced onto the manifold, iλ  that describes the characteristics of the system 

after its trajectories is forced onto the manifold, the adaptive gains ii 21 ,ΩΩ , and cik . 

 

5.3 Optimum Settings for Controllers 
 

This section presents a global tuning procedure for decentralized synergetic controllers using 

Particle Swarm Optimization algorithm [43]. The algorithm is originally developed for nonlinear 

optimization problems with continuous variable. Some of various applications of this technique in 

power systems are addressed by Lee and El-Sharkawi in [9].  The algorithm works by first creating 

a ‘population’ of random solutions (also known as candidate solutions or particles). Each candidate 

solution is assigned to a random velocity value. 

During each iteration, several candidate solutions are randomly selected and simultaneously 

maintained in the search space. The fitness of each of these solutions is determined based on a 

predefined objective function. The velocity and position of each particle is updated by using the 

following equations: 

 

)()( 2_1_ jglojjlocjnewj ppbestRandqppbestrandqvv −+−+=
  

 (5.32) 

newjjnewj vpp __ +=
  

 (5.33) 

The process of obtaining new position for each of the particles maintained within the search space 

will terminate when some stopping criteria is met. Some of the common stop conditions include: a 

number of iteration since the last update of the global best particle, or a predefined target fitness 

value. The fitness value we adopted in this paper is given by the following equation: 
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Where TiV∆ is deviation in the terminal voltage of the thi  sub-system, and wik , vik  and pik  are 

weighing factors. The problem is thus to optimize (minimize) (5.34) subjects to system and 

controller’s parameters constraints. 

 

5.4 Case Study 
The four machine system model [3] is utilized to illustrate the effectiveness of the proposed control 

technique on excitation control. The one line diagram of the test system is depicted in Figure 5.1. All 

generators are equipped with static exciter (Table 5.1). Generators 2 and 3 are also equipped with 

decentralized synergetic controllers (supplementary controllers). Two area system configurations, 

with 400 MW of power flowing from area 1 to area 2, were analyzed. 

 

• Operating condition 1- System with two transmission line between buses 13 and 101 

• Operating condition 2- System with single line between buses 13 and 101 

 

By considering the stability of these two conditions, the capability of the proposed controller to 

withstand a loss of a line after three phase fault at bus 3 is appraised.  The results obtained are 

compared with fixed parameter synergetic controller tuned by particle swarm optimization and 

fixed gained linear power system stabilizer (PSS) tuned by genetic algorithm [47, 16]. 

The fixed parameter synergetic controller is tuned first based on PSO technique [3] to generate the 

optimum damping performance characteristic of the system for the particular contingency. Then 

reinforcement learning is employed to re-adjust some of the parameters of the controller under 

large disturbance at different operating points. 
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Table 5.1: Parameters for Static Excitation 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1: Two area system 

 

The first scenario (operating condition 1) is three phase fault at time 1.0=t sec, while the power 

is flowing from area 1 to area 2. The near end of the line is opened and the line is removed at 0.19 

sec. The line is reconnected back at 0.24 sec. The optimum parameters of the controllers are given 

in Table 2. 

 
Table 5.2: Optimum parameters of the controllers 

i  
iλ  iK  i1Ω  i2Ω  cik  

2 21.95 0.578 32.74 31.75 3.341 
3 32.47 0.706 21.65 17.96 8.962 

 

 

Figures 5.2 and 5.3 depict the relative angles 31δ and 41δ respectively. The deviation in one of the 

tie-line power is depicted in Figure 5.5. The results delineate the superiority of the proposed 

Gen. 4
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|V|
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Exciter 1,2,3,4 

AK Regulator gain 200 

AT Regulator time constant (sec) 0.05 

RT Filter time constant (sec) 0.01 

maxRV Upper bound for saturation (p.u.) 10 

minRV Lower bound for saturation (p.u.) -10 
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reinforcement learning based synergetic control over the fixed parameter controller.  Adjustment 

of the controllers’ parameters iK  and iλ  for 3,2=i are shown in Figures 5.5 and 5.6. 

 

Figure 5.2: Relative angle 31δ under Operating Condition I 

 

 

 

Figure 5.3: Relative angle 41δ under Operating Condition I 
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Figure 5.4: Tie line deviation under Operating Condition I 

 

 

 

 

Figure 5.5: Operating Condition I, Parameters 32 , λλ  
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Figure 5.6: Operating Condition I,  parameters 32 , KK
 

 

 

Two scenarios are considered for the second operating condition. The first scenario is a three phase 

fault occurring on the line 3-101 at st 1.0= . The near end of the fault is opened and the line is 

removed, clearing the fault at st 23.0= . The line is reconnected at st 26.0= . The same 

parameters given in Table 5.2 are utilized as the initial settings of the controllers. RL method is then 

employed to re-adjust parameters ii K,λ .The adjusted parameters iK  are depicted in Figure 5.7, 

and the comparisons between relative angles 4131, δδ  are shown in Figures 5.8 and 5.9. The 

superiority of the proposed control techniques are also shown in these figures. 

For the second scenario, the same fault occurs as in scenario 1, the fault is completely cleared at 

st 26.0= , but the line not reconnected back. Figures 5.10 and 5.11 depict the comparison between 

the relative angles and we can see, from the figures, that the fixed PSS could not stabilize the system 

due to highly stressed transmission lines. The adjusted parameters are depicted in Figures 5.12 and 

5.13.  
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Figure 5. 7: Operating Condition II -Scenario I parameters 32 , KK
 

 

 

 

 

Figure 5.8: Relative angle 31δ under Operating Condition II Scenario I 
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Figure 5.9: Relative angle 41δ under Operating Condition II Scenario I 

 

 

 

 

Figure 5.10: Relative angle 31δ under Operating Condition II Scenario II 
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Figure 5.11: Relative angle 41δ under Operating Condition II Scenario I 

 

 

 

 

 

Figure 5.12:  Operating Condition II- Scenario II, Parameters 32 , λλ
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Figure5. 13: Operating Condition II -Scenario II parameters 32 , KK
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the proposed approach provides better performance than the fixed parameter synergetic 

controller, and power system stabilizer with fixed gains. 
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Chapter 6 

SUMMARY AND CONCLUSIONS 

6.1 Completed Work 

This dissertation proposes a synergetic control design to improve the transient stability of power 

system subject to contingencies. Each generator in the system is considered as a subsystem and a 

nonlinear decentralized synergetic controller is designed for it. Particle swarm Optimization 

technique is presented and utilized to obtain optimum values of the parameters of the designed 

controller. To achieve decentralized control, the coupling term between each subsystem and the 

rest of the system is considered as uncertainties. This uncertainty is estimated with a linear 

estimator whose coefficients are obtained adaptively. This uncertain function is expressed as a 

quadratic function of electric power, and its parameters are obtained by adaptation laws through 

adaptive synergetic technique. 

 

Although the proposed synergetic controller enhances the dynamic performance greatly, the 

coordination of SVC supplementary controller and synergetic controller is even more promising.  

Lead-lag compensation is employed as the SVC supplementary controller. The problem of 

coordinating these two controllers is formulated as an optimization problem based on PSO so as to 

obtain the optimum gains of the SVC damping controller and the optimum values of the parameters 

of the synergetic controller. By selecting proper objective function during optimization of nonlinear 

controllers, great improvement on system performance is achieved.  

 

The combination of reinforcement learning and synergetic controller is also proposed for 

generating units. The RL successively learns and adapts the synergetic controller’ parameters to 

cover a wide range of operating conditions.  
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6.2 Suggestions for Future work 
The work in this dissertation focused on designing decentralized controller for generating units. 

Although the performances of nonlinear controllers are notable, their major drawback is the fact 

that they are mainly model based. This means unavailable information about the system may be 

required for their implementation.  More focus should be made on techniques that are less 

depended on system model in designing excitation supplementary controllers. 

 

6.3 Publications 
 

1. Taoridi Ademoye, Ali Feliachi, “Decentralized Synergetic Control of Multimachine Systems”  

PSCE, IEEE Power Systems  And Exposition, Phoenix, AZ, March 2011 . 

Abstract: 

This paper proposes decentralized synergetic control approach to control a multimachine 

nonlinear electric power system through the excitation subsystem.  The interconnection 

between generators is modeled as a function of the local variables and is considered as 

external disturbance to each subsystem. The nonlinear decentralized controllers effectively   

dampen the rotor angle oscillations and regulate the terminal voltages when a fault occurs.  

Two test systems are used to verify the efficiency of the proposed method against the 

conventional power system stabilizers: a nine- bus three- machine power system with 

inductive load, and the typical four machine two –area system. 

 

2. T. Ademoye, A. Feliachi, and A.  Karimi, Coordination of Synergetic Excitation Controller and 

SVC-Damping Controller Using Particle Swarm Optimization, in: IEEE Power and Energy 

Society General Meeting, Detroit, MI, July 24- 29,2011. 

Abstract:  

This paper addresses the enhancement of power system stability by simultaneous tuning of 

synergetic excitation damping controller and Static Var Compensator (SVC) – based 

damping controllers. Stable manifold is constructed for each excitation controller and based 

on that, an effective damping controller is derived. A lead –lag compensator is employed as 

a supplementary controller for the SVC. PSO algorithm is effectively utilized to 

simultaneously tune the parameters for the excitation damping controller(s) and the SVC 



88 
 

supplementary controller. The coordination of the controllers effectively dampens the 

power angle oscillation and regulates the generator terminal voltage when a fault occurs. 

 

3. T. Ademoye, A. Feliachi, Reinforcement Learning Tuned Decentralized Synergetic Control of Power 

Systems, Int. J Elsevier on Electric Power Systems Research 86 (2012) 34-40. 

Abstract: 

In this paper, decentralized synergetic controllers with varying parameters are developed 

to dampen oscillations in electric power systems via the excitation systems of the 

generators. Each generator is treated as a subsystem for which a synergetic controller is 

designed. Each subsystem is a dynamical system driven by a function that estimates the 

effect of the rest of the system. A Particle Swarm Optimization (PSO) technique is employed 

to initialize the controllers’ gains. Then, Reinforcement Learning (RL) is used to vary the 

gains obtained after implementing the PSO so as to adapt the system to various operating 

conditions. Simulation results for a two area power system indicate that this technique 

gives a better performance than synergetic fixed gains controllers, or conventional power 

system stabilizers. 
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APPENDIX 

A. Single Machine Infinite Bus System Data 

% Single-machine infinite bus example  
%Base value 
% Bus data format 
% bus: 
% col1  number 
% col2  voltage magnitude (pu) 
% col3  voltage angle (degree) 
% col4  p-gen (pu) 
% col5  q-gen (pu) 
% col6  p-load (pu) 
% col7  q-load (pu) 
% col8  G-shunt (pu) 
% col9  B-shunt (pu) 
% col10 bus type 
%       bus type - 1. swing bus 
%                        - 2. generator bus (PV bus) 
%                        - 3. load bus (PQ bus) 
% col11 q-gen_max (pu) 
% col12 q-gen_min (pu) 
% col13 v_rated (kV) 
% col14 v_max (pu) 
% col15 v_min (pu) 
        
  
bus = [ ... 
1  1.00    0.00    0.9   0.436   0.00  0.00  0.00  0.00   2    99  -99; 
2  1.00    0.00    0.00   0.00   0.00  0.00  0.00  0.00   3    99  -99; 
3  1.00    0.00    0.00   0.00   00.0  0.00  0.00  0.00   1    99  -99]; 
  
% Line data format: from bus, to bus, resistance (pu), reactance (pu), 
%            line charging (pu), tap ratio, tap phase 
line = [... 
1   2   0.00    0.2    0.0    1   0.0; 
2   3   0.00    0.93   0.0    1   0.0; 
2   3   0.00    0.5    0.0    1   0.0]; 
      
  
% Machine data 
% Machine data format: 
%  1.  machine number,                                             
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%  2.  bus number,                                                 
%  3.  base mva,                                                   
%  4.  leakage reactance x_l(pu)                                   
%  5.  resistance r_a(pu)                                          
%  6.  d-axis sychronous reactance x_d(pu)                         
%  7.  d-axis transient reactance x'_d(pu)                         
%  8.  d-axis subtransient reactance x"_d(pu)                      
%  9.  d-axis open-circuit time constant T'_do(sec)                
%  10. d-axis open-circuit subtransient time constant T"_do(sec)   
%  11. q-axis sychronous reactance 
%  12. q-axis transient reactance x'_q(pu) 
%  13. q-axis subtransient reactance x"_q(pu) 
%  14. q-axis open-circuit time constant T'_qo(sec) 
%  15. q-axis open circuit subtransient time constant T"_qo(sec) 
%  16. inertia constant H(sec) 
%  17. damping coefficient d_o(pu) 
%  18. dampling coefficient d_1(pu) 
%  19. bus number 
%  20. saturation factor S(1.0) 
%  21. saturation factor S(1.2) 
  
mac_con = [... 
1 1  100  0.15 0.003  1.81  0.3   0.0  8.0  0.0  1.76  0.65  0.0   1.0    0.0  3.5  1   0   1   0   0;... 
2 3  100  0.0001 0.0  0.0  0.001  0.0  0.0  0.0  0.00  0.00  0.0   0.0    0.0  8.0  0   0   3   0   0]; 
  
% Define infinite bus 
ibus_con = [0 1]; 
  
% Exciter data format: 
% column data 
%     1 - exciter type (1 for DC1, 2 for DC2) 
%     2 - machine number 
%     3 - input filter time constant T_R 
%     4 - voltage regulator gain K_A 
%     5 - voltage regulator time constant T_A 
%     6 - voltage regulator time constant T_B 
%     7 - voltage regulator time constant T_C 
%     8 - maximum voltage regulator output V_Rmax 
%     9 - minimum voltage regulator output V_Rmin 
%    10 - exciter constant K_E 
%    11 - exciter time constant T_E 
%    12 - E_1 
%    13 - saturation function S_E(E_1) 
%    14 - E_2 
%    15 - saturation function S_E(E_2) 
%    16 - stabilizer gain K_F 
%    17 - stabilizer time constant T_F 
exc_con = [0 1 0 200  0.015 0 0 15.0  -15.0  0 0 0 0 0 0 0 0]; 
  
% thermal turbine/governor model 
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%column        data         unit 
%  1    turbine model number (=1)    
%  2    machine number   
%  3    speed set point   wf        pu 
%  4    steady state gain 1/R       pu 
%  5    maximum power order  Tmax   pu on generator base 
%  6    servo time constant   Ts    sec 
%  7    governor time constant  Tc  sec 
%  8    transient gain time constant T3 sec 
%  9    HP section time constant   T4   sec 
% 10    reheater time constant    T5    sec 
tg_con = [1  1  1  25.0  17.5  0.1  0.5 0.0 1.25 5.0]; 
  
% PSS data format: 
% col1  type 
% col2  gen number 
% col3  gain (pu) 
% col4  washout (sec) 
% col5  lead T_1 
% col6  lag T_2 
% col7  lead T_3 
% col8  lag T_4 
% col9  V-max (pu) 
% col10 V-min (pu) 
  
pss_con=[1 1 13.775 1.41 .154 .033 .154 .033 .2 -.2]; 
 
%dyn_load bus 
load_con=[2 0 0 0 0]; 
  
  
  
% SVC / STATCOM data format: 
% 1 -  bus 
% 2 -  reverence |V| at bus 
% 3 -  Control flag:     0 - fixed reactance/ voltage 
%                                     1 - voltage magnitude 
% 4 -  model flag:        0 - SVC 
%                                     1 - STATCOM 
% 5 -  transformer reactance [pu] 
% 6 -  |Xc| 
% 7 -  Xl/Xc 
% 8 - LF solution 
% 9 - critical firing angle 
%10 - dc side capacitor [pu] 
%11 - dc side voltage level [kV] 
%12 - ac base voltage [kV] 
%13 - transformer turn ratio 
  
shc_con=[2 1.00 1 0 0 1 0.55 1 0 0 0 220 0]; 
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%shc_con=[2 1.00 1 0 0 1 0.55 0 0 0 0 220 0]; 
 
% The internal PI controller of the SVC 
% SVCM Controller 
% 1 SVCM number 
% 2-  1= controller active (on), 0= controller inactive (off) 
% 3 - lq_ref  P-gain 
% 4 - lq_ref  I-gain 
% 5 - 
% 6 -  
% 7 - limit abs(svcm_I) in pu 
% 8 -  
  
svcm_ctrl = [1   1   20   0.3   0   0   5   0]; 
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B. Three Machine Nine Bus System(with Induction Motor) Data 

 
 
% System base MVA setting (if none default of 100 MVA is taken) 
basmva=100; 
% bus data format 
% bus:  
% col1 number 
% col2 voltage magnitude(pu) 
% col3 voltage angle(degree) 
% col4 p_gen(pu) 
% col5 q_gen(pu), 
% col6 p_load(pu) 
% col7 q_load(pu) 
% col8 G shunt(pu) 
% col9 B shunt(pu) 
% col10 bus_type 
%       bus_type - 1, swing bus 
%                - 2, generator bus (PV bus) 
%                - 3, load bus (PQ bus) 
% col11 q_gen_max(pu) 
% col12 q_gen_min(pu) 
% col13 v_rated (kV) 
% col14 v_max  pu 
% col15 v_min  pu 
  
bus = [... 
1    1.04      0    0.716  0.27        0.0    0.0    0.0    0.0    1     20    -20   138    1.1     0.9; 
2    1.025    0    1.63    0.067      0.0    0.0    0.0    0.0   2     20    -20   138    1.1     0.9; 
3    1.025    0    0.85   -0.0109   0.0    0.0    0.0    0.0   2     20    -20    138    1.1    0.9; 
4    1.0         0     0.0       0.0          0.0    0.0    0.0    0.0   3     20    -20   138    1.1      0.9; 
5    1.0         0     0.0       0.0       1.25    0.5    0.0    0.0   3     20    -20   138    1.1      0.9; 
6    1.0         0     0.0       0.0         0.9     0.3    0.0    0.0   3     20    -20   138    1.1      0.9; 
7    1.0         0     0.0       0.0         0.0     0.0    0.0    0.0   3     20    -20   138    1.1      0.9; 
8    1.0         0     0.0       0.0         1.0    0.35  0.0    0.0    3     20    -20   138    1.1      0.9; 
9    1.0         0     0.0       0.0         0.0     0.0    0.0    0.0   3     20    -20   138    1.1     0.9]; 
      
% line data format 
% line: col 1-from bus, 
%       col 2-to bus,  
%       col 3- resistance(pu),  
%       col 4-reactance(pu), 
%       col 5-line charging(pu), 
%       col 6- tap ratio,  
%       col 7- tap phase,  
%       col 8-tapmax,  
%       col 9-tapmin,  
%       col 10- tap size 
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line = [... 
1        4        0.0      0.0567      0.0          0.0       0.0      0.0     0.0     0.00; 
2        7        0.0      0.0625      0.0          0.0       0.0      0.0     0.0     0.00; 
3        9        0.0      0.0586      0.0          0.0       0.0      0.0     0.0     0.00; 
4        5        0.01    0.085     0.088*2    0.0      0.0      0.0      0.0    0.00; 
4        6       0.017   0.092     0.079*2    0.0      0.0      0.0      0.0    0.00; 
5        7       0.032   0.161     0.153*2    0.0      0.0      0.0      0.0    0.00; 
6        9       0.039   0.170     0.179*2    0.0      0.0      0.0      0.0    0.00; 
7        8      0.0085  0.072    0.0745*2  0.0      0.0     0.0      0.0     0.00; 
8        9      0.0119  0.1008  0.1045*2  0.0     0.0      0.0      0.0  0.00]; 
        
% Machine data format 
%       1. machine number, 
%       2. bus number, 
%       3. base mva, 
%       4. leakage reactance x_l(pu), 
%       5. resistance r_a(pu), 
%       6. d-axis sychronous reactance x_d(pu), 
%       7. d-axis transient reactance x'_d(pu), 
%       8. d-axis subtransient reactance x"_d(pu), 
%       9. d-axis open-circuit time constant T'_do(sec), 
%      10. d-axis open-circuit subtransient time constant 
%                T"_do(sec), 
%      11. q-axis sychronous reactance x_q(pu), 
%      12. q-axis transient reactance x'_q(pu), 
%      13. q-axis subtransient reactance x"_q(pu), 
%      14. q-axis open-circuit time constant T'_qo(sec), 
%      15. q-axis open circuit subtransient time constant 
%                T"_qo(sec), 
%      16. inertia constant H(sec), 
%      17. damping coefficient d_o(pu), 
%      18. dampling coefficient d_1(pu), 
%      19. bus number 
  
  
%transient model 
 mac_con = [... 
 1  1 100  0.00  0.0  0.146     0.0608   0  8.96  0   0.0969  0.0969    0   0.31    0  23.64    1   0   1; 
 2  2 100  0.00  0.0  0.8958  0.1198   0  6.00  0   0.8645  0.1969    0   0.535   0  6.40     1   0   2; 
 3  3 100  0.00  0.0  1.3125  0.1813   0  5.89  0   1.2578  0.2500    0   0.600   0  3.01     1   0   3]; 
 
 
  
% Exciter Model format 
%        1. type (1=DC1, 2=DC2, 3=st3)  
%        2. machine #  
%        3. input filter time constant, Tr  (sec) 
%        4. voltage regulator gain, Ka       
%        5. voltage regulator time constant, Ta (sec)  
%        6. voltage regulator time constant, Tb (sec)      
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%        7. voltage regulator time constant, Tc (sec)  
%        8. max voltage regulator output, Vrmax (pu) 
%        9. min voltage regulator output, Vrmin (pu) 
%       10. exciter gain constant, Ke    
%       11. exciter time constant, Te (sec)      
%       12. E1 (pu) 
%       13. saturation function, Se(E1)  
%       14. E2 (pu) 
%       15. saturation function, Se(E2)  
%       16. stabilizer gain, Kf  
%       17. stabilizer time constant, Tf 
  
 exc_con=[... 
 0       1      0      200.       0.015      0      0       15.0       -15       0     0    0    0    0    0    0    0; 
 0       2      0      200.       0.015      0      0       15.0       -15       0     0    0    0    0    0    0    0; 
 0       3      0      200.       0.015      0      0       15.0       -15       0     0    0    0    0    0    0    0]; 
       
% PSS data format: 
% col1  type 
% col2  gen number 
% col3  gain (pu) 
% col4  washout (sec) 
% col5  lead T_1 
% col6  lag T_2 
% col7  lead T_3 
% col8  lag T_4 
% col9  V-max (pu) 
% col10 V-min (pu) 
  
pss_con= [... 
1       1       12.0963       5        0.1882        0.05       0.1882       0.05       0.2       -0.2; 
1       2       8.255            5        0.201           0.05       0.137         0.05       0.2       -0.2;  
1       3       0.082            5        0.631           0.05       0.629         0.05       0.2       -0.2]; 
 
 
% % governor model 
% tg_con matrix format 
%column        data         unit 
%  1    turbine model number (=1)    
%  2    machine number   
%  3    speed set point   wf        pu 
%  4    steady state gain 1/R       pu 
%  5    maximum power order  Tmax   pu on generator base 
%  6    servo time constant   Ts    sec 
%  7    governor time constant  Tc  sec 
%  8    transient gain time constant T3 sec 
%  9    HP section time constant   T4   sec 
% 10    reheater time constant    T5    sec 
   
tg_con=[... 
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1      1      1      25.0     2.0     0.1    0.5    0.0    1.25    5.0; 
1      2      1      25.0     2.0     0.1    0.5    0.0    1.25    5.0; 
1      3      1      25.0     2.0     0.1    0.5    0.0    1.25    5.0]; 
     
% Load configuration 
%  1  bus number 
%  2  fracation of constant P 
%  3  fracation of constant Q 
%  4  fracation of constant active   current 
%  5  fracation of constant reactive current 
  
% Simple Induction Motor Model - Single Cage, no leakage inductance saturation 
% ind_con = [ ... 
%  1 - motor number 
%  2 - busnumber 
%  3 - base MVA 
%  4 - rs 
%  5 - xs -stator leakage reactance 
%  6 - Xm - magnetizing reactance 
%  7 - rr 
%  8 - xr - rotor leakage reactance 
%  9 - H  - inertia constant motor + load in sec 
%  10-14   Don't care (Not Apllicable) 
% 15 - fraction of bus load power taken by motor  
% Induction Motor Load Torque Characteristic (function of slip) 
% 
% mld_con = [ ... 
% 
% 1 motor number 
% 2 bus number 
% 3 stiction load pu on motor base  (f1) 
% 4 stiction load coefficient       (i1) 
% 5 external load  pu on motor base (f2) 
% 6 external load coefficient       (i2) 
%  
% load has the form: torque = f1*slip^i1 + f2*(1-slip)^i2 
  
% per-unit system for induction generator 
rated_voltage = 660;   % [V] 
rated_power   = 250;   % [kW] 
base_Z = rated_voltage^2 / (rated_power*1000); 
  
% Induction Generator data format 
ind_con = [ ... 
1     8 0.25      .00708/base_Z      .0762/base_Z      3.44979/base_Z       .00759/base_Z …  
.23289/base_Z     8.22*1      0      0    0    0    0    .006]; 
  
mld_con = [1       8       2       1       2       1.5]; 
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C. Two Area-Four Machine System Data 
 

% Two Area Four Machine Test Case 
%  
% This is one of the most famous power system examples EVER! More information 
% can be found in either of the following books: 
% Prabha Kundur, Power System Stability and Control, McGraw-Hill Inc., 1994 
% Graham Rogers, Power System Oscillations, M. A. Pai, Editor, Norwell: Kluwer Academic 
Publishers, 2000 
 
% bus data 
bus = [... 
 1           1.03     0     7.00    1.85    0      0     0     0     1     99.0   -99.0     22.0        1.1     .9; 
 2           1.01     0     7.00    2.35    0      0     0     0     2     99.0   -99.0     22.0        1.1     .9; 
 3        0.9781   0     0.00    2.00    0      0     0     0     3     0.0        0.0    500.0        1.5     .5; 
 4           0.95     0     0.00    0.00  9.67  1     0     0     3      0.0       0.0    115.0       1.05    .95; 
 10      1.0103  0    0.00    0.00    0      0     0     0      3     0.0        0.0    230.0        1.5     .5; 
 11       1.03      0    7.19    1.76    0      0     0     0      2     99.0   -99.0     22.0        1.1     .9; 
 12       1.01      0    7.00    2.02    0      0     0     0      2     99.0   -99.0     22.0        1.1     .9; 
 13      0.9899  0    0.00    3.50    0      0     0     0      3      0.0       0.0    500.0        1.5     .5; 
 14        0.95     0    0.00    0.00  17.67 1    0     0      3      0.0       0.0    115.0       1.05   .95;  
 20      0.9876  0    0.00    0.00    0       0    0     0      3       0.0      0.0    230.0         1.5     .5; 
 101       1.0      0    0.00     0.00   0       0    0  1.60   3      99.0   -99.0  500.0        1.5     .5; 
 110    1.0125 0   0.00     0.00    0      0    0     0       3       0.0       0.0   230.0        1.5     .5; 
 120    0.9938 0   0.00     0.00    0      0    0     0       3       0.0       0.0   230.0        1.5     .5]; 
  
  
  
% line data 
line = [... 
   1          10        0.0         0.0167        0.00        1.0      0.0       0.       0.       0.; 
   2          20        0.0         0.0167        0.00        1.0      0.0       0.       0.       0.; 
   10        20    0.0025     0.025       0.0437      1.0       0.0      0.        0.       0.; 
   20         3       0.001      0.010       0.0175      1.0       0.0      0.        0.       0.; 
   3           4          0.0         0.005          0.00        1.0       0.0   1.2     0.8    0.05; 
   3        101     0.011       0.110       0.1925      1.0       0.0     0.        0.       0.; 
   3        101     0.011       0.110       0.1925      1.0       0.0     0.        0.       0.; 
  101     13      0.011        0.11         0.1925      1.0       0.0     0.        0.       0.; 
  101     13      0.011        0.11         0.1925      1.0       0.0     0.        0.       0.; 
  13      120     0.001        0.01         0.0175      1.0       0.0     0.        0.       0.; 
  13       14         0.0          0.005         0.00         1.0       0.0   1.2      0.8   0.05; 
  120    110    0.0025     0.025       0.0437      1.0        0.0     0.       0.       0.; 
  11       110      0.0        0.0167         0.00         1.0       0.0      0.       0.       0.; 
  12       120      0.0        0.0167         0.00         1.0       0.0      0    .   0.       0.]; 
  
  
   
% Machine data 
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% mac_con = [ ... 
% note: all the following machines use sub-transient model 
%       1. machine number, 
%       2. bus number, 
%       3. base mva, 
%       4. leakage reactance x_l(pu) 
%       5. resistance r_a(pu) 
%       6. d-axis sychronous reactance x_d(pu) 
%       7. d-axis transient reactance x'_d(pu) 
%       8. d-axis subtransient reactance x"_d(pu) 
%       9. d-axis open-circuit time constant T'_do(sec) 
%      10. d-axis open-circuit subtransient time constant T"_do(sec) 
%      11. q-axis sychronous reactance x_q(pu) 
%      12. q-axis transient reactance x'_q(pu) 
%      13. q-axis subtransient reactance x"_q(pu) 
%      14. q-axis open-circuit time constant T'_qo(sec) 
%      15. q-axis open circuit subtransient time constant T"_qo(sec) 
%      16. inertia constant H(sec) 
%      17. damping coefficient d_o(pu) 
%      18. dampling coefficient d_1(pu) 
%      19. bus number 
  
 %Transient Model 
 mac_con = [... 
   1    1   900  0.200  0.0025  1.8  0.30  0.00 8.00  0.00  1.7  0.55  0.00  0.4  0.00  6.5   1   0   1; 
   2    2   900  0.200  0.0025  1.8  0.30  0.00 8.00  0.00  1.7  0.55  0.00  0.4  0.00  6.5   1   0   2; 
   3   11   900  0.200  0.0025  1.8  0.30  0.00 8.00  0.00  1.7  0.55  0.00  0.4  0.00  6.5   1   0  11; 
   4   12   900  0.200  0.0025  1.8  0.30  0.00 8.00  0.00  1.7  0.55  0.00  0.4  0.00  6.5   1   0  12]; 
  
% Exciter data 
exc_con = [... 
% Simple exciter 
%            filter   regulator  regulator  lag      lead     max   min 
%       gen  time Tr  gain Ka    time Ta    time Tb  time Tc  Vr    Vr 
% type  no.  (sec.)   (pu)       (sec.)     (sec.)   (sec.)   (pu)  (pu) 
0  1  0.01  200  0  0   0   10   -10  0   0   0   0   0   0   0   0   0   0   0; 
0  2  0.01  200  0  0   0   10   -10  0   0   0   0   0   0   0   0   0   0   0; 
0  3  0.01  200  0  0   0   10   -10  0   0   0   0   0   0   0   0   0   0   0; 
0  4  0.01  200  0  0   0   10   -10  0   0   0   0   0   0   0   0   0   0   0]; 
  
     
% Turbine-governor data 
%column        data                      unit 
%  1    turbine model number (=1)    
%  2    machine number   
%  3    speed set point              wf  pu 
%  4    steady state gain           1/R  pu 
%  5    maximum power order        Tmax  pu on generator base 
%  6    servo time constant          Ts  sec 
%  7    governor time constant       Tc  sec 
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%  8    transient gain time constant T3  sec 
%  9    HP section time constant     T4  sec 
% 10    reheater time constant       T5  sec 
 tg_con = [... 
% % 1  2  3     4    5    6    7    8     9   10 
  1  1  1  25.0  1.0  0.1  0.5  0.0  1.25  5.0; 
  1  2  1  25.0  1.0  0.1  0.5  0.0  1.25  5.0; 
  1  3  1  25.0  1.0  0.1  0.5  0.0  1.25  5.0; 
  1  4  1  25.0  1.0  0.1  0.5  0.0  1.25  5.0]; 
  
  
 pss_con=[... 
 1 2 47.16 20.0 0.7109 0.155 0.7109 0.155 0.2 -0.05; 
 1 3  300  20.0 0.15 0.08431 0.15 0.08431 0.2 -0.05]; 
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D. Fifty Machine System Data 

 
 
% 50 Machine System Data: 
% This is a 50-machine system with 145 buses from Iowa State University. 
% The data has been modified to include full generator and control data 
% Some em generator bus data has been modified to stabilize unrealistic instabilities 
  
% Machine data format 
%        1   machine number, 
%        2  bus number, 
%        3  base mva, 
%        4  leakage reactance x_1(pu), 
%        5  resistance r_a(pu), 
%        6  d-axis sychronous reactance x_d(pu), 
%        7  d-axis transient reactance x'_d(pu), 
%        8  d-axis subtransient reactance x"_d(pu), 
%        9  d-axis open-circuit time constant T'_do(sec), 
%       10  d-axis open-circuit subtransient time constant 
%                T"_do(sec), 
%       11  q-axis sychronous reactance x_q(pu), 
%       12  q-axis transient reactance x'_q(pu), 
%       13  q-axis subtransient reactance x"_q(pu), 
%       14  q-axis open-circuit time constant T'_qo(sec), 
%       15  q-axis open circuit subtransient time constant 
%                T"_qo(sec), 
%       16  inertia constant H(sec), 
%       17  damping coefficient d_o(pu), 
%       18  dampling coefficient d_1(pu), 
%       19  bus number 
%       20  saturation factor s(1.0) 
%       21  saturation factor s(1.2) 
%       22  active power fraction 
%       23  reactive power fraction 
mac_con = [ ... 
1  93  100  0.012  0  0.098  0.024  0 8.5  0  0.096 0.036 0 1.24 0 115   1.0  0   
93 0.0654  0.5743  0 0; 
2 104  100  0.008  0  0.102  0.012  0 10   0  0.098 0.014 0 1.50 0 73.8  1.0  0  
104 0.21   0.55    0 0; 
3  105 100  0.011  0  0.114  0.021  0 6.6  0  0.109 0.031 0 1.50 0 84.4  1.0  0  
105 0.13  0.4096   0 0; 
4 106  100  0.017  0  0.172  0.031  0 6.6  0  0.164 0.047 0 1.50 0 56.2  1.0  0  
106 0.13 0.4096  0 0; 
5  110  100 0.012  0  0.098  0.024  0 8.5  0  0.096 0.036 0 1.24 0 115   1.0  0   
110  0.0654  0.5743  0.0; 
6  111 100 0.008   0  0.102  0.012  0 10   0  0.098 0.014 0 1.50 0 73.8  1.0  0 
111   0.21    0.55    0 0; 
7  60  100    0.00  0.000    0.  0.4769  0 0  0 0 0 0 0 0  1.41 1.41  
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0.0  60 0 0 0 0; 
8  67  100    0.00  0.000    0.  0.0213  0 0  0 0 0 0 0 0  52.1796 52.18 0.0  
67 0 0 0 0; 
9  79  100    0.00  0.000    0.   0.1292  0 0  0 0 0 0 0 0    6.65   6.65   
0.0  79 0 0 0 0; 
10 80  100    0.00  0.000    0.   0.6648  0 0  0 0 0 0 0 0    1.2857 1.29  
0.0  80 0 0 0 0; 
11 82  100    0.00  0.000    0.   0.5291  0 0  0 0 0 0 0 0    2.115  2.12 
0.0  82 0 0 0 0; 
12 89  100    0.00  0.000    0.   0.0585  0 0  0 0 0 0 0 0   20.5602 20.56 0.0 
89 0 0 0 0; 
13 90  100    0.00  0.000    0.   1.6     0 0  0 0 0 0 0 0    0.7628 0.76   
0.0  90 0 0 0 0; 
14 91  100    0.00  0.000    0.   0.3718  0 0  0 0 0 0 0 0    1.6848 1.68  
0.0  91 0 0 0 0; 
15 94  100    0.00  0.000    0.   0.0839  0 0  0 0 0 0 0 0   17.3424 34.69  
0.0  94 0 0 0 0; 
16 95  100    0.00  0.000    0.   0.1619  0 0  0 0 0 0 0 0    5.4662 5.46   
0.0  95 0 0 0 0; 
17 96  100    0.00  0.000    0.   0.4824  0 0  0 0 0 0 0 0    2.1216 2.12  
0.0  96 0 0 0 0; 
18 97  100    0.00  0.000    0.   0.2125  0 0  0 0 0 0 0 0    5.4912 5.49  
0.0  97 0 0 0 0; 
19 98  100    0.00  0.000    0.   0.0795  0 0  0 0 0 0 0 0   13.96   13.16 0.0  
98 0 0 0 0; 
20 99  100    0.00  0.000    0.   0.1146  0 0  0 0 0 0 0 0   17.108  17.1  
0.0  99 0 0 0 0; 
21 100 100    0.00  0.000    0.   0.1386  0 0  0 0 0 0 0 0    7.56   7.56  
0.0 100 0 0 0 0; 
22 101 100    0.00  0.000    0.   0.0924  0 0  0 0 0 0 0 0   12.2844 12.3  
0.0 101 0 0 0 0; 
23 102 100    0.00  0.000    0.   0.0135  0 0  0 0 0 0 0 0   78.43   78.4 
0.0 102 0 0 0 0; 
24 103 100    0.00  0.000    0.   0.1063  0 0  0 0 0 0 0 0    8.16   8.16 
0.0 103 0 0 0 0; 
25 108 100    0.00  0.000    0.   0.0248  0 0  0 0 0 0 0 0   30.432  30.4 
0.0 108 0 0 0 0; 
26 109 100    0.00  0.000    0.   0.2029  0 0  0 0 0 0 0 0    2.6622 2.66  
0.0 109 0 0 0 0; 
27 112 100    0.00  0.000    0.   0.0924  0 0  0 0 0 0 0 0   12.2844 12.3 
0.0 112 0 0 0 0; 
28 115 100    0.00  0.000    0.   0.0024  0 0  0 0 0 0 0 0   97.33   97.3  
0.0 115 0 0 0 0; 
29 116 100    0.00  0.000    0.   0.0022  0 0  0 0 0 0 0 0  105.50  105.5 
0.0 116 0 0 0 0; 
30 117 100    0.00  0.000    0.   0.0017  0 0  0 0 0 0 0 0  102.16  102.2 
0.0 117 0 0 0 0; 
31 118 100    0.00  0.000    0.   0.0014  0 0  0 0 0 0 0 0  162.74  162.5 
0.0 118 0 0 0 0; 
32 119 100    0.00  0.000    0.   0.0002  0 0  0 0 0 0 0 0  348.22  348.2 
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0.0 119 0 0 0 0; 
33 121 100    0.00  0.000    0.   0.0017  0 0  0 0 0 0 0 0  116.54  116.5 
0.0 121 0 0 0 0; 
34 122 100    0.00  0.000    0.   0.0089  0 0  0 0 0 0 0 0  39.24    39.2 
0.0 122 0 0 0 0; 
35 124 100    0.00  0.000    0.   0.0017  0 0  0 0 0 0 0 0  116.86  116.9 
0.0 124 0 0 0 0; 
36 128 100    0.00  0.000    0.   0.0001  0 0  0 0 0 0 0 0  503.87  503.9 
0.0 128 0 0 0 0; 
37 130 100    0.00  0.000    0.   0.0010  0 0  0 0 0 0 0 0  230.90  230.9 
0.0 130 0 0 0 0; 
38 131 100    0.00  0.000    0.   0.0001  0 0  0 0 0 0 0 0 1101.72 1101.7  
0.0 131 0 0 0 0; 
39 132 100    0.00  0.000    0.   0.0016  0 0  0 0 0 0 0 0  120.35  120.4  
0.0 132 0 0 0 0; 
40 134 100    0.00  0.000    0.   0.3e-4  0 0  0 0 0 0 0 0  802.12  802.1  
0.0 134 0 0 0 0; 
41 135 100    0.00  0.000    0.   0.0008  0 0  0 0 0 0 0 0  232.63  232.6 
0.0 135 0 0 0 0; 
42 136 100    0.00  0.000    0.   0.1e-4  0 0  0 0 0 0 0 0 2018.17 5000.2 
0.0 136 0 0 0 0; 
43 137 100    0.00  0.000    0.   0.0004  0 0  0 0 0 0 0 0  469.32  469.3 
0.0 137 0 0 0 0; 
44 139 100    0.00  0.000    0.   0.0001  0 0  0 0 0 0 0 0 2210.20 2210.2 
0.0 139 0 0 0 0; 
45 140 100    0.00  0.000    0.   0.0003  0 0  0 0 0 0 0 0  889.19  889.2  
0.0 140 0 0 0 0; 
46 141 100    0.00  0.000    0.   0.0001  0 0  0 0 0 0 0 0 1474.22 1474.2  
0.0 141 0 0 0 0; 
47 142 100    0.00  0.000    0.   0.0003  0 0  0 0 0 0 0 0  950.80  950.8  
0.0 142 0 0 0 0; 
48 143 100    0.00  0.000    0.   0.0023  0 0  0 0 0 0 0 0  204.30  204.3  
0.0 143 0 0 0 0; 
49 144 100    0.00  0.000    0.   0.0004  0 0  0 0 0 0 0 0  443.22  443.2 
0.0 144 0 0 0 0; 
50 145 100    0.00  0.000    0.   0.0018  0 0  0 0 0 0 0 0  518.08  518.1 
0.0 145 0 0 0 0]; 
  
% Exciter data format 
% column data 
% 1          exciter type 
% 2          machine number 
% 3          input filter time constant 
% 4          voltage regulator gain K_A 
% 5          voltage regulator time constant T_A (sec) 
% 6          voltage regulator time constant T_B (sec) 
% 7          voltage regulator time constant T_C (sec) 
% 8          maximum voltage regulator output VR_max 
% 9          minimum voltage regulator output VR_min 
% 10         exciter constant K_e 
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% 11         exciter time constant T_E 
% 12         E_1 
% 13         saturation function S_E (E_1) 
% 14         E_2 
% 15         saturation function S_E (E_2) 
% 16         stabilizer gain K_f 
% 17         stabilizer time constant (T_f) 
  
  
exc_con = [... 
0  1  0.02  185.0  0  0  0   8.89  -2.0  0  0  0  0  0  0  0  0; 
0  2  0.015 253.0  0  0  0   8.86  -7.0  0  0  0  0  0  0  0  0; 
0  3  0.468 54.63  0  0  0   7.38   0.0  0  0  0  0  0  0  0  0; 
0  4  0.468 54.63  0  0  0   7.38   0.0  0  0  0  0  0  0  0  0; 
0  5  0.02  185.0  0  0  0   8.89  -2.0  0  0  0  0  0  0  0  0; 
0  6  0.015 253.0  0  0  0   8.86  -7.0  0  0  0  0  0  0  0  0]; 
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E. Matlab Codes 
 
 
 Particle Swarm Optimization 
 
function [Jss,xss,Jsss,t] = psomax(bounds,evalFN,tmax,c1,c2,n,M) 
  
  
% PSOmax run a Partical Swarm Optimization to maximize the objective function. 
% function [x,endPop,bPop,traceInfo]=ga(bounds,evalFN,tmax,c1,c2,n,M) 
%                                 
% Output Arguments: 
%   Jss          - the best solution found during the course of the run. 
%   xss          - the final population.  
%   Jsss         - a trace of the best population. 
%   t            - number of iteration. 
% 
% Input Arguments: 
%   bounds       - a matrix of upper and lower bounds on the variables. 
%   evalFN       - the name of the evaluation .m function. 
%   tmax         - maximum number of iteration. 
%   c1           - weighting factor. 
%   c2           - weighting factor. 
%   n            - number of popualtion. 
%   M            - maximum number of iteration of unchanged soltion.  
  
% Partical Swarm Optimization for Matlab  
% Copyright (C) 2003 Amer Alhinai  
% 
% This program is free software; you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation; either version 1, or (at your option) 
% any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. A copy of the GNU  
% General Public License can be obtained from the  
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 
  
%%%%%%%%%%%%%%%%%%%%%%%%% 
x_int= bounds; 
t=1;                    % 1st iteration. 
%wmax=0.9; 
%wmin=0.4; 
%w(t)=wmax-((wmax-wmin)/tmax)*t; 
%r1=rand(tmax);r2=rand(tmax); 
%%%%%%%%%%%%%%%%%%%%%%%%% 
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phi=c1+c2; 
K=2/(abs(2-phi-sqrt(phi^2-4*phi))); 
%rand1=rand(length(x_int),n); 
for i=1:length(x_int) 
    x(i,:)=x_int(i,1)+(x_int(i,2)-x_int(i,1))*rand(1,n); 
end 
%size_X=size(x); 
%rand2=rand(length(x_int),n); 
for i=1:length(x_int) 
    Vmax(i)=max(x(i,:));Vmin(i)=min(x(i,:)); 
    vk(i)=(Vmax(i)-Vmin(i))/n; 
    V(i,:)=-vk(i)+(vk(i)+vk(i))*rand(1,n); 
end 
vmax=vk;vmin=-vk; 
size_V=size(V); 
%x=X; 
xs=x;%vs=V; 
for i=1:size_V(2) 
    xc=x(:,i); 
    e1str=['jc=' evalFN '(xc);']; 
    eval(e1str);  
    J(i)=jc; 
end 
Js=J; 
Jss=max(Js);xss=x(:,find(Jss==Js)); 
%load y;Jss=y(length(y));xss=y(1:length(y)-1)'; 
Jsss(t)=Jss; 
m=0; 
%w1(t)=1; 
while t<tmax 
    if m>M 
        break 
    end 
    t=t+1 
    m 
    %w1(t)=0.98*w1(t-1); 
    %w(t)=wmax-((wmax-wmin)/tmax)*t; 
    r1=rand(1);r2=rand(1); 
    for i=1:size_V(1) 
        for k=1:size_V(2) 
            v_cal=K*(V(i,k)+c1*r1*(xs(i,k)-x(i,k))+c2*r2*(xss(i)-x(i,k))); 
            %v_cal=w(t)*V(i,k)+c1*r1(t)*(xs(i,k)-x(i,k))+c2*r2(t)*(xss(i)-x(i,k)); 
            if (v_cal>=vmin(i) & v_cal<=vmax(i)) 
                V(i,k)=v_cal; 
            else 
            end 
        end 
    end 
    for i=1:size_V(1) 
        for k=1:size_V(2) 
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            x_cal=V(i,k)+x(i,k); 
            if (x_cal>=x_int(i,1) & x_cal<=x_int(i,2)) 
                x(i,k)=x_cal; 
            else 
            end 
        end 
    end 
     
    for i=1:size_V(2) 
        xc=x(:,i); 
        %[xc,jc] = eval(evalFN(xc)); 
        e1str=['jc=' evalFN '(xc);'];eval(e1str); 
        J(i)=jc; 
    end 
    for i=1:size_V(2) 
        if J(i)>Js(i) 
            Js(i)=J(i); 
            xs(:,i)=x(:,i); 
            %vs(:,i)=V(:,i); 
        else 
        end 
    end 
    Jmax=max(Js); 
    if Jmax>Jss 
        m=0; 
        Jss=Jmax 
        xss=xs(:,find(Jss==Js));xss=xss(:,1); 
    else 
        m=m+1; 
        fprintf('%2.0f ',m) 
    end 
    Jsss(t)=Jss; 
end 
return 
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Reinforcement Learning  
 
function rl1a(block) 
%global deltai deltap 
    %deltap=0.04; 
    %deltai=0.08; 
% Level-2 M file S-Function for times two demo. 
%   Copyright 1990-2004 The MathWorks, Inc. 
%   $Revision: 1.1.6.1 $  
  
  setup(block); 
   
%endfunction 
  
function setup(block) 
   
  %% Register number of input and output ports 
  block.NumInputPorts  = 8; 
  block.NumOutputPorts = 4; 
  
  %% Setup functional port properties to dynamically 
  %% inherited. 
  block.SetPreCompInpPortInfoToDynamic; 
  block.SetPreCompOutPortInfoToDynamic; 
  
  block.InputPort(1).Complexity   = 'Real';  
  block.InputPort(1).DataTypeId   = 0; 
  block.InputPort(1).SamplingMode = 'Sample'; 
  block.InputPort(1).Dimensions   = 1;% AcE1 
   
  block.InputPort(2).Complexity   = 'Real'; 
  block.InputPort(2).DataTypeId   = 0; 
  block.InputPort(2).SamplingMode = 'Sample'; 
  block.InputPort(2).Dimensions   = [6 6]; 
   
  block.InputPort(3).Complexity   = 'Real';  
  block.InputPort(3).DataTypeId   = 0; 
  block.InputPort(3).SamplingMode = 'Sample'; 
  block.InputPort(3).Dimensions   = 1;%state 
   
  block.InputPort(4).Complexity   = 'Real';  
  block.InputPort(4).DataTypeId   = 0; 
  block.InputPort(4).SamplingMode = 'Sample'; 
  block.InputPort(4).Dimensions   = 1;%lamda 
  
  block.InputPort(5).Complexity   = 'Real';  
  block.InputPort(5).DataTypeId   = 0; 
  block.InputPort(5).SamplingMode = 'Sample'; 
  block.InputPort(5).Dimensions   = 1;%Tau 
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% To determine the bound on the gains 
  block.InputPort(6).Complexity   = 'Real';  
  block.InputPort(6).DataTypeId   = 0; 
  block.InputPort(6).SamplingMode = 'Sample'; 
  block.InputPort(6).Dimensions   = 1;%lamda0 
  
  block.InputPort(7).Complexity   = 'Real';  
  block.InputPort(7).DataTypeId   = 0; 
  block.InputPort(7).SamplingMode = 'Sample'; 
  block.InputPort(7).Dimensions   = 1;%Tau0 
   
  block.InputPort(8).Complexity   = 'Real';  
  block.InputPort(8).DataTypeId   = 0; 
  block.InputPort(8).SamplingMode = 'Sample'; 
  block.InputPort(8).Dimensions   = 1;%Tau0 
  
  block.OutputPort(1).Complexity   = 'Real'; 
  block.OutputPort(1).DataTypeId   = 0; 
  block.OutputPort(1).SamplingMode = 'Sample'; 
  block.OutputPort(1).Dimensions   = 1;%KI1 
  
  block.OutputPort(2).Complexity   = 'Real'; 
  block.OutputPort(2).DataTypeId   = 0; 
  block.OutputPort(2).SamplingMode = 'Sample'; 
  block.OutputPort(2).Dimensions   = 1;%KP1 
   
  block.OutputPort(3).Complexity   = 'Real'; 
  block.OutputPort(3).DataTypeId   = 0; 
  block.OutputPort(3).SamplingMode = 'Sample'; 
  block.OutputPort(3).Dimensions   = 1;%j 
   
  block.OutputPort(4).Complexity   = 'Real'; 
  block.OutputPort(4).DataTypeId   = 0; 
  block.OutputPort(4).SamplingMode = 'Sample'; 
  block.OutputPort(4).Dimensions   = 1;%state 
   
  %block.InputPort(1).DirectFeedthrough = true; 
   
  %% Set block sample time to inherited 
  block.SampleTimes = [0.5 0]; 
   
  %% Run accelerator on TLC 
  block.SetAccelRunOnTLC(true); 
   
  %% Register methods 
  block.RegBlockMethod('WriteRTW',                @WriteRTW); 
  block.RegBlockMethod('Outputs',                 @Output);   
   
%endfunction 
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function Output(block) 
%-------finding greedy action------------------  
   if (block.InputPort(1).Data)>0.10 
       s=(block.InputPort(3).Data); 
        max1=block.InputPort(2).Data(s,1); 
        j=1; 
        for l=1:5 
            if (block.InputPort(2).Data(s,l)>max1) 
                max1=block.InputPort(2).Data(s,l); 
                j=l; 
            end 
        end 
         
    block.OutputPort(3).Data=j; 
    block.OutputPort(4).Data=block.InputPort(3).Data;  
    %------------------------------------------      
 z=abs(block.InputPort(8).Data); 
 zL=block.InputPort(6).Data; 
 zT=block.InputPort(7).Data; 
      if (j==1) 
            lamda=block.InputPort(4).Data-z; 
             block.OutputPort(1).Data=block.InputPort(4).Data-z; 
          if (lamda<=0.7*zL) 
             block.OutputPort(1).Data=0.7*zL; 
          end; 
     elseif(j==2) 
         lamda=block.InputPort(4).Data+z; 
          block.OutputPort(1).Data=block.InputPort(4).Data+z; 
          if (lamda>=1.3*zL) 
             block.OutputPort(1).Data=1.3*zL; 
          end; 
      elseif(j==3) 
          Tau=block.InputPort(5).Data-z; 
          block.OutputPort(2).Data=block.InputPort(5).Data-z; 
          if(Tau<=0.7*zT) 
              block.OutputPort(2).Data=0.7*zT; 
          end; 
      elseif (j==4) 
          Tau=block.InputPort(5).Data+z; 
          block.OutputPort(2).Data=block.InputPort(5).Data+z; 
          if(Tau>=1.3*zT) 
              block.OutputPort(2).Data=1.3*zT; 
          end; 
      elseif (j==5) 
          block.OutputPort(2).Data=block.InputPort(5).Data-0.15*z; 
          block.OutputPort(1).Data=block.InputPort(4).Data-0.15*z; 
      end; 
   else 
   
    block.OutputPort(3).Data=6; 
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    block.OutputPort(4).Data=6;  
    block.OutputPort(1).Data=block.InputPort(4).Data; 
    block.OutputPort(2).Data=block.InputPort(5).Data; 
  
  
   end 
   
%endfunction 
  
 
 
 
 
function rl2(block) 
global al gama 
al=0.9; 
gama=0.9; 
% Level-2 M file S-Function for times two demo. 
%   Copyright 1990-2004 The MathWorks, Inc. 
%   $Revision: 1.1.6.1 $  
  
  setup(block); 
   
%endfunction 
  
function setup(block) 
   
  %% Register number of input and output ports 
  block.NumInputPorts  = 4; 
  block.NumOutputPorts = 2; 
  
  %% Setup functional port properties to dynamically 
  %% inherited. 
  block.SetPreCompInpPortInfoToDynamic; 
  block.SetPreCompOutPortInfoToDynamic; 
  
  block.InputPort(1).Complexity   = 'Real';  
  block.InputPort(1).DataTypeId   = 0; 
  block.InputPort(1).SamplingMode = 'Sample'; 
  block.InputPort(1).Dimensions   = 1;% PI 
   
  block.InputPort(2).Complexity   = 'Real'; 
  block.InputPort(2).DataTypeId   = 0; 
  block.InputPort(2).SamplingMode = 'Sample'; 
  block.InputPort(2).Dimensions   = [6 6]; 
   
  block.InputPort(3).Complexity   = 'Real';  
  block.InputPort(3).DataTypeId   = 0; 
  block.InputPort(3).SamplingMode = 'Sample'; 
  block.InputPort(3).Dimensions   = 1;%state 
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  block.InputPort(4).Complexity   = 'Real';  
  block.InputPort(4).DataTypeId   = 0; 
  block.InputPort(4).SamplingMode = 'Sample'; 
  block.InputPort(4).Dimensions   = 1;%j(number of the action taken) 
   
   
  block.OutputPort(1).Complexity   = 'Real'; 
  %block.OutputPort(1).DataTypeId   = 0; 
  block.OutputPort(1).SamplingMode = 'Sample'; 
  block.OutputPort(1).Dimensions   = [6 6]; 
  
  block.OutputPort(2).Complexity   = 'Real'; 
  %block.OutputPort(2).DataTypeId   = 0; 
  block.OutputPort(2).SamplingMode = 'Sample'; 
  block.OutputPort(2).Dimensions   = 1; 
  
  %% Set block sample time to inherited 
  block.SampleTimes = [0.5 0]; 
   
  %% Run accelerator on TLC 
  block.SetAccelRunOnTLC(true); 
   
  %% Register methods 
   
 %block.RegBlockMethod('WriteRTW',                @WriteRTW); 
  block.RegBlockMethod('Outputs',                 @Output);   
  
%endfunction 
  
function Output(block) 
al=0.9; 
gama=0.9; 
y1=abs(block.InputPort(1).Data(1)); 
  
        if (y1>20) 
            sn=1; 
        elseif ((y1<=20)&&(y1>10)) 
            sn=2; 
        elseif ((y1<=10)&&(y1>5)) 
            sn=3; 
        elseif ((y1<=5)&&(y1>0.1)) 
            sn=4; 
        else             
            sn=5; 
        end 
         
        r=-50*y1; 
        s=block.InputPort(3).Data; 
        j=block.InputPort(4).Data; 
        max2=block.InputPort(2).Data(s,1); 
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        for z=1:5 
            if (block.InputPort(2).Data(s,z)>max2) 
                max2=block.InputPort(2).Data(s,z); 
            end 
        end 
  
        block.OutputPort(1).Data(s,j)=(1-al)*block.InputPort(2).Data(s,j)+al*(r+gama*max2); 
        block.OutputPort(2).Data=sn; 
      
   
%endfunction 
  

 

 

 

 

 



113 
 

REFERENCES 

[1] M. Amin, “Powering the 21st Century,” IEEE Power & Energy. March- April, 2005, pp. 93-96. 

[2] IEEE/CIGRE Joint Task force on Stability Terms and Definitions, “Definition and Classification of Power System 

Stability,” IEEE Transactions on Power Systems, Vol. 19, No. 2, pp. 1387-1401, 2004. 

[3] P. Kundur, Power System Stability and Control, McGraw-Hill, 1994 

[4] P. Kundur, “Effective Use of Power System Stabilizers for Enhancement of Power System reliability,” PES, IEEE Power 

Engineering Society, Edmonton, Alta, canada, pp. 96-103, July 1999. 

[5] Hingorani, N. G., “Flexible AC Transmission,” IEEE Spectrum, pp. 40-44, April 1993.  

[6] Eberhart, R. C., and Kennedy J.,(1995) “ A New Optimizer Using Particle swarm Theory,” Proceedings of the Sixth 

International Symposium on Micro Machine and Human Science, Nagoya, Japan, 39-43. Piscataway, NJ: IEEE Service 

Center 

[7] M. Glavic, Design of resistive brake controller for power system stability enhancement using reinforcement learning, 

IEEE Trans. Power Syst. 13 5, (September) (2005) 743-751. 

[8] S. Eftekharnejad, and A Feliachi, Stability Enhancement Through Reinforcement Learning: Load Frequency Control 

Case Study, Bulk Power system Dynamics and Control, Charleston, S.C, USA, Aug. 19-24, 2007. 

[9] K.Y. Lee, and M.A. El-Sharkawi, Modern Heuristic Optimization Techniques: Theory and Applications to Power 

Systems, Wiley- Interscience, 2008 

 [10] F. P.  de Mello and C. Concordia, “Concepts of Synchronous Machine Stability as Affected by Excitation Control,” 

IEEE Transaction on Power System, Vol. PAS-88 (4), pp. 316-329, 1969. 

[11] G. E. Boukarim, S. Wang, J. H. Chow, G. N. Taranto, N. Martins, “A Comparison of Classical, Robust, and Decentralized 

Control designs for Multiple Power System Stabilizers,” IEEE Transaction on Power Systems, Vol. 15, No. 4, November 

2000. 

[12] J. H. Chow, L. P. Harris, M. A. Kale, H. A. Othman, J. J. Sanchez-Gasca, G. E. Terwilliger, “ Robust control design of power 

system stabilizers using multivariable frequency domain techniques,” Proceedings of the 29th IEEE Conference on 

Decision and Control, Honolulu, HI, USA, 1990 

[13] Karimi, A. (2008), Power System Damping Controllers Design using a Backstepping Control Technique, (unpublished 

doctoral dissertation). West Virginia University, Morgantown, West Virginia 

[14]S. J. Cheng, Y. S. Chow, O. P. Malik, G. S. Hope, “An Adaptive synchronous Machine Stabilizer,” IEEE Transactions on 

power Systems, Vol. 1, No. 3, pp. 101-109, 1986. 

[15] A. L. B. do Bomfim, G. N. Taranto, D. M. Falcao, “Simultaneous Tuning of Power System Damping Controllers  

 Using Genetic Algorithms,” IEEE Transactions on Power System, Vol. 15, pp. 163-169, 2000. 

[16] A. Hasanovic, A Feliachi, “Robust PSS Tuning Through Multiobjective Optimization,” PSCE, IEEE Power Systems And 

Exposition, New York, Oct, 2004. 

[17] M. A. Abido, Y. L. Abdel-Magic, “Robust design of multimachine power system stabilizers using tabu search  

algorithm,” IEE Proceedings Generation, Transmission and Distribution, Vol. 147, pp. 387-394, November 2000. 



114 
 

[18] M.  A. Abido, “Optimal Desing of Power System Stabilizers Using Particle Swarm Optimization,” IEEE Transactions on 

Energy Conversion, Vol. 17, No. 3, September 2002. 

[19] T. Yu, and  W. Zhen, A Reinforcement Learning Approach to Power System Stabilizers, PES, IEEE Power and Energy 

Society  General Meeting, Calgary, AB, July 26-30, 2009 

[20] R. Hadidi, and B. Jeyasurya, Reinforcement learning approach for controlling power system stabilizers, Canadian 

Journal of Electrical and Computer Engineering 34, No 3 (2009) 99-103. 

[21] Guo, Y., Hill, D. J., & Wang, Y (2000), “Nonlinear decentralized control of large-scale power systems,” Automatica, 36, 

1275 -1289 

[22] Zhu, C., Zhou, R, Wang,  Y. “ A New Decentralized Nonlinear Voltage Controller For Multimachine Power Systems,” 

IEEE Trans. On Power Systems, Vol 13, pp 211-216, February 1998. 

[23] M. D. Ilic, H. Allen, W. Chapman, C. A. King, J. H. Lang, E. Litivinov, “Preventing future blackouts by means of enhanced 

electric power systems control: from complexity to order,” Proceedings of the IEEE, Vol. 93, No 11, November 2005. 

[24] Karimi, A., Feliachi, A., “Decentralized Extended-Backstepping Control of Power systems,” IEEE PES General Meeting, 

2006 

[25] Karimi, S. Eftekharnejad, and A Feliachi, Reinforcement learning based backstepping control of power system 

oscillations, Int. J Elsevier on Electric Power Systems Research 79 (2009) 1511-1520. 

[26] X. G. Yontag, S. K. Spurgeon, C. Edwards, “Decentralized Sliding Mode Control for Multimachine Power Systems Using 

Only Output Information,” The 29th Annual Conference of the IEEE on Industrial Electronics Society, IECON, Vol. 2, pp. 

1944-1949, 2003. 

[27] V. I. Utkin, “Variable Structure Control Systems with Sliding Modes,” IEEE Transaction on Automatic Control, Vol. AC-

22, No. 2, pp. 210-222, 1977 

[28] Edward, C., and Spurgeon, S., Sliding Mode Control: Theory and Applications, Taylor and Francis, London, 1998 

[29] Nusawardhana, Zak, S. H, Crossley, W. A., “Nonlinear Synergetic Optimal Controllers,” Journal of Guidance, Control  

and Dynamics,  Vol. 30, No. 4, July-August 2007. 

[30] Santi, E., Monti, A., Li, D., Proddutur, K., Dougal, R. A., “ Synergetic Control for Power electronics Applications: a 

Comparison with the Sliding Mode Approach,” Journals of Circuits, Systems and Computers, Vol. 13, No. 4, pp 737- 760, 

2004. 

[31] Bastos, J., Monti, A., Santi, E., “Design and implementation of a Nonlinear Speed Control for a PM Synchronous  Motor 

Using The Synergetic Approach to Control Theory,” Power Electronics Specialists Conference, 2004. PESC 04 

[32] Kolesnikov, A., Veselov, G, Monti, A., Ponci, F, Santi, E, Dougal,  R.,”Synergetic Synthesis of DC- DC Boost Converter 

Controllers: Theory and Experimental Analysis,” Applied Power Electronics Conference and Exposition, APEC 2002. 

[33] Jiang, Z., “Design of Nonlinear Power System Stabilizer Using Synergetic Control Theory,” IEEE Power Engineering 

Society General Meeting, 2007 

[34] J. J. Sanchez-Gasca, “Coordination control of two FACTS devices for damping inter-area oscillations,” IEEE PES 

summer meeting, Berlin, Germany, July 1997. 

[35] P. Pourbiek, M. J. Gibbard, “Simultaneous coordination of Power System Stabilizers and FACTS device stabilizers in a 

multimachine power system for enhancing dynamic performance,” IEEE Transaction on Power Systems, Vol. 13, No. 2, 

pp. 473-479, 1998 

[36] Kolesnikov, A. A, Modern Applied control Theory: Synergetic Approach in Control Theory, TRTU, Moscow-Taganrog, 

2000. 

[37] Slotine, J., and Li, W., Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ, 1991.  



115 
 

[38] W.M. Haddad, V. Chellaboina, Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach, Princeton 

University Press 2008 

[39] Sauer, P. W., Pai, M. A., “Power System Dynamics and Stability,” Prentice – Hall, Upper Saddle River, NJ, 1998 

[40] Yan, R., Dong, Y., Saha, T. K., Majumdar, R., (2010) “A Power System Nonlinear Adaptive Decentralized Controller 

Design,” Automatica, 46, 330-336. 

[41] Krstic, M., Kanellakopoulos, L., and Kokotovic, P., Nonlinear and Adaptive Control Design, John Wiley & Sons Inc., NY, 

1995 

[43] M. Clerc, J. Kennedy, “ The Particle Swarm-Explosion, Stability and Convergence in Multidimensional Complex Space,” 

IEEE Transactions on Evolutionary Computations, Vol. 6, No. 1, pp 58-73, 2002. 

[44] B. Panigrahi, A. Abraham, and S. Das Eds., Computational Intelligence in Power Engineering.Berlin, Germany: Springer-

Verlag, 2010. 

[45] IEEE Recommended Practice for Excitation System Models for Power system Stability Studies, Energy Development 

and Power Generating Committee of the Power Engineering Society, 19, March 1992. 

[46] Schoder, A., Hasanovic, A., and Feliachi, A., “PAT: A Power Analysis Toolbox for MATLAB/ Simulink,” IEEE Trans. On 

Power Systems, Vol. 18, pp 42 -48, 2003 

[47] Taoridi Ademoye, Ali Feliachi, “Decentralized Synergetic Control of Multimachine Systems”  PSCE, IEEE Power 

Systems  And Exposition, Phoenix, AZ, March 2011 

[48] T. Ademoye, A. Feliachi, and A.  Karimi, Coordination of Synergetic Excitation Controller and SVC-Damping Controller 

Using Particle Swarm Optimization, in: IEEE Power and Energy Society General Meeting, Detroit, MI, July 24- 29,2011 

[49] M. Meissner, M. Schmuker, G. Schneider, Optimized particle swarm optimization (OPSO) and its application to 

artificial neural network training, BMC Bioinformatics 7 (125) (2006) 

[50] D. Ernst, M. Glavic, and L Wehenkel, Power system stability control: reinforcement learning framework, IEEE Trans. 

Power Syst. 19 (February) (2004) 

[51] A. Karimi, A. Feliachi, M. A. Choudhry, “On an SVC backstepping damping nonlinear controller design for power 

systems,” iREP Symposium Bulk Power System Dynamics and Control- VII, Charleston, SC, 2007 

[52] A. Fouad, V. Vittal, Power System Transient Stability Analysis Using Transient Energy Function Method, Kluwer 

Academic Publishers, 1989. 


	Decentralized Synergetic Control of Power Systems
	Recommended Citation

	5.2.2 Controller Design

