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TESTING FOR SPATIAL ERROR AUTOCORRELATION
IN THE PRESENCE OF ENDOGENOUS REGRESSORS

LUC ANSELIN
Regional Research Institute and Department of Economics, West Virginia University, Morgantown,
WV 26506-6825 USA (lanselin@wvu.edu)

HARRY H. KELEJIAN
Department of Economics, University of Maryland, College Park, MD 20742 USA
(kelejian@econ.umd.edu)

This paper examines the properties of Moran’s / test for spatial error autocorrelation when endoge-
nous variables are included in the regression specification and estimation is carried out by means of
instrumental variables procedures (such as two-stage least squares). The asymptotic distribution of
the statistic is formally derived in a general model that encompasses endogeneity due to system feed-
backs as well as spatial interaction (in the form of spatially lagged dependent variables). The small-
sample performance of the test is assessed in a series of Monte Carlo simulation experiments, and the
test is compared to a number of ad hoc approaches that have been suggested in the literature. While
some of these ad hoc procedures perform surprisingly well, the new test is the only acceptable one in
the presence of spatially lagged dependent variables. The test is straightforward to compute and
should become part of routine specification testing of models with endogeneity that are estimated for
cross-sectional data.

INTRODUCTION

In empirical regional and urban economic research, many models are esti-
mated with cross-sectional observations on aggregate spatial units such as coun-
ties or census tracts. Such data sets are likely to exhibit a lack of independence in
the form of spatial autocorrelation. This is increasingly acknowledged in applied
econometric work and approached by implementing diagnostic tests for the pres-
ence of spatial autocorrelation (for reviews, see Anselin 1988b, 1988c; Anselin
and Bera 1997). In the typical case, the regression model is linear, the regressors
are exogenous, and the diagnostic is formulated in terms of the ordinary least
squares residuals. The most popular test applied in this context is Moran’s / test
for spatial autocorrelation (Moran 1950), which was generalized to regression
residuals by Cliff and Ord (1972) (see also Cliff and Ord 1973, 1981). Moran’s /
test is similar in structure to the familiar Durbin-Watson test for serial correlation
in the time domain and shares many of its properties. In particular, it is locally
best invariant (King 1981) and its exact distribution depends on the explanatory
variables in the model and the dependence structure embodied in the alternative
hypothesis (King 1987; Sen 1990; Tiefelsdorf and Boots 1995). Assuming
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normality for the errors and fixed regressors, Moran’s / is an exact test. Its distri-
bution can be computed in small samples by means of numerical integration fol-
lowing the procedure suggested in Tiefelsdorf and Boots (1995). However, this is
typically not done in practice. Instead, an asymptotic approximation is used that
is based on the expected value and variance of the statistic under the null hypoth-
esis of independence and normality (Cliff and Ord 1973; Sen 1976; see also
Terui and Kikuchi 1994). In most cases, this approximation is quite satisfactory
and the test has demonstrated superior power in several Monte Carlo simulation
studies (e.g., Hordijk 1974; Bartels and Hordijk 1977; Anselin and Rey 1991;
Anselin and Florax 1995).

Moran’s [ test is a powerful misspecification test. However, it does not pro-
vide an indication of the nature of the spatial process that causes the autocorrela-
tion, specifically whether it is due to an error process or an omitted spatially
lagged dependent variable. Other tests, based on the Lagrange multiplier princi-
ple (e.g., Burridge 1980; Anselin 1988a, 1988c; Anselin et al. 1996) are more
direct in this respect, but they are asymptotic in nature and depend on the
assumption of normal error terms. Also, when the misspecification is error auto-
correlation, Moran’s / consistently achieves higher power in small samples than
the corresponding Lagrange multiplier (LM) test. On the other hand, LM tests are
easier to implement in practice since they do not involve moment calculations as
is the case for Moran’s / (see Anselin and Hudak 1992).

Moran’s / and the LM tests are typically considered in a context where all
explanatory variables are exogenous. In the practice of empirical regional
research however, the potential endogeneity of variables in a model is increas-
ingly acknowledged (e.g., Kelejian and Robinson 1993; Holtz-Eakin 1994). Lit-
tle is known about the properties of tests for spatial error autocorrelation when
such endogeneity is present.

The objectives of this paper are twofold. First, from a theoretical perspec-
tive, the asymptotic distribution of Moran’s / statistic is formally derived based
on residuals that are obtained from an instrumental variables (IV) procedure such
as two-stage least squares (2SLS) in a general model that encompasses endoge-
neity due to system feedbacks as well as spatial interaction (spatially lagged
dependent variables). In the process, the set of assumptions needed to rigorously
obtain the asymptotic properties is stressed. Second, focusing on situations
encountered in practice, this paper assesses the small-sample performance of the
suggested test, as well as a variation that is ad hoc in nature but has been consid-
ered in practice (e.g., Holtz-Eakin 1994). This variation boils down to the appli-
cation of the moments derived in Cliff and Ord (1972) to IV residuals. This paper
also empirically investigates the effect of endogeneity on the standard OLS-
based Moran’s / and LM statistics, i.e., when the endogeneity is ignored in the
estimation. This is the first study to address this aspect.

The remainder of the paper consists of six sections. First, the formal frame-
work for the derivations in terms of the general model specification is outlined.
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Next, the necessary assumptions are spelled out. This is followed by a discussion
of instrumental variable estimation and the asymptotic distribution of the statistic
for the general model as well as for a number of special cases. Next, the various
diagnostics are evaluated empirically in a series of Monte Carlo simulation
experiments. The paper closes with some concluding comments and practical
recommendations. Formal proofs are relegated to the appendices.

THE GENERAL MODEL

Consider a regression model that contains exogenous explanatory variables,
as well as endogenous variables and spatially lagged dependent variables:

¥y =X\ B+pWyy +Yra+¢, 1))
or, more concisely,
v =Z3d+¢ )

where Z, = (X, Wyy,., ¥,) and 8’ = (B’, p, a’) . The notation is as follows: y, is
the N by 1 vector of observations on the dependent variable; X, is an N by k,
matrix of observations on k, exogenous variables with §3 as the corresponding &,
by 1 vector of parameters; W, is an N by (N +J) spatial weights matrix whose ele-
ments are known constants; y,, is the (N +J) by 1 vector y,. = (y,",y,,"), with
y,; as aJ by 1 vector of observations on J values of the dependent variable that
correspond to border locations; p is a scalar spatial autoregressive parameter; Y,
is an N by g matrix of observations on g endogenous regressors, with a as the
corresponding g by 1 parameter vector; and ¢ is the N by 1 vector of error terms.
Throughout the paper, the subscript of the spatial weights matrix will be used to
indicate its dependence on the sample size (V).

The weights matrix Wy can be partitioned to make it conformable to the
partition of y ., such that Wy = (Wy, W), where Wy, is N by N, and Wy is N
by J. Given this notation, equation (1) can also be written as

i = X\B+p(Wyy, +Wyy )+ Y,a+e¢. 3)

In practice, the border effects are typically ignored. This constitutes a special
case of the general model, with J = 0 and no term of the form Wy, in equation
(3). Border observations are explicitly considered in order to ensure a correct
model specification for each sample size N. Clearly, their omission would lead to
measurement error problems (see, e.g., Griffith 1983). This is important in the
derivation of the asymptotic properties and is further discussed below.

The elements of y, and y,, are not necessarily assumed to form a complete
system. In other words, it is possible for the elements of y,, to interact among
themselves and to interact with the elements in y,, as well as with other neigh-
boring elements (not part of y,, ). In what follows, the feedback between y,, and
v, is explicitly accounted for.
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In addition to endogeneity in the form of a spatially lagged dependent vari-
able, the general model also involves system feedbacks contained in the matrix of
endogenous variables Y, . This implies the existence of other unspecified equa-
tions in which the elements of Y, are partially determined by the elements of y,
along with other variables. For this reason, the elements of ¥, cannot be assumed
to be unrelated to the elements of €.

Finally, let X, be an N by k, matrix of available observations on k, addi-
tional exogenous variables. These are a subset of the exogenous variables appear-
ing in the equations that determine the elements of Y,, but they do not appear as
exogenous variables in (1). The exact specification of the equations in which
these excluded exogenous variables appear does not need to be known.

An illustration of the type of specification considered here can be found in
the study of regional productivity measures of Kelejian and Robinson (1997). For
example, y,; (as the i-th element in y, ) could represent a productivity measure
for the i-th region. Then, y,; may be explained in terms of factors specific to the
i-th region, such as weather (exogenous variables); in terms of a similar produc-
tivity measure for neighboring areas, due to production externalities or technol-
ogy borrowing (a spatially lagged dependent variable); and in terms of factor
inputs in the i-th region that, in turn, are partially dependent upon the productiv-
ity in region i (system feedback variables).

STATISTICAL ASSUMPTIONS

A detailed outline of the set of assumptions on which the derivation of the
asymptotic properties will be based is now presented. First, some additional nota-
tion is needed. In general, denote the i, j-th element, the i-th row, and the j-th col-
umn of a matrix A as, respectively, a;;, a; , and a ;. Each assumption is now

ije
considered in turn.?

ASSUMPTION 1: wy;; does not depend upon N, so that wy;;=w;; VN . Fur-
thermore, |w;| <c, <, foralli,j=1,... N, and N> 1, with c,, as a finite
upper bound on the magnitude of the spatial weights.

This assumption requires that the elements of W, are not functions of the
sample size. Essentially, this implies that the large-sample analysis is conditional
upon a given sequence of weights matrices. It also ensures that a sample of size
N + 1 corresponds to all the units belonging to the sample of size N, plus one
additional one. This is required for the asymptotics (as N — o) to work properly.
This assumption would be violated if, for example, for each N the sample were to
correspond to a random selection of N units from the population of all possible
units. If this were the case, the sample of size N + 1 need not contain all, or even
any, of the units contained in the sample of size N.

Note that the assumptions below that directly involve a weights matrix pertain to W, . The
weights matrix Wy is involved indirectly in assumptions 8 and 9 through Z , from equation (2).
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More importantly, assumption 1 rules out situations in which the elements of
the weights matrix are re-specified as additional observations are added to the
sample. For example, this is the case when the number of neighbors for each
observation is allowed to change as the sample increases in size. This would hap-
pen in the familiar row-standardized case, where each nonzero weight in the i-th
row of Wy equals 1/d;, with d; as the number of neighbors for observation i.
This problem is avoided by specifying the more general Wy as.the weights
matrix in (1), such that d; is the number of nonzero elements in the i-th row of
Wy, which will exceed the number of nonzero elements in W, when border
locations are neighbors of observation i. However, the 1/d; derived from the
row elements in Wy will not change as new observations are added to the sample
(i.e., all the neighbors of observation i are already taken into account), so that
assumption 1 is not violated. Consequently, the weights structure of the model is
correctly specified for each sample size.

Assumption 1 may be unduly restrictive, but the technical apparatus required
to treat more complex ways in which the elements of the weights matrix are
affected by increasing sample size are beyond the scope of the current paper. For
an in-depth treatment of the difficulties encountered in formalizing asymptotics
for spatial samples, see, €.g., Cressie (1993: 100-101) and Kelejian and Prucha
(1995).

ASSUMPTION 2: Let 1y be the number of rows in W that consist entirely of
zero elements. Then, 0 <1y <\, for all N, where A, is a finite constant.

This imposes a bound on the number of observations that are unconnected,
or “islands,” in the sense that they have no neighbors specified in Wy . Hence,
assumption 2 ensures that, at most, A, elements of y, are unrelated to other ele-
ments of y, (through W), even as N — 0. If this were not the case, a situation
could arise where the sample would grow in size by adding unconnected observa-
tions. Since Moran’s [ statistic is based on sums of cross products of residuals for
neighboring locations (as determined by the nonzero elements in W) ), the addi-
tion of unconnected observations to the sample would only add zero to this sum.
This violates a fundamental assumption of the central limit theorem needed to
determine the large-sample distribution of the test, since central limit theorems
are based on sums of an infinite number of terms. Assumption 2 will be satisfied
in most situations where there is no abrupt change in the structure of spatial
dependence that is reflected in the weights matrix. For example, this will be the
case for regular lattice structures.

ASSUMPTION 3: w; # 0 ifand only if w;; # 0; however, w;; need not equal ;.

This requires a spatial weights matrix whose binary (boolean) form is sym-
metric. In other words, if unit i is viewed as neighboring unit j, then the reverse
should be the case as well, although the strength of potential interaction (the
value of the spatial weights) need not be identical. In practice, this assumption
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will be satisfied by most spatial econometric model specifications, although it
precludes one-directional forms of spatial autocorrelation such as may be present
in network flows. Since the latter can be treated more directly as an extension of
the time series case, this is not very restrictive.

ASSUMPTION 4: The sequence of spatial weights matrices W is such that its
elements wy;; satisfy the following constraints:

(a) WNL;,H‘:O and wNi.w'N(i+j)A=O’ for a” k2<jSN—i,i=l,...

N-XA,-1, and N> 1, where L, is a finite constant,
() wy;; =0, Vi,

N

N
(¢) lim % % wy;/N =s,, with s, as a finite constant, and

Noe 2 2T

(d) limtr[(Wy+ W) (Wx+W\)I/N =s,, with s, as a finite constant.
No

The main point of assumption 4 is that the spatial weights matrices should be
such that, regardless of sample size, each element of y, is related to at most A,
other elements of y, . In other words, and in conjunction with assumption 3, this
implies that there are at most X, nonzero elements in each row and column of
Wy. This can be interpreted as a bound on the extent of spatial interaction
(dependence) allowed in the sample (see, e.g., the discussion of mixing condi-
tions in Anselin 1988c, Ch. 5). Furthermore, the spatial sample is assumed to
grow in such a manner that units that are “sufficiently” apart from i are not neigh-
bors of i, nor do they have neighbors in common (i.e., they are not second-order
neighbors). More precisely, this implies a form of spatial ordering of the observa-
tions, such that observations that are separated by A, units (a finite constant) are
neither first- nor second-order contiguous. This does not pertain to the way data
would be collected in practice, but is a formal mathematical (conceptual) require-
ment imposed to ensure that the spatial structure (the structure of W, ) does not
change as the sample increases to infinity. It is satisfied by all spatial layouts in
which a form of distance decay (in a proper metric, see, e.g., Weibull 1976) oper-
ates to limit the extent of interaction. As mentioned earlier, in the approach used
here, all neighbors of i are contained in an augmented weights matrix Wy, .

Assumptions 1 and 4 may be seen as unduly restrictive because they impose
a given ordering of the data. However, it is important to make this ordering
explicit since, without it, a much more complex technical apparatus is needed to
handle the way in which spatial weights matrices evolve with an increasing sam-
ple size. The assumption is not often stated in the literature but is typically
implicit. For example, in the first formal derivation of the asymptotic normality
of Moran’s / by Sen (1976), the main theorem is based upon the existence of an
independent and identically distributed sequence Z, , Z,,... (with zero mean and
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unit variance). However, without the assumption of a spatial ordering, the
sequence should be expressed as the triangular array Z,,, Z,y,..., indicating the
dependence on the sample size. Without further restrictions, this would allow
Z,y to be different from Z,; for N= S, invalidating several aspects of the rele-
vant proofs.

The second part of assumption 4 is the standard convention that observations
are not neighbors of themselves, that is, the diagonal elements of the spatial
weights matrix are zero.

Assumption 4(c) states that the sum of all elements in the weights matrix
(the familiar normalizing constant S, for Moran’s /, e.g., Cliff and Ord 1981: 19)
converges to a fixed constant s, . This implies that the sum is, at most, of order N.
Since each row in Wy, has, at most, A, nonzero elements that in turn are each
less than ¢,

N
> wai<N(Ac,).

1j=1

Mz

lI

Assumption 4(d) is similar in nature, but pertains to another familiar normalizing
constant,

N 2 N N 2

Z Wyij+Waji) =2) > (WwijWhji + Whi)

j=1 i=1j=1 4)

= tr[(Wy+ Wy )(Wy + Wy)]

"'MZ

(or 25, in the notation of Cliff and Ord 1981: 19). For the same reasons as
before, the double sums in (4) are also, at most, of order N, and thus the sample
size N is the proper deflator to obtain a constant (and finite) limit s, . For exam-
ple, using Zjv: | [Wail <Aqc,. . it can be seen that

N

N
Z z WiiiWnji

N N
<3 Slwwllomls 3 ZIWN,,DSNC‘Z‘.M.
i=1j=1

i=1

ASSUMPTION 5: The matrix (1- pWy) is nonsingular at the true value of p,
for all N.

This implies that the model is complete with respect to y, , in the sense that
equation (3) can be solved for y, , as
i = I=pWy) ' X,B+p(Wyy)) + Voo + €]

ASSUMPTION 6: The error terms g; are independent and identically distrib-
uted (i.i.d), with zero mean, E(g;) = 0, fixed variance, E(e}) = o2, and
finite third absolute moment, E|;|* = p;.
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This may be viewed as the null hypothesis, say H,, which implies, among
other things, that the elements of the disturbance vector ¢ are not spatially auto-
correlated.

ASSUMPTION 7: The matrices of observations on the exogenous variables,
X, and X,, are nonstochastic, and rank (X,, X,) = k,+k,. In addition,
consider an N by ks matrix, X5, whose columns are a subset of the spatially
lagged exogenous variables (WyX,, WyX,), with k;<k,+k,, and let
X = (X, Xy, X;) . Then it is assumed that | x;;| < c, <o, with ¢, as a finite
upper bound on the elements of X, and r‘}i_r’an"(X’X) = Qy, where Qy is
nonsingular.

This assumption implies that the analysis is conditional on the observed val-
ues of the exogenous variables in X, and X,. Furthermore, both matrices are
assumed to be of full rank, and perfect multicollinearity is excluded. Also, the
elements of X, and X, are assumed to be bounded, which precludes certain
types of variables, such as powers or exponentials of coordinates of locations in a
trend surface regression. The elements of the matrix X will serve as instruments
in the estimation procedure outlined in the next section.

Note that if a regression contains a spatially lagged dependent variable, the
spatial lags of the exogenous variables, WX, , can be used as instruments. (For a
rigorous treatment, see Kelejian and Robinson 1993.) However, in the frame-
work outlined here, these spatially lagged variables need not be used since some
of the excluded exogenous variables, X, , may constitute a proper instrument set.
In this instance, k; would be zero, and the instrument matrix X could simply be
(X, X,) . However, the large-sample efficiency of the IV estimator will increase
with the number of instruments, i.e., with k;>0.

The nonsingularity of Qy is a standard assumption in a large-sample frame-
work and should typically be satisfied in practice since the elements of X are
bounded and perfect multicollinearity is excluded.

ASSUMPTION 8: plimN_m(X'X)_]X'ZI =11, where T1 is a matrix of finite
elements, with rank (IT) = k, +g+1.

‘This is a standard assumption needed to ensure that the parameters of the
model are identified. A necessary condition for this is that k,+k;>g+1, i.e.,
there are at least as many instruments X, and X, that do not appear in equation
(1) as there are regressors that are correlated with the error term, which are the
endogenous variables Wyy ., and Y, . Assumption 8 also ensures that the endog-
enous variables W,f,y,. and Y, are at least correlated with the instruments X.

ASSUMPTION 9:
(@ plimN~'Z'Z =5,,

Nox

(b) plimN'e'Z,=S5,,

Nox
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(©) plimN'e'W,Z, =S,,

Now

(d plimN~'Z/'W,Z =S,

Nocx

where S|, S,, S;, and S, are matrices of finite elements.

Assumption 9 ensures that the sample moments of the variables involved in
the various operations needed in the estimation and in the proofs converge. Note
that some of the elements of the S, matrices may be zero, for example, the ele-
ments of S, that pertain to the plim of the cross product of the error terms € with
the nonstochastic (assumption 7) exogenous variables X, .

INSTRUMENTAL VARIABLES ESTIMATION

As is well known, the presence of the endogenous variables in Y, in equa-
tion (1) violates the assumption of uncorrelatedness between regressors and error
term that is fundamental for the unbiasedness or consistency of the ordinary least
squares estimator. Similarly, the elements of a spatially lagged dependent vari-
able Wyy,. will be correlated with the error term ¢ (Anselin 1988c: 58). Hence,
an alternative approach must be used to obtain a consistent estimator for the
parameter vector 8 in equation (2). In addition, the implementation of Moran’s /
test for spatial error autocorrelation should not be based on residuals obtained
from an inconsistent estimator such as ordinary least squares. Instead, such a test
should be based upon residuals computed in terms of a consistent estimator of the
model parameters.

Linear models with endogenous regressors are typically estimated by means
of the two-stage least squares (2SLS) procedure, which is an instrumental vari-
ables (IV) method (see, e.g., Judge et al. 1985: 597-9; and, for the spatial case,
Anselin 1988c: 81-8; Anselin 1990; Kelejian and Robinson 1993). With
Py = X(X 'X)_'X’ as the projection matrix associated with the matrix of instru-
ments X (defined in assumption 7), the IV estimator for 6 can be expressed as

N

3= (ZIIPXZI)—IZl’PXyl > &)

in the notation of equation (2). As shown in a number of places (e.g., Schmidt
1976, Davidson and MacKinnon 1993), the estimator & is consistent and asymp-
totically normal under a reasonable set of conditions that are satisfied by assump-
tions 1-9. More specifically,

Nl/z 2 D a
(6-8) —> N[0,VC(d)], 6)

where VC(é) = cf;plim N(Z,’PXZI)'I is the associated limiting covariance
matrix.



162 INTERNATIONAL REGIONAL SCIENCE REVIEW, VOL. 20, NOS. 1 & 2, 1997

The IV residuals are obtained as

~

§=y,-Z,8. %)

Since 8 is a consistent estimator for 8, or & 56 , it can be shown under the set
of assumptions given that 62 = (¢'€)/N is a consistent estimator for the error
variance 62, or 62 o?. Hence, approximate small-sample mference for 8 may
be based on the normal dlstrlbutlon with 8 =~ N[8,62(Z,'PxZ,)™"].

The consistency of $ and 62 will be exploited in the next section to obtain
the large-sample properties of Moran’s I statistic based on IV residuals € .

MORAN’S I STATISTIC FOR RESIDUALS FROM IV ESTIMATION
Based on the IV residuals &, Moran’s / statistic can be expressed as:

I* = N(e'Wye)/Sy(e'e), )

where Wy, is the spatial weights matrix, and S, is the usual normalizing factor,

N N
So-_— Z ZWNU .

i=1 j=1

Using the previously outlined set of assumptlons 1n conjunction with the consis-
tency of &, appendix A shows formally that N'*1* is asymptotically normal
with mean zero and finite variance ¢°, or

N B Np0, 47, ©)

where ¢ will be discussed in more detail below. With ¢ replaced by a consis-
tent estimator ¢ , an asymptotic test can be constructed such that the null
hypothesis of no spatial autocorrelation may be rejected at the o level of signifi-
cance if

| N2 /$ | > 2, (10)

where z,, is the value of a standard normal variate corresponding to a. For exam-
ple, taking a significance level of 5 percent, the null hypothesis would be rejected
if the expression in (10) exceeded 1.96.

Note that the exact specification of the error terms under the alternative
hypothesis of spatial autocorrelation need not be known to obtain these asymp-
totic results. However, clearly, the power of the test will depend on how well the
weights matrix W, describes the pattern of spatial autocorrelation under the
alternative. (For a more detailed discussion of the effect of misspecified weights
on the power of tests, see Florax and Rey 1995.)
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Implementation of the Test in the General Case

In the general case where both endogenous variables, Y,, and a spatially
lagged dependent variable, Wyy,., are present in the model specification [as in
equation (1)), the asymptotic variance of N'/?I* is shown in appendix A to be

0" = 5:/(25)+ (4/5100) A (1
with of as the error variance, s, and s, as given in assumption 4, and
A = plim [(N'e'WuZ)(N(Z,'PxZ)) YN ™'Z,' Wy/'e)]. (12)

A consistent estimator for ¢2 , say $2 , is obtained by replacing Gi with a consis-
tent estimator, 67 = (¢'¢)/N,and s,, s,,and A by their finite sample counter-
parts, respectively

N N N
Sl = Z ZWN,'I'/N,

i=1j=1

53 = (tr[(Wy+ Wy ) (Wy + Wy)])/N,
and
A= (N"'EWVZ)(NZ,'PyZ) YN'Z, ' Wy'e).

Note that the first term on the right-hand side of equation (12) (as well as its
transpose in the third term) pertains to the probability limit of a series of cross-
products of the vector of error terms ¢ with the spatial lags of the elements of
Z, = (X,, Wyy,s, Y) . Specifically, this term can be expressed as

plim (N'e'WyZ,) = plim (N"'e' Wy X, N &' W,Wyy ., N e’ WyY;). (13)

While Wyy,. and Y, in (13) are stochastic, X, is not, nor is its spatial lag, WX,
(assumption 7). Furthermore, the elements of W, (of which, at most, A, in any
row are nonzero due to assumption 4) are bounded due to assumption 1, and the
elements of X, are bounded due to assumption 7. Hence it can be shown that
plim (N“'s’WNX \) = 0.3 This simplifies the first term in equation (13).

et ¢ = N7'X,"W,'e. Then a formal proof of this property is based on the fact that
E[o] = 0, and Var [¢] = cgN"(N"X"WN'WNX]). Assumptions 1, 4, and 7 imply that
N7'X,'W,' WX, is bounded and thus A,i_r'anar [¢] = 0. Hence, following Chebychev’s inequal-
ity, plim (¢) = 0.
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Special Case 1: No Endogenous Regressors

When no endogenous regressors are present in the model, then Z, = X,
and, using the previous result, plim (N _'e’WNZ,) = 0. Consequently, the term 4
in equation (11) will equal zero and the variance ¢° = 5,/(257). In this case, it
follows from equation (9) that

NIF /[ 5,/(259)] 3421, (14)

since the square of a standard normal variate is distributed as chi-squared with
one degree of freedom.
Note that equation (8) can also be written as

I* = [(E'WyE)/(E'€)]/(Sy/N) = [(E'WyE)/(E'€))/s,

[see (8) and (12)], and hence,

NI¥/[5,/(255)] = NI(E'Wye)/(£'8)1/(5,/2)

Also,

§; = tr{(Wy+ W)Wy + Wy)I/N = 2tr(WyWy + W, W,)/N .
Therefore, the test statistic in equation (14) simplifies to

[(E'WyE)/621/ tr(WyWy+ Wy'W,) (15)

which is Burridge’s (1980) Lagrange multiplier (LM) statistic for spatial error
autocorrelation in regression residuals (see also Anselin 1988a).

In sum, the results of this special case imply that in the standard regression
context the asymptotic distribution of N times the square of Moran’s / is equiva-
lent to that of the LM-error statistic. It is important to note that this result is
obtained without having to resort to a normality assumption for the error terms.

Special Case 2: No Spatially Lagged Dependent Variables

A special case of great interest in practice is when the model specification
contains only exogenous variables and endogenous variables, Y,, that reflect
system feedbacks, or Z, = (X,,Y,). This is the standard (i.e., nonspatial) situa-
tion in which the 2SLS procedure is used to obtain consistent parameter estima-
tors. Then, under a reasonable set of assumptions and in the absence of spatial
autocorrelation (of either spatial error or spatial lag form) in the equations that
determine the endogenous variables in Y,, the term 4 in equation (11) equals
zero. (The precise conditions under which this holds and a proof are given in
appendix B.) Consequently, under these conditions, a test for spatial error auto-
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correlation in models with (nonspatial) endogenous regressors can be based on
the simplified form of the statistic in equations (14) or (15), which is identical in
form to the usual LM-error test but based on the residuals obtained from IV esti-
mation [equation (7)].

MONTE CARLO SIMULATION STUDY

An initial assessment of the size and power of the IV-based Moran’s / test is
obtained from a small number of Monte Carlo simulation experiments. Both the
asymptotic form of the test (equations 9-13) as well as an ad hoc finite sample
approximation based on the standard Cliff-Ord moments calculated in terms of
IV residuals are considered. Note that in contrast to what holds in the classic linear
regression model, there is no formal basis for this approximation in the presence of
endogenous regressors.

Also considered are the size and power of Moran’s / and the LM-error tests
computed from the residuals of an OLS estimation. These tests are clearly ad
hoc, since they represent a situation in which the endogeneity of a subset of
regressors is ignored. Consequently, OLS will generally be both biased and
inconsistent. However, this approach may seem attractive in practice, since OLS
is simple to compute relative to more complex consistent procedures and often is
superior in terms of mean squared error. It is therefore important to assess the
extent to which the properties of these diagnostics are affected. This aspect of the
simulations extends earlier work on the effect of misspecifications on the size
and power of spatial autocorrelation tests, e.g., when heteroskedasticity or non-
normality are present or when the spatial process is misspecified (see Anselin and
Rey 1991; Anselin and Florax 1995; Florax and Rey 1995; Kelejian and Robinson
1995).

Experimental Design

The experimental design for the Monte Carlo simulations is based on a for-
mat extensively used in earlier studies in the standard linear regression model
(e.g., Anselin and Rey 1991; Anselin and Florax 1995). A new feature is the con-
sideration of endogeneity.

Two different contexts are considered. In the first, the empirical Type I
errors of the tests are assessed when endogeneity is present in the form of sys-
tems feedbacks, but without a spatial lag in the model (see special case 2 in the
previous section). A small system of two equations, with two endogenous vari-
ables and four exogenous variables, is specified:

Vi = o+ Bixy+ Baxy +Y1Ya+ € (16)
Yai = O+ Paxs;+ Baxsi+V2y1i + €2:s an

where y,; and y,; are the i-th observation on the endogenous variables; x,;,...,
x,; are corresponding observations for the exogenous variables; o, , v,,r=1,2,
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and B,, s = 1,..., 4 are parameters; and ¢,; and &,; are uncorrelated error terms
- with mean zero and constant variance o; . For the typical set of assumptions, the
system (16)—(17) is overidentified, reflecting a situation often encountered in
practice. For the sake of simplicity, cross-equation correlation is not incorporated
in the error terms, although this could be added in a straightforward way. In the
simulations, the exogenous variables are generated as independent uniform ran-
dom numbers between 0 and 1 and kept fixed in all experiments.

The values for the endogenous variables are obtained by solving the reduced
form of the model (16)—(17):

_ a,+y,a2+ B B,

Yi = X+ Xoi
: 1-vY, 1—Y1Y2| I—Ylez

(18)
YB3 o Y14 x +51i+'Y152i

+ i i
-y, > 1=y Y -y

and

Y2 = a2+}'2al+ L] X+ LEL X2
I-yiv, 1-77, =117,

(19)
€, +&y
+ Bs Xy ¥ Ba Xa; Y2€y; 2
1-v,7, =77, 1-77,

Clearly, different degrees of endogeneity can be obtained by manipulating the
values of the parameters and the characteristics of the error terms. In these exper-
iments, all parameters were set equal to 1, except v, , which was set equal to 0.1.
This induced sufficient endogeneity to create a significant degree of simultaneity
bias for the OLS estimator. For example, the bias of the OLS estimate for y, was
approximately —0.4 over all sample sizes considered (for a true value of 1.0). In
comparison, the bias of the consistent IV estimator was —0.07 for samples of size
N = 48 but only —0.0004 for samples of size N = 900. However, in terms of mean
squared error (MSE), the OLS estimator was superior to the IV estimator for N =
48 and N = 81 due to its smaller sampling variance, but it was significantly infe-
rior for the larger data sets. Specifically, for N =900 the MSE of the OLS estima-
tor was 0.17, compared to 0.006 for the IV estimator.

Four different error distributions were considered: the standard normal, the
lognormal, the uniform, and the chi-squared distribution with one degree of free-
dom. In all cases, the generated error terms were transformed, using standard
procedures, to obtain a zero mean and unit variance.

The second context considered is the model in which the endogeneity con-
sists solely of the presence of a spatially lagged dependent variable. Formally,
this is expressed as
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yi=pWy +ai+Bx + B, +g,

where y,, x,, x,, and &, are N by 1 vectors of values of the corresponding terms
defined in (16); 1 is an N by 1 vector of ones; a,, B,, and B, are parameters; p
is a spatial autoregressive coefficient; and W is a known spatial weights matrix.
In the simulations, p was allowed to vary from 0.1 to 0.9 to assess the effect of
spatial lag autocorrelation on the empirical Type I errors of test statistics. The
exogenous variables are generated as before as uniform random variates, and
B, = B, = 1. The observations on the dependent variable, y, , are obtained from
the usual reduced form solution,

Vi = (]_pw)_l(all+ﬁlxl+B2x2+81)' (20)

The power of the test statistics is compared under the alternative hypothesis
of a spatial autoregressive error process &, = AWe, +&,, with &, as an error
vector whose terms are i.i.d. with mean zero and unit variance. The same four
distributions were considered for &, as before: the normal, the lognormal, the
uniform, and the chi-squared with one degree of freedom. The autoregressive
parameter A took values from 0.1 to 0.9. This is implemented in the simulta-
neous system (16)—(17) by first generating €, = (/ —}\.W)']§l and subsequently
substituting the values for ¢, in the reduced form equations (18) and (19).

Five different spatial configurations were considered: an irregular lattice
structure corresponding to first-order contiguity of the 48 U.S. states; and four
regular lattice structures for a rook-type contiguity in square 9 by 9 (N = 81), 11
by 11 (N = 121), 30 by 30 (N = 900), and 40 by 40 (N = 1600) lattices. All spatial
weights matrices were used in row-standardized form.

Under the null hypothesis in the nonspatial model, 20,000 replications were
generated, yielding a two standard deviation range for the empirical Type I error
from 0.0469 to 0.0531 around a = 0.05 and from 0.0086 to 0.0114 around a =
0.01. For the other cases, 10,000 replications were used, yielding sufficient preci-
sion for the purposes of this study (2SD range for the empirical Type I error from
0.0456 to 0.0544 around o = 0.05 and 0.008 to 0.012 around a = 0.01). In the
interest of space, only the more salient findings are listed here in some detail. A
complete set of results for all cases considered is available from the authors.

Size of the Tests in the Presence of Systems Endogeneity

The first case considered pertains to the models (16)—(17) where an endoge-
nous systems variable but no spatially lagged dependent variable is contained in
the specification. The empirical rejection frequencies under the null hypothesis
of no spatial error autocorrelation for the IV-error test (IV-ERR), Moran’s / test
using IV residuals (I-IV), the LM test for error autocorrelation using OLS residu-
als (LM-OLS), and Moran’s / test applied to OLS residuals (I-OLS) are pre-
sented in table 1 for the four error distributions and four sample sizes (the results
for N = 1600 are qualitatively similar to those for N = 900). The shaded cells in
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the table correspond to empirical rejection frequencies that fell outside the two
standard deviation (2SD) range for the nominal rejection level. Clearly, the
empirical Type I errors for the IV-ERR test do not fall within a 2SD interval of
the theoretical size of the test in the smallest sample size, under-rejecting the null
for all four distributions. However, for the normal distribution, the test performs
properly for N>81, and for all four distributions this is the case for N = 900.
Moreover, one could argue that this under-rejection is not a serious problem
since the correct null is not rejected and no alternative model is estimated. The
relation between the sample size and the rejection frequency of the other (ad hoc)
tests is less regular. The I-IV test has the proper size for the normal distribution
(for o = 0.05) in the small samples, but not for N = 900. The results are slightly
better at o = 0.01. Surprisingly, Moran’s / test based on OLS residuals has the
proper size in all cases with an underlying normal distribution. In other words,
when normality is present and a spatially lagged dependent variable is absent,
ignoring endogeneity in the form of system feedbacks does not seem to affect the
size of Moran’s I test. The rejection frequencies of the test based on the LM-OLS
statistic, on the other hand, only lie within the appropriate 2SD range for N > 121
at a = 0.05. However, for a = 0.01 this is the case for all samples considered
except N = 48. In the other cases, the null is under-rejected. The LM-OLS test
also tends to be more sensitive to non-normality than the I-OLS test (again,
under-rejecting the null), which confirms earlier results in the standard linear
regression case (Anselin and Rey 1991).

In spite of its slight discrepancies at the tail of the distribution (reflected in the
under-rejection reported above), the distribution of the IV-ERR statistic under the
null is remarkably close to the normal, as illustrated in figure 1 for ¥ = 48. In the
larger sample sizes, the fit to the normal distribution is almost perfect, which
clearly demonstrates the asymptotic nature of the test.

Size of the Tests in the Presence of a Spatially Lagged Dependent Variable

The results in terms of the size of the various tests are strikingly different
when spatial interaction is the source of endogeneity in the model (in the form of
a spatially lagged dependent variable). The IV-ERR test is the only test that prop-
erly corrects for the complex interaction between spatial lag and spatial error
dependence (see, also, Anselin et al. 1996), but only for very large sample sizes.
As shown in table 2 for normal errors, and apart from a few exceptions for N =
48, the test significantly over-rejects the null hypothesis for large values of p and
under-rejects for small values. Even with N = 1600, the rejection rates still
exceed the 2SD bound for p > 0.5, although to a lesser extent. The results are
qualitatively similar for non-normal errors.

The performance of the ad-hoc tests is totally unacceptable when a spatial
lag is present, as demonstrated by the results for the I-IV test (for normal errors)
in table 3. The test significantly over-rejects the null hypothesis in all samples,
and its performance does not improve as the sample size increases (stabilizing
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FIGURE 1. QQ-Norm Plot for IV-ERR, N =48

around a 50 percent rejection rate for N = 900). The other tests are even worse in
this respect.

Clearly, of the tests considered, the only one that appears to have reasonable
empirical Type I errors in the presence of a spatially lagged dependent variable is
the IV-ERR test, which applies a correction factor to Moran’s /. A comparison of
the results in table 1 to those in tables 2 and 3 clearly illustrates the difference in

TABLE 2. Rejection Frequencies under the Null Hypothesis
IV-ERR Test in the Spatial Lag Model (10,000 Replications)

p N=48 N=281 N=121 N =900 N =1600
0.1 0.0640 0.0251 0.0313 0.0484 0.0493
0.2 0.0742 0.0332 0.0387 0.0469 0.0464
0.3 0.0823 0.0476 0.0493 0.0505 0.0491
0.4 0.0898 0.0644 0.0650 0.0528 0.0520
0.5 0.0915 0.0878 0.0843 0.0578 0.0520
0.6 0.0887 0.1165 0.1092 0.0607 0.0551
0.7 0.0766 0.1417 0.1400 0.0638 0.0549
0.8 0.0582 0.1521 0.1694 0.0677 0.0582

0.9 0.0324 0.1248 0.1607 0.0642 0.0649
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TABLE 3. Rejection Frequencies under the Null Hypothesis
I-IV Test in the Spatial Lag Model (10,000 Replications)

p N=48 N =81 N=121
0.1 0.3329 0.5031 0.5170
0.2 0.3289 0.4987 0.5215
0.3 0.3172 0.4953 0.5251
0.4 0.3030 0.4928 0.5214
0.5 0.2794 0.4788 0.5251
0.6 0.2515 0.4643 0.5212
0.7 0.2142 0.4348 0.5102
0.8 0.1689 0.3717 0.4832
0.9 0.1174 0.2760 0.3885

the nature of the endogeneity between a system feedback variable and a spatially
lagged dependent variable. As the reduced form (20) indicates, each value of the
dependent variable is related to all values of the error term. This is not the case in
models that contain only endogenous variables that represent system feedbacks.
This suggests that the correction term 4 (equation 11), which is only included in
the IV-ERR statistic, plays a crucial role in obtaining the proper size. Also, in
contrast to what is sometimes suggested in the literature, the spatially lagged
dependent variable cannot be viewed as simply another endogenous variable, but
the spatial nature of the endogeneity must be explicitly accounted for.

Finally, from table 2, it is seen that the empirical Type I errors of the IV-
ERR test generally exceed the theoretical size, even in moderately sized samples
such as N = 121. A rejection of the null in small samples may therefore be spuri-
ous and a further size correction of the statistic may be necessary.

Power of the Tests

The frequency with which the null hypothesis is rejected for increasing
degrees of spatial error autocorrelation is reported in table 4 for both IV-based
and OLS-based tests. In this instance, the seeming acceptability of using OLS
residuals in the presence of endogenous regressors has disappeared, and both IV
tests show significantly superior power. The power is essentially unaffected by
non-normal distributions (not reported in table 4). Of the two, the I-IV test per-
forms marginally better, particularly for the smaller samples and smaller values
of A, but both tests demonstrate good power. Even in the smallest data set, the
null is rejected in roughly half the cases by both tests for A >0.5, while for N =
121 this is already achieved for A >0.2 and in over 95 percent of the cases for
A>0.5. By contrast, the 50 percent mark is never reached for the OLS based
tests with N = 48, and even for N = 121 the rejection frequency tops out at 78 per-
cent (for the I-OLS test with A = 0.8).
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TABLE 4. Power against Spatial Autoregressive Error
Endogeneity Only (10,000 Replications)

N=48 N=81 N=121

A IV-ERR -1V IV-ERR IV IV-ERR -1V

0.1 0.0480 0.0805 0.0673 0.0959 0.0871 0.1164
0.2 0.0900 0.1527 0.1669 0.2258 0.2712 0.3272
0.3 0.1767 0.2682 0.3506 0.4309 0.5659 0.6231
0.4 0.3101 0.4282 0.5826 0.6630 0.8174 0.8554
0.5 0.4810 0.5928 0.7839 0.8369 0.9500 0.9625
0.6 0.6458 0.7364 0.9035 0.9271 0.9878 0.9907
0.7 0.7651 0.8297 0.9467 0.9571 0.9943 0.9947
0.8 0.8253 0.8626 0.9575 0.9643 0.9935 0.9940
0.9 0.8094 0.8489 0.9439 0.9509 0.9885 0.9891
by LM-OLS I-OLS LM-OLS I-OLS LM-OLS I-OLS
0.1 0.0494 0.0773 0.0443 0.0566 0.0548 0.0696
0.2 0.0704 0.1119 0.0612 0.0879 0.1023 0.1326
0.3 0.1021 0.1640 0.1033 0.1539 0.1930 0.2384
0.4 0.1488 0.2310 0.1710 0.2390 0.3153 0.3781
0.5 0.2068 0.3127 0.2548 0.3452 0.4624 0.5318
0.6 0.2716 0.3989 0.3473 0.4451 0.5975 0.6664
0.7 0.3252 0.4692 0.4180 0.5262 0.6926 0.7590
0.8 0.3349 0.4952 0.4251 0.5442 0.7133 0.7827
0.9 0.2490 0.4038 0.2938 0.4144 0.5442 0.6332

In other words, there is some evidence that ignored endogeneity significantly
lowers the power of OLS-based tests against spatial error autocorrelation. While
in this instance an OLS estimator may still be superior to an IV estimator in terms
of mean squared error, especially in small samples, this attractive property does
not extend to diagnostic tests based on least squares residuals.

CONCLUDING REMARKS

As in any simulation study, the generality of the conclusions drawn from this
series of experiments is limited by their design. Only a small set of aspects
related to endogeneity and the interaction between the size and power of the tests
has been considered. Many issues remain to be explored, such as the number of
endogenous variables, the degree of identifiability, inter-equation correlation, the
choice of instruments, and others that affect the properties of estimators.

The results of the Monte Carlo simulations suggest that the asymptotic form
of Moran’s / test based on IV residuals, which is derived in this paper, achieves
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the proper size in medium-sized samples (N = 81) with normally distributed error
terms, and in slightly larger samples (N = 121) for the other distributions consid-
ered. These sample sizes are typical of the number of counties in many states, or
the number of census tracts in medium-sized metropolitan areas, which is
encouraging for empirical research. However, there is an indication that the test
may under-reject the null hypothesis when it is true and have less power in the
presence of weak spatial error autocorrelation in the smallest sample (N = 48).
On the other hand, the test seems to have good overall power, and, of those con-
sidered, is the only test that behaves properly when a spatially lagged dependent
variable is included in the model. In addition, the test is easy to compute and
asymptotically equivalent to the familiar Lagrange multiplier test for spatial error
autocorrelation when no spatially lagged variables are present. As a corollary, it
was also shown that Moran’s [ test and the Lagrange multiplier test for spatial
error autocorrelation are asymptotically equivalent in the classic case when only
exogenous regressors are present, without requiring the assumption of normally
distributed errors.

The other tests considered have been used in practice, but are ad hoc in the
sense that they are not based on formal properties of the corresponding statistics.
The tests based on a Moran’s [ statistic formulated in terms of IV residuals has
surprisingly good properties, especially when the error distribution is normal.
The formal basis for these results remains to be determined. However, the attrac-
tive properties of this test hold only in the purely endogenous case. When spa-
tially lagged dependent variables are included in the model, the test is unreliable
in the sense that the null hypothesis is rejected too frequently when no spatial
error autocorrelation is present.

OLS based tests, especially Moran’s 7 test, seem to have the proper size
when the errors are normally distributed. However, ignoring endogeneity results
in a significant loss in power. In other words, while there is little to lose by ignor-
ing endogeneity when no spatial error autocorrelation is present, the use of OLS-
based tests in general is ill-advised since it will tend to under-reject the null when
a problem is present. This is important to note, since the generally lower MSE of
OLS estimators relative to IV estimators in small samples has often led to the use
of OLS in practice (e.g., in the estimation of regional econometric models), even
though it is inconsistent in the presence of endogenous regressors.

In sum, the asymptotic properties of Moran’s / test based on IV residuals are
reflected in reasonably sized samples. While the ad hoc version based on the
usual mean and variance approximations also performed well in the simulations,
and even achieved slightly higher power, the reason for this is not well under-
stood. Since this test is easy to compute and is the only procedure of the ones
considered that has acceptable properties in the presence of a spatially lagged
dependent variable, it should be used in practice whenever instrumental variables
estimation is carried out for cross-sectional data. Further work is needed in order
to assess the extent to which these conclusions hold in a wider range of contexts
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and to understand more fully the large-sample properties of the ad hoc version of
the test.
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APPENDIX A

The asymptotic distribution of N'/*I* is derived by applying a central limit theorem
and using a series of results on the limiting properties of the numerator and denominator of
I* (equation 8). To begin, consider more closely both the numerator and denominator of
N2,

N'21% = (N7'72€'Wye)/5,(€'8/N) . (A.D)

Note that the limit of the first term in the denominator Jim s, =5, by virtue of assump-
tion 4. The second element converges to the error varlancé' or plim (e ¢/N) = ol (see the
section on IV estimation). Consequently, the denominator in (A.1) converges in probabil-
ity to a nonstochastic constant s,c2 . Apart from this constant, the asymptotic distribution
of N'721* in (A.1) is therefore completely determined by the asymptotic distribution of
the numerator term on the right-hand side.

The 2SLS estimator § [equation (5)] may be expressed as

3 =8+A4y, (A2)

where N'"?a, is 0,(1) in light of the limiting result in equation (6), and thus plim(, ) = 0.
This can be exploited to establish a relation between the IV residuals ¢ and the error terms
¢ . Substituting (A.2) into equation (7) yields ¢ = v, - Z,(5 + Ay) , or, using (2),

£=¢6-Z,Ay. (A3)

Now, consider more closely the asymptotic properties of the numerator on the right-
hand side of (A.1) by substituting (A.3) into the spatial cross-products,

NP Wye = N7 2 (6-Z,0) W(e-Z,A4)

or

-1/2

N2 Wye = N7 e Wye — 2N (&' Wy Z)) Ay + N7 20y (2, WyZ,) By - (A4)
After some manipulation of the powers of N, it easily follows that the second term on the
nght hand side of (A.4) equals ~2(e'WyZ,/N)N' *Ay, and the third term equals

NN PA)(Z,'WyZ, /NY(N' P A,) . Since N2, is 0,(1) and bounded in probability,
and plim (Z,"WyZ,/N) = S, [assumption 9(d)], the probability limit of the third term is
zero (due to the presence of N™'*). As a result, taking probability limits of the difference
of terms in (A.4) yields

Plim{(N™' 6" Wye) = [(N' &' Wye) - (2(e'WyZ, /N)N ' 2801}

. (A.5)
= plim{N " Ay(Z,'WyZ,)Ay] = 0.
Using assumption 9(c), plim (¢'W,Z,/N) = S, , thus
plim {(N ™' 6" Wye) = [(N™' 7' Wye) - (2(e' WyZ, /N)N ' a0)]} (A6)

= plim (V7" PE W,e) = (V' Pe'Wye) - (25,8 Ay} =
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By substituting equation (2) for y, in equation (5), it follows readily that
Ay = 8-8 = (2,'Px2))"'Z,"Pye,

or, with i, = PyZ, = X(X'X)'X'Z, = peit (using the notation of assumption 8), and thus

Z,'P,Z, = TUX'XII,
Ay = (VXX TI'X'e,
and, thus
N'2Ay = [V X 00) TV X0
Consequently, the following probability limit is obtained

—1/2

plim {(N'?a,) - (IT'Q, 111" TI'(¥ ' *X"e)} = 0 (A7)

where plim I = I dueto assumption 8, and plim (N"'X'X) = Q, in view of assumption 7.
Substituting (A.7) and the result in (A.6) into (A.5) yields

-172 -1/72

plim {(N™'2e'W,e) - [ (N ?e'Wye) - 285, [TV Q, 1T (N ' *X"€)]} = 0
or,
plim {(N7'26'Wye) - N™'2(e'Wye - 28,[T1'Q,TT] ' TI'X"e)} = 0. (A.8)

Simplify notation by setting

G' = 28 [mro,'mx, (A9)
which is a 1 by N vector with elements g, , and

Y = N_'/z(e’WNs+ G'e).

Then (A.8) can also be written as

plim (N2 Wye -¥) = 0. (A.10)

Using a familiar asymptotic result, equation (A.10) implies that if the limiting distri-
bution for ¥ can be established, this will also be the limiting distribution of N™' &' Wy¢ .
This limiting distribution is obtained by expressing ¥ as a sum of random variables and
applying the central limit theorem™ for m-dependent variables given in Schmidt (1976:
258). In the typical fashion, this will yield ¥ 5 N(0, 6%) , where the asymptotic variance
o3 must be derived from the terms that constitute ¥ . To obtain these terms, first note that

N N N
EWye+Gle = Y Y egwa+ 2 Bifis (A.1])
i=1 j=1 i=1
where g; are the elements of the vector G'. in (A.9), and the other notation is as before.
Some further manipulation yields
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NN N ~ N
Y Y (egwh)+ Y gE = D E [ Y gwyi +8i)

j=1

U

i=l j=1 i=1 i=1

N

= Y elwy e+8),
i=1
or
iy N
\PENﬂII- z Vis
i=1
where
vi = g(wy; €+8). (A.12)

It must now be demonstrated that ¥ as defined in (A.12) satisfies the four conditions
for the central limit theorem for m-dependent variables as described in Schmidt (1976).

CONDITION 1: E[v;] = 0

This condition is satisfied since w,;; = 0 [assumption 4(b)] and thus ¢,(wy; ) in
(A.12) only contains cross-products of the form g;wy;¢;, with i=j. Since assumption 6
specifies the error terms to be i.i.d. with zero means, E[g;wy;€;] = 0 when i #j, and also
E[e;8;] = 0, therefore E[v;] = 0.

CONDITION 2: (v,,..., v;) is independent of (v, ...., vy ) for all q greater than a
given constant.

This condition is satisfied by the structure of the weights matrices imposed under assump-
tion 4(a) (where the finite constant A, plays the role of ¢) and the independence of the
error terms in assumption 6. Therefore, two sequences of v, that are further than 2, apart
will have no error terms ¢, in common.

CONDITION 3: E[|v|'1<},, Vi, where A, is a finite constant.

The boundedness of the absolute third moments can be demonstrated by considering the
following inequality, obtained from (A.12):

E[|“'i!3] < E[Ieil"] Eljwy; € +gi]3] )
or, after expanding the terms in the third power,
E(vf'1< ECef'] Elhwn, e+ 3lwy, el + 3w ellgd” +1gd’1- (A.13)

Several assumptions are used to obtain the boundedness of the powers involving spatial
weights and error terms in (A.13). Assumption 1 ensures that individual spatial weights
are bounded by c, , and assumption 4(a) requires that there are, at most, 1, nonzero
elements in each row of the spatial weights matrix. Consequently, the term w,, ¢
involves, at most, i, cross-product terms of the form wy,e; whose absolute third
moments are bounded by ] c IE]e,-]" , which is finite in light of assumption 6. Since the
third absolute moments are bounded, all lower order absolute moments will be bounded as
well. Furthermore, the elements g, are bounded because Q,, I1, and S, are assumed to
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be finite matrices in assumptions 7-9. This establishes bounds on the right-hand side in
inequality (A.13) and hence the boundedness of E[|v|"] .

N
CONDITION 4: Jim Var[N'"2 3 vi] = oy exists.

Using (A.11), o3 can be expressed as

oy = Jlim Varl: [z Y eigwyy + ﬁg, H (A.14)

i=1 j=1 i=1

Since wy;; = 0 [assumption 4(b)], the double sum over the spatial cross product terms in
(A.14) can be simplified to

N

N NN
Y Tegwn = Y Y (Wt W) (A.15)

i=1j=1 i=) j=i+l

The variance of (A.15) consists of the sum of the variances of g¢;(wy;; +wy;;) and the
covariances between g;g;(wy;; + wy;) and g€ (wy,, + wy,,) . Since the error terms are i.i.d.
(assumption 6),

Ele;ge,6] =0

jer®s

unless two pairs of indices are equal (i =r andj = s, or i = s and j = r). Given thatj > i + |
in (A.15), all covariances are zero, and the variance for each term is

El(8:8) )Wy + ) = EL6/1ELE] 10wy + W) = Ga(iny + W) s

and consequently

NN NN
Var[N"/2 y ¥ e,sjw,,,ij] =N'oiY ¥ (w,,,,-j+w,,,j,~): . (A.16)

i=1j=1 i=1j=i+l

Note that the summation indices in (A.15) result in half the sum over all /, j [as in equation
(4)]. Therefore, from equation (4) and the definition of s, in assumption 4, it follows that

hm N'o! z Z (”N:_/"'"th)- = ois,/2 (A.17)
i=1 j=i+l
Smce the errors are i.i.d., the variance of the second term in (A.14) is simply
N Z giol, or 5.G'G/N . Using (A.9), it follows that

i=1

lim G'G/N = lim 45,(IT 0, )T (X' X/N)TI(IT' Q, TT)' S,

Nox

or, since lim X'X/N = Q, due to assumption 7, it follows that
No=x

lim G'G/N = 4S,(TI'Q,I)"'sy’,

Nox

and thus
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Jim 62G'G/N = 452S,(IT'Q,IT)'S,’ . (A.18)
-

All covariance terms between the first and second term in (A.14) are zero since
E[g;g,,] = 0 unless i = j = r, which is ruled out because wy; = 0. Consequently, the
limit of the variance of ¥ equals the sum of (A.17) and (A.18), or

Oy = Ois,/2+4628,(IT'Q,IT)'S, .

Since the four conditions required by Schmidt’s central limit theorem are satisfied,
the limiting distribution of ¥ can be established as N(0, 03.,) , and, due to (A.10),

N2 Wwe BN, 0%,

and thus also,

N1 B N[0, 0%/ (s700)].
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APPENDIX B

In the case of no spatially lagged dependent variables, Z, = (X,, ¥,), so equation (12)
simplifies to plim (N"'e’W,Z,) = plim (N"'&'WyX,, N"'¢’W,Y,) . It was shown in footnote
3 that plim (N"a’WNX,) = 0, so for 4 to be zero in equation (11), it must still be demon-
strated that plim (N"'&'W,Y,) = 0. For ease of exposition, consider the case where there is
only one endogenous regressor, v, , in Y,, so that ¥, simplifies to an N by 1 vector. The
extension to multiple endogenous variables is straightforward.

The setup described for the general model in the second section of this paper implied
the existence of additional equations in which the endogenous system feedback variables
Y, are determined as functions of all excluded exogenous variables X, . In general, each
endogenous variable may therefore be expressed as a function of exogenous variables in a
reduced form. Assuming such a reduced form exists and is linear, y, can be expressed as

¥y = Rn+&;, (B.1)

where R is a matrix of observations on exogenous variables, n is the associated vector of
parameters, and &, is a vector of error terms with elements &,; . Consistent with assump-
tion 7, it is assumed that the elements of R are bounded, and N™'R'R - Q, where Q%
exists. In line with assumption 6 for the error terms ¢;, assume that the error terms &,;
have mean zero and a finite variance oz . Furthermore, the error terms are assumed to be
independently distributed over the spatial units so that E[&,,£,,] = 0 for i = . This explic-
itly excludes the presence of a spatially lagged dependent variable in the equation for v, .
From (B.1) it follows that

plim (N7'e’Wyy,) = plim (N &' WyRn) + plim (N '’ WyE,) .

Since R is exogenous and its elements are bounded, it can be shown by means of the same
approach used in footnote 3 that plim (N~'e'WyRn) = 0 and thus

plim (N™'&'Wyy,) = plim (N"'&' W,&,) . , (B.2)

It can be established that plim (N"'&’Wy&,) = 0 in the same manner as elsewhere in
this paper by relying on Chebychev’s inequality together with EIN"'&'W,E,] = 0 and
limN_mVar[N"s'WNt;l] = 0. The first result readily follows by considering the cross
products involved and using the same rationale as in condition 1 of appendix A:

N N
E[e'WyE,] = E[ D a,gzjva,.j} =0 (B.3)

i=1 j=1

since the error terms ¢; and &,; are independent for i = j, and wy,;; = 0. The second result
follows by considering the same simplification of the spatial cross-products as utilized in
(A.15) together with the independence of the error terms (as in A.16), such that

NN N N
] 2 22 2
Var[N > zsigzijij:! =N U:C‘gz > Wy + Wiy s
i=1j=1 izl j=ivl

Also, using the definition of s, from assumption 4 (analogous to the result used in A517),
it follows that
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im N7clo} G+wy)’ = lim N'ol6l(s,/2) = 0,
’Jl_l"nm N cso,igl j=§ I(wNu+ wle) Nl—rpnoo 0505( Sy )
or
Jlim Var[N"'e'W\E,] = 0. (B.4)
— 0

The results of (B.2), (B.3), and (B.4) together with Chebychev’s inequality establish that
plim (N"'&'Wyy,) = 0.
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