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1  INTRODUCTION

Recent developments in computing hardware and
GIS software have made it possible to interact
directly with large spatial databases and to obtain
almost instantaneous results for a wide range of GIS
operations. The sophistication in storage, retrieval,
and display provided by the rapidly evolving GIS
technology has created a demand for new tools to
carry out spatial analysis in general and spatial
statistical analysis in particular (see, among others,
Anselin and Getis 1992; Bailey 1994; Goodchild
1987; Goodchild et al 1992; Openshaw 1991). This
demand grew out of an early awareness that the
implementation of ‘traditional’ spatial analysis
techniques was insufficient to address the challenges
faced in a GIS environment (Goodchild and
Longley, Chapter 40). The latter is often
characterised by vast numbers of observations
(hundreds to several thousands) and ‘dirty’ data, and
some go so far as to completely reject ‘traditional’
spatial analysis that is based on statistical inference

(Openshaw and Alvanides, Chapter 18; Fischer,
Chapter 19; Openshaw 1990, 1991). While this rather
extreme viewpoint is not shared by many, it is widely
recognised that many of the geographical analysis
techniques of the 1960s fail to take advantage of the
visualisation and data manipulation capabilities
embodied in modern GIS. Specifically, most spatial
statistical techniques, such as tests for spatial
autocorrelation and spatial regression models, are
primarily static in nature, allowing only limited
interaction between the data, the models, and the
analyst. In contrast, dynamic or interactive
approaches to data analysis stress the user
interaction with the data in a graphical environment,
allowing direct manipulation in the form of
instantaneous selection, deletion, rotation, and other
transformations of data points to aid in the
exploration of structure and the discovery of
patterns (Buja et al 1996; Cleveland 1993; Cleveland
and McGill 1988).

The importance of EDA to enhance the spatial
analytical capabilities of GIS has become widely
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This chapter reviews the ideas behind interactive and exploratory spatial data analysis and
their relation to GIS. Three important aspects are considered. First, an overview is
presented of the principles behind interactive spatial data analysis, based on insights from
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by a review of spatialised exploratory data analysis (EDA) techniques, that is, ways in which
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particular locations or spatial subsets of the data. The third aspect covers the main ideas
behind true exploratory spatial data analysis, emphasising the concern with visualising
spatial distributions and local patterns of spatial autocorrelation. The geostatistical
perspective is considered, typically taken in the physical sciences, as well as the lattice
perspective, more familiar in the social sciences. The chapter closes with a brief discussion
of implementation issues and future directions.



recognised (Anselin 1994; Anselin and Getis 1992;
Bailey and Gatrell 1995; Fotheringham and Charlton
1994). The EDA paradigm for statistical analysis is
based on a desire to let the data speak for themselves
and to impose as little prior structure upon them as
possible. Instead, the emphasis is on creative data
displays and the use of simple indicators to elicit
patterns and suggest hypotheses in an inductive
manner, while avoiding potentially misleading
impressions given by ‘outliers’ or ‘atypical’
observations (Good 1983; Tukey 1977). Since spatial
data analysis is often characterised as being ‘data rich
but theory poor’ (Openshaw 1991), it would seem to
form an ideal area for the application of EDA.
However, this is not a straightforward exercise, since
the special nature of spatial data, such as the
prevalence of spatial autocorrelation, may invalidate
the interpretation of methods that are based on an
assumption of independence, which is the rule in
mainstream EDA (Anselin 1990; Anselin and Getis
1992). Hence, the need has arisen to develop
specialised methods of exploratory spatial data
analysis (ESDA) that take the special nature of
spatial data explicitly into account (for recent
reviews, see Anselin 1994; Anselin and Bao 1997;
Bailey and Gatrell 1995; Cook et al 1996; Cressie
1993; Majure and Cressie 1997).

This chapter reviews the ideas behind interactive
and ESDA and their relation to GIS. Many of the
ESDA techniques have been developed quite recently
and this remains an area of very active research.
Therefore, the emphasis will be on general principles,
rather than on specific techniques. The latter will
only be used to illustrate the overall framework and
no attempt is made to cover a comprehensive set of
methods. The bulk of the chapter considers three
important aspects of the integration of ESDA and
interactive methods with GIS. First, an overview is
presented of the principles behind interactive spatial
data analysis, based on insights from the use of
dynamic graphics in statistics and their extension to
spatial data. This is followed by a review of
spatialised EDA techniques, that is, ways in which a
spatial representation can be given to standard EDA
tools by associating them with particular locations
or spatial subsets of the data. The third aspect
covers the main ideas behind true exploratory spatial
data analysis, emphasising the concern with
visualising spatial distributions and local patterns of
spatial autocorrelation (Getis, Chapter 16). The
chapter closes with a brief discussion of
implementation issues and future directions.

2  PRINCIPLES OF INTERACTIVE SPATIAL
DATA ANALYSIS

The principles behind interactive spatial data
analysis can be traced back to the work on dynamic
graphics for data analysis in general, originated by
the statistician John Tukey and a number of research
groups at AT&T Bell Laboratories. An excellent
review of the origins of these ideas is given in the
collection of papers edited by Cleveland and McGill
(1988), and early discussions of specific methods are
contained in the papers by, among others, Becker et
al (1987), Becker and Cleveland (1987), and Stuetzle
(1987). More recent reviews of methods for the
dynamic analysis of high-dimensional multivariate
data and other aspects of interactive statistical
graphics can be found in papers by, among others,
Becker et al (1996), Buja et al (1991, 1996),
Cleveland (1993), and Cook et al (1995).

Dynamic graphical methods started as
enhancements to the familiar static displays of data
(e.g. histograms, bar charts, pie charts, scatterplots),
by allowing direct manipulation by the user that
results in ‘immediate’ change in a graph (see Elshaw
Thrall and Thrall, Chapter 23, for some examples).
This had become possible by the availability of
workstations with sufficient computational power to
generate the statistical graphs without delays and to
allow interaction with the data by means of an input
device (light pen or mouse). The overall motivation
was to involve the human factor more directly in the
exploration of data (i.e. exploiting the inherent
capabilities of the brain to detect patterns and
structure), and thereby gain richer insights than
possible with the traditional rigid and static display.
This was achieved by allowing the user to delete data
points, highlight (brush) subsections of the data,
establish links between the same data points in
different graphs, and rotate, cut through, and project
higher-dimensional data. Furthermore, the user and
not a preset statistical procedure determined which
actions to perform. Interactive statistical procedures
become particularly effective when datasets are large
(many observations) and high-dimensional (many
variables), situations where characterisation of the
data by a few numbers becomes increasingly
unrealistic (for an early assessment see, for example,
Andrews et al 1988: 75). While dynamic graphics for
statistics were originally mostly experimental and
confined to research environments, they have quickly
become pervasive features of the EDA capability in
modern commercial statistical software packages.
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An important aspect of dynamic graphics is the
representation of data by means of multiple and
simultaneously available ‘views’, such as a table, a
list of labels, a bar chart, pie chart, histogram, stem
and leaf plot, box plot, or scatterplot. These views
are shown in different windows on a computer
screen. They are linked in the sense that when a
location in any one of the windows (e.g. a bar on a
bar chart or a set of points on a scatterplot) is
selected by means of a pointing device (brushing),
the corresponding locations in the other windows
are highlighted as well (see Becker et al 1987). While
geographical locations have always played an
important role in dynamic graphics (see the many
examples of Cleveland and McGill 1988), it is only
recently that the ‘map’ was introduced explicitly as
an additional view of the data, for example by
Haslett et al (1990, 1991), MacDougall (1991), and
Monmonier (1989).

The most comprehensive set of tools to date that
implement dynamic graphics for exploring spatial
data is contained in the Regard (formerly Spider)
software of Haslett, Unwin and associates, which
runs on a Macintosh platform (see also Bradley and
Haslett 1992; Haslett and Power 1995; Unwin 1994).
Regard, and its successor Manet (Unwin et al 1996)
allow for the visualisation of the distribution and
associations between data for any subset of locations
selected on a map display. Similarly, for any subset
of data highlighted in a non-spatial view, such as a
category in a histogram, the corresponding locations
are highlighted on the map. This is illustrated in
Figure 1, where attention focuses on suggesting
promising multivariate relations pertaining to
electoral change in the new German Bundesländer
(formerly East Germany). Six types of dynamically
linked views of the data are included, consisting of a
map with highlighted constituencies, a bar chart,

Interactive techniques and exploratory spatial data analysis
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Fig 1.  Interactive dynamic graphics for exploring spatial data with Manet.



conditional (trellis) plot, histogram, scatterplot and
missing value chart, as well as lists with variable
names and values observed at a specific location.
(For details on the Manet approach, see Unwin et al
1996 and http://www1.Math.Uni-Augsburg.de/~theus/
Manet/ManetEx.html.) While highly dynamic in its
statistical graphics, the Spider–Regard–Manet
approach is still somewhat limited in terms of the
spatial aspects of the data, in the sense that it is
based on a fixed map and does not take advantage of
GIS functionality, such as specialised data models to
facilitate spatial queries and overlays (see also
Hazelhoff and Gunnink 1992).

Several ideas from the methodology of dynamic
statistical graphics are reflected in the design of
current GIS and mapping software. For example,
the ArcView GIS (ESRI 1995b) is organised
around several linked ‘views’ of the data (a map, a
table, and several types of charts). These allow a
limited degree of dynamic interaction in the sense
that a selection made in any of the views (spatial
selection of features on a map, records in a table) is
immediately reflected in all other views. While
Version 2.1 is rather limited in terms of its built-in
statistical (exploratory) analysis capabilities,
enhancements to make ArcView into a tool for
interactive ESDA have been developed by 

linking it to other software modules. For example,
at the Statistics Laboratory of Iowa State
University, a 2-directional link was established
between the XGobi dynamic graphics software of
Buja et al (1991, 1996) and ArcView (Cook et al
1996; Majure et al 1996a, 1996b; Symanzik et al
1994, 1995, 1996; http://www.gis.iastate.edu/XGobi-
AV2/X Gobi-AV2.html). Similarly, the SpaceStat
software for spatial data analysis of Anselin (1992,
1995a) was linked with ArcView in a Microsoft
Windows environment (Anselin and Bao 1996,
1997; http://www.rri.wvu.edu/utilities.htm). In many
respects, these and similar efforts achieve a
functionality close to that of Regard, although not
as seamless and considerably slower in execution.
For example, in Figure 2, ArcView scripts were
used to construct a histogram for the median values
of housing in West Virginia counties, linked to a
map (a view in ArcView). Using a selection tool to
click on a given bar (interval) in the histogram, the
relevant counties in the map are highlighted (for
further details on the dataset and the procedures,
see Anselin and Bao 1996, 1997). In contrast to
Regard, the linked frameworks allow the
exploitation of the full functionality of the GIS to
search for other variables that may display similar
patterns, using queries and spatial overlays (for
example, see Cook et al 1996).

L Anselin
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Fig 2.  Linked histogram and map in ArcView–SpaceStat.
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3  SPATIALISED EXPLORATORY DATA
ANALYSIS

Whilst a widely available commercial
implementation of interactive and dynamic spatial
data analysis integrated with a GIS does not exist at
the time of writing, the use of EDA with GIS has
become fairly common. For example, in the
‘archaeologist’s workbench’ of Farley et al (1990)
and Williams et al (1990), standard EDA tools such
as box plots and scatterplots were applied to
geographical data, by exporting information from a
GIS to a statistical package (a 1-directional link).
However, the latter is not ESDA in the sense used by
Cressie (1993) and Anselin (1994), but rather non-
spatial EDA applied to spatial data (see also Anselin
and Getis 1992).

Spatialised EDA (Anselin 1994) is one step closer
to true ESDA in the sense that location is combined
with a graphic description of the data in the form of
a bar chart, pie chart, or various icons. The most
familiar example of this may be the positioning of
Chernoff faces at geographical locations on a map,
such as coordinates of cities or centroids of states, as
illustrated by Fotheringham and Charlton (1994)
and Haining (1990: 226) (but for a critical
assessment see Haslett 1992). The facility to add bar
charts and pie charts to areal units on a map is by
now a familiar feature in many commercial GIS and
mapping packages.

A more meaningful combination of location and
data description is obtained when summaries of
spatial distributions are visualised for different
subsets in the data, providing initial insight into
spatial heterogeneity (i.e. different for spatial subsets
in the data, such as a north–south differential) or
suggesting a spatial trend (a systematic variation of
a variable with location, such as an east–west trend).
For example, Haining (1990: 224) organises box
plots for standardised mortality rates by distance
band away from the centre of the city, revealing a
clear spatial trend. Similarly, spatialised EDA
techniques may be used to carry out a form of
exploratory spatial analysis of variance, in which the
interest centres on differences in central tendency
(mean, median) of the distribution of a variable
between spatial subsets (or spatial regimes) in the
data. In Figure 3 this is illustrated for the West
Virginia data. Two box plots refer respectively to
counties at the outer rim and inner counties
(generated by applying a spatial selection operation

in a GIS). A comparison of the two graphs suggests
a systematically higher value for counties at the rim,
although a few counties in either group do not fit the
pattern. In an interactive data analysis, this could
easily be addressed by sequentially removing or
adding counties to one or the other subset, providing
the groundwork for a spatial analysis of variance
(for other examples see Anselin et al 1993). However,
it is well recognised that potential spatial
autocorrelation among these observations could
invalidate the interpretation of any analysis of
variance or regression analysis. Therefore,
techniques only qualify as true ESDA when this is
addressed explicitly.

Interactive techniques and exploratory spatial data analysis
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4  EXPLORATORY SPATIAL DATA ANALYSIS 

ESDA can be broadly defined as the collection of
techniques to describe and visualise spatial
distributions, identify atypical locations (spatial
outliers), discover patterns of spatial association (spatial
clusters), and suggest different spatial regimes and other
forms of spatial instability or spatial non-stationarity
(Anselin 1994; see also Beard and Buttenfield, Chapter
15). Central to ESDA is the concept of spatial
autocorrelation, that is, the phenomenon where
locational similarity (observations in spatial proximity)
is matched by value similarity (correlation).

Spatial autocorrelation has been conceptualised
from two main perspectives, one prevalent in the
physical sciences, the other in the social sciences.
Following Cressie’s (1993) classification, the so-called
geostatistical perspective considers spatial observations
to be a sample of points from an underlying
continuous spatial distribution (surface). This is
modelled by means of a variogram, which expresses
the strength of association between pairs of locations
as a continuous function of the distance separating
them (for comprehensive reviews see Cressie 1993 and
Isaaks and Srivastava 1989). By contrast, in the so-
called lattice perspective, spatial locations are discrete
points or areal units, and spatial data are
conceptualised as a single realisation of a spatial
stochastic process, similar to the approach taken in the
analysis of time series. Essential in the analysis of
lattice data is the concept of a spatial weights matrix,
which expresses the spatial arrangement (topology,
contiguity) of the data and which forms the starting
point for any statistical test or model (for extensive
reviews see Cliff and Ord 1981; Cressie 1993;
Haining 1990; Upton and Fingleton 1985).

Juxtaposed on the distinction between the
geostatistical and lattice perspective is that between
global and local indicators of spatial association.
Global indicators, such as the familiar Moran’s I and
Geary’s c spatial autocorrelation statistics, summarise
the overall pattern of dependence in the data into a
single indicator (see Getis, Chapter 16). A major
practical drawback for GIS analysis is that these global
indicators are based on a strong assumption of spatial
stationarity, which, among others, requires a constant
mean (no spatial drift) and constant variance (no
outliers) across space. This is not very meaningful or
may even be highly misleading in analyses of spatial
association for hundreds or thousands of spatial units
that characterise current GIS applications. The main
contribution of ESDA with respect to GIS lies
therefore in visualising local patterns of spatial

association, indicating local non-stationarity and
discovering islands of spatial heterogeneity (Anselin
1994; Cressie 1993). In the remainder of this section,
first some techniques are considered to visualise spatial
distributions, with a particular focus on identifying
outliers and atypical observations. These techniques
are more specialised than the methods for visualisation
for GIS discussed by Kraak (Chapter 11). This is
followed by a short review of ESDA techniques to
visualise and assess spatial autocorrelation, for both
geostatistical and lattice perspectives.

4.1  Visualising spatial distributions

Many of the spatialised EDA techniques described
above can be successfully applied to gain insight into
the distribution of data across locations in a GIS.
These methods can also be integrated in a dynamic
interactive framework in a fairly straightforward way,
for example as in the Manet software. A more explicit
focus on identifying spatial outliers is offered by the so-
called box map, the extension of a familiar quantile
choropleth map (a standard feature in most GIS and
mapping software) with highlighted upper and lower
outliers, defined as observations outside the ‘fences’ in
a box plot (Cleveland 1993). A box map can easily be
implemented in many current GIS and mapping
packages (e.g. Anselin and Bao 1997). By comparing
box maps for different variables using overlay
operations in a GIS, an initial look at potential
multivariate associations can be obtained (e.g. see
Talen 1997). Other approaches to identify outliers in
spatial data can be envisaged as well, for example by
constructing spatial queries for those locations whose
values exceed some criterion of ‘extremeness’. Such
devices can be readily implemented in most currently
available commercial GIS.

A more rigorous approach, geared towards the
geostatistical perspective, consists of the estimation of
a spatial cumulative distribution function (SCDF), that
is, a continuous density function for all observations in
a given region. This is implemented in the
ArcView–XGobi linked framework mentioned earlier.
The linkage allows users to highlight regions of the
data on a map in ArcView and to find an SCDF plot in
XGobi, to brush areas on the map to find the
corresponding subset in the SCDF, and to brush
quantiles of the estimated SCDF and find the
matching locations on the map. For example, in
Figure 4 (from Majure et al 1996a), the two SCDF
functions for forest health indicators in the graph on
the left-hand side correspond to the two large
sub-regions of New England states in the map on the

L Anselin

258



right. An advantage of this form of linkage is that the
GIS can be used to overlay other data onto the
sample points, in order to suggest potential
multivariate associations. Clearly, an approach such
as SCDF could be integrated into a more
comprehensive Manet-type dynamic interactive
ESDA framework, although this has not been
implemented to date.

4.2  Visualising spatial autocorrelation: the
geostatistical perspective

The main focus of ESDA in geostatistics is on
identifying ‘unusual’ and highly influential (pairs of)
locations in order to obtain more robust estimates of
the variogram. Such locations are referred to as
spatial outliers, or pockets of local non-stationarity,
and they require closer scrutiny before proceeding
with geostatistical modelling or spatial prediction
(Kriging). The basic tools are outlined by Cressie
(1993) and include the variogram cloud, the
variogram box plot and the spatial lag scatterplot. A
variogram cloud is a scatterplot of squared
differences (or of square root absolute differences:
see Cressie 1993) between all pairs of observations,
sorted by distance band. An implementation of this
device in an interactive dynamic graphics framework
consisting of ArcView and XGobi is illustrated in
Figure 5 (from Majure et al 1996). By brushing
points in the cloud plot, lines are drawn between
pairs of observations on the map, suggesting
potential regions that are spatial outliers. A similar,
but more encompassing approach is implemented in
the Regard software, where the variogram cloud is
included as one of the linked views of the data to
facilitate a search for local pockets of spatial

Interactive techniques and exploratory spatial data analysis
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Fig 4.  Spatial cumulative distribution function (SCDF) in
ArcView–Xgobi.
Source: Majure et al 1996a
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Fig 5.  Brushed variogram cloud plot in ArcView–Xgobi.
Source: Majure et al 1996a



non-stationarity (Bradley and Haslett 1992; Haslett
1992; Haslett et al 1991; Haslett and Power 1995).
The spatial lag scatterplot (also referred to as a
lagged scatterplot) and the variogram box plot
provide two different summary views of the
information in the cloud plot. The spatial lag
scatterplot focuses on the observation pairs that
belong to a given distance class, that is, a subsection
of the variogram cloud between two distances. The
value observed at each point is plotted against the
value observed at the ‘lagged’ point (a point
separated from it by a distance belonging to the
given distance band). The spatial lag scatterplot
identifies potential influential locations as points
that are far-removed from the 45 degree line (Majure
and Cressie 1997). The variogram box plot consists
of a box plot for each distance band in the
variogram cloud, as in the left-hand side of Figure 6,
illustrating the spatial dependence in the West
Virginia housing values. For several distance bands,
outliers may be identified as points outside the
fences of the box plot. These outliers can be
associated with the pairs of locations to which they
correspond, as in the right-hand side of Figure 6,
typically obtained in an interactive manner (and in a
way similar to the procedure illustrated in Figure 5).

Extensions of both types of plots are possible in
many ways, for example by using robustified
measures of squared difference, by focusing on
different directions (anisotropy), or by including
multiple variables (for extensive examples see Majure
and Cressie 1997). ESDA techniques based on the
geostatistical perspective can be found in many
academic as well as a number of commercial

geostatistics software packages (e.g. S+SpatialStats,
MathSoft 1996a), although the linkage to GIS is still
limited or non-existent at the time of writing.

4.3  Visualising spatial autocorrelation: the
lattice perspective

Central in the lattice perspective to spatial
autocorrelation is the concept of a spatial weights
matrix and associated spatially lagged variable or
spatial lag. The non-zero elements of the spatial
weights matrix indicate for each location which
other locations potentially interact with it (the so-
called spatial neighbours). Furthermore, the value of
the non-zero elements is related to the relative
strength of this interaction (for technical details see
Cliff and Ord 1981; Haining 1990; Upton and
Fingleton 1985). A spatial lag is constructed as a
weighted average (using the weights in the spatial
weights matrix) of the values observed for the
neighbours of a given location (see Anselin 1988).

The matching of the value observed at a location
with its spatial lag for a given spatial weights matrix
provides useful insight into the local pattern of spatial
association in the data. More precisely, when a high
degree of positive spatial autocorrelation is present,
the observed value at a location and its spatial lag will
tend to be similar. Spatial outliers will tend to be
characterised by very different values for the location
and its spatial lag, either much higher or much lower in
the location compared to the average for its
neighbours. The association between a variable and its
spatial lag can be visualised by means of so-called
spatial lag pies and spatial lag bar charts (Anselin 1994;

L Anselin
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Fig 6.  Variogram box plot with outlier pairs identified by location.
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Anselin et al 1993; Anselin and Bao 1997). Both of
these are made up of visual devices (size of the pie or
length of the bar) that indicate the relative value of the
spatial lag compared to the value at a location, as
illustrated in Figure 7. Other visualisation schemes are
possible as well, for example based on the difference,
absolute difference, squared difference, or ratio between
the value observed at a location and its spatial lag.
These devices can be implemented in most GIS and
mapping software in a straightforward way. In addition
to the usual zooming and querying facilities available in
an interactive GIS, the use of spatial lag pies or spatial
lag bar charts could be made dynamic by allowing an
interactive definition of the spatial weights matrix. It is
envisaged that systems implementing these ideas will be
available in the near future.

A more formal approach towards visualising
spatial association can be based on the concept of a
Moran scatterplot and associated scatter map
(Anselin 1994, 1995b, 1997). It follows from the
interpretation of the Moran’s I statistic for spatial
autocorrelation as a regression coefficient in a
bivariate spatial lag scatterplot. More precisely, in a
scatterplot with the spatial lag on the vertical axis
and the value at each location on the horizontal axis,
Moran’s I corresponds to the slope of the regression
line through the points. When the variables are
expressed in standardised form (i.e. with mean zero
and standard deviation equal to one), this allows for
an assessment of both global spatial association (the

slope of the line) as well as local spatial association
(local trends in the scatterplot). The latter is
obtained by the decomposition of the scatterplot
into four quadrants, each corresponding to a
different type of spatial association: positive
association between high values in the upper right
and between low values in the lower left quadrants;
negative association between high values surrounded
by low values in the lower right and the reverse in
the upper left quadrant. An illustration of this
decomposition for the West Virginia data is given in
Figure 8. The spatial locations that correspond to
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Fig 7.  Spatial lag pie chart in ArcView–SpaceStat.

W_val 90

Val 90

Fig 8.  Moran scatterplot with linear and loess smoother.
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the points in the scatterplot can be found in a linked
map, where each quadrant is represented by a
different shade or colour, as in Figure 9. By
interactively identifying particular points in the
graph (e.g. extreme values), the corresponding
location can be shown on the map. This is a
straightforward extension of the notion of brushing
scatterplots to assess local spatial association.

Two additional interpretations of the Moran
scatterplot are useful in an interactive ESDA setting.
One is to identify outliers or high leverage points that
unduly influence the slope of the regression line (i.e.
the measure of global spatial association). Such
outliers can be found by means of standard regression
diagnostics and are easily identified on a map in a
linked framework. They can also be related to the
significance of local indicators of spatial association
(LISA) statistics (Getis, Chapter 16; Anselin 1995b;
Getis and Ord 1992; Ord and Getis 1995). In
conjunction with a map of significant LISA statistics,
the Moran scatterplot provides the basis for a
substantive interpretation of spatial clusters or spatial
outliers (further details are given by Anselin 1995b,
1996). A second interpretation is to consider the extent
to which a non-linear smoother (such as a loess
smoother; Cleveland 1979) approximates the linear fit
in the scatterplot. Strong non-linear patterns may
indicate different spatial regimes or other forms of
local spatial non-stationarity. For example, on the
right-hand side of Figure 8, the loess function suggests
two distinct slopes in the graph, one considerably
steeper than the other. The Moran scatterplot and

associated map (Figure 9) can easily be implemented in
a dynamic graphics setting, for example using the
ArcView–SpaceStat linked framework.

5  IMPLEMENTATION AND FUTURE DIRECTIONS

To date a fully interactive ESDA functionality is not
yet part of commercial GIS. However, several partial
implementations exist, where a spatial statistical
‘module’ is added to an existing GIS (a point also
made by Aspinall, Chapter 69; Boots, Chapter 36;
Fischer, Chapter 19; and Getis, Chapter 16). Early
discussions of these approaches were primarily
conceptual, and a number of different taxonomies
for integration have been advanced, primarily
focusing on the nature of the linkage – closely
coupled versus loosely coupled – and the types of
statistical function that should be included (e.g.
Anselin and Getis 1992; Goodchild et al 1992).
Building on the general framework outlined by
Anselin and Getis (1992), a schematic overview of
the interaction between different analytical functions
of a GIS is given in Figure 10 (based on Anselin
1998; see Getis, Chapter 16; and Goodchild and
Longley, Chapter 40, for related conceptual schema).
Following the usual classification of GIS
functionality into four broad groups (input, storage,
analysis, and output), the analysis function can be
further subdivided into selection, manipulation,
exploration and confirmation. Anselin et al (1993)
considered the first two of these to form a ‘GIS
module’ while the latter two formed a ‘data analysis
module’ to emphasise the practical division of labour
between typical commercial GIS software and the
specialised (add-on) software needed to carry out
spatial data analysis. However, this distinction is
becoming increasingly irrelevant, since many
statistical software packages now have some form of
mapping (or even GIS) functionality, and a growing
number of (spatial) statistical functions are included
in GIS software. More important than classifying
these functions as belonging to one or other module
is to stress their interaction and the types of
information that must be exchanged between them,
as illustrated by the linkages in Figure 10. While
many other taxonomies are possible, the main point
of the classification in Figure 10 is that selection and
manipulation (shown on the left) are present in
virtually all advanced systems and have become
known as ‘spatial analysis’ in the commercial world
(e.g. ESRI 1995c: Lesson 8). By contrast, the spatial
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Fig 9.  Moran scatter map.



data analysis functions (shown on the right) are
essentially absent in commercial systems.

The essence of any integration as in Figure 10 is
that spatial information (such as location, topology,
and distance) must be transferred from the GIS to
the statistical module and location-specific results of
the statistical analysis must be moved back to the
GIS for mapping. Apart from the self-contained
approach taken in Spider-Regard-Manet, most
implementations to date of ESDA functionality in a
GIS are extensions of existing systems by means of
macro-language scripts. This typically hides the
linked nature of the analysis routines from the user.
Recent examples are extensions of ARC/INFO with
non-spatial EDA tools, such as scatterplots (e.g.
Batty and Xie 1994), and routines for the
computation of global and local indicators of

spatial association (e.g. Ding and Fotheringham
1992; Bao et al 1995). An alternative is a closely-
coupled linkage between two software packages that
allow remote procedure calls (in Unix) or dynamic
data exchange (in a Microsoft Windows
environment). This approach is taken in the only
commercial implementation that exists to date of an
integrated data analysis and GIS environment, the
S+Gislink between the S-Plus statistical software
and the ARC/INFO GIS (MathSoft 1996b). On
Unix workstations a bi-directional link is established
that allows data to be passed back and forth in their
native format. In addition, the linkage allows users
to call S-Plus statistical functions from within
ARC/INFO. A similar approach is taken in the
ArcView–XGobi integration at the Statistics
Laboratory of Iowa State University. A much looser
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Fig 10.  Spatial analysis in GIS.
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coupling is implemented in the SpaceStat–ArcView
linkage. Both of these efforts focus explicitly on
ESDA, while the S-Plus–ARC/INFO linkage
pertains primarily to traditional non-spatial EDA.

Several promising research directions are being
pursued in the quest to develop more powerful
tools for spatial analysis in GIS in general, and
interactive spatial data analysis in particular.
Highly relevant ongoing efforts include the use of
the Internet to facilitate interactive mapping and
visual data exploration (e.g. the Iris framework of
Andrienko and Andrienko 1996; and see Batty,
Chapter 21), the extension of data mining
techniques to spatial data (e.g. Ng and Han 1994),
and the use of massive parallel computing for the
estimation of local indicators of spatial association
(e.g. Armstrong and Marciano 1995). The extent of
commercial and academic research activity devoted
to methodological and computational facets will
likely lead to a much-enhanced ESDA functionality
in the GIS of the near future. This is an area of
rapid change, and it is hoped that the general
principles outlined in this chapter may provide a
basis for the interpretation and assessment of
future developments.
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