2008

Mod \((2p + 1)\)-Orientations and \(K_{\{1,2p+1\}}\)-Decompositions

Hong-Jian Lai

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

Digital Commons Citation
Lai, Hong-Jian, "Mod \((2p + 1)\)-Orientations and \(K_{\{1,2p+1\}}\)-Decompositions" (2008). Faculty Scholarship. 231.
https://researchrepository.wvu.edu/faculty_publications/231

This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.
MOD \((2p + 1)\)-ORIENTATIONS AND \(K_{1,2p+1}\)-DECOMPOSITIONS*

HONG-JIAN LAI

Abstract. In this paper, we establish an equivalence between the contractible graphs with respect to the mod \((2p + 1)\)-orientability and the graphs with \(K_{1,2p+1}\)-decompositions. This is applied to disprove a conjecture proposed by Barat and Thomassen that every 4-edge-connected simple planar graph \(G\) with \(|E(G)| \equiv 0 \pmod{3}\) has a claw decomposition.

Key words. nowhere zero flows, circular flows, mod \((2p+1)\)-orientations, \(K_{1,2p+1}\)-decompositions

AMS subject classification. 05C99

DOI. 10.1137/060676945

1. Introduction. Graphs in this paper are finite and loopless and may have multiple edges. See [2] for undefined notations and terminologies. In particular, \(\kappa'(G)\) denotes the edge connectivity of a graph \(G\), and if \(X\) is an edge subset or a vertex subset of a graph \(G\), then \(G[X]\) denotes the subgraph of \(G\) induced by \(X\). A connected loopless graph with 3 edges and a vertex of degree 3 is called a generalized claw. If restricted to simple graphs, a generalized claw must be isomorphic to a \(K_{1,3}\). A graph \(G\) with \(|E(G)| \equiv 0 \pmod{3}\) has a claw decomposition if \(E(G)\) can be partitioned into disjoint unions \(|X_1 \cup X_2 \cup \ldots \cup X_k|\) such that, for each \(i\) with \(1 \leq i \leq k\), \(|X_i|\) is a generalized claw. Barat and Thomassen [1] showed that the claw-decomposition problem is closely related to the nowhere zero 3-flow problem. In particular, the following conjecture is proposed.

Conjecture 1.1 (Barat and Thomassen [1]). Every 4-edge-connected simple planar graph \(G\) with \(|E(G)| \equiv 0 \pmod{3}\) has a claw decomposition.

The purpose of this note is to disprove this conjecture. In section 2, we shall introduce contractible graphs with respect to the mod \((2p+1)\)-orientability and discuss their properties and their relationship to the graphs with \(K_{1,2p+1}\)-decompositions. In section 3, we disprove the conjecture above.

2. \(M_{2p+1}^2\) and \(K_{1,2p+1}\)-decompositions. Throughout this section, \(p > 0\) denotes an integer. We shall extend the definition of claw decomposition to \(K_{1,2p+1}\)-decomposition as follows. A connected loopless graph with \(2p + 1\) edges and a vertex of degree \(2p + 1\) is called a generalized \(K_{1,2p+1}\). A graph \(G\) with \(|E(G)| \equiv 0 \pmod{2p + 1}\) has a \(K_{1,2p+1}\)-decomposition if \(E(G)\) can be partitioned into disjoint unions \(|X_1 \cup X_2 \cup \ldots \cup X_k|\) such that, for each \(i\) with \(1 \leq i \leq k\), \(|X_i|\) is a generalized \(K_{1,2p+1}\). In this case, we say that \(G\) has a \(K_{1,2p+1}\)-decomposition \(X = \{X_1, X_2, \ldots, X_k\}\).

Let \(D = D(G)\) be an orientation of an undirected graph \(G\). If an edge \(e \in E(G)\) is directed from a vertex \(u\) to a vertex \(v\), then let \(\text{tail}(e) = u\) and \(\text{head}(e) = v\). For a vertex \(v \in V(G)\), let

\[E_D(v) = \{e \in E(D) : v = \text{tail}(e)\}\]

and

\[E_D^-(v) = \{e \in E(D) : v = \text{head}(e)\}\].

*Received by the editors December 6, 2006; accepted for publication (in revised form) August 3, 2007; published electronically November 7, 2007.

†Department of Mathematics, West Virginia University, Morgantown, WV 26506 (hjlai@math.wvu.edu).

http://www.siam.org/journals/sidma/21-4/67694.html

© 2007 Society for Industrial and Applied Mathematics
We shall denote $d^+_G(v) = |E^+_G(v)|$ (the out degree of v) and $d^-_G(v) = |E^-_G(v)|$ (the in degree of v). The subscript D may be omitted when $D(G)$ is understood from the context. Let A be an (additive) Abelian group. If $f : E(G) \to A$ is a function, then the boundary of f is a map $\partial f : V(G) \to A$ such that

$$\partial f(v) = \sum_{e \in E^+_G(v)} f(e) - \sum_{e \in E^-_G(v)} f(e), \forall v \in V(G).$$

Let $k > 0$ be an integer, and assume that G has a fixed orientation D. A mod k-orientation of G is a function $f : E(G) \mapsto \{1, -1\}$ such that for all $v \in V(G)$, $\partial f(v) \equiv 0 \pmod k$. The collection of all graphs admitting a mod k-orientation is denoted by M_k. Note that, by definition, $K_1 \in M_k$. Jaeger has conjectured [7] that every $4k$-edge-connected graph is in M_{2k+1}. This conjecture is still open.

Throughout this note, \mathbb{Z} denotes the set of all integers. For integers a_1, a_2, \ldots, a_k such that not all of them are zero, let $\gcd(a_1, a_2, \ldots, a_k)$ denote the greatest common divisor of a_1, a_2, \ldots, a_k. For an $m \in \mathbb{Z}$, \mathbb{Z}_m denotes the set of integers modulo m, as well as the additive cyclic group on m elements. For a graph G, a function $b : V(G) \mapsto \mathbb{Z}_m$ is a zero sum function in \mathbb{Z}_m if $\sum_{v \in V(G)} b(v) \equiv 0 \pmod m$. The set of all zero sum functions in \mathbb{Z}_m of G is denoted by $Z(G, \mathbb{Z}_m)$. When $k = 2p+1 > 0$ is an odd number, we denote M^0_{2p+1} by the collection of graphs such that $G \in M^0_{2p+1}$ if and only if for all $b \in Z(G, \mathbb{Z}_{2p+1})$, $\exists f : E(G) \mapsto \{1, -1\}$ such that for all $v \in V(G)$, $\partial f(v) \equiv b(v) \pmod {2p+1}$.

Note that if a function $f : E(G) \mapsto \{1, -1\}$ is given, then one can reverse the orientation of e for each $e \in E(G)$ with $f(e) = -1$ to obtain an orientation D' of G such that for all $v \in V(G)$, $d^+_{D'}(v) - d^-_{D'}(v) = \partial f(v)$. Thus we have the following proposition.

Proposition 2.1. $G \in M^0_{2p+1}$ if and only if for all $b \in Z(G, \mathbb{Z}_{2p+1})$, G has an orientation D with the property that for all $v \in V(G)$, $d^+_D(v) - d^-_D(v) \equiv b(v) \pmod{2p+1}$.

For a subgraph H of G, define the set of vertices of attachments of H in G to be $A_G(H) = \{v \in V(H) : v$ is adjacent to a vertex in $G - V(H)\}$.

Proposition 2.2. For any integer $p \geq 1$, M^0_{2p+1} is a family of connected graphs such that each of the following holds.

(C1) $K_1 \in M^0_{2p+1}$.

(C2) If $e \in E(G)$ and if $G - e \in M^0_{2p+1}$, then $G \in M^0_{2p+1}$.

(C3) If H is a subgraph of G, and if $H, G/H \in M^0_{2p+1}$, then $G \in M^0_{2p+1}$.

Proof. (C1) and (C2) are straightforward, and so we verify only (C3).

Suppose that G has a fixed orientation, H is a subgraph of G, and both $H \in M^0_{2p+1}$ and $G/H \in M^0_{2p+1}$. Thus the edges in both H and G/H are oriented by the orientation of G. By (C2), we may assume that H is an induced subgraph of G, and so $E(G)$ is the disjoint union of $E(H)$ and $E(G/H)$. Note that H is connected, and so H will be contracted to a vertex v_H (say) in G/H. Let $b : V(G) \mapsto \mathbb{Z}_{2p+1}$ such that $\sum_{v \in V(G)} b(v) \equiv 0 \pmod {2p+1}$, and let $a_0 = \sum_{v \in V(H)} b(v)$. Define $b_1 : V(G/H) \mapsto A$ by setting $b_1(z) = b(z)$ if $z \neq v_H$, and $b_1(v_H) = a_0$. Then $\sum_{z \in V(G/H)} b_1(z) = \sum_{z \in V(G)} b(z) \equiv 0 \pmod {2p+1}$. Since $G/H \in M^0_{2p+1}$, there exists $f_1 : E(G/H) \mapsto \{1, -1\}$ such that $\partial f_1 = b_1$. For each $z \in V(H)$, define

$$b_2(z) = \begin{cases} b(z) + \sum_{e \in E^+_G(v_H) \cap E_G(z)} f_1(e) - \sum_{e \in E^-_G(v_H) \cap E_G(z)} f_1(e) & \text{if } z \in A_G(H), \\ b(z) & \text{otherwise.} \end{cases}$$

Then $\sum_{z \in V(H)} b_2(z) \equiv 0 \pmod {2p+1}$. Since $H \in M^0_{2p+1}$, there exists $f_2 : E(G/H) \mapsto \{1, -1\}$
\{1, -1\} such that \(\partial f_2 = b_2\). Now for each \(e \in E(G)\), define \(f(e) = f_1(e) + f_2(e)\). As \(E(G)\) is a disjoint union of \(E(H)\) and \(E(G/H)\), it is routine to verify that \(\partial f(z) \equiv b(z) \pmod{2p+1}\), and so \(G = M_{2p+1}^o\).

Catlin [3] (see also [4], [5]) called families of connected graphs satisfying (C1), (C2), and (C3) complete families. Complete families seem to be useful in applying certain reduction methods ([3], [4], [5]).

For a subgraph \(H\) of a graph \(G\), define

\[\partial(H) = \{uv \in E(G) : u \in V(H), v \in V(G) - V(H)\}. \]

Let \(D\) be an orientation of \(G\). Let \(d_D^+(H)\) denote the number of edges in \(\partial(H)\) that are oriented in \(D\) from \(H\) to \(G - V(H)\), and \(d_D^-(H) = |\partial(H)| - d_D^+(H)\).

To demonstrate the relationship between \(M_{2p+1}^o\) and all of the graphs with \(K_{1,2p+1}\)-decompositions, we make the following definitions.

(i) \(k_{c,2p+1}\) denotes the smallest integer \(k > 0\) such that every \(k\)-edge-connected graph \(G\) is in \(M_{2p+1}^o\).

(ii) \(k^{c,2p+1}\) denotes the smallest integer \(k > 0\) such that every \(k\)-edge-connected graph \(G\) with \(|E(G)| \equiv 0 \pmod{2p+1}\) has a \(K_{1,2p+1}\)-decomposition.

The main result of this section is the following relationship.

Theorem 2.3. For any positive integer \(p > 0\), if one of \(k_{c,2p+1}\) and \(k^{c,2p+1}\) exists as a finite number, then \(k_{c,2p+1} = k^{c,2p+1}\).

To prove this theorem, we need to establish some lemmas. In each of the following lemmas, \(G\) is a graph and \(H\) is a subgraph of \(G\). Suppose that \(G\) has a \(K_{1,2p+1}\)-decomposition \(X = \{X_1, X_2, \ldots, X_k\}\), where each \(G[X_i]\) is a generalized \(K_{1,2p+1}\) for all \(i\). For each \(G[X_i]\), we orient the edges from the vertex \(v_i\) of degree \(2p+1\) in \(G[X_i]\) to all other vertices of \(G[X_i]\). This yields an orientation \(D = D(X)\) induced by the decomposition \(X\). For each \(i\), the vertex \(v_i\) is called the center of the oriented \(X_i\).

Lemma 2.4. Suppose that \(G\) has a \(K_{1,2p+1}\)-decomposition \(X = \{X_1, X_2, \ldots, X_k\}\), and let \(D = D(X)\). Then for any subgraph \(H\) of \(G\),

\[|E(H)| + d_D^+(H) \equiv 0 \pmod{2p+1}. \]

Proof. Let \([H, G - V(H)]\) denote the set of edges in \(\partial(H)\) that are oriented in \(D(X)\) from \(H\) to \(G - V(H)\). Then \([H, G - V(H)] = d_D^+(H)\).

By the definition of \(D(X)\), the edge subset \(E(H) \cup [H, G - V(H)]\) is the disjoint union of the oriented \(X_i\)'s whose centers are in \(H\). It follows that \(|E(H)| + d_D^+(H) = |E(H)\cup[H, G - V(H)]| \equiv 0 \pmod{2p+1}\). \(\square\)

Lemma 2.5. Let \(b \in \mathbb{Z}\) be a number, and let \(d = |\partial(H)|\). Suppose that \(G\) has a \(K_{1,2p+1}\)-decomposition \(X\) and that \(H\) is a subgraph of \(G\). If \(2|E(H)| \equiv -d - b \pmod{2p+1}\), then, in the orientation \(D = D(X)\),

\[d_D^+(H) - d_D^-(H) \equiv b \pmod{2p+1}. \]

Proof. Let \(d^+ = d_D^+(H)\) and \(d^- = d_D^-(H)\). Then \(d = d^+ + d^-\). By Lemma 2.4, \(|E(H)| \equiv -d^+ \pmod{2p+1}\), and so \(b \equiv -d - 2|E(H)| \equiv -d + 2d^+ \equiv (-d + d^+) + d^+ \equiv d^+ - d^- \pmod{2p+1}\). \(\square\)

The following result is well-known in number theory. For a reference, see Theorem 1.5 of [12].

Lemma 2.6. Let \(a_1, a_2, \ldots, a_k\) be integers, not all zero. Then \(gcd(a_1, a_2, \ldots, a_k) = 1\) if and only if there exist integers \(x_1, x_2, \ldots, x_k\) such that \(a_1x_1 + a_2x_2 + \cdots + a_kx_k = 1\).

Lemma 2.7. Let \(k, l, p \in \mathbb{Z}\) such that \(k > 0\), \(p > 0\), and \(0 \leq l \leq 2p\). Each of the following holds.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
(i) There exists a planar graph \(H \) with \(\kappa'(H) \geq k \) and \(2|E(H)| \equiv l \pmod{2p+1} \).

(ii) There exists a simple graph \(H \) with \(\kappa'(H) \geq k \) and \(2|E(H)| \equiv l \pmod{2p+1} \).

(iii) If \(2 \leq k \leq 5 \), then there exists a simple planar graph \(H \) with \(\kappa'(H) \geq k \) and \(2|E(H)| \equiv l \pmod{2p+1} \).

Proof. (i) For any integer \(n > 0 \), let \(nK_2 \) denote the connected loopless graph with two vertices and \(n \) multiple edges. Let \(s > 0 \) be an integer such that \(s(2p+1) \geq k \).

Define the desired \(H \) as follows:

\[
H = \begin{cases}
(2ps + s + t)K_2 & \text{if } l = 2t \text{ is even,} \\
((2p+1)(s+1)-(p-t))K_2 & \text{if } l = 2t + 1 \text{ is odd.}
\end{cases}
\]

(ii) Take an integer \(m \geq 4p + 2 + k \), and let \(H_0 = K_m - W \) for some edge set \(W \subset E(K_m) \) such that \(|W| \leq 4p+1+2(2p+1) \) and \(2(|E(K_m)| - |W|) \equiv l \pmod{2p+1} \).

(iii) Since \(\gcd(10,18,2p+1) = 1 \), by Lemma 2.6, there are integers \(a_0, b_0, c_0 \) such that \(10a_0 + 18b_0 + (2p+1)c_0 = 1 \). Choose \(x_0 = la_0 + l(|a_0| + 1)(2p+1) \) and \(y_0 = lb_0 + l(|b_0| + 1)(2p+1) \). Then \(x_0, y_0 \) are positive integers such that

\[
10x_0 + 18y_0 \equiv l \pmod{2p+1}
\]

holds. Let \(t = (2p+1)(x_0 + y_0 + 1) \), and let \(I_{12}(i), 1 \leq i \leq t-1 \), be a graph isomorphic to icosahedron defined below (see Figure 1). Define \(H \) to be the graph obtained from \(I_{12}(1), I_{12}(2), \ldots, I_{12}(t) \) by identifying \(z_i \) and \(y_{i+1} \), \(1 \leq i \leq t-1 \), and by adding \(x_0 + 2y_0 \) new vertices \(u_1, u_2, \ldots, u_{x_0}, v_1, v_2, \ldots, v_{y_0}, w_1, w_2, \ldots, w_{y_0} \) with \(N(u_k) = \{x_5k-4,x_5k-3,x_5k-2,x_5k-1,x_5k\} \), \(N(v_k) = \{x_5k+8k'-7,x_5k+8k'-6,x_5k+8k'-5,x_5k+8k'-4,x_5k\} \), where \(1 \leq k \leq x_0 \) and \(1 \leq k' \leq y_0 \).

So \(H \) is a simple planar graph with \(\kappa(H) \geq k \) and \(2|E(H)| = 60t + 10x_0 + 18y_0 = 60(2p+1)(x_0 + y_0 + 1) + 10x_0 + 18y_0 \equiv l \pmod{2p+1} \). \(\square \)

Lemma 2.8. (i) Let \(k > 0 \) be an integer. If every \(k \)-edge-connected (simple) graph \(G \) with \(|E(G)| \equiv 0 \pmod{2p+1} \) has a \(K_{1,2p+1} \)-decomposition, then every \(k \)-edge-connected (simple) graph \(L \in M_{2p+1} \).

(ii) Let \(k > 0 \) be an integer. If every \(k \)-edge-connected planar graph \(G \) with \(|E(G)| \equiv 0 \pmod{2p+1} \) has a \(K_{1,2p+1} \)-decomposition, then every \(k \)-edge-connected planar graph \(L \in M_{2p+1} \).

(iii) Let \(2 \leq k \leq 5 \). If every \(k \)-edge-connected simple planar graph \(G \) with \(|E(G)| \equiv 0 \pmod{2p+1} \) has a \(K_{1,2p+1} \)-decomposition, then every \(k \)-edge-connected simple planar graph \(L \in M_{2p+1} \).

Proof. We shall prove (i) and assume first that every \(k \)-edge-connected (simple) graph \(G \) with \(|E(G)| \equiv 0 \pmod{2p+1} \) has a \(K_{1,2p+1} \)-decomposition. By contradiction, we assume that there exists a \(k \)-edge-connected (simple) graph \(L \) such that \(L \notin M_{2p+1} \).
Therefore, \(\exists b \in Z(L, \mathbb{Z}_{2p+1}) \) such that \(L \) does not have an orientation \(D \) satisfying \(d^+_\partial(i) - d^-_\partial(i) \equiv b(i) \) (mod 2p + 1) for all \(i \in V(L) \).

Let \(l_v \in \mathbb{Z} \), with \(0 \leq l_v \leq 2p \) such that \(l_v \equiv -b(v) - d_L(v) \) (mod 2p + 1) for all \(v \in V(L) \). By Lemma 2.7 (ii), there exists a simple graph \(H_v \) with \(|E(H_v)| \equiv l_v \equiv -b(v) - d_L(v) \) (mod 2p + 1) such that \(H_v \) is also \(k \)-edge-connected. For each \(v \in V(L) \), replace \(v \) by \(H_v \) in such a way that the resulting graph \(G \) is also a \(k \)-edge-connected (simple) graph.

Since \(b \in Z(L, \mathbb{Z}_{2p+1}) \), \(2|E(G)| = \sum_{i \in V(L)} 2|E(H_i)| + 2|E(L)| = -\sum_{i \in V(L)} b(i) - \sum_{i \in V(L)} d_L(i) + 2|E(L)| \equiv 0 \) (mod 2p + 1). By the fact that 2 and 2p + 1 are relatively prime, \(|E(G)| \equiv 0 \) (mod 2p + 1). By the assumption of this lemma, \(G \) has a \(K_{1,2p+1} \)-decomposition \(\mathcal{X} \). By the construction of \(G \), \(|\partial(H_v)| = d_L(v) \). Since \(2|E(H_v)| \equiv l_v \equiv -b(v) - d_L(v) \) (mod 2p + 1), it follows by Lemma 2.5 that, in the orientation \(D = D(\mathcal{X}) \) for all \(v \in V(L) \), \(d^+_\partial(i) - d^-_\partial(i) \equiv b(i) \) (mod 2p + 1), contrary to the assumption that \(L \) is a counterexample.

The proofs for (ii) and (iii) are similar except that we shall use Lemma 2.7 (i) and (iii) instead of Lemma 2.7 (ii). Thus we omit the detailed proofs.

Lemma 2.9. If \(G \) has an orientation \(D \) such that for all \(v \in V(G) \), \(d^+_\partial(i) \equiv 0 \) (mod 2p + 1), then \(G \) is \(K_{1,2p+1} \)-decomposable.

Proof: Note that if \(D \) is an orientation of \(G \), then \(E(G) = \bigcup_{i \in V(G)} E^\partial(i) \) is a disjoint union. As for all \(v \in V(G) \), \(d^+_\partial(v) \equiv 0 \) (mod 2p + 1), each \(E^\partial(v) \) is a disjoint union of generalized \(K_{1,2p+1} \)'s, and so \(G \) is \(K_{1,2p+1} \)-decomposable.

Lemma 2.10. Suppose that \(G \in M_{2p+1}^c \). If \(|E(G)| \equiv 0 \) (mod 2p + 1), then \(G \) has a \(K_{1,2p+1} \)-decomposition.

Proof: For all \(v \in V(G) \), pick an \(x(v) \in \{0, 1, \ldots, 2p\} \) such that \(d(v) \equiv x(v) \) (mod 2p + 1). Define \(b(v) = d(v) - 2x(v) \). First, we shall show that \(b \in Z(G, \mathbb{Z}_{2p+1}) \). Since \(x(v) \equiv d(v) \) (mod 2p + 1), we have \(d(v) - 2x(v) \equiv -x(v) \equiv -d(v) \) (mod 2p + 1). Note also that \(\sum_{v \in V(G)} d(v) = 2|E(G)| \equiv 0 \) (mod 2p + 1). Thus
\[
\sum_{v \in V(G)} b(v) = \sum_{v \in V(G)} (d(v) - 2x(v)) = -\sum_{v \in V(G)} d(v) \equiv 0 \text{ (mod 2p + 1)}.
\]

Hence \(b \in Z(G, \mathbb{Z}_{2p+1}) \).

Since \(G \in M_{2p+1}^c \), there exists an orientation \(D \) of \(G \) such that, under this orientation, at each vertex \(v \in V(G) \), \(d^+(v) - d^-(v) = b(v) = d(v) - 2x(v) \). Since \(d^+(v) + d^-(v) = d(v) \), we have \(2d^+(v) = 2d(v) - 2x(v) = 2(d(v) - x(v)) \). Since 2 and 2p + 1 are relatively prime, \(d^+(v) \equiv d(v) - x(v) \equiv 0 \) (mod 2p + 1). Therefore, by Lemma 2.9, \(G \) has a \(K_{1,2p+1} \)-decomposition.

Now we can easily prove Theorem 2.3. By Lemma 2.8, \(k_{c,2p+1} \leq k_{c,2p+1} \) and by Lemma 2.10, \(k_{c,2p+1} \geq k_{c,2p+1} \). Thus Theorem 2.3 follows.

By (ii) and (iii) of Lemma 2.8 and by Lemma 2.10, and noting that the edge connectivity of a simple planar graph cannot exceed 5 (Corollary 9.5.3 of [2]), we also have the following corollary.

Corollary 2.11. (i) Let \(k' \) denote the smallest positive integer such that every \(k' \)-edge-connected planar graph \(G \) with \(|E(G)| \equiv 0 \) (mod 2p + 1) has a \(K_{1,2p+1} \)-decomposition, and let \(k'' \) denote the smallest positive integer such that every \(k'' \)-edge-connected planar graph is in \(M_{2p+1}^c \). Then \(k' = k'' \).

(ii) Let \(l' \) denote the smallest positive integer such that every \(l' \)-edge-connected simple planar graph \(G \) with \(|E(G)| \equiv 0 \) (mod 2p + 1) has a \(K_{1,2p+1} \)-decomposition, and let \(l'' \) denote the smallest positive integer such that every \(l'' \)-edge-connected simple planar graph is in \(M_{2p+1}^c \). Then \(l' = l'' \).
3. Planar graphs. When $p = 1$, graphs in M_o^p are also called \mathbb{Z}_3-connected graphs [8], [10], [11]. The following has been recently proved.

Theorem 3.1 (Theorem 3 of [9]). There exists a family of 4-edge-connected simple planar graphs that are not in M_3^o.

In fact, the dual version of Theorem 3.1 is proved in [9]. The equivalence between Theorem 3 of [9] and Theorem 3.1 here was pointed out without a proof in [8], and a formal proof of this equivalence can be found in [6].

Corollary 3.2. There exists a 4-edge-connected simple planar graph G with $|E(G)| \equiv 0 \pmod{3}$ which does not have a claw decomposition.

Proof. Suppose, to the contrary, that Conjecture 1.1 holds. Then by (ii) of Corollary 2.11, every 4-edge-connected simple planar graph must be in M_3^o, which contradicts Theorem 3.1.

Corollary 3.2 disproves Conjecture 1.1. In fact, we can also directly construct an infinite family of 4-edge-connected simple planar graphs G with $|E(G)| \equiv 0 \pmod{3}$ which does not have a claw decomposition. We present the construction as follows.

Let $k > 0$ be an integer. For each i with $1 \leq i \leq 3k$, define H_i to be the graph depicted below. See Figure 2.

A graph $G = G(k)$ can be constructed from the disjoint H_i's by identifying y_i and x_{i+1}, where $x_{3k+1} = x_1$ and where $i = 1, 2, \ldots, 3k$.

Example 3.3. For each $k > 0$, $G = G(k)$ defined in Figure 3 is a 4-regular and 4-edge-connected simple planar graph with $|E(G)| \equiv 0 \pmod{3}$, and G has no claw decomposition.

Proof. Suppose G has a claw decomposition $\mathcal{X} = \{X_1, X_2, \ldots, X_m\}$, and let $D = D(\mathcal{X})$. Since G is 4-regular, for all $v \in V(G)$, $|E_D(v)| \in \{0, 3\}$. Note that $|V(G)| = 24k$ and $|E(G)| = 48k$. Thus G has $m = 48k/3 = 16k$ edge-disjoint
claws. Let W denote the set of vertices v with $|E_D(v)| = 0$. Then $|W| = |V(G)| - m = 24k - 16k = 8k$. Note that no two vertices in W are adjacent in G, and so, for each $i = 1, 2, \ldots, 3k \pmod{3k}$, $|W \cap V(H_i \cup H_{i+1} - \{y_{i+1}\})| \leq 5$. It follows that $16k = 2|W| = \sum_{i=1}^{3k} |V(H_i \cup H_{i+1} - \{y_{i+1}\}) \cap W| \leq 5 \times 3k = 15k$, a contradiction.

It is an open problem whether $k_{c,2p+1}$, or, equivalently, $k_{c,2p+1}$, exists as a finite number. We conjecture that it does. In view of Corollary 3.2 and Example 3.3, we further conjecture that $k_{c,2p+1} = 4p + 1$.

REFERENCES