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ABSTRACT 

Aging, a pathological factor in neurological injury 

Aruvi Vijikumar, M.S. 

 

One of the main reasons for CNS drugs to fail in clinical development is not considering 
age as a risk factor while studying chronic age-related neurological/neurodegenerative 
diseases in preclinical studies. We first set out to gain a comprehensive understanding of 
the impact of age on various aspects (anatomical, immunological, and biochemical) in 
rodents that play a key role in determining the onset, progression, and evolution of 
disease severity. With advancing age, the vascular structure and function are 
compromised which is hypothesized to accelerate cognitive decline. The initial step 
toward developing novel therapeutics is to characterize the age-related vascular 
modifications. Utilizing a vessel painting technique, we labelled the surface cortical 
vessels of young and aged Sprague-Dawley rats and analyzed for classical angiographic 
features (junctions, lengths, end points, density, etc). We found significant decrease in 
vascular components while vascular complexity and lacunarity were significantly 
increased in the aged brain compared to young brain. These age-dependent changes 
were prominent at the level of right and left middle cerebral artery (MCA) as well as on a 
global scale. Next, we investigated the changes on the peripheral immune response 
following lipopolysaccharide (LPS) induced acute systemic inflammation in young and 
aged Sprague Dawley rats. We observed age-related immunosuppression in the splenic 
leukocytes indicative of reduced ability of the spleen to retain the immune cells. We also 
found dysregulated cytokine/chemokine expression in the plasma following LPS 
stimulation in aged and young animals. Interestingly, we noticed significant increase in 
circulatory neutrophil population in the aged animals compared to young animals in 
response to LPS at 24h. Taken together, these studies confirm the presence of age-
related modifications in the vasculature as well as immune system suggesting altered 
response to injury/infection and thus emphasizing the need to utilize age-appropriate 
models when studying diseases of the elderly. Lastly, we wanted to test the therapeutic 
effect of a novel agent in case of brain injury model in aged rodents. Previous studies by 
our lab and others have showed that targeting mitoNEET using NL-1 was neuroprotective 
following brain injury models. We wanted to investigate if administration of NL-1 could 
improve functional outcomes following stroke in an aged rodent model of cerebral 
ischemia reperfusion injury. We found significant decrease in infarct volume and edema 
index at 24h post stroke. We also saw enhanced survival and reduced behavior deficits. 
Moreover, we showed improved BBB integrity, reduced oxidative stress and apoptosis at 
72h post stroke. Interestingly, PLGA encapsulated NL-1 at 0.25mg/kg (which is 40-fold 
lesser dose than NL-1 at 10mg/kg) produced better therapeutic effects. Future studies 
should focus on understanding the mechanism underlying the biology of aging thus 
enabling the development of novel therapeutic targets for neurological 
disorders/diseases. 
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LITERATURE REVIEW 

Aging epidemiology 

The world’s population is aging at an alarming rate. In 2019, it was estimated that 

there were 703 million people aged 65 or over worldwide and this number is expected to 

surpass 1.5 billion by 2050, that is about 25% of the world’s population (Nations et al., 

2019). In the US alone, the older population (aged≥65 years) is projected to expand from 

53 million in 2018 to 88 million in 2050 (Hou et al., 2019). In addition to well developed 

nations, less developed nations will also see a surge in their older population (Preston 

and Stokes, 2012; Shetty, 2012; Fernández-Ruiz, 2019). Reports predict one in five 

people in underdeveloped nations will be over 60 years old by 2050 (Shetty, 2012). The 

sources of such growth in aging population are found to be due to changing patterns of 

fertility, mortality, and migration (Preston and Stokes, 2012). Additionally, the average 

human life expectancy due to improvements in health care has drastically increased over 

the years (Cuny, 2012; Fernández-Ruiz, 2019; Aburto et al., 2020). The life-expectancy 

of Americans is estimated to increase by about 7.4% in the next ~40 years, i.e., from 79.7 

in 2017 to 85.6 in 2060 with women expected to live longer than men on an average, in 

2060 (Medina et al., 2020). However, this rise in life span is not directly proportional to 

the quality of life, showing only a modest increase in the years spent without disability 

(Aging and Metabolism: Two Sides of the Same Coin, 2017). This is due to the fact that 

there is a surge in global burden of late-life diseases and is associated with increased 

incidence and prevalence of geriatric neurodegenerative diseases in older individuals 

(Cuny, 2012; Callixte et al., 2015; Baker and Petersen, 2018; Partridge et al., 2018; 
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Fernández-Ruiz, 2019). As we progress towards increasingly aged population, mortality 

due to all causes increases exponentially (Parsons, 2007). In the recent years, the 

number of critically ill elderly patients admitted to the intensive care unit (ICU) have not 

only increased (Esme et al., 2019) but also have low hospital survival rate when compared 

to young patients (Topeli and Cakir, 2013). The financial cost of providing long-term care 

for geriatric patients imposes a huge economic burden on the health care sector (Florence 

et al., 2018). Therefore, understanding the biology of aging and age-related diseases is 

of utmost importance and emphasize the need for developments and advances to 

improve the quality of life in elderly by slowing the biological aging process.  

Hallmark signs of biological aging  

Biological aging is clearly distinct from chronological aging and is considered as a 

complex, dynamic physiological process. It is linked to physical, metabolic, cognitive, and 

emotional aspects of individual function (Bland, 2018). With progression of time, genetic, 

epigenetic and environmental factors lead to accumulation of aberrant molecular 

mechanism at cellular, molecular and organization level thereby altering the physical 

appearance, functionality and regenerative capacity of an organism (Khan et al., 2017; 

Hou et al., 2019). Hence, it is necessary to identify the molecular and cellular processes 

underlying the complex physiological process of biological aging. Over the years, studies 

have identified nine hallmark signs of aging which are classified into three categories 

namely, the primary, antagonistic and integrative (López-Otín et al., 2013). The primary 

hallmark constitutes the main driving force of aging, consisting of genomic instability, 

telomere attrition, epigenetic alterations, and loss of proteostasis. The second 
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antagonistic hallmarks, associated with mitochondrial dysfunction, cellular senescence 

and deregulated nutrient sensing, provide benefits at low levels and become detrimental 

at high levels. Finally, the integrative hallmarks which comprise stem cell exhaustion and 

altered intercellular communication induce damage beyond repair due to pro-longed 

accumulation (López-Otín et al., 2013, 2016; Hou et al., 2019). This system of 

identification of the hallmark signs of aging has aided in the development of novel 

therapeutic targets aiming to restore the functional decline seen in aged individuals.  

 

Aging and neurological/neurodegenerative disorders 

Neurological/Neurodegenerative disorders are diseases affecting the central 

nervous system (CNS) classified by death of neurons leading to functional and cognitive 

decline (Mayne et al., 2020). Neuronal loss may be progressive as in the case of 

Alzheimer’s Disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis 

(ALS) (Dugger and Dickson, 2017) or can be caused due to primary insult such as 

demyelination, ischemia or trauma leading to secondary neurodegeneration as in the 

case of multiple sclerosis (MS), acute ischemic stroke (AIS) and traumatic brain injury 

(TBI) (Mayne et al., 2020). Neurodegenerative diseases are one of the most life-

threatening disorders around the world, predominantly affecting the elderly (Niccoli and 

Partridge, 2012a; Harris et al., 2014; Fülöp et al., 2016; Kowalska et al., 2017; Hou et al., 

2019; Azam et al., 2021). Among the several risk factors for 

neurodegenerative/neurological disorders, the aging process itself imposes a significant 

impact (Niccoli and Partridge, 2012a; López-Otín et al., 2013; Callixte et al., 2015; Hou 

et al., 2019; Azam et al., 2021; Wrigglesworth et al., 2021).  
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There is a close association between aging and age-related diseases at molecular, 

cellular and organization level. With advancing age, the brain undergoes several changes 

(Figure 1.1). Normal brain aging is characterized based on progressive changes in local 

reductions in glucose metabolism, impaired cellular calcium signaling, oxidative stress, 

accumulation of damaged and misfolded proteins, mitochondrial dysfunction leading to 

aberrant energy metabolism, chronic low grade inflammation, and neuronal atrophy 

driven by defective activity at synapses (e.g. receptors, transporters, ion channels and 

synthetic enzymes) (Rango and Bresolin, 2018; Erickson and Banks, 2019; Fernández-

Ruiz, 2019; Hou et al., 2019; Mayne et al., 2020; Blinkouskaya et al., 2021). Additionally, 

there is increased glial reactivity (increased astrogliosis and microglia activation) 

exacerbating neuroinflammation as well as decreased neurogenesis concurrent with 

significant loss of neurons (Fernández-Ruiz, 2019; Hou et al., 2019; Mayne et al., 2020; 

Blinkouskaya et al., 2021). The microvasculature of the CNS is composed of tightly 

regulated endothelial cells forming the blood brain barrier (BBB) whose function is to 

protect the brain against circulating toxins or pathogens (Daneman and Prat, 2015; 

Profaci et al., 2020). Recent studies have demonstrated increased blood brain barrier 

permeability in certain brain regions of older cohorts suggesting BBB disruption as a part 

of the normal aging process (Goodall et al., 2018; Verheggen et al., 2020). Moreover, 

noninvasive brain imaging studies have revealed age-related changes on the brain 

morphology (specific structures as well as different anatomical regions), along with 

vascular morphology (Abdelkarim et al., 2019; Nyberg and Wåhlin, 2020; Beishon et al., 

2021). Several studies showed the rate of increase in cerebral atrophy, the most 

important morphological change, with aging (Blinkouskaya and Weickenmeier, 2021; 
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Blinkouskaya et al., 2021). This is associated with decline in global brain volume, white 

matter volume, brain folding, emergence of white matter lesions, gray matter shrinking, 

sulcal widening, thinning of the cortex, and ventricular enlargement (Blinkouskaya and 

Weickenmeier, 2021; Blinkouskaya et al., 2021). Apart from global structural alterations, 

the brain vascular components undergo remodeling with age resulting in changes in 

cerebral blood flow (CBF) and concurrent neurovascular coupling dysfunction 

(Abdelkarim et al., 2019; Beishon et al., 2021; Mokhber et al., 2021). In addition, recent 

studies demonstrated higher activity in certain brain regions during rest and cognitive 

tasks which might be a compensatory mechanism for reduced functional connectivity in 

older subjects (Sala-Llonch et al., 2015; Hughes et al., 2020). Consequently, disrupted 

functional architecture of brain networks along with vascular dysfunction leads to the 

cognitive impairment in the elderly (Sala-Llonch et al., 2015; Damoiseaux, 2017; 

Abdelkarim et al., 2019; Hughes et al., 2020; Beishon et al., 2021; Mokhber et al., 2021). 

Taken together, these normal age-related physiological changes are exacerbated during 

pathological conditions leading to onset and rapid progression of the disease state. 

Understanding the biology of normal aging is not only useful in predicting the disease 

severity but also important for successful development of therapeutic interventions for the 

treatment of neurodegenerative/neurological diseases in the elderly.  
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Figure 1.1: Age-related physiological changes occurring in the healthy brain. 
Created with BioRender.com 
 
 
Therapeutic potential of pharmacological agents in age-related CNS diseases 

The pipeline of drug discovery and development process is an expensive one apart 

from being time consuming. Currently, it is estimated about $113 million to over $6 billion 

dollars required on an average for each novel drug to be approved for clinical use 

(Rennane et al., 2021). However, studies reported that 90% of the drug candidates fail to 

advance during clinical trials and drug approval even after rigorous optimization and 

validation at preclinical stage (Hingorani et al., 2019; Sun et al., 2022). In general, the 

failure rate is higher (close to 100%) for CNS targeting drugs especially in case of major 

neurodegenerative diseases, in both preclinical and clinical studies (Gribkoff and 

Kaczmarek, 2017; Cummings et al., 2019; Howes and Mehta, 2021). For example, till 

date the only food and drug administration (FDA) approved pharmacological agent to treat 

ischemia stroke is reperfusion with tissue plasminogen activator (tPA) despite 1000+ 
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successful preclinical studies (O’Collins et al., 2006; Dhir et al., 2020; Lourbopoulos et 

al., 2021). Owing to the high failure rate, longer time for drug development process and 

post-development regulatory review, major pharmaceutical companies are moving away 

from CNS drug development process (Gribkoff and Kaczmarek, 2017; Howes and Mehta, 

2021). In case of AD, there are currently only 126 molecular entities in clinical trials as 

opposed to 3558 agents in cancer clinical trials (Moser and Verdin, 2018; Cummings et 

al., 2021). As a consequence of expensive drug development failure, a huge burden is 

imposed on not only the healthcare providers but also the citizens through healthcare 

taxation (Hingorani et al., 2019). With the growing older population and increased 

prevalence of chronic neurodegenerative diseases (Baker and Petersen, 2018; Partridge 

et al., 2018), there is an urgent need to develop CNS drugs in a timely manner by reducing 

the cost and time associated with the clinical trials (Cummings et al., 2021). Additionally, 

the success rate of clinical trials can be improved by identifying the right drug, druggable 

target, biomarkers, recruiting the right participants, predicting those at the high risk 

category for disease development as well as starting treatment at the right age (Baker 

and Petersen, 2018; Cummings et al., 2019).  

Aging is associated with increased co-morbidities. The prevalence of 

multimorbidity (the coexistence of multiple chronic diseases) in older individuals ranges 

from 55 to 98% from a global perspective (Marengoni et al., 2011). In the US, it is said 

that six in ten adults have at least one chronic disease and four in ten adults have two or 

more (Maresova et al., 2019). As a consequence of higher prevalence of chronic disease, 

the number of drugs taken by aged individuals tend to be higher than younger individuals. 

A recent survey showed that about 69% of aged adults (40-79 years) consumed at least 
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one prescription drug and 22.4% consumed at least 5 prescription drugs in the US (Hales 

et al., 2019). Studies have shown that aging alters the pharmacokinetic and 

pharmacodynamic properties of a drug (Mangoni and Jackson, 2004; Drenth-van Maanen 

et al., 2020). A study conducted in rats showed decreased clearance, volume of 

distribution, potency and increased elimination half-life for a serotonin receptor 

antagonist, lerisetron with aging (Jauregizar et al., 2003). In addition, age-related 

differences exist in disease-relevant systems and thus significantly influence the 

outcomes of studies examining the mechanism of drug action, drug efficacy, drug toxicity 

as well as biology of disease (Jackson et al., 2017). Apart from the underlying mechanism 

of biological aging, several age-related physiological changes accompanying dementia 

and frailty can alter the pharmacokinetics of medications (Drenth-van Maanen et al., 

2020). Loss of body weight and muscle mass can inadvertently decrease the volume of 

distribution of hydrophilic drugs while increasing the volume of distribution of hydrophobic 

drugs (Drenth-van Maanen et al., 2020). Additionally, age related dementia is associated 

with increased BBB permeability and decreased efflux pump activity which results in 

neurotoxicity for certain drugs (Reeve et al., 2015, 2017). Despite these differences, aged 

individuals are frequently excluded from clinical trials. For example, only a small fraction 

of people >50 years have been included in human trials while testing antiretroviral drugs 

(Budak, 2020).  

 

RATIONALE 

Despite the existence of several animals to study human diseases, finding the right 

model that fully recapitulates the disease pathophysiology or phenotype continues to be 
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a problem (Nielsch et al., 2016). Rodent models are the most commonly used mammals 

in biomedical research and non-clinical drug trial (Jackson et al., 2017). Multitude of 

factors affect the outcome of a study of which age of the animals have a significant impact 

on new drug candidates and is associated with altered drug handling, physiological 

reserve, and pharmacodynamic responses (McLean and Le Couteur, 2004; Ettlin et al., 

2010). Inconsistent choice of age while studying specific age-related diseases in rodent 

models negatively impacts the quality of the research and leads to failure of translation of 

drugs from bench to bedside (Jackson et al., 2017). Therefore, there is an urgent need to 

understand the influence of age on various aspects (anatomical, immunological, and 

biochemical) in rodents that play a key role in determining the etiology, progression, 

prognosis of age-related chronic disease.  

 

OBJECTIVES 

The overarching goal of this dissertation was to characterize the influence of age on 

anatomical, immunological, and biochemical aspects and its impact on therapeutic 

outcomes in the context of age-related neurological disorders.  

 

Chapter 2: Pharmacological profile of bryostatin-1 in various CNS 

diseases/disorders 

Our lab is primarily interested in testing the therapeutic potential of pharmacological 

agents in aged rodent models of brain injury/neurodegenerative diseases. One such 

pharmacological agent that our lab focused on was bryostatin-1, an ultra-potent protein 
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kinase C (PKC) modulator. The pharmacological profile of bryostatin-1 in various CNS 

diseases/disorders has been well studied by our lab and others and thus reviewed here.  

 

Chapter 3: Characterize the effect of aging on cerebrovascular architecture  

Age-related changes on the vascular morphology have been implicated in several 

cerebrovascular and neurodegenerative diseases. Reduction in vessel density with aging 

is correlated with reduced cerebral blood flow (CBF), neuro vascular coupling, impaired 

cellular metabolism. However, it is not known at what level these changes are taking 

place. To investigate that, we employed a vessel painting technique to label the surface 

cortical endothelial cells. Using aged and young Sprague Dawley rats, we measured age-

related changes on the classical vessel parameters, complexity, vessel diameter and 

order of branching of the middle cerebral arteries as well as global surface cortical 

vessels. Given the association between cerebral vessel structure and cognition, the 

results of the study would provide a detailed characterization of vessel architecture with 

age in vivo and may help elucidate the cognitive changes during senescence.  

 

Chapter 4: Characterize the effect of age on peripheral immune response following 

lipopolysaccharide (LPS) induced systemic inflammation  

With advancing age, our immune system undergoes cellular and functional alterations 

characterized by immunosenescence and chronic low-grade inflammation termed as 

inflamm-aging. Several studies have reported age-related changes in innate and adaptive 

arms of immunity. However, changes in the composition of leukocytes in response of 

injury/infection in an aged subject is unknown. We used LPS induced systemic 
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inflammation model to determine the influence of age on acute immune response at 3 

and 24h in young and aged Sprague Dawley rats. We performed flow cytometry to 

investigate the age-related changes in major leukocyte population in blood and spleen. 

We also analyzed the cytokine expression following systemic inflammation using enzyme-

linked immunosorbent assay (ELISA). Given the importance of peripheral immune system 

in the pathological progression of neurodegenerative diseases, the results of this study 

would provide evidence for age-related alterations in blood and splenic leukocyte 

composition as well circulating cytokine/chemokine profiles. Given the role of peripheral 

immune system in driving neuroinflammation, the knowledge gained from this study would 

aid in comprehending the pathological progression of neurodegenerative diseases in 

elderly.  

 

Chapter 5: Investigate the therapeutic potential of a novel mitoNEET ligand, NL-1 

in an aged rodent model of brain injury (cerebral ischemia/reperfusion injury 

model)  

Cerebral ischemia is the leading cause of mortality and morbidity predominantly affecting 

the elderly. While recanalization of the ischemic brain with tissue plasminogen activator 

(tPA) and endovascular thrombectomy can restore the blood flow and salvage the brain 

tissue, they can do more harm than good due to ischemia-reperfusion injury (IRI). Among 

the various pathological mechanisms of ischemia-reperfusion injury, mitochondrial 

dysfunction due to free radical production plays a pivotal role in orchestrating neuronal 

damage and serves as a potential therapeutic target. Prior studies demonstrated that 

targeting MitoNEET (mN), an iron- sulfur cluster protein located in the outer mitochondrial 
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membrane that acts a redox senor, by using the ligand NL-1 produces significant tissue 

sparing and neuroprotective effects following ischemic stroke, traumatic brain injury & 

Parkinson’s disease. Here we hypothesized that targeting mN activity following cerebral 

ischemia reperfusion injury would reduce ischemic brain injury & improve neuronal 

survival in the penumbra region surrounding the infarct by reducing lipid peroxidation 

induced cellular damage. We evaluated the efficacy of NL-1 and a nanoparticle 

formulation of NL-1 in treating cerebral ischemia/reperfusion injury using aged female rats 

following a 2 h middle cerebral artery occlusion (MCAO) with reperfusion. The results of 

this study would demonstrate that mN is a novel druggable target in the case of cerebral 

ischemia/reperfusion injury that requires further investigation.  

In summary, this dissertation evaluates the function of age as a non-modifiable risk 

factor for neurological disorders. This dissertation emphasizes the need to understand 

and characterize the effect of age on brain vessel structure as well as the peripheral 

immune system following systemic inflammation in a quantitative manner. Additionally, 

this body of work also documents the therapeutic efficacy of a novel ligand NL-1, targeting 

mitochondrial protein mN in an aged rodent model of cerebral ischemia reperfusion injury. 

Overall, this work underscores the importance of using aged rodents while studying age-

related diseases to enhance the success rate of clinical drug development.  
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CHAPTER TWO 

Evaluating use of bryostatin-1 for the treatment of 

neurological diseases and injury 
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ABSTRACT 

Protein kinase C (PKC) isozymes are a family of kinases that regulate many downstream 

signaling processes and play vital roles in human health and disease. Owing to their 

involvement in key biological events such as signal transduction, cell proliferation and 

apoptosis, PKC isozymes have become attractive drug targets. Bryostatin-1, a 

macrocyclic compound obtained from the marine organism Bugula neritina, is an ultra-

potent PKC modulator with high affinity for PKC isozymes alpha, delta and epsilon. In 

recent years, preclinical and clinical studies have shifted away from probing bryostatin-1 

as an anti-cancer drug and instead have shifted focus to the promising pharmacological 

benefits of bryostatin-1 as a neuroprotective agent for central nervous system diseases. 

The purpose of this mini-review is to discuss the latest findings advancing the 

pharmacological potential of bryostatin-1 for the treatment of neurological diseases, 

including Alzheimer’s disease, traumatic brain injury, ischemic stroke, multiple sclerosis 

and neuroAIDS. 
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INTRODUCTION  

Bryostatins, isolated from marine bryozoans Bugula neritina, are highly complex 

oxygenated macrocyclic lactones that were initially studied as anti-cancer compounds 

due to their anti-tumorigenic and cytotoxic profiles in murine lymphocytic leukemia cells 

(Pettit et al., 1982). Bryostatins demonstrate a wide range of anti-cancer effects, including 

immune stimulation, growth inhibition and antineoplastic effects on multiple malignancies 

(Wu et al., 2020). Of the isolated 21 analogs, bryostatin-1 is the most well-studied and 

pharmacologically characterized (Wu et al., 2020). Bryostatin-1 is a potent PKC regulator 

with strong binding affinity (Ki=0.6-2.1nM) for PKC isozymes alpha (α), beta (), delta (δ), 

gamma (), epsilon (ɛ), eta (), theta () which are determined using a cell free assay (Ly 

et al., 2020). In particular, bryostatin-1 has strong efficacy towards PKCɛ with 

displacement of phorbol ester, the prototypical exogenous ligand for PKC, occurring at 

sub-nanomolar concentrations in rodents and humans (Hess et al., 1988). Both 

conventional and novel PKC isozymes have shown varied function and dose-dependent 

regulation when exposed to bryostatin-1 while atypical PKC isozymes do not bind to 

bryostatins (Szallasi et al., 1994; Mutter and Wills, 2000). 

The pharmacological activity of bryostatin-1 involves allosteric modulation of PKC 

by binding to their regulatory C1 domains ((C1a and C1b), mimicking the action of 

endogenous ligand diacylglycerol (DAG). This binding drives the conformational change 

of the PKCs thus potentiating the transient binding of PKC to the plasma membrane and 

increasing the activation of downstream signaling cascades (Wender and Staveness, 

2014). While low concentrations of bryostatin-1 stimulate PKC activity, studies on cancer 

cells show that upon prolonged exposure to bryostatin-1 at high concentrations, PKC 
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expression undergoes downregulation via ubiquitin-mediated proteasomal degradation 

(Mutter and Wills, 2000; Sun and Alkon, 2006). This unique biological activity of 

bryostatin-1, as an activator and inhibitor of PKC activity, at different concentrations and 

exposure intervals, provides unique opportunities for studying PKC activity and should be 

considered when developing dosing schemes for bryostatin-1. 

After bryostatin-1 is administered, it is widely distributed in the body and well 

tolerated with the most common adverse effect being myalgia (Zhang et al., 1996; Mutter 

and Wills, 2000; Sun and Alkon, 2006). For more than 20 years, multiple Phase I/II clinical 

trials for solid and hematological malignancies have been conducted with bryostatin-1 

alone and in combination with other chemotherapeutic agents (Kollár et al., 2014). While 

bryostatin-1 showed absence of tumor-promoting activity in contrast to other PKC 

activators, it did not progress to Phase III clinical trial as an anti-cancer drug (Kollár et al., 

2014; Raghuvanshi and Bharate, 2020).  

In the early 2000s, studies began showing promising results with bryostatin-1 as a 

CNS drug (Figure 2.1). These pharmacological studies of bryostatin-1 focused on its 

action in stimulating synapse formation, release of neurotrophic factors, enhanced 

learning capacity and consolidation of memories (Sun and Alkon, 2006, 2014; Kollár et 

al., 2014). Bryostatin-1 has also been reported to have anti-inflammatory and anti-

oxidative properties that mitigate cellular stress and neuroinflammation (Kornberg et al., 

2018; Safaeinejad et al., 2018). Recently, studies using bryostatin-1 treatment following 

ischemic stroke and traumatic brain injury demonstrated pronounced reductions in edema 

formation and marked decreases in blood-brain barrier (BBB) disruptions (Tan et al., 

2013, 2015; Lucke-Wold, Logsdon, et al., 2015), which led our lab to postulate that 
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bryostatin-1 confers neuroprotection following brain injury, in part, by restoring functional 

integrity of the BBB (Tan et al., 2013, 2015; Lucke-Wold, Logsdon, et al., 2015). In this 

review, we discuss recent advances in the therapeutic use of bryostatin-1 to treat 

neurological diseases/disorders with a specific focus on Alzheimer’s disease (AD), 

traumatic brain injury (TBI), acute ischemic stroke (AIS), multiple sclerosis (MS) and 

reversing latency of human immunodeficiency virus (HIV).  

 

Figure 2.1: Possible clinical applications of bryostatin-1 as a CNS drug. A number 
of preclinical and clinical studies have recently focused on the therapeutic applications of 
bryostatin-1 in Alzheimer’s disease (AD), traumatic brain injury (TBI), acute ischemic 
stroke, multiple sclerosis (MS) and neuroAIDS. See text for detail.  
 

BRYOSTATIN-1 IN AD 

AD is a chronic neurodegenerative disease characterized by progressive dementia 

that affects over 17 million people globally (Schrott et al., 2015). With advancing age, the 

incidence and prevalence of AD is increasing and thus causing a surge in mortality and 

morbidity worldwide (Sawda et al., 2017). The progression of age-related incidence of AD 
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is 15% in the age group of 60–64 to 85–89 years (Fernández-Ruiz, 2019). In the US, it is 

estimated that 6.2 million individuals are currently living with AD dementia, and is 

predicted to increase to more than 13.8 million by 2060 (2021 Alzheimer’s disease facts 

and figures, 2021). Pathological hallmarks associated with AD include deposition of 

amyloid beta (Aβ) plaques, formation of neurofibrillary tangles, progressive loss of 

synapses and marked neurodegeneration (Sadigh-Eteghad et al., 2015; Nelson et al., 

2017).  

Secretases (α-, β- and γ-) are proteases that process amyloid precursor protein 

(APP) and play a pivotal role in generation and modulation of Aβ peptide (Ahmad et al., 

2019). A leading hypothesis for the pathogenesis of AD posits that AD-associated 

neuronal dysfunction and cognitive decline is due to extracellular accumulation of Aβ 

protein resulting from aberrant proteolytic processing of APP via β-secretase (Sadigh-

Eteghad et al., 2015). A prior study demonstrated that bryostatin-1, through activation of 

PKCε, attenuated Aβ plaque deposition by potentiating the secretion of a soluble, non-

toxic form of APP α-secretase through a non-amyloidogenic pathway (Etcheberrigaray et 

al., 2004; Hongpaisan, M-K Sun, et al., 2011) (Figure 2.2). Additionally, repeated 

administration of bryostatin-1 (40 μg/kg; i.p.) in double transgenic AD mice reduced the 

deposition of neurotoxic peptides- Aβ40 and Aβ42 with concomitant improvement in 

survival and behavioral outcomes (Etcheberrigaray et al., 2004). Furthermore, bryostatin-

1 treatment stabilized and prolonged activity of neprilysin, a potent Aβ-degrading enzyme, 

in the brain through upregulation HuD, an mRNA binding protein responsible for neural 

development and neuronal plasticity (Lim and Alkon, 2014).  
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Figure 2.2: Bryostatin-1 attenuated Aβ plaque deposition in Alzheimer’s disease in 
a PKCε dependent pathway. AD pathophysiology is widely characterized by the 
deposition β-amyloid peptide (Aβ) in the brain which ultimately results in 
neurodegeneration and cognitive defects. The fate of amyloid precursor protein (APP) 
cleavage by secretases (proteolytic enzymes) determines the severity of disease 
progression. In, the amyloidogenic pathway, APP is sequentially cleaved by β- and γ- 
secretase resulting in the generation of the neurotoxic Aβ plaques. Whereas in the non-
amyloidogenic pathway, α-secretase cleaves the APP, generating soluble α-APP 
fragments (sAPPα) and C-terminal fragment (C83), which is further cleaved by γ-
secretase, producing non-toxic P3 and APP intracellular domain (AICD). Evidence 
suggest that PKC is instrumental in the processing APP. Activating protein kinase C 
epsilon (PKCε) by bryostatin-1 is shown to enhance the α-processing of APP as indicated 
by increased production of sAPPα while decreasing the formation of Aβ plaques in the 
brain. 
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Analysis of autopsy-confirmed AD brains revealed elevated levels of Aβ along with 

reduced PKCɛ, manganese superoxide dismutase (MnSOD), and brain derived 

neurotrophic factor (BDNF) in hippocampal CA1 pyramidal neurons (Sen et al., 2018). 

The same association was noticed in in vitro using cultures of human primary 

hippocampal neurons. These effects were reversed by bryostatin-1 administration. A 

preclinical study using 8-month-old transgenic AD mice showed that bryostatin-1 (30 

μg/kg; i.p) administration for 12 weeks restored the levels of PKCɛ with concomitant 

decline in soluble amyloid beta protein levels (Hongpaisan, M-K Sun, et al., 2011). In 

addition, the authors found that bryostatin-1 prevented the inhibition of BDNF levels 

associated with synaptic loss even before the deposition of Aβ plaques in the 

hippocampal neurons (Hongpaisan, M-K Sun, et al., 2011). Moreover, in vitro studies 

showed that treatment with tert-butyl hydroperoxide (TBHP) induced increased reactive 

oxygen species (ROS) while decreased the levels of PKCɛ, MnSOD, BDNF as well as 

neuronal density (Sen et al., 2018). These effects were recused by bryostatin-1 

administration (Sen et al., 2018). Studies showed that aging results in decreased 

proteosome activity (Khan and Nelson, 2018), which plays a central role in degrading and 

clearing Aβ plaques in the brain (Saez and Vilchez, 2014; Cao et al., 2019). However, 

bryostatin-1 at sub-nanomolar to nanomolar concentrations (0.3-30 nM) enhanced 

proteasomal activity in the ubiquitin-proteasome pathway in PKCɛ dependent manner 

(Khan and Nelson, 2018). Taken together, bryostatin-1 improved neuronal survival and 

reduced oxidative stress in the hippocampal neurons indicating attenuation of neuronal 

dysfunction as seen in AD.   
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PKC-mediated signaling pathways play significant roles in AD pathophysiology. 

PKC activation mediates both excitatory and inhibitory synaptogenesis, which is vital for 

the neuronal plasticity involved in memory and learning (Sun and Alkon, 2005; 

Hongpaisan et al., 2013; Nelson et al., 2017). Bryostatin-1 administration (10 μg/kg; i.p.) 

to young adult rats increased the density of mushroom spines, a PKC dependent long-

term associative memory storage unit, on dendrites (Hongpaisan and Alkon, 2007).  In 

addition, bryostatin-1 treatment increased double-synapse presynaptic boutons that 

synapse with mushroom spines, and pre-synaptic vesicles indicating enhanced memory-

induced synaptogenesis (Hongpaisan and Alkon, 2007). Bryostatin-1 induced 

upregulation of mushroom spine synapses and BDNF release in apical dendrites of CA1 

pyramidal neurons, which reversed age-dependent cognitive decline (Hongpaisan et al., 

2013). Furthermore, bryostatin-1 improved learning and memory by significantly 

increasing the frequency and amplitude of GABAergic inhibitory postsynaptic currents as 

well as increasing the firing rate of GABAergic interneurons, both of which indicate 

enhanced neurotransmission in hippocampal neurons (Xu et al., 2014). 

Acute oral administration of bryostatin-1 (5 μg/mouse in vehicle oil control) to 

transgenic AD mice for less than two weeks significantly improved learning and memory 

performance while reducing plaque deposition in the cortex/hippocampus when 

compared to i.p administration (Schrott et al., 2015). Recently, a nanoparticle-

encapsulated bryostatin-1 formulation showed an increased efficacy when compared to 

unmodified bryostatin-1 (Schrott et al., 2021). The study showed that AD transgenic mice 

(6.5 to 8 months of age) treated with nanoparticle encapsulated bryostatin-1 formulation 

(1, 2.5, or 5 μg/mouse) showed improvements in spatial memory on Morris water maze 
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indicating the effectiveness of the novel nanoparticle-encapsulated formulations of the 

drug in treating cognitive deficits associated with AD (Schrott et al., 2021).  

The first clinical study of bryostatin-1 in AD patients was conducted by Nelson et 

al., 2017. Bryostatin-1, administrated at a dose of 25μg/m2; i.v in a double blind Phase IIa 

trial, showed improvement in Mini-Mental State Examination (MMSE) score between 

treatment and placebo groups (Nelson et al., 2017). The data also showed that bryostatin-

1 was well tolerated in AD patients (Nelson et al., 2017). Following the favorable 

pharmacokinetic profile of bryostatin-1 from Phase IIa trials and promising results from 

compassionate use trials, a double-blind, randomized, placebo-controlled Phase II trial to 

investigate the safety, tolerability, and efficacy of bryostatin-1 in advanced AD patients 

was conducted (Farlow et al., 2019). Although there was no significant difference in the 

prime outcome between the placebo and treated groups, the study provided a dose limit 

for future clinical trials as <40μg (which corresponds approximately to < 25μg/m2 doses). 

In addition, the authors suggested that memantine, a conventional medication used to 

treat moderate-to-severe Alzheimer's disease, blocked bryostatin-1 induced potential 

therapeutic effects (i.e., decrease in Severe Impairment Battery (SIB) scores in AD 

patients). Future trials should focus on testing the efficacy of bryostatin-1 at 20μg in the 

treatment of moderate to severe AD in the absence of memantine thus preventing any 

compounding factors (Farlow et al., 2019).  

 BRYOSTATIN-1 IN TBI 

The incidence of TBI in the US is estimated to be 1.7 million incidents per year and 

occurs mainly among adolescents (15-19 years) and older populations (>65 years) (Alan 

Georges; James G. Booker, 2019). However, it imposes significant problem in older 
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patients with increased emergency department visits, hospitalizations, and mortality 

(Thompson et al., 2006; Gardner et al., 2018; Peters and Gardner, 2018). Most TBIs are 

classified as mild and are mainly caused by closed brain injuries such as a concussion 

resulting from a car or sports accident or a fall (Alan Georges; James G. Booker, 2019). 

In case of older individuals, falls are considered to the primary mechanism of TBI affecting 

more women than men (Peters and Gardner, 2018). Age-related increased prevalence of 

co-morbidities, pre-existing health conditions, consumption of certain drugs such as 

warfarin along with intracranial changes such as dura adherence to skull, cerebrovascular 

atherosclerosis and bridging vein fragility are some factors that associated with increased 

disease severity and higher rate of mortality as seen in older adults (Thompson et al., 

2006). The pathophysiology of TBI is complex resulting from primary impact and 

secondary injuries, both of which can exacerbate cerebral damage. The underlying 

mechanism(s) involve activation of various biochemical and molecular pathways resulting 

in neural depolarization, ionic disturbances, glutamate excitotoxicity, mitochondrial 

dysfunction, increased oxidative stress, inflammatory response and neuronal death 

(Kinoshita, 2016; Galgano et al., 2017). Disruption of the BBB may worsen the injury by 

increasing cerebral edema and intracranial pressure and reducing cerebral perfusion 

pressure (Kinoshita, 2016; Galgano et al., 2017). Additionally, aging can negatively 

impact the outcomes following TBI (Thompson et al., 2006). Without proper interventions, 

these consequences can lead to permanent brain injury and a higher predisposition to 

worsened outcomes following a repeated head injury (Dewan et al., 2018).  

Experimental studies demonstrate that shockwave-induced TBI disrupts the BBB 

and increases deposition of Aβ as a consequence of secondary damage (Itoh et al., 2009; 
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Abdul-Muneer et al., 2013; Hue et al., 2014). Administration of bryostatin-1 (2.5 mg/kg; 

i.p) to young adult male Sprague-Dawley rats 5 mins after shockwave-induced TBI 

significantly reduced BBB permeability by upregulating expression of the tight junction 

proteins, zonula occludens-1 (ZO-1), occludin, and VE-cadherin (Lucke-Wold, Logsdon, 

et al., 2015). In addition, bryostatin-1 was able to decrease toxic PKCα protein levels 

while increasing PKCε expression levels in isolated cerebral microvessels, thereby 

maintaining the integrity of BBB after injury (Lucke-Wold, Logsdon, et al., 2015). 

Furthermore, extended treatment of bryostatin-1 starting at 8h following mild TBI (mTBI) 

over 2 weeks protected the brain from synaptic loss and cognitive decline in male C57b6/J 

mice (Zohar et al., 2011). This rescue was possibly mediated through bryostatin-1 binding 

to the regulatory domain of PKC (Kortmansky and Schwartz, 2003) to increase ADAM10 

(putative α-secretase) levels while decreasing BACE-1 (β-secretase) levels. Altering the 

expression of both ADAM10 and BACE-1 would ultimately lower the rate of Aβ deposition 

leading to reduced plaque formation and possibly enhanced memory and cognition 

(Zohar et al., 2011). This study also indicated that repeated application of bryostatin-1 

rescued the TBI-induced reduction in pre and post synaptic neural connections in the CA1 

region of the hippocampus (Zohar et al., 2011). Taken together, bryostatin-1 is a potential 

treatment for both short and long term TBI sequelae. However, these protective effects 

are not observed when bryostatin-1 is administrated at sub-acute time points such as 14 

days post injury (Zohar et al., 2011). Identifying the appropriate therapeutic window of 

bryostatin-1 for maximum neuroprotective effect following brain injury is warranted. Future 

studies should investigate the effect of co-treatment of bryostatin-1 and current treatment 

strategies for TBI.  
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BRYOSTATIN-1 IN AIS 

AIS is a disease of the elderly. In the US, it is the fifth leading cause of death and 

major cause of adult disability (Yang et al., 2017). About 75% of the strokes occur in 

patients above 65 years (Yousufuddin and Young, 2019). As the number of aged 

population (>65 years) is expected to rise, there is increased prevalence of hypertension, 

diabetes, obesity, and cardiovascular diseases coupled with lifestyle changes that 

significantly contributes to the growing incidence of stroke in aging population (Kowalska 

et al., 2017). It is estimated that the incidence of stroke will double over the next 40 years 

(2010–2050) affecting the elderly (aged ≥75 years) and minority groups (Benjamin et al., 

2018). Elderly patients (>85years) are associated with longer hospitalization and thereby 

increase the burden on healthcare system (Benjamin et al., 2018). Especially in this age 

group (>85 years), women are prone to increased stroke mortality and disability than men 

due to increased life span for women (Rexrode et al., 2022). So far, reperfusion with 

tissue plasminogen activator (tPA) has been the gold standard to treat patients suffering 

from ischemic stroke but the treatment has a narrow therapeutic widow requiring 

administration of tPA within 3-4.5 h after onset of stroke (Peña et al., 2017). Moreover, 

not all AIS patients are eligible for tPA treatment due to tPA associated intracerebral 

bleeding and risk of hemorrhagic transformation (HT) (Peña et al., 2017). These 

shortcomings emphasize the need for developing novel pharmacological agents that act 

as adjuvants with the existing therapy to prolong the therapeutic window and efficacy of 

tPA by reducing its adverse effects. 
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Studies indicate that co-administration of bryostatin-1 with tPA exhibited 

neuroprotective effects following ischemic stroke (Tan et al., 2013, 2015). Administration 

of tPA (5 mg/kg; i.v.) adjuvated with bryostatin-1 (2.5 ug/kg; i.v.) every third day over a 

three-week course demonstrated enhanced survival rates and reduced brain swelling in 

aged female Sprague-Dawley rats with experimentally induced ischemic stroke (Tan et 

al., 2013). Furthermore, bryostatin-1 treatment not only extended the time window for tPA 

administration to 6 h post stroke, but also reduced mortality, hemispheric swelling and 

tPA induced-HT (Tan et al., 2015). Bryostatin-1 at nanomolar concentrations prevented 

degradation of the active, membrane-bound PKC enzymes (Sun et al., 2008). Tan and 

coworkers demonstrated that bryostatin-1 through PKC activation prevented BBB 

disruption via downregulation of matrix metalloproteinases-9 (MMP-9) (Tan et al., 2015). 

In addition, the authors showed that bryostatin-1 differentially regulated the expression of 

PKC isozymes predominantly present in the brain following ischemic stroke (Tan et al., 

2015). Bryostatin-1 initially caused upregulation of PKCα and PKCɛ; however, at 24 h 

post-stroke the expression of PKCα was downregulated while PKCɛ expression levels 

remained elevated (Tan et al., 2013). 

Post-ischemic chronic administration of bryostatin-1 in rats rescued ischemia 

induced spatial learning and memory impairment but not sensorimotor ability in a PKC 

dependent fashion (Sun et al., 2008). In addition, impaired rats that were administered 

bryostatin-1 following AIS displayed retrieved learned spatial experiences i.e. pretrained 

water maze (Sun et al., 2009). Moreover, bryostatin-1 treatment was able to induce 

neurotrophic factors (such as BDNF) and synaptogenesis while preventing neuronal loss, 

loss of dendritic spines and presynaptic vesicles in pyramidal neurons of rat hippocampus 
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(Sun et al., 2008, 2009). In combination with voluntary exercise, bryostatin-1 was shown 

to improve functional recovery after cerebral infarct in male Sprague-Dawley rats 

(Mizutani et al., 2015, 2016). Bryostatin-1 in adjuvant with exercise increased 

phosphorylation of α-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

(AMPAR) subunit GluR1 at the serine-831 residue in the perilesional cortex, which is 

essential for neuronal plasticity through long-term potentiation (Mizutani et al., 2015).  In 

addition, the treatment of bryostatin-1 and exercise showed increased levels of serotonin 

(5-HT), an important neurotransmitter involved in synaptic plasticity (Lesch and Waider, 

2012), and decreased 5-HT turnover in the perilesional cortex indicating a positive 

correlation between serotonin dynamics and motor performance (Mizutani et al., 2016). 

 

BRYOSTATIN-1 IN MS 

MS is a progressive, autoimmune disorder that leads to progressive degeneration  

of myelinated neurons in the CNS (Oh et al., 2018). Initially, MS was considered a disease 

of the young adults with a typical disease onset between 20-40 years (Shirani et al., 

2015). However, data from recent reports showed a significant increase in the mean age 

of onset, with a notably higher incidence observed in patients over 60 (Solaro et al., 2015; 

Koch-Henriksen et al., 2018). This is associated with severe disability (Confavreux and 

Vukusic, 2006) as well as higher risk of losing all income from earnings thereby 

exacerbating the socioeconomic status of MS patients (Wandall-Holm et al., 2022). MS 

is characterized by neuroinflammation followed by deposition of CNS plaques that are 

comprised of debris from immune cells, demyelinated axons, axonal injury and glial scar 

tissue that ultimately results in neuronal dysfunction (Ghasemi et al., 2017). The initial 
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relapse-remitting phase of MS is mediated by the migration of autoreactive T-cells, 

specifically Th1 cells, across the BBB into the CNS leading to demyelination followed by 

progressive secondary axonal death (Losy, 2013). Age-related mechanisms such as 

immunosenescence may accelerate this transition from acute multifocal recurrent 

inflammation to diffuse chronic neurodegeneration (Confavreux and Vukusic, 2006; 

Musella et al., 2018; Vaughn et al., 2019; Ostolaza Ibáñez et al., 2022). The existing 

treatment options for MS do not focus on preventing disease progression related disability 

as seen in the case of elderly (Vaughn et al., 2019) resulting in increased proportion of 

older patients not receiving treatment for MS (Wandall-Holm et al., 2022). This imposes 

a significant challenge on the elderly.  

Bryostatin-1 has been shown to be a promising lead drug for MS based on its 

immune-potentiating properties (Ariza et al., 2011; Safaeinejad et al., 2018). In vitro 

studies indicated that bryostatin-1 was capable of facilitating the switch from Th1 to Th2 

mediated immune responses by acting like a toll-like receptor 4 (TLR-4) ligand and 

stimulating the release of anti-inflammatory cytokines (Ariza et al., 2011). Emerging 

evidence showed that bryostatin-1 (30 μg/kg) administered 3 d per week had beneficial 

therapeutic effects on MS complications in a mouse model of experimental autoimmune 

encephalomyelitis (EAE) (Kornberg et al., 2018). This study showed that upon bryostatin-

1 treatment with concurrent EAE induction in mice, there was a diminished peripheral 

immune response and decreased lymphocyte infiltration into the brain with significant 

reductions in total CD4+ and Th1 lymphocyte populations (Kornberg et al., 2018). 

Although dynamic changes in BBB permeability were not measured in these studies, it 

stands to reason based of the effects of bryostatin-1 on BBB integrity in other neurological 
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injury models (Tan et al., 2013, 2015; Lucke-Wold, Logsdon, et al., 2015) that the 

beneficial effects of bryostatin-1 noted in these studies were due, at least in part, by 

reducing the degree of BBB compromise following induction of EAE in mice.  

In addition, bryostatin-1 administration was shown to modulate antigen 

presentation of dendritic cells (DCs) through upregulation of CD86 but not CD40, another 

costimulatory protein expressed on antigen presenting cells (APCs) that is needed for T 

cell activation (Kornberg et al., 2018). Another possible mode for the pharmacological 

action could be demonstrated by the ability of bryostatin-1, at low doses, being able to 

upregulate IL-10, an anti-inflammatory cytokine and arginase-1, a classic M2a 

macrophage marker, both of which are indicative of wound healing and tissue repair in 

the CNS (Kornberg et al., 2018). In addition to macrophages and DCs, future studies 

should focus on the immunologic actions of bryostatin-1 on microglia, the prominent 

immune cells of the central nervous system (CNS). Understanding the detailed molecular 

mechanism underlying the immunologic actions of bryostatin-1 in multiple sclerosis model 

is warranted.  

 

BRYOSTATIN-1 IN NEUROAIDS 

HIV infects various cells of the body causing acquired immunodeficiency syndrome 

(AIDS). It is well known that HIV-1 crosses the BBB leading to HIV-associated 

neurocognitive disorders (HAND) such as HIV-associated dementia, neuroAIDS and 

opportunistic CNS infections (Eisfeld et al., 2013). Owing to the effectiveness of 

antiretroviral therapies, the number of aged individuals (45 years and above) living with 

HIV infection has increased to 50% in the high income countries like US (Collaboration, 
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2008; Cohen et al., 2015). However, response to antiretroviral treatment is different 

between young and aged cohorts with aged patients showing reduced immune recovery 

possibly due to age-related immunosenescence (Mpondo, 2016). Older patients are at 

higher risk of mortality due to HIV (Jiang et al., 2013). Additionally, the prevalence of HIV-

associated neurocognitive disorders may be accelerated by the person’s age (especially 

above 50 years) (Mackiewicz et al., 2019). Recent reports have demonstrated the 

association of apolipoprotein E (ApoE) in the pathogenesis of HAND along with increased 

secretion of the beta-amyloid peptide and presence of amyloid plaques in the brains of 

HIV positive patients (Geffin and McCarthy, 2018; Fulop et al., 2019; Mackiewicz et al., 

2019). These studies further strengthen the hypothesis that aged individuals bearing HIV 

infection are increasingly susceptible to developing AD and other AD-related dementias 

(Fulop et al., 2019; Mackiewicz et al., 2019). Given the importance of influence of age on 

HIV disease progression (Jiang et al., 2013), it would be important to identify therapeutic 

agents targeting novel mechanisms underlying the pathogenesis of age-related HIV 

neurodegeneration (Mackiewicz et al., 2019).  

Although, combination antiretroviral therapy (cART) can efficiently control the virus 

to almost undetectable systemic levels, cART has been unable to completely eradicate 

HIV from the body due to viral sequestration and rebound stores, such as occurs in CNS 

reservoirs (Eisfeld et al., 2013; Dahabieh et al., 2015). CNS-derived HIV viral strains have 

unique features when compared to those found in peripheral compartments that 

differentially modulate viral replication, latency and resistance to drugs, such as latency 

reversal agents (LRA) (L. R. Gray et al., 2016; Lachlan R. Gray et al., 2016). This 

difference in response poses a significant limitation for the body’s ability to eradicate brain 
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reservoirs of HIV. Thus, an urgent need exists to develop strategies to purge CNS viral 

reservoirs.  

In the CNS, microglia and astrocytes are major sites for HIV replication and 

sequestration (Marban et al., 2016). Studies indicate that administration of bryostatin-1 

reduces viral load by improving the induction of latent HIV to enhance effectiveness of 

cART (Marsden et al., 2017, 2018). Bryostatin-1 functioned in synergy with several LRAs, 

including histone deacetylase inhibitors, bromodomain inhibitors (BETi) and polyanionic 

carbosilane dendrimers, to fAIS (Perez et al., 2010; Higashida et al., 2011; Darcis et al., 

2015; Albert et al., 2017; Heffern et al., 2019; Relaño-Rodríguez et al., 2019; Peng et al., 

2020). When co-administered, bryostatin-1 and JQ1 (BETi) exhibited a highly efficient, 

synergistic activity for HIV reactivation in latently infected microglial cells in vitro (Darcis 

et al., 2015). The mechanism for this synergistic activity of bryostatin-1 was found to be 

mediated through increased PKCα and PKCδ activities, which is indicative of the need 

for higher doses (Díaz et al., 2015). From a therapeutic perspective, this finding is 

troubling as higher doses of bryostatin-1 have been shown to  lead to astrogliosis, 

disturbances in astrocytic glutamate uptake/release balance, chronic neuroinflammation 

and increased neuronal excitotoxicity (Proust et al., 2017). Furthermore, higher doses of 

bryostatin-1 have been shown to increase BBB permeability by upregulating the 

expression of pro-inflammatory cytokines (Dental et al., 2017). A prior study found this 

pro-inflammatory activity of bryostatin-1 could be attenuated by co-administration of JQ1 

but no other LRAs (SAHA and BIX-01294) (Proust et al., 2017). Therefore, it is important 

to carefully evaluate the choice of LRA in combination with bryostatin-1 to mitigate the 

potential risk of neurotoxicity associated with bryostatin-1. Future studies should also 
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focus on developing multifunctional nano therapies comprising antiretroviral drugs (ARV) 

and LRAs to overcome problems associated with HIV latency in the CNS and aid in 

targeted drug adherence (Jayant et al., 2018). 

 

DISCUSSION 

To ensure maximum pharmacological effect, it is important to understand the 

pharmacokinetics of bryostatin-1 as well as its exposure time and concentration-

dependent effects on various PKC isozymes. Up until early 2000s, there was not an 

established method to reliably quantify the levels of bryostatin-1 in human plasma which 

ultimately hindered the progress of bryostatin-1 research in cancer treatment (Blackhall 

et al., 2001). Over the decades, several quantitative methods have been developed to 

measure bryostatin-1 levels in with high sensitivity. In 2005, Zhao et al., developed a 

novel assay using triple quadrupole mass spectrometer to measure bryostatin-1 in human 

plasma sample with a detection limit of 50pg/ml. In this study, bryostatin-1 was 

administered over 2 weeks as continuous intravenous infusion at a single dose level of 

20 ug/m2  and the half-life of the drug was found to be 9 h (Zhao et al., 2005). Recently, 

Nelson and colleagues demonstrated that bryostatin-1 detection limit can be improved by 

adduct formation by adding  sodium acetate (Nelson et al., 2014). They developed an 

ultrasensitive mass spectrometric method detecting bryostatin-1 sodium adducts at low 

pmol/l concentrations and enabled measurement in brain and other tissues without the 

use of radioactive labels (Nelson et al., 2014). It is known that bryostatin-1 is relatively 

stable in vivo, widely distributed but predominately present in lung, liver, gastrointestinal 

tract, and fatty tissue (Sun and Alkon, 2006). It has also been shown to cross the blood 
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brain barrier in mice following iv administration despite being a large molecule (MW = 

905.03 g/mol)  (Nelson et al., 2014). The study showed that brain uptake is saturated at 

doses of 10μg/m2 and the maximum brain concentration (Cmax) of bryostatin-1 was 

0.20nM (Nelson et al., 2014).  The plasma disappearance curve of bryostatin-1 is fitted 

into one compartment model for i.p. administration and into a two-compartment 

pharmacokinetic model for i.v. administration (Sun and Alkon, 2006; Nelson et al., 2014, 

2017). A single dose (25 μg/m2) of bryostatin-1 showed maximum levels of bryostatin-1 

and its target PKCɛ within 1 h after the onset of infusion (Nelson et al., 2017) with rapid 

elimination rate (22.97h and 28.76h for i.v. and i.p. administration respectively) (Sun and 

Alkon, 2006). In addition, pharmacokinetic profiles demonstrated increased plasma drug 

concentration upon repeated and continuous infusions of bryostatin-1 (Zhao et al., 2005), 

indicating accumulation of the drug possibly due to decreased elimination rate constant 

(0.027 min-1) while increased elimination half-life (32-200h) (Nelson et al., 2017). This 

prolonged exposure of bryostatin-1 is due to enterohepatic circulation as the drug is 

present in higher concentrations in the liver and gastrointestinal tract and cleared initially 

(within 12h) through urine and later (within 72h) through urine and feces (Sun and Alkon, 

2006). 

One main reason for the failure of bryostatin-1 as a chemotherapeutic agent is 

because PKC isoenzymes are involved in both oncogene and tumor suppressor gene 

activation (Garg et al., 2013) and the variable expression of PKC isozymes in different 

types of tumor (Isakov, 2018) affects the efficacy of bryostatin-1. Administration of 

bryostatin-1 may only be effective when treating tumors harboring a specific PKC 

isoenzyme profile (Blackhall et al., 2001). Despite the differences in pathology, various 
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age-related CNS disorders share some degree of similarity in PKC dependent 

mechanisms (Sun and Alkon, 2006; Lucke-Wold, Turner, et al., 2015). Preclinical studies 

showed that bryostatin-1 crosses the BBB and specifically activates brain PKCɛ (Nelson 

et al., 2014). PKCɛ is a promising biomarker of AD (Khan et al., 2015). Research showed 

that PKCɛ levels in skin fibroblasts could serve as potential evaluation tools for the 

detection of early AD by reflecting changes in brain PKCɛ levels (Khan et al., 2015). 

Investigating the use of other PKC isozymes as peripheral biomarkers for the diagnosis 

and prognostication of neurological diseases is warranted.  

The exact mechanism of action of bryostatin-1 is unclear. Bryostatin-1 has been 

shown to induce biphasic effects on PKC activity (Nelson et al., 2017; Ly et al., 2020). At 

low concentration (<30μg/m2), bryostatin-1 leads to PKC translocation from the cytosol 

to the membrane, which is a measure of its activation. This is followed by a brief period 

of downregulation characterized by ubiquitination of PKC and degradation by 

proteasomal machinery (Sun and Alkon, 2006). A previous study showed that low doses 

of Bryostatin-1 (0.1-0.25 ng/ml) with short exposure times, resulted in PKCɛ induced 

prolonged protein synthesis necessary for long-term memory in a mollusc Hermissenda 

model (Alkon et al., 2005). The authors showed that this prolonged protein synthesis 

lasting for at least one week is due to bryostatin-1 induced PKCɛ activation, followed 

initially by down-regulation and then de novo synthesis of PKC (Alkon et al., 2005). Thus, 

PKC modulators can produce long-term changes even after complete elimination of the 

drug from the system (Nelson et al., 2017). More recently, mammalian unc13 isoform 1 

(Munc13-1), a C1 domain-containing protein which shares activators with novel and 

conventional PKC isoforms, has high binding affinity (Ki of 0.45 ± 0.04 nM) for bryostatin-
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1and is identified as a molecular target in vitro (Blanco et al., 2019). Thus future studies 

should investigate other neuronal signaling targets of bryostatin-1 such as munc 13, 

chimaerins and RasGRPs along with that of PKCs (Blanco et al., 2019). 

Majority of the oncology clinical trials administered IV infusions of bryostatin-1 at 

high doses (>30ug/m2) or over long periods of time (Nelson et al., 2017). Although, 

bryostatin-1 showed promising anti-neoplastic activity in rodent models of cancer, it failed 

to progress beyond Phase I/II clinical trials (Kollár et al., 2014). Increased drug 

concentration and/or prolonged exposure resulted in the halt of the clinical trials due to 

adverse effects, most notably myalgia and cancer progression (Kollár et al., 2014; Farlow 

et al., 2019). Some of the toxicities associated with bryostatin-1 administration include but 

not limited to phlebitis, lymphopenia, infection without neutropenia, hypophosphatemia, 

seizure, hypotension, diarrhea, and dehydration (Blackhall et al., 2001; Kollár et al., 

2014). The exposure of bryostatin-1 is critical in designing its mechanism of action in 

neurological disorders (Table 2.1). At higher doses of bryostatin-1, the brain drug 

concentration is saturated (Nelson et al., 2014). Sub-optimal concentrations are well 

tolerated by the body (Nelson et al., 2017; Farlow et al., 2019). Phase II clinical trial in AD 

patients demonstrated the dose limit of bryostatin-1 to be 40μg (25 μg/m2) (Farlow et al., 

2019). Recently Cogram et al showed that chronic treatment (13 weeks) of bryostatin-1 

(20 µg/m2, i.v., 2 doses/week) resulted in significant therapeutic effects along with no 

evidence of adverse effects in a mouse model of fragile X syndrome (Cogram et al., 

2020).  

Owing to its short half-life and rapid elimination rate from plasma after single bolus 

dose (Lucke-Wold, Turner, et al., 2015), low dose continuous infusions over extended 
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period is necessary for improved efficacy (Nelson et al., 2017; Farlow et al., 2019). 

However, continuous IV infusions can be painful and lead to phlebitis and adverse 

reactions at the site of infusions (Blackhall et al., 2001; Kollár et al., 2014; Farlow et al., 

2019). This could be overcome by acute oral administration of bryostatin-1 (Schrott et al., 

2015). The authors showed that gavaged bryostatin-1 is not metabolized by liver enzymes 

as evidenced by in vitro absorption, distribution, metabolism and excretion (ADME) 

studies using human hepatocyte cells, and produced superior efficacy and significant 

functional outcomes compared to the intraperitoneal administration in a rodent model of 

AD (Schrott et al., 2015). Pharmacokinetic analysis revealed that <5% of bryostatin-1 is 

taken up in the circulation when administered orally suggesting that lower concentrations 

of bryostatin-1 are sufficient to induce a therapeutic effect in vivo (Schrott et al., 2015). 

Understanding the minimum blood/brain drug concentration required to produce 

neuroprotection is warranted. Furthermore, the authors developed a hydrophilic 

nanoparticle formulation of bryostatin-1 that increased its bioavailability and 

demonstrated enhanced PKC-ε and PKC- δ activity along with improved cognitive scores 

in a rodent AD model (Schrott et al., 2020). Future studies should focus on developing 

newer formulations as well as optimizing the route of administration and the dosing 

strategy to maximize the therapeutic benefits of bryostatin-1 to treat neurological 

disorders.  

 

 

CONCLUSION 
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Accumulating evidence from cellular and animal models demonstrates that the 

neuroprotective effects of bryostatin-1 is exerted by pharmacological modulation of 

various PKC isozymes (Sun and Alkon, 2006). Since PKC signaling plays a crucial role 

in several CNS related diseases (Battaini, 2001), bryostatin-1 is indeed an attractive 

candidate in the treatment of several neurological injuries/diseases including but not 

limited to AD, TBI, ischemic stroke, MS and neuroAIDS. Bryostatin-1 is currently being 

investigated in several Phase I and II clinical trials, assessing the safety, tolerability, and 

long-term efficacy profiles in the treatment of AD and as a LRA in HIV infected patients 

(Gutiérrez et al., 2016; Nelson et al., 2017; Farlow et al., 2019) (Table 2.2). Recently, 

bryostatin-1 received organ drug status by the FDA as a possible treatment for Fragile X 

syndrome (Cogram et al., 2020; Raghuvanshi and Bharate, 2020). So far it has 

demonstrated favorable safety profile at low doses in humans (Sun and Alkon, 2006) and 

has the potential to advance to Phase III trials as CNS therapeutic agent, alone or in 

combination with other neuroprotective agents.  

 

FUTURE STUDIES 

Despite being an important lead candidate, the advancement of bryostatin-1 has 

been hindered by an inability to scale up extraction to meet clinical demand. While a 

scalable synthesis of bryostatin-1 has been reported, a more promising approach has 

been the development of novel analogs, known as bryologs (Wender and Baryza, 2005; 

Wender et al., 2005, 2006; Wender and Reuber, 2011). The bryologs have allowed for 

customization based on type of therapeutic intervention sought and to limit off target 

effects while retaining the same pharmacophoric functionalities of naturally occurring 
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bryostatins (Staveness et al., 2016; Marsden et al., 2018). In a nutshell, bryostatin-1 and 

its analogs hold significant promise for treating CNS diseases and also provide hope for 

enhancing targeted therapy. 
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Table 2.1: Bryostatin-1 doses tested in rodent model of neurological diseases/disorders 

Disease 
model 

Dose regimen Route of 
administration 

Mechanism of 
action 

Treatment outcome Reference 

AD mouse 
model 

30 μg/kg 
2 doses/week for 12 
weeks 

i.p. Activation of 
PKC isoforms 
(α and ε) 

Prevents loss of hippocampal 
synapses and the memory 
impairment; reduces Aβ 
plaques 

(Hongpaisan, MK 
Sun, et al., 2011; 
Sen et al., 2018) 

40 μg/kg 
3/week from 3 weeks-
6 months 

i.p. Activation of α-
secretase and 
PKC isoforms 

Reduces Aβ plaques and 
mortality rates 

(Etcheberrigaray et 
al., 2004) 

25 μg/m2 - weekly; 
15 and 20 μg/m2-
2/weekly 
 

i.v. Activation of 
PKCε 

Increases BDNF (Nelson et al., 2017) 

0.5, 1, 5 μg/mouse 
 

Oral; i.p. Activation of α-
secretase and 
PKC isoforms 

Improves learning deficits; 
reduces plaque burden dose 
dependently 

(Schrott et al., 
2015) 

1, 2.5, 5 μg/mouse 
nanoparticle 
encapsulated 
formulation; 3/week 
before testing and 
then daily for 5 days 

oral Activation of α-
secretase and 
PKC isoforms 

Improves cognitive deficits (Schrott et al., 
2021) 

TBI rodent 
model 
 

30 μg/kg injection 
followed by 
5× injections over a 
period of 14 days 

i.p ADAM10 
activation and 
BACE1 
deactivation 

Protects against the cognitive 
and synaptic pathologies 
 
 

(Zohar et al., 2011) 

2.5 μg/kg i.p. Increased PKCε 
and decreased 
PKCα 

Decreases BBB breakdown 
 

(Lucke-Wold, 
Logsdon, et al., 
2015) 

20 μg/kg 
repeated dosing 

i.p. Activation of 
PKCε 

Improves cellular as well as 
motor and cognitive behavior 
outcomes 

(Giarratana et al., 
2020) 

Cerebral 
ischemia 
rat model 

2.5 μg/kg at 6h 
+rtPA at 2h post 
stroke; 
doses every 3 days for 
a total of 7 doses over 
21 days 

i.v. (tail vein) Increased PKCε Increases survival, reduces 
infarct volume, decreases 
hemispheric 
swelling/atrophyand 
improves neurological 
function 

(Tan et al., 2013) 

2.5 μg/kg at 2h 
+rtPa at 6h post stroke 

i.p. Increased PKCε 
and decreased 
MMP-9 

Ameliorates BBB disruption 
and reduces the risk of HT 

(Tan et al., 2015) 

15 μg/m2 
2 doses/week for 10 
doses 

i.v. (tail vein) PKC dependent Antiapoptosis, 
synaptogenesis, and 
spinogenesis 

(Sun et al., 2008) 

15 μg/m2 
2 doses/week 
for 10 doses 

i.v. (tail vein) PKC-mediated 
 

Enhances neurotrophic 
activity, induces 
synaptogenesis, and 
preserves spatial learning and 
memory 

(Sun et al., 2009) 
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20 μg/m2 
Acute study: two 
doses 
Chronic study: 2 
doses/week for 10 
doses 

i.v. (tail vein) Possibly 
through 
increase in 
BDNF 
 

Reverses the increased 
sensitivity and depressive 
immobility 
induced by cerebral ischemia 

(Sun and Alkon, 

2013) 

15, 10, 7.5, and 5 
μg/m2 
+ exercise 

i.v. (tail vein) Possibly 

through 

increase in p-

GluR1 

Improves exercise induced 
functional recovery at 15 and 
10 μg/m2 
 

(Mizutani et al., 

2015) 

10 μg/m2 
At 5days after infarct 
+exercise 

i.v. (tail vein) Increased 5-HT 

and decreased 

5-HT turnover 

Improves ischemia induced 
motor dysfunction 
 

(Mizutani et al., 

2016) 

Mouse 
model of 
EAE 

30 μg/kg 
dosed at 
3 d/week 

i.p. Possibly 

through the 

modulation of 

TLR-4 

Promotes anti-inflammatory 
phenotype on innate myeloid 
cells and reverses neurologic 
deficits 

(Kornberg et al., 

2018) 

 
 

Table 2.2: Bryostatin-1 doses tested in CNS clinical trials 
Disease model Doses tested PKC activation Peak time Peak 

conc. in 
plasma 

Outcomes Reference 

HIV_ 
phase I 

10 and 20 
μg/m2  
single doses, 
infusion over 
one hour 

failed to activate 
PKC  

0.5-h after 
infusion and 
gradually 
decayed in the 
first 8 h 

under 1 
nmol/l 

Safe and well 
tolerated 

(Gutiérrez et al., 
2016) 
(NCT02269605) 

AD_ double-
blind Phase IIa 
 

25 μg/m2 
single doses, 
infusion over 
one hour 
 
 

increased PBMC 
PKCɛ levels at 1 h 
followed by 
long-term 
downregulation 
12-72h 

Within 1-2h 
after infusion 

1ng/ml Safe and well 
tolerated; 
increases MMSE 
score at 3 h after 
the end of infusion 
 

(Nelson et al., 
2017) 
(NCT02221947) 

AD_ 
Randomized, 
Double-Blind, 
Placebo-
Controlled, 
Phase II 

20 μg and 40 
μg, infusion 
over a period 
of 12 weeks  
 
 

- - - 40ug- adverse 
effects with no 
efficacy and 
increased 
dropouts. 
 
20ug- same 
adverse effects as 
that of placebo; 
SIB scores showed 
benefits from 
baseline at week 
15 

(Farlow et al., 
2019) 
(NCT02431468) 
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CHAPTER THREE 

 

Characterization of age-related changes on cerebrovascular 

topology in Sprague Dawley rats 
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ABSTRACT 

Aging-related anatomical and physiological changes have been implicated in the 

pathogenesis of many neurological diseases, including Alzheimer’s and Parkinson’s 

diseases and ischemic stroke. Altered function of reliable homeostatic pathways for 

glucose control, energy metabolism, cellular replication and repair have been found to 

play important roles in the pathogenesis of many of these age-related diseases. Another 

age-related finding has been the marked decrease in vessel density, which pose to be 

the underlying factor for reduced cerebral blood flow, impaired bioenergetics and altered 

cellular response found in aged rodents when compared to younger rodents. What 

remains unknown is, at what level of vessels are these changes occurring and how does 

this change in density relates to adequate perfusion of the brain in aged rodents. In the 

present study, we seek to gain a better understanding of the age-related anatomical 

changes in the surface vessels of the brain. Using young (3-4 months old) and aged (18-

20 months old) female Sprague-Dawley rats, we employed a vessel painting technique 

to specifically label cerebral endothelium so that we could visualize these vessels using 

fluorescent microscopy. From the images obtained we used a vessel counting software 

to perform a series of measurements to detail the absolute number and complexity of the 

vessel architecture. Using this method, we found that aged animals showed significant 

loss in vascular components along with 50% increased lacunarity. In contrast, young 

animals exhibited increased cortical branching, capillary number, and complexity. 

Therefore, a detailed characterization of vascular architecture reiterates the importance 

of age in selecting animal models of ischemic stroke, which may subsequently improve 

therapeutic success rate.   
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INTRODUCTION 

The human brain is particularly susceptible to the effects of aging.  Independent of 

other risk factors, such as hypertension, atherosclerosis, and diabetes, a person’s 

advancing age is the predominant risk factor for many debilitating diseases, including 

Alzheimer’s and Parkinson’s diseases, other dementias, ischemic stroke and cancers 

(Kowalska et al., 2017; Bland, 2018; Franceschi et al., 2018; Hou et al., 2019).  Billions 

of dollars have been spent in pursuit of treatments to improve the overall quality of life for 

persons suffering from these diseases; yet, age-related diseases are among the most 

difficult to treat with few effective treatments available (Kirkland, 2016).   

Case in point is ischemic stroke, which over the past three decades has seen 

numerous promising preclinical neuroprotectant drugs fail to translate into a single 

clinically viable therapeutic approach (Fluri et al., 2015; Shi et al., 2018; Xiong et al., 2018; 

Lee et al., 2021). Many reasons have been posited for this disconnect, including 

differences in complexity of human brain versus lower species, appropriate 

pharmacokinetic characterization of drug penetrance and delivery into the brain, lack of 

clinically relevant time courses for drug administration, lack of polypharmacy approaches, 

flawed construction of clinical trial exclusion/inclusion criteria and inherent 

inconsistencies within animal models of cerebral ischemia (i.e. anesthetic used, occlusion 

material, unnatural reperfusion profile, acute / chronic assessments of functional 

recovery, disconnect between infarct size and functional recovery (Lapchak et al., 2013; 

Shi et al., 2018; Xiong et al., 2018; R Ma et al., 2020; Lee et al., 2021). While these issues 

are valid considerations and provide excellent means to improve the rigor of research 

being conducted, none of these approaches broaches the physiological consequences of 
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aging as being the single most predictive risk factor for prevalence and severity of 

ischemic stroke.  A glance through the preclinical stroke literature demonstrably shows 

the majority of preclinical stroke studies used rodents under the age of 6 months, with 

most being 3 to 4 months old and some being as young as only a few weeks old (Kahle 

and Bix, 2012; Fluri et al., 2015; Jackson et al., 2017; Narayan et al., 2021).    

In this study, we investigated anatomical and physiological differences between 

young and aged female Sprague-Dawley rats in surface topology and complexity of 

cerebral vessels with a focus on the right and left middle cerebral arteries. We 

hypothesized that cerebral blood vessel length, diameter, branching, and network 

complexity differ substantially between old and young rats. Preliminary results of the 

computations performed on these models indicate that vasculature in older brains is less 

complex, includes less branching, and contains shorter vessels with greater diameter 

compared to vascular networks in the brains of young rats. The higher average vessel 

diameter in older brains is likely a compensatory mechanism for the inadequate perfusion 

of these smaller, less branched vessels. Given the importance of vascular structure to 

ischemic stroke outcomes, these structural differences suggest that age is an important 

factor when selecting animal models of ischemic stroke (Jackson et al., 2017). 

 

MATERIALS and METHODS 

Animal Care and Use Statement. All procedures involving animals were approved by 

the West Virginia University Animal Care and Use Committee and abided by ARRIVE 

guidelines.   20 female Sprague-Dawley rats (3-4 and 20-22 months old; Hilltop Animal 

Laboratories; Scottdale, PA) were acquired and housed in the vivarium at the West 
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Virginia University (WVU) Health Sciences Center animal facility with food and water 

accessible ad libitum. Rats were acclimated upon arrival for at least 7 d prior to testing.  

All procedures were performed by investigators blinded to the age of the rats. All 

procedures involving animals were approved by the WVU Animal Care and Use 

Committee.    

 

Serial Vessel Perfusion. Rats were euthanized by cardiac perfusion of 150 ml of warmed 

1X phosphate buffered saline (37C; pH 7.4) with heparin (0.02 mg/g body weight; Sigma-

Aldrich; St. Louis, MO) and sodium nitroprusside (0.075 mg/g body weight; Sigma-

Aldrich) for 15 min under deep anesthesia using 4% inhaled isoflurane (Patterson). Rats 

were then perfused with 50 ml of 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine 

perchlorate (DiI; Life Technologies; Carlsbad, CA) followed by 200 ml of 4% 

paraformaldehyde (PFA; Sigma-Aldrich). Care was taken to ensure no air bubbles were 

trapped within the perfusion system, during each perfusion and switching between 

perfusates. A peristaltic pump was used to deliver perfusates at a rate of 5.2 ml/min into 

the left ventricle of the heart using a 25G needle. After perfusion with 4% PFA, rats were 

decapitated and brains carefully excised and post-fixed in 4% PFA overnight.  

 

Image Acquisition & Vessel Measurements. Vessel painted brains were imaged using 

a widefield fluorescence microscope Olympus MVX 10. Whole brains were imaged under 

1x objective and dorsal, ventral, and lateral surface images were captured to document 

labeling efficiency. The captured images were then analyzed using ImageJ software using 
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quantitative tools to obtain measurement of the physical parameters of the cerebral 

vessels. 

 

Vessel Measurement. Basic morphometrics were performed using ImageJ (NIH, 

Bethesda, MD) software. In brief, microscopic images were preprocessed in ImageJ tool 

and then analyzed using the open-source software AngioTool® (National Institute of 

Health, National Cancer Institute, Bethesda, MD, USA). AngioTool® is a user-friendly 

software AngioTool® used to measure several morphological and spatial parameters. 

Using this tool, we calculated the total brain area, total area covered by the vessels, 

vessel density, number of vessels, vessel length, number of junctions, junction density, 

and number of endpoints. We also calculated the fractal dimensions and lacunarity, which 

are used to analyze structural complexity and heterogeneity of patterns, for each image 

using FracLac plugin for ImageJ. Branch order information was calculated using the same 

software. Middle cerebral artery was considered the primary branch and branches 

stemming of the primary were noted as secondary and so on. Additionally, we performed 

diameter analysis using Python with python script packages Tiffile and Scipy from the 

open-source Anaconda Distribution.  

 

Statistical Analysis. All measurements and analyses were performed without 

knowledge of group. Data were reported as mean ± standard deviation (SD). For classical 

angiographic features measured from surface cortical vessels, unpaired t -test was used 

to determine statistical significance between aged versus young animals. All statistical 

analyses were performed using Graph Pad Prism software. 
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RESULTS 

Global reduction of surface cortical vessels in aged brain. In order to visualize the 

cerebral vascular network, we employed vessel painting technique using 1,1’ dioctadecyl-

3,3,3’,3’ tetramethylindocarbocyanine perchlorate (DiI), dye to successfully label the 

endothelial cells of the surface cortical vessels in rats (Hughes et al., 2015). We imaged 

the whole brains under Olympus MVX 10 widefield microscopy showing dorsal, ventral, 

and lateral aspects of the brains (Figure 3.1). Using this technique, 66% of young and 

78% of aged brains were successfully perfused as determined by uniform pink staining 

with absence of any white/blanched patches. Upon visual inspection, we noticed densely 

packed microvascular organization in young cortex while the microvasculature was 

sparse and disorganized in the aged cortex (Figure 3.1). In addition, there was substantial 

reduction in surface cortical vessel as well as anastomosis in the aged brain (Figure 3.1B) 

as opposed to young brain (Figure 3.1A).  

 

Age-related changes on the vascular architecture of the surface cortical vessels. It 

is well known that aging has a profound effect on the cerebral vasculature. We first wanted 

to characterize age-related changes on the basic morphological and spatial parameters 

of the surface cortical vessel on the axial plane. Classical vessel measurement 

parameters using AngioTool identified a marked difference in cortical vessel topology 

between young and aged female rats. Figure 3.2 demonstrates that aged rats displayed 

significant reductions in (i) total brain surface area (p=0.045; versus in young rats), (ii) 

vessel surface area (p=0.001; versus in young rats) and (iii) vessel density (p=0.0001; 
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versus in young rats). Comparison of vessels (Figure 3.2) between young and aged 

showed that aged rats displayed vessels with significant reductions in (iv) junctions 

(p=0.0003), (v) junction density (p=0.0004) and (vi) number of endpoints (p=0.003). 

Furthermore, evaluation of vessel measurements (Figure 3.2) found a significant 

difference between aged and young cerebral blood vessels in (vii) total vessel length 

(p=0.008) and (viii) lacunarity (p=0.0007) but no difference in (ix) average vessel length 

(p=0.1563).          

 
Age-related changes on the vascular architecture of the Middle Cerebral Artery 

(MCA). The middle cerebral artery is the major artery supplying oxygenated blood and 

nutrients to frontal, parietal, temporal areas of the brain (Gao et al., 2022). MCA is 

clinically significant as occlusion of the artery results in cerebral ischemia leading to infarct 

and necrosis of brain parenchyma (Gao et al., 2022). Age is a non-modifiable risk factor 

for cerebral ischemia (Yousufuddin and Young, 2019) and preclinical studies have 

demonstrated severe stroke outcomes and reduced functional recovery following 

experimental stroke in aged rodents as opposed to young rodents (Rosen et al., 2005; 

DiNapoli et al., 2008; Manwani et al., 2011). Therefore, we wanted to perform 

morphometric analysis on the left and right MCA in young and aged rats using the 

AngioTool. Figure 3.3 demonstrates significant decrease in (i) total brain surface area 

(p=0.025; p=0.0003) (ii) vessel surface area (p<0.0001; p<0.0001) and (iii) vessel density 

(p<0.0001; p<0.0001) in both right and left MCA of aged rats when compared to young 

rats. Analysis of both (right and left) MCA vessel metrics between young and aged 

displayed significant reductions in (iv) junctions (p=0.0005; p=0.0025), (v) junction density 

(p=0.0076; p=0.013) but not (vi) number of endpoints (p=0.3044; p=0.2596).  
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Furthermore, evaluation of vascular parameters (Figure 3.3) of the right and left MCA 

found a significant difference between aged and young cerebral blood vessels in (vii) total 

vessel length (p=0.0006; p=0.0001) and (viii) lacunarity (p=0.0494; p=0.0048) but no 

difference in (e) average vessel length (p=0.6194; p=0.4071).  

 

Age-related decrease in vascular complexity. Next, we wanted to determine if the age-

related reduction in vessel length could be compensated by changes in vessel diameter. 

The output skeleton image generated from AngioTool (Figure 3.3B) was fed into Python 

to create a histogram of surface cortical vessel diameters of aged and young animals 

(Figure 3.4A). We observed a significant reduction in the number of small diameter vessel 

in the aged animals versus young animals. Aged animals displayed about 50% reduction 

in vessels with diameters less than 40 μm and 80% reduction in vessels with diameters 

less than 10 μm. However, no differences were observed for large diameter surface 

cortical vessels (>90 μm) between young and aged animals (Figure 3.4A). Additionally, 

we wanted to determine vascular complexity in aged and young animals by analysis the 

branches arising from the MCA. Figure 3.4B demonstrated age-dependent decline in the 

number of higher order branches stemming from the MCA indicating decreased 

collaterals and anastomoses due to aging.  

 
 
DISCUSSION 
 

With greater understanding of the implications of cellular senescence on 

physiological function and the identification of critical time periods of changes in cellular 

signaling occurring at all levels, from gene expression to post-translational modification, 



 51  

there is mounting evidence that (1) aged brains handle stress and trauma vastly different 

than younger brains, (2) this difference in response is not linear, and (3) the degree and 

expectation of recovery from brain injury is different in the aged versus the young. Taking 

these considerations into mind along with the lengthy list of caveats already associated 

with preclinical stroke models, it is difficult to ascertain the long-term value of using 

younger animals to explore the mechanisms of ischemic stroke progression and recovery. 

 In the present study, we performed morphometrics analysis of the cerebral 

vasculature of healthy young and aged female Sprague Dawley rats. With the aid of 

vessel painting technique, we found that aged rats have reduced surface cortical vessels. 

We demonstrated age related reduction in total brain area, classical vessel parameters 

and increased lacunarity in axial surface cortical vessels as well as the MCA. In addition, 

we demonstrated an overall decrease in small diameter vessels in aged brains compared 

to young brains. Finally, we observed an age dependent decline in higher branch orders 

sprouting from the main MCA indicating reduced vascular complexity in case of aged 

animals.  

Several techniques have been developed to visualize the structure of brain 

vasculature. These include injection of various compounds such as resins, gelatin, latex, 

dyes, and fluorescently labelled substances into the circulation to stain the vessels and 

quantify morphological parameters like vessel density, length, and branch points (Lugo-

Hernandez et al., 2017). However, some of the drawbacks associated are use of 

expensive reagents, difficulty in perfusion, incomplete vascular filing, and vascular 

leakage of the dye into brain tissue (Konno et al., 2017; Lugo-Hernandez et al., 2017). 

Herein, we employed vessel painting technique with a lipophilic carbocyanine dye 1,1′-
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dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI), that binds selectively 

to the lipid membranes via insertion of its alkyl chains and commonly used for tract tracing 

in the brain (Hughes et al., 2015). Using this simple, and economical method, we were 

able to successfully label 66% of young and 78% of aged cerebral surface arteries. This 

method is a reliable way of visualizing the smallest vascular elements with high resolution 

using fluorescent microscopy (Hughes et al., 2015). 

The cerebral vasculature controls blood supply to the brain and is responsible for 

the maintenance of microenvironment for proper neuronal function (Bogorad et al., 2019). 

With advancing age, the brain cerebrovascular architecture undergoes several changes. 

In the present study, we demonstrated global reduction in surface cortical vessels in the 

aged animals when compared to young animals which is accordance to previous reports 

(Jin, 2019). Indeed, age-related cerebral vessel loss has been reported across multiple 

species (Schager and Brown, 2020). Characterization of surface cortical vessel 

parameters showed significant age-dependent reduction in vessel area, vessel density, 

and total vessel length. This finding is consistent with previous reports demonstrating age 

associated decline in cerebral microvascular architecture (Sonntag et al., 1997; Xu et al., 

2017; Li et al., 2018; Bálint et al., 2019; Lowerison et al., 2022). This age-related vessel 

loss could be due to vessel pruning that is not counterbalanced by formation of vessels 

(Cudmore et al., 2017), and/or due to reduced levels of proangiogenic factors leading to 

decreased angiogenesis (Sadoun and Reed, 2003). Additionally, aging is associated with 

global decreases in blood flow velocity, cerebral perfusion and global increases in vessel 

tortuosity (Xu et al., 2017; Li et al., 2018; Lowerison et al., 2022). Taken together, it can 

be inferred that age-related decline in cerebral microvascular network can lead to 
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impairment in vascular supply due to reduced cerebral blood flow (CBF). Furthermore, 

brain micro vascular changes is associated with impaired neurovascular coupling (Lipecz 

et al., 2019; Shaw et al., 2021), a process which largely depends on the underlying 

vascular structure to match the energy demands of the activated neurons (Lecrux and 

Hamel, 2011; Iadecola, 2017; Tarantini et al., 2017). Recent studies have shown link 

between neurovascular dysfunction and cerebral blood flow with worse cognitive 

performance (Tarantini et al., 2017; Toth et al., 2017; Rensma et al., 2020; Bracko et al., 

2021). These findings strengthen the association between microvascular changes 

leading to compromised cerebral blood flow and age-related memory and cognitive 

impairment.  

With increasing age, our brain undergoes structural and functional changes. At 65 

years, it is estimated that majority of the brain regions decrease in area by 1% to 5% over 

a span of 7 years and this decline becomes steeper with advancing age (Sele et al., 

2021). Using a surface-based reconstruction approach, the average total surface area of 

a human was found to be 1,692 ± 117 cm2 and the global reduction in total surface area 

was measured to be 3.68 cm2/year (Lemaitre et al., 2012). Accordingly, we showed 

significant reduction in total brain area of aged animals compared to young animals. Sele 

et al., 2021 demonstrated a strong co-relation between changes in anatomical structures 

with changes in cognitive scores and estimated sharp declines in cognitive performance 

with increasing age (Sele et al., 2021). In addition, we showed age-dependent increase 

in lacunarity, which is a measure of gaps in patterns (Karperien et al., 2011). This finding 

is consistent with previous reports and highlights the importance of such a parameter in 

predicting the diseases outcomes (disability accumulation) in chronic neurodegenerative 
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diseases such as Multiple Sclerosis (MS) and in the diagnosis of cognitive impairment 

(Karperien et al., 2011; Arthur et al., 2019; Roura et al., 2021). Taken together, changes 

in surface cortical area and lacunarity can be used as a cortical biomarker of cognitive 

healthy aging. 

The middle cerebral artery is the primary artery supplying blood to the vast majority 

of the brain and has significant clinical relevance (Gao et al., 2022). The MCA and its 

cortical branches carry oxygenated blood and nutrients to areas such as primary motor 

and somatosensory cortex, insular, auditory cortex, basal ganglia, internal capsule, 

speech and language centers of the brains (Navarro-Orozco and Sánchez-Manso, 2021). 

It is the most common blood vessel that is occluded by an embolus or thrombus in case 

of ischemic stroke resulting in cerebral edema and neuronal apoptosis (Navarro-Orozco 

and Sánchez-Manso, 2021). Understanding the age-related remodeling of cerebral 

arteries and arterioles is important as it may aid in predicting the risk of cerebrovascular 

diseases (Diaz-Otero et al., 2016).  In the present study, we observed a significant age-

related reduction in morphometric measures such as vessel area, vessel density, vessel 

length, number of junctions and junction density of both right and left MCA of the rat brain. 

This is because of reduced cerebral arterial anastomoses occurring between the 

branches (Sonntag et al., 1997). Aged animals showed decreased ratio of arteriolar 

anastomoses to arterioles (1:6.6) compared to young animals (1:5) (Sonntag et al., 1997). 

Additionally, we showed that aged brains have less complex vascular metrics as evidence 

by reduced number of distal branches while no changes in the proximal vessels sprouting 

from the main MCA. This is consistent with reports demonstrating more pronounced age-

related vessel loss owing to reduced perfusion in distal brain regions like somatosensory, 
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motor and retrosplenial cortices in contrast to proximal brain regions like striatum and 

thalamus (Schager and Brown, 2020). As the complexity of the MCA vascular network 

decreases with aging, the role of individual vessels will be important in determining the 

degree of perfusion after occlusion as in the case of cerebral ischemia.  

The brain microvascular network consists of communicating arteries that loop to 

form the Circle of Willis at the base of brain, giving rise to the anterior, middle, and 

posterior cerebral arteries (Schaffer et al., 2006; Bogorad et al., 2019; Navarro-Orozco 

and Sánchez-Manso, 2021). Pial or leptomeningeal collaterals are small diameter vessels 

on the cortical surface that connect distal branches of the anterior cerebral artery (ACA) 

and posterior cerebral artery (PCA) with distal branches of the middle cerebral artery 

(MCA) (Liebeskind, 2003). These collaterals are clinically significant as they determine 

the redistribution of blood flow to distal regions following an occlusion and define the 

degree of ischemic insult (Schaffer et al., 2006). In the present study, we found about 50 

% reduction in small diameter vessels (<40 μm) and about 80% decrease in vessels with 

diameter <10 μm on the axial surface of aged brain compared to young brain. With 

reduced tissue perfusion due to reduced small diameter vessels, regions supplied by the 

MCA in aged animals may have less resilience to interruptions or changes in blood flow 

leading to exacerbated ischemic damage than young animals (Faber et al., 2011; J Ma 

et al., 2020a). In addition, aged rats showed significant impairment in collateral dynamics 

leading to increased severity of collateral failure as opposed to young rats (J Ma et al., 

2020a). Therefore improving collateral circulation may aid as adjuvant therapy to 

recanalization therapy (Cuccione et al., 2016; J Ma et al., 2020b). 
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Some drawbacks associated with this study is that the dye DiI preferentially labels 

arteries, leaving out veins and venules (Hughes et al., 2015; Konno et al., 2017). In 

addition, the hydrophobic dye can form aggregates during perfusion causing occlusion of 

small diameter blood vessels resulting in some degree of heterogeneity in labelling and 

not suitable for microvessels staining (Konno et al., 2017). Furthermore, DiI dissolves in 

alcohol making this technique not suitable to be combined with other 

immunohistochemical methods (Hughes et al., 2015). However, this method was chosen 

as it provides a simple, cost-effective and efficient alternative to complex techniques such 

as corrosion casting for analysis of vascular parameters (Hughes et al., 2015; Konno et 

al., 2017). Another limitation of this study is the imaging depth was limited to surface 

cortical vessels allowing us to perform two-dimensional analysis of the vascular 

structures. To further investigate three-dimensional capillary network characteristics 

within the deeper brain regions at high resolution, histological analyses combined with 

light sheet microscopy is warranted. This study was conducted in female rats. The 

rationale for using female animals is women have increased life span compared to men 

and hence have increased risk of chronic cerebrovascular diseases (CVD) such as stroke 

and Alzheimer’s (Alharbi et al., 2020; Kumar and McCullough, 2021). In addition, the 

aging blood brain barrier (BBB) of females shows ultrastructural modifications that might 

contribute to altered capillary blood flow thereby contributing to vascular diseases (Frías-

Anaya et al., 2021). Sex hormones such as estrogens, progestins, and androgens have 

shown to regulate vascular functions by acting on the cerebral vasculature (Robison et 

al., 2019). A recent study demonstrated sex differences on the intrinsic structure of rat 

MCA (Wang et al., 2020) possibly altering neurovascular coupling responses and 
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cognition with aging. Therefore, understanding the structural characteristics of vessels in 

young and aged male animals and its causative role in CVD will be useful in developing 

therapeutic interventions for pre-clinical studies in the future. 

 

CONCLUSION 

In summary, we have systematically investigated age-related changes in surface 

cortical vessels of young and aged rat brain using a simple yet relatively robust vessel 

painting technique. We found global reduction in vascular parameters and significant 

decline in the number of branches from the main middle cerebral artery indicative of 

decreased cerebral blood flow to the aged brain consistent with previously published 

reports. Given the importance of vascular structure in ischemic stroke, the compromise 

in surface cortical vessel is suggested to contribute to worse functional outcomes 

following cerebral ischemia observed in aged animals. This study sheds light on 

understanding the biology of vascular aging and highlights the importance of using age-

appropriate animals while studying specific diseases of aging. The selection of more 

appropriate models will likely increase the success rate of stroke intervention research 

that aims to translate preclinical findings. 

 

FUTURE DIRECTIONS 

Some unanswered questions in the field are 1) why these changes occur in the 

aged brain and what propels them? 2) why are there region-specific microvascular loss 

and what are the regional cues that could help predict heterogeneous vessel loss across 

brain regions? 3) what are the cellular and molecular mechanisms underlying the biology 
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of vascular aging? 4) how are the components of the neurovascular unit (NVU) altered 

due to aging? 
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A 

 

B 

 

Figure 3.1: Cerebral vasculature of rat brain visualized by vessel painting. 
Representative images of cerebral vascular architecture showing dorsal, ventral, left and 
right side view of A) Young and B) Aged rat brain. (n=6-7 animals/group) 
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A                                                                                                             B 

 

 

Figure 3.2: Surface Cortical Analysis of Total Brain. A) Basic morphometric and 
spatial parameters- total area, vessel area, vessel density, number of junctions, junction 
density, number of endpoints, total vessel length, average vessel length and lacunarity 
calculated for surface cortical vessel of aged and young brain in the axial plane. B) 
Representative skeleton image of young and aged brain after processing using the 
AngioTool. (n=6-7 animals/group). Data reported as mean ± S.D. 
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A                                                                                                                   B 

 
 
 

Figure 3.3: Surface Cortical Analysis of Middle Cerebral Artery (MCA). A) Basic 
morphometric and spatial parameters- total area, vessel area, vessel density, number of 
junctions, junction density, number of endpoints, total vessel length, average vessel 
length and lacunarity calculated for right and left MCA of aged and young animals. B) 
Representative skeleton image of young and aged brain after processing using the 
AngioTool. (n=6-7 animals/group). Data reported as mean ± S.D. 
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   A                                                                 B 

 
 
Figure 3.4: Vessel Diameter and Branch Order Analysis. A) Histogram of vessel 
diameter in aged and young brains B) Histogram of branch order information of aged and 
young MCA. (n=6-7 animals/group).
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CHAPTER FOUR 

 

Characterization of age-related changes on leukocyte 

populations following acute systemic inflammation in 

Sprague Dawley rats  
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ABSTRACT 

As we age our immune system gradually degrades in function leading to 

immunosenescence, which is associated with increased incidence and severity of several 

chronic diseases, including cardiovascular, neurodegenerative diseases, cancer & 

diabetes. Given the clinical implications of age-related changes in the immune system, a 

critical gap in knowledge exists regarding how age changes immune response when 

stimulated. Previous studies have identified many hallmark signs of immune aging. 

However, what remains unknown are how aging changes the composition and 

quantitative response of leukocytes in response to injury/disease. In the present study, 

we investigated the impact age has on changes in major leukocyte populations in the 

blood and spleen of young (3-4 months old) and aged (18-20 months old) female 

Sprague-Dawley rats. We employed a robust flow-cytometric protocol to characterize 

leukocyte populations in rats after subjecting them to lipopolysaccharide (LPS) challenge. 

Rats were exposed to 0.9% saline or LPS (1 mg/mL) for 3 or 24 h after which, blood and 

spleen were collected and analyzed. Results demonstrated an overall decline in leukocyte 

numbers and increased numbers of B cells and natural killer (NK) cells in aged animals 

as compared to young animals. Interestingly, while neutrophils saw modest increases in 

expression in young LPS-treated rats at 24 h, a multi-fold increase in neutrophil counts 

were measured in aged LPS-treated rats at 24 h. This study affirms that age provokes 

several changes in the systemic immune response that can have dramatic effects on 

response to injury/disease and underscores the importance of using age-appropriate 

animals when exploring injury/disease. 
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INTRODUCTION 

A prominent feature of biological aging in mammals is a gradual but progressive 

deterioration of cellular function over time that occurs across multiple organ systems 

(Pawelec, 2018). This process, known as cellular senescence, is an influencing factor in 

many age-related pathologies (Pawelec, 2018). Aging is a primary risk factor for several 

chronic diseases, including cancers, cardiovascular disease, diabetes, stroke, and 

neurodegenerative disorders (Niccoli and Partridge, 2012b; Haynes, 2020). Yet, when 

researching the pathophysiology and treatment effectiveness in these diseases, 

consideration of processes underlying normal aging are often ignored. This failure to 

account for age-related changes, often referred to as aging hallmarks, may be an 

underlying factor in the failure of so many treatments, especially in the neurological area, 

to translate from promising preclinical studies into clinical practice (Kirkland, 2016). 

Therefore, studies should evaluate age as a variable when studying animal models of 

specific diseases (Jackson et al., 2017). 

 The relationship between biological aging and cellular senescence is complex as 

the interaction between these two processes can, at times, be difficult to differentiate 

(Fülöp et al., 2016; Pawelec, 2018). For example, as an individual ages, time-dependent 

hallmark signs of aging, such as telomere erosion, metabolic slowing and increased 

genomic instability begin to emerge as driving forces in perpetuating cellular senescence, 

which, in turn, contributes to the development of other aging hallmarks, such as low-grade 

inflammation, stem cell exhaustion, mitochondrial dysfunction and altered intercellular 

communication (Fülöp et al., 2016; Pawelec, 2018). The interplay between different aging 

hallmarks creates a vicious cycle resulting in aberrant responsiveness of cells to external 
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stimuli and ultimately tissue dysregulation (Fülöp et al., 2016; Pawelec, 2018). A prime 

example of this can be seen in the relationship between low-grade inflammation, often 

referred to as inflamm-aging, and immunosenescence leading to progressive 

deterioration in the ability to respond to infection in the older population (Fülöp et al., 

2016; Pawelec, 2018; Bischof et al., 2019). This age associated chronic systemic 

inflammation not only increases mortality but also contributes to the development of 

several neurological injuries and neurodegenerative diseases in the elderly (Ritzel et al., 

2018; Bischof et al., 2019; Barbé-Tuana et al., 2020; Chee and Solito, 2021; Finger et al., 

2021; Sykes et al., 2021).  

For the past two decades, our lab has studied the effects of age on ischemic stroke 

severity and recovery. Results of our studies, using comparative indicators of ischemic 

stroke injury (infarct volume, brain swelling, functional recovery, mortality), definitively 

show that aged rodents have worsened outcomes after ischemic brain injury than their 

younger counterparts (Rosen et al., 2005; Lucke-Wold et al., 2012). In addition, several 

studies have demonstrated how the age-related changes alter peripheral immune response 

after stroke and hence influence stroke risk and outcome (Shaafi et al., 2014; Kim et al., 2018; 

Ritzel et al., 2018; Aref et al., 2020; Sykes et al., 2021).  

The objective of this study was to determine the effect(s) of aging on the acute 

systemic immune response following lipopolysaccharide (LPS) challenge. We 

hypothesized that immunosenescence in aged rats would lead to greater difficulty in 

mounting an effective acute response following LPS administration. To assess response, 

we stimulated an immune challenge by administering a single dose of LPS (1 mg/kg; i.p.) 

in female Sprague-Dawley rats (2-3 and 18-20 months). Using flow cytometry and ELISA, 
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we measured changes in leukocyte populations in blood and spleen & inflammatory 

cytokine expression in plasma at 3 and 24 h following LPS administration.  

 

MATERIALS & METHODS 

Animals.  Studies using rats were approved by the West Virginia University (WVU) 

Animal Care and Use Committee and abided by ARRIVE guidelines. Forty-two female 

Sprague-Dawley (SD) rats were used in this study (20 young; 22 aged). Aged female SD 

rats (20-22 months) were acquired from our aging colony (Hilltop Laboratories; Scottdale, 

PA) and young female SD rats (3-4 months) were purchased from Hilltop Laboratories. 

Upon arrival, rats were housed in the WVU animal facility with food and water supplied 

ad libitum.  

 

Experimental design. Upon arrival, rats were randomly assigned to one of four treatment 

groups within age category: Group 1- administered 0.9% sterile saline intraperitoneally 

(i.p.) with tissue collection at 3 h after injection; Group 2- administered 0.9% sterile saline 

(i.p.) with tissue collection at 24 h after injection; Group 3- administered 

lipopolysaccharide (LPS; 1 mg/kg; i.p.; Sigma Chemicals; St. Louis, MO) with tissue 

collection at 3 h after injection; Group 4- administered LPS (1 mg/kg; i.p.)  with tissue 

collection at 24 h after injection. Saline and LPS were filtered through a 22 mm syringe 

filter before use. At specified time point, rats were anesthetized with 4% isoflurane 

(Patterson) and blood collected (~5 ml) in citrated tubes from the left ventricle. After blood 

draw, rats were cardiac perfused with ice-cold 0.9% saline for 10 min, at which time the 

spleen was excised and weighed. 
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Tissue processing. After collection, 2 ml of citrated blood was separated for flow 

cytometry and the remaining blood centrifuged at 1500 x g for 10 min at 4C. Plasma was 

collected and frozen at -20C until assayed. Leukocytes from the blood were isolated 

using Lympholyte cell separation media for mammals (Cedarlane) according to 

manufacturer’s instructions. Spleen was cut into small cubes, homogenized using a 

dounce homogenizer, and centrifuged at 1300g for 10 mins. Cells were strained using a 

40μM nylon mesh into a 50 ml conical tube. Red blood cells were lysed using 1x RBC 

Lysis Buffer (Multi-species) from eBioscience™. Cell pellets were resuspended, and 

Trypan blue dye was used to quantify the live cells using an automated cell counter 

(Countess from Invitrogen) (as shown in Figure 4.1). 

 

Flow cytometry. Cell lysates from blood and spleen were assessed using a 9-color 

staining panel (Barnett-Vanes et al., 2016) with antibodies as detailed in Table 4.1. First, 

5 x 105 cells were washed and stained with Live/Dead dye (eBioscience™; 1:1000) in 1X 

phosphate buffered saline (PBS; pH=7.4). Next, cells were blocked with anti-CD32 to 

mitigate Fc-mediated non-specific binding for 30min at 4C. Cells were then incubated in 

antibody cocktail in 1X PBS containing 1% bovine serum albumin and 0.1% sodium azide 

for 1h at 4C. At end of incubation, cells were washed and fixed in 0.4% paraformaldehyde. 

Flow cytometric normalization was performed using fluorescent compensation beads 

(AccuCount Blank Particles, Spherotech) and cells were analyzed on a multicolor flow 

cytometer (LSRFortessa™, Becton-Dickinson). The fluorescence minus one principle 
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was used to account for background antibody fluorescence in our positive and negative 

gating of cell populations.  

 

Multiplex Cytokine ELISA. Circulating cytokines (interleukin (IL)-1 beta (1b), IL-4, IL-5, 

IL-6, IL-10, IL-13, interferon-gamma (IFN-ɣ), keratinocyte chemoattractant/growth 

regulated oncogene (KC/GRO) & tumor necrosis factor alpha (TNF-α) were measured in 

plasma samples collected at termination according to manufacturer’s instructions (Pro-

inflammatory Panel 2 V-Plex kit (K15059D-1); MSD; Rockville, MD). Cytokine assays 

were read using a MESO QuickPlex SQ 120 and data were analyzed using the MSD 

Discovery Workbench software version 4.0. Lower limits of detection for cytokines 

(pg/mL) were IL-4 (0.16), IL-5 (6.89), IL-6 (7.18), IL-10 (6.18), IL-13 (0.45), TNF-α (1.04), 

IFN-ɣ (1.48). Due to several samples in the LPS-treated groups reaching upper limits of 

detection for IL-6 & KC/GRO, these samples were repeated using a 1:10 dilution.   

 

Statistical analysis. For leukocytes, raw counts were normalized using compensation 

beads (10,000 counts for blood; 7,500 counts for spleen) and expressed as mean  SD.  

For comparative evaluation of T lymphocytes, a percent of total cell-type population was 

calculated by taking a ratio of CD4+, CD8+, CD4-/CD8- & CD4+/CD8+ counts to 

compensated total T lymphocytes. For cytokine levels in plasma using multi-plex ELISA, 

cytokine concentration in experimental groups was normalized to cytokine concentration 

in plasma of naïve young and aged rats & expressed as mean  SD. Since variance in all 

treatment groups were normally distributed, a three-way analysis of variance (ANOVA) 

was used to determine statistical significance on main effects of treatment, time point & 
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age followed by Tukey’s HSD post-hoc analysis to identify inter-group differences. Using 

an a priori power analysis to calculate sample sizes, an n of 5 rats per treatment group 

was deemed sufficient to calculate statistical significance with a P<0.05. All statistical 

analyses were performed using Graph Pad Prism software. 

 

RESULTS 

LPS sickness behavior and mortality. Regardless of age, rats exposed to LPS (1 

mg/kg; i.p.)  exhibited signs of sickness behavior, including anhedonia, irritability and 

lethargy that continued out to 24 h. At 24 h, other signs of sickness behavior were 

observed, including loss of appetite, piloerection, and increased aggression. No young 

rats experienced mortality during the 24 h of LPS exposure; however, aged rats 

experienced 2 deaths out of the 12 aged rats exposed to LPS used in the study. Both rats 

were in the LPS 24 h group. This 29% mortality rate in the LPS 24 h group was 

significantly higher than observed in the aged PBS 24 h group and the combined 17% 

mortality rate in the aged LPS group (3 & 24 h) was significantly higher than shown in the 

young LPS group.   

 

Gating strategy and characterization of leukocyte profiles using FACS. To obtain a 

population of live single leukocytes (Figure 4.2), we employed a gating strategy in blood 

and spleen that removed debris & not “live” cells (live/dead dye), gated to singlets using 

FSC-H & FSC-W parameters to filter out doublets & clumps of cells and finally gated for 

CD45+ (pan-leukocyte) cells, resulting in a population of live, single leukocytes for 

sequential separation.  T lymphocytes were gated as CD3+, natural killer (NK) cells were 
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gated as CD161+, B cells as CD45R+; neutrophils as CD43+ and higher granularity and 

finally monocytes as differential expression of CD43 (CD43Hi and CD43Lo). 

Age-related changes in spleen and body weight. Next, we wanted to investigate the 

age-related changes in body & spleen weights and splenocyte count after LPS challenge 

in rats (as shown in Table 4.2). We observed increase in spleen weight upon LPS 

administration irrespective of the age. Spleen weight was increased in aged LPS 3h 

compared to young LPS 3h group.  We also noticed that the body weight increased upon 

aging. We then normalized spleen weights to body weights and noticed that spleen/body 

weight ratio was increased upon LPS treatment. Overall, there was a decrease in the 

number of splenocytes due to aging. In addition, aged animals showed an increase in 

spleen count upon LPS treatment at 3h. The number of splenocytes plummeted at 24h 

post LPS treatment irrespective of age. Further, the number of splenocytes was 

normalized to spleen weight and we noticed LPS induced decrease in the total spleen 

count by spleen ratio in the young animals while an increase in the total spleen count by 

spleen ratio in aged LPS 3h.  

Quantification of leukocyte populations in blood. Using flow cytometry, we isolated & 

quantified leukocyte populations from whole blood in young and aged female rats at 3 

and 24 h after LPS challenge. Regardless of the age, LPS challenge significantly reduced 

total leukocytes (p<0.01), T cells (p<0.0001 for young; p<0.05 for aged), B cells (p<0.05 

for young; p<0.0001 for aged) in the blood at 3 and 24 h when compared to age-matched 

PBS treated rats (as shown in Figure 4.3). As Figure 4.3A indicates there was no 

difference in total white blood cell (CD45+) counts measured between PBS-treated rats 
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at 3 and 24 h in young (p=0.9998) or aged (p=0.2361). Likewise, comparison of young 

PBS-treated rats to aged PBS-treated rats showed no difference (p=0.9995) in circulating 

total leukocytes. In aged rats, a significant (p=0.01) increase in total leukocytes was 

observed at 24 h after LPS challenge in the aged rats when compared to 24 h in young 

rats. Regardless of age, no difference (p>0.05) in total leukocytes was measured within 

LPS-treated rats between the 3 and 24 h time points. As Figure 4.3B illustrates there was 

a no difference (p>0.05) in circulating T lymphocytes (CD3+) between PBS-treated rats at 

3 and 24 h in young or aged. Similarly, no difference (p>0.05) in T lymphocyte counts 

were demonstrated between LPS-treated rats at 3 and 24 h after LPS challenge in young 

or aged rats. A significant (p<0.05) age effect was shown in PBS-treated rats with a 

marked reduction in circulating T lymphocytes observed in aged rats at 3 and 24 h when 

compared to young rats. Conversely, Figure 4.3C indicates increased B lymphocytes in 

aged PBS treated rats when compared to young PBS treated rats (p=0.0056).  As Figure 

4.3D shows NK cells were significantly increased (p<0.05) at 24h compared to 3h LPS 

treatment in the aged animals. Additionally, there was a significant difference (p=0.0021 

for PBS; p=0.0040 for LPS) in the main effect of age with aged rats having increased 

circulating NK cells regardless of treatment (Figure 4.3D). A similar trend was observed 

for monocytes which showed a significant increase (p<0.0001 for PBS; p=0.0078 for LPS) 

in number due to aging, irrespective of the treatment (Figure 4.3F). In addition, Figure 

4.3F shows that monocytes population was significantly decreased (p<0.01) at 3h 

compared to 24h LPS treatment in the aged animals. It is also interesting to note that the 

neutrophil count was significantly increased (p<0.0001) in aged LPS treated rats at 24 h 

(Figure 4.3E).  
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Quantification of leukocyte populations in spleen. The spleen leukocyte populations 

were isolated & quantified in young and aged female rats at 3 and 24 h after LPS 

challenge using flow cytometry. Overall, aged rats exhibited reduced leukocyte counts at 

both 3 and 24 h in the spleen when compared to young rats irrespective of the treatment 

(Figure 4.4). Aged animals showed a significant decrease in white blood cells (p<0.0001), 

T lymphocytes (p<0.0001), B lymphocytes (p<0.0001), NK cells (p<0.05 for LPS and 

PBS) and monocytes (p<0.0001 for PBS; p=0.013 for LPS) when compared to young 

animals (Figures 4.4A, B, C, D & F). Additionally, monocyte population was significantly 

decreased (p<0.001) at 24h compared to 3h LPS treatment in aged animals (Figure 4.4F). 

Interestingly, neutrophil counts in the spleen were significantly increased (p<0.01) in 

young LPS treated rats at 24 h while the numbers were significantly decreased 

(p<0.0001) in aged LPS treated rats at 24 h (Figure 4.4E). 

 

Measurement of inflammatory cytokines in plasma.  Using MSD multiplex rat ELISA 

kit, we measured pro-inflammatory cytokine expression in the plasma of aged and young 

rats at 3 h and 24 h after LPS challenge, according to manufacturer’s instructions. 

Regardless of age, LPS challenge significantly increased IL-4 levels (p<0.0001 in case of 

young; p<0.01 in case of aged) in the plasma at 3 and 24 h compared to PBS treatment 

(Figure 4.5A). In case of young animals, this effect was prominent at 24h (p<0.0001 

versus 3h) upon LPS stimulation (Figure 4.5A). However, aged animals had significantly 

reduced (p<0.0001) IL-4 expression than young animals at 24h after LPS administration 

as seen in Figure 4.5A. Conversely, aged animals showed significant increase (p<0.05) 
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in IL-5 expression at 24h post LPS stimulation compared to young rats (Figure 4.5B). 

Additionally, this increase was significantly higher at 24h (p<0.01) compared to 3h post 

LPS treatment in the aged animals. Regardless of age, IL-5 expression in plasma is 

significantly increased (p<0.01 for young; p<0.0001 for aged) upon LPS challenge versus 

PBS treatment at 24h (Figure 4.5B). Similarly, IL-10 & IL-1 expression was significantly 

increased upon LPS stimulation irrespective of age at 3h and 24h (Figure 4.5C & F). This 

increase was significantly higher (p<0.05) at 24h compared to 3h in LPS treated aged 

animals in case of IL-10 expression as seen in Figure 4.5C. Figure 4.5 C & F shows no 

age-related change in expression of IL-10 (p=0.8651) & IL-1 (p=0.3675) while Figure 4.5 

D & E shows no significant changes (p>0.05) in the expression of IFN & IL-13 across the 

groups. There was significant difference in the main effect of time point with increased 

(P<0.0001) IL-6, CXCL-1 & TNF expression at 3h while decreased (p<0.0001) 

expression at 24h upon LPS challenge irrespective of age (Figure 4.5G, H &I). However, 

at 24h post LPS treatment IL-6 and CXCL-1 levels were significantly increased in aged 

(p<0.05) compared to young animals (Figure 4.5 G & H). Apart from treatment & time 

point related effect, TNF also showed age related effect with significantly decreased 

(p<0.01) levels in aged LPS treated rats as opposed to young LPS treated rats at 3 h 

(Figure 4.5 I).  

 

DISCUSSION 

The immune system is a dynamic network that is tightly regulated to ensure 

effective protection against foreign antigens. With increasing age, it undergoes a 

remodeling process characterized by a decline in immune cell function due to cell intrinsic 
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and extrinsic factors (termed as immunosenescence) accompanied by chronic low-grade 

inflammation (termed as inflamm-aging). This dysregulation of the immune system seen 

in elderly increases their susceptibility of developing chronic, infectious diseases and 

decreases the effectiveness of vaccines (Ciabattini et al., 2018). With rising life 

expectancy of the global population, understanding the impact of age on our immune 

system is utmost priority to improve the quality of life and decrease the burden on the 

healthcare. While it has been established that the aging process undergoes several 

changes and thus does not produce adequate response against infection, data regarding 

the cellular analysis in response to acute systemic inflammation is limited. Peripheral 

blood leukocyte count is routinely examined to detect systemic infection and is useful for 

determining the underlying pathological conditions (W Chen et al., 2021). In this study, 

we investigated the age-related differences in leukocyte response following LPS induced 

acute systemic inflammation in female Sprague Dawley rats. We administered the 

endotoxin Lipopolysaccharide (LPS), an important component of Gram-negative 

bacterium cytoderm (Ronco et al., 2014) to mimic systemic inflammation in humans.  We 

employed a robust 9-colour flow cytometric method (Barnett-Vanes et al., 2016) to 

effectively characterize the major rat leukocyte population in the blood and spleen. 

Herein, we report an age-related increase in NK cells, monocytes and neutrophils in the 

circulation accompanied by a decline in major leukocyte population in the spleen. In 

addition, we observed a shift in cytokine expression towards a pro-inflammatory 

phenotype in the aged animals compared to young animals treated with LPS.  

White blood cells of the immune system are derived from the progenitor or 

precursor cells called the hematopoietic stem cells in the bone marrow. In the context of 
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healthy aging, there is a shift towards myeloid cell populations relative to lymphoid cell 

populations in circulation (Mogilenko et al., 2021). This gradual expansion of myeloid cell 

populations is partly due to age-related thymic involution resulting in alteration of T-cell 

composition and T-cell related immuno-incompetence (Gui et al., 2012). In addition, there 

is skewing of the hematopoietic compartment towards myelopoiesis concomitant with the 

loss of lymphoid-committed progenitors in the aging bone marrow thereby decreasing the 

peripheral adaptive immune populations (Almanzar et al., 2020; Krishnarajah et al., 

2021). Accordingly, we noticed a decline in the overall number of lymphocytes (T cells + 

B cells + NK cells) while the number of monocytes were increased in the circulation of 

aged animals compared to young animals. Taking a closer look at the individual 

lymphocytes, we found significant age-related increase in the population of NK cells in 

circulation. NK cells are the primary population of innate lymphoid cells that protects 

against viral infection. We distinguished rat NK cells based on CD 161 expression, which 

marks innate proinflammatory cytokine-responsive subtype of NK cells (Kurioka et al., 

2018). Recent evidence showed that aged individuals had a diminished proportion of the 

immature (CD56bright) NK population while increased population of mature (CD56dim), 

late, low cytotoxic NK cells (Zheng et al., 2020). Thus, increased number of 

proinflammatory NK cell subtype is required by the aged animals to induce cell 

cytotoxicity. However, immunosenescence of NK cells due to aging causes the NK cells 

to lose their capacity for antiviral activity thereby increasing the incidence of infections in 

elderly (Zheng et al., 2020). With respect to adaptive immune system, we observed a 

significant decrease in CD3+ T cells which may be due to shortening of telomere length 

leading to delayed clearance of pathogens and prolonged duration of infection (Yu and 
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Zheng, 2019). On the other hand, the circulatory B cells were significantly increased in 

the aged rats when compared to young rats. It is known that aging promotes the 

polarization of naive T cells and B cells to age-associated, exhausted and regulatory 

phenotype (Frasca et al., 2011; Lin et al., 2016; Zheng et al., 2020). Additionally, aging 

causes slow turnover and inability of new B cells to effectively replenish the peripheral 

mature B cell populations (Johnson et al., 2002). This leads to rapid decline in humoral 

response and correlate with poor response to vaccination in addition to shortening the 

time interval between booster doses in the elderly (Ciabattini et al., 2018). Although the 

number of circulating monocytes is increased with age, they are not capable of clearing 

bacterial infection due to premature release from the bone marrow (Puchta et al., 2016). 

We also observed significant increase in monocytes levels in circulation of aged animals 

compared to young animals after LPS stimulation at 24h. In older subjects, monocytes 

are increased upon chronic inflammatory conditions and produce increased 

proinflammatory cytokines such as IL6, TNF, IL1β (Puchta et al., 2016) consistent with 

our observation. Furthermore, aging alters the gene expression in monocytes leading to 

increased risk of cardiovascular mortality, coronary artery plaque formation and 

atherosclerosis (Choi et al., 2017; Saare et al., 2020). Such age-related physiological 

changes in the immune system predisposes the elderly to infectious diseases (Esme et 

al., 2019). A recent study showed a strong correlation between the ratios of circulating 

myeloid cells and lymphocytes with blood coagulation parameters and disease severity 

in case of COVID-19 (Ma et al., 2021), which predominantly affected individuals 65 years 

and above (Yanez et al., 2020; Guerrero and Wallace, 2021). The authors found 

increased neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), 
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and basophil-to-lymphocyte ratio (BLR) in critically ill/deceased patients (Ma et al., 2021). 

Thus, careful attention should be paid to changes in WBC count in elderly subjects as 

leukocyte count has a potential clinical implication in predicting mortality as well as long-

term survival (Nilsson et al., 2014).  

Neutrophils are the most abundant cellular component of the innate immune 

system that provide protection against bacterial or fungal infection (Butcher et al., 2000). 

They are primary cellular responders that are recruited at the site of injury/infection 

through extravasation across the vascular barrier in response to specific chemotactic and 

pro-inflammatory signals (Fine et al., 2020). Neutrophils levels are increased in response 

to sterile and nonsterile inflammation. Nishio and colleagues reported increased numbers 

of neutrophils required for wound repair in elderly subjects (Nishio et al., 2008). During 

systemic inflammatory conditions such as sepsis, the mean volume of neutrophils was 

increased and can be used a promising hematologic parameter for differentiating elderly 

patients with and without sepsis (Lee and Kim, 2013). Overall, elevated neutrophil levels 

negatively impact the health-related quality of life (Wouters et al., 2021). In the context of 

healthy aging, neutrophil counts were found to be increased in circulation of aged subjects 

irrespective of sex (Valiathan et al., 2016; Menees et al., 2021; Serre-Miranda et al., 

2022). This may be offset by decreased phagocytic ability leading to impairment in the 

ability to clear pathogens and thus increased susceptibility to infection in the aged 

population (Butcher et al., 2000). Additionally, hyper segmented, functionally 

compromised neutrophil populations were accumulated in the splenic white pulp due to 

decreased apoptosis with advancing age (Tomay et al., 2018). In accordance, although 

not significant, we noticed an increasing trend for neutrophils in aged rats compared to 
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young rats upon vehicle treatment suggesting a compensatory mechanism for the 

reduced functionality of aged neutrophils. Furthermore, neutrophil diapedesis and 

chemotaxis is impaired with aging (Brubaker et al., 2013; Uhl et al., 2016; Barkaway et 

al., 2021). Studies have demonstrated that neutrophils exhibit reverse transendothelial 

migration (rTEM) by traversing the endothelium in the reverse direction and thus re-

entering the circulation (Burn and Alvarez, 2017). While some studies showed rTEM of 

neutrophils have anti-inflammatory effects and resolve chronic tissue inflammation others 

demonstrated its role in disease progression (Burn and Alvarez, 2017). A recent report 

from Barkaway et al., 2021 demonstrated increased levels of neutrophil reverse 

transendothelial migration (rTEM) in aged mice due to dysregulated local inflammatory 

milieu allowing pathogenic neutrophils to disseminate to distal organs and cause damage 

(Barkaway et al., 2021).  The authors showed that rTEM is propelled by increased 

expression of CXCL-1 produced by mast cells located at the endothelial cell junction 

(Barkaway et al., 2021). Consistent with this report, we saw elevated expression of CXCL-

1, a major chemokine for neutrophil attraction, in the plasma at 24h post stimulation with 

LPS. In the present study, we showed age-related significant increase in neutrophil 

counts in peripheral blood at 24h after LPS induced systemic inflammation, which is the 

major finding of the paper. This age-related neutrophilia observed in circulation is merely 

not a response to systemic inflammation but also due to release of immature neutrophils 

from marginated pools such as spleen demonstrated by decreased splenic neutrophils at 

24h after LPS induced acute systemic infection. Recent reports showed that neutrophils 

are heterogeneous, with specific neutrophil sub-populations in the marginated pools 

(lungs, liver and spleen, in addition to bone marrow) and executing distinct functions 
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(Christoffersson and Phillipson, 2018; Herrero-Cervera et al., 2022). For example, 

recently Deniset and colleagues identified a novel neutrophil subsets Ly6Ghi and 

Ly6Gintermediate residing in the murine splenic red pulp region and demonstrated their role 

in the clearance of systemic S. pneumoniae by eliciting rapid innate immune response in 

vivo (Deniset et al., 2017). Taken together, it will be interesting to know if a specific 

population of neutrophil is associated with rTEM and thus help identify novel therapeutic 

targets aimed at preventing distant organ damage especially in the older adults.  

The spleen is the second largest lymphoid organ and plays an important role in the 

maintaining the homeostasis by acting as a blood filter (Lewis et al., 2019). The spleen is 

considered the storage unit primary for T cells, B cells, NK cells, macrophages, and DCs 

whose function is to eliminate encapsulated bacteria as well as elicit central and 

peripheral immune tolerance (Aw et al., 2016; Turner and Mabbott, 2017). More recently, 

the existence of monocytes and neutrophils reserves in the spleen were discovered 

(Swirski et al., 2009; Puga et al., 2011). Aging causes splenic structural modifications 

noticeably in the marginal zone and white pulp region (Turner and Mabbott, 2017). This 

is indicative of changes in the number and distribution of immune cell population housed 

within the microarchitecture of the spleen thereby affecting its function (Turner and 

Mabbott, 2017). Accordingly, we showed overall immunosuppression in the total number 

of leukocytes, T cells, B cells, monocytes, and NK cells in the spleen of aged animals 

compared to young animals leading to deterioration of cellular and humoral immune 

system with age. This is accompanied by significant increase in B cells, monocytes, and 

NK cells in the circulation. We also observed decreased spleen to body weight ratio along 

with reduced number of splenocytes per gram of spleen due to aging consistent with 
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previous findings (El-naseery et al., 2020; Menees et al., 2021). Taken together, our data 

suggests age-related impairment in the ability to retain immune cell reservoirs in the 

spleen. Several studies have investigated the role of spleen in initiating peripheral 

immune response to brain injury such as ischemic stroke (Liu et al., 2015; Pennypacker 

and Offner, 2015). In vivo studies showed that splenectomy prior to cerebral ischemia 

significantly decreased neurodegeneration by blunting systemic inflammation in young 

and aged animals (Ajmo et al., 2008; Chauhan et al., 2018; Seifert and Offner, 2018). 

Additionally, splenectomy reduced peripheral inflammatory cytokine levels as well as 

decreased macrophages, neutrophils, B cells, and T cells infiltration into the brain at the 

site of injury thereby attenuating ischemic brain damage (Ajmo et al., 2008; Chauhan et 

al., 2018; Seifert and Offner, 2018). Given the fact that the incidence and mortality rate of 

stroke is higher in the aged population (Avan et al., 2019; Yousufuddin and Young, 2019), 

the effect of age on splenic response following splenectomy in contributing cerebral 

ischemia induced brain damage is warranted.  

Aging is characterized by disruption of the cytokine homeostasis and skewing 

towards a proinflammatory state termed as inflamm-aging (Rea et al., 2018). Overall, we 

saw increase in cytokine levels upon LPS stimulation irrespective of age and time 

(Seemann et al., 2017). Our data showed elevated levels of pro inflammatory cytokines 

(TNF-α, IL-1β, IL-6, CXCL-1) in the plasma upon LPS challenge at 3h and the values 

seemed to return to baseline at 24h after LPS treatment. On the other hand, we noticed 

significant changes in anti-inflammatory cytokines with increased IL-10 and IL-5 

expression and concomitant decrease in IL-4 levels upon LPS stimulation at 24h in the 

aged rats. IL-6, TNF-α and IL-1β are key pro-inflammatory cytokines that have been 
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implicated in autoimmune diseases, bacterial infections, cardiovascular disease, (Kany 

et al., 2019) and more recently COVID-19 (Ragab et al., 2020). Understanding the 

cytokine profiles of aged individual is particularly important in diseases like COVID-19, 

that predominantly affects the older populations resulting in increased hospitalization and 

mortality, to help clinicians classify patients based on the severity of infections (Angioni 

et al., 2020). Elevated levels of pro-inflammatory cytokines are known to increase the risk 

of cardiovascular diseases, frailty, as well as cognitive impairment (Ferrucci and Fabbri, 

2018). Our data showed elevated levels of IL-6 and CXCL-1 at 24h after LPS treatment 

in the aged group compared to the young LPS 24h group indicating prolonged systemic 

inflammation after LPS stimulation upon aging. Increased expression of plasma/serum 

IL-6 levels positively correlated with poor stroke outcomes and may serve as a prognostic 

marker (Shaafi et al., 2014; Aref et al., 2020; Mosarrezaii et al., 2020). Additionally, 

prolonged LPS induced systemic inflammation is dangerous as it results in disruption of 

the blood brain barrier thereby allowing infiltration of inflammatory immune cells (Fu et 

al., 2014). This in turn can drive neuroinflammation leading to secondary 

neurodegeneration following stroke (Stuckey et al., 2021). Accumulating evidence has 

shown that chronic inflammation is associated with age-related memory and cognitive 

decline (Sartori et al., 2012; Fielder et al., 2020). All these events negatively impact the 

CNS and contribute to disease pathologies such as Alzheimer disease, Parkinson 

disease, and other neurodegenerative diseases which predominantly affect the elderly 

(Hou et al., 2019). Given the importance of chronic inflammation in driving multiple CNS 

pathologies, anti-inflammatory and immunomodulating agents appear to be attractive 

treatment options in providing neuroprotection. 
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One particular caveat is that this study was conducted in female rats. Growing 

body of literature demonstrated that immune cell profile and responses to both self and 

foreign antigens is altered based on sex differences (Gubbels Bupp, 2015; Klein and 

Flanagan, 2016; Díaz et al., 2020; Márquez et al., 2020; Breznik et al., 2021; Serre-

Miranda et al., 2022). Future study will focus on investigating the cellular composition and 

the cytokines levels following infection using male animals. In vivo endotoxemia model 

using LPS, an important component of Gram-negative bacterium cytoderm (Ronco et al., 

2014), was employed to mimic acute systemic inflammatory response. However, varying 

dosages of LPS differentially regulated cytokine expression indicating a dose-dependent 

accumulation of leukocytes in vivo (Larsson et al., 2000; Morris et al., 2014). Along those 

lines, a recent study conducted in SD rats tested three different concentrations of LPS 

and found 10mg/kg to be effective in inducing sepsis as evidenced by significant 

modulation of blood, biochemical and molecular markers (Bhardwaj et al., 2020). 

Additionally, the study confirmed that male rats are more susceptible to infections than 

female rats (Bhardwaj et al., 2020) indicating the need for increased dose of LPS to elicit 

the same response in females. In the present study we used a single dose of 1mg/kg 

LPS, which probably was not significant to induce a robust immune response in the 

female SD rats. A more extensive evaluation of peripheral immune system components 

following chronic LPS exposure is warranted. Studies showed that aged animals showed 

phenotypic changes in both lymphoid and myeloid lineages in a diverse range of tissue 

and organs (Almanzar et al., 2020; Krishnarajah et al., 2021), and thus leading to potential 

differences in cell cytotoxicity in response to injury/disease. For example, dentate gyrus 

resident NK cells are increased in the brains of healthy aged adults and result in NK 
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dependent depletion of neuroblasts leading to cognitive decline and reduced 

neurogenesis (Jin et al., 2020). However, in the current study we focused on changes in 

major leukocyte population specifically in the blood and spleen in the presence and 

absence of LPS induced systemic infection. It would be interesting to understand age 

related alteration in other tissues following LPS challenge as well. Future studies should 

focus on delineating the mechanism of immunosenescence in each tissue following acute 

infection with advancing age.  

 

CONCLUSION 

In summary, our study provides a reference data set for major leukocyte 

populations and pro- and anti-inflammatory cytokines in blood and spleen of young and 

aged rats with and without LPS treatment. The response to brain injury following 

neurological disorders such as stroke is greatly determined by peripheral immune system. 

Age-associated changes in the systemic immune response can alter brain vasculature 

and drive chronic neuroinflammation which worsens stroke outcome in the elderly. This 

study highlights the importance of age-related changes on systemic immune response 

and underscore the importance of choosing the correct age based on development or 

cellular aging of the system being studied. Future studies should focus on development 

of novel therapies to target the peripheral immune system such as bone marrow 

rejuvenation, which holds great promise for the treatment of neurological diseases.  
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Figure 4.1: Schematic showing the processes involved in sample processing and 
analysis. Major leukocyte population in the blood and the spleen were analyzed by flow 
cytometry and the cytokines/chemokines in the plasma were analyzed by ELISA (Created 
in BioRender.com). 
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Figure 4.2: Gating strategy to identify major leukocyte populations in aged and 
young rats. Blood (not shown) and spleen were processed, analyzed and the relative 
proportion of each leukocyte population presented was presented. (n=5 animals/group). 
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Figure 4.3: Changes in circulating leukocytes after LPS challenge. Rats were 
administered LPS or saline, followed by which blood was collected either 3h or 24h, 

processed and analyzed. (⁎ denotes difference compared to young PBS 3h, # denotes 

difference compared to young PBS 24h, $ denotes difference compared to aged PBS 3h, 
% denotes difference compared to aged PBS 24h, & denotes difference compared to aged 
PBS 24h, / denotes difference compared to young LPS 24, + denotes difference compared 
to aged LPS 3h, @,! denotes difference compared to aged PBS 24h; %,*, #, $, + p < 0.05, ##,$$, 

&&p < 0.01, ⁎⁎⁎, &&&, ###p < 0.001, ⁎⁎⁎⁎, $$$$, %%%%, ////, !!!!, ++++, ####p < 0.0001). Data are 

presented as mean ± SD; n=5 animals/ group.  
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Figure 4.4: Changes in splenic leukocytes after LPS challenge. Rats were 
administered LPS or saline, followed by which spleen was collected either 3h or 24h, 
processed and analyzed. Data are presented as mean ± SD; n=5 animals/ group. 

(⁎ denotes difference compared to young PBS 3h, # denotes difference compared to 

young PBS 24h, $ denotes difference compared to aged PBS 3h, % denotes difference 
compared to aged PBS 24h, & denotes difference compared to aged PBS 24h, / denotes 
difference compared to young LPS 24, + denotes difference compared to aged LPS 3h, 
@,! denotes difference compared to aged PBS 24h; %,*, #, $, + p < 0.05, ##,$$, &&p < 0.01, ⁎⁎⁎, 

&&&, ###p < 0.001, ⁎⁎⁎⁎, $$$$, %%%%, ////, !!!!, ++++, ####p < 0.0001). Data are presented as mean ± 

SD; n=5 animals/ group.  
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Figure 4.5: Plasma cytokine expression after LPS stimulation. Rats were 
administered LPS or saline, followed by which changes in plasma pro-and anti-
inflammatory cytokine levels were measured at 3 h and 24 h. Data are presented as mean 

± SD; n=5 animals/ group. (⁎ denotes difference compared to young PBS 3h, # denotes 

difference compared to young PBS 24h, $ denotes difference compared to aged PBS 3h, 
% denotes difference compared to aged PBS 24h, & denotes difference compared to aged 
PBS 24h, / denotes difference compared to young LPS 24, + denotes difference compared 
to aged LPS 3h, @,! denotes difference compared to aged PBS 24h; %,*, #, $, + p < 0.05, ##,$$, 

&&p < 0.01, ⁎⁎⁎, &&&, ###p < 0.001, ⁎⁎⁎⁎, $$$$, %%%%, ////, !!!!, ++++, ####p < 0.0001). Data are 

presented as mean ± SD; n=5 animals/ group.  
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Table 4.1: Monoclonal antibodies for leukocyte characterization 

Antibody Flurochrome Dilution Supplier 

Live-Dead eFluor 780 1:1000 eBioscience 

CD 32 N/A 1:200 BDPharmingen 

CD 45 Alexa-Fluor700 1:100 Biolegend 

CD 3 BV 421 1:100 BDBioscience 

CD 43 PE 1:200 Biolegend 

His 48 FITC 1:200 eBioscience 

CD 161 APC 1:200 Biolegend 

CD 45R (B220) PE-Cy7 1:200 eBioscience 

 

        

Table 4.2: LPS induced changes in body and spleen weight in the context of aging
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CHAPTER FIVE 

Novel mitoNEET ligand NL-1 improves therapeutic outcomes 
in an aged rat model of cerebral ischemia/reperfusion injury 
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ABSTRACT 

Cerebral ischemic stroke is a leading cause of mortality and disability worldwide. 

Currently, there are a lack of drugs capable of reducing neuronal cell loss after 

ischemia/reperfusion-injury after stroke. Previously, we identified mitoNEET, a [2Fe-2S] 

redox mitochondrial protein, as a putative drug target for stroke. In this study, we tested 

the novel mitoNEET ligand, NL-1, in a preclinical model of ischemic stroke with 

reperfusion using aged female rats.  Using a transient middle cerebral artery occlusion 

(tMCAO), we induced a 2 h ischemic injury and then evaluated the effects of NL-1 

treatment on ischemic/reperfusion brain injury at 24 and 72 h. Test drugs were 

administered at time of reperfusion via IV dosing. Results demonstrated that NL-1 (10 

mg/kg) treatment markedly reduced infarct volume and hemispheric swelling in the brain 

as compared rats treated with vehicle or a lower concentration of NL-1 (0.25 mg/kg). 

Surprisingly, the protective effect of NL-1 was significantly improved when encapsulated 

in PLGA nanoparticles, where a 40-fold lesser dose (0.25 mg/kg) of NL-1 produced an 

equivalent effect as the 10 mg/kg dose.  Evaluation of changes in blood-brain barrier 

(BBB) permeability and oxidative stress using immunohistochemical staining 

corroborated the protective actions of NL-1, showing reduced extravasation of IgG and 

decreased levels of 4-hydroxynonenal (4-HNE) in the brains of aged female rats at 72 h 

after tMCAO with reperfusion. Our studies indicate that targeting mitoNEET following 

ischemia/reperfusion-injury is a novel drug target pathway that warrants further 

investigation.  
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INTRODUCTION 
 

Ischemic stroke is a leading cause of death and disability in the United States; yet, 

with the exception of reperfusion of infarcted tissue by thrombectomy, no other options 

are approved for stroke treatment. Early reperfusion of infarcted tissue using tissue 

plasminogen activator or endovascular mechanical devices is associated with lower rates 

of death and improved health outcomes compared to stroke patients not receiving 

treatment (Yang et al., 2021). However, reperfusion is not without risks and can result in 

reperfusion injury, which is characterized by increases of reactive oxygen species (ROS) 

formation, oxidative stress, blood-brain barrier (BBB) disruption & neuroinflammation 

which leads to greater loss of vulnerable neurons adjacent to the infarct core (Jurcau and 

Ardelean, 2021; Yang et al., 2021). Reperfusion injury following ischemia is clinically 

noted by hemorrhagic transformation, increased vasogenic edema, infarct expansion and 

neurologic worsening (Mandalaneni et al., 2020; Imran et al., 2021; Jurcau and Ardelean, 

2021).  

Recent studies demonstrate that cerebral ischemia and post-ischemic reperfusion 

causes a wide array of mitochondrial dysfunction resulting in a sequelae-of-events 

leading to ATP depletion, increased oxidative stress, changes in mitochondrial dynamics 

and ultimately neurodegeneration (Mandalaneni et al., 2020). Conceptual views of 

mitochondrial function have changed due to advances in our understanding of how 

mitochondria work together within an integrated network to dynamically remodel and 

reorganize to meet energetic demands of the cell. When these changes cannot be 

accomplished, mitochondrial dysfunction results in a diminished ability of cells to meet 
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energetic demand (Wu et al., 2021). Within the past decade, ischemic stroke has gained 

greater attention for effects of mitochondrial dysfunction on neuronal death following 

ischemic/reperfusion insult. Targeting mitochondria for treatment of post-stroke brain 

injury has mainly focused on reducing neuron destruction by attenuating ROS formation 

(Galkin, 2019). 

MitoNEET is an iron‑sulfur [2Fe-2S] cluster protein embedded in the outer 

mitochondrial membrane that functions to regulate oxidative capacity within mitochondria 

by acting as a pH and redox sensor (Tamir et al., 2015). Prior studies indicate that 

mitoNEET plays a protective role in the brain following neurological injury and disease 

and demonstrate that targeting mitoNEET may be a valuable therapeutic approach to 

mitigate the severity of reperfusion injury following ischemic stroke (Geldenhuys et al., 

2014; Tamir et al., 2015). 

NL-1 (Figure 5.1) is a first-in-class compound designed based off of the 

thiazolidinedione structure of pioglitazone, a drug marketed for its function as a nuclear 

peroxisome proliferator-activated receptor gamma (PPARγ) agonist (Geldenhuys et al., 

2010). Pioglitazone, an anti-diabetic drug, has demonstrated neuroprotective activity in 

several neurological disorders, including Parkinson's disease, Alzheimer's disease and 

ischemic stroke (Yonutas and Sullivan, 2013). In preclinical neurodegenerative models, 

pioglitazone administration reduced oxidative stress, decreased ROS formation and 

diminished neuroinflammation. Following ischemic stroke, pioglitazone and rosiglitazone 

protected neurons in the brain from mitochondrial dysfunction and pioglitazone prevented 

mitochondrial-associated apoptosis (Culman et al., 2012; J Chen et al., 2021). These 

promising findings were found to be an off-target effect of thiazolidinedione compounds 
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at mitoNEET; however, due to unfavorable side effects (edema formation, bone loss and 

heart failure) of the glitazones, it has necessitated the development of lead compounds, 

such as NL-1, that selectively target mitoNEET without PPARγ activity (Saralkar et al., 

2020, 2021). 

In the current study, we evaluated the efficacy of NL-1 treatment on 

ischemia/reperfusion injury in aged female rats following a transient middle cerebral 

artery occlusion (tMCAO). Using a 2 h ischemia followed by reperfusion, we assessed 

neurologic outcome, infarct volume and hemispheric swelling at 24 h and indices of BBB 

disruption, oxidative stress and apoptosis at 72 h after tMCAO. Results of this study 

validated that NL-1 has a dose-dependent therapeutic potential to improve tissue sparing 

following ischemia/reperfusion injury in the brain by decreasing vasogenic edema, 

reducing BBB disruption and attenuating neuroinflammation and provides compelling 

supportive evidence that mitoNEET functions as a therapeutic target for treatment of 

ischemic stroke. 

 

MATERIALS & METHODS 

Drugs and chemicals. All chemicals were obtained from commercial sources. The 

mitoNEET agonist, NL-1, was synthesized using Knoevangel condensation as previously 

described (Geldenhuys et al., 2010). Prior to administration, NL-1 was freshly prepared 

by dissolving a known amount of NL-1 in 100% methanol then evaporating the solvent. 

Dried NL-1 was then reconstituted in ethanol (2% v/v) in phosphate buffered saline (PBS; 

pH 7.4) with Tween-80 (2% w/v) to final doses of 0.25 and 10 mg/kg. PBS with 2% ethanol 

and 2% Tween-80 served as vehicle (negative control). NL-1 (0.25 mg/kg) loaded poly 

https://www.sciencedirect.com/topics/medicine-and-dentistry/middle-cerebral-artery-occlusion
https://www.sciencedirect.com/topics/medicine-and-dentistry/middle-cerebral-artery-occlusion
https://www.sciencedirect.com/topics/immunology-and-microbiology/infarct-volume
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D,L-lactic-co-glycolic acid (PLGA) nanoparticles (NL-1 NP) were prepared using 

emulsification and solvent evaporation as previously described (Geldenhuys et al., 2011). 

Unentrapped (free) NL-1 was separated from NL-1 loaded nanoparticles by gel filtration. 

The dose of NL-1 NP was restricted to 0.25 mg/kg due to physical limitations of the 

encapsulation process used and to ensure volume of drug administered i.v. through the 

tail vein did not exceed 0.5 ml. Based on these constraints, we tested free NL-1 at 0.25 

mg/kg and 10 mg/kg. Experimental compounds and vehicle were filtered through a 0.22 

μm syringe filter prior to administration. 

 

Animals and experimental design. All animal procedures were approved by the West 

Virginia University Animal Care and Use Committee prior to experimentation and abided 

by ARRIVE 2.0 guidelines (Percie du Sert et al., 2020). Female Sprague-Dawley rats (22–

24 months) were acquired from our aging colony located at Hilltop Laboratories 

(Scottdale, PA) and housed in the West Virginia University animal facility under 12 h light-

dark conditions with food and water available ad libitum. Upon arrival, rats were randomly 

assigned to one of four treatment groups (vehicle, NL-1 (0.25 mg/kg; i.v.), NL-1 (10 mg/kg; 

i.v.) or NL-1 NP (0.25 mg/kg; i.v.) at one of two time points (24 h (n = 5 rats/group) or 72 

h (n = 3–4 rats/group)). A sham group was included for 4-HNE studies (n = 3) and a naïve 

group was included for the iron accumulation study (n = 3). Rats at 24 h after tMCAO 

were assessed for changes in neurological function, infarct volume and hemispheric 

swelling, while rats at 72 h after tMCAO were qualitatively assessed for changes in IgG 

extravasation (a marker of BBB disruption), 4-HNE, a marker of lipid peroxidation or 

TUNEL positive cells, a marker of cell death. To reduce bias and improve scientific rigor, 
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dose administered was randomly assigned, surgeon was blinded to treatment groups, 

immunohistochemistry was visualized and assessed separately by 2 investigators blinded 

to treatment groups and data analysis was performed by investigator blinded to treatment 

groups. 

 

MCAO procedure. Using aged (22–24 months) female Sprague-Dawley rats, ischemic 

brain injuries were induced on anesthetized (2% isoflurane) rats using a tMCAO model of 

ischemic stroke as previously described (DiNapoli et al., 2008, 2010; Kelly et al., 2009; 

Tan et al., 2013, 2015). Briefly, a 4–0 suture (#403956; Doccol Corp; Sharon, MA) was 

inserted through the internal carotid artery into the right MCA to produce an ischemic 

brain injury. Suture was removed after 2 h of ischemia to allow for reperfusion of the 

infarcted area. After surgery, rats were administered 0.5 ml saline (i.p.) for fluid 

replenishment and bupivacaine (1%; Sigma Chemicals; St. Louis, MO) was injected (s.c.) 

at incision sites for pain relief. Rats were housed singly on fresh bedding with moistened 

food and water placed on the floor of the cage overnight for ease of access. Laser Doppler 

was used to establish relative cerebral blood flow (CBF) baseline and monitor for changes 

in CBF over the 2 h ischemia. Inclusion/exclusion criteria were: (1) rat experienced less 

than a 75% reduction in CBF from baseline after suture insertion; (2) rat experienced 

restoration of CBF less than 80% of baseline upon reperfusion; (3) rat died before 

assigned time point (age-related or MCAO-related); (4) perforation of cerebrovasculature 

during suture insertion; (5) tumor present in location that prohibited successful MCAO 

surgery; (6) rat placed on clinical call by West Virginia University vet staff after arrival but 

before MCAO. 
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Neurologic outcomes. Neurological functional assessments were carried out by 

investigators blinded to treatment groups using standard operating procedures in the 

WVU rodent behavior core. A modified Neurological Severity Scores (mNSS) and a 

health/sickness screen were performed on rats (n = 12–13 rats per treatment) at 24 h 

post-MCAO to evaluate impairments in motor, sensory, balance and reflex measures 

during the acute period recovery following tMCAO, as previously described (Zhang et al., 

2002). The scoring range was from 0 to 20 points for the health/sickness behavior screen 

and 0 to 18 points for the mNSS, with higher scores indicative of more severe impairment 

(See Table 5.1 and 5.2). 

 

Infarct volume and hemispheric swelling measurement. At 24 h after tMCAO, aged 

female rats (5 rats per treatment) were anesthetized with 2% isoflurane, euthanized by 

cardiac perfusion with 1× PBS, decapitated, brains removed and sliced coronally at 2 mm 

intervals. Sections were incubated in 2% 2,3,5-triphenyltetrazolium chloride (TTC; Sigma 

Chemicals) for 20 min at 37 °C. Following TTC staining, infarct volumes were quantified 

according to method previously described (Isayama et al., 1991). For anterior and 

posterior side of each brain section, ischemic area, ipsilateral area and contralateral area 

were outlined and infarct volume was calculated. Corrected infarct volumes were 

calculated to avoid overestimation of infarct size using the equation: IV = (LA-[RA-RI]) x 

d, where LA = area of left hemisphere (mm2), RA = area of right hemisphere (mm2), RI 

= infarcted area (mm2) and d = slice thickness (2 mm). Hemispheric swelling (%) was 

calculated, as an indicator of edema formation, according to previously described method 
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(Isayama et al., 1991). Briefly, hemispheric swelling = (RV-LV) / LV. X 100%, where RV 

= volume of right hemisphere (mm3) and LV = volume of left hemisphere (mm3). 

 

Brain extraction, fixing and sectioning for microscopy studies. Rats (3–4 rats per 

treatment) were deeply anesthetized with inhaled 4% isoflurane and transcardially 

perfused with 1× PBS for 10 mins followed by perfusion with 4% paraformaldehyde (PFA) 

for 5 mins before decapitation. The brains were extracted and sectioned using a brain 

matrix. Each 2 mm section was post-fixed in 4% PFA overnight and cryoprotected in 30% 

sucrose for 2 d. Sections were paraffin embedded, sectioned (5 μm) using a microtome 

and plated onto microscope slides. For qualitative assessment, three to four slides 

containing coronal sections from each subject in each treatment group were 

deparaffinized and rehydrated using xylene and gradient ethanol (100%, 95%, 85%, 70%, 

50%) baths. Section preparation and microscopic visualization was carried out as 

described below. Sections were stored at −80 °C until used. For all assessments, 

perilesional areas were determined using H&E-stained adjacent sections. 

 

Iron content in the brain after tMCAO. At 72 h following tMCAO, female aged rats were 

evaluated for iron content in the brain using brightfield microscopy of Perl's stained 

sections with 3,3′ diaminobenzidine (DAB) enhancement. Re-hydrated sections were 

rinsed three times in 0.1× PBS for 5 min and then stained in 1% potassium ferrocyanide/ 

0.1 N HCl for 40 min. Sections were rinsed three times in distilled water for 5 min and 

then incubated in MeOH containing 0.01 M NaN3 and 0.3% H2O2 for 75 min. Sections 

were rinsed twice in 0.1× PBS for 5 min then incubated in 0.025% 3,3’-DAB and 0.005% 
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H2O2 in 0.1 N HCl for 40 min. Reaction was stopped by washing sections in 0.1× PBS. 

Sections were mounted on slides, dehydrated in serial EtOH (25% to 100%) and cleared 

with xylenes. Slides were cover slipped and visualized using an Olympus VS120 slide 

scanning microscope. Once stitched images of brain sections were acquired, 4 images 

of perilesional areas around the infarct from each section were viewed at 20× 

magnification and non-heme iron visualized as dark brown/black granular staining. 

 

Qualitative assessment of BBB impairment after tMCAO. At 72 h following tMCAO, 

female aged rats were evaluated for changes in BBB extravasation of IgG using 

immunohistochemistry. For IgG assessment of BBB leakage, re-hydrated sections were 

fixed in 100% methanol for 3 min and then washed in 1× PBS. Endogenous peroxidases 

were quenched by incubating sections in 3% v/v hydrogen peroxide in 1× PBS with 4% 

v/v horse serum for 30 min. Sections were then washed 3 times in 1× PBS. Subsequently, 

brain sections were permeabilized in 1% w/v TritonX-100 in PBS with 4% horse serum 

for 1 h followed by washing 3 times in 1× PBS. Brain sections were stained for IgG by 

incubating sections in horseradish peroxidase linked rat anti-IgG (1:500; HAF005; R&D 

Systems; Minneapolis, MN) in 1× PBS with 4% horse serum for 2 h. Sections were 

washed 3 times with 1× PBS. After staining, slides were cover slipped using Flouromount-

G (Southern Biotech; Birmingham, AL) and allowed to dry prior to imaging. Slides were 

visualized by bright field microscopy using an Olympus MVX10 microscope (Pittsburgh, 

PA). 
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Qualitative assessment of lipid peroxidation and cell death after tMCAO. At 72 h 

following tMCAO, aged female rats were evaluated for lipid peroxidation and apoptosis 

using immunohistochemistry. 

For assessment of lipid peroxidation, re-hydrated brain sections were fixed in 100% 

methanol for 3 min and washed in 1× PBS. Brain sections were permeabilized using 1% 

Triton X-100 in PBS with 4% horse serum for 1 h followed by washing 3 times in 1× PBS. 

Brain sections were immunostained using a primary antibody for 4-HNE, a marker of lipid 

peroxidation, (1:200; mouse, MAB3249; R&D Systems) and then incubated in the dark 

overnight at 4 °C. The following day, the primary antibody was removed and slides were 

washed 3 times in 1× PBS, prior to secondary antibody incubation. Sections were 

incubated in secondary antibody (anti-mouse AlexaFluor 568 (1:1000; Invitrogen) for 2 h 

in the dark at room temperature, washed 3 times in 1× PBS, cover slipped using 

Flouromount-G with DAPI and imaged using an MIF Olympus Slide Scanner with a 20× 

objective. 

Apoptosis was assessed via terminal deoxynucleotidyl transferase dUTP nick end 

labeling (TUNEL) using a TUNEL system kit (DeadEnd™ Fluorometric; Promega) 

according to manufacturer's instructions. The re-hydrated sections were washed in 0.85% 

NaCl for 5 min followed by 1× PBS for 5 min. For apoptosis detection, the slides were 

fixed with 4% PFA for 15 min followed by washing with 1× PBS two times for 5 min each. 

The sections were permeabilized using 100 μl of Proteinase K solution for 10 min, washed 

with 1× PBS for 5 min, fixed again in 4% PFA for 15 min and then washed with 1× PBS 

for 5 min. Brain sections were allowed to equilibrate using 100 μl of equilibration buffer 

for 10 min followed by labeling using 50 μl of TdT reaction mix containing nucleotide mix 
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and rTdT enzyme for 1 h at 37 °C in a dark, humidified chamber. After incubating, the 

reaction was stopped using 2xSSC for 15 min, followed by washing 3 times with 1× PBS 

for 5 min. Finally, slides were mounted using the ProLong™ Glass Antifade Mounting 

media with NucBlue™ stain containing DAPI and visualized using a Zeiss LSM 710 

confocal microscope using 40× objective with constant exposure time for each marker in 

all analyzed sections. 

 

Microvessel isolation and brain distribution of NL-1 and NL-1 NP. To determine the 

distribution of NL-1 and NL-1 NP into the brain, naïve rats were injected with NL-1 (10 

mg/kg) or NL-1 NP (0.25 mg/kg) intravenously through the tail vein. After 1 h, rats (n = 3 

rats per treatment) were anesthetized using 4% isoflurane, euthanized and brain 

collected. The cerebellum olfactory bulbs, meninges and choroid plexus were discarded 

and the left and right cortices underwent microvessel isolation as previously described 

(Huber et al., 2002). Briefly, right and left cortex of each brain was dissected, weighed, 

placed into a Dounce homogenizer with 4 ml of microvessel isolation buffer and 

homogenized using 10 strokes with the pestle. The brain homogenate was centrifuged at 

500 xg at 4 °C for 5 min to remove debris. Four ml of 26% dextran was added to the brain 

homogenate and vortexed. The brain homogenate was centrifuged at 10,000 xg at 4 °C 

for 30 min. One ml of the brain supernatant was placed into a 1.5 ml microfuge tube to 

serve as microvessel-depleted brain homogenate. The remaining supernatant was 

discarded and 4 ml of microvessel isolation buffer with 0.5% bovine serum albumin (BSA) 

was added to resuspend the vascular pellet and filter the pellet through a 100 μm mesh 

strainer. The filtered pellet solution was then filtered over a 40 μm mesh strainer and the 
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vessels on the strainer were collected with 8 ml of microvessel isolation buffer with 0.5% 

BSA. The resuspended pellet was centrifuged at 5000 xg at 4 °C for 10 mins. The 

supernatant was discarded and microvessel pellet resuspended in 1 ml of microvessel 

isolation buffer with 0.5% BSA and placed into a pre-weighed 1.5 ml microfuge tube. The 

tube was then centrifuged at 5000 xg at 4 °C for 5 min. Tube weight was recorded and 

isolated microvessel pellet was resuspended in 1 ml of microvessel isolation buffer. All 

samples were stored at −80 °C until used. 

Once all samples were obtained, samples were thawed and sonicated 3 times for 20 s. 

For NL-1 isolation from samples, an equivalent volume of ethyl acetate was added, 

vortexed and centrifuged at 5000 xg at 4 °C for 10 min. The ethyl acetate fraction was 

then dried under flowing air and resuspended in 200 mL of acetonitrile for LC-MS/MS 

quantification. Samples were analyzed using an ABSciex 5500 LC-MS/MS and compared 

to a standard curve as described earlier (Culman et al., 2012). The standard curve 

regression (r2) for this study was 0.99. 

 

Statistical analysis. All data were acquired and analyzed by investigators blinded to 

treatment groups. Data were reported as mean ± standard deviation (SD). Comparison 

of mortality between groups was analyzed using the log-rank Mantel-Cox test with live 

denoted as 0 and dead as 1. Infarct volume and hemispheric swelling were compared 

between groups using one-way analysis of variance (ANOVA) with significance 

determined using Tukey's HSD post hoc analysis. Health/sickness behavior screen and 

mNSS were compared between groups using one-way ANOVA with repeated measures 

(before and after MCAO) with significance determined using Tukey's multiple 
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comparisons post hoc analysis. TUNEL positive cells that co-localized with DAPI positive 

nuclei in the ipsilateral hemisphere were counted in selected area of the 40× micrograph 

for each rat in each treatment. The total number of TUNEL positive cells from each 

micrograph for each rat was combined and a mean of TUNEL positive cells for all rats 

within a treatment were analyzed and plotted. Level of significance was set at p < 0.05. 

 

RESULTS 

Mortality and exclusion of rats from study. A total mortality rate of 30% from 

experimental ischemic stroke with reperfusion was observed in this study with a total of 

76 rats (23 vehicle, 22 NL-1 (0.25 mg/kg), 15 NL-1 (10 mg/kg) and 16 NL-1 NP) were 

needed to complete the study. We used 49 rats (n = 12 for vehicle, NL-1 (0.25 mg/kg) 

and NL-1 (10 mg/kg) and n = 13 for NL-1 NP) in the study and excluded 27 rats from the 

study (21 for deaths before assigned time point after tMCAO (mortality) and 6 for other 

reasons). Mortality rates at 24 h resulting from tMCAO with reperfusion for the four 

treatment groups were: vehicle (45%; 10 of 22)), NL-1 (0.25 mg/kg) (40% (8 of 20)), NL-

1 (10 mg/kg) (14%: 2 of 14)) and NL-1 NP (7%; 1 of 14). A significant difference (p = 

0.007) in mortality was noted between treatment groups. Pairwise comparison showed 

significant differences (p < 0.01) between both the NL-1 (10 mg/kg) and NL-1 NP groups 

as compared to the vehicle group. Additionally, the NL-1 (10 mg/kg) and NL-1 NP groups 

showed a significant (p < 0.01) decrease in mortality compared to the NL-1 (0.25 mg/kg) 

group. No differences (p > 0.05) were observed between the NL-1 (0.25 mg/kg) and 

vehicle groups or between the NL-1 (10 mg/kg) and NL-1 NP groups. For the 6 rats 

excluded from the study for other reasons, 1 from the NL-1 (10 mg/kg) group was 
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excluded for having a tumor in a location that infringed on MCAO surgery, 3 (2 NL-1 (0.25 

mg/kg) and 1 NL-1 NP) were assigned into treatment groups but excluded due to vet staff 

issuing a clinical call before an MCAO surgery was performed and 2 (1 vehicle and 1 NL-

1 NP) were excluded for not meeting inclusion/exclusion criteria of achieving a ≥ 75% 

decrease in CBF from baseline. 

 

Changes in neurological functional assessment post-MCAO. Using the mNSS and 

health/sickness behavior screen, we assessed the effects of NL-1 administration on 

neurological recovery at 24 h after tMCAO. Results indicated no difference (p > 0.05) in 

mNSS scores between either NL-1 (0.25 mg/kg) or NL-1 (10 mg/kg) and vehicle treatment 

group (Figure 5.2A). A significant difference (p < 0.05) was found for treatment with NL-1 

NP and vehicle treated rats. No difference (p > 0.05) in mNSS between NL-1 (10 mg/kg) 

and NL-1 NP was shown (Figure 5.2A). A significant (p < 0.05) difference in the 

health/sickness behavior screen was noted between both NL-1 (10 mg/kg) and NL-1 NP 

when compared to vehicle treated rats (Figure 5.2B) but no difference (p > 0.05) between 

NL-1 (0.25 mg/kg) and vehicle treated rats was found (Figure 5.2B). 

 

Changes in infarct volume and hemispheric swelling post-MCAO. We assessed 

effects of NL-1 administration on infarct volume and hemispheric swelling in aged female 

rats at 24 h after 2 h tMCAO with reperfusion. Using 2 mm brain sections stained in TTC 

(Figure 5.3A), we determined that NL1 (10 mg/kg) and NL-1 NP treated rats had 

significantly reduced infarct volumes by 45% and 69%, respectively, when compared to 

vehicle treated rats (Figure 5.3B). No difference (p > 0.05) in infarct volume was observed 
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between NL1 (0.25 mg/kg) and vehicle treated rats (Figure 5.3B). A significant decrease 

in hemispheric swelling of 35% in NL1 (10 mg/kg) and 59% in NL-1 NP treated rats was 

demonstrated when compared to vehicle treated rats (Figure 5.3C). 

 

Iron accumulation in the brain post-MCAO. Using Perl's stained brain sections with 

DAB enhancement, we evaluated the effect of NL-1 and NL-1 NP treatment on 

accumulation of non-heme iron in the brain at 72 h post-tMCAO. Figure 5.4A is a 

representative micrograph of iron staining in the naïve brain of an aged rat. As the figure 

depicts, there are a few areas of iron staining localized within neurons and around blood 

vessels, which is a typical observation seen in aged rodents (Hagemeier et al., 2014). 

Figure 5.4B illustrates a profound increase in iron accumulation in the brain at 72 h post-

MCAO in rats treated with vehicle. Rats treated with low dose of NL-1 (0.25 mg/kg) 

showed increased iron accumulation in perilesional areas surrounding the infarct at levels 

comparable to vehicle treated rats (Figure 5.4C). Figure 5.4D and E reveal a marked 

decrease in iron staining in brain sections surrounding the infarct at 72 h post-stroke in 

rats treated with NL-1 (10 mg/kg) and NL-1 NP, respectively. 

 

Changes in BBB permeability post-MCAO. Changes in BBB permeability were 

assessed at 72 h after post-MCAO using IgG immunostaining in brain sections. After the 

brain was perfused, the only detectable IgG would be due to IgG that left the vascular 

space. Figure 5.5 demonstrates a marked reduction in IgG levels after treatment with NL-

1 (10 mg/kg) and NL-1 NP as compared to vehicle. In contrast, NL-1 (0.25 mg/kg) showed 

no reduction in IgG staining. To quantitatively assess improved BBB permeability 
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observed in the NL-1 (10 mg/kg) and NL-1 NP treated rats at 72 h post-stroke, we 

measured extravasation of sodium fluorescein (230 Da) and albumin (~65 kDa) using 

fluorimetry analysis of brain homogenate. Results indicated no difference (p > 0.05) in 

transient BBB permeability to sodium fluorescein or albumin at 72 h post-stroke in any of 

the treated groups as compared to sham rats.  

 

Changes in lipid peroxidation post-MCAO. At 72 h after tMCAO, levels of lipid 

peroxidation were visualized by fluorescent immunostaining using 4-HNE as a protein 

adduct marker. Figure 5.6 shows that 4-HNE staining was noticeably decreased in aged 

rats treated with NL-1 (10 mg/kg) or NL-1 NP. NL-1 (0.25 mg/kg) did not provide 

noticeable protection against lipid peroxidation as indicted by 4-HNE staining when 

compared to vehicle treated rats. 

 

Changes in TUNEL positive cells post-MCAO. At 72 h after tMCAO, the number of 

TUNEL positive cells was markedly reduced in the NL-1 (10 mg/kg) and NL-1 NP treated 

rats as compared to vehicle treated rats (Figure 5.7A). No change in the number of 

TUNEL positive cells was visualized between NL-1 (0.25 mg/kg) treated rats and vehicle 

treated rats (Figure 5.7A). Aggregate counting of TUNEL positive cells demonstrated that 

treating rats with NL-1 (10 mg/kg) or NL-1 NP significantly (p < 0.0001) reduced the 

number of TUNEL positive cells in rats as compared to vehicle and NL-1 (0.25 mg/kg) 

treated rats (Figure 5.7B). Vehicle and NL-1 (0.25 mg/kg) treated rats showed a 

significantly (p < 0.0001) higher number of TUNEL positive cells as compared to sham 

rats (Figure 5.7B). No difference (p > 0.05) in TUNEL positive cells was measured 
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between vehicle and NL-1 (0.25 mg/kg) treated rats. No difference (p > 0.05) in TUNEL 

positive cells was shown for NL-1 (10 mg/kg) or NL-1 NP treated rats when compared to 

sham rats (Figure 5.7B). 

 

NL-1 concentration in rat brain microvessels. A starting bolus dose of NL-1 or NL-1 

NP was administered through the tail vein to provide a starting NL-1 blood concentration 

of 3.7 μM (NL−1) and 0.09 μM (NL-1 NP) for distribution. At 1 h after administration, the 

brain was excised and microvessels were isolated from the brain parenchyma. Results 

showed the brain concentration of NL-1 to be 287 ± 125 ng/ml in the NL-1 (10 mg/kg) 

treated rats and 143 ± 29 ng/ml in the NL-1 NP treated rats. The concentration of NL-1 in 

the isolated microvessels was 55 ± 10 ng/ml in NL-1 treated rats and 1693 ± 671 ng/ml 

in NL-1 NP treated rats. 

 

DISCUSSION 

This was the first study to investigate the use of a mitoNEET ligand as an ischemic 

stroke therapeutic in aged animals. Results from the study demonstrate that the 

mitoNEET ligand, NL-1, significantly improved survival, reduced ischemia/reperfusion 

injury at 24 h and decreased accumulation of parenchymal protein extravasation, lipid 

peroxidation and cell death around the infarct area at 72 h after a 2 h ischemia with 

reperfusion. Moreover, this study revealed that by nano-encapsulating NL-1 using PGLA, 

an equivalent degree of protection as seen with NL-1 at 10 mg/kg could be produced 

using a 40-fold lower dose of (0.25 mg/kg). 
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MitoNEET is an outer mitochondrial membrane protein belonging to the zinc finger 

protein family. The presence of a [2Fe-2S] cluster in the dimer allows for mitoNEET to act 

as a redox active sensor that modulates mitochondrial bioenergetic function (Saralkar et 

al., 2021). Previous studies showed that if mitoNEET were reduced in vivo, mitochondrial 

deficits were observed, including disrupted oxidative phosphorylation, electron transport 

chain deficits, increased ROS (hydrogen peroxide and superoxide) production and 

ultrastructural changes in the mitochondrial cristae (Maier et al., 1998; Wiley et al., 2007). 

These changes in mitochondrial function were accompanied by reduced expression of 

the antioxidant defense proteins, superoxide dismutase 2 and glutathione peroxidase 

(Geldenhuys et al., 2021). On the other hand, transgenic overexpression of mitoNEET 

provided for improved mitochondrial bioenergetics, reduced inflammation and decreased 

ROS production, as has been shown in other aged models of disease (Geldenhuys et al., 

2017; Chang et al., 2018; Joffin et al., 2021). 

The mitoNEET ligand NL-1 was designed as a tool compound to study mitoNEET 

physiology without PPAR-γ agonist activity (Colca et al., 2004, 2013; Kusminski et al., 

2012; Divakaruni et al., 2013; Nadareishvili et al., 2019). NL-1 was found to provide tissue 

sparing effects in a mouse model of traumatic brain injury, an effect which was lost in 

mitoNEET knockout (−/−) mice, as demonstrated by both immunohistochemistry and 

behavioral measures; thus, supporting a mitoNEET-based mechanism of action (Yonutas 

et al., 2020). Furthermore, mitoNEET ligand, TT01001 (Takahashi et al., 2015), was 

recently shown to provide neuroprotection against subarachnoid hemorrhage in a rodent 

model by preventing mitochondrial dysfunction (Shi et al., 2020). These findings provide 

a robust scientific foundation for evaluating mitoNEET as a therapeutic target using a 
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clinically relevant preclinical ischemic stroke model. In a previous study, we reported that 

NL-1 administration provided protection against ischemia/reperfusion injury post-stroke 

in young male mice (Saralkar et al., 2021). Furthermore, secondary off-target 

pharmacology revealed that NL-1 did not appreciably interact with known kinases or 

GPCR targets (Saralkar et al., 2021). These findings prompted us to evaluate NL-1 in a 

model of cerebral ischemia/reperfusion injury using aged female rats. Since stroke is an 

age-associated disease, it is critical to evaluate the effectiveness of any novel therapeutic 

agent in an aged model of disease. As we have previously reported along with others, 

brain injury and recovery after ischemic stroke is markedly different between aged and 

young animals (DiNapoli et al., 2008, 2010; Kelly et al., 2009; Tan et al., 2013, 2015; 

Tang et al., 2016; Spychala et al., 2018; Balseanu et al., 2020; Davis et al., 2020; Panta 

et al., 2020; Banerjee et al., 2021). In the current study, we found that NL-1 was able to 

provide significant protection in aged female rats against cerebral tissue damage induced 

by tMCAO with reperfusion. A caveat to our findings is that we only evaluated aged female 

rats due to reduced sexual dimorphism in weight between aged females as compared to 

aged males. Whereas, young males are often preferred over young females due to 

confounding issues with estrus cycle, in studies using aged females, which are 

reproductively senescent, they are more comparable in weight to younger females; thus, 

reducing confounding factors of needing to adjust surgical parameters (i.e. filament 

diameter and length, percentage of anesthesia, volume of fluid replacement) as would 

need to be done in comparative studies between aged female and aged male rats. In 

follow-up experiments, aged male rats will be included to evaluate for sex as a biological 

variable, as several recent studies suggest important differences in ischemic stroke 
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progression and recovery are sex dependent (Manwani et al., 2015; Cohan et al., 2019; 

Seifert et al., 2019; El-Hakim et al., 2021). As an aside, we have now reported positive 

findings of NL-1 as a central acting mitoceutical in young and aged, male and female, 

mice and rats and following ischemic stroke and traumatic brain injury; thus, suggesting 

that modulation of mitoNEET effectively reduces mitochondrial dysfunction post-

neurological injury, regardless of these variables (Yonutas et al., 2020; Saralkar et al., 

2021). 

A common measure of neuroprotection following preclinical stroke is functional 

improvement as measured using a composite neurological scale. These measures are 

typically performed starting at 24 h after MCAO and can be as simple as the Bederson 

scale (Bederson et al., 1986), which evaluates forearm flexion, resistance to lateral push 

and circling to more sophisticated neurological scales, such as the mNSS, which 

evaluates multiple neurological parameters, including motor, sensory, reflex and balance 

(Zhang et al., 2002). Unfortunately, these neurological scales, which rely heavily on 

changes in sensorimotor performance, have proven to be ineffective at discerning post-

stroke improvements in stroke outcomes in aged rodents (Turner et al., 2012). The 

sickness behavior scale reduces the impact that diminished motor function and 

coordination has on post-stroke functional assessments in aged rodents. The sickness 

behavior scale tracks changes in physical status (body weight/temperature and 

food/water consumption), self-care (appearance, grooming, posture) and social 

parameters (home cage activity and social interactions). By tracking changes in these 

measures, more subtle changes in neural injury progression and recovery can be 

discerned even by aged rodents. In this study, scores on the mNSS indicated that only 
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the NL-1 NP group displayed any improved functional outcome at 24 h post-tMCAO with 

reperfusion; however, the overall improvement in health of the rat at 24 h post-tMCAO 

was potentially masked in the NL-1 (10 mg/kg) and NL-1 NP treatment groups as motor 

and balance assessments were obscured by the lack of movement and hesitancy 

observed in the aged rats even before MCAO. The sickness scale scores showed a more 

robust improvement post-stroke for both the NL-1 (10 mg/kg) and NL-1 NP groups as 

compared to vehicle treated rats. 

NL-1 has been previously reported to provide protection against oxygen-glucose 

deprivation, mimicking reperfusion injury, in murine vascular endothelial cells (bEnd3 

cells) (Saralkar et al., 2020). The bEnd3 cells are routinely used as a BBB model, as they 

form similar tight junctions and selective permeability of small organic molecules 

(Geldenhuys et al., 2015; Dubey et al., 2019). In our stroke model using aged rats, we 

found similar evidence of BBB augmentation with use of NL-1. The vascular marker, IgG, 

was elevated at 72 h after experimental stroke with reperfusion in the brains of rats treated 

with vehicle, which is indicative of increased IgG accumulation due to BBB disruptions 

over the 72 h. NL-1 and NL-1 NP treatments attenuated extravasation of IgG at the BBB, 

suggesting that the protection seen after ischemic stroke may, in part, be due to 

preservation of BBB function. Increased hemispheric swelling, as indicated by IgG 

accumulation in the infarct, post-stroke has been associated with deleterious effects on 

neuronal survival (DiNapoli et al., 2008), as well contributing to the vascular dementia 

seen in patients who survive a stroke (Nwafor et al., 2019; Sarvari et al., 2020). Due to 

NL-1 being shown to have moderate BBB permeability in the mouse, we formulated NL-

1 into PLGA-based nanoparticles to improve tissue distribution due to a short half-life (<3 
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h) (Saralkar et al., 2020, 2021). The promising results in vitro led us to evaluate the impact 

formulation of NL-1 into a NP would have on preventing ischemia/reperfusion post-stroke. 

NPs have been shown to improve the neuroprotective activity of select agents by several 

other groups, providing support for pursuing this avenue of drug delivery to the CNS 

(Mdzinarishvili et al., 2013). We found that NL-1 NP allowed for a 40-fold reduction in 

drug dosing, from 10 mg/kg to 0.25 mg/kg with equivalent protection post-stroke. The 

improved outcomes observed with the lower dose NPs suggest that NL-1 is either not 

reaching the CNS in sufficient concentration as in vitro studies indicated or delivery to 

endothelial cells that comprise the BBB is more substantive in the mechanism of action 

than initially postulated. Since mitochondrial dysfunction in cerebral microvessels has 

been shown to play a role in BBB breakdown and increased permeability, targeting 

mitochondrial dysfunction as a therapeutic target to improve bioenergetics could be a 

novel approach for ischemic stroke treatment. While evidence suggests that NL-1 

improves endothelial cell function, it is also possible that the therapeutic effect of NL-1 

occurs at other brain cell types, such as neurons or astrocytes, and that improvements in 

BBB functional integrity and diminished edema formation are an indirect beneficiary of 

these effects; Prior data indicates that cerebral endothelial cells are almost 4 times more 

susceptible than neuronal cells and 16 times more susceptible than astrocytes to iron-

induced mitochondrial dysfunction (Gaasch et al., 2007); thus, the findings that NL-1 and 

NL-1 NP were found in high concentration in the isolated cerebral microvessels, 16% of 

total brain NL-1 concentration in NL-1 (10 mg/kg) treated rats and 92% of total brain NL-

1 concentration in NL-1 NP treated rats, may point to improved endothelial cell function 

playing a role in the beneficial effects of NL-1 treatment post-stroke. Future studies will 
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probe, at a mechanistic level, how the modulation of mN within cerebral endothelium 

impacts mitochondrial bioenergetics and antioxidant capacity, especially as it applies to 

barrier functions and gain a clearer understanding of the pharmacokinetic profile of 

nanoencapsulated NL-1. 

Mitochondrial dysfunction occurring following ischemic stroke with reperfusion 

results in a significant increase in lipid peroxidation. A primary driver of cellular lipid 

peroxidation and an indicator of mitochondrial dysfunction is excessive iron accumulation 

in the brain. Results of our study, show a profound increase in iron accumulation in the 

perilesional area in vehicle and NL-1 (0.25 mg/kg) treated rats as compared to naïve 

control rats. This marked increase was effectively mitigated in rats treated with NL-1 (10 

mg/kg) or NL-1 NP; thus, suggesting that mitochondrial performance in cells near the 

infarct were improved with NL-1 treatment. One of the byproducts of oxidative stress is 4-

HNE, which contains aldehyde functionality to form protein adducts (Osakada et al., 

2021). Proteomic analysis has indicated that mitoNEET, which is rich in lysines, binds 

covalently with 4-HNE resulting in changes in the redox character of the [2Fe-2S] clusters 

(Arnett et al., 2019). When rats were treated with NL-1 (10 mg/kg) or NL-1 NP, there was 

a noticeable reduction in 4-HNE staining. Since elevated levels of 4-HNE contribute to 

neuronal cell loss, this reduction in 4-HNE observed may be a prognostic biomarker of 

the overall tissue sparing seen with NL-1 and NL-1 NP treatment. 

To limit confounding factors, such as increased hemorrhage risk and spontaneous 

recanalization, these studies targeted a 2 h ischemic brain injury with reperfusion. Thus, 

these studies modeled an ischemic brain injury eligible for recanalization with tissue 

plasminogen activator, which accounts for 3–7% of stroke patients. Future studies will be 
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performed to establish applicable therapeutic time window out to at least 6 h after onset 

of ischemia. In addition, we will probe the effects of permanent occlusion (majority of 

ischemic strokes) on NL-1 efficacy; however, we postulate the effects will be diminished 

based on prior results of permanent MCAO in young male mice (Saralkar et al., 2021). 

Finally, future studies will extend the post-stroke evaluation period out to several weeks 

to months to evaluate long-term recovery. Based on the results of these studies, 

especially the marked reductions in mortality and edema observed, we posit that it is 

highly likely these changes in the degree of ischemic brain injury will not be transient but 

will represent marked improvements in recovery that extend into the chronic phase of 

post-stroke recovery.  

 

CONCLUSION 

In this study, we report for the first time that the therapeutic use of the mitoNEET 

ligand NL-1 at a dose of 10 mg/kg resulted in a marked improvement in survival, 

attenuated infarct volume and reduced hemispheric swelling at 24 h after tMCAO with 

reperfusion in aged female rats. Moreover, when NL-1 was encapsulated in PGLA 

nanoparticles, this therapeutic benefit was again produced at a dose that was 40-fold less 

than unencapsulated NL-1. The improved measures of functional outcome using a 

sickness scale along with improved BBB function and reduced indicators of oxidative 

stress reinforce the therapeutic potential of probing mitoNEET for treatment of ischemic 

stroke with reperfusion. Showing the robust efficacy of NL-1 in aged rats is particularly 

important as ischemic stroke is a disease of the elderly and the prior failures of many 

stroke neuroprotectants was due, in part, to use of animal models that did not reflect the 
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population most vulnerable to ischemic stroke. Taken together, mitoNEET represents a 

novel drug target in reperfusion-injury post stroke that warrants further investigation. 
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Figure 5.1. Structure of the mitoNEET ligand, NL-1.  
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Figure 5.2. Neurological assessment of NL-1 treatment at 24 h post-tMCAO with 
vehicle, NL-1 (0.25 mg/kg), NL-1 (10 mg/kg) and NL-1 nanoparticles (0.25 mg/kg). (A) 

mNSS behavior and (B) health/sickness scale (⁎p < 0.05). Data reported as mean ± S.D. 
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Figure 5.3 Effect of NL-1 treatment on infarct volume and hemispheric swelling. (A) 
Representative TTC stained brain sections for vehicle, NL-1 (0.25 mg/kg), NL-1 
(10 mg/kg) and NL-1 nanoparticles. Effect of NL-1 and NL-1 nanoparticle treatment on 

(B) infarct volume and (C) hemispheric swelling at 24 h after tMCAO (⁎ denotes difference 

compared to vehicle, # denotes difference compared to NL-1 (0.25 mg/kg) and $ denotes 

difference compared to NL-1 (10 mg/kg); ##,$$p < 0.01, ⁎⁎⁎, ###p < 0.001, ⁎⁎⁎⁎, 

####p < 0.0001). (n = 5 rats/treatment). Data reported as mean ± S.D. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/nanoparticle
https://www.sciencedirect.com/topics/medicine-and-dentistry/middle-cerebral-artery-occlusion
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Figure 5.4. Effect of NL-1 on iron accumulation in the brain. At 72 h following tMCAO, 
iron content in perilesional areas of the brain were visualized in sections stained using 
Perl's method with DAB enhancement. All brain sections were assessed in comparison 
to (A) sham and (B) vehicle treated rats. Treatment groups consisted of (C) NL-1 (0.25 
mg/kg), (D) NL-1 (10 mg/kg) and (E) NL-1 NP treated rats. Sections were visualized at 
20× using a brightfield microscope. n = 3–4 rats/treatment. 
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Figure 5.5. Qualitative assessment of NL-1 treatment on IgG extravasation. At 72 h 
following tMCAO, extravasation of IgG in the brain was visualized in sections using 
immunohistochemistry. Brain sections were assessed in comparision to (A) vehicle 
treated rats. Treatment groups consisted of (B) NL-1 (0.25 mg/kg), (C) NL-1 (10 mg/kg) 
and (D) NL-1 NP treated rats. Sections were visualized at 20× using a brightfield 
microscope. N=3-4 rats/treatment. 
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Figure 5.6. Qualitative assessment of NL-1 treatment on 4-HNE protein adduct 
staining. At 72 h following tMCAO, lipid peroxidation in the brain was visualized using 
immunofluorescence for 4-HNE. Brain sections were assessed in comparison to (A) sham 
and (B) vehicle treated rats. Treatment groups consisted of (C) NL-1 (0.25 mg/kg), (D) 
NL-1 (10 mg/kg), and (E) NL-1 NP. Sections were visualized at 20× using an 
epifluorescent microscope. n = 3–4 rats/treatment. 
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Figure 5.7. Effect of NL-1 treatment on apoptosis. At 72 h following tMCAO, cell death 
(apoptosis) in the perilesional areas surrounding the core of the infarct were (A) visualized 
using an immunofluorescent TUNEL staining kit. Brain sections were assessed in 
comparison to vehicle treated rats. Treatment groups consisted of NL-1 (0.25 mg/kg), NL-
1 (10 mg/kg), and NL-1 NP. Sections were visualized at 40× using a confocal microscope. 
n = 3–4 rats/treatment. (B) Quantitation of number of TUNEL positive cells was 
performed. **** denotes p < 0.0001 difference compared to sham. ### and #### denotes 
p < 0.001 and p < 0.0001 difference compared to vehicle treated rats. $$$ denotes p < 
0.001 difference compared to NL-1 (0.25 mg/kg). n = 3–4 rats/treatment. Data reported 
as mean ± S.D.  
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Table 5.1 Health/sickness screen scale 
 
Parameter Observation Score 

General 
Appearance 

Normal  
Groomed, healthy appearing fur, pink mucous membranes and ear lobes 

0 

Mild Abnormal 
Mildly rough/scruffy/dull fur, slightly less well-groomed, light pink mucous membranes/ear lobes, minimal 
porforin staining, slightly squinted eyes 

1 

Moderate Abnormal 
Rough/scruffy fur, piloerection, poor grooming, pale mucous membranes, and ear lobes, squinted eyes 

2 

Severe Abnormal 
Very rough fur, no evidence of grooming, white mucous membranes, and ear lobes, substantial porforin 
staining, severely squinted or closed eyes 

3 

Posture Normal 0 

Slight Hunch 
Spine slightly curved 

1 

Moderate Hunch 
Spine curved, paws slightly under body 

2 

Severe Hunch 
Spine dramatically curved, paws tucked under body, head angled downward 

3 

Body Condition Normal 0 

Thin 
Slight segmentation of vertebrae, dorsal pelvic bones are more prominent, slight dehydration (skin pinch 
test response is slightly delayed) 

1 

Emaciated 
Prominent vertebrae and skeletal bones that are readily palpable, dehydrated (skin pinch test results in skin 
remaining tented) 

2 

Respiration Normal 0 

Altered 
Increased rate and/or effort 

1 

Abnormal/Distressed 
Very increased rate or gasping/labored breathing, irregular 

2 

Body 
Temperature 

Normal/No change 0 

1-4 degree C 1 

5-8 degree C 2 

9-12 degree C 3 

Body Weight 0-5% change 0 

5.1-10% change 1 

10.1-15% change 2 

15.1-20% change 3 

> 20.1% change 4 

Spontaneous 
Locomotion/Social 
Interaction 

Normal 
Active and interacting with cage-mate(s) 

0 

Mild Abnormal 
Still spontaneous activity and some peer interaction but reduced 

1 

Moderate Abnormal 
Lethargic (may need probing via tapping on cage or cage tilt) and minimal peer interaction  

2 

Severe Abnormal 
Immobile and no peer interaction 

3 
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Table 5.2: Modified Neurologic Severity Scale (mNSS) 
 

Subtest Score 

1. Reflex test 3 

 Corneal Reflex – lack of eye blink when cornea is touched 1 (0.5/eye) 

 

 Pinna Reflex – lack of head shake when pinna is touched 1 (0.5/ear) 

 

 Startle – lack of jumping, freezing, moving when loud noise is heard 1 

2. Walking test 3 

 Normal 0 

 Inability to walk straight 1 

 Circling/falling toward paretic side  2 

 Immobile (despite probing) 3 

3. Placing test 3 

 Visual- lack of placement 1 (0.5/paw) 

 

 Tactile – lack of placement  1 (0.5/paw) 

 

 Proprioceptive – lack of placement 1 (0.5/paw) 

 

4. Beam balance test 6 

 Balances steadily or traverses beam to clamp 0 

 Grasps sides of beam but is generally steady       1 

 Balances unsteadily, hugs beam and/or 1 limb slips/falls down 2 

 Balances unsteadily, hugs beam, 2 limbs slip/fall down 3 

 Attempts to balance but very unsteady, falls under beam but recovers 4 

 Attempts to balance but spins, clings to underside of beam  5 

 No attempts to balance      6 

5. Inverted test 3 

 Forelimb flexion or limb not moving to aid with balance 1 

 Hindlimb flexion or limb not moving to aid with balance 1 

 Head moved more than 10 degrees from vertical center or persistent spin 1 

Total 18 
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Chapter Six 

GENERAL DISCUSSION 

 

 

 

 

 

 

 

 

 

 

 



 127  

SUMMARY  

In the last decades tremendous advances in the field of biomedical sciences have 

increased the life span of individuals. As a consequence, there is growing number of older 

people (>65 years) living with chronic diseases and disability. In spite of age being the 

most important risk factor for diseases such as cancer, heart disease, neurodegenerative 

conditions, osteoporosis, arthritis, diabetes, sarcopenia and macular degeneration 

(Kirkwood and Tipton, 2017), older patients are generally underrepresented in clinical 

trials. Drugs showing efficacy in younger population may have completely different 

outcomes (adverse reactions) when tested in elderly. This might be due innate irreversible 

physiological alterations occurring due to aging which may ultimately manifest in chronic 

diseases. Therefore, it is pivotal to understand the biology of aging as well as characterize 

the effects of aging in healthy and pathological conditions, which is the focus of this 

dissertation. This knowledge will aid in the drug development process and thus may 

significantly improve the translational potential of novel therapeutic agents for the 

treatment of age-related chronic diseases.  

The process of CNS drug development is challenging and time consuming. The 

success of CNS clinical trials can be improved by gaining a clear understanding of 

pathophysiology of CNS diseases as well as adverse side effects of the drugs on the 

CNS. Additionally, evaluating the efficacy of drugs to cross the BBB is utmost important 

in determining CNS therapeutic outcomes. One of the focus areas of our lab is studying 

the in vivo efficacy of therapeutic candidates using clinically relevant neuronal injury 

models. In the past, we have extensively studied the neuroprotective effects of bryostatin-
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1, a PKC modulator for the treatment of cerebral ischemia and TBI. In vitro and in vivo 

studies conducted by others reported enhanced synaptogenesis, improved cognition, ant-

inflammatory effects. Additionally, bryostatin-1 has shown to be effective in treatment of 

HIV-1 brain infection by eradicating CNS viral reservoirs. Bryostatin-1 has not only shown 

to penetrate the BBB and exert its actions but also has minimal adverse effects at 

therapeutic (low-moderate) doses. Following favorable outcomes in pre-clinical studies, 

bryostatin-1 has recently progressed to human trials for the treatment of MS, AD and 

Fragile X syndrome. 

While age is considered a primary risk factor for neurological diseases/disorders, 

it is also a major determinant in the development and testing of pharmacological 

compounds targeting the CNS by altering the drug exposure and therapeutic outcomes. 

The process of biological aging affects every cell, tissue, and organ leading to anatomical, 

immunological, and physiological changes in our body. Given the importance of structural 

and functional decline in the CNS as well as immunosenescence in impacting 

neurodegeneration, the main goal of this dissertation was to  

1) Characterize the age-related differences on cerebrovascular topology 

2) Characterize the age-related differences on peripheral immune response 

following systemic infection 

3) Test the therapeutic efficacy of a novel ligand NL-1, in the aged rodent model 

of cerebral ischemia reperfusion injury 

This chapter concludes with a brief summary and suggestions for future experiments. 



 129  

Brain vasculature dictates the supply of oxygen and nutrients and is essential for 

normal cellular metabolism. However, with advancing age, the cerebral vascular network 

undergoes structural and functional remodeling affecting the neuronal microenvironment. 

Several studies have proposed that dysfunctional vasculature precedes cognitive decline 

as seen in case of AD. So, we first sought to characterize differences in the morphology 

of cortical vasculature of young versus aged female rats using classical angiographic 

methods. Additionally, we evaluated the complexity of cortical vessel network using 

lacunarity measures. Once we analyzed differences in global cortical vessel structure, we 

also wanted to quantify the degree to which these classic vessel parameters are altered 

in the middle cerebral artery (MCA), the major artery supplying blood to the brain. We 

found reduced vessel density, increased lacunarity and decreased complexity at global 

level as well as at MCA level. The results from this study confirmed that the cerebral 

vasculature structure is modified due to aging which could potentially alter brain perfusion 

contributing to the pathophysiology of age-related neurological disorders.  

After understanding the changes occurring at the cerebrovascular architecture with 

increasing age, we next moved on to quantifying age-related alterations in the peripheral 

immune system. The immune system is vital in maintaining homeostasis and providing 

protection against foreign pathogens. With advancing age, the immune system 

undergoes a remodeling process termed as immunosenescence which contributes to 

increased vulnerability to cancer, autoimmune diseases, and infections. Additionally, 

aged immune system is prone to systemic chronic low-grade inflammation – termed as 

inflamm-aging. Still, what remains unknown is, how the immune system reacts to 

systemic inflammation in aged subjects. Therefore, we wanted to determine the 
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composition of key leukocyte population in circulation as well as spleen due to aging in 

rodents. We also investigated the expression levels of cytokines and chemokines in 

plasma following LPS induced acute systemic inflammation at two different time points -

3 and 24h. Given the importance of spleen in hosting a range of immunological functions, 

we found significant immunosuppression in the spleen of aged female rats irrespective of 

treatment suggesting reduced capacity to retain the immune cells due to aging. We also 

revealed dysregulated cytokine/chemokine levels in the aged animals confirming the 

presence of age-related immunosenescence and inflamm-aging phenotype. Taken 

together, these findings are in line with previous literature and underscore the importance 

of using age-appropriate animals while studying specific diseases. 

Lastly, we wanted to test the therapeutic efficacy of a novel pharmacological agent 

in an age-related neurological disease in vivo. Case in point is cerebral ischemia, which 

disproportionally affects the elderly leading to increased death and disability. Till date, 

reperfusion with tPA remains the golden standard for the treatment of stroke. However, it 

has narrow therapeutic window (3-4.5h after onset) and not everyone is eligible to receive 

the drug. Over the years, several pharmacological agents have been developed and yet 

not a single candidate has shown efficacy in the clinics. Therefore, there exists an urgent 

need to develop therapeutics alone or in combination with tPA for the treatment of 

cerebral ischemia. Mitochondrial dysfunction plays a central role in the 

neurodegeneration following ischemic-reperfusion injury. MitoNEET (mN), an outer 

mitochondrial membrane protein has been shown to regulate bioenergetic capacity by 

acting as a redox and pH sensor. Previous studies showed that targeting mN using a 

novel ligand called NL-1 has demonstrated neuroprotective effects following cerebral 
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ischemia, traumatic brain injury and Parkinson’s disease. In the current study, we 

hypothesized that by potentiating mitochondrial activity, neuronal survival in the 

penumbra will be enhanced leading to smaller infarcts and improved functional outcomes. 

We tested the therapeutic outcomes of two doses of NL-1 as well as nanoparticle 

formulation of the drug in an aged female rat model of cerebral ischemia/reperfusion 

injury. We found significant reduction in infarct volume and hemispheric swelling in a 

dose-dependent manner. Interestingly, the nanoparticle encapsulated NL-1 at 0.25mg/kg 

showed improved therapeutic outcomes. In addition, NL-1 administration decreased 

oxidative stress as well as neuronal apoptosis in the penumbra region at 72h following 

stroke indicating its neuroprotective effects. This correlated with possible rescue of BBB 

function as evidenced by reduced IgG accumulation in the brain parenchyma upon NL-1 

treatment. These results demonstrated that targeting mitoNEET via NL-1 holds promise 

as a novel strategy for the treatment of cerebral ischemia reperfusion injury.  

FUTURE DIRECTIONS  

Owing to various ethical reasons, studying aging on humans is difficult and so 

rodents are the preferred models to study age-related diseases. Future studies should 

focus on better modelling of neurological diseases in order to improve the translational 

potential of preclinical research. With advancing age, a great body of work research is a 

being performed to understand the evolution and mechanism of biological aging. The 

initial step toward developing novel therapeutics is to gain a detailed understanding of the 

cellular and molecular processes that promote or delay aging. Additionally, follow up 

studies are required to identify the potential links between neurological 
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disorders/diseases and hallmarks of aging. Elucidation of these pathways will open up 

new treatment avenues.  However, therapeutic interventions targeting a single pathway 

may not be successful. A combination of improved multimodal approach will be necessary 

for effective treatment of age-related chronic diseases. 
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