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ABSTRACT 

Analytical and Computational Study of Flame Acceleration in Tubes: 

Effect of Wall Friction  

Berk Demirgok 

Premixed flame acceleration is especially strong in the case of flame propagation in tubes or 

channels. Being a reasonably simple configuration to investigate fundamental flame 

properties, combustion tubes have numerous practical applications such as safety issues in 

mines, subways and power plants. This work is devoted to the analytical formulation and 

computational simulations of premixed flame acceleration induced by wall friction in 

tubes/channels. Specifically, the evolution of the flame dynamics and morphology is 

determined, and the main characteristics of the flame acceleration such as the flame shape and 

propagation speed, the acceleration rate as well as the combustion-generated velocity profile 

in the fresh premixture are quantified. It is shown that the flame acceleration is promoted with 

the increase in the thermal expansion in the burning process, whereas it weakens with the 

increase in the Reynolds number. The intrinsic accuracy and the limitations of the analytical 

theory are determined and validated by means of direct numerical simulations. Computational 

and analytical results are compared with recent experiments, and the numerical simulations 

bridge a certain gap between the experimental measurements and analytical formulations.         
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Chapter 1:   Introduction 

1.1.  Fundamentals of Combustion   

What is Combustion? While it can generally be defined as an exothermal chemical reaction, such 

a definition incorporates a great variety of different processes, starting with standard oxidation of 

coal, oil, natural gas, alcohol and hydro-carbon fuels, and ending with astrophysical applications 

like thermonuclear reactions in Supernovae. This thesis is limited to burning of premixed air-fuel 

mixture, when all chemical components, necessary for the reaction, are present in a air-fuel 

mixture from the very beginning. In that case, if the heat release in the burning process exceeds 

the thermal losses, then the reaction is self-supporting, and once ignited, the reaction typically 

spreads through the gas as a rather thin, well-localized front until all the fuel is burned. Such a 

scenario is typically observed in car engines, subways, mines or various laboratory setups. 

Basically, two main self-supporting regimes of combustion are distinguished: a flame (also 

known as deflagration) and a detonation (Bychkov and Liberman, 2000). In the case of a flame, 

the reaction propagates due to thermal conduction, transporting energy from the hot burnt matter 

to the cold fuel-air premixture (hereafter: fuel mixture). In a detonation, the process occurs due 

to shock waves, which compress the air-fuel mixture to higher temperature. Consequently, the 

flame is a subsonic burning regime, which propagates 2–4 orders of magnitude slower than the 

fast (supersonic) detonation. The present study is focused mostly on the flame propagation.  

So, what is a flame in fluid environment? It can be described as a typical reacting flow consisting 

of the regions of the unburned fuel mixture (where the reaction has not begun yet), the burnt 

matter (where the reaction is completed), and a thin zone called a “flame front” separating them. 

The inner structure of a planar flame front (which is the simplest to study) is shown 
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schematically in Fig. 1.1a, while the characteristic density/temperature distributions in such a 

system are illustrated in Fig. 1.1b. 

(a)  

(b)  
 

 

FIG. 1.1. Typical internal structure of a planar flame front (a), with the characteristic temperature and 

density distribution inside it (b), as well as with the profiles of the scaled temperature 𝑇 𝑇𝑏⁄ , the local 

mass fraction of the fresh gas Y and the reaction rate A inside the burning zone (c) 

𝑇
𝑇𝑏�  
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It is well known that burning does not occur at room temperature without forced ignition, while 

at high temperatures the reaction goes very fast. This is because of strong temperature-

dependence of the reaction rate of any burning process. Indeed, a twice increase in the fuel 

temperature sometimes amplifies the reaction rate 108~109 times. (Bychkov and Liberman, 

2000) It is noted that the reaction occurs inside a thin active reaction zone, where the temperature 

is close to that of the burnt matter bT . The mechanism of flame propagation may be explained as 

follows. Thermal conduction transports the thermal energy from the hot active reaction zone to 

the cooler layers of the fuel mixture, thereby heating the latter and therefore increasing the 

reaction rate inside it. On the other hand, the reaction rate goes down with exhaustion of the 

unburnt fuel. As a result, the flame front moves continuously from the burnt gas to the fresh 

premixture. In the present study, both fresh and burnt matters are assumed to be ideal gases. 

The main flame parameters are the expansion factor Θ  defined as a fresh to burnt gas density 

ratio bf ρρ=Θ , the unstretched laminar (planar) flame speed fU , illustrated in Fig. 1.1, and 

the flame front thickness fL  defined conventionally as 

ffpf UCL ρκ /= ,             (1.1) 

where κ  is the thermal conduction coefficient and pC  is the specific heat at constant pressure. 

The characteristic value of the flame front thickness is cmL f )10~10( 34 −−= , which is much 

smaller than the typical size of a combustion chamber cmR )100~10(= . As a result, a flame is 

usually treated as a discontinuity surface separating the fresh and the burnt gases. Planar flame 

speed scmU f /)10~10( 3= , is usually much smaller than the speed of sound, such that slow 

combustion happens almost isobarically, constP ≈ . 
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If one studies the macro-scale (hydrodynamic) aspects of flame propagation, then the micro-

scale details of the chemical reaction are of minor importance, and it is often convenient to 

replace the detailed kinetics of all chemical processes with a single irreversible (Arrhenius) 

reaction. The simplest solution to the combustion equations (the Navier-Stokes and the heat 

conduction equations) corresponding to the planar flame front has been presented in the classical 

work by Zeldovich and Frank-Kamenetsky (Bychkov and Liberman, 2000). This solution 

determined the planar flame speed fU  as a function of the thermal and chemical properties of 

the fuel mixture. Figure 1.1c shows the temperature distribution, the local mass fraction of the 

fresh gas Y, and the reaction rate A scaled by its maximal value inside the burning zone. It can be 

seen from Fig. 1.1c that the value fL  defined by Eq. (1.1) is just a parameter of length 

dimension in the problem, while the characteristic flame width may be an order of magnitude 

larger. 

However, a planar flame illustrated by Fig. 1.1 happens very seldom in reality. Almost all 

industrial flames have a corrugated front shape. A corrugated front has a larger surface area; it 

consumes more fuel mixture per unit of time and propagates faster than a planar front would 

spread in the same mixture and the same thermodynamic conditions. Calculation of the curved 

flame velocity wU  (called also the total burning rate) is probably the most important problem in 

combustion science; often, wU  exceeds the planar flame speed fU  by orders of magnitude. A 

flame front usually gets corrugated due to the intrinsic flame instabilities, external turbulent 

flow, combustion-acoustic coupling, flame interaction with combustor walls and many other 

factors. In the standard approach of an infinitely thin flame front (Landau limit), the turbulent 

flame velocity is proportional to the flame surface area 
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 fwfw SSUU = ,             (1.2) 

where wS  is the surface area of a curved flame and Sf , for instance, is the cross-section of the 

tube (i.e. the area a planar front would have). 

1.2. Overview & Objectives 

1.2.1. Overview 

During the process of deflagration-to-detonation transition (DDT), a slow subsonic flame 

accelerates spontaneously, with the velocity increase by 3–4 orders of magnitude, which 

eventually triggers explosion ahead of the flame front, and goes over into a self-sustaining 

detonation. This phenomenon is crucial in terrestrial conditions, in particular, in safety issues in 

mines, subways and power plants as well as in design of pulse-detonation engines (Roy et al., 

2004). Moreover, it is also relevant to extraterrestrial, unbounded systems such as explosion 

fronts in supernovae (Akkerman et al., 2011; Bychkov and Liberman, 2000). Still, in spite of its 

extreme fundamental and technological importance, until recently DDT remained one of the 

most intriguing and least understood processes in combustion.  

The first qualitative explanation of the flame acceleration and DDT has been suggested by 

Shelkin for the geometry of combustion in smooth tubes (Shelkin 1940; Shepherd and Lee, 

1992). According to Shelkin, the key elements of the process are wall friction and turbulence. 

Specifically, the combustible gas expands with burning, which induces a flow in the fuel 

mixture. Being highly non-uniform due to wall friction, the induced flow bends the flame, hence 

increasing the fuel consumption rate and driving the flame acceleration. Additional flame 

distortion is provided by turbulence, which also compensates for the thermal loss to the wall. 

Since turbulence (including turbulent burning) belongs to the most difficult problems of modern 
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science, there was almost no progress in the quantitative theoretical understanding of the flame 

acceleration for more than 70 years.  

During the last decade it was shown that at certain conditions extremely strong flame 

acceleration with DDT is possible even within the regime of laminar flows, while turbulence 

plays a supplementary role. Various stages of flame acceleration in tubes, starting with a finger-

like flame front, and ending with fast Chapman-Jouguet deflagration and detonation triggering 

have been investigated (Bychkov et al., 2007; Bychkov et al., 2005; Akkerman et al., 2006; 

Akkerman et al., 2010; Valiev et al., 2008; Valiev et al., 2009; Bychkov et al., 2010; Bychkov et 

al., 2008; Valiev et al., 2010). Both 2D channels and cylindrical tubes, smooth and obstructed, 

were considered. The detailed study has demonstrated three different mechanisms of flame 

acceleration such:  

1) At the early stages of flame burning at the closed tube end, the flame front acquires a 

finger-shape and demonstrates strong acceleration during a short time interval (Bychkov et 

al., 2007; Valiev et al., 2013). As illustrated in Fig. 1.2, the acceleration is terminated as 

soon as the flame front touches the side wall of the tube. While, for relatively slow 

hydrocarbon flames, this preliminary finger-flame acceleration ends with formation of the 

well-known “tulip flame” structure with little relation to DDT; for fast (e.g, hydrogen-

oxygen) flames even short-term finger-flame acceleration increase the flame propagation 

speed up to sonic values with important influence on the subsequent DDT process. 



 
 
 

7 
 

 

FIG. 1.2. Evolution of a finger flame front (Bychkov et al., 2007) 

 

FIG. 1.3. Wall friction (Shelkin) scenario of flame acceleration in smooth tubes (Bychkov et al., 2005) 

2)   The classical Shelkin mechanism due to wall friction in smooth tubes (described 

qualitatively above and illustrated in Figs. 1.3) depends noticeably on the tube width, with 

the associated acceleration rate decreasing strongly with the Reynolds number. The 

quantitative analytical theory of the process has been developed under the set of model 
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assumptions such as (i) near-isobaric, infinitely thin flame front; (ii) plane-parallel flame 

generated flow, (iii) exponential state of the flame acceleration. The theory was validated 

by extensive numerical simulations (Bychkov et al., 2005; Akkerman et al., 2006; 

Akkerman et al., 2010). These theoretical achievements have also been supported by 

refined experiments of the new type on DDT in microtubes (Wu et al., 2007; Wu and 

Wang 2011). The success of the theory, being in agreement with the modeling and 

experiments, has opened new technological possibilities of DDT in micro-combustion. 

3) It is also mentioned in the past that a qualitatively new physical mechanism of extremely 

fast flame acceleration in channels and tubes with obstacles was recently revealed by 

Bychkov et al. (2008). The new mechanism is based on delayed burning between the 

obstacles, creating a powerful jet-flow and thereby driving the acceleration as illustrated in 

Figs. 1.4. This acceleration is extremely strong and independent of the Reynolds number, 

so the effect can be effectively utilized at industrial scales. Understanding of this 

mechanism provides the guide for optimization of the obstacle shape. 

 

FIG. 1.4. Scheme of the physical mechanism of flame acceleration in obstructed tubes (Bychkov et al., 2008) 
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1.2.2. Objectives 

The general goal of this thesis is to shed the light on a set of phenomena within the deflagration 

to detonation transition (DDT) scenario. Analytical formulations (Bychkov et al., 2005; 

Akkerman et al., 2006) describe the acceleration of a premixed flame propagating in a horizontal 

micro channel/tube from its closed end to open one. Whenever, a new theory is proposed, it is 

important to know any intrinsic limitations given by associated approximations, and it is critical 

to scrutinize the accuracy of the developed theory. In this thesis, these limitations will be 

identified and the original formulations will be revised. On the way to this goal, the following 

objectives will be met: 

• Determine the intrinsic limitations and accuracy of the developed theories of 

Bychkov and Akkerman 

• Investigate the effect of thermal expansion on flame shape and acceleration 

utilizing direct numerical simulations (DNS) and compare the simulation results 

with analytical formulations  

• By means of DNS, bridge the gap between the theoretical and experimental 

studies on ethylene/oxygen combustion (Wu and Wang, 2011)  
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Chapter 2:  Theory of Flame Acceleration in Tubes due to Wall 

Friction: Intrinsic Limitations and Accuracy 

This Chapter is devoted to the model investigation of the near-isobaric flame acceleration in 

tubes and channels. Specifically, in Section 2.1, the Bychkov-Akkerman formulation  (Bychkov 

et al., 2005;  Akkerman et al., 2006) is briefly summarized; the intrinsic limitations of this theory 

in a 2D geometry are determined in Sec. 2.2,; the findings are extended to the configuration of a 

cylindrical pipe in Sec. 2.3, with a quantitative analyses presented in Sec. 2.4. It is emphasized 

that the approach of an incompressible flow is adopted in Chapter 2; the effect of gas 

compression on the near-sonic flame propagation will be discussed later in Chapter 5. 

2.1. Basics of the Bychkov-Akkerman formulation 

First of all, the basics of the incompressible analytical theories (Bychkov et al., 2005; Akkerman 

et al., 2006) devoted to the 2D and cylindrically-axisymmetric configurations, respectively. The 

original formulation is based on the following major approximations:  

(i) Near-isobaric combustion process;  

(ii) Zero flame thickness; 

(iii) Plane-parallel flame-generated flow in the unburned gas, , with the burnt 

gas being at rest; and  

(iv) Exponential state of the flame acceleration.  

Specifically, an infinitely thin premixed laminar flame front that spreads locally with the normal 

velocity  with respect to the fuel mixture is considered. Such a flame propagates in a 2D 

channel of half-width  or a cylindrical tube of radius , with adiabatic ( ) non-slip   

),( truzzeu =

fU

R R 0=∇⋅ Tn
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( ) walls, where  is a normal vector at the wall. One end of the tube/channel is closed, and 

the flame propagates from the closed end to the open one, as illustrated in Fig. 2.1. 

 

FIG. 2.1.  A flame in a tube or channel with non-slip at the walls 

To simplify the calculations, the standard dimensionless variables , , 

 are introduced. The density and pressure are scaled by the fuel quantities  and 

, respectively. The temperature is scaled by that associated with the fuel, , 

, with  and  in the fresh and burnt gases, respectively. The average molar 

weights of the unburned and burnt gases are assumed to be equal such that the expansion factor 

 is also associated with the fresh to burnt gas density ratio . Viscosity effects are 

characterized by the Reynolds number related to the flame propagation, , where  

is the kinematical viscosity. 

A traditional evaluation that the total burning rate is simply proportional to the total surface area 

of the flame front is employed. In a 2D geometry it reads , and a 2D 

“volume” of the burning gas increases by  per unit time. In a cylindrical geometry 

0=u n

Rzx /);();( =ξη RtU f /=τ

fU/uw = fρ

2
ff Uρ fTT /=ϑ
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it is calculated as , with a volumetric increment of the burnt gas per unit 

time being . In both configurations, the average combustion-generated flow 

velocity is related to the total burning rate as 

 ,  or ,         (2.1) 

where the scaled total burning rate  is adopted. 

Obviously, the flow of the fuel mixture in a tube/channel is non-uniform. Indeed, the gas stops at 

the non-slip walls because of friction and reaches the maximal velocity at the tube axis. Such a 

flow distorts the flame shape, increases the flame surface area and propagation speed. According 

to Eq. (2.1), this renders an additional increase of the flow velocity. Consequently, one arrives at 

a positive flow-flame feedback: the faster the flow, the stronger the distortion of the flame shape, 

and the larger the flame velocity. Therefore, the flame accelerates. Asymptotically, it accelerates 

exponentially in time 

 ,  ,         (2.2) 

where the dimensionless growth rate  is an eigenvalue that will be determined below.  

The model of a plane-parallel, flame-generated flow is self-consistent if the pressure gradient is a 

function of time only, . Then the plane-parallel Navier-Stokes equation reads  

    (a),     or      (b).     (2.3) 

in a 2D and  cylindrical-axisymmetric configurations, respectively, with .  

The flame surface is described by a dimensionless function ),()(),( τηττηξ fg += , where  

quantifies the evolution of the flame tip and  describes the flame shape with respect to it, i.e. 
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the deviation of the flame shape from the planar one. Consequently, every local segment of the 

flame front propagates with the velocity  in the -direction with 

respect to the fuel mixture, with  and . In addition, both the flame and the 

fuel are drifted by the flame-generated flow, Eq. (2.1). As a result, the flame evolution equation 

reads 

 ( ) ( )
τητη

τητ
∂
∂

−
∂
∂

≈
∂
∂

−−







∂
∂

+=−
ffffww zz 11,,0

2

.    (2.4)  

Equations (2.1) – (2.4) state the backbone of the formulations (Bychkov et al., 2005; Akkerman 

et al., 2006; Akkerman et al., 2010).  

 

2.2. Flame acceleration in a 2D channel  

Here it is focused on a 2D geometry. The system (2.1), (2.2), (2.3a) has the solution  

 ,                                                                           (2.5) 
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wzw ,                                                       (2.6) 

where Reσµ = . The flame shape is searched in the form , with 

. Then Eqs. (2.4), (2.5) and (2.6) yield (Bychkov et al., 2005)  

. (2.7) 

With the boundary condition  at , Eq. (2.7) acquires the form 

 .   (2.8) 
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Equation (2.8) is the major result of the incompressible 2D formulation (Bychkov et al., 2005): it 

couples the flame acceleration rate σ  to the thermal expansion factor  and the flame 

propagation Reynolds number , through the intermediate parameter . 

The study (Bychkov et al., 2005) moved further: in the limit of large , the leading-order 

reduction of Eq. (2.8) can be solved analytically. Indeed, as verified below, a large  

corresponds to a large , and for  Eq. (2.8) reduces to 

  ,         (2.9) 

with the solution 

 , . (2.10)                                                                                                                                   

For large Reynolds numbers, , the result (2.10) further degenerates to , 

. It is seen now that the approach of large  and  intrinsically requires  to be large 

as well. 

It is emphasized that Eq. (2.10) is based on the assumption of . What does this actually 

mean, and what physical parameters would obey this criterion? Of course, one can formally 

verify the validity of the theory by computing  and , Eq. (2.10), for any given  and Re, 

and subsequently conclude if such a value of  is really large or not. However, the very concept 

of  needs some quantification as well. Indeed, which  is “large enough”: 5, 10, 50, 250, 

1000 or larger? Moreover, how does the violation of the limit of large  influence the accuracy 

of the model? Does this mean that the case of  or, say,  surely breaks the entire 

approach (Bychkov et al., 2005) or not necessarily? Besides, it is realized that the dependences 
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of  versus  and  can demonstrate different trends in terms of the accuracy limitations. So 

far, the asymptotical result (2.10) used to be validated by direct numerical simulations (Bychkov 

et al., 2005). While the results of these simulations agreed with Eq. (2.10) very well, such 

agreement was quite expected since the simulations were performed in the domain of large Re 

and , yielding . Would it be the case otherwise?  

Furthermore, a comparison to a “computational experiment” cannot be treated as a rigorous 

mathematical validation of an analytical theory. As a result, the primary task of this part of the 

thesis is to determine the intrinsic limitations and accuracy of the theory above, in general, and 

Eq. (2.10), in particular. For this purpose, Eq. (2.8) has been solved computationally, and the 

detailed comparison of the results obtained to the prediction of formula (2.10) has been done. A 

MATLAB® program was written to solve Eq. (2.8) for the flame acceleration rate numerically. 

The program utilizes the Newton-Raphson method – a standard powerful method to solve 

equations numerically, which are hard to be solved analytically. (See appendix A for details) 

It is recalled in this respect that Eq. (2.8) is also based on a set of model assumptions; see Sec. 

2.1. Nevertheless, it is a much less speculative equation as compared to Eq. (2.10) since Eq. (2.8) 

does not require any limitations on the physical quantities Re and . 

This numerical solution to Eq. (2.8) is compared to the analytical prediction of (2.10) in Fig. 2.2. 

Specifically, Fig. 2.2 shows the acceleration rate σ versus the flame propagation Reynolds 

number Re at the fixed thermal expansion coefficients 10;8;6;4=Θ . Equations (2.8) and (2.10) 

are presented by the dashed and solid lines, respectively. 

µ Θ Re

Θ 1>>µ

Θ



 
 
 

16 
 

 

FIG. 2.2. The flame acceleration rate σ versus the flame propagation Reynolds number Re at the fixed 

thermal expansion coefficients 10;8;6;4=Θ . Equations (2.8) and (2.10) are shown by dashed and solid 

lines, respectively 

It is seen that σ grows with the decrease in Re, and one can observe very good agreement 

between the analytical approximation and the numerical results when thermal expansion large 

enough, . However, this agreement deteriorates as soon as Θ  decreases. In particular, 

the discrepancy between these two solution is significant when both  and Re are small, say, 

4=Θ  and 10Re < . The same effect is observed in Fig. 2.3, where σ is plotted versus Θ at fixed 

20;10;5Re = .  

10~8=Θ

Θ
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FIG. 2.3. The flame acceleration rate σ versus the thermal expansion coefficient Θ at the fixed flame 

propagation Reynolds numbers Re = 5; 10; 20. Equations (2.8) and (2.10) are shown by dashed and solid 

lines, respectively 

It is seen that σ grows with Θ, and the results of (2.8) and (2.10) coincide at large expansion 

factors and Reynolds numbers. However, they considerably differ at small Θ. Indeed, while Eq. 

(2.10) shows a near-parabolic dependence of  versus , the numerical solution to Eq. (2.8) 

yields  when . The latter trend also supports the formulation on steady flame 

propagation (Akkerman et al., 2010) yielding that a flame surely accelerate in a 2D channel with 

one end closed if 3>Θ . Moreover, this discussion supports the recent study on the possibility of 

near-sonic, quasi- steady flame propagation (Valiev et al., 2013). In this respect, Fig. 2.3 

qualitatively resembles Figure 2 of (Valiev et al., 2013). Besides, Fig. 2.3 demonstrates that the 

discrepancy between the analytical approximation and the numerical solution gets stronger with 

σ Θ

0→σ 3→Θ
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the decrease in the flame propagation Reynolds number, and thereby one cannot expect a good 

predictability from the theory (Bychkov et al., 2005) at small Re. 

A detailed analysis of such a discrepancy (the “error”) between the numerical solution to Eq. 

(2.8) and its analytical approximation (2.10) has been performed, with a relative error between 

the numerical and analytical results given by 

 ,      (2.11) 

where  and  in Eq. (2.11) represent the analytical, Eq. (2.10), and numerical 

solutions to Eq. (2.8), respectively. Figure 2.4a shows the relative error, Eq. (2.11), versus  at 

fixed , whereas Fig. 2.4b presents the relative error versus Re at . It 

is clearly seen that the error diminishes with the increase in  and/or Re.   
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FIG. 2.4. Relative error (in %) versus thermal expansion coefficient Θ  at fixed propagation Reynolds 

numbers such as Re = 20, 10 and 5 shown by dotted, dashed and solid lines, respectively (a); and the 

relative error percentage  versus propagation  Reynolds number at fixed thermal expansion such as Θ =10, 

8, 6 and 4 shown by solid &dotted, dashed, dotted and solid lines, respectively (b) 

The results shown in Fig. 2.4 lead to the intrinsic limitations of the theory, which are 

demonstrated by the validity domains in Fig. 2.5: the contour plot analysis of the flame 

propagation Reynolds number Re versus the thermal expansion Θ. The error isolines (in %) 

show the accuracy domains in the Re-Θ space. It is seen that the relative error is very small 

(<1%) in the top right corner of this diagram, when both Θ and Re are large. On the other hand, 

the error grows with the decrease in Re and Θ, exceeding 50% in the bottom left corner of the 

Re-Θ. Obviously, the applicability of the theory (Bychkov et al., 2005) is doubtful in this 

domain. 
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FIG. 2.5. Contour scheme (the error isolines (in %)) demonstration of Propagation Reynolds number 

versus thermal expansion Θ 

2.3. Flame acceleration in a cylindrical tube 

In the cylindrical axisymmetric geometry (Akkerman et al., 2006), the counterpart of Eqs. (2.5) 

and (2.6) reads 
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where  and ( )µ1I  are the modified Bessel function of 0th and 1st orders. Similar to Sec. 2.3, 

the flame shape is searched in the form . The cylindrical-axisymmetric 

equation for ( )ηΦ  is 

 ,      (2.13) 

with the solution 
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 , .               (2.14) 

Eventually, the result (2.14) yields  

 .   (2.15) 

In the 0th order approximation of : ( ) ( ) ,2/exp10 πµµµµ ≈≈ II  ( ) ( ) πµηµηµη 2/exp0 ≈I , 

and Eq. (14) reduces to  (Akkerman et al., 2006), with the analytical solution  

 ,  .   (2.16) 

For , Eq.(2.16) further degenerates to , . 

Equation (2.15) has been solved computationally in the same manner as Eq. (2.8). Figure 2.6a 

shows σ versus Re at fixed 8;6;4=Θ . The computational solution to Eq. (2.15) and the 

analytical prediction (2.16) are presented by the dashed and solid lines, respectively. As 

expected, the acceleration intensifies with the increase in Θ and the decrease in Re; and in the 

cylindrical-axisymmetric configuration the acceleration rate is almost thrice higher the 2D one 

for the same parameters. It is shown that while solid and dashed lines qualitatively resemble each 

other, the quantitative agreement between them is quite poor. Moreover, unlike Sec. 2.3, the 

discrepancy between these two solutions gets much stronger when Re~100. Accordingly, the 

same effects are seen in Fig. 2.6b, where σ is plotted versus Θ at fixed .  
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FIG. 2.6.  σ versus Re at 8;6;4=Θ  (a), and versus Θ  at Re = 5; 10; 20 (b). Equations (2.15) and (2.16) 

are shown by dashed and solid lines, respectively 

Similar to Sec. 2.3, the difference between the numerical solution and the analytical approach is 

quantified in Fig. 2.7. Specifically, Fig. 2.7a shows the relative error, given by Eq. (2.11), versus 
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Θ at , while Fig. 2.7b presents the relative error versus Re at 6;4;3=Θ . It is seen 

that agreement between the numerical solution and the 0th order approximation is quite poor 

everywhere.   

 

 

FIG. 2.7. The relative error (in %), Eq. (2.11), versus  at Re = 5, 10, 20, shown by solid, dashed and 

dotted lines, respectively (a); and versus Re at Θ = 3, 4, 6 shown by solid, dashed and dotted lines, 

respectively (b) 

20;10;5Re =

Θ



 
 
 

24 
 

The results shown in Fig. 2.7 provide the intrinsic limitations of Eq. (2.16) in the Re-Θ diagram, 

Fig. 2.8, which represents the counterpart of Fig. 2.5 for the cylindrical configuration, with the 

analytical prediction given by the 0th order approximation, Eq. (2.16). The error isolines (in %) 

show the accuracy domains in the Re-Θ space. It is seen that even both Re and Θ are large, the 

error is still very high: from ~ 24% in the bottom right corner of the diagram till >34% in the top 

left corner. Consequently, the quantitative applicability of Eq. (2.16) is very questionable. 

 

FIG. 2.8. Contour scheme (the error isolines (in %)) demonstration in the Re-Θ diagram 

Next, it is demonstrated that the analytical prediction can be improved, substantially, if the 

formulation is extended to the 1st order approximation of , namely  

 .     (2.17)  

Fig. 2.9 compares Eq. (2.17) and the numerical solution to Eq. (2.15). Specifically, Fig. 2.9a 

presents σ versus Re at 8;6;4=Θ . Equations (2.15) and (2.17) are shown by the solid and 
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dashed lines, respectively. This time one can observe much better agreement between the 

analytical and computational results as compared to Fig. 2.6a. The same trend is observed in Fig. 

2.9b, where σ is plotted versus Θ at .  

 

 

FIG. 2.9. σ versus Re at 8;6;4=Θ  (a); and versus Θ  at Re = 5; 10; 20 (b). Equations (2.15) and (2.17) 

are shown by dashed and solid lines, respectively 

20;10;5Re =
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Nevertheless, while very good agreement between Eqs. (2.15) and (2.17) is evident at large Θ 

and Re, the discrepancy between them gets stronger with the decrease in these parameters and 

thereby deteriorates the quantitative predictability of the theory; while Eq. (2.17) yields a near-

parabolic dependence of  versus , according to Eq. (2.15),  when . Again, the 

latter trend reduces the gap between the present theory and the formulation on steady flame 

propagation of Akkerman et al., 2010 yielding that a flame surely accelerate in an axisymmetric 

configuration with one end closed if  ˃ 2.  

Again, the quantitative analysis of such a discrepancy is implemented, see Figs. 2.10 and 11.  

Specifically, Fig. 2.10a shows the relative error, Eq. (2.11), versus  at various Re, while Fig. 

2.10b demonstrates the relative error versus Re at several fixed .  

 

σ Θ 0→σ 2→Θ

Θ
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FIG. 2.10. The relative error (in %), Eq. (2.11), versus  at Re = 5, 10, 20, shown by solid, dashed and 

dotted lines, respectively (a); and versus Re at Θ = 3, 4, 6 shown by solid, dashed and dotted lines, 

respectively (b) 

It is clearly seen that the error reduces with the increase in  and/or Re. Figure 2.11 quantifies 

the intrinsic limitations of the theory. The limitations are demonstrated by means of the validity 

domains in the relevant Re-Θ diagram. Namely, Fig. 2.11 represents the contour plot analysis in 

the Re-Θ space. The error isolines show the accuracy domains (and thereby the intrinsic 

limitations of the theory). It is clearly seen that the error is very low when both thermal 

expansion and the flame propagation Reynolds numbers are high, but the situation substantially 

deteriorates with the decrease in Re and/or Θ. Specifically, the relative error, Eq. (2.11), is less 

than 1% in the top right corner of Fig. 2.11; this is the domain where the 1st order analytical 

approximation, Eq. (2.17), works pretty well. However, the error keeps increasing towards the 

left bottom corner, exceeding 50% therein. Obviously, the quantitative applicability of Eq. (2.17) 

is doubtful in that case.  
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FIG. 2.11. Contour scheme (the error isolines (in %)) demonstration in the Re-Θ diagram 

2.4  Conclusions 

In the present paper the analytical formulations for the flame acceleration in 2D channels 

(Bychkov et al., 2005) and cylindrical tubes (Akkerman et al., 2006) were revisited, and their 

intrinsic limitations were determined. It is shown that while the original theory (Bychkov et al., 

2005) predicts the main characteristics of the flame acceleration very well at large and Re, the 

accuracy deteriorates at other condition. This is substantiated, in particular, by the error contours 

in the Re-Θ diagram of Fig. 2.5. This 2D trend was actually expected. In contrast, the 0th order 

approximation of the cylindrical-axisymmetric configuration (Akkerman et al., 2006), Eq. (2.16), 

appeared to be inaccurate, even for realistically large Re and/or Θ. At the same time, the 1st order 

approximation, Eq. (2.17), is pretty accurate for a wide range of parameters. 
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Chapter 3: Computational Platform 

A fully-compressible, finite-volume Navier–Stokes “in-house” solver of Dr. Akkerman’s group 

at West Virginia University has been used as the major computational platform of this work. The 

embryo of this code was developed originally by Dr. Lars-Erik Eriksson at Volvo Aero 

Company (Goteborg, Sweden), and it was subsequently updated, comprehensively, by several 

research groups, including the group of Prof. M. Liberman at Uppsala University as well as that 

of Prof. V. Bychkov at Umea University, both in Sweden, and eventually the group of Dr. 

Akkerman. One of the active developers of this computational platform is Dr. Damir Valiev, 

who is currently affiliated with Sandia National Laboratories and Princeton University.     

The code solves the complete set of the hydrodynamic and combustion equations including 

transport processes (diffusion, viscosity, heat conduction) and the Arrhenius chemical kinetics. 

The numerical scheme is second order accurate in time, fourth order in space for the convective 

terms, and second order in space for the diffusive term. The solver is robust and accurate, having 

been successfully utilized in numerous aero-acoustic and combustion applications (Erikkson, 

1987;  Erikkson, 1995; Anderson et al., 2005; Wollblad et al., 2006). It is adapted for parallel 

computations and available in 2D (Cartesian and cylindrical axisymmetric) version, as well as 

fully 3D Cartesian version, with a self-adaptive structured computational grid employed that 

makes the code perfect, in particular, for fundamental studies of flame hydrodynamics in 

combustion tubes, chambers as well as for outwardly-propagating flames in free space. 

3.1 Governing equations 

In the general form, the complete set of the governing equations of compressible hydrodynamic 

and combustion include: the continuity equation, 
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the Navier-Stokes (momentum) equation, 
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the energy balance equation,  
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and the species equation, 
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where 0=β   and 1 for 2D and axisymmetric geometries respectively,

 ( ) ( )22

2 rzV uuTCQY +++=
ρρε ,           (3.5) 

is the total energy per unit volume, Y  the mass fraction of the fuel, Q  the energy release from 

the reaction, and VC  the heat capacity at constant volume. The energy diffusion vector iq  is 

given by 
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The stress tensor ji,ζ  takes the form 
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in the 2D configuration ( 0=β ), while in the axisymmetric geometry ( 1=β ) it reads 
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Finally, the last term in Eq. (3.2) takes the form 
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if 1=β , and 0=βψ  if 0=β . Here µ  is the dynamic viscosity, Pr  and Sc  the Prandtl and 

Schmidt numbers, respectively. Unburned and burned mixtures are assumed to be ideal two-

atomic gases and have the same molecular weights mmm bf == . Then the specific heats are 

mRC pV 2/5= , mRRCC ppVP 2/7=+≡ , and the equation of state reads 

 mTRP p /ρ= ,            (3.13) 

where ( )KmolJ431.8 ⋅≈PR  is the universal gas constant. A one-step irreversible Arrhenius 

reaction of the 1st order is typically employed (though the reaction order may vary), with the 

activation energy aE  and frequency factor corresponding to a characteristic time Rτ . The factor 

Rτ  is adjusted to obtain a particular value of the unstretched laminar flame speed fU  by solving 

the associated eigenvalue problem. In other words, the flame velocity is almost fully determined 

by the set of chemical parameters of the fuel: aE , Rτ , Q . Compressibility is characterized by the 

initial Mach number coupled to the planar flame speed, Sf cUMa /≡ . For typical hydrocarbon 
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deflagrations it is pretty small, 0.001~0.01. In that case, the flow is almost isobaric and thermal 

expansion is coupled to the energy release in the burning process as follows 

 fPfb TCQTT /1+==Θ .             (3.14) 

The flame thickness is conventionally defined as 

  
f

th

ff
f U

D
U

L ≡≡
ρ
µ

Pr
,          (3.15) 

where thD  is the thermal diffusivity and Pr  is the Prandtl number. It is noted that the quantity 

(3.15) is a characteristic parameter of the problem of length dimension, while the real size of the 

combustion zone can be several times wider. In a certain sense, fL  characterizes the active 

reaction zone rather than the real flame thickness, see Fig. 3.1.  

 
FIG. 3.1. The sketch of the grid with variable resolution used in numerical simulations 

It is nevertheless noted that fL  is a key parameter for simulations. First of all, it is readily related 

to the flame propagation Reynolds number, Pr)/(Re fLR= , which is an important parameter 

itself. As a matter of fact, this is a characteristic transport scale, and it has sense even in the cold, 



 
 
 

33 
 

non-reacting flow. In addition, the resolution abilities of the solver are given by fL : from 2 to 5 

grid points have to be taken per fL  to imitate the combustion process properly. The current 

version of the solver allows taking up to 5-10 million grid points (cells) on modern clusters, 

while RAM problems may appear at larger mesh sizes. Therefore, one can readily determine the 

maximal scale that can be resolved for a particular computational configuration. 

Mesh with variable resolution is used in order to take into account the growing distances 

between the tube end, the accelerating flame and the pressure wave, and to resolve both chemical 

and hydrodynamic spatial scales. Typical computation time for one simulation required up to 104 

CPU-hours, hence implying the need for extensive parallel calculations. A rectangular grid with 

the grid walls parallel to the coordinate axes was used. The sketch of the calculation mesh used 

in the simulations of flame acceleration from the closed tube end is shown in Fig. 3.1. To 

perform all the calculations in a reasonable time, the grid spacing non-uniform along the z-axis 

with the zones of fine grid around the flame and leading shock fronts were established. For the 

majority of the simulation runs, the grid size in the z-direction was 0.25 fL  and 0.5 fL  in the 

domains of the flame and leading pressure wave, respectively, which allowed resolution of the 

flame and waves. Outside the region of fine grid the mesh size increased gradually with 2% 

change in size between the neighboring cells. In order to keep the flame and pressure waves in 

the zone of fine grid, the periodical mesh reconstruction during the simulation run (Valiev et al., 

2008) were employed. Third-order splines were used for interpolation of the flow variables 

during periodic grid reconstruction to preserve the second order accuracy of the numerical 

scheme. 
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FIG. 3.2. Profiles of the scaled temperature T/Tb, the mass fraction Y , and the reaction rate A ∝ (ρY/τr)× 

exp(−Ea/RpTb), scaled by its maximal value 

It is emphasized that the Reynolds number related to the flow of the fuel mixture considerably 

differs from that related to the flame propagation. Indeed, one has  

( ) ( ) ( ) Re12
Pr

12122
Re w

ff

wwz
flow L

R
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URUuR

Ω−Θ=
−Θ

=
−Θ

=≡
νν

.    (3.16) 

Consequently the flow Reynolds number can exceed the flame Reynolds number by orders of 

magnitude, and while the former may reach the turbulent threshold, say 43 1010 − , the latter is 

still quite small 21010 −  to be resolved in direct numerical simulations. Thus this solver can 

simulate turbulent combustion as well. (Akkerman et al., 2007; Akkerman et al., 2008).     

3.2. Numerical Scheme 

For the sake of brevity, the description will focus on the 2D configuration only. Nevertheless, it 

can readily be modified for an axisymmetric configuration, as well as for a 3D Cartesian one. 

The code is based on the cell-centred finite-volume scheme, which is robust for modelling of 

different kinds of complex hydrodynamic flows (Eriksson, 1987), as has been validated, in 
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particular, by Travnikov et al. 2002 by means of the known exact solutions of the classical 

hydrodynamic problems. Specifically, each of the governing equations (3.1) – (3.4) is written in 

conservation form as  

  G
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E
t
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+

∂
∂

+
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,           (3.17) 

where 𝐺 stands for any of the variables ( ) Yuueuu zxzx ρρρρρρ ,,,, 22
2
1 ++ ; while GG FE ,  

denotes the corresponding fluxes and 𝐻𝐺  gives a source term. The cell-centred finite-volume 

spatial discretization is achieved by integrating the conservation law in the form (3.9) over a 

given grid cell. As an example, the result of integration for an interior cell with index i, j is 

illustrated here. It is assumed that purely integer indexes (i,j) denote the grid cells, mixed 

fractional-integer indexes stand for the cell walls, and purely fractional indexes denote the grid 

nodes. Within this notation, one can write: 

 𝑑
𝑑𝑡
𝐺̅𝑖,𝑗 + (𝐸𝐺)𝑖+1/2,𝑗 − (𝐸𝐺)𝑖−1/2,𝑗 + (𝐹𝐺)𝑖,𝑗+1/2 − (𝐹𝐺)𝑖,𝑗−1/2 = (𝐻����𝐺)𝑖,𝑗 ,   (3.18) 

where  

 𝐺̅𝑖,𝑗 = 1
𝛼𝑖,𝑗

∫ 𝐺𝑑𝑆 
𝛺𝑖,𝑗

, (𝐻����𝐺)𝑖,𝑗 = 1
𝛼𝑖,𝑗

∫ 𝐻𝑑𝑆 
𝛺𝑖,𝑗

,𝛼𝑖,𝑗 = ∫ 𝑑𝑆 
𝛺𝑖,𝑗

,  

                       (𝐸𝐺)
𝑖+12,𝑗

= � (𝐸𝐺𝑛𝑥 + 𝐹𝐺𝑛𝑧)
 

𝐵
𝑖+12,𝑗

𝑑𝑙, 

                                                                      (𝐹𝐺)𝑖,𝑗+1/2 = ∫ (𝐸𝐺𝑛𝑥 + 𝐹𝐺𝑛𝑧) 
𝐵𝑖,𝑗+1/2

𝑑𝑙,  (3.19) 

𝛺𝑖,𝑗 is the grid cell (i, j), 𝐵𝑖+1/2,𝑗  and 𝐵𝑖,𝑗+1/2 are the cell walls between the current cell (i, j) and 

the cells (i+1, j) and (i, j+1) respectively, 𝑛 = (𝑛𝑥,𝑛𝑧) is the normal to the corresponding cell 

wall. By choosing the cell-averages of the state vector 𝐺̅𝑖,𝑗 as the unknowns of the discretized 

problem and introducing approximations of the fluxes (𝐸𝐺����)𝑖+1/2,𝑗 and (𝐹𝐺���)𝑖,𝑗+1/2 and the cell 
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averaged source vector (𝐻𝐺����)𝑖,𝑗+1/2 in terms of these unknowns, the final spatial discretization of 

(3.9) can be obtained. 

A key feature of the cell-centred finite volume discretization of (3.9) given by (3.10) is the 

numerical approximation of the fluxes (𝐸𝐺����)𝑖+1/2,𝑗 and (𝐹𝐺���)𝑖,𝑗+1/2 in terms of the cell averages 

𝐺̅𝑖,𝑗 . The usual approach is to treat the convective flux approximations and the diffusive flux ones 

separately due to the different nature of these fluxes. For the convective fluxes, a characteristic- 

upwind flux scheme (Eriksson, 1987), where the propagation directions of the various 

characteristic variables control a user-given degree of up-winding, is employed. Here it turns out 

to be advantageous to work with the hydro-dynamical variables 𝜌, 𝑢𝑥,𝑢𝑧 ,𝑃,𝑌, instead of the 

conservative variables in the state vector 𝐺̅𝑖,𝑗. The numerical errors introduced by using this 

approximation are of the second order in grid spacing assuming a smooth solution. For problems 

where all spatial scales are adequately resolved in the computational grid, an extremely small 

amount of up-winding may be used, giving an almost centred scheme with minimal numerical 

dissipation and dispersion.  

3.3. Principles of setting the initial conditions  

a) Planar flame front ignition 

The easiest but feasible way to employ the initial conditions for an initially planar premixed 

flame front is to approximate it by the classical Zeldochich-Frank-Kamenetsky (ZFK) solution 

(Bychkov and Liberman, 2000). In the reference frame co-moving with the flame front it reads 
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b) Hemispherical flame front ignition 

  At the open tube end, the non-reflecting boundary conditions are applied. As initial conditions, 

a hemi-spherical (hemi-circular) version of the ZFK solution is used, namely 

 ( )ffbf LzrTTTT /exp)( 22 +−−+= , if  222
frxz <+ ,   (3.23) 

fTT Θ= , if  222
frxz >+ ,       (3.24) 

)/()( fbb TTTTY −−= , fPP = , 0=xu , 0=zu .     (3.25) 

Here fr  is the radius of initial flame ball at the closed end of the tube. The finite initial radius of 

the flame ball is equivalent to a time shift, which required proper adjustments when comparing 

the theory and numerical simulations. When necessary, the numerical solution in time is shifted 

in order to have the theory and the modeling results starting from the same point. 
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Chapter 4: Effect of Thermal Expansion on Flame Propagation in 

Channels with Nonslip Walls: Numerical and Analytical 

Consideration 

4.1 Motivation 

To begin with, it is pointed out that the theories (Bychkov et al., 2005; Akkerman et al., 2006) 

include a set of assumptions such as the large Reynolds number related to flame propagation, as 

well as the large thermal expansion coefficient in the burning process, which in turn leads to the 

intrinsic limitations of the theory. In Chapter 2, these limitations have been determined, and 

thereby validity domains of the Bychkov approximation within a Re−Θ diagram were clearly 

underlined. Furthermore, the error analysis related to the intrinsic assumptions and accuracy of 

the developed theory was also performed.  

The main purpose of the present component of this thesis is to substantiate the validity domains 

obtained in Chapter 2, in particular, as well as the formulation (Bychkov et al., 2005), in general, 

by usage of comprehensive direct numerical simulations for the variety of parameters, in 

particular, Θ  and Re. The numerical simulations are performed for the complete set of 

combustion equations including thermal conduction, viscosity, diffusion and chemical kinetics 

with one-step Arrhenius reaction. It is demonstrated that while the simulations fit the theoretical 

prediction for large ,Θ  a decrease in Θ  and a variation of Re lead to the deviation from the 

exponential state of acceleration. The planar flame speed is taken to be Uf =30-40 cm/s, 

providing a realistically low flame propagation Mach number, ~ 310− , and the thermal expansion 

in the burning process was taken in the range of 12~4=Θ , which fits typical hydrocarbon 
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combustion. It is recalled that the solver and the numerical method are described in Chapter 3 as 

well as in (Bychkov et al., 2005; Akkerman et al.,2006; Akkerman et al., 2010; Bychkov et al., 

2010 and Valiev et al., 2013). 

4.2 Computational Results and Discussion 

Here computational results are presented and compared to the asymptotical prediction of 

(Bychkov et al., 2005), Eq. (2.25), as well as to the numerical solution to Eq. (2.23) representing 

the so-called “semi-analytical (numerical)” approach of Chapter 2. Specifically, it is recalled that 

one more purpose of the present part is to reconcile the asymptotical analysis (Bychkov et al., 

2005) and the recent work (Demirgok and Akkerman, 2013), described in Chapter 2, that 

underlined the intrinsic limitations of the theory (Bychkov et al., 2005). Specially, by solving Eq. 

(2.23) computationally, it is determined whether the asymptotic (2.25) works reasonably for a 

given set of parameters, and if it works, what the effect of thermal expansion on the flame 

propagation is, and how the limitations within a Re−Θ diagram look; see (Demirgok and 

Akkerman, 2013) for details. 

Figure 4.1 shows the evolution of the locus of the flame tip for the variety of flame propagation 

Reynolds numbers and expansion coefficients ( 8≥Θ ) and flame propagation Reynolds numbers 

Re = 10~50. Specifically, Figs. 4.1 (a-d) correspond to the fixed 12=Θ  (a), 10 (b), 9 (c), and 8 

(d), with various Re in each plot; while Figs. 4.1 (e, f) correspond to the fixed Re=20 (e) and 

Re=10 (f), with various 12,10,8,6=Θ  in each plot. The solid lines represent the direct 

numerical simulation of the present work, while the dashed lines show the fit for the exponential 

trend suggested by the theory (Bychkov et al., 2005). 
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In Figure 4.1 (a-d) one observes very good agreement between the computational and theoretical 

results. Indeed, look at the respective solid lines, representing direct numerical simulations, and 

the dashed ones, showing an exponential fit suggested by the theory. It is clearly shown that the 

respective results coincidence and overlap each other. Also, it can be stated that a flame 

propagates faster in a narrower tube. Indeed, this is seen in Fig.4.1a, where two different tubes 

are compared at fixed Θ = 12, with the flame propagation Reynolds numbers being 25, 15 and 

10, respectively. One can observe that the solution with lower Re exceeds that at higher Re for 

the same scaled time instant. Therefore, the flame acceleration rate decreases with the tube 

radius.    
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FIG. 4.1. The scaled flame tip position ξtip versus the scaled time τ at fixed thermal expansion 

coefficients, namely Θ = 12 (a), Θ = 10 (b), Θ = 9 (c), and Θ = 8 (d), with various flame propagation 

Reynolds numbers in each plot and the scaled flame tip position ξtip versus the scaled time τ at thermal 

expansion coefficients Θ = 12, 10, 8 and 6 and fixed propagation Reynolds number Re = 20 (e) Re = 10 

(f) 

In a similar manner, in order to investigate the thermal expansion effects on the flame 

propagation, in Fig. 4.1 (e-f) the evolution of the locus of the flame tip is shown for the variety of 

thermal expansion coefficients, Θ = 6 – 12, with a fixed flame propagation Reynolds number in 

each plot, namely Re = 20 and 10 in Fig. 4.1 (e) and 4.1 (f), respectively. Again, one can see 

very good agreement between the computational and theoretical results in Fig. 4.1 (e-f). Indeed, 

the respective solid lines, representing the DNS’ results, and the dashed ones, showing an 

exponential fit suggested by the theory, coincide and overlap each other. It is recalled that the 

flame propagates considerably faster at higher thermal expansion coefficients, see Fig. 4.1 (f).  
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Figure 4.2 presents the flame acceleration rate versus the flame-related Reynolds number, with 

different expansion coefficients in each plot. The result resembles indirectly that of Fig.4.1. 

Indeed, it is clearly seen from Fig. 4.2 that the solid and dashed lines start deviating from each 

other as soon as Θ goes below 8, which yields a certain threshold thermal expansion for the 

intrinsic validity of the asymptotic (2.10). 

In spite of a certain discrepancy between the results of (2.8) and (2.10) in Figs. 4.2 (e, f), our 

numerical simulations demonstrate that, for ,86 <Θ≤  a flame front still may (or may not) 

accelerate exponentially depending on other parameters, such as Re. Namely, the exponential 

acceleration regime breaks as soon as Re exceeds some threshold value, Re~20, as shown by the 

vertical dotted lines in Figs. 4.2 (e, f). As a matter of fact, this effect does not agree with the 

main conclusion of Chapter 2 that the asymptotic (2.10) still works more or less fine for 

86 <Θ≤ . Moreover (which is much more important!), while Chapter 2 and the study 

(Demirgok and Akkerman, 2013) yield that agreement between Eqs. (2.8) and (2.10) improves 

with the increase in Re, here the opposite tendency is observed. Without any guarantee that the 

following idea is correct, it is hypothesized that such a discrepancy is devoted to additional 

effects that might appear in wide tubes, say, the development of the hydrodynamic (Darrieus-

Landau; DL) instability that can modify a self-similar manner of the flame acceleration. 
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FIG. 4.2. The flame acceleration rate σ versus propagation Reynolds number Re at thermal expansion Θ = 

12 (a), 10 (b), 9 (c), 8 (d), 7 (e), 6 (f) 
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It is noted that while one can observe excellent agreement between the results of (2.8), (2.10) and 

the DNS when 8≥Θ , such excellent agreement degrades as soon as 8<Θ  is taken. Indeed, 

agreement is quite limited for ,86 <Θ≤  and one faces no agreement at all (no exponential trend 

observed) for .6<Θ   

Fig. 4.3a presents the evolution of the locus of the flame tip for the flame propagation Reynolds 

number Re = 30 and the expansion coefficient 5=Θ , obtained computationally. Figure 4.3b 

shows the scaled flame tip velocity Utip /Uf versus the scaled time τ = t Uf / R at the fixed thermal 

expansion coefficient Θ = 5 and the flame propagation Reynolds numbers Re = 30. Here one can 

see no agreement with the theory (Bychkov et al., 2005) at all: unlike the theoretical prediction, 

no exponential trend is observed in our simulations.  

Similarly, the scaled flame tip velocity Utip /Uf in Fig. 4.3b does not fit an exponential trend as 

well. Moreover, there are oscillations happening in the evolution of scaled flame velocity. Again, 

it is assumed that such a discrepancy is related to additional effects that might appear not only in 

wide tubes but also in a combustion process having a low thermal expansion that can somehow 

modify a self-similar manner of the flame acceleration.   

Figures 4.3 (c, d) are the counterparts of Fig. 4.3 (a, b) for Θ = 4. They yield the same result: 

neither the evolution of the flame tip position, nor its speed exhibit the exponential accelerative 

dynamics. Anyway, as soon as Θ  goes below 6, the exponential acceleration in the simulations 

is not observed at all, and this qualitatively fits both the original paper (Bychkov et al., 2005) and 

its justification (Demirgok and Akkerman, 2013). It is emphasized that the case of 4=Θ

conceptually differs from that of, say, .9=Θ  
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It is noted that only simulation results are demonstrated in Fig 4.3 (no theoretical ones). This is 

quite reasonable, because the evolution of the flame tip is not exponential anymore, and one 

certainly cannot compare this result with the theory based on the exponential approximation. 
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FIG. 4.3. The scaled flame tip position ξtip versus the scaled time τ at fixed thermal expansion coefficient 

Θ = 5 and flame propagation Reynolds numbers Re = 30 (a). The scaled flame tip velocity Utip /Uf versus 

the scaled time τ at fixed thermal expansion coefficient Θ = 5 and flame propagation Reynolds numbers 

Re = 30 (b). The scaled flame tip position ξtip versus the scaled time τ at fixed thermal expansion 

coefficient Θ = 4 and flame propagation Reynolds numbers Re = 40 (c). The scaled flame tip velocity Utip 

/Uf versus the scaled time τ at fixed thermal expansion coefficient Θ = 4 and flame propagation Reynolds 

numbers Re = 40 (d) 
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Finally, Fig. 4.4 presents the evolutions of the flame propagation in tubes in terms of color 

temperature snapshots. Specifically, Figs. 4.4 (a-c) are devoted to the flame of small thermal 

expansion, 4=Θ , while Figs. 4.4 (d-f) correspond to the realistically large one, 9=Θ . It is 

seen that the flame dynamics differ in these cases. In particular, a cave instead of a flame tip for 

4=Θ is observed while the flame front exhibits a convex, finger-like shape for 9=Θ . The 

reason for why one cannot observe finger-like shape for 4=Θ is that the additional effect may 

appear in a situation where the thermal expansion factor is low, say, the development of the 

hydrodynamics (Darrieus-Landeu: DL) instability mentioned by Bychkov and Liberman, 2000 

that can modify the flame tip evolution.    

 

FIG. 4.4. Evolution of the flame shape for a small thermal expansion, 4=Θ Fig. 4.3 (a-c) as well as for 

the realistically large one, 9=Θ Fig. 4.3 (d-f) 
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4.3   Conclusions 

In this chapter, the analytical (Bychkov et al., 2005), semi-analytical, Chapter 2 and (Demirgok 

and Akkerman, 2013), and fully computational (DNS) approaches to flame acceleration in tubes 

due to wall friction are reconciled. It is shown that while the theory predicts the main 

characteristics of the flame acceleration very well when both Θ  and Re are large enough, it may 

or may not be as accurate otherwise. In particular, it can be concluded that the theory 

quantitatively deteriorates for 86 <Θ≤ , though it still may or may not work qualitatively 

(exhibiting the exponential acceleration or not), depending on Re. Finally, the theory breaks as 

soon as the expansion factor goes below 6.   
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Chapter 5: Analysis of Ethylene-Oxygen Combustion in Micro-Pipes 

Propagation of stoichiometric ethylene-oxygen premixed flames in cylindrical pipes of sub/near-

millimeter radii is investigated computationally and analytically. Then computational and 

analytical results are compared to the recent experiments (Wu and Wang, 2011). Namely, 

various stages of flame evolution such as quasi-isobaric, exponential acceleration; its moderation 

due to gas compression; and eventual saturation to the Chapman-Jouget deflagration are 

detected. Specifically, the dynamics and morphology of the flame front, its propagation velocity 

and acceleration rate are determined. Due to viscous heating, the entire process can be followed 

by the detonation initiation ahead of the flame front. The computational component of this 

research is based on the computational platform described in Chapter 3. The overall study 

bridges the gap between the experiments (Wu and Wang, 2011) and the analytical formulation 

(Akkerman et al., 2006). 

5.1  Formulation 

Recent experiments have shown the occurrence of acceleration and DDT for ethylene-oxygen 

flames in micro-tubes/channels with diameter ~1 mm (Wu and Wang, 2011). However, in 

contrast to the theories discussed in Chapter 2, which predict an exponential acceleration of 

laminar flames in micro-scale tubes at the initial stage, the experiments demonstrated a number 

of specific effects beyond the scope of the incompressible flow adopted in these analyses, such 

as moderated flame acceleration with subsequent saturation of the flame velocity to a steady 

value, which can be interpreted as the Chapman-Jouguet (CJ) deflagration speed.  

To elucidate these observations, in particular, the experiments in micro-tubes, the role of gas 

compression has been investigated in the acceleration process. Specifically, the incompressible 
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theory of flame acceleration (Akkerman et al., 2006) has been extend to include small but finite 

gas compression, by employing expansion in the initial Mach number up to 1st order terms. The 

analysis shows how compression waves modify the regime of flame acceleration, the flame 

shape and velocity as well as the upstream flow. Analytical expressions for the main 

characteristics of the flame dynamics are derived. Specifically, the average flame front velocity 

in the laboratory frame and the average flame position read 
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where the flame tip parameters (acceleration, velocity and position) are given by 
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Here ssΩ  stands for the scaled flame velocity by the instant when a self-similar manner of the 

flame acceleration is attained; σ  is given by Eq. (2.16) in the 0th order approximation of 

11 <<−µ , and Eq. (2.17) in the 1st order approximation, with Reσµ ≡  in both cases; and the 

following designations are introduced:  
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where sc  is the sound speed in the fresh gas and m~  the ratio of the average molecular weights of 

unburned and burned gases, bf mmm /~ = . The details of the derivations are presented in 

Appendix C. 

5.2  Experiments  

This section briefly describes the experiments (Wu and Wang, 2011). The effects of the 

characteristic length scale and the premixture equivalence ratio on the ethylene-oxygen flame 

propagation in capillary tubes were experimentally analyzed using high speed cinematography. 

The inner radii of tubes investigated were 0.25, 0.5, 1 and 1.5 mm. The flame was ignited at the 

center of the 1.5 m long smooth tube under ambient pressure and temperature before propagated 

towards the exits in the opposite directions. 

A total of five reaction propagation scenarios, including DDT transition followed by steady 

detonation wave transmission, oscillating flame, steady deflagration, galloping detonation and 

quenching flame, were identified. Briefly, transparent borosilicate capillary tubes open at both 

ends were used as the flame propagation channels. Reaction wave propagations are visualized 

through the transparent tub using a high speed camera (IDT, Motionscope X3). Since ignition is 

achieved by applying high voltage across the electrodes at the center of the 1.5 m long tubes, the 

equivalent tube length for reaction propagation is therefore 0.75 m. The ethylene-oxygen mixture 

was premixed using a tee before being fed into a tube. The flow rates of the oxygen and the fuel 

were controlled using the mass flow controllers (MKS 1179A). The reader can see the original 

paper (Wu and Wang, 2011) for further details. 
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5.3  Computational Simulations 

Extensive direct numerical simulations of the hydrodynamic and combustion equations including 

Arrhenius chemical kinetics and transport processes have been performed in an axisymmetric, 

cylindrical geometry, the basic equations read 
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the stress tensor ji,γ  takes the form 
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and the energy diffusion vector iq  is 
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      5.4 Results and Discussion 

 In this section, new computational results are compared to the extension of the theory 

(Akkerman et al., 2006) and the experimental data on premixed stoichiometric ethylene-oxygen 

flames accelerating in tubes of small radii, R=0.25 and 0.5mm. Following the GasEQ and USC 

Mech II results for stoichiometric ethylene-oxygen combustion, the kinematic viscosity 

sm /1035.1 25−×=ν  and the laminar flame speed smU f /58.3=  are used, thereby making the 

flame propagation Reynolds number for such tubes to be about .460~56Re =  The adiabatic 

exponent is 34.1/ == VP ccγ  yielding the sound speed being smPcs /331/ 0 == ργ , with the 

initial Mach number 0125.0/ 00 == cUM f . With the initial expansion ratio of 6.10=Θ , one 

finds 34.1)//(~
00 =Θ= TTm b .  

It is recalled that the evolution of the flame velocity in the experiments showed humps and cusps 

in the early stage of combustion, until a self-sustained state of flame acceleration is achieved. For 

a meaningful comparison, one therefore had to employ the initial experimental marker related to 

self-sustained flame acceleration as the initial condition for the theoretical formulation, with the 

experimental flame speed at that instant assuming the role of ssΩ , and hence considerably 

increasing the Mach number as compared to the initial one. Consequently, while the comparison 

becomes feasible for narrow tubes, mmR )5.025.0( −= , the self-sustained flame propagation in 

a wider tube, mmR )5.10.1( −= , appears outside the validity domain of the theory that assumes 

weak compressibility. 
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FIG. 5.1. Evolution of the flame tip in a tube of radii R=0.25 mm (a) and 0.5mm (b) 
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FIG. 5.2. Evolution of the flame tip in a tube of R = 0.25 mm for Ωss = 4.2. The cases of the acceleration 

rate given by Eq. (2.17), 1σ  and Eq. (2.16), 0σ , are shown by the dashed and solid lines, respectively. 

Filled rectangles show the experimental results while dotted line represents the DNS ones 

 

 

FIG. 5.3. Evolution of the flame tip in a tube of R = 0.5 mm for Ωss = 4.2. The cases of the acceleration 

rate given by Eq. (2.17), ,1σ  and Eq. (2.16), 0σ , are shown by the dashed and solid lines, respectively. 

Filled rectangles show the experimental results while dotted line represents the DNS ones 
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FIG. 5.4. Evolution of the flame tip in a tube of R = 0.5 mm for Ωss = 7.1. The cases of the acceleration 

rate given by Eq. (2.16), 1σ , and Eq. (5.16), 0σ , are shown by the dashed and solid lines, respectively. 

Filled rectangles show the experimental results while dotted line represents the DNS ones   

Figures 5.1 – 5.4 compare the present computational simulations, theory and experiments for 

cylindrical tubes of radii mmR )5.025.0( −= . Specifically, the analytical and experimental 

results are compared in Fig. 5.1. Equation (5.3) is shown by the solid lines, while the dotted line 

is related to the incompressible theory (Akkerman et al., 2006). The experimental data are shown 

by markers.  

The present computational results are compared to the analytical and experimental evolutions of 

the flame tip in Figs. 5.2 – 5.4. Specifically, Fig. 5.2 shows the case of R = 0.25 mm with Ωss = 

4.2; while the other two plots are devoted to the twice wide tube: the situation of R = 0.5 mm 

with Ωss = 4.2 is shown in Fig. 5.3, while Fig. 5.4 presents that of R = 0.5 mm with Ωss = 7.1. In 

all of these three figures, 5.2 – 5.4, the solid lines represent the 0th order approach, while the 

dashed lines show the 1st order approach. Filled rectangles are devoted to the experimental 
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measurements, while present DNS results are shown by the dotted lines. Again, good agreement 

between the simulations, theoretical formulation and experiments is observed at the initial stage.  

Finally, Fig. 5.5 presents the color temperature snapshots for the stoichiometric ethylene-oxygen 

combustion in a tube of radius 0.25 mm, with the fuel mixture and burnt matter shown 

conventionally by the blue and red colors, respectively. The flame front exhibits a convex, 

finger-like shape.      

 

FIG. 5.5. Evolution of the flame shape in a tube of radius R = 56Lf = 0.25mm. The colors represent the 

temperature from 300K in the fuel mixture (blue) to the corresponding burnt matter temperature (red) 

5.5  Conclusion 

Dynamics and morphology of stoichiometric ethylene-oxygen flames in sub-millimeter 

cylindrical pipes is studied computationally, analytically and experimentally. The main flame 

characteristics such as the flame shape and velocity, locus and speed of the flame tip, the flame 

acceleration rate, as well as the flow field generated by the flame propagation were analyzed. 

Good agreement between all approaches employed at the initial stage is demonstrated which 

thereby validates the analytical formulation on flame acceleration in tubes. 
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Chapter 6: Summary 

The present thesis had several objectives devoted to the comprehensive (analytical, 

computational and experimental) investigation of the flame acceleration in tubes/channels due to 

wall friction. A “road map” for this work was the theoretical formulation of Bychkov and co-

authors who have revealed the entire scenario of flame acceleration and detonation triggering. 

One of the objectives of this thesis was to investigate the intrinsic limitations and accuracy of the 

theories (Bychkov et al., 2005; Akkerman et al., 2006). This task was performed by utilizing the 

Newton-Raphson and numerical discretization methods. The limitations and accuracy of the 

theories were clearly underlined in the Re-Θ diagram. Another objective of the thesis was to 

identify the influence of the thermal expansion and on the intrinsic accuracy of the theory as well 

as on the flame propagation in general. It was clearly shown that the theory predicts the main 

characteristics of the flame acceleration very well when both Θ  and Re are large enough. 

However, the theory quantitatively deteriorates for 86 <Θ≤  depending on Re. Eventually, the 

theory breaks as soon as the expansion factor goes below 6. Finally, the last objective was to 

scrutinize the dynamics and morphology of stoichiometric ethylene-oxygen flames in sub-

millimeter cylindrical pipes and bridge the gap between the experiments done by Wu and Wang 

(2011) and our analytical formulation by using DNS. In this part, the main flame characteristics 

such as the flame shape and velocity, the locus and speed of the flame tip, the acceleration rate, 

as well as the flow field generated by the flame propagation are determined, and good agreement 

between all approaches (analytical, computational and experimental) is found at the initially state 

of the flame acceleration. This thereby validates the recent analytical formulations (Bychkov et 

al., 2006; Akkerman et al., 2006; Bychkov et al., 2010).  
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APPENDIX: A  

“Semi-analytical” Matlab code developed for the 2D theory. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Task2 Matlab Code % 

% Adviser: Dr. Slava Akkerman % 

% Student: Berk Demirgok % 

% % 

% % 

% % 

% % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clc 

clear all 

close all 

syms x Re teta y 

y = x; 

%eq-18 

LHS = (sqrt(y*Re)*cosh(sqrt(y*Re))-sinh(sqrt(y*Re)))/(sqrt(y*Re)*(teta-1)); 

RHS = (exp(sqrt(y*Re))/(2*(sqrt(y*Re)+x)))-(exp(-sqrt(y*Re))/(2*(sqrt(y*Re)- 

y)))... 

+(sqrt(y*Re)^2/(sqrt(y*Re)^2-y^2))*(exp(-y)/y)-1/y; 

%% simplified equation eq-19 

%LHS=sqrt(Re*x)+x; 

%RHS= sqrt(Re*x)*(teta-1)/(sqrt(Re*x)-1); 

F = matlabFunction(LHS-RHS); 

Fp = matlabFunction(diff(LHS-RHS,x)); 

urfac = 1.0; 

%% Analytic solution 

% Analytic Solution for equation 21 

x = @(RR,TT) (0.25*((RR - 1.0).^2.0)./RR).*(sqrt(1.0+ (4.0*RR.*TT./((RR - 

1.).^2)))-1.). 

^2; 

% Analytic Solution for equation 22 

z = @(RR,TT) TT.^2./RR; 

% fixed Reynolds Number 

Fix = 'teta'; % Fix='Re' will solve for fixed re and Fix='theta' will solve 

for theta 
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if strcmp('Re', Fix) 

Re=[5 10 20]; 

%Re = [1 3 4 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 

47.5 50 

52.5 55 57.5 60 62.5 65 67.5 70]; 

teta = linspace(3,10,49); 

for i = 1:length(Re) 

sigma(i,:) = x(Re(i),teta); 

end 

else 

Re = linspace(1,120,95); 

teta=[4 6 8 10]; 

%teta = [3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25 6.5 6.75 7 

7.25 7.5 7.75 

8 8.25 8.5 8.75 9 9.25 9.5 9.75 10]; 

for i = 1:length(teta) 

sigma(i,:) = x(Re,teta(i)); 

end 

end 

%% Numeric Solution 

for j = 1:length(Re) 

for k = 1:length(teta) 

x = 10; % initial value 

for i = 1:100 

xold = x; 

func_F = F(Re(j),teta(k),x); 

Fprime_x = Fp(Re(j),teta(k),x); 

x = x - func_F/Fprime_x; 

root_x(i) = x; 

error_x(i) = abs(x - xold)/abs(x); 

if error_x(i) <0.12E-12; 

break, 

end 

end 

FF(j,k) = func_F; 

XX(k) = x; 

end 

X(j,:) = XX; 



 
 
 

67 
 

end 

if strcmp('Re', Fix) 

figure1 = figure('Color',[1 1 1]); 

% Create axes 

axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 

'Position',[0.0787309048178613 0.0794326241134752 0.880141010575793 

0.865248226950355]); 

box(axes1,'on'); 

hold(axes1,'all'); 

% Create plot 

plot(teta,X(1,:),'Parent',axes1,'LineWidth',2,'DisplayName','Re = 5'); 

% Create plot 

plot(teta,X(2,:),'Parent',axes1,'LineWidth',2,'DisplayName','Re = 10'); 

% Create plot 

plot(teta,X(3,:),'Parent',axes1,'LineWidth',2,'DisplayName','Re = 20'); 

% Create xlabel 

xlabel('\sigma','FontWeight','bold','FontSize',12); 

% Create ylabel 

ylabel('\theta','FontWeight','bold','FontSize',12); 

% Create title 

title('Fixed Re, \sigma versus \theta','FontWeight','bold','FontSize',12); 

% Create legend 

legend1 = legend(axes1,'show'); 

set(legend1,'EdgeColor',[1 1 1],'YColor',[1 1 1],'XColor',[1 1 1],... 

'Position',[0.512730121425773 0.587234042553193 0.142185663924794 

0.129550827423168],... 

'FontWeight','bold',... 

'FontSize',12); 

else 

figure1 = figure('Color',[1 1 1]); 

% Create axes 

axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on',... 

'Position',[0.0787309048178613 0.0794326241134752 0.880141010575793 

0.865248226950355]); 

box(axes1,'on'); 

hold(axes1,'all'); 

% Create plot 

plot(Re,X(:,1),'Parent',axes1,'LineWidth',2,'DisplayName','teta = 4'); 
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% Create plot 

plot(Re,X(:,2),'Parent',axes1,'LineWidth',2,'DisplayName','teta = 6'); 

% Create plot 

plot(Re,X(:,3),'Parent',axes1,'LineWidth',2,'DisplayName','teta = 8'); 

% Create plot 

plot(Re,X(:,4),'Parent',axes1,'LineWidth',2,'DisplayName','teta = 10'); 

% Create xlabel 

xlabel('\sigma','FontWeight','bold','FontSize',12); 

% Create ylabel 

ylabel('Re','FontWeight','bold','FontSize',12); 

% Create title 

title('Fixed Teta, \sigma versus Re','FontWeight','bold','FontSize',12); 

% Create legend 

legend1 = legend(axes1,'show'); 

set(legend1,'EdgeColor',[1 1 1],'YColor',[1 1 1],'XColor',[1 1 1],... 

'Position',[0.512730121425773 0.587234042553193 0.142185663924794 

0.129550827423168],... 

'FontWeight','bold',... 

'FontSize',12); 

end 

hold on 

if strcmp('Re', Fix) 

plot(teta,sigma(1,:),teta,sigma(2,:),teta,sigma(3,:)) 

hold off 

Error = 100*abs((sigma'-X')./sigma'); 

% plotting Errors --------------------------------------------------------- 

figure1 = figure('Color',[1 1 1]); 

% Create axes 

axes1 = axes('Parent',figure1,'YMinorTick','on','XMinorTick','on',... 

'Position',[0.109612141652614 0.117962466487936 0.851602023608769 

0.807037533512064]); 

% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[3 11]); 

% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes1,[0 105]); 

hold(axes1,'all'); 

% Create multiple lines using matrix input to plot 

plot1 = plot(Error,teta,'Parent',axes1,'LineWidth',2); 
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set(plot1(1),'DisplayName','Re = 5'); 

set(plot1(2),'DisplayName','Re = 10'); 

set(plot1(3),'DisplayName','Re = 20'); 

% Create xlabel 

xlabel('Error (%)','FontWeight','bold','FontSize',16); 

% Create ylabel 

ylabel('theta','FontWeight','bold','FontSize',12); 

% Create legend 

legend1 = legend(axes1,'show'); 

set(legend1,'EdgeColor',[1 1 1],'YColor',[1 1 1],'XColor',[1 1 1],... 

'Position',[0.366255029937709 0.365025711279218 0.201160541586074 

0.147249190938511]); 

else 

plot(Re,sigma(1,:),Re,sigma(2,:),Re,sigma(3,:),Re,sigma(4,:)) 

hold off 

Error = 100*(abs((sigma'-X)./sigma')); 

% plotting the error ------------------------------------------------------ 

figure1 = figure('Color',[1 1 1]); 

% Create axes 

axes1 = axes('Parent',figure1,'YMinorTick','on','XMinorTick','on',... 

'Position',[0.109612141652614 0.117962466487936 0.851602023608769 

0.807037533512064]); 

% Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[3 11]); 

% Uncomment the following line to preserve the Y-limits of the axes 

% ylim(axes1,[0 105]); 

hold(axes1,'all'); 

% Create multiple lines using matrix input to plot 

plot1 = plot(Error,Re,'Parent',axes1,'LineWidth',2); 

set(plot1(1),'DisplayName','\theta = 4'); 

set(plot1(2),'DisplayName','\theta = 6'); 

set(plot1(3),'DisplayName','\theta = 8'); 

set(plot1(4),'DisplayName','\theta = 10'); 

% Create xlabel 

xlabel('Error (%)','FontWeight','bold','FontSize',14); 

% Create ylabel 

ylabel('Re','FontWeight','bold','FontSize',12); 

% Create legend 
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legend1 = legend(axes1,'show'); 

set(legend1,'EdgeColor',[1 1 1],'YColor',[1 1 1],'XColor',[1 1 1],... 

'Position',[0.366255029937709 0.365025711279218 0.201160541586074 

0.147249190938511]); 

End 

Semi-analytical” Matlab code developed for the axisymmetric theory. 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Task3 Matlab Code % 

% Adviser: Dr. Slava Akkerman % 

% Student: Berk Demirgok % 

% % 

% % 

% % 

% % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

% sigma = x 

clc 

clear all 

close all 

syms RR TT 

mu = (RR./2).*((1+(8.*(TT-1))./(RR)).^0.5-1); 

an = (RR./4.0).*((1.0+(8.0.*(TT-1))./(RR)).^0.5-1).^2.0; 

ann = (RR./4).*((1+((8.*(TT-1))./RR).*(1+(1./mu)+(1./(2.*(mu+an))))).^(0.5)-

1).^2.0; 

anF = matlabFunction(ann); % anF = F(RR, TT) 

muf =matlabFunction(mu); 

syms x y Re nu teta 

% Analytic Solution for equation 21 

% mu= @(RR,TT) (RR/2.0).*(sqrt(1.0+(8.0*(TT-1))./(RR))-1); 

an = @(RR,TT) (RR./4.0).*((1.0+(8.0.*(TT-1))./(RR)).^0.5-1).^2.0; 

%ann = @(RR,TT) (RR/4.0).*(sqrt(1.0+((8.0*(TT-

1))./(RR)).*(1.0+1.0/((RR/2.0).*(sqrt(1.0+ 

(8.0*(TT-1))./(RR))-1))+1.0/(2.0*(((RR/2.0).*(sqrt(1.0+(8.0*(TT-1))./(RR))-

1))+((RR/4. 

0).*(sqrt(1.0+(8.0*(TT-1))./(RR))-1).^2.0)))))-1).^2.0; 
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%ann = @(RR,TT,mu,an) (RR/4.0).*(1+sqrt(1.0+((8.0*(TT-

1))./(RR))*(1.0+(1.0/(mu))+(1/(2* 

(mu+an))))-1)).^2.0; 

arg = sqrt(x*Re); 

func = besseli(0,arg*y)*exp(x*y); 

% F --> f(Re,x,y) 

F = matlabFunction(func); 

% Integration: KSI(nu): Using numerical discretization to calculate 

% integration symbolically 

n = 41; % # of grids in discrete domain 

FF = 0; 

h = nu/(n-1); 

for i = 2:n-1 

tt = h*(i-1); 

FF = FF + F(Re,x,tt); 

end 

KSI_n = 0.5*h*(F(Re,x,0) + F(Re,x,nu))+h*FF; 

eKSI = KSI_n*exp(-x*nu); 

FeKSI = matlabFunction(eKSI); % FeKSI--> f(Re,nu,x) 

% KSI(1)*exp(-sig) 

exKSI_1 = FeKSI(Re,1,x); 

% Symbolic Integration using numerical discretization 

% int, KSI(n)exp(-sig*nu)dnu (0,1) 

Ff = 0; 

h = 1/(n-1); 

for i = 2:n-1 

tt = h*(i-1); 

Ff = Ff + FeKSI(Re,tt,x); 

end 

intKSI = 0.5*h*(FeKSI(Re,0,x) + FeKSI(Re,1,x))+h*Ff; 

LHS = (besseli(0,arg)-2*arg^(-1)*besseli(1,arg))/(2*(teta-1)); 

RHS = (((x+1)*exp(-x)-1)/x^2)+exKSI_1-intKSI; 

% General nonlinear Equation : Fsys = f(Re,teta,x) 

Fsys = matlabFunction(LHS-RHS); 

Fprime = matlabFunction(diff((LHS-RHS),x)); % Fprime = f(Re,teta,x) 

% fixed Reynolds Number 

Fix = 'Re'; % Fix='Re' will solve for fixed re and Fix='theta' will solve for 

theta 
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if strcmp('Re', Fix) 

Re = [40 60 80]; 

teta = linspace(2,6,50); 

for i = 1:length(Re) 

%mu_(i,:) = mu(Re(i),teta); 

sigma(i,:) = anF(Re(i),teta); 

sigmaa(i,:)=an(Re(i),teta); 

end 

else 

Re = linspace(1,200,100); 

teta = [4 6 8 10 12]; 

for i = 1:length(teta) 

% mu_(i,:) = mu(Re,teta(i)); 

sigma(i,:) = anF(Re,teta(i)); 

sigmaa(i,:)=an(Re,teta(i)); 

end 

end 

for j = 1:length(Re) 

for k = 1:length(teta) 

x = 7; % initial value 

for i = 1:100 

xold = x; 

func_F = Fsys(Re(j),teta(k),x); 

Fprime_x = Fprime(Re(j),teta(k),x); 

x = x - func_F/Fprime_x; 

root_x(i) = x; 

error_x(i) = abs(x - xold); 

if error_x(i) <0.12E-6; 

break, 

end 

end 

FF(j,k) = func_F; 

XX(k) = x; 

end 

X(j,:) = XX; 

end 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%fixed theta plots 
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% figure 

% plot(Re,sigma(1,:),'r') 

% hold on 

% plot(Re,sigma(2,:),'b') 

% hold on 

% plot(Re,sigma(3,:),'g') 

% hold on 

% plot(Re,X(:,1),'r.') 

% hold on 

% plot(Re,X(:,2),'b.') 

% hold on 

% plot(Re,X(:,3),'g.') 

% hold on 

% xlabel('\Re') 

% ylabel('\Theta') 

% 

% plot(Re,sigmaa(1,:),'r--') 

% hold on 

% plot(Re,sigmaa(2,:),'b--') 

% hold on 

% plot(Re,sigmaa(3,:),'g--') 

% 

% Error = 100*(abs((sigma'-X)./sigma')); 

% figure 

% plot(Re,Error) 

% xlabel('Re') 

% ylabel('Error (%)') 

% figure 

% %contour(teta,Re,Error,5) 

% contour(teta,Re,Error,'ShowText','on','LevelList',[ 5 10 15 30 50 ]); 

% xlabel('\Theta') 

% ylabel('\Re') 

% % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% %fixed Re plots 

figure 

plot(teta,sigma(1,:),'r') 

hold on 
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plot(teta,sigma(2,:),'b') 

hold on 

plot(teta,sigma(3,:),'g') 

hold on 

plot(teta,X(1,:),'r.') 

hold on 

plot(teta,X(2,:),'b.') 

hold on 

plot(teta,X(3,:),'g.') 

hold on 

plot(teta,sigmaa(1,:),'r--') 

hold on 

plot(teta,sigmaa(2,:),'b--') 

hold on 

plot(teta,sigmaa(3,:),'g--') 

hold on 

xlabel('\Theta') 

ylabel('\sigma') 

Error = 100*(abs((sigma-X)./sigma)); 

figure 

plot(teta,Error) 

xlabel('\Theta') 

ylabel('Error %') 

figure 

%contour(teta,Re,Error,5) 

contour(teta,Re,Error,'ShowText','on','LevelList',[1 3 5 10 15 25 35 50]); 

xlabel('\Theta') 

ylabel('\Re') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX B: 
Here it is demonstrated an illustration sample of the initial file before we start our 

simulations. Key parameters are explained by short comments.  

  

INITIAL_FRONT_POS  4.000000  Position/or radius of initial 
RADIUS_OF_TUBE               20.000000  Radius of tube in Lf  
STEP_INCREASE   1.050000  Step increase from flame uniform domain 
WAVE_STEP   1.250000  Determines the resolution for wave domain(inLf) 
WAVE_DOMAIN  1000 
OUTER_DOMAIN_SIZE  85 
I_CELLS    10066 
J_CELLS    81 
REGSTEP   0.250000  Grid tapping in flame uniform domain (in Lf) 
UNIFORM_MARGIN  401 
PRESSURE_FUEL  100000.000000  in SI units 
TEMPERATURE_FUEL  300.000000  in SI units 
EXPANSION_COEFFICINET 9.000000  non dimensional thermal expansion coefficient  
VISCOSITY   0.000017 
PRANDTL_NUMBER  1.000000  non dimensional   
LEWIS_NUMBER  1.000000  non dimensional 
GAMMA   1.400000  non dimensional 
TAU_REACTION   3.983574597289894e-08 
MACH_NUMBER  0.001010  non dimensional 
MOLAR_MASS_FUEL  0.029000  non dimensional 
MOLAR_MASS_BURNT  0.029000  non dimensional 
R_UNIV    8.314340  non dimensional 
CV_FUEL   716.753448  non dimensional 
CV_BURNT   716.753448  non dimensional 
E_FUEL    1505182.241379 non dimensional 
E_BURNT   0.000000  non dimensional 
E_ACTIVATION   59863.248000  non dimensional 
DENSITY_FUEL   1.162650  non dimensional 
FLAME_VELOCITY  0.350478  in SI units 
FLAME_THICKNESS   4.1719495261827e-05  in SI units 
NUMBER_OF_SPECIES  2 
LAMBDA   2988.169192 
EPS_ACTIVATION  4.000000 
NSTEP    1000 
INIT_OUTPUT   0 
NUMBER_OF_OUTPUT  10000 
PCOEFF    0.000000 
REACTION_ORDER  1.000000 
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APPENDIX C: 
Following (Akkerman et al., 2006; Bychkov et al., 2010), a laminar flame front propagating 

from the closed end of a semi-infinite cylinder of radius R  with non-slip wall is considered; see 

schematic in Fig. 1.3. The formulation is also relevant to the situation of two fronts propagating 

outwardly in a symmetric manner from an ignition point in the center of a tube with both ends 

open (Wu and Wang, 2011). The same scaled variables as in Chapter 2 are used, namely, 

Rr /=η , Rz /=ξ , fU/uw = , fww UU /=Ω , RUt f /=τ . Then the Navier-Stokes equation 

ahead of the flame reads 

 ( ) 







∂
∂

∂
∂

+Π=
∂

∂
η

η
ηη

τ
τ

aa ww 1
Re
1 ,       (A.1) 

where the term ξρ ∂∂−=Π − /1 P  is produced by the flame front propagating with the scaled 

velocity wΩ  with respect to the fuel mixture. The subscript “a” designates the flow ahead of the 

flame front. The flame position is described by ),()(),( τητξτηξ ftipf −= , where ),0( τξξ ftip ≡  

designates the flame tip, at the channel axis, and ),( τηf  describes the flame shape, with 

0),0( =τf  by definition. The local burning rate is proportional to the local increase in the flame 

surface area, ( )2/1 η∂∂+ f . In addition, the flame is drifted by the flow. Consequently, with 

( ) 1/ 2 >>∂∂ ηf  everywhere except for the flat region close to the tube axis, the flame evolution 

and shape are described by 

         ( ) ηητξ ∂∂≈∂∂+=−∂∂ ffwaf
21 ,   ( )τητητ ,),0(// aa wwff −=∂∂+∂∂ . (A.2) 
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It is also defined that the spatially averaged flame position fξ=Σ , which is related to the total 

flame velocity in the laboratory reference frame LU  as fL UU /=Σ . Thus averaging Eq. (A.2) 

yields 

 ( ) ( ) 







−+=

∂
∂

+=Ω+=Σ ∫∫ ητητηη
η

dffwdfww
aawa

1

0

1

0

,,122 .  (A.3) 

Finally, similar to the analysis for the 2D planar geometry (Akkerman et al., 2006), the 

instantaneous average velocity of the flow generated by an accelerating flame front in a 

cylindrical tube is given by  

 



 ΣΣ

Θ
−Σ

Θ
−Θ

−−Σ
Θ
−Θ

=  02
20 )(
~

)1(1 MmMw
a

γ ,     (A.4) 

where 1/ 00 <<≡ cUM f  is the initial Mach number, with the initial sound speed in the fuel 

mixture being ( )00 Tcc = , the initial expansion factor 00 / bρρ≡Θ , and bu mmm /~ ≡ , where um  

and bm  are the average molecular weights of the unburned and burned gases, respectively. For a 

perfect gas one has 

 ( )( ) 00000 /~1/// TCQmTTmm Pbbub +==≡Θ ρρ ,     (A.5) 

with the energy release in the reaction Q  and the heat capacity at constant pressure PC . As such, 

within the 1st-order approximation in 10 <<M , Eqs. (A.1) - (A.4) describe the flame acceleration 

and flame-generated flow in a semi-infinite tube with non-slip, adiabatic wall. In the limit of an 

incompressible flow, 00 =M , we have ( ) wa
w Ω−Θ= 1 , wΘΩ=Σ . 

Within the 1st-order accuracy for 10 <<M , the solution to the set of Eqs. (A.1) – (A.4) yields the 

flow velocity profile,  
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( ) ( ) ( )[ ] ( )−








 −
−

−
Ω−Θ≈ στ

η
ηµ

µ
µτη exp1exp1

2
1, ssaw    

    ( ) ( )[ ] ( )στ
η

ηµ
µ

µ 2exp12exp1
2

1 22
0 









 −
−

−
Ω−Θ ssAM ,  (A.6) 

with the average velocity 

 ( ) ( ) ( ) ( )στστ 2exp1exp1 22
0 ssssa
AMw Ω−Θ−Ω−Θ= .    (A.7) 

The flame shape is described as 

( ) ( )[ ]
( )

( ) ( )[ ] ( )−












−−−−
+

−
−

Ω−Θ≈ στσηµ
σ
πµη

ησµ
ηµ

µ
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21exp
2
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
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


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−
−

Ω−Θ ssAM , (A.8)  

such that the total burning rate is given by 

( ) ( ) ( ) ( ) ( )στστητητ 2exp1exp,,12 22
0

1

0

BAMdff ssssw Ω−Θ−Ω=







−=Ω ∫ , (A.9) 

where 

 ( )[ ] 1
2/

−
+= µσB ,   ( )( )[ ] 






 −

−Θ
Θ+−Θ−= BmA

1
1~1γ .   (A.10)  

Consequently, the total flame speed with respect to the laboratory reference frame read 

( ) ( ) ( ) ( )στστ 2exp11exp 22
0 BAMw sssswa +Ω−Θ−ΘΩ=Ω+=Σ ,  (A.11) 

with the average flame position, 

( ) ( ) ( ) ( )στ
σ

στ
σ

2exp1
2

1exp 2
2

0 BAM ssss +Ω
−Θ

−Ω
Θ

=Σ ,    (A.12) 

and its acceleration, 

( ) ( ) ( ) ( )στσστσ 2exp112exp 22
0 BAM ssss +Ω−Θ−ΩΘ=Σ .    (A.13) 

Then the flame tip position is given by 



 
 
 

79 
 

( ) ( ) ( )στ
µσ

στ
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ξ 2exp
22

11exp1 22
0 
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
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+
Ω−Θ−Ω




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
+

Θ
=+Σ=

BBAMf sssstip , (A.14) 

and the flame tip velocity in the laboratory reference frame 

 ( )−Ω







+Θ=+Σ=≡ στ

µ
σξ expss

L
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
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






++Ω−Θ BAM ss .   (A.15) 

In the 0th order approximation in 0M , Eqs. (A.6) – (A.15) reproduce the incompressible theory 

of flame acceleration in cylindrical tubes (Akkerman et al., 2006), while the 1st order corrections 

elucidate the moderation of the acceleration due to compressibility. It is also noted that Eqs. 

(A.7), (A.9) – (A.15) agree with the respective formulas obtained in the 2D geometry (Bychkov 

et al., 2010). However, even in terms of µ  and σ , the factor B , Eq. (A.8), is twice the 

respective 2D factor (Bychkov et al., 2010). Furthermore, in the axisymmetric case, the factor µ  

is about twice that of the 2D case for the same Re. Consequently, the axisymmetric acceleration 

exponent σ  is about 4 times larger than the planar one, yielding considerably stronger flame 

acceleration, as well as the stronger relative effect of the moderation, in the cylindrical, 

axisymmetric geometry.    

The moderating flame acceleration can be further demonstrated in the form of a differential 

equation for the average flame position. In the 0th order approximation of 0M , the accelerating 

flame dynamics is determined by the differential equation 

 Σ=Σ  σ ,          (A.16) 

which can be extended in the 1st order approximation as  

 ( )Σ−Σ=Σ 
11 Cσ ,         (A.17) 
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with ( ) ( )BAMC +Θ−= − 11
21

01 . Integration of Eq. (A.17) with the initial condition  

( ) ( )BAM ssss +Ω−Θ−ΘΩ=Σ 1)1(0 22
0

 ,      (A.18) 

yields the average flame front velocity in the laboratory frame and the average flame position, 

 
)exp(1

)exp(

10 στ
στ

ss

ss

CM ΘΩ+
ΘΩ

=Σ ,  ( )[ ]στ
σ

exp1ln1
10

10
ssCM

CM
ΩΘ+=Σ . (A.19) 

The total burning rate and the flame tip evolution can be estimated in the similar manner. For the 

burning rate, the 0th order relation, ww Ω=Ω σ , extends to  

 ( )www CΩ−Ω=Ω
~1σ ,        (A.20) 

with ( ) ABMC 2
0 1~

−Θ= , initial condition ( ) BAM ssssw
22

0 1)0( Ω−Θ−Ω=Ω , and the solution 

 
)exp(~1

)exp(
στ

στ

ss

ss
w CΩ+

Ω
=Ω .        (A.21)  

Similarly, the evolution of the flame tip is described by 

 ( )tiptiptip C ξξσξ 
21−= ,        (A.22) 
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2 στµσ
στµσ

ξ
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( ) ( )[ ]στµσ
σ

ξ exp/1ln1
2

2
sstip C

C
Ω+Θ+= ,     (A.24) 

where    
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Here we account for the effect of compressibility in the 1st order approximation for the initial 

Mach number related to flame propagation, 1/ 00 <<≡ cUM f . In order to describe a 

compression wave, we shall neglect the multi-dimensional flame structure approximating the 

flame front as a one-dimensional flat discontinuity surface in the locus )(tΣ=Σ . In the limit of 
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weak compression, the isentropic approximation may be adopted. Then, the scaled density 

0/~ ρρρ = , pressure 0/~ PPp =  and temperature 0/~ TTT =  just ahead of the flame are given by : 

  
aaa wMwM 0

1
2

0 1
2

11~ +≈





 −

+=
−γγρ ,      (A.26) 

 
aaa wMwMp 0

1
2

0 1
2

11~ γγ γ
γ

+≈





 −

+=
−

,      (A.27) 

 ( )
aaa wMwMT 0

2

0 11
2

11~ −+≈





 −

+= γγ ,     (A.28) 

Matching conditions at the flame front take the form 

 ( ) ( )
bfbfaa ww −Σ=−Σ  ρρ ~~ ,       (A.29) 

 ( ) ( )22
0

22
0

~~~~
bfbfbfaaa wMpwMp −Σ+=−Σ+  ργργ ,    (A.30) 

 ( ) ( )22
0

22
0 2

1~
2

11~
bfbfaa wMTwMT −Σ

−
+=−Σ

−
+−+  γγε ,       (A.31) 

where the index “bf” denotes the burnt matter just behind the flame front and ε  stands for the 

initial temperature jump across the front, with m~/Θ=ε  in the perfect gas model, where m~  is 

the ratio of the average molecular weights of unburned and burned gases, bu mmm /~ = . In the 1st 

order approximation of 0M , Eqs. (A.30), (A.31) and the perfect gas law yield  

 abf pp ~~ = ,  1~~ −+= εabf TT ,  θρρ abf
~~ = ,   (A.32) 

with the instantanoues expansion factor accounting for compressibility being 

 { }aabf TmTTm /)1(1~~/~~ −+=≡ εθ .       (A.33)  

Obviously, Θ=θ  when compression is negligible, 00 →
a

wM . But, as soon as the flame 

accelerates, aT~  increases and θ  reduces, thereby moderating the flame acceleration. Let us next 

consider the flow in the burnt gas. From the continuity equation   
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0)~(
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b wρ

ξτ
ρ ,        (A.34) 

and the condition of adiabatic compression, γρ∝p , we find 

τγτ
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∂
∂

,       (A.35)  

where the substantial derivative is taken for a particular gas parcel. For the same 1D model, we 

have one more equation for pressure, namely 
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Neglecting the second order term of 0M  in Eq. (A.35), we obtain uniform pressure distribution 

in the burnt gas, so pressure is a function of time only, )(~)(~~ ττ abfb ppp == . Then  

 ξ
τγ d
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p
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a
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~
~
1

−= ,  Σ−=
τγ d
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p
w a

a
bf

~
~
1 .     (A.36) 

Finally, substituting Eqs. (A.27), (A.28), (A.32) and (A.35) into Eq. (A.29), within the 1st order 

approximation of 0M , we find 
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with the final result   
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