Formation of 2-halomethylene-4-cyclopentene-1,3-diones and/or 2-halo-1,4-benzoquinones, total synthesis of methyl linderone and Wacker-type oxidation of aryl-substituted alkenes

Hong Yin
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation
Yin, Hong, "Formation of 2-halomethylene-4-cyclopentene-1,3-diones and/or 2-halo-1,4-benzoquinones, total synthesis of methyl linderone and Wacker-type oxidation of aryl-substituted alkenes" (2014). Graduate Theses, Dissertations, and Problem Reports. 389.
https://researchrepository.wvu.edu/etd/389

This Dissertation is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Graduate Theses, Dissertations, and Problem Reports by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.
Formation of 2-halomethylene-4-cyclopentene-1,3-diones and/or 2-halo-1,4-benzoquinones, total synthesis of methyl linderone and Wacker-type oxidation of aryl-substituted alkenes

Hong Yin

Dissertation submitted
to the Eberly College of Arts and Sciences
at West Virginia University
in partial fulfillment of the requirement for the degree of
Doctor of Philosophy in
Chemistry

Björn C. G. Söderberg, Ph. D., Chair
Kung K. Wang, Ph. D.
Alan M. Stolzenberg, Ph. D.
John H. Penn, Ph. D.
Patrick S. Callery, Ph. D.

C. Eugene Bennett Department of Chemistry

Morgantown, West Virginia
2014

Keywords: alkynylcyclobutenones, rearrangement, 2-alkylidene-1,3-cyclopentendiones, N-halosuccinimide, methyl linderone, aryl-substituted alkene, Wacker oxidation, α-arylated ketone

Copyright 2014 Hong Yin
ABSTRACT

Formation of 2-halomethylene-4-cyclopentene-1,3-diones and/or 2-halo-1,4-benzoquinones, total synthesis of methyl linderone and Wacker-type oxidation of aryl-substituted alkenes

Hong Yin

We have discovered a practical general method for the preparation of diverse 2-halomethylene-4-cyclopentene-1,3-diones and/or 2-halo-1,4-benzoquinones. An in-depth study of the reactions of 4-(ethynyl)-4-hydroxy-2,3-substituted-2-cyclobuten-1-ones with N-bromo- or N-iodosuccinimide is described. This reaction was used in a short total synthesis of methyl linderone. Also, a series of facile, palladium catalyzed, direct, and regiospecific Wacker-type oxidations has been developed to yield various α-arylated ketones from aryl-substituted internal alkenes.
Acknowledgments

This work is dedicated to my parents, Lingxiang Yin and Yuying Hong. I am glad that they are here today to witness my accomplishments.

I would like to thank my advisor, Dr. Björn C. G. Söderberg, for his constant advising, patience, and encouragement during my graduate studies. I would also like to thank all faculty members in the C. Eugene Bennett Department of Chemistry for their assistance over the years, especially my doctoral defense committee members.

Finally, thanks to all my research group members, past and present, for all of their help and friendship.
Chapter 1

Formation of 2-halomethylene-4-cyclopentene-1,3-diones and/or 2-halo-1,4-benzoquinones via ring-expansion of 4-ethynyl-4-hydroxy-2,3-substituted-2-cyclobuten-1-ones

1.1 Rearrangement of 4-alkynylcyclobutenones

1.1.1 Thermally induced ring expansions of 4-alkynylcyclobutenones

1.1.2 Electrophilic reagents induced ring expansions of 4-alkynylcyclobutenones

1.2 Ring expansion of 4-alkynyl-4-hydroxy-cyclo-2-buten-1-ones in the presence of an N-halosuccinimide

1.3 Results and discussion

1.4 Conclusions
Chapter 2

Total synthesis of methyl linderone

2.1 Introduction to linderone and methyl linderone 33

2.2 Previous synthesis of linderone and methyl linderone 38

2.3 Methyl linderone via ring expansion of 4-ene-yne-substituted cyclo-2-buten-1-one and N-iodosuccinimide 45

2.3.1 Retrosynthetic analysis 45

2.3.2 Results and discussion 46

2.3.3 Conclusions 47

Chapter 3

Synthesis of α-arylated ketone via Wacker-type oxidation of aryl-substituted alkenes

3.1 α-Arylated ketone background 49

3.2 Wacker-type oxidation 58

3.3 Wacker-type oxidation of aryl-substituted alkenes 73

3.4 Results and discussion 77

3.5 Conclusions 84
Chapter 4

Supporting information: experimental procedures

4.1 Supporting information Chapter 1: Ring-expansion of 4-ethynyl-4-hydroxy-2,3-substituted-2-cyclobuten-1-ones 86

4.2 Supporting information Chapter 2: Total synthesis of methyl linderone 103

4.3 Supporting information Chapter 3: Wacker-type oxidation of aryl-substituted alkenes 107
Appendix

1H and 13C NMR Spectra

- 1H and 13C NMR for Chapter 1: Ring-expansion of 4-ethynyl-4-hydroxy-2,3-substituted-2-cyclobuten-1-ones 149
- 1H and 13C NMR for Chapter 2: Total synthesis of methyl linderone 201
- 1H and 13C NMR for Chapter 3: Wacker-type oxidation of aryl-substituted alkenes 208
List of Figures

Figure 1: Structures of arnebifuranone, isoarnebifuranone, nanaomycin D, and deoxyfrenolicin 6

Figure 2: Structures of (±)-terreic acid and (±)-isoperezone 12

Figure 3: Eicosanoid core and naturally occurring eicosanoids 16

Figure 4: Postulated reaction path for palladium catalyzed ring expansion reaction 17

Figure 5: Hydrolysis products 85 and 86 27

Figure 6: Structures of linderone, methyl linderone, lucidone, methyl lucidone isolated from Lindera species 34

Figure 7: Structures of Stigmahamones I-II 34

Figure 8: Structure of kanakugiol 36

Figure 9: Structure of calythrone 38

Figure 10: Structures of coumestan, phenylbenzofurans, and isoflavones 49

Figure 11: Chemical structures of various palladium-complex catalysts 52

Figure 12: Typical apparatus for Wacker-type oxidation 60

Figure 13: Palladium complex accounts for the deactivation 62

Figure 14: Structures of substrates 238, 240, 241, and 242 74

Figure 15: Wacker-type oxidation of 1-aryl-1-propene 75

Figure 16: Products 276 and 277 82

Figure 17: 1H NMR of 2,3-bis(1-methylethoxy)-5-trimethylsilyl-2,5-cyclohexadiene-1,4-dione (70) 149
Figure 18: 13C NMR of 2,3-bis(1-methylethoxy)-5-trimethylsilyl-2,5-cyclohexadiene-1,4-dione (70)

Figure 19: 1H NMR of 2-(1-iodo-1-trimethylsilylmethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (71)

Figure 20: 13C NMR of 2-(1-iodo-1-trimethylsilylmethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (71)

Figure 21: 1H NMR of 2-(1-bromo-1-trimethylsilylmethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (72)

Figure 22: 13C NMR of 2-(1-bromo-1-trimethylsilylmethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (72)

Figure 23: 1H NMR of 2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (74)

Figure 24: 13C NMR of 2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (74)

Figure 25: 1H NMR of 2-(iodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (75)

Figure 26: 13C NMR of 2-(iodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (75)

Figure 27: 1H NMR of 2-(bromomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (76)

Figure 28: 13C NMR of 2-(bromomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (76)

Figure 29: 1H NMR of 5-chloro-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (77)
Figure 30: 13C NMR of 5-chloro-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione

Figure 31: 1H NMR of 4-hydroxy-2,3-bis(1-methylethoxy)-4-(2-iodoethyl)-2-
cyclobutene-1-one (78)

Figure 32: 13C NMR of 4-hydroxy-2,3-bis(1-methylethoxy)-4-(2-iodoethyl)-2-
cyclobutene-1-one (78)

Figure 33: 1H NMR of 5-iodo-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione

Figure 34: 13C NMR of 5-iodo-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione

Figure 35: 1H NMR of 2-(diiodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (80)

Figure 36: 13C NMR of 2-(diiodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (80)

Figure 37: 1H NMR of 4-hydroxy-2,3-bis(1-methylethoxy)-4-(2-bromoethyl)-2-
cyclobutene-1-one (81)

Figure 38: 13C NMR of 4-hydroxy-2,3-bis(1-methylethoxy)-4-(2-bromoethyl)-2-
cyclobutene-1-one (81)

Figure 39: 1H NMR of 5-bromo-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione

Figure 40: 13C NMR of 5-bromo-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione
Figure 41: 1H NMR of 2-(1-bromo-1-iodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (83) 173

Figure 42: 13C NMR of 2-(1-bromo-1-iodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (83) 174

Figure 43: 1H NMR of 2-(dibromomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (84) 175

Figure 44: 13C NMR of 2-(dibromomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (84) 176

Figure 45: 1H NMR of 4-hydroxy-2-methyl-3-(1-methylethoxy)-4-(2-trimethylsilyl)ethynyl)-2-cyclobutene-1-one (89) 177

Figure 46: 13C NMR of 4-hydroxy-2-methyl-3-(1-methylethoxy)-4-(2-trimethylsilyl)ethynyl)-2-cyclobutene-1-one (89) 178

Figure 47: 1H NMR of 2-trimethylsilylmethylene-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (90) and 5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (91) 179

Figure 48: 13C NMR of 2-trimethylsilylmethylene-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (90) and 5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (91) 180

Figure 49: 1H NMR of 2-(1-iodo-1-trimethylsilylmethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (92) 181

Figure 50: 13C NMR of 2-(1-iodo-1-trimethylsilylmethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (92) 182
Figure 51: 1H NMR of 6-iodo-5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (93) 183

Figure 52: 13C NMR of 6-iodo-5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (93) 184

Figure 53: 1H NMR of 2-(1-bromo-1-trimethylsilylmethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (94) 185

Figure 54: 13C NMR of 2-(1-bromo-1-trimethylsilylmethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (94) 186

Figure 55: 1H NMR of 6-bromo-5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (95) 187

Figure 56: 13C NMR of 6-bromo-5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (95) 188

Figure 57: 1H NMR of 3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (97) 189

Figure 58: 13C NMR of 3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (97) 190

Figure 59: 1H NMR of 2-(1-iodomethylene)-4-methyl-5-(1-methylethoxy)-4-cyclopentene-1,3-dione (98) 191

Figure 60: 13C NMR of 2-(1-iodomethylene)-4-methyl-5-(1-methylethoxy)-4-cyclopentene-1,3-dione (98) 192

Figure 61: 1H NMR of 2-(1-bromomethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (99) 193

Figure 62: 13C NMR of 2-(1-bromomethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (99) 194
Figure 63: 1H NMR of 2-(diiodomethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (101)

Figure 64: 13C NMR of 2-(diiodomethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (101)

Figure 65: 1H NMR of ethyl 2-(3,4-dimethoxy-2,5-dioxo-3-cyclopenten-1-ylene)-2-iodoethanoate (104)

Figure 66: 13C NMR of ethyl 2-(3,4-dimethoxy-2,5-dioxo-3-cyclopenten-1-ylene)-2-iodoethanoate (104)

Figure 67: 1H NMR of ethyl 2-(3,4-dimethoxy-2,5-dioxo-3-cyclopenten-1-ylene)-2-bromoethanoate (105)

Figure 68: 13C NMR of ethyl 2-(3,4-dimethoxy-2,5-dioxo-3-cyclopenten-1-ylene)-2-bromoethanoate (105)

Figure 69: 1H NMR of 2,3-dimethoxy-4-hydroxy-4-[(E)-4-phenyl-3-buten-1-yn-1-yl]-2-cyclobuten-1-one (137)

Figure 70: 13C NMR of 2,3-dimethoxy-4-hydroxy-4-[(E)-4-phenyl-3-buten-1-yn-1-yl]-2-cyclobuten-1-one (137)

Figure 71: 1H NMR of 4,5-dimethoxy-[(E)-2-(1-iodo-3-phenyl-2-propen-1-ylidene)]-4-cyclopentene-1,3-dione (138)

Figure 72: 13C NMR of 4,5-dimethoxy-[(E)-2-(1-iodo-3-phenyl-2-propen-1-ylidene)]-4-cyclopentene-1,3-dione (138)

Figure 73: 1H NMR of 4,5-dimethoxy-2-[(E)-3-phenyl-2-propen-1-ylidene]-4-cyclopentene-1,3-dione (139)
Figure 74: 13C NMR of 4,5-dimethoxy-2-[(E)-3-phenyl-2-propen-1-ylidene]-4-cyclopente-1,3-dione (139) 206

Figure 75: 1H NMR of 4,5-dimethoxy-2-[(E)-1-(N,N-dimethylamino)-3-phenyl-2-propen-1-ylidene]-4-cyclopente-1,3-dione (140) 207

Figure 76: 1H NMR of 4-fluoro-2-nitro-1-(1-propen-1-yl)benzene (233) 208

Figure 77: 13C NMR of 4-fluoro-2-nitro-1-(1-propen-1-yl)benzene (233) 209

Figure 78: 1H NMR of 2,4-dinitro-1-(1-propen-1-yl)benzene (234) 210

Figure 79: 1H NMR of 4-carbomethoxy-2-nitro-1-(1-propen-1-yl)benzene (235) 211

Figure 80: 1H NMR of 4-methoxy-2-nitro-1-(1-propen-1-yl)benzene (236) 212

Figure 81: 13C NMR of 4-methoxy-2-nitro-1-(1-propen-1-yl)benzene (236) 213

Figure 82: 1H NMR of 5-methoxy-2-nitro-1-(1-propen-1-yl)-benzene (237) 214

Figure 83: 1H NMR of 3-nitrobenzaldehyde (250) and 1-(3-nitrophenyl)-1,2-propanedione (251) 215

Figure 84: 13C NMR of 3-nitrobenzaldehyde (250) and 1-(3-nitrophenyl)-1,2-propanedione (251) 216

Figure 85: 1H NMR of 1-(4-fluoro-2-nitrophenyl)-2-propanone (257) 217

Figure 86: 13C NMR of 1-(4-fluoro-2-nitrophenyl)-2-propanone (257) 218

Figure 87: 1H NMR of 4-fluoro-1-(1,1-dimethoxymethyl)-2-nitrobenzene (258) 219

Figure 88: 13C NMR of 4-fluoro-1-(1,1-dimethoxymethyl)-2-nitrobenzene (258) 220

Figure 89: 1H NMR of 4-fluoro-2-nitrobenzaldehyde (259) and 1-(4-fluoro-2-nitrophenyl)-1,2-propanedione (260) 221
Figure 90: 13C NMR of 4-fluoro-2-nitrobenzaldehyde (259) and 1-(4-fluoro-2-nitrophenyl)-1,2-propanedione (260)

Figure 91: 1H NMR of 4-fluoro-1-(1,1-dimethoxymethyl)-2-nitrobenzene (263)

Figure 92: 13C NMR of 4-fluoro-1-(1,1-dimethoxymethyl)-2-nitrobenzene (263)

Figure 93: 1H NMR of 4-carbomethoxy-2-nitrobenzaldehyde (266) and 1-(4-carbomethoxy-2-nitrophenyl)-1,2-propanedione (267)

Figure 94: 1H NMR of 1-(5-methoxy-2-nitrophenyl)-2-propanone (269)

Figure 95: 13C NMR of 1-(5-methoxy-2-nitrophenyl)-2-propanone (269)

Figure 96: 1H NMR of 5-methoxy-2-nitro-benzaldehyde (270) and 1-(5-methoxy-2-nitrophenyl)-1,2-propanedione (271)

Figure 97: 13C NMR of 5-methoxy-2-nitro-benzaldehyde (270) and 1-(5-methoxy-2-nitrophenyl)-1,2-propanedione (271)

Figure 98: 1H NMR of 4-(2-nitrophenyl)-3-methoxy-2-methyl-1-butene (277)

Figure 99: 13C NMR of 4-(2-nitrophenyl)-3-methoxy-2-methyl-1-butene (277)

Figure 100: 1H NMR of 1-(2-bromophenyl)-1,2-propanedione (282)

Figure 101: 13C NMR of 1-(2-bromophenyl)-1,2-propanedione (282)
List of Schemes

Scheme 1: Rearrangement of 4-alkynylcyclobutenones 2

Scheme 2: Preparation of 4-alkynyl-4-hydroxycyclobutenones from squaric acid 2

Scheme 3: Thermally ring expansion to form substituted 1,4-benzoquinones 3

Scheme 4: Thermally ring expansion to form substituted 1,4-benzoquinones and 2-alkylidene-1,3-cyclopentenediones 4

Scheme 5: Plausible mechanisms for thermal ring expansion of 4-hydroxy-2-cyclobuteneones 5

Scheme 6: Thermally ring expansion to form 2-alkylidene-1,3-cyclopentenediones 5

Scheme 7: Synthesis of isoarnebifuranone 8

Scheme 8: Synthesis of nanaomycin D 10

Scheme 9: Synthesis of deoxyfrenolicin 10

Scheme 10: Thermal ring expansion of 4-alkynyl-tert-butoxycyclobutenones 11

Scheme 11: Synthesis of the natural product, (±)-terreic acid 13

Scheme 12: Synthesis of the natural product, (±)-isoperezone 14

Scheme 13: Palladium(II) catalyzed ring expansion of 4-alkynyl-4-hydroxy-cyclobuteneones 15

Scheme 14: Palladium catalyzed ring expansion-coupling reaction 14

Scheme 15: Iodine mediated ring expansion of 4-alkynyl-4-hydroxycyclobutenones 18

Scheme 16: Conversion of iodomethylenecyclopentene-1,3-dione to aminomethylenecyclopentene-1,3-dione 20
Scheme 17: Synthesis of ring expansion substrates 73, 78, and 81 21
Scheme 18: Synthesis of ring expansion substrates 89 and 96 22
Scheme 19: Attempted synthesis of 100 22
Scheme 20: Thermal ring expansion of tert-butoxy analog 30
Scheme 21: Ring expansion of an electron deficient substrate 30
Scheme 22: Proposed mechanism for inhibition of human chymase by compound 112 35
Scheme 23: Lee’s synthesis route of methyl linderone in 1967 39
Scheme 24: Lee’s synthesis route of methyl linderone in 1986 41
Scheme 25: Aoyama’s synthesis route of methyl linderone 42
Scheme 26: Langer’s synthesis route of linderone 43
Scheme 27: Retrosynthetic analysis of methyl linderone 46
Scheme 28: Synthesis of methyl linderone 47
Scheme 29: Transition metal-catalyzed arylation reactions of ketone enolates 50
Scheme 30: Synthesis of 2,3-diarylbenzofurans by means of a palladium catalyst system 50
Scheme 31: Plausible reaction mechanism for the synthesis of 2,3-diarylbenzofurans 51
Scheme 32: Synthesis of the benzomorphan derivatives 53
Scheme 33: Asymmetric α-arylation of 2-methyl-α-tetralones 53
Scheme 34: Nickel-catalyzed enantioselective α-arylation of cycloalkanones 54
Scheme 35: α-Arylation of N-tosyl-2’-aminoacetophenone with o-dibromobenzene 54
Scheme 36: Pd-catalyzed synthesis of 1,2,2-triarylethanones from aryl benzyl ketones 55
Scheme 37: Pd-catalyzed synthesis of 1,2,2-triarylethanones from acetophenones 55

Scheme 38: Pd-catalyzed synthesis of the acetonylpurine 56

Scheme 39: Pd-catalyzed synthesis of benzyl methyl ketone 56

Scheme 40: Individual reactions of the Wacker process 58

Scheme 41: Wacker process of terminal alkenes 59

Scheme 42: Overall catalytic cycle of the Wacker process 60

Scheme 43. Modified Wacker oxidation using H₂O₂ as the terminal oxidant 62

Scheme 44: Mimoun et al.’s mechanism for peroxide-mediated Wacker oxidation 63

Scheme 45: Formation of biogenetic intermediate 190 and 191 64

Scheme 46: Synthesis of (+)-dihydropinidine and (-)-epidihydropinidine 65

Scheme 47: Synthesis of (-)-pinidinone 65

Scheme 48: Synthesis of tetracycle (+)-203 66

Scheme 49: Synthesis towards key hexahydonaphthalene 206 67

Scheme 50: The synthesis of 1,2,5-trisubstituted pyrrole 68

Scheme 51: C₃ Symmetric tripyrrolyl benzene synthesis 68

Scheme 52: Synthesis of 1,3-cyclooctanedione 219 from cyclooctanone 217 69

Scheme 53: TBHP-mediated Wacker-type oxidation 70

Scheme 54: TBHP-mediated Wacker-type oxidation to form β-hydroxy ketone 71

Scheme 55: TBHP-mediated Wacker-type oxidation to form methyl ketone 71

Scheme 56: Benzoquinone-reoxidant Wacker-type oxidation to acetophenone 72
List of Tables

Table 1: Ring-expansion of 68, 73, 78, and 81 in the absence or presence of NXS 23

Table 2: Ring-expansion of 89 and 96 in the absence or presence of NIS or NBS 28

Table 3: Synthesis of 1-aryl-1-propenes 73

Table 4: Ratios of products for crude reaction mixtures from oxidation of 2-ethenyl-1-nitrobenzene 76

Table 5: Wacker-type oxidation of aryl-substituted alkenes 77
Chapter 1

Formation of 2-halomethylene-4-cyclopentene-1,3-diones and/or 2-halo-1,4-benzoquinones via ring-expansion of 4-ethynyl-4-hydroxy-2,3-substituted-2-cyclobuten-1-ones

1.1 Rearrangement of 4-alkynylcyclobutenones

1.1.1 Thermally induced ring expansions of 4-alkynylcyclobutenones

1.1.2 Electrophilic reagents induced ring expansions of 4-alkynylcyclobutenones

1.2 Ring expansion of 4-alkynyl-4-hydroxycyclo-2-buten-1-ones in the presence of an N-halosuccinimide

1.3 Results and discussion

1.4 Conclusions
1.1 Rearrangement of 4-alkynylcyclobutenones

The rearrangement of 4-alkynylcyclobutenones 1 is an extremely useful method for the synthesis of substituted 1,4-benzoquinones 3 and 2-alkylidene-1,3-cyclopentenediones 2 (Scheme 1).1,2 Substituted 1,4-benzoquinones constitute members of compounds which are reasonable precursors to electrophilic alkylating agents3,4 while 2-alkylidene-4-cyclopentene-1,3-diones are attractive building blocks for synthesis of cyclopentanoids.5-7

Scheme 1: Rearrangement of 4-alkynylcyclobutenones

![Scheme 1: Rearrangement of 4-alkynylcyclobutenones](image)

E=proton, trimethylsilyl, or allyl

Moore et al. provided a simple method for the transformation of 4-alkynylcyclobutenones into benzoquinones and/or 2-alkylidene-4-cyclopentenediones, starting with cyclobutenediones 5, a class of compounds which are easily prepared in a variety of substitution patterns from commercially available squaric acid (4).8 Alkynyl anions add in high yield to cyclobutenediones 59 to give 4-alkynyl-4-hydroxycyclobutenones 6 (Scheme 2), and the reaction occurs with good regioselectivity with a number of unsymmetrically substituted substrates.10,11

Scheme 2: Preparation of 4-alkynyl-4-hydroxycyclobutenones from squaric acid

![Scheme 2: Preparation of 4-alkynyl-4-hydroxycyclobutenones from squaric acid](image)
1.1.1 Thermally induced ring expansions of 4-alkynylcyclobutenones

In 1989, Moore and co-workers developed a limited thermal rearrangement route involving a (2-alkynylthielenyl)ketene12 for the synthesis of benzoquinones and/or 2-alkylidene-4-cyclopentenediones. The synthetic scope and specific examples illustrating the synthetic utility of this method are given in Schemes 3. The syntheses in Scheme 3 began with the conversion of dimethyl squarate (7) to the 4-alkynyl-2,3-dimethoxy-4-hydroxyl cyclobutenones 8 in 50-90\% yield using the corresponding lithium acetylides (THF, -78 °C) followed by quenching of the reaction mixture with ammonium chloride. Thermolyses of the realized cyclobutenones (p-xylene, 138 °C) provided the 1,4-benzoquinones 9 as the only isolable products.

Scheme 3: Thermally ring expansion to form substituted 1,4-benzoquinones

\[
\begin{align*}
\text{MeO} & \quad \text{MeO} \\
\text{MeO} & \quad \text{MeO} \\
\text{LiC=CR} & \quad \text{LiC=CR} \\
\text{THF, -78 °C} & \quad \text{THF, -78 °C} \\
\text{MeO} & \quad \text{MeO} \\
\text{MeO} & \quad \text{MeO} \\
\text{138 °C, p-xylene} & \quad \text{138 °C, p-xylene} \\
\text{R=} & \quad \text{R=} \\
\text{n-C}_4\text{H}_9 & \quad \text{n-C}_4\text{H}_9 \\
\text{-CH}_2\text{OTMS} & \quad \text{-CH}_2\text{OTMS} \\
\text{-CH}_2\text{OTHP} & \quad \text{-CH}_2\text{OTHP} \\
\text{-CH(\text{CH}_3)\text{OTMS}} & \quad \text{-CH(\text{CH}_3)\text{OTHP}} \\
\text{-CH(\text{CH}_3)\text{OTHP}} & \quad \text{-CH(\text{CH}_3)\text{OTHP}} \\
\text{-CH}_2\text{C}_6\text{H}_5} & \quad \text{or -H}
\end{align*}
\]

The thermal ring expansion of 4-alkynyl-2,3-dimethoxy-4-hydroxyl cyclobutenones 8 is an extremely useful method for the synthesis of benzoquinones, which have a variety of substitution patterns for further study.13,14 It is also important to note that this reaction is apparent an ideal and highly regioselective generality for the synthesis of trimethylsilyl-substituted 1,4-benzoquinones, which are particularly regarded as potential bioreductive alkylating agents or reasonable precursors to electrophilic quinone methides subsequent to an in vivo reduction.

Recognizing that only the corresponding benzoquinones were detected as products of
the thermolyses of all of the above examples, in which the alkyne moiety is substituted with an alkyl group or a proton, Moore et al. decided to implement the same condition in cases when the substituent R of 10 (Scheme 4) is an alkoxy, phenyl, or trimethylsilyl group. Interestingly, a mixture of the benzoquinones 11 and 2-alkyldene-1,3-cyclopentenediones 12 resulted.

Scheme 4: Thermally ring expansion to form substituted 1,4-benzoquinones and 2-alkyldene-1,3-cyclopentenediones

![Scheme 4](image)

R= -C₆H₅, -OC₂H₅, or -TMS

In order to explain the observed results, Moore et al. proposed the mechanisms of thermal ring expansion of 4-hydroxy-2-cyclobutenones 13 as shown in Scheme 5, beginning with a remarkably selective electrocyclic ring opening upon mild thermolysis to form (2-alkynylethenyl)ketenes 14. Next, a ring closure of ketene 14 occurs to give the unique diradicals (or zwitterions) 15 and 17. Finally, an intramolecular transfer of the proton substituent from oxygen to carbon of diradicals gives products 16 and 18.¹²

With knowledge that this rearrangement selectivity to give either benzoquinones or cyclopentenediones is significantly influenced by the R substituent of the alkyne moiety, an effort was made by Moore et al. to drive the rearrangement completely to the cyclopentenediones 20 when the cyclobutenones 19 are employed (Scheme 6). This came to fruition.
Scheme 5: Plausible mechanisms for thermal ring expansion of 4-hydroxy-2-cyclobuteneones

Scheme 6: Thermally ring expansion to form 2-alkylidene-1,3-cyclopentenediones

Stabilization of the carbon centered radical in 17 by the adjacent R group has been used as an argument for the formation of 2-alkylidene-4-cyclopentene-1,3-diones. The intermediate 17 becomes favored over 15 when the substituent R becomes more and more capable of stabilizing an adjacent radical site (Scheme 5). In contrast, the presumed aromatic stabilization associated with six-membered ring formation 15 is overcome by direct stabilization of one of the radical centers by the adjacent R substituent when five-membered ring formation 17 takes place.
In general, alkynes having an ester or a carbon-carbon double bond in conjugation give only 2-alkylidene-4-cyclopentene-1,3-diones while terminal alkynes, alkyl, and trimethylsilyl substituted alkynes produce predominantly or only 1,4-benzoquinones. Mixtures of both products are usually encountered from substrates having an aryl or an alkoxy group attached to the alkyne.

Later, in the same year, Moore et al.15 utilized their methodology described in the preceding paper, the rearrangement of 4-alkynylcyclobutenones to 1,4-benzoquinones, in the preparation of selected naturally occurring products arnebifuranone (21), isoarnebifuranone (22), nanaomycin D (23), and deoxyfrenolicin (24) to further illustrate its wide utility and synthetic scope.

\textbf{Figure 1: Structures of arnebifuranone, isoarnebifuranone, nanaomycin D, and deoxyfrenolicin}

Arnebifuranone (21) is a naturally occurring 2,3-dimethoxy-1,4-benzoquinone16,17 which possesses Z stereochemistry at the stereogenic alkene site.18 Arnebifuranone, along with des-O-methyllasiodiplodin, shikonofuran, arnebinol, and arnebinone have been isolated
from the roots of *Arnebia euchroma* (Royle) Johnst., which has been used as a pain killer in the Chinese culture. These compounds are of high interest because of their various pharmacological assay systems and they are able to function as inhibitors of prostaglandin biosynthesis. The attempted synthesis of arnebifuranone (21), was outlined in Scheme 7.

The synthesis of 22 initiated from 3-(2-bromoethyl)furan (25), which was converted to the corresponding Grignard reagent using magnesium in ether, and was further transformed into 26 in 75% yield upon the treatment with 2-methylpropenal. When SOCl₂ was added in hexane to 26, the allylic chloride 27 was obtained in 65% isolated yield and excellent regioselectivity. 27 was the major isomer of a 7:1 mixture of regioisomers. Exposure of 27 to the Grignard reagent obtained from (trimethylsilyl)ethyne under copper-catalyzed conditions and subsequently deprotection provided the previously unknown alkyne 28 in 76% yield as a colorless liquid. Alkyne 28 was then underwent deprotonation using butyl lithium and was reacted with dimethyl squarate (7) in THF at -78 °C to give the adduct 29 as a colorless oil. Finally, the developed methodology was applied as a key step in the construction of arnebifuranone (21). However, thermolysis of 29 in refluxing *p*-xylene (138 °C) for 2 h only gave isoarnebifuranone (22) as an orange oil in 86% isolated yield. Isoarnebifuranone is actually stereoisomeric with the natural product arnebifuranone (21) and is another benzoquinone with the thermodynamically more stable *E* configuration, which is consistent with the fact that the naturally occurring quinone is quite unstable.
Scheme 7: Synthesis of isoarnebifuranone

Another reported example that further illustrates the synthetic utility of the quinone-cyclobutenone rearrangement is the regiospecific syntheses of the naphthoquinones 34 and 36, which are key synthetic precursors to the biologically important quinones nanaomycin D (23) and deoxyfrenolicin (24).

Nanaomycin D (23) and deoxyfrenolicin (24) are members of an important family of naturally occurring isochroman-1,4-naphthoquinones (approximately 45) which are of great importance due to the significant biological activity that they have elicited in antibiotics, antimycotics and antineoplastic assays.22-24 The definite and concrete biological action mechanism of these compounds remains elusive. The proposed mode of their biological action involves bioreductive alkylation due to their structural features, which was regarded
necessary to allow them to be employed as precursors to electrophilic quinone methides subsequent to an in vivo reduction.3,4

Starting from \textbf{30}, treatment with the lithium salt of 3-(tetrahydropyranyloxy) propyne (2:1 mixture of diastereomers) at -78 °C in THF gave \textbf{31} and its regioisomer in a respective ratio of 3:1 as a yellow oil in 58% yield (Scheme 8). Moreover, each regioisomer was obtained as a 2:1 mixture of diastereomers. Further experimentation with \textbf{30} and other lithium acetylides revealed that the reaction regioselectivities could be improved to approximately 95:5 at -100 °C in a mixed solvent of THF/diethyl ether (1:1) while yields might be lowered as a result.25 Reaction of \textbf{31} with an excess of allyl iodide followed by the addition of Ag\textsubscript{2}CO\textsubscript{3} in dioxane gave the allyl ether \textbf{32} in \textgreater{}95% yield as a yellow oil.19 Allyl ether \textbf{32} was then converted to naphthoquinone \textbf{33} as a yellow oil in 71% yield upon thermolysis in refluxing \textit{p}-xylene (138 °C). The reaction proceeded by removal of THP protecting group using 4:2:1 CH\textsubscript{3}COOH/THF/H\textsubscript{2}O, resulted in the synthetic precursor naphthoquinone \textbf{34} in 73% yield. Finally, nanaomycin D (\textbf{23}) was prepared from \textbf{34} according to the published methods.27

The last example to demonstrate the synthetic utility of the quinone-cyclobutenone rearrangement is the synthesis of \textbf{36}, the precursor of deoxyfrenolicin, which was accomplished by performing a procedure analogous to that described above (Scheme 9). That is, once the major regioisomer product of the alkynylation of \textbf{30} with the lithium salt of 3-(tetrahydropyranyloxy)hexyne in hand, which is actually a mixture of two diastereomeric benzocyclobutenones with only 2% of the corresponding regioisomers. The major product was conveniently purified by flash chromatography and the allylation of the major product was carried out to give \textbf{35}, which was further converted to synthetic precursor
naphthoquinone 36 by the method reported above. Finally, deoxyfrenolicin (24) was prepared from 36 according to the published methods.27

Scheme 8: Synthesis of nanaomycin D

Scheme 9: Synthesis of deoxyfrenolicin
The methodology provided successful syntheses of naphthoquinones 34 and 36, constituting a formal synthesis of the natural isochroman-1,4-naphthoquinones nanaomycin D (23), and deoxyfrenolicin (24). Quinones 34 and 36 were obtained in 28% and 22% yield from 30 respectively. Therefore, the quinone-cyclobutenone rearrangement methodology is not only efficient, brief, and simple, but also is a potentially general route to naphthoquinones of specific substitution patterns.

In 1990, Moore et al. further developed their methodology where 2,3-di-tert-butoxycyclobutenedione (37) (Scheme 10) was a useful synthon for hydroxyquinones. Besides the synthetic scope of this methodology, they also described its specific utilization in successful preparation of natural products, (±)-terreic acid (43), and (±)-isoperezone (44) based on the thermal ring expansion of 4-alkynyl-tert-butoxycyclobutenones.31

Scheme 10: Thermal ring expansion of 4-alkynyl-tert-butoxycyclobutenones
Moore et al. reported the synthesis of tert-butoxyquinones 41 from the thermal ring expansion of 4-alkynyl-butoxycyclobutenones 40 in p-xylene at 138 °C and subsequently transformed to hydroxyquinones 42 upon treatment with trifluoroacetic acid at low temperature (Scheme 10).

In a typical procedure, squaric acid (4) was first converted to 2,3-di-tert-butoxycyclobutenedione (37) without any difficulty.12 Next, cyclobutenedione 37 was treated with an alkynyl organolithium reagent to give the cyclobutenones 38 which were then readily hydrolyzed to the cyclobutenediones 39 upon treatment with trifluoroacetic anhydride (TFAA).32 After regiospecific addition of an alkynyllithium reagent to the more electrophilic (nonvinyllogous ester) carbonyl group in 39, cyclobutenones 40 were furnished. As mentioned above, thermolysis of 40 gave the tert-butoxyquinones 41, which are members of a rare class of quinones. Finally, a variety of hydroxyquinones 42 were provided via deprotection of 41 upon treatment with trifluoroacetic acid at 0 °C.33

Two real complex examples of the specific synthetic utility of this methodology are given below. The first example is the total synthesis of the natural antibiotic (±)-terreic acid (43), and the second one is total synthesis of naturally occurring (±)-isoperezone (44).

Figure 2: Structures of (±)-terreic acid and (±)-isoperezone

The efficient synthesis of (±)-terreic acid (43), a naturally occurring antibiotic34,35 was outlined in Scheme 11.
Preparation of (±)-terreic acid (43) via thermal ring expansion of 4-alkynyl-tert-butoxycyclobutenones began with the alkynylation of 3-tert-butoxy-4-methylcyclobutenedione (45) with lithium acetylides followed by ammonium chloride, yielding the cyclobutenones 46 in good yield. These transformations were carried out at -78 °C in THF and the reactions were efficient. Cyclobutenones 46 were then converted to benzoquinones 47 in respective yields of 79% and 69% in refluxing acetonitrile or benzene. Reactions of these quinones 47 with tert-butyl hydroperoxide or Triton B gave epoxide 48 in yields 59% and 68%. De-tert-butylation of 48 under previous used condition (0 °C, trifluoroacetic acid) gave (±)-terreic acid (43) in 84% yield. The syntheses had an overall yields of 22% and 26%, starting with the cyclobutenedione 45 which was readily available from squaric acid (4). Compared with the previously reported work, these syntheses are superior to the other two routes to (±)-terreic acid.37,38

Scheme 11: Synthesis of the natural product, (±)-terreic acid

Final illustration of the specific synthetic utility of the thermal rearrangement of 4-alkynyl-tert-butoxycyclobutenones methodology was described as follows, that is, total
synthesis of the naturally occurring (±)-isoperezone (44) (Scheme 12). The synthesis began via an alkylation of squarate 37 with 2-lithio-6-methyl-hept-5-ene, resulting in cyclobutenone 49, which was then dissolved in pyridine in the presence of trifluoroacetic anhydride to give the cyclobutenedione 50 in 52% yield. Cyclobutenone 51 was then obtained by the regiospecific addition of 1-lithiopropyne to the more electrophilic carbonyl group of 50 and thermolysis of 51 in refluxing benzene furnished quinone 52 in 70% yield. The last step to complete this total synthesis of (±)-isoperezone was deprotection of 52 with 4 N HCl in refluxing dioxane, which directly provided 44 in 72% yield. The overall yield is 26% while the previous synthesis, reported in 1987, proceeded in 38% overall yield from parvifolene, a natural product isolated from *Pereziae spp*.40

Scheme 12: Synthesis of the natural product, (±)-isoperezone
1.1.2 Electrophilic reagents induced ring expansions of 4-alkynylcyclobutenones

In addition to thermally induced ring expansion, some electrophilic reagents have also been shown to induce ring expansions of 4-alkynyl-4-hydroxy-2-cyclobuten-1-ones. For example, Liebeskind et al. proposed that the 4-alkynyl-4-hydroxy-cyclobutenone ring system 6, was transformed to an alkylidencyclopentenedione 53 possessing a vinyl-palladium bond via ring expansion reaction with an electrophilic source of Pd(II). 41,42 53 could be subsequently activated toward protonation by using the HX generated in the ring expansion step to provide access to synthetically useful alkylidencyclopentenediones 54. Meanwhile, the electrophilic Pd(II) reagent source rendering the reaction catalytic in Pd was regenerated (Scheme 13).

Scheme 13: Palladium(II) catalyzed ring expansion of 4-alkynyl-4-hydroxy-cyclobutenones

In 1987, Liebeskind et al. 43 successfully demonstrated a new, highly stereoselective and practical synthesis of highly functionalized 4-oxygenated 5-alkylidencyclopentenones and 3-oxygenated 2-alkylideneindanones based on the palladium-catalyzed reactions. As shown in Scheme 14, Palladium(II) catalyzed reactions afford exclusively 2-alkylidene-4-cyclopentene-1,3-diones. Exposing 4-(l-hexynyl)-4-hydroxy-3-methoxy-2-methyl-cyclobut-2-enone (55a) to the condition (10 mol % Pd(OCOCF₃)₂ in THF at 60 °C for 1 h.) afforded (E)-alkylidene cyclopentenedione 56a, which was isolated together with the Z-stereoisomer...
in a 12:1 ratio in 45% yield. Two other 4-alkynyl-4-hydroxycyclobutenones $55b$, $55c$ were exposed to the similar conditions discussed above (10 mol % Pd(OCOCF$_3$)$_2$ in THF at 40 $^\circ$C for 5 h) and resulted in the formation of $56b$ in 49% yield (11 : 1 ratio) and $56c$ in 40% yield (15: 1 ratio).

Scheme 14: Palladium catalyzed ring expansion-coupling reaction

![Scheme 14: Palladium catalyzed ring expansion-coupling reaction](image)

The reaction is of interest because of its potential application in the synthetic field of the naturally occurring eicosanoids as well as simpler analogues of the natural products.

Figure 3: Eicosanoid core and naturally occurring eicosanoids

![Figure 3: Eicosanoid core and naturally occurring eicosanoids](image)

Marine organisms produce an unprecedented molecular diversity by the incorporation of elements like halogen that are not readily available to terrestrial species.44 Naturally
occurring marine eicosanoids, such as the clavulone \textit{58}^{45} (claviridenones\textit{45,46}), chloro,\textit{6,48} bromo, and iodovulones (\textit{59}),\textit{49} and the punaglandin \textit{60},\textit{50} containing a 4-oxygenated 5-alkylidenecyclopentenone core \textit{57} (Figure 3), are often produced and of great importance due to their remarkable bioactivity that they possess in both vitro and vivo cytotoxicity studies.\textit{51} There has been numerous reported syntheses for the 4-oxygenated 5-alkylidenecyclopentenone core \textit{57},\textit{52-54} however, the remarkable stereoselectivity challenges associated with the construction of these complex alkylidene systems are reflected in the many distinct approaches that have been reported for their racemic and enantioselective total syntheses.\textit{55-58}

The observed exceptional stereoselectivity in the palladium-induced ring expansions of 4-alkynyl-4-hydroxycyclobutenones was rationalized by the author.\textit{43} It was postulated that non-vinyl bond “a” in \textit{61} (Figure 4) was migrating to the adjacent sp hybridized carbon, resulting in a cationic intermediate with the ability to best stabilize the positive charge. The reaction proceeded through the most stable cationic intermediate and the ability of the migrating group to stabilize positive charge might play an important role in controlling the selectivity of the reaction. Therefore, a plausible reaction pathway might be the trans addition of bond “a” across the alkyne bond to furnish the desired alkylidene cyclopentenedione in a stereospecific fashion.

\textbf{Figure 4: Postulated reaction path for palladium catalyzed ring expansion reaction}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure4.png}
\caption{Postulated reaction path for palladium catalyzed ring expansion reaction}
\end{figure}

In 1995, Eguchi et al.\textit{59} demonstrated the ring expansion in Scheme 15 was probably
cationic in nature, and the result of coordination of an electron deficient species [Pd(II) and H⁺] to the alkyne followed by acyl migration.⁶⁰,⁶¹ Those transformations in Scheme 15 employed diethyl squarate (62) as a starting material, which was easily converted to the 4-alkynyl-4-hydroxycyclobut enone ring system 63 upon treatment with the corresponding lithium acetylides (THF, -78 °C) followed by quenching of the reaction mixture with ammonium chloride.⁹,³² The realized cyclobutenones 63 were converted to the corresponding cyclopentene-1,3-diones 64 via the ring expansion employing reagents which were believed to form hypoiodite. Specifically, conversion of cyclobutenones 63a, 63b, 63c to the corresponding cationic intermediate using I₂/PhI(OAc)₂ at -15 °C, followed by deprotonation afforded cyclopentene-1,3-diones 64a, 64b, 64c in 68%, 63%, 57% yields respectively.

The mechanism of the reaction was thought to begin with the transfer of positive iodine atom from a hypoiodite moiety to alkyne the terminus and concomitantly, 1,2-acyl migration happened to form cyclopentene-1,3-diones 64. One of the driving force for this reaction was the ring strain relief which would facilitate the 1,2-acyl migration, and hence ring expansion.

Scheme 15: Iodine mediated ring expansion of 4-alkynyl-4-hydroxycyclobutenones
Electrophilic reagent induced ring expansions of 4-alkynylcyclobutenones provide an alternative practical route to cyclopentene-1,3-diones from squaric acid, switching the rearrangement of 4-alkynyl-4-hydroxycyclobutenones from radical to ionic via electron deficient species. Overall, both thermally induced ring expansions and electrophilic reagent induced ring expansions of 4-alkynylcyclobutenones have significant synthetic utility in preparing substituted 1,4-benzoquinones and 2-alkylidene-1,3-cyclopentenediones.
1.2 Ring expansion of 4-alkynyl-4-hydroxycyclo-2-buten-1-ones in the presence of an \(N\)-halosuccinimide

Although the ring expansion of 4-alkynylcyclobutenones has been well investigated, very little research has been examined the thermal ring expansion of 4-alkynyl-4-hydroxycyclo-2-buten-1-ones in the presence of an \(N\)-halosuccinimide or thermal ring expansion of haloalkynylcyclobutenones. Herein, we paid an effort to prepare chloro-, bromo- or iodo-substituted methylenecyclopentene-1,3-diones and benzoquinones from squaric acid, which also may be useful for further conversion or employed in palladium catalyzed cross coupling reactions and ultimately in the synthesis of functionalized carbazoles. A simple case is demonstrated below (Scheme 16).\(^{59}\)

Scheme 16: Conversion of iodomethylenecyclopentene-1,3-dione to aminomethylene cyclopentene-1,3-dione

\[
\begin{align*}
\text{EtO} & \quad \text{EtO} \\
\text{I} & \quad \text{I} \\
\text{Bu} & \quad \text{Bu} \\
\quad & \quad \text{ether}
\end{align*}
\]
\[0 \, ^\circ\text{C, 30 min} \quad 78\%
\]
\[
\begin{align*}
\text{EtO} & \quad \text{EtO} \\
\text{NH} & \quad \text{NH} \\
\text{Bn} & \quad \text{Bn} \\
\text{Bu} & \quad \text{Bu}
\end{align*}
\]

We examined the thermal ring expansion of 4-alkynyl-4-hydroxycyclo-2-buten-1-ones in the presence of an \(N\)-halosuccinimide. If the cationic pathway is sufficiently slow, at the elevated temperatures required for a thermal rearrangement, it may be possible to halogenate the diradical 15 (Scheme 5)\(^{62}\) in the presence of an \(N\)-halosuccinimide. The results of reactions of 4-alkynyl-4-hydroxycyclo-2-buten-1-ones with or without an \(N\)-halosuccinimide will be presented in this chapter.

Four 2,3-di(1-methylethoxy)-4-alkynyl-4-hydroxy-2-cyclobuten-1-ones having
different alkynyl groups including ethynyl (73), 2-trimethylsilylethynyl (68), 2-iodoethynyl (78), and 2-bromoethynyl (81) groups were initially examined. Compound 68 and 73 were prepared according to literature procedures63 and compound 78 and 81 were prepared from 68 using NIS or NBS, respectively, in the presence of a catalytic amount of AgNO3 (Scheme 17). Compound 68 was prepared from diisopropyl squarate (67).

Scheme 17: Synthesis of ring expansion substrates 73, 78, and 81

In addition to the reactions discussed above, cyclobutenones 89, readily available from diisopropyl squarate (67) as well, was converted to 2-methyl-3-(1-methylethoxy)-4-ethynyl-2-cyclobuten-1-one (96) as outlined in Scheme 18. This was accomplished by its initial treatment with an alkynyl organolithium reagent to give cyclobutenone 87, which are readily hydrolyzed to 88 upon treatment with hydrochloric acid in dichloromethane (CH2Cl2). Cyclobutenedione 88 was then converted to 89 by the regiospecific addition of an alkynyllithium reagent to the more electrophilic carbonyl group. Subsequently, cyclobutenone 89 was transformed to 96 using potassium fluoride in methanol and water. Cyclobutenone 96 was then subjected to reactions with or without NIS or NBS.
Scheme 18: Synthesis of ring expansion substrates 89 and 96

It is noteworthy that in an attempt to prepare iodoalkynyl derivative 100 by reaction of 89 with NIS, only diiodomethylene cyclopentenedione 101 was obtained in a low isolated yield (Scheme 19). It is plausible that 100 was formed in the reaction but immediately underwent NIS induced ring expansion under the reaction conditions.

Scheme 19: Attempted synthesis of 100
1.3 Result and discussion

As described above, we first attempted to examine four 2,3-di(1-methylethoxy)-4-alkynyl-4-hydroxy-2-cyclobuten-1-ones having different alkynyl groups including ethynyl (73), 2-trimethylsilyl-ethynyl (68), 2-iodoethynyl (78), and 2-bromoethynyl (81).

Each compound was subjected to thermolysis either in the absence or in the presence of an N-halosuccinimide at selected temperatures. The results of these reactions are summarized in Table 1.

Table 1: Ring-expansion of 68, 73, 78, and 81 in the absence or presence of NXS

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent (temp./time)</th>
<th>Cyclobutenone</th>
<th>NXS</th>
<th>Cyclopentenedionea</th>
<th>Quinonea</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Benzene (140 °C/3 h)</td>
<td>68</td>
<td>No NXS</td>
<td>69+70 (77%, 1:18)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Toluene (150 °C/3 h)</td>
<td>68</td>
<td>No NXS</td>
<td>69+70 (70%, 1:14)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Benzene (rt/3 h)</td>
<td>68</td>
<td>NIS</td>
<td>71 (65%)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MeCN (rt/15h)</td>
<td>68</td>
<td>NIS</td>
<td>71 (51%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Toluene (rt/20 h)</td>
<td>68</td>
<td>NIS</td>
<td>71 (65%)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Toluene (rt/120 h)</td>
<td>68</td>
<td>NBS</td>
<td>No reaction</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Benzene (80 °C/3 h)</td>
<td>68</td>
<td>NBS</td>
<td>72 (25%)c</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Benzene (80 °C/6 h)</td>
<td>68</td>
<td>NBS</td>
<td>72 (40%)</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent (temp./time)</th>
<th>Cyclobutene (temp./time)</th>
<th>NXS</th>
<th>Cyclopentendione<sup>g</sup></th>
<th>Quinone<sup>g</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Benzene (80 °C/3 h)</td>
<td>68</td>
<td>NCS</td>
<td></td>
<td>No reaction</td>
</tr>
<tr>
<td>10</td>
<td>Toluene (150 °C/3 h)</td>
<td>68</td>
<td>NCS</td>
<td></td>
<td>69+70 (55%, 1:20)</td>
</tr>
<tr>
<td>11</td>
<td>Benzene (140 °C/3 h)</td>
<td>73</td>
<td>No NXS</td>
<td></td>
<td>74 (58%)</td>
</tr>
<tr>
<td>12</td>
<td>Benzene (rt/3 h)</td>
<td>73</td>
<td>NIS</td>
<td></td>
<td>75 (34%)</td>
</tr>
<tr>
<td>13</td>
<td>Benzene (80 °C/3 h)</td>
<td>73</td>
<td>NIS</td>
<td></td>
<td>75 (36%)</td>
</tr>
<tr>
<td>14</td>
<td>Benzene (80 °C/3 h)</td>
<td>73</td>
<td>NBS</td>
<td></td>
<td>76 (35%)<sup>d</sup></td>
</tr>
<tr>
<td>15</td>
<td>Benzene (80 °C/17 h)</td>
<td>73</td>
<td>NBS</td>
<td></td>
<td>76 (47%)<sup>e</sup></td>
</tr>
<tr>
<td>16</td>
<td>Benzene (80 °C/24 h)</td>
<td>73</td>
<td>NBS</td>
<td></td>
<td>76 (55%)</td>
</tr>
<tr>
<td>17</td>
<td>Toluene (150 °C/3 h)</td>
<td>73</td>
<td>NCS</td>
<td></td>
<td>77 (24%)+74 (55%)</td>
</tr>
<tr>
<td>18</td>
<td>Toluene (150 °C/3 h)</td>
<td>73</td>
<td>NCS<sup>f</sup></td>
<td></td>
<td>77 (40%)+74 (35%)</td>
</tr>
<tr>
<td>19</td>
<td>Toluene (150 °C/3 h)</td>
<td>73</td>
<td>NCS<sup>g</sup></td>
<td></td>
<td>77 (45%)+74 (20%)</td>
</tr>
<tr>
<td>20</td>
<td>Benzene (140 °C/3 h)</td>
<td>78</td>
<td>No NXS</td>
<td></td>
<td>75 (42%)</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Entry<sup>a</sup></th>
<th>Solvent (temp./time)</th>
<th>Cyclobutenone</th>
<th>NXS</th>
<th>Cyclopentenedione<sup>b</sup></th>
<th>Quinone<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Benzene (rt/3 h)</td>
<td>78</td>
<td>NIS</td>
<td>80 (41%)<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Benzene (80 °C/3 h)</td>
<td>78</td>
<td>NIS</td>
<td>80 (43%)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Benzene (140 °C/3 h)</td>
<td>81</td>
<td>No NXS</td>
<td>76 (31%)</td>
<td>82 (34%)</td>
</tr>
<tr>
<td>24</td>
<td>Benzene (80 °C/3 h)</td>
<td>81</td>
<td>NIS</td>
<td>83 (68%)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Benzene (80 °C/3 h)</td>
<td>81</td>
<td>NBS</td>
<td>84 (46%)</td>
<td></td>
</tr>
</tbody>
</table>

^a See Experimental section for detailed reaction conditions.

^b Yield of product after chromatographic separation on silica gel.

^c Hydrolysis product 85 (8%) and starting material (68, 24%) were also obtained.

^d Hydrolysis product 86 (12%) and starting material (32%) were also obtained.

^e Hydrolysis product 86 (11%) and starting material (73, 10%) were also obtained.

^f Three equivalents of NCS were used.

^g Six equivalents of NCS were used.

^h Starting material (78, 29%) was obtained.

All thermolysis reactions were performed in an ACE-Glass pressure tube capped with a Teflon screw cap. Thermolysis of 68 at 140 °C in benzene gave an inseparable mixture of 1,4-benzoquinone 70 and the corresponding cyclopentene-1,3-dione 69 in an 18:1 ratio in 77% yield as evidenced by 1H NMR (entry 1). The reaction of 68 is somewhat more selective and
higher yielding compared to the previously reported rearrangement of the analogous 2,3-
dimethoxy-substituted compound wherein an 8:1 ratio was observed in a 46% yield.12 Toluene was also used as the solvent with a slightly lower ratio of products in a comparable yield (entry 2).

The benzoquinone and cyclopentenedione products reported herein are easily differentiated by 1H NMR analysis. For example, the methine protons of the two methylethyl groups of 4-cyclopentene-1,3-dione \textbf{69} resonate at 5.59 and 5.54 ppm, respectively. In contrast, the corresponding 1,4-benzoquinone methine protons of compound \textbf{70} resonate upfield at 4.81 and 4.80 ppm. A similar difference in chemical shifts for methoxy groups of related 4-cyclopentene-1,3-diones and 1,4-benzoquinones has previously been reported by Moore et al.1,12 In addition, the color of the pure products are different, the 1,4-
benzoquinones are red while the 4-cyclopentene-1,3-diones are orange.

Reaction of \textbf{68} with \textit{N}-iodosuccinimide (NIS) proceeded much faster and gave even at ambient temperature in benzene only 2-iodomethylene-4-cyclopentene-1,3-dione \textbf{71} (entry 3). The same product was observed using acetonitrile or toluene as the solvent, the former gave a somewhat lower yield of product \textbf{71} (entries 4 and 5). Reaction of \textbf{68} with \textit{N}-bromosuccinimide (NBS) did not afford any appreciable amount of product at ambient temperature even after prolonged reaction time (entry 6). However, 2-bromomethylene-4-
cyclopentene-1,3-dione \textbf{72} was isolated as the only ring expansion product after heating for 6 h at 80 °C (entry 8). A small amount of the hydrolysis product cyclobutenedione \textbf{85} was also isolated (Figure 5). Although the solvents were carefully dried before use, adventitious water present may still be present in the solution.
The reaction of 68 in the presence of N-chlorosuccinimide (NCS) was even slower and did not proceed at all at 80 °C. Increasing the temperature of the reaction to 150 °C did not furnish any chlorinated product but gave instead 1,4-benzoquinone 70 as the only product (entries 9 and 10). The results obtained from the reactions of 68 are interpreted as a change from a rapid cationic process seen for NIS to a slower cationic process using NBS to a radical process not involving NCS. It should be noted that no reaction was observed at temperatures below 100 °C for 68 in the absence of NBS or NIS.

Thermal reactions of 73 were examined next. Heating 73 in benzene at 140 °C gave 1,4-benzoquinone 74 as the sole product (entry 11). As was observed for 68, reactions using either NIS or NBS produced 2-iodo- and 2-bromo-methylene-4-cyclopentene-1,3-diones, respectively (entries 12-16). Substrate 73 appeared to react somewhat slower with NBS compared to 68 since a longer reaction time was required for complete consumption of the starting material. A small amount of the hydrolysis product 86 (Figure 5) was isolated in some cases (entries 14 and 15). Thermolysis of 73 in the presence of NCS gave the chlorinated 1,4-benzoquinone 77 and 1,4-benzoquinone 74 in a 1:2 ratio (entry 17). The yield of 77 was improved by addition of an excess of NCS however, a significant amount of 1,4-benzoquinone 74 was isolated even using 6 equiv of NCS (entries 18 and 19). The latter three reactions indicate that it is possible to obtain chlorinated 1,4-benzoquinones via this
methodology although, in low to moderate yields using a large excess of NCS. Due to the absence of chlorinated product using 68 and the mediocre yield isolated from 73, NCS was not further examined.

Thermal ring expansions of haloalkynylcyclobutenones have not previously been reported. Heating 78 at 140 °C in benzene in the absence of NXS gave a mixture of the five- and six-membered products 75 and 79 (entry 20). A similar reactivity was observed using 81 affording 76 and 82 (entry 23). Reaction of 78 with NIS proved to be somewhat slower compared to 68 and 73. A significant amount of starting material was isolated after 3 h at ambient temperature but a complete conversion to 80 was observed at 80 °C (entries 21 and 22). Finally, 81 was transformed to the iodobromomethylene and dibromomethylene derivatives 83 and 84 in moderate yields using NIS and NBS, respectively (entries 24 and 25).

In addition to the reactions discussed above, two 2-methyl-3-(1-methylethoxy)-4-alkynyl-2-cyclobuten-1-ones (89 and 96) were prepared and subjected to reactions with or without NIS or NBS. The results are summarized in Table 2.

Table 2: Ring-expansion of 89 and 96 in the absence or presence of NIS or NBS

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent (temp./time)</th>
<th>Cyclobuteneone</th>
<th>NXS</th>
<th>Cyclopentenedione</th>
<th>Quinone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Benzene (140 °C/3 h)</td>
<td>89</td>
<td>No NXS</td>
<td>90 (22%, 1.2:1)</td>
<td>91 (32%)</td>
</tr>
<tr>
<td>2</td>
<td>Benzene (80 °C/3 h)</td>
<td>89</td>
<td>NIS</td>
<td>92 (61%, 1.5:1)</td>
<td>93 (5%)</td>
</tr>
</tbody>
</table>
Table 2 (continued)

<table>
<thead>
<tr>
<th>Entry<sup>a</sup></th>
<th>Solvent (temp./time)</th>
<th>Cyclobutenone<sup>b</sup></th>
<th>NXS</th>
<th>Cyclopentenedione<sup>c</sup></th>
<th>Quinone<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Benzene (80 °C/3 h)</td>
<td>89</td>
<td>NBS</td>
<td>94 (65%, 2.8:1)</td>
<td>95 (15%)</td>
</tr>
<tr>
<td>4</td>
<td>Benzene (140 °C/3 h)</td>
<td>96</td>
<td>No NXS</td>
<td></td>
<td>97 (85%)</td>
</tr>
<tr>
<td>5</td>
<td>Toluene (150 °C/3 h)</td>
<td>96</td>
<td>NIS</td>
<td>98 (66%, 13:1)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Benzene (80 °C/3 h)</td>
<td>96</td>
<td>NBS</td>
<td>99 (59%, 2.8:1)</td>
<td></td>
</tr>
</tbody>
</table>

^a For detailed reaction conditions, see Chapter 4 experimental procedures.

^b Yield of product after chromatography.

^c The products could not be separated by chromatography.

Thermal ring expansion of 89 gave an inseparable 2:3 mixture of five- and six-membered cyclic products (entry 1). The cyclopentenedione 90 was obtained as a 1.2:1 mixture of double bond isomers. A mixture of products was obtained from reactions of 89 with either NIS or NBS at elevated temperatures (entries 2 and 3). The result is surprising since we have not observed the formation of a quinone in any previous reaction using NIS or NBS. It is also interesting to note that Moore et al. did not report the formation of a five-membered cyclic product upon thermolysis of the tert-butoxy analog of 46 (Scheme 20).
Heating a solution of 96 either in the absence or presence of NIS or NBS gave the more predictable result. That is, quinone 97 was formed upon thermolysis of 96 in the absence of an NXS, while reactions with NIS or NBS gave cyclopentenediones 98 and 99, respectively (entries 4-6).

As the final example, the electron deficient alkyne 102 was examined. This substrate has previously been shown by Moore et al. to exclusively afford 2-alkylidene-4-cyclopentene-1,3-dione 103 upon thermolysis in xylenes (Scheme 21). This selectivity for five-membered cyclic products was also observed upon reaction with either NIS or NBS where 104 and 105 were formed, respectively.

Scheme 21: Ring expansion of an electron deficient substrate
1.4 Conclusions

An in-depth study of the reactions of 4-(ethynyl)-4-hydroxy-2,3-substituted-2-cyclobuten-1-ones with N-bromo- or N-iodosuccinimide, affording in most cases 2-halomethylene-4-cyclopentene-1,3-dione, is described. In addition, the ring expansion of haloalkynylcyclobutenones with or without the presence N-halosuccinimide has been developed as well. The thermal ring expansion of 4-alkynyl-4-hydroxy cyclobutenones in the presence of N-halosuccinimide to form 2-halogenated methylene-4-cyclopentene-1,3-diones and/or 2-halo-1,4-benzoquinones selectively is a transformation of synthetic importance since no reliable general route to them has previously been reported.

The synthetic scope of this methodology has been investigated in this chapter and its specific utilization in the synthesis of a natural product, methyl linderone, will be described in next chapter.
Chapter 2

Total synthesis of methyl linderone

2.1 Introduction to linderone and methyl linderone

2.2 Previous synthesis of linderone and methyl linderone

2.3 Methyl linderone via ring expansion of 4-ene-yne-substituted cyclo-2-buten-1-one and N-iodosuccinimide

2.3.1 Retrosynthetic analysis

2.3.2 Results and discussion

2.3.3 Conclusions
2.1 Introduction to linderone and methyl linderone

A handful of 2-alkylidene-4-cyclopentene-1,3-diones have been isolated from natural sources (Figure 6). For example, linderone (106) and/or methyl linderone (107) were isolated from the root of *Lindera pipericarpa*\(^{64}\) and *Lindera erythrocarpa*.\(^{65}\) *Lindera erythrocarpa* Makino is one of the Lauraceae woody plants, which are distributed widely in Asia, including the People’s Republic of China, Korea, Japan. *Lindera* species, the large family Lauraceae that consists of mostly trees or shrub widely spread throughout the world, from the warmer regions of the earth, in both lowland and montane forests of Malaysia and Singapore\(^{66}\) and in the base of mountain forests of the Far East. They are found to be important medicinal plants including the Shiny Laurel, *Lindera lucida* (B1.) Boerl., *L. strychnifolia*, *L. aggregate*, and *L. chunii*. *L. erythrocarpa* (Lauraceae). Their fruits are used as a traditional medicine because of their analgesic, digestive, diuretic, antidote, and antibacterial properties.\(^{65,67}\)

Plant secondary metabolites have provided an important source of drugs since ancient times and now around half of the practical drugs used are derived from natural sources. Many plants of Lauraceae have been applied in folk medicine for their interesting bioactivities. Previous studies of this species have afforded in addition to the cyclopentenedione derivatives linderone (106) and methyl lucidone (107), lucidone (108) and methyl lucidone (109) as lignans\(^{65}\) which were isolated from the bark of *L. erythrocarpa*.\(^{68}\) Methyl linderone (107), lucidone (108) and methyl lucidone (109) were also isolated from the fruits of *Lindera lucida*,\(^{69,70}\) and methyl linderone has been reported from both *L. erythrocarpa*\(^{67}\) and *L. pipericarpa*.\(^{71}\)
In 2000, Wu et al.7 reported two novel, closely related cyclopentenones, stigmahamone I (110) and stigmahamone II (111), had been isolated from the seeds of *Fissistigma oldhamii*. *Fissistigma oldhamii* (Hemsl.) Merr. (Annonaceae) is a perennial shrub, which is distributed mainly in southern China. As a folklore medicine, this plant is used for liver protection, anti-inflammatory and anti-arthritic effects, and anti-tumor action.$^7^3$ These compounds are of high interest because of their significant activity in preliminary bioassay, such as in antiplatelet aggregation and so on.

Figure 6: Structures of linderone, methyl linderone, lucidone, methyl lucidone isolated from Lindera species

106 Linderone

107 Methyl linderone

108 Lucidone

109 Methyl lucidone

106 Linderone

107 Methyl linderone

108 Lucidone

109 Methyl lucidone

106 Linderone

107 Methyl linderone

108 Lucidone

109 Methyl lucidone

106 Linderone

107 Methyl linderone

108 Lucidone

109 Methyl lucidone

110 Stigmahamone I

111 Stigmahamone II
Nowadays, more and more scientific study has been reported on the bioactivities of the
cyclopentenedione derivatives, linderone (106), methyl lucidone (107), lucidone (108) and
methyl lucidone (109). Methyl linderone is not only a human chymase inhibitor, but also
exhibits cytotoxicity against a number of cell lines and the linderones are chitin synthase
inhibitors.

Human chymase is a chymotrypsin-like serine protease that is stored in the secretory
granules of mast cells. Although the precise physiological and pathological functions of human
chymase have not been elucidated, several studies have suggested its involvement in
cardiovascular diseases and chronic inflammation following fibrosis. In 2001, Aoyama et al.
first reported the biological activity of methyl linderone as a human chymase inhibitor, which are
thought to be potentially useful tools for elucidating the physiological function of chymase and
therapeutic agents.

The postulated inhibition mechanism of the core struture existing in methyl linderone
against human chymase was as presented in Scheme 22. Mechanistically, the formation of serine
hydroxy O-alkenyl enzyme occured through a process involving nucleophilic substitution of the
active site serine residue (serine 195) in the enzyme at the β-olefinic carbon atom activated by
two carbonyl groups, meanwhile, the phenyl group in 112 docks into the S1 pocket.

Scheme 22: Proposed mechanism for inhibition of human chymase by compound 112
In 2002, Kho et al. suggested the important cytotoxic compound in *lindera erythrocarpa* was methyl linderone (107) based on evidence from the evaluating of three lignans, linderone (106), methyl linderone (107), and kanakugiol (113) in vitro cytotoxicity using three cancer cell line assay. Amongst the compounds, methyl linderone exhibited significant cytotoxicity against mouse melanoma (B16-F10), human acetabulum fibrosarcoma (HT 1080), and choronic myelogenous leukemia (K562) cancer cell lines, while linderone 106, and kanakugiol 113 showed weak inhibitory activity.

Figure 8: Structure of kanakugiol

All four linderones and lucidones are inhibitors of farnesyl transferase, having anti-inflammatory activity, and they are PPAR-γ agonists. In 2005, Kwon et al. described the activity-guided isolation from the fruits of *L. erythrocarpa* and their inhibitory activities on FPTase. The results proved all four cyclopentenediones mentioned above were farnesyl protein transferase (FPTase) inhibitors and anti-tumor compounds by examining their inhibitory activity against H-ras-transformed rat-2 cells and a variety of human cancer cell lines. Especially, compounds methyl linderone and methyl lucidone showed strong inhibition for the growth of human cancer cells and colon tumor xenografted. From their bioassay results, a conclusion was drawn that methyl lucidone can be a potential anti-cancer agent against H-ras-transformed tumor and the cyclopentenediones will also be a good lead molecule for the development of a new class of anti-tumor drug and agents.
After Kwon and his coworkers demonstrated that four cyclopentenediones from the methanol extract of the fruits of *L. erythrocarpa* exhibited farnesyl protein inhibitory activity, in 2007, Chang et al.\(^8\) reported their study of a bioactive investigation of the extract from *L. erythrocarpa* fruits presented a significant in vitro and in vivo anti-inflammatory activity in inhibiting significantly nitric oxide (NO) production in lipopolysaccharide induced NO in the murine macrophage cell line. Among the evaluated compounds, lucidone (108), cis/trans-methyl ludicone (109), methyl linderone (107) and linderone (106), lucidone possessed the strongest NO inhibitory activity. Furthermore, lucidone also provided anti-inflammatory activity in the croton oil-induced ear edema assay. It was indicated that lucidone has a good potential to be developed as an anti-inflammation agent.

In summary, *L. erythrocarpa* fruits possess potent anti-inflammatory activity, and according to the results obtained from large investigation, the cyclopentenedione skeleton compounds, are good candidates for development as anti-tumor and anti-inflammatory agent. This class of compounds is of great importance in further nutraceutical applications, pharmaceutical industries and epidemiological studies.
2.2 Previous synthesis of linderone and methyl linderone

Linderone (106) and methyl linderone (107) are natural acylcyclopentenediones structurally similar to calythrone (114)83 (Figure 9) and methyl linderone belongs to a unique class of natural acylcyclopentenedione pigments.70,84 To our best knowledge, linderone and methyl linderone have been synthesized four times since first isolated.74,85-87

Figure 9: Structure of calythrone

![Structure of calythrone](image)

In 1967, Lee group described the first total synthesis of linderone and methyl linderone.85 It has been proposed these compounds might be derived from the appropriate precursor demethyldihydrolinderone (118), which could be readily generated through the alkaline rearrangement of the 1,4-quinone 117.

Preparation of linderone and methyl linderone from a six-membered ring precursor (Scheme 23) via well known reactions involving ring-contraction88 began with the oxidation of the chalcone 115 with nitric acid in acetic acid, indeed yielding the required quinochalcone precursor 116. Quinochalcone precursor 116 was then readily debenzylated via catalytic hydrogenation in methanol, with simultaneous saturation of the cinnamoyl side-chain. Subsequently, the hydroquinone intermediate was transformed to the 2,6-dihydroxy-quinone 117 by aerial oxidation in alkaline solution. A yellow product identified as demethyldihydrolinderone (118) was obtained after the quinone stood at room temperature in aqueous sodium hydroxide for 2-2.5 h either in the presence or absence of air. With the demethyldihydrolinderone (118) in hand, there remained only the introduction of unsaturation into the acyl side chain to complete the total
synthesis of the natural product. Methylation of compound 118, followed by dehydrogenation gave methyl linderone (107) and hence linderone (106). This was accomplished by first converting demethylidihydrolinderone (118) with diazomethane into methylidihydrolinderone (119) and then dehydrogenating the latter with 2,3-dichloro-5,6-dicyanoquinone, thus giving methyl linderone (107) in 60% yield. Finally, the partial hydrolysis of methyl linderone to linderone (106) completed the total synthesis of the desired naturally occurring compound.84

Scheme 23: Lee’s synthesis route of methyl linderone in 1967
In 1986, Lee et al.86 reported they have utilized another direct approach89 to synthesize linderone (106). That is converting methyl pedicinin (125) to 126 through the oxidative rearrangement by acetic anhydride-DMSO, which would be expected to undergo an acid-catalyzed conversion into linderone (106). The total synthesis employing this methodology is outlined in Scheme 24.

Methyl pedicinin (125), which could be isolated from the leaves of \textit{Didymocarpus pedicellata}, was first synthesized in four steps from 2-hydroxy-3,4,6-trimethoxyacetophenone (121).90 The synthesis started with a Friedel-Crafts acetylation of 1,2,3,5-tetramethoxy benzene (120) with acetyl chloride and aluminum chloride in dichloromethane at 30 °C, resulting in 2-hydroxy-3,4,6-trimethoxyacetophenone (121) in 66% yield. Treatment of 121 with benzaldehyde and potassium carbonate in alcohol for 3 days provided 2-hydroxy-3,4,6-trimethoxy-chalkone (122). The reaction of 122 with potassium carbonate and persulphate in pyridine at 10-15 °C, followed by refluxing in benzene in the presence of sodium sulfite and chloric acid furnished pedicin (123), which was then subjected to oxidation using bromine in chloroform to give pedicinin (124). Exposing pedicinin (124) to the methylation condition (diazomethane prepared from nitrosomethyl urea, ice-chest, 48 h) afforded methyl pedicinin (125). Subsequent rearrangement of 125 by using acetic anhydride-DMSO at 75 °C for 1 h gave compound 126 as a yellow solid identified as linderone acetate in 42% yield. Mild acid hydrolysis of compound 126 upon refluxing in 10% methanolic hydrochloric acid completed the synthesis of linderone (106).
In 2001, Aoyama et al. performed a new and practical synthesis of methyl linderone (107). Methyl linderone was prepared using a palladium catalyzed rearrangement of 128 to 129 as the key step (Scheme 25). A DDQ mediated oxidation and a Michael-addition elimination sequence completed the synthesis.
This synthesis of 107 initiated from alkyne 127 prepared from hydrocinnamaldehyde by the Corey–Fuchs method. 127 was then converted to its lithium salt and added to dimethyl squarate (7) to give cyclobutenone 128. The palladium-catalyzed ring expansion of 128 with 5% Pd(OCOCF₃)₂ in the presence of N-bromosuccinimide (NBS) provided compound 129 in 77% yield. 129 was then converted to its lithium salt and added to dimethyl squarate (7) to give cyclobutenone 128. The palladium-catalyzed ring expansion of 128 with 5% Pd(OCOCF₃)₂ in the presence of N-bromosuccinimide (NBS) provided compound 129 in 77% yield. 43 Dehydrogenation of 129 with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) 85,86 followed by nucleophilic substitution with NaOMe gave methyl linderone (107). Using this protocol, total synthesis of methyl linderone (107) was achieved in only four steps and the overall yield from dimethyl squarate was 21%.

Scheme 25: Aoyama’s synthesis route of methyl linderone

In 2004, Langer et al. 87 developed an approach to linderone using synthetic precursor 135 prepared from 130 in 5 steps in 41% overall yield (Scheme 26). When 2,4-bis-silyl enol ether 130 was treated with oxalyl chloride and trimethylsilyl triflate in dichloromethane at low temperature (-78-20 °C), compound 131 was obtained in 82% yield.
Scheme 26: Langer’s synthesis route of linderone

Furanone 132 was formed in excellent yield by treating 131 with dimethyl sulfate and potassium carbonate in acetone. Exposure of 132 to trimethylsilyl triflate in diethyl ether in the
presence of triethyl amine generated the corresponding silyl enol ether 133 in 93% yield. Subsequent reaction of 133 with benzaldehyde provided compound 134, which was then converted to 135 via dehydration. Finally, 135 was transformed to linderone (106), employing previously reported condition.92

The total syntheses of linderone (106) and methyl linderone (107) were achieved by Lee group via ring-contraction reaction and oxidative rearrangement. However, their total syntheses consist of many steps. Aoyama group successfully performed a much shorter total synthesis compared to Lee’s method. With the inspiration of their research and our study in the reactions of 4-(ethynyl)-4-hydroxy-2,3-substituted-2-cyclobuten-1-ones with N-halosuccinimide, herein we report another synthetic route for the naturally occurring product methyl linderone (107).
2.3 Methyl linderone via ring expansion of 4-ene-yne-substituted cyclo-2-buten-1-one and N-iodosuccinimide

As discussed in Chapter 1, a new convenient methodology to form the 2-halomethylene-4-cyclopentene-1,3-diones was developed. It is of interest to extend this type of ring expansion reactions and utilize it as a convenient method for the preparation of other natural cyclopentenediones, such as methyl linderone (107). The specific utilization of this methodology in the synthesis of methyl linderone is described in this chapter.

2.3.1 Retrosynthetic analysis

The proposed retrosynthetic route and a retrosynthetic analysis of methyl linderone (107), which takes advantage of the above rearrangement, is outlined in Scheme 27. It diagrams linderone and methyl linderone can be prepared from a general precursor cyclopentenedione 138. 138 can be seen as the product of the ring expansion of 4-ene-yne substituted cyclo-2-buten-1-one 137 in the presence of NIS. Compound 137 can be formed from deprotonation of 4-phenyl-3-butene-1-yne (136)93 followed by addition of dimethyl squarate (7). This came to fruition.
2.3.2 Results and discussion

The synthesis was performed using the 4-ene-yne substituted cyclo-2-buten-1-one \textbf{137} and NIS (Scheme 28). Deprotonation of 4-phenyl-3-butene-1-yne (\textbf{136}) with butyllithium followed by addition of dimethyl squarate (7) gave 2,3-dimethoxy-4-(5-phenyl-3-penten-1-ynyl)-4-hydroxy-3-cyclobutene-1-one (\textbf{137}) in 47\% yield. To our knowledge, only three cases of thermal ring expansions of 4-ene-yne-substrates have previously been reported affording five-membered cyclic products.12 An intermolecular Diels-Alder dimerization of the diene system of the product has been reported and was initially a concern. Fortunately, thermolysis of \textbf{137} in the absence of NIS gave only \textbf{139} without a trace of Diels-Alder product. Reaction of \textbf{137} with \textit{N}-iodosuccinimide gave the expected cyclopentenedione \textbf{138}. The iodide in \textbf{138} was smoothly replaced with a methoxy group to give the natural product methyl linderone (\textbf{107}) in a comparable 15\% overall yield to the synthesis seen in Scheme 28. While the substitution of an iodide for a methoxy group was facile, we were unable to introduce a hydroxy group under basic or acidic conditions. Even the small amount of dimethylamine formed or present in dimethylformamide (DMF) reacted preferentially to give the dimethylamino derivative \textbf{140}.12
Treatment of 138 using a number of other solvent systems including tetrahydrofuran-H$_2$O, 1,4-dioxane-H$_2$O, and N-methylpyrroli-dinone-H$_2$O under both basic and acidic conditions only resulted in no reaction or decomposition of the starting material.

Scheme 28: Synthesis of methyl linderone

2.3.3 Conclusions

We have achieved an efficient short-step total synthesis of methyl linderone in only three steps with an overall yield of 15% from dimethyl squarate. The rearrangement of 4-ene-yne-substituted cyclo-2-buten-1-ones to halo-substituted cyclopentenediones in the presence of N-halosuccinimide can be utilized as key steps in the construction of cyclopentenedione derivatives having a variety of substitution patterns, which constitute members of a rare class of compounds with potential to be further developed to anti-cancer reagents and anti-tumor drugs in the future.
Chapter 3

Synthesis of α-arylated ketones via Wacker-type oxidation of aryl-substituted alkenes

3.1 α-Arylated ketone background

3.2 Wacker-type oxidation

3.3 Wacker-type oxidation of aryl-substituted alkenes

3.4 Results and discussion

3.5 Conclusions
3.1 α-arylated ketone background

The α-arylated ketone structural skeleton can be seen in a variety of biologically active natural products and they are very useful synthetic intermediates of active pharmaceutical ingredients such as coumestan (141),94 phenylbenzofurans 142,95 and isoflavones 143 (Figure 10).96 In organic synthesis, α-arylated carbonyl compounds could be used as synthetic building blocks in constructing more complicated substituted heterocycles such as indoles, furans, imidazoles, oxazoles, and pyrazoles.97

Figure 10: Structures of coumestan, phenylbenzofurans, and isoflavones

![Coumestan, Phenylbenzofurans, and Isoflavones](image)

The selective installation of an aryl group in the α-position of a carbonyl group has been an intense research subject over the past 40 years98 and many synthetic methods have been reported99-102 to construct these scaffolds, such as reaction of an enolate with a derivative of benzyne,99 aryl reagents,102 Grignard reaction of benzamides with benzylimagnesium halides,103 Friedel–Crafts reaction of phenols with various phenylacetic acids in BF₃·Et₂O,104 and so on.

However, due to their own limitation, the transition metal-catalyzed direct coupling of aryl halides 144 or pseudohalides with enolates 145 obtained in situ from the corresponding ketones under basic conditions to synthesize of α-aryl substituted ketones 146 has emerged over the last three decades as a highly versatile method for the inter- and intramolecular construction of α-arylated ketones (Scheme 29).105-107 The most commonly employed
catalysts in the field of α-arylation of ketones with aryl halides are the palladium catalysts.

Scheme 29: Transition metal-catalyzed arylation reactions of ketone enolates

\[
\text{ArX} + \overset{\text{transition metal catalyst}}{R_1\overset{\text{O}}{\text{R}_2\overset{\text{O}}{\text{R}_3}}\rightleftharpoons R_1\overset{\text{Ar}}{\text{R}_2\overset{\text{O}}{\text{R}_3}}\quad (X=\text{halogen or pseudohalogen})
\]

The earliest examples of transitional metal-catalyzed α-arylation of ketone enolates with aryl halides and pseudohalides was by Kuwajima,108 Buchwald,109 and Hartwig,110 in 1980s and 1990s. The reactions were usually carried out with a base and a combination of Pd(OAc)_2 or a Pd(0) compound such as Pd_2(dba)_3 or Pd(dba)_2 and a suitable phosphine ligand. One example of the synthetic utility of this methodology is Miura et al.111 in 1999 prepared a variety of 2,3-diarylbenzofurans 149 via reaction of aryl benzyl ketones 147 with \textit{o}-dibromobenzenes 148 (Scheme 30).

Scheme 30: Synthesis of 2,3-diarylbenzofurans by means of a palladium catalyst system

A plausible reaction sequence and key steps for these palladium-catalyzed reactions involves (i) the oxidative addition of the aryl halide to a Pd(0) species; (ii) arylation at the benzylic position of the aryl benzyl ketone in the presence of a base, (iii) C-O bond formation, as shown in Scheme 31, (iv) a reductive elimination reaction of Pd species resulting observed diarylbenzofurans 149.

50
In addition to tertiary phosphines, many excellent supporting ligands have been investigated in numerous palladium-catalyzed reactions and alternatives to the tertiary phosphines have been developed. A number of Pd-complexes catalysts show excellent activity in the α-arylation of various ketone substrates with aryl halides, such as allylchloro[1,3-bis(2,6-di-i-propylphenyl)-4,5-dihydroimidazol-2-ylidene]palladium [(SIPr)Pd(allyl)Cl] complex (IPr)Pd(OAc)$_2$ [(IPr=1,3-bis(2,6-di-i-propylphenyl)imidazol-2-ylidene], (IPr)Pd(acac)Cl, aminopalladacycle [(IPr)Pd(acac)Cl 152], and 153, 78 complex 154, 79 155, 80 156, 81 and 157. 116-120
Figure 11: Chemical structures of various palladium-complex catalysts

Khartulyari and Maier in 2007 highlighted the synthetic utility of the palladium-catalyzed intramolecular α-arylations of ketones in an attempt to prepare benzomorphan analogues \textit{159}. Specifically, the cyclization of bromoketoesters \textit{158a} and \textit{159b} was carried out in refluxing toluene in the presence of K$_3$PO$_4$ as the base and a Pd(dba)$_2$ and P(t-Bu)$_3$ as the catalyst system to give tricyclic compounds \textit{159a} and \textit{159b} in 35% and 36% yield, respectively (Scheme 32).
From 1998 until now, several asymmetric syntheses using the transition metal-catalyzed α-arylation of ketone with aryl halides have been developed. For instance, in 1998, Buchwald et al. performed the intermolecular asymmetric arylation of 2-methyl-α-tetralones with 5 equiv of aryl halide at 70 °C, in the presence of 5 equiv of NaO-t-Bu and Pd2(dba)3/(S)- or (R)-BINAP catalyst system. The enantio-enriched products were obtained with good levels of the yield and enantiomeric excess (ee) (Scheme 33).

In addition to palladium catalyzed α-arylation, nickel catalyzed asymmetric synthesis of ketones from organic halides and cycloalkanones was reported as well. In 2006, Kwong, Chan et al. used the atropoisomeric dipyridylphosphine (R)-P-Phos to help pioneer formation utilizing nickel-catalyzed α-arylation of cycloalkanone with aryl halides. Product was enantio-selectively synthesized in excellent yields and ee (Scheme 34).
Scheme 34: Nickel-catalyzed enantioselective α-arylation of cycloalkanones

\[
\begin{align*}
\text{O} & \quad \text{Me} \\
\text{162} & \quad + \quad \text{ArX} \\
\text{Ni(COD)}_2 \ (2 \text{ mol%}) & \quad \text{NaOt-Bu} \ (2.0 \text{ equiv}) \\
(\text{R})\text{-P-Phos} \ (2.4 \text{ mol %}) & \quad \text{PhMe, 100 °C, 24 h} \\
(66-97\%) & \\
\text{O} & \quad \text{Me} & \quad \text{Ar} \\
\text{144} & \quad \rightarrow \quad \text{163} & \quad (\text{ee up to 98%})
\end{align*}
\]

It is important to note that the synthesis of α-aryl substituted ketones by α-arylation of ketones with aryl halides or pseudohalides has been used extensively for the construction of key intermediates in pharmaceutically important compounds.

For example, \(N\)-tosyl-2′-aminoacetophenone (164) reacted with orthodibromobenzene (165) in toluene and water at 120 °C in the presence of \(\text{Cs}_2\text{CO}_3\) and a combination of \(\text{Pd(OAc)}_2\) and XantPhos (Scheme 35) to provide intermediate 166 was a key step in a route to oxcarbazepine (167) (Trileptal).\(^{124}\) Trileptal is the most widely prescribed drug for the treatment of epilepsy both in children and adults.

Scheme 35: \(\alpha\)-Arylation of \(N\)-tosyl-2′-aminoacetophenone with \(o\)-dibromobenzene

\[
\begin{align*}
\text{Me} & \quad \text{NHTs} \\
\text{164} & \quad + \quad \text{Br} \quad \text{Br} & \quad \text{Br} \\
\text{Pd(OAc)}_2 \ (4.4 \text{ mol %}) & \quad \text{Cs}_2\text{CO}_3 \ (1.4 \text{ equiv}) \\
\text{XantPhos} \ (8.5 \text{ mol %}) & \quad \text{PhMe, H}_2\text{O, 120 °C, 48 h} \\
\quad & \quad (86\%) \\
\text{NHTs} & \quad \text{Br} \\
\text{165} & \quad \rightarrow \quad \text{166} & \quad \text{oxcarbazepine 167}
\end{align*}
\]
Another example is the synthesis of a wide variety of tamoxifen-related 1,2,2-triarylethanones 170, which function as active selective estrogen receptor modulator in the treatment of breast cancer. SanMartin, Dominguez et al. in 2002 demonstrated that were synthesized from the arylation reaction of aryl benzyl ketones 168 at the benzylic position with aryl bromides 169 (Scheme 36) with fair-to-good yield.

Scheme 36: Pd-catalyzed synthesis of 1,2,2-triarylethanones from aryl benzyl ketones

\[
\begin{align*}
\text{R}_1 & = \text{H, OMe; R}_2 = \text{H, OMe; R}_3 = \text{H, OMe} \\
\text{R}_4 & = \text{H, OMe, OCH}_2\text{O; R}_5 = \text{H, OMe, NO}_2
\end{align*}
\]

Later in 2004, 1,2,2-triarylethanones 170 were synthesized from acetophenones 171 and aryl bromides 172 in a better yield (Scheme 37). Specifically, method A focused on the use of the system \text{Pd(OAc)}_2/\text{PPh}_3/\text{Cs}_2\text{CO}_3, while method B entailed the use of the commercially available polymerbound catalyst FiberCat1026.

Scheme 37: Pd-catalyzed synthesis of 1,2,2-triarylethanones from acetophenones

\[
\begin{align*}
\text{Method A: Pd(OAc)}_2, \text{PPh}_3, \text{Cs}_2\text{O}_3, \text{DMF, } 153 {}^\circ\text{C, 1-7h (35-91%)} \\
\text{Method B: FibreCat} 1026, \text{Cs}_2\text{O}_3, \text{DMF, } 153 {}^\circ\text{C, 0.8-1h (20-93%)}
\end{align*}
\]
In 2005, Gupta and Nair127 applied the methodology in the synthesis of acetonylpurine (174), which is an important precursor in the synthesis of potent antiviral compound 2-acetylnosine (175) via Pd(PPh\textsubscript{3})\textsubscript{4}-catalyzed reaction of 6-chloro-2-iodopurine ribonucleoside (173), Bu\textsubscript{3}SnOMe, and isopropenyl acetate (Scheme 38). Benzyl methyl ketone 177 was prepared using a similar protocol. Reaction of aryl bromide 176, isopropenyl acetate, and Bu\textsubscript{3}SnOMe in the presence of Pd\textsubscript{2}(dba)\textsubscript{3} and 2-diphenylphosphino-2'-'-dimethylyaminobinaphthyl catalyst system resulted in a good yield.128

Scheme 39: Pd-catalyzed synthesis of benzyl methyl ketone
Up to date, the transition metal-catalyzed synthesis of α-aryl substituted ketones by α-arylation of ketones with aryl halides or pseudohalides appears to be the most widely used as a very useful and powerful methodology for the formation of Csp3-Csp2 bonds. However, these reactions suffer from some drawbacks. For instance, some necessary ligands, catalysts, additives for the reactions are very expensive; some substrates do not tolerate the strongly basic reaction conditions or required harsh conditions such as elevated temperatures; sometimes multiple arylation might happen and specific protecting group need to be introduced to block one α-position of the ketone.

Therefore, there is a need for the further development of direct installation of C(sp3)–C(sp2) bonds. Recently, our research in Wacker-type oxidation of aryl-substituted alkenes to furnish diverse α-aryl substituted ketones seems to be a promising alternative method for this goal.
3.2 Wacker-type oxidation

The Wacker oxidation, olefin oxidation with PdCl₂ catalysts, and related processes, has been a topic of research interest for well over a century. Smidt and co-workers were the first researchers to describe the overall process, and the transition metal promoted oxidation of ethylene to give acetaldehyde was realized in the late 1950s by using palladium(II) chloride and copper(II) chloride as catalyst under an oxygen atmosphere (Scheme 40). This transformation was achieved by the oxidation of an olefin with an aerobic PdCl₂-catalyzed, Cu-mediated aqueous medium containing hydrochloric acid to a carbonyl.

The Wacker Process has remained one of the most important industrial processes employing transition metal catalysts. Even though it was initially reported in 1962, it is still widely utilized for the industrial production of acetaldehyde from ethylene.

Scheme 40: Individual reactions of the Wacker process

\[
\begin{align*}
\text{Eq. (1)} & : &
\text{O}_2 + \text{PdCl}_2 + \text{H}_2\text{O} & \rightarrow \text{H}^+ \text{O}^- + \text{Pd(0)} + 2\text{HCl} \\
\text{Eq. (2)} & : &
\text{Pd(0)} + 2\text{CuCl}_2 & \rightarrow \text{PdCl}_2 + 2\text{CuCl} \\
\text{Eq. (3)} & : &
2\text{CuCl} + 2\text{HCl} + \frac{1}{2}\text{O}_2 & \rightarrow 2\text{CuCl}_2 + \text{H}_2\text{O} \\
\text{Eq. (4)} & : &
\text{O}_2 + \frac{1}{2}\text{O}_2 & \rightarrow \text{H}^+ \text{O}^-
\end{align*}
\]

The Wacker oxidation reaction of ethylene involves three sequential stoichiometric oxidation and reduction reactions to constitute a catalytic cycle. Eq. (1) in Scheme 40 represents an oxidation reaction involving a Pd(II) catalyst which has been known for more than a century. Eq. (2) indicates the formed Pd(0) in eq. (1) could be regenerated by cupric chloride in situ; the final step [Eq. (3)] is the re-oxidation of CuCl to CuCl₂. The net reaction
of these three reactions leads to a simple air oxidation of ethene to ethanal.

In addition to ethylene, several synthesis have been developed by Smidt and coworkers specifically to produce other carbonyl compounds.130 These studies involve a wide variety of starting materials and reaction conditions, including both an acidic aqueous solution of palladium(II) chloride and organic media.132,133 In general, terminal olefins are transformed to methyl ketones rather than aldehydes through Wacker process as shown in Scheme 41.

Scheme 41: Wacker process of terminal alkenes

\[
\begin{align*}
\text{R} = \text{CH}_2 \quad &\rightarrow \quad \text{R} \cdot \text{C} = \text{CH}_3 \\
\text{H} &
\end{align*}
\]

Although a lot of efforts have focused on the mechanism study of Wacker reaction,134-136 a textbook example of a homogeneous transition-metal-catalyzed reaction, no “true” pathway of the Wacker oxidation process was described so far due to its complicated kinetics. However an abbreviated scheme of the complete catalytic cycle of the Wacker process was proposed in Scheme 42,137 involving four key steps: the coordination of terminal alkene \textbf{179} to a palladium(II) species \textbf{178}; nucleophilic attack of water to the palladium-alkene complex \textbf{180} results intermediate \textbf{181}. Hydride shift in \textbf{181} followed by a reductive elimination furnish methyl ketone \textbf{182} and regenerate palladium(0) species, which could be reoxidized to palladium(II) catalyst. Extraordinary amount of research has provided strong evidence that subtle changes in experimental conditions, such as the structure of olefins, solvents and reoxidants, can result in substantially different reaction mechanisms,138,139 rates and yields.
Scheme 42: Overall catalytic cycle of the Wacker process

The oxidation on a laboratory scale can be carried out with palladium(II) catalyst and a copper salt under an oxygen atmosphere at room temperature using an apparatus as depicted in Figure 12.

Figure 12: Typical apparatus for Wacker-type oxidation

In order to apply this methodology to more complicated substrates, mixed-solvent systems have been developed and a lot of molecule-targeted syntheses were performed under
various conditions.130,134,139 The Wacker oxidations of higher terminal olefins are slow but this problem can be partly solved by the addition of suitable organic solvents which can mix olefins with water. However, it is worth noticing that oxidation and isomerization of the double bond are competitive reactions, and the extents of the reactions are influenced by solvents. For instance, dimethylformamide is good for the oxidation, whereas use of acetic acid facilitate the isomerization.139 The double bond migration is facilitated by high temperatures.140

A typical synthetic Wacker procedure, a mixed-solvent system of N,N-dimethylformamide and H_2O with catalytic $PdCl_2$ and stoichiometric $CuCl$ under an aerobic atmosphere is referred to as Wacker-Tsuji oxidation. These classical conditions, using N,N-dimethylformamide ($DMF)/H_2O$ mixture and stoichiometric $CuCl$,141 are developed by Tsuji based on modification and extension of the simple Wacker oxidation. Compared to other reported modified Wacker oxidation systems, these conditions are most common because of their convenience and simplicity.134

Many modifications for Wacker oxidation have been made. Other than $PdCl_2$, palladium(II) trifluoroacetate, palladium(II) acetate, disodium tetrachloropalladate, palladium(II) sulfate, palladium(II) chloride-cobalt complexes, bis[acetonitrile]chloronitropalladium complex139 and so on were used as catalysts as well. Sometimes, palladium catalyst deactivation occurs during the reaction by the precipitation of black palladium metal, even when no precipitation is observed. The reason accounts for this issue is the formation of palladium(II) complex. For example, palladium(II) chloride bis-dimethylamine complex deactivates the catalyst when dimethylformamide is used as a solvent,133 and π-allyl
palladium complexes 183 may retard the reaction when some olefin substrates were used as a reactants.142

Figure 13: Palladium complex accounts for the deactivation

Therefore, the activation of the palladium catalyst is a common issue in the Wacker oxidation as well as other Pd(II)-catalyzed oxidation reactions. Simple Wacker process adopts copper(II) chloride as a cocatalyst to efficiently regenerate the active Pd(II) catalyst. A number of other reoxidants have been introduced,139 such as copper(I) chloride, copper(II) nitrate, copper(II) acetate, benzoquinone, hydrogen peroxide and t-butyl hydroperoxide. Compared to copper(II) catalyst, copper(I) chloride, when pretreated with oxygen, is used no chlorination of ketones takes place and the rate of the reaction is high. Benzoquinone was another good reoxidant and was first used by Moiseev et al.,143 but a stoichiometric amount is necessary. The ability of hydrogen peroxide and t-butyl hydroperoxide to reoxidize palladium(0) as the terminal oxidant in the absence of Cu have been proved as well.144 In 1980s, Mimoun and co-workers145 reported that high conversion and selectivity were obtained from terminal straight-chain olefins by using 0.067 mol % Pd(OAc)2 with 5 equiv of H2O2(aq) in acetic acid (Scheme 43). The isotopic labeling studies using 18OH2 indicated that the O atom incorporated into the ketone originated from hydrogen peroxide.

Scheme 43: Modified Wacker oxidation using H2O2 as the terminal oxidant
On the basis of this finding, a mechanism was proposed wherein a palladacyclic intermediate 184 is formed from peroxide insertion into the olefin, followed by an \(\alpha \)-hydride shift facilitated by O-O bond cleavage (Scheme 44).146 An exciting aspect of the proposed catalytic cycle is that Pd does not necessarily proceed through Pd(0) because catalyst regeneration can occur via a proton transfer from a peroxide to 185, regenerating active catalyst 186. This potentially alleviates the probability of Pd(0) aggregation and catalyst deactivation, which is a common problem in these oxidations.

Scheme 44: Mimoun et al.’s mechanism for peroxide-mediated Wacker oxidation

Methyl ketones are important functional groups and the palladium(II)-catalyzed oxidation of terminal olefins seems to be one of the best methods to methyl ketones because terminal olefins are easily available, stable under acidic, basic or nucleophilic conditions.139 Thus, synthetic organic chemists have paid great attention to the widespread use of the reaction as a synthetic method for ketones147 and carried out a considerable amount of work on the applications to organic synthesis. The reaction is an extremely useful method for the synthesis of a variety of natural product precursors and biologically active compound
intermediates. Synthetic schemes from 45 to 52 are shown below as examples to demonstrate the usefulness of Wacker-type oxidation.

In 2006, Cook et al.148 successfully converted stable (+)-macroline equivalent 188 to (-)-alstonerine (189) in 12.6\% overall yield, starting from tryptophan methyl ester 187, via an intramolecular Tsuji-Wacker oxidation (Scheme 45). The alkaloid 189 could be further converted into biogenetic intermediate (-)-talcarpine (190) and (-)-anhydromacrosalhinemethine (191). The transformations constituted an improved total synthesis of the (-)-anhydromacrosalhine-methine (191) as well as (-)-talcarpine (190).

Scheme 45: Formation of biogenetic intermediate 190 and 191

In 2011, Szolcsanyi et al.149 have reported up to date shortest routes with highest overall yields for three naturally occurring 2,6-disubstituted piperidine alkaloids, (+)-dihydropinidine (196), (-)-epidihydropinidine (195) (as HCl salts), and (-)-pinidinone (199), which are naturally occurring defense chemicals, possessing antifeedant properties against
budworm and usually isolated from many spruce and pinus species and various insects. The total syntheses began with (S)-epichlorohydrin (192) as common starting material, and regioselective copper-free Wacker-Tsuji oxidation of alkenylazides 193 and 197 as key steps to exclusively generate methyl ketones 194 and 198 (Scheme 46). 194 subsequently converted to (-)-epidihydropinidine (195) and (+)-dihydropinidine (196) with 34% and 54% overall yield. The similar optimized Wacker-Tsuji transformation condition allowed the dialkenylazide 197 oxidized in good yield to the desired azidodiketone 198. The latter was finally converted to (-)-pinidinone (199) in high yield (Scheme 47) upon treatment with hydrogenation on Pearlman’s catalyst in 35% overall yield starting from 192.

Scheme 46: Synthesis of (+)-dihydropinidine and (-)-epidihydropinidine

Scheme 47: Synthesis of (-)-pinidinone
In 2013, Yaragorla et al.150 have demonstrated a concise approach toward the tetracycle \textit{203}, whose structural skeleton is contained in a diverse range of shiartane-type nortriterpenoids. They display a wide ranging bioactivity profile that includes anti-oxidant, anti-HIV, anti-cancer activities and possess great potential in modern drug discovery as well as in traditional medicine. The synthesis began with the conversion of synthon (+)-\textit{200} to the epoxy-ketone \textit{201} in six steps, followed by exposure of \textit{201} to Wacker–Tsuji oxidation condition provided cleanly to the desired diketone \textit{202} in 72\% yield and set the stage for further four transformations to the tetracycle \textit{203} (Scheme 48). The total synthesis was completed in 11 steps with 8\% overall yield.

\textbf{Scheme 48: Synthesis of tetracycle (+)-203}

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\textit{200}};
\node (b) at (2,0) {\textit{201}};
\node (c) at (4,0) {\textit{202}};
\node (d) at (6,0) {\textit{203}};
\node (e) at (2,-1) {\textit{OTBS}};
\node (f) at (4,-1) {\textit{OTBS}};
\node (g) at (6,-1) {\textit{OTBS}};
\node (h) at (1,-2) {\textit{PdCl$_2$, CuCl, O$_2$ \textit{DMF-H$_2$O, 30 h}}};
\draw [->] (a) to (b);
\draw [->] (b) to (c);
\draw [->] (c) to (d);
\draw [->] (a) to (e);
\draw [->] (b) to (f);
\draw [->] (c) to (g);
\end{tikzpicture}
\end{center}

In 2013, Pipelier et al.151 utilized the Wacker–Tsuji oxidation in the stereoselective synthesis of a hexahydropaphthalene derivative \textit{206}, which was used as a building block or a suitable intermediate for the preparation of a variety of nardosinane-type compounds. Nardosinane sesquiterpene exhibits a wide biological activity spectrum and can be extracted from soft corals. They successful developed two synthetic strategies to realize this goal (Scheme 49). The first route was achieved by the Wacker-type oxidation of silyl ether \textit{204} to
give expected ketone 205 in 89% yield, which could be further transformed to bicyclic diene 206 in 60% yield (dr>95:5) under acidic condition, (para-toluenesulfonic acid in acetone/water). Then they described their improvement in the access to diene 206 by a shorter synthesis. Same to the condition used in the first strategy, allylic enol 207 was oxidized to methyl ketone 208 in 65% yield, the tertiary hydroxy group in which was subsequently undergo dehydration under acidic conditions to afford diene 206 still with high diastereoselectivity (dr>95:5) in 73% yield.

Scheme 49: Synthesis towards key hexahydronaphthalene 206

In 2004, Lubell et al.152 designed a convergent synthetic strategy from a series of structurally diverse aliphatic and aromatic esters 209 to give access to a range of pyrroles 212 by the three-step Grignard/Tsuji-Wacker/Paal-Knorr sequence in good yield and purity. Pyrroles are abundant as constituents of natural products5-8 and 1,2,5-trisubstitution pattern
pyrroles display interesting biological properties, including antipsychotic10-12 antiinflammatory13,14 radioprotective15 and spasmytolic16,17 activity. The oxidation of the olefin terminus was applied to ketone 210, generating the 1,4-dione 211, which could be used for next steps without further purification (Scheme 50).

Scheme 50: The synthesis of 1,2,5-trisubstituted pyrrole

$$\begin{align*}
209 & \xrightarrow{\text{MgBr, 30-50 mol\% CuCN, THF, -45^\circ C}} 210 \\
210 & \xrightarrow{\text{PdCl}_2, \text{CuCl, O}_2, \text{DMF:H}_2\text{O}} 211 \\
211 & \xrightarrow{\text{R}_2\text{NH}_2, \text{HOAc, 65-80^\circ C}} 212
\end{align*}$$

10 Years later, Lubell group153 further extended the utilization of their synthetic methodology mention above in the preparation of conjugated C_3 symmetric aryl tripyrroles, which may be promising materials for both electrochromic and fluorescence sensor applications. Three-step Grignard/Tsuji-Wacker/Paal-Knorr reaction sequence formed the
final tripyrroles 216 in 9% overall yields, starting from trimethyl 1,3,5-benzene tricarboxylate 213. Modified Wacker-Tsuji olefin oxidation of homoallylic ketone 214 gave tris(1,4-dione) 215 in 49% yields, featuring ultrasound agitation of the substrate in the presence of PdCl₂ (0.6 equiv) and CuCl (3 equiv) in THF/H₂O (4:1) under oxygen atmosphere (Schemes 51).

Actually, a variety of terminal olefins can be oxidized to the corresponding methyl ketones via Wacker-type oxidation with functional groups remain intact, including aldehyde, carboxylic acid, ester, alcohol, ether, acetal, chloride, bromide, sulfonylester, sulfone and so on, since the Wacker-type oxidation proceeds under mild conditions.

In 2011, Anseth et al. first reported the successful application of the Wacker-type oxidation to a cyclic substrate to synthesis large-scale 1,3-cyclooctanedione (219) in five steps with 29% yield. The preparation started from converting the commercially available inexpensive starting material cyclooctanone (217) to enone 218 through 4 steps followed by a modified Wacker-Tsuji oxidation to gave the desired dione in a single step in 37% yield (Scheme 52). This synthesis was proved to be a good alternative method for the standard preparation of 1,3-cyclooctanedione. Moreover, this modified Wacker-Tsuji oxidation condition, which employed inexpensive oxidant, tert-butyl hydroperoxide was efficient for the oxidation of internal double bonds conjugated to carbonyl groups.

Scheme 52: Synthesis of 1,3-cyclooctanedione 219 from cyclooctanone 217
A definite mechanism explaining various modified Wacker-type oxidations remains elusive because of the utilization of added ions and co-oxidants. Recent advancements have been made toward the elimination of Cu additives resulting in the development of peroxide-mediated and ligand modulation Wacker oxidations. Sigman et al. are among the researchers who paid great efforts in this area.

In 2009, Sigman et al. discovered a highly efficient Wacker-type oxidation system capable of converting classically challenging substrates to corresponding methyl ketones, for example, protected allylic alcohols 220 to acyloins 221, and homoallylic alcohol 222 to 223 in excellent yield (Scheme 53). In a typical reaction condition, low-loadings palladium(II)-Quinox (bidentate ligand, quinoline-2-oxazoline) complex, aqueous 70 wt% TBHP (tert-butyl hydroperoxide) and SbF$_6^-$ was used as catalyst, terminal oxidant and counterion, respectively. Various terminal alkenes were selectively converted to methyl ketones under these mild conditions with high selectivity.

Scheme 53: TBHP-mediated Wacker-type oxidation

![Scheme 53: TBHP-mediated Wacker-type oxidation](image)
Two years later, in 2009, Sigman and co-workers156 further proved the methodology they discovered before could be used as a general synthetic route to oxidize olefin substrates bearing homoallylic alcohols to their corresponding methyl ketone, regardless of substitution on the substrates. Various homoallylic alcohols, such as \textbf{224} was transformed to \(\beta\)-hydroxy ketone \textbf{225} using a TBHP-mediated Pd(Quinox)-catalyzed Wacker-type system in good yields with significantly reduced reaction times (Scheme 54).

Scheme 54: TBHP-mediated Wacker-type oxidation to form \(\beta\)-hydroxy ketone

A number of styrene derivatives are another challenging substrate class for the Wacker-Tsuji oxidation.157 Therefore, more modified Wacker-type oxidations have been created for the purpose of enlarging its synthetic utility.

Exposing nitro-substituted styrene \textbf{226} to TBHP-mediated Wacker-type oxidation155 mentioned above resulted in methyl ketone \textbf{227} in 60\% yield because of the highly electron-deficient system and a trace amount of \(m\)-nitro benzaldehyde was obtained (Scheme 55).

Scheme 55: TBHP-mediated Wacker-type oxidation to form methyl ketone

In 2012, Gröger, et al.158 converted styrene (\textbf{228}) to acetophenone (\textbf{229}) in excellent conversion and good selectivity of 99\% and 90\% respectively by using PdCl\(_2\) as a palladium catalyst, benzoquinone as oxidation and a mixture of methanol and water as solvent. However,
side products \(o \)-methylphenylethan-1-ol (3%), phenylacetaldehyde dimethyl acetal (2%), methyl phenylacetate (3%), and traces of racemic phenylethan-1-ol (1%) were observed.

Scheme 56: Benzoquinone-reoxidant Wacker-type oxidation to acetophenone

![Scheme 56: Benzoquinone-reoxidant Wacker-type oxidation to acetophenone](image)

Compared with the facile oxidation of terminal olefins, the reaction of Wacker-type oxidation of internal alkenes is extremely slow and the selectivity for unsymmetrical alkenes is often poor unless substrates with some functional groups at suitable positions would be oxidized regioselectively by participation of the functional groups under proper conditions. For example, the selectivity can be substantially enhanced if the alkene substrate has a pendant group able to coordinate with palladium (PdCl\(_2\), H\(_2\)O, O\(_2\) (3 atm), DMA, 80 °C).\(^{159}\)

Thus, more improvement is necessary for the Wacker-type oxidation of internal olefins. The regioselective oxidation of functionalized internal olefins will be surveyed in this chapter because it would be a powerful and flexible method in the synthesis of \(\alpha \)-aryl substituted ketones, which are quite important synthons in pharmaceutical and biomedical chemistry.
3.3 Wacker-type oxidation of aryl-substituted alkenes

Aryl-substituted alkenes are a substrate class that offers a unique set of challenges to Wacker-type oxidation. The 1-aryl-1-alkenes were prepared via a Kosugi-Migita-Stille cross coupling of an aryl-iodide or -bromide with tributyl 1-propen-1-yltin (Table 3)160-162. Since the impetus of the present study was the palladium catalyzed oxidation, no attempts were made to optimize the yields of the cross coupling reactions.

![Chemical Reaction](image)

\textbf{Table 3: Synthesis of 1-aryl-1-propenes}

<table>
<thead>
<tr>
<th>Entry</th>
<th>X</th>
<th>R</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>2-NO\textsubscript{2}</td>
<td>230 (49%)</td>
</tr>
<tr>
<td>2</td>
<td>Br</td>
<td>3-NO\textsubscript{2}</td>
<td>231 (49%)</td>
</tr>
<tr>
<td>3</td>
<td>Br</td>
<td>4-NO\textsubscript{2}</td>
<td>232 (57%)</td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>2-NO\textsubscript{2} 4-F</td>
<td>233 (73%)</td>
</tr>
<tr>
<td>5</td>
<td>Br</td>
<td>2-NO\textsubscript{2} 4-NO\textsubscript{2}</td>
<td>234 (51%)</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>2-NO\textsubscript{2} 4-CO\textsubscript{2}Me</td>
<td>235 (56%)</td>
</tr>
<tr>
<td>7</td>
<td>I</td>
<td>2-NO\textsubscript{2} 4-OMe</td>
<td>236 (32%)</td>
</tr>
<tr>
<td>8</td>
<td>I</td>
<td>2-NO\textsubscript{2} 5-OMe</td>
<td>237 (37%)</td>
</tr>
<tr>
<td>9</td>
<td>Br</td>
<td>2-NO\textsubscript{2} 6-Me</td>
<td>239 (69%)</td>
</tr>
<tr>
<td>10</td>
<td>I</td>
<td>2-Br</td>
<td>243 (40%)</td>
</tr>
<tr>
<td>11</td>
<td>I</td>
<td>---</td>
<td>244 (13%)</td>
</tr>
</tbody>
</table>

Three other alkene substrates, 1-nitro-2-(1-penten-1-yl)-benzene (240), 1-(3-methyl-1-butenyl)-2-nitrobenzene (241), and 1-nitro-2-(2-phenylethenyl)-benzene (242) (Figure 14) were synthesized using literature procedures.163,164 Compound (238), α-asarone is commercially available.
Our initial plan was to examine the possibility of generating α-arylated ketones directly under the typical Wacker-Tsuji oxidation condition (Figure 15), 10 mol % of PdCl₂ as a palladium catalyst, 1 equiv of copper chloride as oxidation reagent, and DMF/H₂O (10:1 (v/v) under an O₂ atmosphere at 50 °C for 20 h (Condition 1). The 1-aryl-1-propene 230 was expected to be oxidized to form α-arylated propanone 245. But this condition yielded even no trace amounts of the expected 245; the starting materials were recovered unchanged. A thorough study of the literature on Wacker process made us realize that the oxidation of internal olefins is extremely slow under the usual conditions and the reactions are not region-selective. Rates and yields of the oxidation are heavily dependent on the structure of olefins. Also, the proper selection of solvents and reoxidants is crucial. Due to the traditional Wacker-Tsuji oxidation condition seemed to be ineffective for this transformation, we chose first to change solvent by replacing DMF with MeOH (Condition 3). To our delight, a rapid reaction took place and α-arylated ketone 245 was isolated in a decent yield of 73% with dimethyl acetal 246 (4%) and an inseparable mixture of o-nitrobenzaldehyde 247 (7%) and dione 248 (7%) as side products. Subsequently, we decided to conduct an oxidant reagent screen by utilizing H₂O₂ with radical inhibitor (2,6-di-t-butyl-4-methylphenol) or tert-butyl hydroperoxide (TBHP) with radical inhibitor (Condition 4 and 5). α-Arylated ketone 245 was isolated in 72% and 92% yields respectively. We were pleased to find that the oxidation of 230 was very clean under Condition 5 (only a single product spot on the TLC) and the
desired methyl ketone was formed with a good 92% yield with no trace of any other by-products. It is important to note that the yield of methyl ketone 245 dropped off from 72% to 18% when changing the reaction condition from Condition 4 to 2. In fact, the addition of solvent (methanol and water) had a significant impact on the reaction yield (Conditions 2, 4).

Figure 15: Wacker-type oxidation of 1-aryl-1-propene

![Wacker-type oxidation of 1-aryl-1-propene](image)

Reaction conditions:
1. Substrate (0.2 mmol), PdCl$_2$ (10 mol %), CuCl (1 equiv), 1.1 mL of DMF:H$_2$O (10:1) at 50 °C, 20 h.
2. Substrate (0.2 mmol), PdCl$_2$ (10 mol %), H$_2$O$_2$ (10 equiv) with 50% con. in aqueous solution, 50 °C, 48 h.
3. Substrate (0.2 mmol), PdCl$_2$ (10 mol %), CuCl (1 equiv), 1.1 mL of MeOH:H$_2$O (10:1) at 50 °C, 20 h.
4. Substrate (0.2 mmol), PdCl$_2$ (10 mol %), H$_2$O$_2$ (10 equiv) with 50% con. in aqueous solution, 2,6-di-t-butyl-4-methylphenol (10 mol %), 1.1 mL of MeOH:H$_2$O (10:1), 50 °C, 48 h.
5. Substrate (0.2 mmol), PdCl$_2$ (10 mol %), tert-butyl hydroperoxide (10 equiv) with 90% con. in aqueous solution, 2,6-di-t-butyl-4-methylphenol (10 mol %), 1.1 mL of MeOH:H$_2$O (10:1), 50 °C, 48 h.

Inspired by these results, we next conducted a thorough solvent ratio screen using the oxidation of 2-nitro styrene (285) as the model (Table 4). MeOH:H$_2$O (9:1) was found to be the best solvent system (entry 2), giving methyl ketone product in 29% yield. The reaction in H$_2$O was significantly slower (entry 6); only 61% of 2-nitro styrene was converted after 20 h.
and 22% yield of methyl ketone 286 was isolated. Reactions using MeOH/H₂O (3/7) or DMF/H₂O (10/1) did not complete either and large amount of starting material was recovered with low yield of desired ketone obtained (entries 5 and 7). Neither anhydrous methanol (entry 1) nor DMF/MeOH (1/1) (entry 8) led to any methyl ketone product. It seemed that the ratio of water to methanol had a significant impact on the product ratio under these reaction conditions (entries 1-6). Ratios of different products from oxidation of 2-nitro styrene (285) were summarized in Table 4.

Table 4: Ratios of products for crude reaction mixtures from oxidation of 2-ethenyl-1-nitrobenzene

<table>
<thead>
<tr>
<th>Entry</th>
<th>MeOH/H₂O</th>
<th>286</th>
<th>287</th>
<th>246</th>
<th>247</th>
<th>288</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/- (100%)</td>
<td>0</td>
<td>17 (73%)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9/1</td>
<td>1 (29%)</td>
<td>2.3</td>
<td>0.15</td>
<td>0.25</td>
<td>0.16</td>
</tr>
<tr>
<td>3</td>
<td>7/3</td>
<td>1 (26%)</td>
<td>1.11</td>
<td>0.29</td>
<td>0.48</td>
<td>0.14</td>
</tr>
<tr>
<td>4</td>
<td>1/1</td>
<td>1 (16%)</td>
<td>0.60</td>
<td>0.73</td>
<td>1.28</td>
<td>0.26</td>
</tr>
<tr>
<td>5</td>
<td>3/7 (21% sm)</td>
<td>1 (11%)</td>
<td>0.23</td>
<td>0</td>
<td>1.75</td>
<td>0.26</td>
</tr>
<tr>
<td>6</td>
<td>-1/b (39% sm)</td>
<td>1 (22%)</td>
<td>0</td>
<td>0</td>
<td>1.31</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10/1c (8% sm)</td>
<td>1 (7%)</td>
<td>0</td>
<td>0</td>
<td>5.3 (37%)</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1/1d (36% sm)</td>
<td>0</td>
<td>1.4 (26%)</td>
<td>0</td>
<td>0.07</td>
<td>1 (19%)</td>
</tr>
</tbody>
</table>

The starting material was completely consumed in cases (1-4). PdCl₂ (10 mol %), CuCl (1 equiv), 50 °C, 20 h.

a MeOH/H₂O (3/7) was used as the solvents and starting material (21%) was obtained after the reaction.

b H₂O was used as the solvent and starting material (39%) was obtained after the reaction.

c DMF/H₂O (10/1) was used as the solvents and starting material (8%) was obtained after the reaction.

d DMF/MeOH (1/1) was used as the solvents and starting material (36%) was obtained after the reaction.
3.4 Results and Discussion

To ascertain the wide applicability of this Wacker-type oxidation methodology to target syntheses, the oxidations of a number of aryl-substituted internal alkene variants were investigated in an attempt to prepare structurally diverse α-arylated ketones (Table 5).

Table 5: Wacker-type oxidation of aryl-substituted alkenes

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkene</th>
<th>Ketone</th>
<th>Acetal</th>
<th>Aldehyde</th>
<th>Dione</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-A</td>
<td>230</td>
<td>245</td>
<td>246</td>
<td>247/248</td>
<td>(1:1, 14%)</td>
</tr>
<tr>
<td>1-B</td>
<td>230</td>
<td>245</td>
<td>246</td>
<td>247</td>
<td>(8%)</td>
</tr>
<tr>
<td>1-C</td>
<td>230</td>
<td>245</td>
<td>246</td>
<td>247</td>
<td>(21%)</td>
</tr>
<tr>
<td>1-D</td>
<td>230</td>
<td>245</td>
<td>246</td>
<td></td>
<td>(92%)</td>
</tr>
<tr>
<td>2-A</td>
<td>231</td>
<td>249</td>
<td>250/251</td>
<td></td>
<td>(1:1, 14%)</td>
</tr>
<tr>
<td>2-D</td>
<td>231</td>
<td>252</td>
<td></td>
<td></td>
<td>(34%)</td>
</tr>
<tr>
<td>3-A</td>
<td>232</td>
<td>253</td>
<td>254/255</td>
<td>(1:1, 20%)</td>
<td></td>
</tr>
<tr>
<td>3-C</td>
<td>232</td>
<td>253</td>
<td>254/255</td>
<td>(1:1, 14%)</td>
<td></td>
</tr>
<tr>
<td>3-D</td>
<td>232</td>
<td>256</td>
<td>253</td>
<td>(2%)</td>
<td></td>
</tr>
<tr>
<td>4-A</td>
<td>233</td>
<td>257</td>
<td>258</td>
<td>259/260</td>
<td>(1:1, 10%)</td>
</tr>
<tr>
<td>4-C</td>
<td>233</td>
<td>257</td>
<td>258</td>
<td>(17%)</td>
<td></td>
</tr>
<tr>
<td>4-D</td>
<td>233</td>
<td>257</td>
<td>258</td>
<td>(54%)</td>
<td></td>
</tr>
</tbody>
</table>
Table 5 (continued)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkene</th>
<th>Ketone</th>
<th>Acetal</th>
<th>Aldehyde</th>
<th>Dione</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>234</td>
<td>261 (13%)</td>
<td>262 (39%)</td>
<td>263 (29%)</td>
<td></td>
</tr>
<tr>
<td>5-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>234</td>
<td>264 (31%)</td>
<td>262 (39%)</td>
<td>263 (29%)</td>
<td></td>
</tr>
<tr>
<td>5-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>234</td>
<td>264 (5%)</td>
<td>262 (39%)</td>
<td>263 (29%)</td>
<td></td>
</tr>
<tr>
<td>6-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>265 (29%)</td>
<td>266/267 (1.1:1, 38%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>265 (37%)</td>
<td>266/267 (1.1:1, 9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>265 (21%)</td>
<td>266/267 (1.3:1, 7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>236</td>
<td>268 (53%)</td>
<td>268 (55%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>236</td>
<td>268 (55%)</td>
<td>268 (55%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>237</td>
<td>269 (41%)</td>
<td>270/271 (1.3:1, 17%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>237</td>
<td>269 (36%)</td>
<td>270/271 (1:1, 24%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>238</td>
<td>272 (7%)</td>
<td>273 (20%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>238</td>
<td>nothing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>239</td>
<td>99% recovered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>239</td>
<td>88% recovered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry</td>
<td>Alkene</td>
<td>Ketone</td>
<td>Acetal</td>
<td>Aldehyde</td>
<td>Dione</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>11-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>274 (58%)</td>
<td>246 (9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-B</td>
<td>240</td>
<td>274 (29%)</td>
<td>246 (13%)</td>
<td>247 (4%)</td>
<td></td>
</tr>
<tr>
<td>11-C</td>
<td>240</td>
<td>274 (50%)</td>
<td>246 (12%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-D</td>
<td>240</td>
<td>274 (64%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>241</td>
<td>275 (17%) (45% sm)</td>
<td>276 (11%)</td>
<td>277 (13%)</td>
<td></td>
</tr>
<tr>
<td>12-B</td>
<td>241</td>
<td>275 (18%) (19% sm)</td>
<td></td>
<td>247 (8%)</td>
<td></td>
</tr>
<tr>
<td>12-C</td>
<td>241</td>
<td>275 (25%) (36% sm)</td>
<td></td>
<td>246 (9%)</td>
<td>247 (6%)</td>
</tr>
<tr>
<td>12-D</td>
<td>241</td>
<td>275 (17%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>242</td>
<td>278 (14%) (64% sm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-C</td>
<td>242</td>
<td>278 (51%) (20% sm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-D</td>
<td>242</td>
<td>278 (74%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-E</td>
<td>242</td>
<td>278 (27%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>243</td>
<td>279 (45%)</td>
<td>280/281 (1:1, 9%)</td>
<td>282 (6%)</td>
<td></td>
</tr>
<tr>
<td>15-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>244</td>
<td>283 (34%)</td>
<td>284 (12%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a 97% Conversion after 72h.

*b Starting material was not completely consumed.

*c No reaction was observed, 99% sm was recovered.
Table 5 (continued)

Conditions A:	10 mol% PdCl₂, 1 equiv. CuCl₂, O₂ (1 atm), MeOH:H₂O (10:1), 50 °C, 20 h.
Conditions B:	10 mol% PdCl₂, H₂O₂ (10 equiv) with 50% con. in aqueous solution, MeOH:H₂O (10:1), 50 °C, 48 h.
Conditions C:	10 mol% PdCl₂, H₂O₂ (10 equiv) with 50% con. in aqueous solution, 2,6-di-tert-butyl-p-cresol (10 mol %), MeOH:H₂O (10:1), 50 °C, 48 h.
Conditions D:	10 mol% PdCl₂, t-BuOOH (10 equiv) with 90% con. in aqueous solution, 2,6-di-tert-butyl-p-cresol (10 mol %), MeOH:H₂O (10:1), 50 °C, 48 h.
Conditions E:	t-BuOOH (10 equiv) with 90% con. in aqueous solution was used in place of CuCl₂-O₂, no radical inhibitor.

These substrates, another challenging substrate class for the Tsuji-Wacker oxidation, were evaluated. Substituted alkenes with various functional groups were efficiently oxidized, although highly electron-deficient systems were suspected to lead to a lower yield in previous report. An underlying problem is the difficulty in predicting which pendant groups and which of the numerous possible variants of the Wacker-type oxidation will lead to the desired product for a given substrate. The selectivity in the Wacker-type oxidation of aryl-substituted alkenes appears to be under inherent substrate control and dependent on numerous factors, including substitution on the substrate and the precise conditions used, which can lead to a mixture of aldehyde, ketone, acetal or dione products. Highlighting this disparity, substrate such as 230 yielded methyl ketone product 245 in 73% yield in the presence of CuCl₂-O₂ (entry 1-A), while the acetal products 249 and 253 were observed as the predominant ones from similar substrates 231 and 232 under the same reaction condition (entries 2-A and 3-A). Additionally, the selectivity of these reactions can be affected by the choice of oxidant. For example, the use of the H₂O₂ favors the exclusive formation of 1-aryl-
propanone 264 in 31% yield (entry 5-C), and CuCl-O₂ favors the formation of products including acetal 261 (13%), aldehyde 262 (39%), and dione 263 (29%) (entry 5-A).

As described above, in our pursuit of the improvement of selectivity, we discovered a copper-free catalyst system for Wacker-type oxidations that utilizes palladium catalyst along with tert-butyl hydroperoxide (TBHP) as the oxidant and 2,6-di-tert-butyl-p-cresol as the radical inhibitor. This system successfully oxidized various functionalized aryl-substituted substrates with high selectivity (>98%) for the α-arylated ketone products (entries 1-4 D, 6-7 D, 11-13 D). The scope of condition A to E was then thoroughly evaluated, and it was found that, for some alkenes, it was sufficient to achieve good yields of desired ketones in 20 h (entries 4-A, 7-A, 8-A, 14-A) in the presence of 10 mol% PdCl₂, 1 equiv. CuCl, O₂ (1 atm) and MeOH:H₂O (10:1) at 50 °C. Steric hindered alkenes tended to react slower, where incomplete conversion was observed after reaction of 72 h (entries 10-13 A). No reaction was observed by ¹H NMR of the crude reaction mixture from 1-methyl-3-nitro-2-(1-propen-1-yl)-benzene (239) using either H₂O₂ or CuCl-O₂. The starting material was recovered in high yields (entries 10-A and 10-C). It seems steric hindrance considerably affects the rate of olefin oxidation. Mixtures of inseparable aldehyde and dione were also isolated from several reaction mixtures, as determined by ¹H NMR (entries 1-4 A, 6-A, 8-A, 3-C, 6-C, 8-C, and 6-D). With no exception, the TBHP-mediated catalyst system demonstrates high selectivity for the desired ketones, regardless of substitution on the substrates evaluated. This result is particularly interesting when compared with other modified conditions, where analogous substrates also formed other side products with different ratios and yields in a condition-dependent manner.
To investigate the effect of the position of the pendent nitro group relative to the internal olefin, nitro-1-propen-1-yl-benzene (231 and 232) were also evaluated. When these substrates were subjected to the Condition A [10 mol% PdCl₂, 1 equiv. CuCl, O₂ (1 atm), MeOH:H₂O (10:1), 50 °C, 20 h] (entries 2-A, 3-A), the desired ketone products were not observed; instead, the products isolated were identified acetals (249, 253) and mixtures of aldehydes and diones. When these substrates were subjected to the condition D, methyl ketones 245 and 252 were obtained as the only products (entries 2-D, 3-D).

Halogens, such as F and Br (entries 4, 14) as well as methoxy and methyl ester groups (entries 6-9) are apparently well-tolerated in the meta-/ortho- position of the nitroarene substrates. Reaction of 1-(2,4-dinitrophenyl)-1-propene (234) gave methyl ester 261 in addition to the dione 263, methyl 2,4-dinitrophenylbenzoate (262) (entry 5-A). It should be noted that the reported formation of this compound from reaction of 2,4-dinitro-1-fluorobenzene with dimethoxycarbene followed by hydrolysis is in error.¹⁶⁵ Oxidation of 1-(3-methyl-1-butenyl)-2-nitrobenzene (241) using condition A (entry 12) afforded isomers 276 and 277 in 11% and 13% respectively in addition to the α-arylated ketone 275.

Figure 16: Products 276 and 277

Cornell and Sigman reported a high selectivity for acetophenone formation upon oxidation of p-/m- or o-substituted styrenes with t-BuOOH in the presence of catalytic amounts of both a palladium(II) carbene complex and AgOTf.¹⁶⁶ However, oxidation of 1-phenyl-1-propene (244) was non-selective and gave an approximately 1:1 mixture of 1-
phenyl-2-propanone (283) and 1-phenyl-1-propanone (284). We observed a somewhat more selective oxidation of (244) affording roughly a 3:1 ratio of 1-phenyl-2-propanone and 1-phenyl-1-propanone (entry 15-A). The same 3:1 ratio of 283/284 was reported using PdCl₂, CuCl, in DMF-H₂O (1:1) at 1 atm of oxygen and ambient temperature. A 95% yield was reported without any concurrent double bond cleavage to benzaldehyde. Cleavage of the alkene to form benzaldehyde was also observed in Sigman’s paper (2.3:1 ratio of oxidation: cleavage).

Overall, the results point out that these modified Wacker processes of aryl-substituted alkenes are also quite sensitive to and dependent on reaction conditions, which are believed to associate with different mechanistic scenarios. However, t-butyl hydroperoxide and hydrogen peroxide have proved to be efficient reoxidants for the oxidation of internal double bonds.
3.5 Conclusions

In conclusion, we demonstrate that Wacker-type oxidation of aryl-substituted alkenes is feasible under modified Wacker-type oxidation conditions to yield α-arylated ketones that are challenging or impossible to obtain using conventional reaction conditions. The selectivity in the modified Tsuji-Wacker oxidation of aryl-substituted alkenes appears to be dependent on numerous factors, including the substrate and the precise conditions used. The reaction conditions discussed above appear to work with a fairly wide range of substrates.
Chapter 4

Supporting information: experimental procedures

4.1 Supporting information Chapter 1: Ring-expansion of 4-ethynyl-4-hydroxy-2,3-substituted-2-cyclobuten-1-ones

4.2 Supporting information Chapter 2: Total synthesis of methyl linderone

4.3 Supporting information Chapter 3: Wacker-type oxidation of aryl-substituted alkenes
General procedures. All NMR spectra were recorded in CDCl₃. The chemical shifts are expressed in δ values relative to Me₄Si (0.0 ppm, ¹H and ¹³C) or CDCl₃ (77.0 ppm, ¹³C) internal standards. Tetrahydrofuran (THF) and diethyl ether were distilled from sodium benzophenone ketyl prior to use. Toluene, pyridine, hexanes, and ethyl acetate were distilled from calcium hydride. Chemicals prepared according to literature procedures have been footnoted the first time used; all other reagents were obtained from commercial sources and used as received. All reactions were performed under a nitrogen atmosphere in oven-dried glassware unless otherwise stated. The thermolysis reactions were performed in ACE-Glass pressure tubes capped with a Teflon screw cap. Solvents were removed from reaction mixtures and products on a rotary evaporator at water aspirator pressure. All alkanes, arenes, and etherial solvents are purified with activated alumina then Q5 (Q5 is an O₂ scavenging Cu-zeolite catalyst made by BASF). All other solvents with heteroatoms are dried through two columns of activated alumina.

Caution: 3,4-dialkoxy-3-cyclobutene-1,2-diones have been shown to cause contact dermatitis upon contact.²⁵
4.1 Supporting information Chapter 1: Ring-expansion of 4-ethynyl-4-hydroxy-2,3-substituted-2-cyclobuten-1-ones

4,5-Bis(1-methylethoxy)-2-(1-trimethylsilylmethylene)-4-cyclopentene-1,3-dione (69) and 2,3-bis(1-methylethoxy)-5-trimethylsilyl-2,5-cyclohexadiene-1,4-dione (70).

A solution of 68 (296 mg, 1.00 mmol) in benzene (3 mL) was heated at 140 °C for 3 h in an ACE-Glass pressure tube capped with a Teflon screw cap. The resulting dark mixture was cooled to ambient temperature and the solvent was removed at reduced pressure. The resulting crude product was purified by chromatography (hexanes/EtOAc, 98:2) to give an inseparable mixture of 69 and 70 (1:18 ratio, 229 mg, 0.773 mmol, 77%) as a red solid.

Spectral data for 70: mp 34-37 °C; 1H NMR (270 MHz) δ 6.71 (s, 1H), 4.81 (sept, J=6.3 Hz, 1H), 4.80 (sept, J=6.1 Hz, 1H), 1.31 (d, J=6.1 Hz, 6H), 1.28 (d, J=6.1 Hz, 6H), 0.23 (s, 9H); 13C NMR (150 MHz) δ 188.1, 184.7, 150.4, 146.4, 145.3, 142.0, 75.9, 75.7, 22.6, -1.6; IR (ATR) 2978, 1657, 1583, 1251, 1197, 1108, 910, 885, 841 cm$^{-1}$; HRMS (ESI) calcd for C$_{15}$H$_{25}$O$_4$Si (M+H$^+$) 297.1522; found 297.1517. Partial spectral data for 69: 1H NMR (270 MHz) δ 6.89 (s, 1H), 5.59 (sept, J=6.0 Hz, 1H), 5.54 (sept, J=6.1 Hz, 1H), 1.37 (d, J=6.1 Hz, 6H), 1.35 (d, J=6.1 Hz, 6H).
2-(1-Iodo-1-trimethylsilylmethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (71). To a solution of 68 (148 mg, 0.500 mmol) in benzene (1.5 mL) was added NIS (124 mg, 0.550 mmol). The tube was capped with a Teflon screw cap and stirred for 3 h at ambient temperature. Removal of solvent under reduced pressure followed by chromatography (hexanes/EtOAc, 9:1) gave 71 (137 mg, 0.324 mmol, 65%) as a yellow oil. 1H NMR (270 MHz) δ 5.62 (sept, $J=6.1$ Hz, 1H), 5.40 (sept, $J=6.1$ Hz, 1H), 1.35 (d, $J=6.1$ Hz, 6H), 1.34 (d, $J=6.1$ Hz, 6H), 0.33 (s, 9H); 13C NMR (150 MHz) δ 183.9, 183.9, 151.2, 148.6, 140.8, 127.3, 75.2, 75.0, 23.1, 22.9, 1.7; IR (ATR) 2987, 1678, 1613, 1304, 1246, 1065, 841 cm$^{-1}$; HRMS (ESI) calcd for C$_{15}$H$_{24}$IO$_4$Si (M+H$^+$) 423.0489; found 423.0486.

2-(1-Bromo-1-trimethylsilylmethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (72). Treatment of 68 (75 mg, 0.25 mmol) with NBS (59 mg, 0.33 mmol) in benzene (0.75 mL) as described for 71 (80 °C, 6 h), gave after chromatography (hexanes/EtOAc, 99:1) 72 (38 mg, 0.10 mmol, 40%) as a brown oil. 1H NMR (270 MHz) δ 5.57 (sept, $J=6.1$ Hz, 1H), 5.41 (sept, $J=6.1$ Hz, 1H), 1.36 (d, $J=6.1$ Hz, 6H), 1.36 (d, $J=6.1$ Hz, 6H), 0.34 (s, 9H); 13C NMR (150 MHz) δ 184.3, 183.4, 151.4, 149.5, 148.0, 136.9, 75.2, 74.9, 23.1, 22.9, 0.3; IR
(ATR) 2993, 1682, 1622, 1385, 1306, 1098, 1068, 850 cm\(^{-1}\); HRMS calcd for C\(_{15}\)H\(_{24}\)BrO\(_4\)Si (M+H\(^{+}\)) 375.0627; found 375.0619.

2,3-Bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (74). Treatment of 73\(^9\) (56 mg, 0.25 mmol) in benzene (0.75 mL) as described for 69 (140 °C, 3 h) gave after chromatography (hexanes/EtOAc, 98:2) 74 (33 mg, 0.14 mmol, 58%) as an orange-red oil. \(^1\)H NMR (270 MHz) \(\delta\) 6.60 (s, 2H), 4.82 (sept, \(J\)=6.1 Hz, 2H), 1.30 (d, \(J\)=6.1 Hz, 12H); \(^1^3\)C NMR (67.5 MHz) \(\delta\) 184.8, 145.8, 134.7, 76.1, 22.6; IR (ATR) 2983, 1662, 1588, 1375, 1291, 1187, 1098, 1063 cm\(^{-1}\); HRMS (ESI) calcd for C\(_{12}\)H\(_{17}\)O\(_4\) (M+H\(^{+}\)) 225.1127; found 225.1122.

2-(Iodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (75). Treatment of 73 (112 mg, 0.500 mmol) with NIS (124 mg, 0.550 mmol) in benzene (1.5 mL) as described for 71 (ambient temperature, 3 h), gave after chromatography (hexanes/EtOAc, 19:1 then 8:2) 75 (59.7 mg, 0.170 mmol, 34%) as a pale orange oil. \(^1\)H NMR (270 MHz) \(\delta\) 7.87 (s, 1H), 5.62 (sept, \(J\)=6.1 Hz, 1H), 5.51 (sept, \(J\)=6.1 Hz, 1H), 1.38 (d, \(J\)=6.1 Hz, 6H), 1.36 (d, \(J\)=6.1 Hz, 6H); \(^1^3\)C NMR (150 MHz) \(\delta\) 183.5, 182.6, 153.4, 149.0, 136.3, 88.1, 75.4, 75.2, 23.1, 23.0;
IR (ATR) 2983, 1682, 1627, 1583, 1098, 1043, 910, 781 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₆IO₄ (M+H⁺) 351.0093; found 351.0090.

2-(Bromomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (76). Treatment of 73 (57 mg, 0.25 mmol) with NBS (55.0 mg, 0.309 mmol) in benzene (1.5 mL) as described for 70 (80 °C, 17 h) gave after chromatography (hexanes/EtOAc, 95:5), 76 (36 mg, 0.12 mmol, 47%) as a yellow oil. ¹H NMR (270 MHz) δ 7.12 (s, 1H), 5.42 (sept, J=6.2 Hz, 1H), 5.36 (sept, J=6.1 Hz, 1H), 1.23 (d, J=6.1 Hz, 6H), 1.21 (d, J=6.2 Hz, 6H); ¹³C NMR (150 MHz) δ 182.7, 182.6, 153.2, 149.7, 131.8, 116.4, 75.5, 75.2, 23.1, 23.0; IR (ATR) 2993, 1682, 1637, 1390, 1316, 1103, 910, 796 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₆BrO₄ (M+H⁺) 303.0232; found 303.0227.

5-Chloro-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (77) and 2,3-bis(1-methyl ethoxy)-2,5-cyclohexadiene-1,4-dione (74). Treatment of 73 (110 mg, 0.491 mmol) with NCS (72 mg, 0.539 mmol) in toluene (3 mL) as described for 71 (150 °C, 3 h) gave after chromatography (hexanes then hexanes/EtOAc, 98:2), in order of elution, 77 (30 mg, 0.116
mmol, 24%) and 74 (60 mg, 0.27 mmol, 55%) both as orange oils. Analytical data for 77: 1H NMR (270 MHz) δ 6.82 (s, 1H), 4.87 (sept, J=6.1 Hz, 1H), 4.76 (sept, J=6.1 Hz, 1H), 1.32 (d, J=6.1 Hz, 6H), 1.31 (d, J=6.3 Hz, 6H); 13C NMR (150 MHz) δ 182.3, 177.1, 146.1, 145.6, 142.0, 131.5, 76.7, 22.6; IR (ATR) 2987, 1659, 1590, 1389, 1254, 1096, 872, 779 cm$^{-1}$; HRMS (ESI) calcd for C$_{12}$H$_{16}$ClO$_4$ (M+H$^+$) 259.0737; found 259.0732.

4-Hydroxy-2,3-bis(1-methylethoxy)-4-(2-iodoethynyl)-2-cyclobutene-1-one (78). A solution of 68 (914 mg, 3.08 mmol) under N$_2$ in DMF (30 mL) was cooled to 0 °C and AgNO$_3$ (38 mg, 0.22 mmol) was added in one portion. After stirring for 5 min, NIS (764 mg, 3.40 mmol) was added and the reaction was slowly warmed to room temperature overnight. The mixture was cooled to 0 °C and ice-water (20 mL) was added. The mixture was extracted with Et$_2$O (6 x 50 mL). The organic layers were washed with water followed by brine and dried (MgSO$_4$). The solvent was removed under reduced pressure. Chromatography (hexanes/EtOAc, 7:3) gave 78 (777 mg, 2.22 mmol, 72%) as a pale yellow solid. Mp 108-110 °C; 1H NMR (270 MHz) δ 4.96 (sept, J=6.1 Hz, 1H), 4.84 (sept, J=6.1 Hz, 1H), 3.75 (s, 1H), 1.42 (d, J=6.3 Hz, 6H), 1.28 (d, J=6.1 Hz, 3H), 1.27 (d, J=6.1 Hz, 3H); 13C NMR (150 MHz) δ 180.0, 164.1, 134.3, 88.9, 79.7, 78.2, 74.3, 22.7, 22.6, 22.5, 7.9; IR (ATR) 2988, 1771, 1617, 1390, 1325, 1098, 999, 954, 910, 737 cm$^{-1}$; HRMS (ESI) calcd for C$_{12}$H$_{16}$IO$_4$ (M+H$^+$) 351.0093; found 351.0088.
2-(Iodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (75) and 5-iodo-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (79). Treatment of 78 (84 mg, 0.24 mmol) in benzene (0.75 mL) as described for 69 (140 °C, 3 h) gave after chromatography (hexanes/EtOAc, 98:2), in order of elution 79 (21 mg, 0.060 mmol, 25%) and 75 (35.0 mg, 0.100 mmol, 42%) both as orange oils. Analytical data for 79: \(^1H\) NMR (270 MHz) \(\delta\) 7.50 (s, 1H), 4.83 (sept, \(J=6.1\) Hz, 1H), 4.69 (sept, \(J=6.1\) Hz, 1H), 1.27 (d, \(J=6.1\) Hz, 6H), 1.26 (d, \(J=6.1\) Hz, 6H); \(^13C\) NMR (150 MHz) \(\delta\) 182.4, 178.2, 146.4, 144.3, 144.0, 117.0, 76.9, 76.5, 22.7; IR (ATR) 2983, 1667, 1578, 1390, 1251, 1182, 1103, 910 cm\(^{-1}\); HRMS (ESI) calcd for C\(_{12}\)H\(_{16}\)IO\(_4\) (M+H\(^+\)) 351.0093; found 351.0088.

2-(Diiodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (80). Treatment of 78 (76 mg, 0.20 mmol) with NIS (66.6 mg, 0.296 mmol) in benzene (0.75 mL) as described for 70 (80 °C, 3 h) gave after chromatography (hexanes/EtOAc, 95:5) 80 (45 mg, 0.094 mmol, 43%) as a pale yellow solid and 78 (23.4 mg, 0.0668, 30%). Data for 80: mp 89-94 °C; \(^1H\) NMR (270 MHz) \(\delta\) 5.51 (sept, \(J=6.1\) Hz, 2H), 1.37 (d, \(J=6.2\) Hz, 12H); \(^13C\) NMR (150 MHz) \(\delta\) 182.7, 149.8, 133.2, 75.5, 23.0, 17.8; IR (ATR) 2983, 1672, 1617, 1385, 1311, 1103, 1078,
4-Hydroxy-2,3-bis(1-methylethoxy)-4-(2-bromoethynyl)-2-cyclobutene-1-one (81).

A solution of 68 (1.00 g, 3.38 mmol) under a nitrogen atmosphere in DMF (30 mL) was cooled to 0 °C and AgNO₃ (40 mg, 0.24 mmol) was added. After stirring for 5 min, NBS (696 mg, 3.91 mmol) was added and the reaction was slowly warmed to room temperature overnight. The mixture was cooled to 0 °C and quenched with ice-water (20 mL). The mixture was extracted with ether (3 x 75 mL). The combined organic layers were dried (MgSO₄), filtered, and the solvent was removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 95:5) to afford 81 (485 mg, 1.60 mmol, 47%) as a pale yellow solid. Mp 109-110 °C; ¹H NMR (600 MHz) δ 4.95 (sept, J=6.0 Hz, 1H), 4.88 (sept, J=6.0 Hz, 1H), 2.76 (s, 1H), 1.44 (d, J=6.0 Hz, 3H), 1.44 (d, J=6.0 Hz, 3H), 1.31 (d, J=6.6 Hz, 3H), 1.30 (d, J=6.6 Hz, 3H); ¹³C NMR (150 MHz) δ 180.1, 164.2, 134.0, 79.1, 78.1, 75.0, 74.2, 49.8, 22.6, 22.6, 22.5, 22.4; IR (ATR) 3303, 1775, 1621, 1378, 1331, 1096, 1007, 953, 907, 783 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₅BrNaO₄ (M+Na⁺) 325.0051; found: 325.0045.
5-Bromo-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (82) and 2-(bromo methylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (76). A solution of 81 (58 mg, 0.19 mmol) in benzene (1.5 mL) was treated as described for 69 (140 °C, 3 h) gave after chromatography (hexanes/EtOAc, 98:2), in order of elution, 82 (20 mg, 0.066 mmol, 34%) as a red-orange oil and 76 (18.0 mg, 0.0594 mmol, 31%) as a yellow solid. Analytical data for 82:

1H NMR (600 MHz) δ 7.10 (s, 1H), 4.87 (sept, $J=6.0$ Hz, 1H), 4.75 (sept, $J=6.0$ Hz, 1H), 1.32 (d, $J=6.0$ Hz, 6H), 1.31 (d, $J=6.0$ Hz, 6H); 13C NMR (150 MHz) δ 182.3, 177.1, 146.2, 145.5, 135.9, 135.3, 76.8, 76.6, 22.6; IR (ATR) 2987, 1652, 1582, 1254, 1181, 1096, 907, 802, 725 cm$^{-1}$; HRMS (ESI) calcd for C$_{12}$H$_{16}$BrO$_4$ (M+H$^+$) 303.0232; found: 303.0224.

2-(1-Bromo-1-iodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (83).

Treatment of 81 (78 mg, 0.26 mmol) with NIS (62.4 mg, 0.276 mmol) in benzene (0.75 mL) as described for 71 (80 °C, 3 h) gave after chromatography (hexanes/EtOAc, 95:5) 83 (75 mg, 0.18 mmol, 68%) as a pale yellow solid. Mp 109-113 °C; 1H NMR (600 MHz) δ 5.49 (sept, $J=6.0$ Hz, 1H), 5.49 (sept, $J=6.0$ Hz, 1H), 1.35 (d, $J=6.0$ Hz, 6H), 1.35 (d, $J=6.0$ Hz, 6H); 13C NMR (150 MHz) δ 182.1, 181.6, 150.2, 149.6, 131.4, 75.5, 75.4, 61.5, 23.0; IR (ATR) 2983,
1679, 1617, 1304, 1084, 903, 791, 745, 718 cm\(^{-1}\); HRMS (ESI) calcd for C\(_{12}\)H\(_{15}\)BrIO\(_4\) (M+H\(^+\)) 428.9198; found: 428.9195.

2-(Dibromomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (84). Treatment of 81 (75 mg, 0.25 mmol) with NBS (50.2 mg, 0.282 mmol) in benzene (0.75 mL) as described for 71 (80 °C, 3 h) gave after chromatography (hexanes/EtOAc, 98:2) 84 (43 mg, 0.11 mmol, 46%) as an orange solid. Mp 103-106 °C; \(^1\)H NMR (600 MHz) \(\delta\) 5.49 (sept, \(J=6.0\) Hz, 2H), 1.36 (d, \(J=6.0\) Hz, 12H); \(^13\)C NMR (150 MHz) \(\delta\) 181.3, 150.4, 128.8, 101.2, 75.5, 23.0; IR (ATR) 2987, 1682, 1613, 1378, 1304, 1084, 899, 802, 748, 671 cm\(^{-1}\); HRMS (ESI) calcd for C\(_{12}\)H\(_{14}\)Br\(_2\)NaO\(_4\) (M+Na\(^+\)) 402.9157; found: 402.9152.

4-Hydroxy-2-methyl-3-(1-methylethoxy)-4-(2-trimethylsilylethynyl)-2-cyclobutene-1-one (89). Butyllithium (8.29 mL, 1.6 M in hexane, 13.3 mmol) was added drop wise to a -78 °C cold solution of trimethylsilylethynle (2.7 mL, 13.9 mmol) in THF (16 mL) under a nitrogen atmosphere. The solution was stirred (2 h, -78 °C) where after it was transferred via a cannula to a -78 °C cold solution of 3-(1-methylethoxy)-4-methylcyclobut-3-ene-1,2-dione 88 (1.24 g,
7.95 mmol) in THF (40 mL). After stirring for 2 h, NH₄Cl (70 mL) was added and the mixture was extracted with Et₂O (5 x 50mL). The combined organic layers were dried (MgSO₄) and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) affording 89 (1.26 g, 4.99 mmol, 63%) as a pale yellow solid. Mp 84-88 °C; ¹H NMR (270 MHz) δ 5.04 (sept, J=6.1 Hz, 1H), 2.88 (s, 1H), 1.67 (s, 3H), 1.48 (d, J=6.1 Hz, 3H), 1.45 (d, J=6.3 Hz, 3H), 0.18 (s, 9H); ¹³C NMR (150 MHz) δ 186.7, 179.8, 125.0, 99.1, 95.3, 83.4, 78.3, 22.9, 22.6, 6.5, 0.4; IR (ATR) 2963, 1766, 1622, 1395, 1340, 1098, 850, 766 cm⁻¹; HRMS (ESI) calcd for C₁₃H₂₁O₃Si (M+H⁺) 253.1260; found 253.1254.

2-Trimethylsilylmethylene-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (90) and 5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (91). Treatment of 89 (65 mg, 0.26 mmol) in benzene (0.75 mL) as described for 69 (140 °C, 3 h) gave after chromatography (hexanes/EtOAc, 98:2) an inseparable mixture of 90 (14 mg, 0.056 mmol, 22%, 1.2:1 ratio of isomers) and 91 (21 mg, 0.083 mmol, 32%) as a pale yellow oil. Analytical data for 90 (both isomers) from the mixture: ¹H NMR (600 MHz) δ 7.04 (s, 1H), 6.95 (s, 1H), 5.70 (sept, J=6.1 Hz, 1H), 5.68 (sept, J=6.2 Hz, 1H), 1.97 (s, 3H), 1.96 (s, 3H), 1.37 (d, J=6.2 Hz, 6H), 1.36 (d, J=6.2 Hz, 6H), 0.25 (s, 9H), 0.24 (s, 9H); Analytical data for 91 from the mixture: ¹H NMR (600 MHz) δ 6.70 (s, 1H), 4.83 (sept, J=6.2 Hz, 1H), 1.93 (s,
3H), 1.29 (d, J=6.2 Hz, 6H), 0.23 (s, 9H). Analytical data for 90 and 91: 13C NMR (150 MHz) δ 191.7, 190.7, 189.4, 188.5, 186.9, 183.1, 167.3, 166.2, 154.6, 152.2, 143.2, 142.9, 142.6, 142.5, 142.0, 75.7, 74.7, 23.2, 22.9, 9.2, 7.0, 7.0, -0.8, -1.0, -1.6; IR (ATR) 2963, 1687, 1632, 1603, 1390, 1330, 1251, 1187, 1108, 845, 766 cm$^{-1}$; HRMS (ESI) calcd for C$_{13}$H$_{21}$O$_3$Si (M+H$^+$) 253.1260; found 253.1255.

2-(1-Iodo-1-trimethylsilylmethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (92) and 6-ido-5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (93). Treatment of 89 (64 mg, 0.25 mmol) with NIS (67 mg, 0.30 mmol) in benzene (0.75 mL) as described for 71 (80 ºC, 3 h) gave after chromatography (hexanes/EtOAc, 95:5) in order of elution 92 (58.8 mg, 0.155 mmol, 61%, 1.5:1 ratio of isomers) as a yellow oil and 93 (5 mg, 0.013 mmol, 5%) as a light yellow oil. Analytical data for 92: 1H NMR (270 MHz) δ (600 MHz) 5.72 (sept, J=6.1 Hz, 1H), 5.54 (sept, J=6.1 Hz, 1H), 1.96 (s, 3H), 1.89 (s, 3H), 1.37 (d, J=6.2 Hz, 6H), 1.35 (d, J=6.1 Hz, 6H), 0.37 (s, 9H), 0.36 (s, 9H); 13C NMR (150 MHz) δ 189.1, 188.2, 185.7, 185.6, 167.6, 163.2, 142.1, 142.0, 136.6, 132.6, 131.4, 130.9, 75.1, 74.7, 23.3, 23.1, 7.7, 6.5, 1.7, 1.4; IR (ATR) 2988, 1682, 1622, 1385, 1330, 1019, 771 cm$^{-1}$; HRMS (ESI) calcd for C$_{13}$H$_{20}$IO$_3$Si (M+H$^+$) 379.0226; found 379.0222. Analytical data for 93: 1H NMR (270 MHz) δ 4.90 (sept, J=6.2 Hz, 1H), 1.91 (s, 3H), 1.41 (d, J=6.1 Hz, 3H), 1.32 (d, J=6.1 Hz, 3H), 0.23 (s, 9H); 13C NMR
(150 MHz) δ 173.3, 168.5, 151.2, 107.7, 97.1, 89.0, 74.2, 22.9, 22.7, 8.9, 0.5; IR (ATR) 2988, 1781, 1662, 1306, 1251, 1108, 1053, 841 cm⁻¹; HRMS (ESI) calcd for C₁₃H₁₉INaO₃Si (M+Na⁺) 401.0046; found 401.0039.

2-(1-Bromo-1-trimethylsilylmethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (94) and 6-bromo-5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (95). Treatment of 89 (64 mg, 0.26 mmol) with NBS (65 mg, 0.37 mmol) in benzene (0.75 mL) as described for 71 (80 °C, 3 h) gave after chromatography (hexanes/EtOAc, 95:5), in order of elution, 94 (55 mg, 0.17 mmol, 65%, 2:1 ratio of isomers) as a pale yellow oil and 95 (13 mg, 0.039 mmol, 15%) as a colorless oil. Analytical data for 94: ¹H NMR (270 MHz, major isomer) δ 5.69 (sept, J=6.1 Hz, 1H), 1.90 (s, 3H), 1.37 (d, J=5.9 Hz, 6H), 0.36 (s, 9H); ¹H NMR (270 MHz, minor isomer) δ 5.54 (sept, J=6.1 Hz, 1H), 1.96 (s, 3H), 1.35 (d, J=5.9 Hz, 6H), 0.35 (s, 9H); ¹³C NMR (150 MHz) δ 189.1, 187.8, 186.5, 185.1, 167.3, 164.0, 151.0, 137.9, 137.7, 136.9, 133.5, 75.0, 74.6, 23.3, 23.1, 7.4, 6.7, 0.28, 0.023; IR (ATR) 2988, 1687, 1627, 1390, 1330, 1103, 870 cm⁻¹; HRMS (ESI) calcd for C₁₃H₂₀BrO₃Si (M+H⁺) 331.0365; found 331.0362. Analytical data for 95: ¹H NMR (270 MHz) δ 4.94 (sept, J=6.1 Hz, 1H), 2.01 (s, 3H), 1.45 (d, J=6.1 Hz, 6H), 0.55 (s, 9H); ¹³C NMR (150 MHz) δ 171.1, 166.5, 160.9, 136.5, 114.4, 104.0, 75.7, 22.8, 21.0, 9.6, 2.0; IR (ATR) 2993, 1786, 1632, 1316, 1256, 1029, 855, 742 cm⁻¹; HRMS (ESI) calcd for C₁₃H₁₉BrNaO₃Si (M+Na⁺) 353.0185;
3-Methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (97). Treatment of 96 (64 mg, 0.35 mmol) in benzene (0.75 mL) as described for 69 (140 °C, 3 h) gave after chromatography (hexanes/EtOAc, 98:2) 97 (38 mg, 0.21 mmol, 85%) as a yellowish-brown oil. \(^\text{1}^\text{H} \text{NMR (270 MHz) } \delta \text{ 6.68 (d, } J=10.1 \text{ Hz, 1H), 6.59 (d, } J=10.1 \text{ Hz, 1H), 4.83 (sept, } J=6.1 \text{ Hz, 1H), 1.95 (s, 3H), 1.30 (d, } J=6.1 \text{ Hz, 6H); }^{13} \text{C NMR (150 MHz) } \delta \text{ 188.4, 183.5, 154.7, 136.4, 134.8, 130.9, 76.1, 22.9, 22.5, 9.0; IR (ATR) 2983,1652,1593,1385,1306,1192,1098,1019, 850, 801 cm}^{-1}; \text{HRMS (ESI) calcd for C}_{10} \text{H}_{13} \text{O}_{3} \text{(M+H)}^+ \text{ 181.0865; found 181.0859.}

2-(1-Iodomethylene)-4-methyl-5-(1-methylethoxy)-4-cyclopentene-1,3-dione (98).

Treatment of 96 (120 mg, 0.66 mmol) and NIS (164 mg, 0.729 mmol) in toluene (5 mL) as described for 71 (150 °C, 3 h) gave after chromatography (hexanes/EtOAc, 19:1) 98 (130 mg, 0.426 mmol, 64%, 13:1 ratio of double bond isomers) as an orange solid. Mp 47-52 °C; major isomer: \(^\text{1}^\text{H} \text{NMR (270 MHz) } \delta \text{ 8.08 (s, 1H), 5.75 (sept, } J=6.1 \text{ Hz, 1H), 1.91 (s, 3H), 1.38 (d, } J=6.1 \text{ Hz, 6H); }^{13} \text{C NMR (67.5 MHz) } \delta \text{ 187.3,185.8,168.2,137.1,133.2, 92.1, 75.2, 99}
23.2, 6.7; Minor isomer: 1H NMR (270 MHz) δ 8.01 (s, 1H), 5.67 (pent, $J=6.1$ Hz, 1H), 1.95 (s, 3H), 1.35 (d, $J=6.5$ Hz, 6H); partial data 13C NMR (67.5 MHz) δ 91.4, 75.0, 23.1, 7.35; IR (ATR) 1734, 1680, 1618, 1326, 1106 cm$^{-1}$; HRMS (ESI) calcd for C$_{10}$H$_{12}$IO$_3$ (M+H$^+$) 306.9826; found 306.9822.

![Chemical structure](image)

2-(1-Bromomethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (99).

Treatment of 96 (50 mg, 0.28 mmol) with NBS (51 mg, 0.28 mmol) in benzene (3 mL) as described for 71 (80 °C, 3 h) gave after chromatography (hexanes) 99 (42 mg, 0.16 mmol, 59%) as a 2.8:1 ratio of double bond isomers) as a yellow oil. 1H NMR (270 MHz, major isomer) δ 7.58 (s, 1H), 5.74 (sept, $J=6.1$ Hz, 1H), 1.93 (s, 3H), 1.39 (d, $J=6.1$ Hz, 6H); 1H NMR (270 MHz, minor isomer) δ 7.51 (s, 1H), 5.66 (sept, $J=6.2$ Hz, 1H), 1.97 (s, 3H), 1.36 (d, $J=6.1$ Hz, 6H); 13C NMR (67.5 MHz) δ 187.2, 187.2, 183.9, 184.9, 184.7, 167.9, 164.5, 139.1, 134.3, 132.4, 132.3, 119.3, 119.0, 75.3, 75.1, 23.2, 23.1, 7.3, 6.9; IR (ATR) 2986, 1689, 1636, 1393, 1327, 1269, 1015, 764 cm$^{-1}$; HRMS (ESI) calcd for C$_{10}$H$_{12}$BrO$_3$ (M+H$^+$) 258.9971; found 258.9964.
2-(Diiodomethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (101).

Treatment of a 0 °C cold solution of 89 (549 mg, 3.05 mmol) in DMF (30 mL) under N₂ with AgNO₃ (48 mg, 0.28 mmol) and NIS (762 mg, 3.39 mmol) was added and the reaction was slowly warmed to room temperature overnight. The mixture was cooled to 0 °C and ice-water (20 mL) was added and the resulting mixture was allowed to warm to ambient temperature. The mixture was extracted with ether (6 x 50 mL). The combined organic layers were washed with water and brine, dried (MgSO₄), filtered, and the solvent was removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 9:1) to afford 101 (209 mg, 0.483 mmol, 28%) as a yellow solid. Mp 75-80 °C; ¹H NMR (270 MHz) δ 5.65 (sept, J=6.1 Hz, 1H), 1.90 (s, 3H), 1.37 (d, J=6.1 Hz, 6H); ¹³C NMR (150 MHz) δ 187.6, 184.3, 165.0, 134.6, 134.3, 75.4, 23.2, 22.7, 7.1; IR (ATR) 2988, 1687, 1622, 1558, 1390, 1321, 1118, 1098, 900, 677 cm⁻¹; HRMS (ESI) calcd for C₁₀H₁₁I₂O₃ (M+H⁺) 432.8798; found 432.8791.

Ethyl 2-(3,4-dimethoxy-2,5-dioxo-3-cyclopenten-1-ylene)-2-idoethanoate (104).

Treatment of 102¹² (60 mg, 0.25 mmol) with NBS (63.2 mg, 0.281 mmol) in benzene (0.75
mL) as described for 71 (80 °C, 3 h), gave after chromatography (hexanes/EtOAc, 9:1) 104 (65 mg, 0.18 mmol, 71%) as a yellow solid. Mp 103-107 °C; \(^1\)H NMR (270 MHz) \(\delta\) 4.38 (q, \(J=7.1\) Hz, 2H), 4.29 (s, 3H), 4.24 (s, 3H), 1.35 (t, \(J=7.1\) Hz, 3H); \(^{13}\)C NMR (150 MHz) \(\delta\) 181.5, 180.3, 166.1, 153.8, 149.9, 131.7, 93.7, 62.9, 60.2, 60.2, 13.7; IR (ATR) 1726, 1675, 1629, 1589, 1465, 1431, 1329, 1236, 1146, 1093, 1017, 953, 852, 787 cm\(^{-1}\); HRMS calcd for C\(_{11}\)H\(_{12}\)IO\(_6\) (M+H\(^{+}\)) 366.9679; found: 366.9676.

![102](image1) ![105](image2)

Ethyl 2-(3,4-dimethoxy-2,5-dioxo-3-cyclopenten-1-ylene)-2-bromoethanoate (105).

Treatment of 102 (60 mg, 0.25 mmol) with NBS (50 mg, 0.28 mmol) in benzene (0.75 mL) as described for 71 (80 °C, 3 h), gave after chromatography (hexanes/EtOAc, 9:1) 105 (30 mg, 0.095 mmol, 38%) as a yellow oil; \(^1\)H NMR (270 MHz) \(\delta\) 4.40 (q, \(J=7.1\) Hz, 2H), 4.30 (s, 3H), 4.26 (s, 3H), 1.37 (t, \(J=7.1\) Hz, 3H); \(^{13}\)C NMR (150 MHz) \(\delta\) 181.5, 180.3, 166.1, 153.8, 149.9, 131.7, 93.7, 62.9, 60.24, 60.17, 13.7; IR (ATR) 1734, 1686, 1642, 1594, 1467, 1339, 1255, 1155, 1103, 1027 cm\(^{-1}\); HRMS calcd for C\(_{11}\)H\(_{11}\)BrNaO\(_6\) (M+Na\(^{+}\)) 340.9637; found 340.9634.
4.2 Supporting information Chapter 2: Total synthesis of methyl linderone

2,3-Dimethoxy-4-hydroxy-4-[(E)-4-phenyl-3-buten-1-yn-1-yl]-2-cyclobuten-1-one (137).

Butyllithium (0.82 mL, 1.30 mmol, 1.60 M in hexane) was added drop wise to a -78 °C cold solution of E-4-phenyl-but-3-en-1-yne (175 mg, 1.37 mmol) in THF (8 mL). The reaction mixture was stirred (-78 °C, 2 h) followed by transfer via a cannula to a -78 °C cold solution of 3,4-dimethoxy-3-cyclobutene-1,2-dione (7) (189 mg, 1.33 mmol) in THF (20 mL). After stirring for 2 h (-78 °C), a saturated solution of NH₄Cl (50 mL, aqueous) was added and the mixture was extracted with ether (3 x 70 mL). The combined organic layers were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give 137 (170 mg, 0.628 mmol, 47%) as a yellow oil. ^H NMR (600 MHz) δ 7.36-7.27 (5H), 7.01 (d, J=16.2 Hz, 1H), 6.18 (d, J=16.2 Hz, 1H), 4.22 (s, 3H), 3.98 (s, 3H);^C NMR (150 MHz) δ 180.8, 164.8, 143.0, 135.7, 135.5, 129.0, 128.7, 126.4, 106.5, 88.3, 84.9, 79.0, 60.2, 58.6; IR (ATR) 3365, 2958, 2180, 1772, 1627, 1351, 1046, 957, 868, 746, 685 cm⁻¹; HRMS (ESI) calcd for C₁₆H₁₅O₄ (M+H⁺) 271.0970, found: 271.0966.
4,5-Dimethoxy-[(E)-2-(1-iodo-3-phenyl-2-propen-1-ylidene)]-4-cyclopentene-1,3-dione (138). Treatment of 137 (55 mg, 0.20 mmol) with NIS (50 mg, 0.22 mmol) in benzene (0.75 mL) as described for 71 (80 °C, 3 h) gave after chromatography (hexanes/EtOAc, 9:1) 138 (30 mg, 0.075 mmol, 37%) as a yellow oil. 1H NMR (600 MHz) δ 8.38 (d, J=14.4 Hz, 1H), 7.65 (d, J=7.8 Hz, 2H), 7.41-7.36 (m, 4H), 4.29 (s, 3H), 4.26 (s, 3H); 13C NMR (150 MHz) δ 184.1, 184.0, 151.3, 150.8, 148.4, 135.5, 130.2, 129.0, 128.7, 126.8, 126.4, 115.4, 60.1, 60.1; IR (ATR) 2929, 1674, 1632, 1468, 1332, 1093, 1041, 760, 695 cm$^{-1}$; HRMS (ESI) calcd for C$_{16}$H$_{14}$IO$_4$ (M+H$^+$) 396.9937; found: 396.9934.

4,5-Dimethoxy-2-[(E)-3-phenyl-2-propen-1-ylidene]-4-cyclopentene-1,3-dione (139).

Treatment of 137 (55 mg, 0.20 mmol) in benzene (0.75 mL) as described for 69 (140 °C, 3 h) gave after chromatography (hexanes/EtOAc, 85:15) 139 (30 mg, 0.11 mmol, 54%) as a yellow solid. Mp 114-119 °C; 1H NMR (600 MHz) δ 8.11 (dd, J=15.6 and 11.4 Hz, 1H), 7.58 (d, J=7.8 Hz, 2H), 7.39-7.35 (3H), 7.13 (d, J=12.0 Hz, 1H), 7.09 (d, J=15.6 Hz, 1H), 4.28 (s, 3H), 4.27 (s, 3H); 13C NMR (150 MHz) δ 186.0, 185.8, 151.8, 150.3, 147.0, 136.1, 135.8, 130.0, 128.9, 128.0, 124.5, 123.2, 59.9, 59.9; IR (ATR) 2962, 1669, 1632, 1608, 1468, 1435,
1322, 1102, 1060, 999, 788, 760 cm$^{-1}$; HRMS (ESI) calcd for C$_{16}$H$_{15}$O$_4$ (M+H$^+$): 271.0970; Found: 271.0967.

4,5-Dimethoxy-[(E)-2-(1-methoxy-3-phenyl-2-propen-1-ylidene)-4-cyclopentene-1,3-dione (methyl linderone). Treatment of 138 (28 mg, 0.072 mmol) with K$_2$CO$_3$ (10 mg, 0.073 mmol) in MeOH (5 mL) at 60°C for 3 days gave after solvent removal and chromatography (hexanes/EtOAc, 9:1) methyl linderone (19 mg, 0.064 mmol, 89%) as a yellow oil. 1H NMR and 13C NMR data were in complete accordance with literature values.15

4,5-Dimethoxy-2-[(E)-1-(N,N-dimethylamino)-3-phenyl-2-propen-1-ylidene]-4-cyclopentene-1,3-dione (140). Treatment of 138 (10 mg, 0.0263 mmol) with p-toluenesulfonic acid (0.2 mg, 0.001 mmol) in a mixture of DMF (1.8 mL) and H$_2$O (0.2 mL) at 100 °C. Water (5 mL) was added and the mixture was extracted with EtOAc (3 x 50 mL). The combined organic phases were dried (MgSO$_4$) and filtered. The solvent was removed under reduced pressure. Purification by chromatography (hexanes/EtOAc, 85:15) gave 140 (8 mg, 0.025 mmol, 95%) as a yellow oil. 1H NMR (600 MHz) δ 7.52 (dd, J=7.8 and 1.8 Hz, 2H), 7.39-7.33 (m, 3H),
7.04 (d, J=16.2 Hz, 1H), 6.75 (d, J=16.2 Hz, 1H), 4.05 (s, 6H), 3.21 (s, 6H); 13C NMR (150 MHz) δ 187.5, 160.5, 145.0, 142.6, 139.3, 135.2, 129.9, 128.8, 128.0, 120.9, 96.5, 59.8, 44.0; IR (ATR) 2929, 1646, 1543, 1482, 1407, 1313, 1004, 765 cm$^{-1}$; HRMS (ESI) calcd for C$_{18}$H$_{19}$NNaO$_4$ (M+Na$^+$) 336.1212; found: 336.1210.
4.3 Supporting information Chapter 3: Wacker-type oxidation of aryl-substituted alkenes

2-Nitro-1-(1-propen-1-yl)benzene (230). To a solution of Pd(dba)$_2$ (870 mg, 1.51 mmol) and PPh$_3$ (1.60 g, 6.08 mmol) in toluene (80 mL) under N$_2$ atmosphere was added tributyl-1-propen-1-yltin (12.62 g, 38.12 mmol) and 1-iodo-2-nitrobenzene (7.55 g, 30.3 mmol). The mixture was heated at reflux for 48 h. The solvent was removed under reduced pressure and Et$_2$O (200 mL) was added. The solution was washed with NH$_4$OH (10%-aqueous, 6 x 100 mL), H$_2$O (3 x 100 mL), brine (100 mL). The organic phase was dried (MgSO$_4$), filtered, and the solvent was removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 99:1) to give 230 (3.02 g, 18.5 mmol, 49%) as a pale yellow oil.

3-Nitro-1-(1-propen-1-yl)benzene (231). Treatment of 1-bromo-3-nitrobenzene (716 mg, 3.55 mmol) with tributyl-1-propen-1-yltin (1.40 g, 4.22 mmol) a solution of Pd(dba)$_2$ (105 mg, 0.183 mmol) and PPh$_3$ (183 mg, 0.699 mmol) in toluene (50 mL), as described for 1, gave after work up and chromatography (hexanes/EtOAc, 98:2) 231 (339 mg, 2.08 mmol, 49%) as
a pale yellow oil.

\[
\begin{align*}
\text{O} & \quad \text{Br} \\
\text{O} & \quad \text{N} \\
\end{align*}
\]

4-Nitro-1-(1-propen-1-yl)benzene (232). Treatment of 1-bromo-4-nitrobenzene (713 mg, 3.53 mmol) with tributyl 1-propen-1-yltin (1.40 g, 4.23 mmol) a solution of Pd(dba)$_2$ (107 mg, 0.186 mmol) and PPh$_3$ (183 mg, 0.698 mmol) in toluene (50 mL), as described for 230, gave after work up and chromatography (hexanes/EtOAc, 99:1) 232 (396 mg, 2.43 mmol, 57%) as a pale yellow oil.

\[
\begin{align*}
\text{F} & \quad \text{I} \\
\text{F} & \quad \text{NO}_2 \\
\end{align*}
\]

4-Fluoro-2-nitro-1-(1-propen-1-yl)benzene (233). Treatment of 4-fluoro-2-nitro-iodobenzene (967 mg, 3.62 mmol) with tributyl 1-propen-1-yltin (1.45 g, 4.38 mmol) a solution of Pd(dba)$_2$ (106 mg, 0.185 mmol) and PPh$_3$ (194 mg, 0.740 mmol) in toluene (50 mL), as described for 230, gave after work up and chromatography (hexanes/EtOAc, 98:2) 233 (579 mg, 3.20 mmol, 73%) as a pale yellow oil. Spectral data from a 1.9:1 mixture of E/Z-233.

E-233: 1H NMR (600 MHz) δ 7.61 (dd, J=8.4, 2.4 Hz, 1H), 7.57 (dd, J=8.4, 5.4 Hz, 1H), 7.26 (dt, J=8.4, 2.4 Hz, 1H), 6.81 (d, J=15.6 Hz, 1H), 6.19 (dq, J=15.6, 7.2 Hz, 1H), 1.93 (dd, J=7.2, 1.8 Hz, 3H); 13C NMR δ (150 MHz) 160.7 (d, J_{CF}=248.7 Hz), 147.4, 131.6, 130.0 (d, J_{CF}=8.1 Hz), 129.7 (d, J_{CF}=3.8 Hz), 125.2, 120.4 (d, J_{CF}=21.3 Hz), 111.6 (d, J_{CF}=26.1 Hz), 108
18.7. Z-233: \(^1\)H NMR \(\delta\) (600 MHz) 7.74 (dd, \(J=8.4, 2.4\) Hz, 1H), 7.37 (dd, \(J=8.4, 5.4\) Hz, 1H), 7.31 (dt, \(J=8.4, 2.4\) Hz, 1H), 6.66 (d, \(J=11.4\) Hz, 1H), 5.94 (dq, \(J=11.4, 7.2\) Hz, 1H), 1.71 (dd, \(J=7.2, 1.8\) Hz, 3H); \(^{13}\)C NMR (150 MHz) \(\delta\) 160.7 (d, \(J_{CF}=249.3\) Hz), 148.7, 133.4 (d, \(J_{CF}=7.5\) Hz), 129.2, 128.7 (d, \(J_{CF}=4.4\) Hz), 125.1, 120.0 (d, \(J_{CF}=20.7\) Hz), 112.0 (d, \(J_{CF}=26.1\) Hz), 14.2. IR (ATR) 2918, 1527, 1490, 1343, 1240, 1131, 944, 874, 816, 789, 753, 676 cm\(^{-1}\); HRMS (ESI) calcd for C\(_9\)H\(_9\)FNO\(_2\) (M+H\(^+\)) 182.0617; found 182.0612.

\[\begin{array}{c}
\text{O}_2\text{N} \quad \text{Br} \\
\downarrow \\
\text{O}_2\text{N} \quad \text{C} \\
\end{array}\]

2,4-Dinitro-1-(1-propen-1-yl)benzene (234). Treatment of 1-bromo-2,4-dinitronitrobenzene (865 mg, 3.50 mmol) with tributyl 1-propen-1-yltin (1.40 g, 4.24 mmol) a solution of Pd(dba)\(_2\) (101 mg, 0.175mmol) and PPh\(_3\) (186 mg, 0.711mmol) in toluene (50 mL), as described for 230, gave after work up and chromatography (hexanes/EtOAc, 9:1) 234 (453 mg, 2.18 mmol, 51%) as a pale orange-brown oil. Spectral data from a 1:1.8 mixture of E/Z-234. E-234: \(^1\)H NMR (600 MHz) \(\delta\) 8.74 (d, \(J=2.4\) Hz, 1H), 8.36 (dd, \(J=9.0, 2.4\) Hz, 1H), 7.79 (d, \(J=9.0\) Hz, 1H), 6.91 (dd, \(J=15.6, 1.8\) Hz, 1H), 6.51 (dq, \(J=15.6, 6.6\) Hz, 1H), 2.02 (dd, \(J=6.6, 1.8\) Hz, 3H). Z-234: \(^1\)H NMR (600 MHz) \(\delta\) 8.86 (d, \(J=2.4\)Hz, 1H), 8.42 (dd, \(J=8.4, 2.4\) Hz, 1H), 7.62 (d, \(J=8.4\) Hz, 1H), 6.76 (dd, \(J=12.0, 1.8\) Hz, 1H), 6.13 (dq, \(J=12.0, 7.2\)Hz, 1H), 1.79 (dd, \(J=7.2, 1.8\)Hz, 6H). IR (ATR) 2918, 1596, 1522, 1446, 1340, 959, 915, 834, 767, 736, 716, 698 cm\(^{-1}\); HRMS (ESI) calcd for C\(_9\)H\(_9\)N\(_2\)O\(_4\) (M+H\(^+\)) 209.0562; found 209.0557.
4-Carbomethoxy-2-nitro-1-(1-propen-1-yl)benzene (235). 1-Bromo-4-carbomethoxy-2-nitrobenzene (865 mg, 3.50 mmol) was treated with Pd(dba)$_2$ (84 mg, 0.15 mmol), PPh$_3$ (154 mg, 0.587 mmol), and tributyl 1-propen-1-yltin (1.17 g, 3.52 mmol) in toluene (50 mL) as described for 230. Work up and purification by chromatography (hexanes/EtOAc, 95:5) gave 235 (364 mg, 1.64 mmol, 56%) as a pale yellow oil. Spectral data from a 1:1.2 mixture of E/Z-235. **E-235:** 1H NMR (270 MHz) δ 8.50 (d, $J=1.6$ Hz, 1H), 8.15 (dd, $J=7.9$, 1.6 Hz, 1H), 7.66 (d, $J=8.3$ Hz, 1H), 6.87 (dd, $J=15.4$, 1.8 Hz, 1H), 6.41 (dq, $J=15.4$, 6.7 Hz, 1H), 3.95 (s, 3H), 1.98 (dd, $J=6.7$, 1.8 Hz, 3H). **Z-235:** 1H NMR (270 MHz) δ 8.63 (d, $J=1.6$ Hz, 1H), 8.21 (dd, $J=8.1$, 1.6 Hz, 1H), 7.48 (d, $J=8.1$ Hz, 1H), 6.73 (dd, $J=11.5$, 1.8 Hz, 1H), 6.03 (dq, $J=11.5$, 7.1 Hz, 1H), 3.97 (s, 3H), 1.76 (dd, $J=7.1$, 1.8 Hz, 3H). HRMS (ESI) calcd for C$_{11}$H$_{12}$NO$_4$ (M+H$^+$) 222.0766; found 222.0761.

4-Methoxy-2-nitro-1-(1-propen-1-yl)benzene (236). 4-Methoxy-2-nitro-1-iodobenzene (884 mg, 3.17 mmol) was treated with Pd(dba)$_2$ (91 mg, 0.16 mmol), PPh$_3$ (166 mg, 0.634 mmol), and tributyl 1-propen-1-yltin (1.27 g, 3.80 mmol) in toluene (50 mL) as described for 230. Work up and purification by chromatography (hexanes/EtOAc, 95:5) gave 236 (195 mg, 1.01 mmol, 32%) as a pale yellow oil. Spectral data from a 1.7:1 mixture of E/Z-236. **E-236:**
1H NMR (270 MHz) δ 7.48 (d, $J=8.7$ Hz, 1H), 7.38 (d, $J=2.6$ Hz, 1H), 7.08 (dd, $J=8.1$, 2.8 Hz, 1H), 6.78 (dd, $J=15.7$, 1.8 Hz, 1H), 6.13 (dq, $J=15.4$, 6.5 Hz, 1H), 3.85 (s, 3H), 1.91 (dd, $J=6.5$, 1.8 Hz, 3H); 13C NMR (67.5 MHz) δ 158.5, 147.9, 129.7, 129.3, 126.0, 125.7, 120.0, 108.4, 55.8, 18.7. Z-236: 1H NMR (270 MHz) δ 7.52 (d, $J=2.6$ Hz, 1H), 7.28 (d, $J=8.7$ Hz, 1H), 7.12 (overlapping E-isomer, 1H), 6.64 (dd, $J=11.3$, 1.8 Hz, 1H), 5.88 (dq, $J=11.5$, 7.1 Hz, 1H), 3.88 (s, 3H), 1.71 (dd, $J=7.1$, 1.8 Hz, 3H); 13C NMR (67.5 MHz) δ 158.6, 148.8, 132.7, 128.1, 125.7, 125.0, 119.4, 108.9, 55.8, 14.3. IR (ATR) 2915, 2841, 1619, 1522, 1346, 1286, 1253, 1033, 961, 839, 814, 784, 679 cm$^{-1}$; HRMS (ESI) calcd for C$_{10}$H$_{12}$NO$_3$ (M+H$^+$) 194.0817; found 194.0812.

![Chemical Structure](image)

5-Methoxy-2-nitro-1-(1-propen-1-yl)-benzene (237). 5-Methoxy-2-nitro-1-iodobenzene (283 mg, 1.01 mmol) was treated with Pd(dba)$_2$ (29.8 mg, 0.052 mmol), PPh$_3$ (57.6 mg, 0.22 mmol), and tributyl 1-propen-1-yltin (411 mg, 1.24 mmol) in toluene (50 mL) as described for 230. Work up and purification by chromatography (hexanes/EtOAc, 8:2) affording 237 (89.7 mg, 0.464 mmol, 37%) as a pale yellow oil. Spectral data from a 1.8:1 mixture of E/Z-237. E-237: 1H NMR (600 MHz) δ 7.99 (d, $J=9.6$ Hz, 1H), 6.99 (dd, $J=15.6$, 1.2 Hz, 1H), 6.96 (d, $J=2.4$ Hz, 1H), 6.19 (dq, $J=15.6$, 6.6 Hz, 1H), 3.89 (s, 3H), 1.94 (dd, $J=6.6$, 1.2Hz, 3H). Z-237: 1H NMR (600 MHz) δ 8.11 (d, $J=9.6$ Hz, 1H), 6.86 (dd, $J=9.0$, 2.4 Hz, 1H), 6.77 (dd, $J=12$, 1.8 Hz, 1H), 5.91 (dq, $J=12$, 7.2 Hz, 1H), 3.89 (s, 3H), 1.74 (dd, $J=7.2$, 1.8 Hz, 3H). 6.82-6.80 (m, 2H) could not be assigned to the specific proton for the two isomers. IR
HRMS (ESI) calcd for C₁₀H₁₁NNaO₃ (M+H⁺) 216.0631; found 216.0630.

2-Bromo-1-(1-propen-1-yl)-benzene (243).²⁻¹ 2-Bromo-1-iodobenzene (1.02g, 3.10 mmol) was treated with Pd(dba)₂ (72.2 mg, 0.126 mmol), PPh₃ (132 mg, 0.504 mmol), and tributyl 1-propen-1-yltin (728 mg, 2.57 mmol) in toluene (50 mL) as described for 230. Work up and purification by chromatography (hexanes/EtOAc, 8:2) gave 243 (203 mg, 1.03 mmol, 40%) as a pale yellow oil.

Typical oxidation procedure using Condition A: 1-(2-Nitrophenyl)-2-propanone (245),²⁻¹² 1-(1,1-dimethoxymethyl)-2-nitrobenzene (246),²⁻¹³ 2-nitrobenzaldehyde (247),²⁻¹⁴ and 1-(2-nitrophenyl)-1,2-propandione (248).²⁻¹⁵ To a suspension of PdCl₂ (15.5 mg, 0.087mmol) and CuCl (69 mg, 0.70 mmol) in a solution of MeOH (1 mL) and H₂O (200 μL) was added 230 (100 mg, 0.614mmol) dissolved in MeOH (1 mL). The reaction flask was attached to a balloon filled with oxygen and the mixture was stirred at 50 °C for 20 h. The resulting mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced
pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give in order of elution 246 (4.9 mg, 0.025 mmol, 4%), an inseparable mixture of 247 and 248 (1:1 ratio, 13.9 mg; 6.10 mg, 0.0404 mmol, 6.4% 247; 7.80 mg, 0.0404 mol, 6.4% 248) and 245 (79.9 mg, 0.45 mmol, 73%) all as a pale yellow oils.

Typical oxidation procedure using Condition B: 1-(2-Nitrophenyl)-2-propanone (245) and 2-nitrobenzaldehyde (247). To a suspension of PdCl₂ (10.2 mg, 0.058) in H₂O₂ (50%-aqueous, 300 μL, 6.40 mmol) was added 230 (99.2 mg, 0.608 mmol). After 48 h at 50 °C, the resulting mixture worked up and purified as described using Conditions A to give after chromatography (hexanes/EtOAc, 8:2) in order of elution 247 (7.4 mg, 0.049 mmol, 8%) and 245 (20.1 mg, 0.11 mmol, 18%) both as pale yellow oils.

Typical oxidation procedure using Condition C: 1-(2-Nitrophenyl)-2-propanone (245), 1-(1,1-dimethoxymethyl)-2-nitrobenzene (246), and 2-nitrobenzaldehyde (247). To a suspension of PdCl₂ (14.2 mg, 0.080 mmol) and 2,6-di-tert-butyl-p-cresol (15.0 mg, 0.068 mmol) in a solution of MeOH (1 mL), H₂O (200 μL) and H₂O₂ (50%-aqueous, 300 μL, 6.40 mmol) was added to 230 (106 mg, 0.648 mmol) dissolved in MeOH (1 mL). The reaction
mixture was stirred at 50 °C for 48 h. The resulting mixture worked up and purified as described using Conditions A to give in order of elution after chromatography (hexanes/EtOAc, 8:2) 246 (2.3 mg, 0.012 mmol, 2%), 247 (20.8 mg, 0.138 mmol, 21%), and 245 (83.4 mg, 0.466 mmol, 72%) all as pale yellow oils.

Typical oxidation procedure using Condition D: 1-(2-Nitrophenyl)-2-propanone (245). To a suspension of PdCl₂ (5.8 mg, 0.033 mmol) and 2,6-di-tert-butyl-p-cresol (6.3 mg, 0.029 mmol) in a solution of MeOH (500 μL), H₂O (100 μL) and t-butyl hydrogenperoxide (TBHP, 90%-aqueous, 267 μL, 2.49 mmol) was added 230 (31.0 mg, 0.190 mmol) dissolved in MeOH (500 μL). The reaction mixture was stirred at 50 °C for 48 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give 245 (31.3 mg, 0.175 mmol, 92%) as a pale yellow oil.
1-(1,1-Dimethoxymethyl)-3-nitrobenzene (249), 3-nitrobenzaldehyde (250), and 1-(3-nitrophenyl)-1,2-propandione (251). A solution of 231 (116 mg, 0.709 mmol) in MeOH (1 mL) was added to a suspension of PdCl₂ (12.5 mg, 0.0705 mmol) and CuCl (69.0 mg, 0.70 mmol) in a solution of MeOH (1 mL) and H₂O (200 μL) under an atmosphere of oxygen, as described for 230 in Condition A (50 °C, 20 h). Extraction and purification by chromatography (hexanes/EtOAc, 8:2) gave in order of elution 249 (41.4 mg, 0.210 mmol, 30%) as a colorless oil and an inseparable mixture of 250 and 251 (1:1 ratio, 17.2 mg; 7.55 mg, 0.050 mmol, 7% 250; 9.66 mg, 0.050 mmol, 7% 251) as a yellow solid. Analytical data for 251: ¹H NMR (600 MHz) δ 8.89 (t, J=2.4 Hz, 1H), 8.48 (dt, J=7.2, 2.4 Hz, 1H), 8.40 (td, J=8.4, 1.8 Hz, 1H), 7.71 (t, J=8.4 Hz, 1H), 2.58 (s, 3H); ¹³C NMR (150 MHz) 198.5, 187.7, 148.4, 135.7, 133.3, 130.0, 128.4, 125.3, 26.0; IR (ATR) 1704, 1615, 1533, 1352, 1170, 1093, 818, 711, 677 cm⁻¹.

1-(3-Nitrophenyl)-2-propanone (252). To a suspension of PdCl₂ (5.6 mg, 0.032 mmol) and 2,6-di-tert-butyl-p-cresol (6.1 mg, 0.028 mmol) in a solution of MeOH (500 μL), H₂O (100 μL) and TBHP (90%-aqueous, 267 μL, 2.49 mmol) was added 231 (40.6 mg, 0.249 mmol)
dissolved in MeOH (500 μL). The reaction mixture was stirred at 50 °C for 48 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give 252 (15.3 mg, 0.140 mmol, 34%) as a pale yellow oil.

![Chemical Structure](image)

1-(1,1-Dimethoxymethyl)-4-nitrobenzene (253), **4-nitrobenzaldehyde (254),** and **1-(4-nitrophenyl)-1,2-propandione (255).** A solution of 232 (57.0 mg, 0.349 mmol) in MeOH (500 μL) was added to a suspension of PdCl₂ (6.3 mg, 0.036 mmol) and CuCl (35.2 mg, 0.36 mmol) in a solution of MeOH (500 μL) and H₂O (100 μL) under an atmosphere O₂, as described for 230 in Condition A (50 °C, 20 h). Extraction and purification by chromatography (hexanes/EtOAc, 95:5) gave in order of elution, 253 (21.8 mg, 0.11 mmol, 32%) as a colorless oil and an inseparable mixture of 254 and 255 (1:1 ratio, 11.7 mg; 5.1 mg, 0.034 mmol, 10% 254; 6.6 mg, 0.034 mmol, 10% 255) as a yellow solid.
1-(1,1-Dimethoxymethyl)-4-nitrobenzene (253), 4-nitrobenzaldehyde (254), and 1-(4-nitrophenyl)-1,2-propandione (255).

To a suspension of PdCl₂ (7.5 mg, 0.042 mmol) and 2,6-di-tert-butyl-p-cresol (7.9 mg, 0.036 mmol) in a solution of MeOH (500 μL), H₂O (100 μL) and H₂O₂ (50%-aqueous, 150 μL, 3.20 mmol) was added 232 (56.6 mg, 0.347 mmol) dissolved in MeOH (500 μL). The reaction mixture was stirred at 50 °C for 48 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give in order of elution 253 (23.0 mg, 0.117 mmol, 34%) as a colorless oil and an inseparable mixture of 254 and 255 (1:1 ratio, 8.7 mg; 3.8 mg, 0.025 mmol, 7% 254; 4.9 mg, 0.025 mmol, 7% 255) as a yellow solid.

1-(1,1-Dimethoxymethyl)-4-nitrobenzene (253) and 1-(4-nitrophenyl)-2-propanone (256). To a suspension of PdCl₂ (6.6 mg, 0.037 mmol) and 2,6-di-tert-butyl-p-cresol (6.1 mg, 0.028 mmol) in a solution of MeOH (500 μL), H₂O (100 μL) and TBHP (90%-aqueous, 267 mL, 2.49 mmol) was added 232 (40.6 mg, 0.249 mmol) dissolved in MeOH (500 μL).
The reaction mixture was stirred at 50 °C for 72 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 95:5) to give in order of elution 253 (0.9 mg, 0.0046 mmol, 2%) as a colorless oil and 256 (24.7 mg, 0.138 mmol, 55%) as a pale yellow oil.

![Chemical structures](image)

1-(4-Fluoro-2-nitrophenyl)-2-propanone (257), 4-fluoro-1-(1,1-dimethoxymethyl)-2-nitrobenzene (258), 4-fluoro-2-nitrobenzaldehyde (259), and 1-(4-fluoro-2-nitrophenyl)-1,2-propanedione (260). A solution of 233 (65.2 mg, 0.36 mmol) in MeOH (500 μL) was added to a suspension of PdCl₂ (6.5 mg, 0.037 mmol) and CuCl (34.8 mg, 0.352 mmol) in a solution of MeOH (500 μL) and H₂O (100 μL) under an atmosphere of oxygen, as described for 230 in Condition A (50 °C, 20 h). Extraction and purification by chromatography (hexanes/EtOAc, 9:1) gave in order of elution, 258 (2.2 mg, 0.010 mmol, 3%) as a colorless oil, an inseparable mixture of 259 and 260 (1:1 ratio, 6.8 mg; 3.0 mg, 0.018 mmol, 5% 259; 3.8 mg, 0.018 mmol, 5% 260) as a pale yellow oil, and 257 (39.2 mg, 0.199 mmol, 55%) as a pale yellow oil. Spectral data for 257: **¹H NMR** (600 MHz) δ 7.86 (dd, J=8.4, 2.4 Hz, 1H), 7.32 (dt, J=9.0, 3.0 Hz, 1H), 7.57 (dd, J=9, 5.4 Hz, 1H), 4.10 (s, 2H), 2.33 (s, 3H); **¹³C NMR** (150 MHz) δ 203.2, 162.2, 160.5, 134.8 (d, J_CF=8.0 Hz), 126.3 (d,
$J_{CF}=4.7$ Hz), 120.8 (d, $J_{CF}=20.6$ Hz), 112.9 (d, $J_{CF}=26.3$ Hz), 47.9, 29.9. IR (ATR) 1720, 1532, 1499, 1360, 1237, 1163, 944, 878, 807 cm$^{-1}$. Spectral data for 258: 1H NMR (600 MHz) δ 7.80 (dd, $J=9.0$, 5.4 Hz, 1H), 7.56 (dd, $J=8.4$, 2.4 Hz, 1H), 7.31 (td, $J=7.8$, 2.4 Hz, 1H), 5.88 (s, 1H), 3.40 (s, 6H); 13C NMR (150 MHz) δ 161.9 (d, $J_{C,F}=251.3$ Hz), 149.4, 130.1 (d, $J_{C,F}=8.1$ Hz), 129.0, 119.5 (d, $J_{C,F}=20.6$ Hz), 112.1 (d, $J_{C,F}=26.4$ Hz), 99.6, 54.6; IR (ATR) 2961, 1736, 1540, 1364, 1262, 1233, 1105, 1058, 877, 806 cm$^{-1}$; HRMS (ESI) calcd for C$_9$H$_{11}$FO$_4$ (M+H$^+$) 216.0672; found 216.0667. Spectral data for diketone 260 from the mixture with 259 (1.26:1 ratio): 1H NMR (600 MHz) δ 7.88 (dd, $J=7.8$, 1.8 Hz, 1H), 7.63 (dd, $J=8.4$, 5.4 Hz, 1H), 7.53-7.48 (m, 1H), 2.56 (s, 3H); Spectral data for mixture of 259 and 260: 13C NMR (150 MHz) δ 195.9, 188.5, 186.5, 165.6, 164.7, 163.9, 163.0, 132.3, 132.2, 132.2, 128.2, 128.2, 127.5, 127.5, 122.1, 122.0, 121.4, 121.2, 112.6, 112.4, 112.0, 111.8, 24.2; IR (ATR) 3099, 1701, 1610, 1535, 1347, 1219, 1231, 1167, 882, 826, 809 cm$^{-1}$. 259: HRMS (ESI) calcd for C$_7$H$_4$FNNaO$_3$ (M+H$^+$) 192.0073; found 192.0069. 260: HRMS (ESI) calcd for C$_9$H$_7$FNO$_4$ (M+H$^+$) 212.0359; found 212.0354.

1-(4-Fluoro-2-nitrophenyl)-2-propanone (257) and 4-fluoro-1-(1,1-dimethoxymethyl)-2-nitrobenzene (258). Compound 233 (47.6 mg, 0.263 mmol) dissolved in MeOH (500 μL) was added to a suspension of PdCl$_2$ (7.8 mg, 0.044 mmol), 2,6-di-tert-butyl-p-cresol (7.8 mg, 0.035 mmol), and H$_2$O$_2$ (50%-aqueous, 150 μL, 3.20 mmol) in MeOH (500 μL) and H$_2$O
(100 µL). After 48 h at 50 °C, the mixture was worked up and purified as described in Condition C to give after chromatography (hexanes/EtOAc, 9:1), in order of elution, 258 (9.4 mg, 0.044 mmol, 17%) and 257 (18.3 mg, 0.093 mmol, 35%) both as a yellow oils.

![Chemical structure of 233 to 257](image)

1-(4-Fluoro-2-nitrophenyl)-2-propanone (257). Compound 233 (45.8 mg, 0.253 mmol) dissolved in MeOH (500 µL) was added to a suspension of PdCl₂ (5.8 mg, 0.033 mmol), 2,6-di-tert-butyl-p-cresol (5.7 mg, 0.026 mmol) and TBHP (90%-aqueous, 267 µL, 2.49 mmol) in a solution of MeOH (500 µL) and H₂O (100 µL). After 48 h at 50 °C, the mixture was worked up and purified as described in Conditions D to give after chromatography (hexanes/EtOAc, 9:1) 257 (26.7 mg, 0.135 mmol, 54%) as a pale yellow oil.

![Chemical structure of 234 to 263](image)

Methyl 2,4-dinitrobenzoate (261), 2,4-dinitrobenzaldehyde (262), 1-(2,4-dinitrophenyl)-1,2-propanedione (263). A solution of 234 (68.7 mg, 0.330 mmol) in MeOH (500 µL) was added to a suspension of PdCl₂ (7.0 mg, 0.039 mmol) and CuCl (35.4 mg, 0.358 mmol) in a solution of MeOH (500 µL) and H₂O (100 µL) under an atmosphere of oxygen, as described for 230 in Condition A (50 °C, 20 h). Extraction and purification by chromatography (hexanes/EtOAc, 95:5) gave in order of elution 263 (23.5 mg, 0.096 mmol, 29%), 261 (9.6 mg,
0.042 mmol, 13%), and 262 (25.3 mg, 0.129 mmol, 39%) all as pale yellow oils. Spectral data for 263: 1H NMR (600 MHz) δ 9.02 (dd, J=2.4, 1H), 8.65 (dd, J=8.4, 2.4 Hz, 1H), 7.79 (dd, J=8.4 Hz, 1H), 2.60 (s, 1H); 13C NMR (150 MHz) δ 195.3, 187.4, 149.5, 147.6, 137.9, 131.4, 129.1, 119.4, 24.0; IR (ATR) 1717, 1601, 1536, 1345, 1170, 903, 835, 736, 721 cm$^{-1}$.

1-(2,4-Dinitrophenyl)-2-propanone (264). To a suspension of PdCl$_2$ (7.8 mg, 0.044 mmol) and 2,6-di-tert-butyl-p-cresol (7.5 mg, 0.034 mmol) in a solution of MeOH (500 μL), H$_2$O (100 μL) and H$_2$O$_2$ (50%-aqueous, 150 μL, 3.20 mmol) was added 234 (40.9 mg, 0.196 mmol) dissolved in MeOH (500 μL). The reaction mixture was stirred at 50 °C for 48 h. The mixture was diluted with H$_2$O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO$_4$), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 95:5) to give 264 (13.5 mg, 0.060 mmol, 31%) as a yellow oil.

1-(4-Carbomethoxy-2-nitrophenyl)-2-propanone (265), 4-carbomethoxy-2-nitrobenzaldehyde (266), and 1-(4-carbomethoxy-2-nitrophenyl)-1,2-propanedione (267). A solution of 235 (68.2 mg, 0.308 mmol) in MeOH (500 μL) was added to a suspension of
PdCl₂ (6.5 mg, 0.037 mmol) and CuCl (30.3 mg, 0.306 mmol) in a solution of MeOH (500 μL) and H₂O (100 μL) under an atmosphere of oxygen, as described in Condition A (50 °C, 20 h). Extraction and purification by chromatography (hexanes/EtOAc, 95:5) gave in order of elution an inseparable mixture of 266 and 267 (1.1:1 ratio, 26.9 mg; 12.9 mg, 0.0615 mmol, 20% 266; 14.0 mg, 0.0559 mmol, 18% 267) and 265 (21.5 mg, 0.0906 mmol, 29%) both as pale yellow oils.

To a suspension of PdCl₂ (5.0 mg, 0.028 mmol) and 2,6-di-tert-butyl-p-cresol (5.8 mg, 0.026 mmol) in a solution of MeOH (500 μL), H₂O (100 μL) and H₂O₂ (50%-aqueous, 150 μL, 3.20 mmol) was added 235 (55.5 mg, 0.251 mmol) dissolved in MeOH (500 μL). The reaction mixture was stirred at 50 °C for 48 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 95:5) to give in order of elution an inseparable mixture of 266 and 267 (1.1:1 ratio, 5.2 mg; 2.7 mg, 0.012 mmol, 5% 266; 2.7 mg, 0.011 mmol, 4% 267) and 265 (22.3 mg, 0.094 mmol, 37%) all as pale yellow oils.
1-(4-Carbomethoxy-2-nitrophenyl)-2-propanone (265), 4-carbomethoxy-2-nitrobenzaldehyde (266) and 1-(4-carbomethoxy-2-nitrophenyl)-1,2-propanedione (267).

To a suspension of PdCl₂ (5.8 mg, 0.033 mmol) and 2,6-di-tert-butyl-p-cresol (5.5 mg, 0.025 mmol) in a solution of MeOH (500 μL), H₂O (100 μL) and TBHP (90%-aqueous, 267 μL, 2.49 mmol) was added 235 (55.3 mg, 0.250 mmol) dissolved in MeOH (500 μL). The reaction mixture was stirred at 50 °C for 48 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 9:1) to give in order of elution an inseparable mixture of 266 and 267 (1.3:1 ratio, 3.4 mg; 1.8 mg, 0.0084 mmol, 4% 266; 1.63 mg, 0.0065 mmol, 3% 267) and 265 (12.5 mg, 0.0527 mmol, 21%) as pale yellow oils. Partial spectral data of 267 from the mixture: ¹H NMR (600 MHz) δ 8.81 (d, J=1.6 Hz, 1H), ~8.4 (overlapping with 266), 6.96 (d, J=3.0 Hz, 1H), 4.01 (s, 3H), 2.58 (s, 3H).

1-(4-Methoxy-2-nitrophenyl)-2-propanone (268). A solution of 236 (41.1 mg, 0.213 mmol) in MeOH (500 μL) was added to a suspension of PdCl₂ (4.1 mg, 0.023 mmol) and CuCl (22.6 mg, 0.2283 mmol) in a solution of MeOH (500 μL) and H₂O (100 μL) under O₂, as described.
for 230 in Condition A (50 °C, 20h). Extraction and purification by chromatography (hexanes/EtOAc, 95:5) gave 268 (23.7 mg, 0.113 mmol, 53%) as a pale yellow oil.

\[
\begin{align*}
\text{MeO} & \quad \text{MeO} \\
\text{236} & \quad \text{268}
\end{align*}
\]

1-(4-Methoxy-2-nitrophenyl)-2-propanone (268). To a suspension of PdCl\(_2\) (5.6 mg, 0.032 mmol) and 2,6-di-tert-butyl-p-cresol (5.5 mg, 0.025 mmol) in a solution of MeOH (500 μL), H\(_2\)O (100 μL) and TBHP (90%-aqueous, 267 μL, 2.49 mmol) was added 236 (40.3 mg, 0.209 mmol) dissolved in MeOH (500 μL). The reaction mixture was stirred at 50 °C for 48 h. The mixture was diluted with H\(_2\)O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO\(_4\)), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 9:1) to give 268 (23.8 mg, 0.114 mmol, 55%) as a pale yellow oil.

\[
\begin{align*}
\text{MeO} & \quad \text{MeO} \\
\text{237} & \quad \text{269} + \text{270} + \text{271}
\end{align*}
\]

1-(5-Methoxy-2-nitrophenyl)-2-propanone (269), 5-methoxy-2-nitro-benzaldehyde (270), and 1-(5-methoxy-2-nitrophenyl)-1,2-propanedione (271). A solution of 237 (65.0 mg, 0.336 mmol) in MeOH (500 μL) was added to a suspension of PdCl\(_2\) (6.2 mg, 0.035 mmol) and CuCl (34.9 mg, 0.352 mmol) in a solution of MeOH (500 μL) and H\(_2\)O (100 μL) under O\(_2\), as described for 230 in Condition A (50 °C, 20 h). Extraction and purification by
chromatography (hexanes/EtOAc, 95:5) gave in order of elution an inseparable mixture of 270 and 271 (1.3:1 ratio, 11.5 mg; 5.9 mg, 0.033 mmol, 10% 270; 5.6 mg, 0.0251 mmol, 7% 271) and 269 (28.7 mg, 0.137 mmol, 41%) both as pale yellow oils. Spectral data for 269: 1H NMR (600 MHz) δ 8.19 (d, J=9.0 Hz, 1H), 6.89 (dd, J=9.6, 3.0 Hz, 1H), 6.44 (d, J=2.4 Hz, 1H), 4.09 (s, 2H), 3.88 (s, 3H), 2.33 (s, 3H); 13C NMR (150 MHz) δ 203.7, 163.4, 141.4, 133.5, 128.1, 118.7, 112.9, 55.9, 49.2, 30.0; IR (ATR) 1721, 1581, 1509, 1335, 1292, 1261, 1162, 1085, 843 cm⁻¹. Spectral data for 271 from the mixture of 270/271: 1H NMR (600 MHz) δ 8.17 (d, J=9.0 Hz, 1H), 7.10 (dd, J=9.0, 3.0 Hz, 1H), 6.96 (d, J=3.0 Hz, 1H), 3.94 (s, 3H), 2.57 (s, 3H); 13C NMR (100 MHz) δ196.0, 189.6, 164.7, 135.6, 126.6, 116.7, 114.6, 56.4, 24.2; IR (ATR) 2945, 1706, 1582, 1513, 1485, 1333, 1290, 1239, 1190, 1026, 933, 849, 743 cm⁻¹; HRMS (ESI) calcd for C₁₀H₉NNaO₅(M+Na⁺) 246.0378; found 246.0374.

\[
\begin{align*}
\text{MeO} & \quad \text{MeO} \\
\overline{\text{NO}_2} & \quad \overline{\text{NO}_2} \\
237 & \quad 269 \quad 270 \quad 271
\end{align*}
\]

1-(5-Methoxy-2-nitrophenyl)-2-propanone (269), 5-methoxy-2-nitro-benzaldehyde (270), and 1-(5-methoxy-2-nitrophenyl)-1,2-propanedione (271). To a suspension of PdCl₂ (5.7 mg, 0.032 mmol) and 2,6-di-tert-butyl-p-cresol (5.6 mg, 0.025 mmol) in a solution of MeOH (500 μL), H₂O (100 μL) and H₂O₂ (50%-aqueous, 150 μL, 3.20mmol) was added 237 (20.1 mg, 0.104 mmol) dissolved in MeOH (500 μL). The reaction mixture was stirred at 50 °C for 48 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under
reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 95:5) to give in order of elution an inseparable mixture of 270 and 271 (1:1 ratio, 5.0 mg; 2.3 mg, 0.012 mmol, 12% 270; 2.8 mg, 0.012 mmol, 12% 271) and 269 (7.8 mg, 0.037 mmol, 36%) both as pale yellow oils.

\[\text{238} \rightarrow \text{272} + \text{273} \]

1-(2,4,5-Trimethoxyphenyl)-2-propanone (272)\(^{190}\) and 1-(2,4,5-trimethoxyphenyl)-1-propanone (273).\(^{191}\) To a suspension of PdCl\(_2\) (24.2 mg, 0.136 mmol) and CuCl (140 mg, 1.41 mmol) in a solution of MeOH (2 mL) and H\(_2\)O (400 μL) was added 238 (292 mg, 1.40 mmol) dissolved in MeOH (2 mL). The reaction flask was attached to a balloon filled with oxygen and the mixture was stirred at 50 °C for 20 h. The mixture was diluted with H\(_2\)O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO\(_4\)), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give in order of elution 273 (62 mg, 0.276 mmol, 20%) and 272 (21.7 mg, 0.097 mmol, 7%) both as pale yellow oils.

\[\text{240} \rightarrow \text{274} + \text{246} \]

1-(2-Nitrophenyl)-2-pentanone (274)\(^{192}\) and 1-(1,1-dimethoxymethyl)-2-nitrobenzene (246).
To a suspension of PdCl₂ (12.0 mg, 0.068 mmol) and CuCl (61.4 mg, 0.620 mmol) in a solution of MeOH (1 mL) and H₂O (200 μL) was added 1-(2-nitrophenyl)-1-pentene (240) (113 mg, 0.589 mmol) dissolved in MeOH (1 mL). The reaction flask was attached to a balloon filled with oxygen and the mixture was stirred at 50 °C for 72 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give in order of elution 246 (10.7 mg, 0.054 mmol, 9%) and 274 (71.6 mg, 0.45 mmol, 58%) as pale yellow oils.

1-(2-Nitrophenyl)-2-pentanone (274), 1-(1,1-dimethoxymethyl)-2-nitrobenzene (246), and 2-nitrobenzaldehyde (247). To a suspension of PdCl₂ (13.0 mg, 0.073 mmol) and H₂O₂ (50%-aqueous, 300 μL, 6.40 mmol) in a solution of MeOH (1 mL) and H₂O (200 μL) was added 240 (117 mg, 0.610 mmol) dissolved in MeOH (1 mL). The reaction mixture was stirred at 50 °C for 72 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give in order of elution 246 (15.9 mg, 0.081 mmol, 13%), 247 (3.2 mg, 0.021 mmol, 4%), and 274 (36.7 mg, 0.177 mmol, 29%) as pale yellow oils.
1-(2-Nitrophenyl)-2-pentanone (274) and 1-(dimethoxymethyl)-2-nitrobenzene (246). To a suspension of PdCl₂ (6.7 mg, 0.038 mmol) and 2,6-di-tert-butyl-p-cresol (5.4 mg, 0.025 mmol) in a solution of MeOH (500 μL), H₂O (100 μL) and H₂O₂ (aqueous-50%, 150 μL, 3.20 mmol) was added 240 (48.3 mg, 0.252 mmol) dissolved in MeOH (500 μL). The reaction mixture was stirred at 50 °C for 96 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give in order of elution 246 (5.9 mg, 0.030 mmol, 12%) as a pale yellow oil and 274 (26.4 mg, 0.127 mmol, 50%) as a pale yellow oil.

1-(2-Nitrophenyl)-2-pentanone (274). To a suspension of PdCl₂ (6.3 mg, 0.0355 mmol) and 2,6-di-tert-butyl-p-cresol (6.3 mg, 0.0295 mmol) in a solution of MeOH (500 μL), H₂O (100 μL) and TBHP (90%-aqueous, 267 μL, 2.49 mmol) was added 240 (47.3 mg, 0.247 mmol) dissolved in MeOH (500 μL). The reaction mixture was stirred at 50 °C for 72 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure.
The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give 274 (32.8 mg, 0.158 mmol, 64%) as a pale yellow oil.

3-Methyl-1-(2-nitrophenyl)-2-butanone (275), 1-(2-nitrophenyl)-3-methoxy-3-methyl-1-butene (276), 4-(2-nitrophenyl)-3-methoxy-2-methyl-1-butene (277). To a suspension of PdCl2 (11.4 mg, 0.064 mmol) and CuCl (62.1 mg, 0.627 mmol) in a solution of MeOH (1 mL) and H2O (200 μL) was added 1-(2-nitrophenyl)-3-methyl-1-butene (241) (116 mg, 0.334 mmol) dissolved in MeOH (1 mL). The reaction flask was attached to a balloon filled with oxygen and the mixture was stirred at 50 °C for 72 h. The mixture was diluted with H2O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO4), filtered, and the solvents were removed under reduced pressure. The crude product was dissolved in 5 mL of Sat. NaHSO4 to remove the aldehyde and extracted with 5 mL of ether. The product was then purified by chromatography (hexanes/EtOAc, 95:5) to give in order of elution starting material (51.7 mg, 0.27 mmol, 45%), 277 (17.7 mg, 0.080 mmol, 13%), 276 (15.1 mg, 0.068 mmol, 11%), and 275 (21.5 mg, 0.10 mmol, 17%) as pale yellow oils. Spectral data for 277: 1H NMR (600 MHz) δ 7.88 (dd, J=8.4, 1.2 Hz, 1H), 7.50 (td, J=7.8, 1.2 Hz, 1H), 7.38 (dd, J=7.2,1.2 Hz, 1H), 7.36 (td, J=7.8,1.8 Hz, 1H), 4.93 (pent, J=1.2 Hz, 1H), 4.89 (pent, J=0.7 Hz, 1H), 3.76 (dd, J=8.5, 4.5 Hz, 1H), 3.15 (dd, J=13.8, 8.4Hz, 1H), 3.12 (s, 3H), 3.08 (dd, J=13.8, 4.2Hz, 1H), 1.74 (t, J=1.2 Hz,3H); 13C NMR (150
MHZ) δ 149.8, 143.7, 133.8, 133.3, 132.4, 127.3, 124.4, 113.8, 85.1, 56.3, 37.7, 16.8; IR (ATR) 2934, 1578, 1524, 1449, 1348, 1096, 905, 861, 785, 739, 668 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₅NNaO₃ (M+Na⁺) 244.0944; found 244.0944.

3-Methyl-1-(2-nitrophenyl)-2-butanone (275) and 2-nitrobenzaldehyde (247). To a suspension of PdCl₂ (13.1 mg, 0.074 mmol) and H₂O₂ (50%-aqueous, 300 μL, 6.40 mmol) in a solution of MeOH (1 mL) and H₂O (200 μL) was added 241 (117 mg, 0.611 mmol) dissolved in MeOH (1 mL). The reaction mixture was stirred at 50 °C for 72 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give in order of elution starting material (21.8 mg, 0.11 mmol, 19%), and inseparable mixture of 275 and 247 (2.2:1 ratio, 31.1 mg; 23.3 mg, 0.112 mmol, 18% 275; 7.7 mg, 0.0512 mmol, 8% 247) as pale yellow oils.

3-Methyl-1-(2-nitrophenyl)-2-butanone (275), 1-(1,1-dimethoxymethyl)-2-nitrobenzene
(246), and 2-nitrobenzaldehyde (247). To a suspension of PdCl₂ (5.7 mg, 0.032 mmol) and 2,6-di-tert-butyl-p-cresol (5.8 mg, 0.026 mmol) in a solution of MeOH (500 μL), H₂O (100 μL) and H₂O₂ (50%-aqueous, 150 μL, 3.20 mmol) was added 241 (47.1 mg, 0.246 mmol) dissolved in MeOH (500 μL). The reaction mixture was stirred at 50 °C for 96 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give in order of elution starting material (16.9 mg, 0.088 mmol, 36%), 246 (4.5 mg, 0.023mmol, 9%) and an inseparable mixture of 275 and 247 (4.2:1 ratio, 14.9 mg; 12.7 mg, 0.613 mmol, 25% 275; 2.2 mg, 0.0146 mmol, 6% 247) as yellow oils.

3-Methyl-1-(2-nitrophenyl)-2-butanone (275). To a suspension of PdCl₂ (5.4 mg, 0.030 mmol) and 2,6-di-tert-butyl-p-cresol (5.6 mg, 0.025 mmol) in a solution of MeOH (500 μL), H₂O (100 μL) and TBHP (90%-aqueous, 267 μL, 2.49 mmol) was added 241 (47.8 mg, 0.250 mmol) dissolved in MeOH (500 μL). The reaction mixture was stirred at 50 °C for 96 h. The mixture was diluted with H₂O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give 275 (9.0 mg, 0.043mmol, 17%) as a pale yellow oil.
2-(2-Nitrophenyl)-1-phenyl-ethanone (278).172 To a suspension of PdCl\(_2\) (14.5 mg, 0.0818 mmol) and CuCl (70.7 mg, 0.714 mmol) in a solution of MeOH (1 mL) and H\(_2\)O (200 \(\mu\)L) was added 2-nitro-1-(2-phenylethenyl)benzene (242)195 (152 mg, 0.675 mmol) dissolved in MeOH (1 mL). The reaction flask was attached to a balloon filled with oxygen and the mixture was stirred at 50 °C for 48 h. The mixture was diluted with H\(_2\)O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO\(_4\)), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 95:5) to give 278 (23.4 mg, 0.097 mmol, 14%) as a light brown oil.

2-(2-Nitrophenyl)-1-phenyl-ethanone (278). To a suspension of PdCl\(_2\) (14.4 mg, 0.0812 mmol) and 2,6-di-tert-butyl-p-cresol (17.8 mg, 0.0808 mmol) in a solution of MeOH (1 mL), H\(_2\)O (200 \(\mu\)L) and H\(_2\)O\(_2\) (50%-aqueous, 300 \(\mu\)L, 6.40 mmol) was added 242 (15.0 mg, 0.067 mmol) dissolved in MeOH (1 mL). The reaction mixture was stirred at 50 °C for 68 h. The mixture was diluted with H\(_2\)O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO\(_4\)), filtered, and the solvents were removed under reduced pressure.
pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give 278 (8.2 mg, 0.034 mmol, 51%) as a light brown oil.

\[\text{2-(2-Nitrophenyl)-1-phenyl-ethanone (278).} \]

To a suspension of PdCl\(_2\) (5.5 mg, 0.031 mmol) and 2,6-di-tert-butyl-p-cresol (5.8 mg, 0.026 mmol) in a solution of MeOH (500 µL), H\(_2\)O (100 µL) and TBHP (90%-aqueous, 267 µL, 2.49 mmol) was added 242 (49.1 mg, 0.218 mmol) dissolved in MeOH (500 µL). The reaction mixture was stirred at 50 °C for 72 h. The mixture was diluted with H\(_2\)O (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO\(_4\)), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give 278 (38.9 mg, 0.161 mmol, 74%) as a pale brown oil.

\[\text{2-(2-Nitrophenyl)-1-phenyl-ethanone (278).} \]

To a suspension of PdCl\(_2\) (6.6 mg, 0.037 mmol) in a solution of MeOH (500 µL), H\(_2\)O (100 µL) and TBHP (90%-aqueous, 267 µL, 2.49 mmol) was added 242 (50.5 mg, 0.224 mmol) dissolved in MeOH (500 µL). The reaction mixture was stirred at 50 °C for 72 h. The mixture was diluted with H\(_2\)O (50 mL) and extracted with
EtOAc (4 x 50 mL). The combined organic phases were dried (MgSO₄), filtered, and the solvents were removed under reduced pressure. The crude product was purified by chromatography (hexanes/EtOAc, 8:2) to give 278 (14.6 mg, 0.060 mmol, 27%) as a light brown oil.

1-(2-Bromophenyl)-2-propanone (279), 1-bromo-2-(1,1-dimethoxymethyl)benzene (280), and 2-bromobenzaldehyde (281), 1-(2-bromophenyl)-1,2-propanedione (282). A solution of 243 (133 mg, 0.672 mmol) in MeOH (1 mL) was added to a suspension of PdCl₂ (12.9 mg, 0.073 mmol) and CuCl (69.8 mg, 0.71 mmol) in a solution of MeOH (1 mL) and H₂O (200 μL) under an atmosphere of oxygen, as described for 230 in Condition A (50 °C, 20 h). Extraction and purification by chromatography (hexanes/EtOAc, 98:2) gave in order of elution, an inseparable mixture of 280 and 281 (7:1 ratio, 13.1 mg; 11.7 mg, 0.051 mmol, 8% 280; 1.34 mg, 0.0073 mmol, 1% 281), 282 (9 mg, 0.040 mmol, <6%), and 279 (64.5 mg, 0.30 mmol, 45%) as pale yellow oils. Spectral data for impure 1-(2-bromophenyl)-1,2-propanedione 282: ¹H NMR (600 MHz) δ 7.61 (dd, J=7.2, 1.8 Hz, 1H), 7.57 (dd, J=7.2, 2.4 Hz, 1H), 7.45 (td, J=7.2, 1.8 Hz, 1H), 7.41 (td, J=7.2, 1.8 Hz, 1H), 2.59 (s, 3H); ¹³C NMR (100 MHz) 197.9, 193.4, 136.3, 133.6, 133.1, 131.4, 127.7, 121.0, 25.1; IR (ATR) 2970, 1715, 1688, 1587, 1434, 1356, 1172, 1053, 1027, 903, 802, 738 cm⁻¹; HRMS (ESI) calcd for C₉H₇BrO₂ (M+H⁺) 226.9708; found 226.9702.
1-Phenyl-2-propanone (283) and 1-phenyl-1-propanone (284). A solution of 1-propen-1-yl-benzene (244) (95.3 mg, 0.806 mmol) in MeOH (1 mL) was added to a suspension of PdCl₂ (14.3 mg, 0.081 mmol) and CuCl (79.8 mg, 0.81 mmol) in a solution of MeOH (1 mL) and H₂O (200 μL) under an atmosphere of oxygen, as described for 230 in Condition A (50 °C, 20 h). Extraction and purification by chromatography (hexanes/EtOAc, 9:1) gave in order of elution, 284 (16.0 mg, 0.099 mmol, 12%) and 283 (44.2 mg, 0.27 mmol, 34%) as colorless oils.
References and Notes

19 *Zhon Yao Zhi*, Chinese Academy of Medicinal Sciences, Ed.; People’s Hygenic Publisher: 1979, *1*, 569.

70 Leong, Y. -W.; Harrison, L. J.; Bennett, G. J.; Kadir, A. A.; Connolly, J. D. Phytochemistry 1998, 47, 891.

118 Adjabeng, G.; Brenstrum, T.; Frampton, C. S.; Robertson, A. J.; Hillhouse, J.; McNulty,

2013, 7083.

Appendix

1H and 13C NMR Spectra

- 1H and 13C NMR for Chapter 1: Ring-expansion of 4-ethynyl-4-hydroxy-2,3-substituted-2-cyclobuten-1-ones 149
- 1H and 13C NMR for Chapter 2: Total synthesis of methyl linderone 201
- 1H and 13C NMR for Chapter 3: Wacker-type oxidation of aryl-substituted alkenes 208
Figure 17: 1H NMR of 2,3-bis(1-methylethoxy)-5-trimethylsilyl-2,5-cyclohexadiene-1,4-dione (70)
Figure 18: 13C NMR of 2,3-bis(1-methylethoxy)-5-trimethylsilyl-2,5-cyclohexadiene-1,4-dione (70)
Figure 19: 1H NMR of 2-(1-iodo-1-trimethylsilylmethylene)-4,5-bis(1-methylethoxy)-
4-cyclopentene-1,3-dione (71)
Figure 20: 13C NMR of 2-(1-iodo-1-trimethylsilylmethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (71)
Figure 21: 1H NMR of 2-(1-bromo-1-trimethylsilylmethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (72)
Figure 22: 13C NMR of 2-(1-bromo-1-trimethylsilylmethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (72)
Figure 23: 1H NMR of 2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (74)
Figure 24: 13C NMR of 2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (74)
Figure 25: 1H NMR of 2-(iodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (75)
Figure 26: 13C NMR of 2-(iodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (75)
Figure 27: 1H NMR of 2-(bromomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (76)
Figure 28: 13C NMR of 2-(bromomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (76)
Figure 29: 1H NMR of 5-chloro-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (77)
Figure 30: 13C NMR of 5-chloro-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (77)
Figure 31: 1H NMR of 4-hydroxy-2,3-bis(1-methylethoxy)-4-(2-idoethyl)-2-cyclobutene-1-one (78)
Figure 32: 13C NMR of 4-hydroxy-2,3-bis(1-methylethoxy)-4-(2-iodoethynyl)-2-cyclobutene-1-one (78)
Figure 33: 1H NMR of 5-iodo-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (79)
Figure 34: 13C NMR of 5-iodo-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (79)
Figure 35: 1H NMR of 2-(diiodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (80)
Figure 36: 13C NMR of 2-(diiodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (80)
Figure 37: 1H NMR of 4-hydroxy-2,3-bis(1-methylethoxy)-4-(2-bromoethyl)-2-cyclobutene-1-one (81)
Figure 38: 13C NMR of 4-hydroxy-2,3-bis(1-methylethoxy)-4-(2-bromoethyl)-2-cyclobutene-1-one (81)
Figure 39: 1H NMR of 5-bromo-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (82)
Figure 40: 13C NMR of 5-bromo-2,3-bis(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (82)
Figure 41: 1H NMR of 2-(1-bromo-1-iodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (83)
Figure 42: 13C NMR of 2-(1-bromo-1-iodomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (83)
Figure 43: 1H NMR of 2-(dibromomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (84)
Figure 44: 13C NMR of 2-(dibromomethylene)-4,5-bis(1-methylethoxy)-4-cyclopentene-1,3-dione (84)
Figure 45: 1H NMR of 4-hydroxy-2-methyl-3-(1-methylethoxy)-4-(2-trimethylsilylethynyl)-2-cyclobutene-1-one (89)
Figure 46: 13C NMR of 4-hydroxy-2-methyl-3-(1-methylethoxy)-4-(2-trimethylsilylethynyl)-2-cyclobutene-1-one (89)
Figure 47: 1H NMR of 2-trimethylsilylmethylene-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (90) and 5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (91)
Figure 48: 13C NMR of 2-trimethylsilylmethylene-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (90) and 5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (91)
Figure 49: 1H NMR of 2-(1-iodo-1-trimethylsilylmethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (92)
Figure 50: 13C NMR of 2-(1-iodo-1-trimethylsilylmethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (92)
Figure 51: 1H NMR of 6-iodo-5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (93)
Figure 52: 13C NMR of 6-iodo-5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (93)
Figure 53: 1H NMR of 2-(1-bromo-1-trimethylsilylmethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (94)
Figure 54: 13C NMR of 2-(1-bromo-1-trimethylsilylmethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (94)
Figure 55: 1H NMR of 6-bromo-5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-
cyclohexadiene-1,4-dione (95)
Figure 56: 13C NMR of 6-bromo-5-trimethylsilyl-3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (95)
Figure 57: 1H NMR of 3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (97)
Figure 58: 13C NMR of 3-methyl-2-(1-methylethoxy)-2,5-cyclohexadiene-1,4-dione (97)
Figure 59: 1H NMR of 2-(1-iodomethylene)-4-methyl-5-(1-methylethoxy)-4-cyclopentene-1,3-dione (98)
Figure 60: 13C NMR of 2-(1-iodomethylene)-4-methyl-5-(1-methylethoxy)-4-cyclopentene-1,3-dione (98)
Figure 61: 1H NMR of 2-(1-bromomethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (99)
Figure 62: 13C NMR of 2-(1-bromomethylene)-4-(1-methylethoxy)-5-methyl-4-
cyclopentene-1,3-dione (99)
Figure 63: 1H NMR of 2-(diiodomethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (101)
Figure 64: 13C NMR of 2-(diiodomethylene)-4-(1-methylethoxy)-5-methyl-4-cyclopentene-1,3-dione (101)
Figure 65: 1H NMR of ethyl 2-(3,4-dimethoxy-2,5-dioxo-3-cyclopenten-1-ylene)-2-iodoethanoate (104)
Figure 66: 13C NMR of ethyl 2-(3,4-dimethoxy-2,5-dioxo-3-cyclopenten-1-ylene)-2-iodoethanoate (104)
Figure 67: 1H NMR of ethyl 2-(3,4-dimethoxy-2,5-dioxo-3-cyclopenten-1-ylene)-2-bromoethanoate (105)
Figure 68: 13C NMR of ethyl 2-(3,4-dimethoxy-2,5-dioxo-3-cyclopenten-1-ylene)-2-bromoethanoate (105)
Figure 69: 1H NMR of 2,3-dimethoxy-4-hydroxy-4-[(E)-4-phenyl-3-buten-1-yn-1-yl]-2-cyclobuten-1-one (137)
Figure 70: 13C NMR of 2,3-dimethoxy-4-hydroxy-4-[(E)-4-phenyl-3-buten-1-yn-1-yl]-2-cyclobuten-1-one (137)
Figure 71: 1H NMR of 4,5-dimethoxy-[(E)-2-(1-iodo-3-phenyl-2-propen-1-ylidene)]-4-cyclopentene-1,3-dione (138)
Figure 72: 13C NMR of 4,5-dimethoxy-[(E)-2-(1-iodo-3-phenyl-2-propen-1-ylidene)]-4-cyclopentene-1,3-dione (138)
Figure 73: 1H NMR of 4,5-dimethoxy-2-[(E)-3-phenyl-2-propen-1-ylidene]-4-cyclopent-1,3-dione (139)
Figure 74: 13C NMR of 4,5-dimethoxy-2-[(E)-3-phenyl-2-propen-1-ylidene]-4-cyclopente-1,3-dione (139)
Figure 75: 1H NMR of 4,5-dimethoxy-2-[(E)-1-(N,N-dimethylamino)-3-phenyl-2-propen-1-ylidene]-4-cyclopente-1,3-dione (140)
Figure 76: 1H NMR of 4-fluoro-2-nitro-1-(1-propen-1-yl)benzene (233)
Figure 77: 13C NMR of 4-fluoro-2-nitro-1-(1-propen-1-yl)benzene (233)
Figure 78: 1H NMR of 2,4-dinitro-1-(1-propen-1-yl)benzene (234)
Figure 79: 1H NMR of 4-carbomethoxy-2-nitro-1-(1-propen-1-yl)benzene (235)
Figure 80: 1H NMR of 4-methoxy-2-nitro-1-(1-propen-1-yl)benzene (236)
Figure 81: 13C NMR of 4-methoxy-2-nitro-1-(1-propen-1-yl)benzene (236)
Figure 82: 1H NMR of 5-methoxy-2-nitro-1-(1-propen-1-yl)-benzene (8)
Figure 83: 1H NMR of 3-nitrobenzaldehyde (250) and
1-(3-nitrophenyl)-1,2-propandione (251)
Figure 84: 13C NMR of 3-nitrobenzaldehyde (250) and 1-(3-nitrophenyl)-1,2-propandione (251)
Figure 85: 1H NMR of 1-(4-fluoro-2-nitrophenyl)-2-propanone (257)
Figure 86: 13C NMR of 1-(4-fluoro-2-nitrophenyl)-2-propanone (257)
Figure 87: 1H NMR of 4-fluoro-1-(1,1-dimethoxymethyl)-2-Nitrobenzene (258)
Figure 88: 13C NMR of 4-fluoro-1-(1,1-dimethoxymethyl)-2-Nitrobenzene (258)
Figure 89: 1H NMR of 4-fluoro-2-nitrobenzaldehyde (259) and 1-(4-fluoro-2-nitrophenyl)-1,2-propanedione (260)
Figure 90: 13C NMR of 4-fluoro-2-nitrobenzaldehyde (259) and 1-(4-fluoro-2-nitrophenyl)-1,2-propanedione (260)
Figure 91: 1H NMR of 4-fluoro-1-(1,1-dimethoxymethyl)-2-Nitrobenzene (263)
Figure 92: 13C NMR of 4-fluoro-1-(1,1-dimethoxymethyl)-2-nitrobenzene (263)
Figure 93: 1H NMR of 4-carbomethoxy-2-nitrobenzaldehyde (266) and 1-(4-carbomethoxy-2-nitrophenyl)-1,2-propanedione (267)
Figure 94: 1H NMR of 1-(5-methoxy-2-nitrophenyl)-2-propanone (269)
Figure 95: 13C NMR of 1-(5-methoxy-2-nitrophenyl)-2-propanone (269)
Figure 96: 1H NMR of 5-methoxy-2-nitro-benzaldehyde (270) and 1-(5-methoxy-2-nitrophenyl)-1,2-propanedione (271)
Figure 97: 13C NMR of 5-methoxy-2-nitro-benzaldehyde (270) and 1-(5-methoxy-2-nitrophenyl)-1,2-propanedione (271)
Figure 98: 1H NMR of 4-(2-nitrophenyl)-3-methoxy-2-methyl-1-butene (277)
Figure 99: 13C NMR of 4-(2-nitrophenyl)-3-methoxy-2-methyl-1-butene (277)
Figure 100: 1H NMR of 1-(2-bromophenyl)-1,2-propanedione (282)
Figure 101: 13C NMR of 1-(2-bromophenyl)-1,2-propanedione (282)