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The pore of the translocon complex in the endoplas-
mic reticulum (ER) is large enough to be permeated by
small molecules, but it is generally believed that perme-
ation is prevented by a barrier at the luminal end of the
pore. We tested the hypothesis that 4-methylumbel-
liferyl a-D-glucopyranoside (4MaG), a small, neutral dye
molecule, cannot permeate an empty translocon pore by
measuring its activation by an ER resident a-glucosi-
dase, which is dependent on entry into the ER. The basal
entry of dye into the ER of broken Chinese hamster
ovary-S cells was remarkably high, and it was increased
by the addition of puromycin, which purges translocon
pores of nascent polypeptides, creating additional
empty pores. The basal and puromycin-dependent en-
tries of 4MaG were mediated by a common, salt-sensi-
tive pathway that was partially blocked by spermine. A
similar activation of 4MaG was observed in nystatin-
perforated cells, indicating that the entry of 4MaG into
the ER did not result simply from the loss of cytosolic
factors in broken cells. We reject the hypothesis and
conclude that a small, neutral molecule can permeate
the empty pore of a translocon complex, and we propose
that translationally inactive, ribosome-bound translo-
cons could provide a pathway for small molecules to
cross the ER membrane.

The endoplasmic reticulum (ER)1 is the site of essential
synthetic and signaling processes, such as the synthesis of
secreted and membrane proteins and the production of calcium
signals. These processes require the transport of a broad spec-
trum of molecules across the ER membrane while maintaining
a selectivity during transport which prevents the loss of essen-
tial gradients. The ER membrane is rich in pathways for the
active and passive transport of molecules ranging in size from
ions and small polar molecules to proteins. The pore of the
translocon (sec61 complex) is the largest pore in the ER mem-
brane, with an estimated diameter of 40–60 Å in the ribosome-
bound state and a smaller diameter of 9–15 Å in the ribosome-
free state (1, 2). When bound by a ribosome, the pore of the

translocon is aligned with the peptide exit tunnel in the large
subunit of the ribosome (3), and the average diameter of this
tunnel is about 20 Å (4). Together, the polypeptide exit tunnel
of the ribosome and the pore of the translocon provide a linked
pore of sufficiently large dimensions to permit the transloca-
tion of polypeptides across the ER membrane. The role of the
translocon pore as the pathway used for the cotranslational
insertion of nascent proteins into the ER is well established,
and recent evidence supports an even broader role for the
translocon pore in protein transport because the pore also
provides a pathway for the retrograde export of proteins from
the lumen of the ER to the cytosol (5, 6). A model for ribosome-
translocon interactions in which the large subunit of the ribo-
some remains bound to the translocon pore after translation is
terminated was proposed recently (7). An intriguing implica-
tion of this model is that the ER membrane might contain a
large number of ribosome-bound translocon complexes with the
pore unoccupied by polypeptides.

The very large diameter of the pore of the ribosome-translo-
con complex raises the possibility that many small molecules
could permeate this pathway when it is empty, i.e. unoccupied
by polypeptides. According to the prevailing model, a large
barrier to permeation of the translocon pore is produced by the
binding of BiP, a prominent ER chaperone protein, to the
luminal end of the pore (2, 8). This gate can be opened only by
nascent polypeptides that have grown to a length greater than
'70 amino acids. However, this model was developed using
charged molecules to probe the permeability of the translocon
pore, and the question remains whether the binding of BiP to
the pore actually produces a tight mechanical seal that blocks
the passage of all molecules, or, alternatively, does the binding
of BiP produce a looser seal that functions as a selectivity filter,
allowing some molecules to pass through? In particular, is
there a barrier to permeation of the translocon pore by neutral,
polar molecules? The answer to this question is important
because permeation of the translocon pore by small neutral
molecules could play an essential role in bidirectional signaling
or the transport of substrates between the lumen of the ER and
the cytosol.

We have tested the hypothesis that the translocon pore
maintains a high barrier to permeation by neutral, as well as
charged molecules by measuring the entry into the ER of a
small polar molecule, 4-methylumbelliferyl a-D-glucopyrano-
side (4MaG). The rationale for this assay was that entry of
4MaG into the ER can be detected if it is cleaved by a-glucosi-
dase II, a resident ER glucosidase (9–14), with the release of a
fluorescent product. The rate of accumulation of the fluorescent
product should then provide a measure of the rate of entry of
4MaG into the ER. a-Glucosidase II has been purified from the
ER (7, 9, 10, 12, 13, 15). It is a soluble, heterodimeric enzyme
that contains an HEDL ER retention signal (15), and immuno-
histochemical staining has demonstrated that it is specifically
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expressed in the lumen of the ER and some transitional ele-
ments of the ER (14). a-Glucosidase II specifically cleaves a1,3-
glycosidic linkages, and its activity is optimal at pH 6.5–7.0 (9,
10, 13, 15, 16), which clearly distinguishes it from the acidic
a-glucosidase found in the lysosomes of some cells (17). The
activity of a-glucosidase II can also be distinguished from
a-glucosidase I, another neutral ER glucosidase (18, 19), by the
fact that 4MaG is not hydrolyzed by a-glucosidase I (19). We
report that the empty translocon pore is highly permeable to
4MaG, and we propose that translationally inactive ribosome-
translocon complexes might provide a pathway for the move-
ment of small, neutral molecules across the ER membrane.

EXPERIMENTAL PROCEDURES

Materials—4MaG and puromycin HCl were from Calbiochem. All
other reagents were from Sigma.

Preparation of Permeabilized Cells—CHO-S cells (Life Technologies,
Inc.) were grown to a density of 0.5–1.0 3 106 cells/ml in stirrer flasks
in serum-free medium (Life Technologies, Inc.) at 37 °C in 5% CO2. For
a 32-well assay (eight conditions in quadruplicate), 20 ml of cells was
pelleted and resuspended in 20 ml of KG buffer (140 mM potassium
glutamate, 2.5 mM MgCl2, 10 mM HEPES, pH 7.25). The resuspended
cells were pressurized for 2 min at 80 p.s.i. of N2 in a Parr nitrogen
cavitation homogenizer and gently broken open by release through the
needle valve. Under these conditions, 53% of the cells were permeabi-
lized, as measured by propidium iodide staining. Gentle opening of the
plasma membrane was essential. Increasing the N2 cavitation pressure
produced a disproportionate increase in the base-line activation of
4MaG, a likely result of increased breakage of the ER with the more
vigorous cavitation. Permeabilization with 100 mM digitonin, which was
100% effective, increased the variability of our measurements, perhaps
as a result of destabilization of the ER membrane by the detergent. We
also observed that any attempt to pellet the broken cells produced a
greatly increased background fluorescence.

Fluorescence Assay—Assays were performed using Nunc 48-well
plates read in a CytoFluor 4000 (PE Biosystems) plate reader. 0.5 ml of
a suspension of broken cells was loaded per well. A stock solution of 20
mM 4MaG was prepared in methanol and diluted into KG buffer at a
final concentration of 20 mM, unless otherwise noted. The center wave-
length and bandwidth of the excitation and emission filters were 360/40
and 460/40, respectively. All measurements were made at 35–37 °C.
The plate with solutions was prewarmed to 37 °C for 15 min, and the
dye was added immediately before transferring the plate to the reader.
The fluorescence was measured for 30 min at 2-min intervals, with 10 s of
mixing before each measurement. Puromycin HCl was prepared as a 10
mM stock solution in water and used at a final concentration of 100 mM.

Data Analysis—The substrate 4MaG is nonfluorescent until the gly-
cosidic linkage between the glucose and coumarin dye moieties is
cleaved by a-glucosidase, releasing the free, fluorescent dye. The acti-
vation of 4MaG is irreversible, and the slope of the fluorescence versus
time curve, S(t), is proportional to the rate of activation of the dye at
time t. Under most conditions, S(t) was a constant, but under some
conditions there was a gradual increase or decrease in S(t) which fol-
lowed a simple exponential time course. The linear and exponential
contributions to S(t) were well fitted by Equation 1

S~t! 5 S0*ek*t (1)

where S0 is the initial slope (DF min21)and k is an exponential rate
constant (min21). Best fit estimates of S0 and k for each well were
obtained using the Solver nonlinear curve-fitting routine in Excel (Mi-
crosoft). Parameters for Michaelis-Menten and Hill functions were es-
timated using the Levenberg-Marquardt nonlinear curve-fitting rou-
tine in Origin, version 6.0 (Microcal). Statistical analysis was performed
using JMPin (SAS Institute). Averages are plotted 6 S.E. of the mean.

RESULTS

Activation of 4MaG in Detergent-permeabilized Cells—We
first examined the activation of 4MaG in a broken cell prepa-
ration nonspecifically permeabilized by the addition of 0.05%
sodium deoxycholate. Representative data and fitted curves
calculated from Equation 1 are shown in Fig. 1A. The increase
in fluorescence over time was fitted well by a combination of
linear and exponential components, with the linear component

dominating at concentrations of 4MaG above 10 mM. At lower
concentrations of 4MaG, an exponential decay of the initial
slope, S0, was apparent, probably as a result of depletion of the
4MaG substrate with time. There was no activation of dye
when 4MaG was added to KG buffer in the absence of cells
(data not shown). The dependence of S0 on the concentration of
4MaG is shown in Fig. 1B. At 4MaG concentrations below 100
mM, S0 values were fitted by a single Michaelis-Menten function
with a Km of '5 mM, which was close to the Km of a-glucosidase
II for 4MaG reported in bovine mammary gland (10). Although
the a-glucosidase activity at low substrate concentrations could
be characterized by a single kinetically defined process, a sec-
ond, highly variable component became increasingly evident at
concentrations of 4MaG $ 100 mM (Fig. 1B). We did not identify
the source of this variable component. We chose 20 mM as a
standard working concentration for our experiments because it
was below the concentration at which the rate of activation
became highly variable, yet it was high enough to drive a
sufficient steady-state influx into a membrane-bound compart-
ment (described below).

We next examined the rate of activation of 4MaG as a func-
tion of pH to determine if 4MaG could be activated in CHO-S
cells by an acidic a-glucosidase that is present in the lysosomes

FIG. 1. Concentration-dependent activation of 4MaG. Panel A,
plot of fluorescence versus time. Each concentration of 4MaG was
replicated in four wells, and the fluorescence of each well was measured
at 2-min intervals. Each symbol is the average fluorescence of replicate
wells at each time point, and the solid lines are curves calculated from
Equation 1 using the average of the S0 and k values fitted to a set of
replicate wells. The fluorescence at zero time has been subtracted from
subsequent points. Panel B, S0 plotted versus 4MaG concentration for
five data sets. The S0 values for each data set have been normalized to
the S0 observed at 25 mM 4MaG to emphasize the similar affinity across
data sets. The solid line is a Michaelis-Menten function calculated
using a Km of 5.3 mM, which was estimated by simultaneously fitting all
of the data sets using a shared Km but independent S0,max parameters
across data sets. The increased variability of the data plotted as open
circles is evidence of the variable, lower affinity component (higher
concentrations not shown), and these data were excluded from the curve
fitting.
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of some cells. The activation of 4MaG was strongly dependent
on pH, and it was clearly attributable to glucosidase activity
that was optimal between pH 6.2 and 7.5. There was no evi-
dence of an acidic a-glucosidase (Fig. 2A), which has a pH
optimum of 4.5 (17). We also performed an assay for b-glucosi-
dase, which, if present in CHO-S cells, might nonspecifically
activate some 4MaG. Equimolar substitution of 4MaG by
4-methylumbelliferyl b-D-glucopyranoside, the b anomer of
4MaG and substrate for b-glucosidase, yielded no fluorescent
product (Fig. 2B). This assay was performed under conditions
in which the activity of b-glucosidase added to the preparation
was readily detectable (Fig. 2B). We conclude that neither
acidic a-glucosidase nor b-glucosidase is present in CHO-S
cells, and 4MaG is activated in CHO-S cells by a-glucosidase II.

Activation of 4MaG in Cavitation-permeabilized CHO-S
Cells—The addition of 4MaG to the solution bathing intact
CHO-S cells resulted in very little activation of the dye (Fig.
3A), indicating that 4MaG does not easily cross intact mem-
branes. To enable access of 4MaG to the ER, we chose low
pressure N2 cavitation as a gentle method to break open the

plasma membrane. The addition of 4MaG to cavitation-perme-
abilized cells produced a surprisingly high basal rate of activa-
tion, S0,basal, ;20–45% (median 5 28%) of the rate observed in
cells permeabilized by 0.05% sodium deoxycholate (Fig. 3B).
This high basal rate was especially remarkable given that
cavitation permeabilized only slightly more than 50% of the
cells, whereas the detergent permeabilized all of the cells (data
not shown).

Although a high basal rate of entry of 4MaG into the ER
might be inferred from the high rate of activation, an alternate
explanation is that 4MaG was activated by a-glucosidase ex-
posed to the buffer by accidental breakage of the ER. We tested
this with a protease protection assay using trypsin. When
trypsin (0.25% w/v) was added to detergent-permeabilized
cells, S(t) decreased exponentially with time (Fig. 3C), demon-
strating that a-glucosidase not protected by intact membranes
could be inactivated irreversibly by trypsin. In contrast, the
same concentration of trypsin added to cavitation-permeabi-
lized cells in the absence of detergent produced an exponential
increase, rather than a decrease, in S(t) (Fig. 3C). The lack of a
time-dependent decrease of S(t) in the absence of detergent
demonstrated that the a-glucosidase was protected from pro-
teolysis by trypsin, from which we conclude that the basal
activation of 4MaG was produced by a-glucosidase sequestered
inside a membrane-bound compartment.

Puromycin is an aminoacyl tRNA analog that terminates the
elongation of polypeptide chains, releasing nascent polypep-
tides from ribosomes and clearing the proteins from the pore of
the translocon (20, 21). Puromycin-treated translocons are per-
meable to ions (22), and we tested the prediction that translo-
con pores cleared of protein by puromycin would provide addi-
tional open pores through which 4MaG could enter the ER. The
addition of 100 mM puromycin increased S0 to a value, S0,pur,
which was significantly greater than the basal rate (Fig. 3A).
The increase in S0 produced by the addition of puromycin,
DS0,pur 5 S0,pur 2 S0,basal, was about 30% greater than S0,basal.
We tested puromycin at concentrations between 100 and 500
mM, and we observed maximal dye entry at 100 mM puromycin
(data not shown). We conclude from the high specificity of
puromycin for terminating translation and the fact that the ER
is the only membrane-bound compartment to which ribosomes
are attached that the puromycin-dependent activation of 4MaG
was produced by the entry of 4MaG into the ER through ribo-
some-bound translocons.

The source of the puromycin-independent, basal activation of
4MaG was less clear. As a first step, we tested by correlation
analysis the hypothesis that DS0,pur and S0,basal were independ-
ent processes. There was a significant correlation (r 5 0.49, p ,
0.001) between DS0,pur and S0,basal (both calculated as a per-
centage of a detergent control) across a large number of assays
(Fig. 3D, n 5 142), and we reject the hypothesis of independ-
ence. We estimated the portion of S0,basal which could not be
accounted for by variability in DS0,pur by regressing S0,basal

onto DS0,pur, and this uncorrelated residual was ;36% of
S0,basal or 18% of the detergent control (Fig. 3D). The correla-
tion in the large data set was probably reduced by variability in
the magnitude of S0,basal and DS0,pur over months of experi-
ments, and the correlation between DS0,pur and S0,basal was
substantially higher (reaching values of 0.75) when smaller
data sets (n , 20) collected over shorter periods of time were
analyzed (data not shown). The correlation and regression
analysis demonstrated that the processes underlying S0,basal

and DS0,pur were not independent, and a significant portion of
S0,basal could be predicted from DS0,pur.

Dependence on the Concentration of 4MaG—The activation
of 4MaG is irreversible, and the hydrolysis of 4MaG by a-glu-

FIG. 2. Panel A, pH dependence of a-glucosidase activity. Detergent-
permeabilized cells in solutions buffered to pH values between 4.7 and
7.5 were incubated for 30 min with 10 mM 4MaG, after which 100 ml of
a 2.5 M Tris stock solution (pH 9.0) was added to bring the pH of all of
the test solutions to the same final pH. Tris is also an inhibitor
of a-glucosidase II (10), and it effectively stopped the activation of
4MaG. Alkalization of the buffer prevented the pH-dependent fluores-
cence of the activated dye (pKa ' 8.0) from masking differences result-
ing from pH-dependent glucosidase activity. For each of three data sets,
the S0 values are expressed as a percentage of the S0 at pH 7.5, and the
average values are plotted versus pH. Panel B, b-glucosidase is not
present in CHO-S cells. Experiments were performed using 10 mM

4MaG or 4MbG substrate. 4MaG, but not 4MbG, was activated in the
presence of detergent-permeabilized CHO-S cells. Positive controls con-
sisting of purified a-glucosidase and b-glucosidase, each at 0.05 unit
ml21, demonstrated the equivalent sensitivity of our assay to both
glucosidases.
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cosidase could deplete the 4MaG concentration within a mem-
brane-bound compartment if it is not replenished by a contin-
uous entry of dye. The rate of entry of 4MaG is dependent on
the permeability of the membrane to 4MaG and the concentra-
tion gradient for 4MaG across the membrane. This should
produce an increase in the apparent Km of the a-glucosidase for
4MaG, with the magnitude of the increase inversely propor-
tional to the permeability of the membrane to 4MaG. We meas-
ured the dependence of S0,basal and DS0,pur on the concentration
of 4MaG in cavitation-permeabilized cells to test this predic-
tion. Both sets of data were fitted by Michaelis-Menten func-
tions (Fig. 4). The DS0,pur data were fitted by a single compo-
nent with an apparent Km near 80 mM (Table I). The S0,basal

data were fitted with two components, a dominant component
with an apparent Km also near 80 mM and a very small, high
affinity component. The apparent Km of DS0,pur and the domi-
nant component of S0,basal were increased ;16-fold relative to
the Km of the enzyme with detergent-permeabilized mem-
branes (i.e. 5 mM, Fig. 1), and we conclude from the very similar
shift in the apparent Km values that S0,basal and DS0,pur are
produced by the entry of dye via pathways with very similar
permeabilities to 4MaG. The small, high affinity component in
S0,basal might represent the activity of a-glucosidase released
into the buffer, but the very small size of this component (,3%
of total) provides additional evidence that nearly all of the
activation of 4MaG in cavitation-permeabilized cells occurred
within a membrane-bound compartment.

Effect of Ionic Strength—The puromycin-dependent activa-

tion of 4MaG is most easily accounted for by a puromycin-
induced release of nascent polypeptide chains from the pores of
translationally active translocons, with the empty pores pro-

FIG. 3. Activation of 4MaG in cavitation-permeabilized cells. Panel A, basal and puromycin-dependent activation of 4MaG in a repre-
sentative experiment. Intact cells diluted to the usual concentration in KG buffer activated 4MaG at a low rate. Cavitation-permeabilized cells
produced a substantial basal activation of 4MaG (S0,basal), which was increased further by the addition of 100 mM puromycin (DS0,pur). The addition
of detergent (0.05% sodium deoxycholate) further increased the rate of activation. Expression of the S0 measured in the absence of detergent as
a percentage of the S0 measured in a detergent-permeabilized control, as shown on the right axis, facilitated our comparison of data across
experiments and helped control for the direct effects of some treatments on the absorbance of light or a-glucosidase activity. Panel B, distributions
of S0,basal and DS0,pur measured as shown in panel A for 193 assays. Panel C, intact membranes protect a-glucosidase activity from trypsin. The
circles are fluorescence versus time plots for the activation of 4MaG in cells permeabilized by 0.05% sodium deoxycholate, either in the absence
(filled circles) or presence (open circles) of 0.25% trypsin. The decreasing slope of S0 as a function of time most likely results from the gradual
destruction of the a-glucosidase. The triangles are plots of the activation of 4MaG in cavitation-permeabilized cells without detergent, either in the
absence (filled triangles) or presence (open triangles) of trypsin. Average estimates of k calculated for four replicate wells in each combination of
conditions are plotted in the inset. Trypsin clearly produced opposite effects on k in the absence and presence of detergent. Panel D, regression of
S0,basal on DS0,pur. The correlation coefficient was 0.52, and the y intercept was 17.7%.

FIG. 4. Shift in the apparent Km with intact membranes. Aver-
age values for S0,basal (triangles) and DS0,pur (circles) are plotted versus
4MaG concentration (data pooled from 19 assays). Each data set was
fitted with a Michaelis-Menten function, and the curves were calculated
using the best fit parameters given in Table I. The apparent Km for both
data sets was near 80 mM, a 16-fold rightward shift compared with the
curve observed when membranes were permeabilized by detergent. The
dotted line is the fitted curve shown in Fig. 1B, rescaled to the S0,max for
the S0,basal data set. Data at high concentrations were variable, and the
averages plotted as open symbols were excluded from the fits. The
methanol concentration at 10 mM 4MaG was 0.05%. Addition of up to 5%
methanol (control for 1,000 mM 4MaG) had no effect on the activation of
10 mM dye (data not shown).
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viding additional pathways for the entry of 4MaG. Ribosomes
can be dissociated from translocons by first releasing nascent
polypeptide chains with puromycin, then increasing the ionic
strength of the buffer above about 100 mM (23). Treatment with
high salt has been shown to eliminate the permeation of trans-
locon pores by ions (22). We examined the rate of activation of
4MaG in cavitation-permeabilized cells broken open in KG
buffer containing 50, 140, 200, or 300 mM potassium glutamate.
Increasing the potassium glutamate concentration decreased
both S0,basal and DS0,pur in an identical, concentration-depend-
ent manner (Fig. 5). The concentration-dependent decreases in
S0,basal and DS0,pur were fitted with a Hill function with very
similar parameter values (Fig. 5 and Table II), a concentration
midpoint near 150 mM and a Hill coefficient of 7.6. The high
cooperativity was consistent with the breakage of multiple salt
bonds, and the absence of a second component, as evident in the
quality of the single component fit, indicated that all of the salt
bonds had a similar sensitivity to the salt concentration. The
concentration midpoint we observed was appropriate for the
salt-dependent release of ribosomes (23). We conclude that
the salt-sensitive step for DS0,pur is the salt-dependent release
of ribosomes from translationally inactive, unoccupied
translocons.

Modeling the Salt-dependent Entry of 4MaG—We surmised
from the striking similarities in the inhibition of DS0,pur and
S0,basal by high salt that the salt-sensitive release of ribosomes
from unoccupied translocons was also the most likely mecha-
nism underlying the reduction in S0,basal by high salt. This
interpretation is especially attractive given recent evidence
that the majority of large ribosomal subunits remain bound to
the ER after the normal termination of protein synthesis (24,
25), and this state would be equivalent to the ribosome-bound,
unoccupied state of the translocon produced by treatment with
puromycin (25).

To strengthen this interpretation, we developed a quantita-
tive model of the salt-sensitive and salt-insensitive components
of S0 in the absence (S0,basal) and the presence (S0,pur) of puro-
mycin (Fig. 6 and Appendix). This model has three free param-
eters: f, the fraction of pores open in the absence of puromycin;
x, the permeability of a blocked pore relative to an empty pore;
and s, the fraction of empty pores from which ribosomes can be
removed by high salt. We measured S0,basal and S0,pur in a
normal salt buffer (140 mM KG) and a high salt buffer (300 mM

KG) (n 5 14 experiments). The salt-sensitive component of
S0,pur was then calculated and entered into the model, and the
parameters f, x, and s were adjusted to optimize the fit to
S0,basal and S0,pur under the normal and high salt conditions. As
shown in Fig. 6B, the fit was very good with parameter esti-
mates of f 5 0.738, x 5 0.106, and s 5 0.775. These parameter
estimates were robust and independent of the starting values.
Although this analysis indicated that 4MaG might permeate
the blocked pores to a limited extent, it is clear from Fig. 6B

that permeation of empty pores is the primary pathway. We
conclude from this analysis that the majority (74%) of the pores
are permeable to 4MaG in the absence of puromycin, and this
result is consistent with the persistent binding of ribosomes to
translocons after termination of translation (24, 25). We also
note that the model predicted that 78% of the unoccupied pores
are sensitive to high salt, which is consistent with the obser-
vation by Adelman et al. (23) that a maximum of '85% of the
ribosomes bound to the ER can be removed by high salt after
treatment with puromycin. Although our analysis does not rule
out all alternative models, it does demonstrate that a simple
model based only on the observed salt-sensitive entry of dye
and three parameters defining the puromycin- and salt-de-
pendent regulation of ribosome-bound translocon pores can
reproduce exactly the distribution of S0,basal and S0,pur under
normal salt and high salt conditions.

Inhibition by Spermine—If DS0,pur and the salt-sensitive
component of S0,basal are produced by the entry of 4MaG
through the same pathway, then agents that inhibit DS0,pur

should also inhibit the salt-sensitive component of S0,basal. We
predicted that spermine might block the pore of the ribosome-
translocon complex because it is a polyvalent cation of small
size. 1 mM spermine inhibited DS0,pur by 70–90% while produc-
ing a smaller inhibition of S0,basal (Fig. 7A). If the spermine-
sensitive and the salt-sensitive components of S0,basal represent
the entry of 4MaG through the same pathway, then elimina-
tion of the salt-sensitive component of S0,basal by high salt
should occlude the inhibitory effect of spermine, and this was
also observed (Fig. 7A). We also note that the apparent dispar-
ity in the sensitivity of S0,basal and DS0,pur to spermine is much
smaller if the fractional block of the salt-sensitive components
of S0,basal and S0,pur are compared, which were inhibited by 25
and 50%, respectively. The inhibition of both S0,pur and S0,basal

by spermine provides additional support for our conclusion that
they represent the entry of 4MaG via a common pathway.

Activation of 4MaG in Nystatin-perforated Cells—The high
rate of entry of 4MaG into the ER of cells broken open by
cavitation in the simple KG buffer might be explained by the
loss of a component of the cytosol which is required to main-
tain a permeability barrier. To test this hypothesis, we used
the pore-forming antibiotic nystatin to introduce 4MaG into
the cytosol of CHO-S cells under conditions in which the
cytosol remained relatively intact. Nystatin forms pores in

TABLE I
Membrane-dependent shift in apparent Km

The dependence of S0 on 4MaG concentration was characterized by
fitting the data sets with the function S0 5 S0,max/(1 1 Km/C), where
S0,max is the maximum slope, C is the concentration of 4MaG, and Km is
the concentration of 4MaG which produces one-half S0,max. Parameter
values are given 6 S.E. of the parameter estimate.

Km S0,max

mM

Detergent-treated 5.3 6 0.2
No detergent

S0,basal 0.7 6 2.8 4.5 6 6.1
79.4 6 15.7 152.5 6 6.0

DS0,pur 83.1 6 16.8 65.1 6 6.9

FIG. 5. High salt inhibits DS0,pur and S0,basal. CHO-S cells were
permeabilized in solutions containing 50, 140, 200, or 300 mM potas-
sium glutamate. Average values for S0,basal (triangles) and DS0,pur (cir-
cles), expressed as a percentage of a detergent-treated control, are
plotted versus potassium glutamate concentration for a total of six
experiments. Each data set was fitted with a Hill function, and the
curves were calculated using the best fit parameters given in Table II.
Increasing the salt concentration inhibited S0,basal and DS0,pur in a
parallel manner, with nearly identical values of the h and Ki
parameters.
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the plasma membrane which are permeable to univalent ions
and small neutral molecules (up to 8 Å diameter) but are
impermeable to proteins, multivalent ions, and organic mol-
ecules larger than glucose (26, 27). CHO-S cells were pelleted
and resuspended in KG buffer that contained nystatin (0.24
mg/ml) followed by the addition of puromycin and 4MaG.
Both the puromycin-dependent and the basal activation of
4MaG were observed in nystatin-perforated cells (Fig. 7B).
Compared with the values of S0,basal and DS0,pur measured
with cells broken by N2 cavitation, the values of S0,basal and
DS0,pur measured in nystatin-perforated cells were reduced

by about 60–80%, but their relative sizes were unchanged.
The activation of 4MaG under these conditions was not the
result of its entry into broken or otherwise damaged cells
because 1 mM spermine did not inhibit either DS0,pur or
S0,basal in nystatin-perforated cells (Fig. 7B) as it did in cells
broken by cavitation. Spermine cannot permeate nystatin
pores, and the selective exclusion of spermine, but not 4MaG,
from nystatin-perforated cells was evidence that 4MaG was
not activated by cells in which the plasma membrane had
been nonspecifically damaged. The preservation of similar
characteristics in the activation of 4MaG in cells perforated
by nystatin compared with cells broken by cavitation leads us
to conclude that the activation of 4MaG in broken cells is
unlikely to be an artifact resulting from the loss of critical
cytosolic components.

DISCUSSION

We have demonstrated that a small polar dye, 4MaG, can
serve as a useful probe for studying the permeability of the ER
membrane. In gently broken CHO-S cells, the dye is activated
by a-glucosidase II located in the lumen of the ER. We report
three key results in this paper. First, treatment with puromy-

FIG. 6. Panel A, model for ribosome-translocon-dependent activation
of 4MaG. Ribosome and translocon pores are depicted in three states:
left, the blocked pore of translationally active translocons occupied by a
nascent polypeptide; center, the empty pore; and right, the closed pore
produced by release of the ribosome by high salt. The encircled B
represents BiP bound near the luminal opening of the translocon pore.
The permeability of the blocked state to 4MaG is reduced greatly
relative to the permeability of the empty state to 4MaG. All of the
blocked pores and a fraction (1 2 s) of the empty pores are insensitive
to high salt. The empty state can be induced by terminating translation
with puromycin, and it can also occur spontaneously. Panel B, compar-
ison of predicted and observed values of S0,basal and S0,pur. Cells were
broken by cavitation and assayed in pairs, with one-half of the sample
of cells broken in 140 mM KG buffer and the other half of the sample
broken in 300 mM KG. S0,basal and S0,pur were calculated for each
experiment (n 5 14) as described in the Appendix. The stacked bars
show the contribution of each component to S0,basal and S0,pur. The
salt-insensitive component shown here was smaller than the value
shown in Fig. 5. The salt-insensitive component was generally more
variable than the salt-sensitive component, as evident in a 3-fold larger
coefficient of variation (data not shown).

TABLE II
Salt-dependent inhibition

The slope data were normalized as a percentage of the detergent
control and fitted with a Hill function of the following form: S(C) 5
Smax/[1 1 (C/Ki)

h] 1 Const., where Smax is the maximum relative slope,
C is the potassium glutamate concentration, S(C) is the slope at C, Ki is
the concentration at which there is half-maximal inhibition, h is the
Hill coefficient, and Const. is the salt-insensitive activity.

Smax Const. Ki h

% % M

S0,basal 27.4 16.1 0.151 7.6

DS0,pur 11.5 2.9 0.153 7.6

FIG. 7. Panel A, inhibition of DS0,pur and S0,basal by spermine. 1 mM

spermine in 140 mM KG buffer reduced DS0,pur to '20% of the control
response and produced a smaller inhibition of S0,basal. In 300 mM KG
buffer, both DS0,pur and S0,basal were reduced greatly, and the inhibitory
effect of spermine was occluded. The averages for six experiments are
plotted. Panel B, activation of 4MaG in nystatin-perforated cells. The
left set of bars shows a significant increase (asterisks, p , 0.05, Tukey-
Kramer honestly significant difference test) in S0 with the addition of
nystatin and puromycin. The averages for nine experiments are plotted.
The relative sizes of the basal and puromycin-stimulated activation of
4MaG in nystatin-perforated cells closely paralleled the proportions of
S0,basal and DS0,pur observed in cells broken by cavitation, although
reduced in size by ;60–80%. The right set of bars is the averages of
three experiments that tested the effect of spermine. 1 mM spermine did
not inhibit the activation of 4MaG in nystatin-perforated cells.
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cin significantly increased the rate of activation of 4MaG in
broken cells. Puromycin is highly selective in terminating the
elongation of proteins undergoing translation by releasing nas-
cent polypeptides from ribosomes (20, 21). In CHO-S cells, this
appeared to convert the pore of a ribosome-bound translocon
from a blocked state occupied by a nascent polypeptide to an
empty state permeable to 4MaG. This increased the number of
empty translocon pores available for the entry of dye because
the majority of ribosomes remain bound after the termination
of translation by puromycin (25). The specificity of puromycin’s
action provides strong evidence that the rough ER is the site of
activation of 4MaG because there is no other site at which the
release of nascent proteins from ribosomes would increase the
entry of 4MaG into a membrane-bound compartment. For
these reasons, we reject the hypothesis that translocon pores in
the ER membrane are impermeable to small, neutral mole-
cules. Second, when puromycin-treated membranes were also
treated with high salt, the puromycin-dependent entry of
4MaG was abolished. Many studies have demonstrated that a
combined treatment with puromycin and high salt can dissoci-
ate ribosomes from ER membranes (23), and we conclude that
the loss of activation of 4MaG resulted from dissociation of the
ribosomes from the translocons and closure of the pores. The
opposing effects of puromycin and high salt on the entry of
4MaG were very similar to the inhibition by high salt of the
puromycin-stimulated increase in the ionic permeability of
translocons incorporated into planar lipid bilayers (22).

A third key result was that there was a substantial basal
rate of activation of 4MaG in the absence of puromycin. We
surmise from the following evidence that permeation of trans-
lationally inactive, ribosome-bound translocon pores accounts
for most of the basal entry of 4MaG. The apparent Km values of
the basal and puromycin-dependent activation of 4MaG were
increased by an identical factor relative to the Km of the free
a-glucosidase in detergent-permeabilized cells. This can be
most simply accounted for by the puromycin-dependent and
basal entry of 4MaG into a membrane-bound compartment via
pathways with the same permeability to 4MaG. The remarka-
ble similarity in the sensitivity of the puromycin-dependent
entry and approximately two-thirds of the basal entry to high
salt provided additional evidence that they shared a common,
salt-sensitive pathway for entry into the compartment. The
puromycin-dependent entry and the salt-sensitive component
of the basal entry were both partially inhibited by spermine, a
putative pore-blocking compound. Finally, the basal and puro-
mycin-dependent entry of 4MaG could be accounted for in a
quantitative model based on the entry of dye via empty, trans-
lationally inactive ribosome-translocon complexes. Ribosomes
remain bound to translocon pores for a sufficient period of time
after the termination of translation and the release of their
nascent polypeptide chains to provide a puromycin-indepen-
dent pathway for the entry of 4MaG. This interpretation is
supported by a previous study by Adelman et al. (23), who
described two pools of ribosomes bound to microsomes, a pool of
translationally inactive ribosomes or ribosomes with very short
nascent chains that could be stripped from microsomes by high
salt treatment alone, and a pool of translationally active ribo-
somes that could be released only by a combined treatment
with puromycin and high salt. Our conclusion is also supported
by recent reports demonstrating the persistent binding of the
large subunit of ribosomes to the ER after the termination of
translation (24, 25), and a model has been proposed in which
the large ribosomal subunit remains tightly bound to the trans-
locon after the termination of translation (7).

The translocon pore in CHO-S cells appears to have a
higher permeability to 4MaG than would be expected based

on a model for the regulation of ER permeability proposed by
Johnson and colleagues (1, 2, 8, 28). They reported (2) that
BiP maintains a tight permeability barrier at the luminal end
of the translocon pore in both its ribosome-bound and un-
bound states. The barrier produced by BiP is relaxed only
when nascent peptides reach a sufficient length to extend
beyond the luminal end of the pore. We believe that our
results can be reconciled with Johnson’s model by considering
the following points. First, Johnson’s laboratory used only
charged molecules to probe the permeability of the ER,
whereas we have used a polar, neutral molecule, and it is
possible that the permeability barrier presented by BiP
might be much smaller for uncharged molecules. What we
describe as an “open” pore permeable to 4MaG might not be
permeable to ions. In fact, inhibition of the entry of 4MaG by
spermine is evidence that, in our assay, the translocon pore is
not permeable to a small, polycationic molecule. This raises
the possibility that the binding of BiP might filter charged
compounds, perhaps as a result of the positioning of charged
residues near the luminal mouth of the translocon pore.
Second, the conditions used in Johnson’s assay would have
prevented the occurrence of translationally inactive, unoccu-
pied ribosomes bound to translocons. They used high salt/
EDTA-stripped microsomes from which all of the translation-
ally inactive bound ribosomes with empty pores would have
been removed, and our experiments demonstrated that high
salt significantly reduced the basal permeability of the ER to
4MaG. The majority of bound ribosomes in the assay by
Johnson and co-workers were translationally active ribo-
somes retaining a bound nascent polypeptide that could not
be released because of the absence of a stop codon in the
mRNA used in the in vitro translation reaction, and this
would have prevented any possible generation of empty
translocons by the normal release of the nascent polypeptide
following termination of translation. We did use a much
simpler buffer than the wheat germ lysate used by Johnson’s
laboratory, but the high permeability to 4MaG was not an
artifact resulting from our use of this simple, defined buffer,
because a similar pattern of puromycin-dependent and basal
entry was observed in nystatin-perforated cells, which would
have retained most cytosolic components. There is a prece-
dent for our observation that the ER membrane of CHO-S
cells is permeable to 4MaG in an earlier report that rough
microsomes prepared from rat liver have a relatively high
permeability to a variety of small polar solutes, such as
glucose (29).

Our demonstration that empty translocons are permeable to
4MaG has several broader implications. The evidence that the
permeability of a translocon pore to a neutral solute is different
from its permeability to ions suggests that further study should
be directed at how permeant molecules are filtered, or selected,
as they pass through the pore of the translocon. Also, recent
studies have revealed that the translocon pore mediates the
post-translational export, as well as cotranslational import, of
many proteins (6). An important implication of this broader
role of the translocon in protein transport is that the pore is a
very busy thoroughfare, which again raises the question of how
the permeability of the translocon pore to a broad spectrum of
molecules is regulated. Further study of the entry of 4MaG
should be useful in defining the mechanisms that regulate the
passage of small, uncharged molecules across the ER mem-
brane under various conditions. Finally, the presence of a basal
permeability to 4MaG in the absence of puromycin is especially
intriguing because permeation of the translocon pore by small,
neutral molecules might convey important signals between the
lumen of the ER and the cytosol.
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APPENDIX

The starting point for the calculation is an estimate of the
total number of translocon pores that can be found in the empty
state. The analysis is limited to the dynamic pool of pores that
can be in the empty state either before or after treatment with
puromycin. We assume that puromycin can convert all trans-
lationally active pores, blocked by nascent polypeptides, into
empty pores. Therefore, in the presence of puromycin, the rate
of activation of 4MaG caused by entry through the maximum
number of empty pores can be estimated by dividing the salt-
sensitive fraction of S0,pur by the fraction, s, of ribosome-bound
pores that can be closed by high salt

Stotal 5 ~salt-sensitive fraction of S0,pur!/s . (A1)

All other components are calculated from Stotal.
In the Presence of Puromycin—In normal salt,

S0,pur 5 Stotal 1 Sres (A2)

where Sres is a salt-insensitive background activation of 4MaG
of unknown origin, assumed to be 2% of the detergent control
(see Fig. 7B).

In high salt,

S0,pur 5 Stotal*~1 2 s! 1 Sres (A3)

where (1 2 s) is the salt-insensitive fraction.
In the Absence of Puromycin—In normal salt,

S0,basal 5 Stotal*f 1 Stotal~1 2 f!*x 1 Sres (A4)

where f is the fraction of the pores that are empty in the absence
of puromycin, and x is the permeability of a blocked pore to 4MaG
as a fraction of the permeability of an empty pore.

In high salt,

S0,basal 5 Stotal*f*~1 2 s! 1 Stotal*~1 2 f!*x 1 Sres . (A5)
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