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The D2 dopamine receptor has been expressed in Sf21
insect cells together with the G proteins Go and Gi2,
using the baculovirus system. Expression levels of re-
ceptor and G protein (a, b, and g subunits) in the two
preparations were similar as shown by binding of
[3H]spiperone and quantitative Western blot, respec-
tively. For several agonists, binding data were fitted
best by a two-binding site model in either preparation,
showing interaction of expressed receptor and G pro-
tein. For some agonists, binding to the higher affinity
site was of higher affinity in D2/Go than in the D2/Gi2
preparation. Some agonists exhibited binding data that
were best fitted by a two-binding site model in D2/Go and
a one-binding site model in D2/Gi2. Therefore, receptor/G
protein interaction seemed to be stronger in the D2/Go
preparation. Agonist stimulation of [35S]GTPgS
(guanosine 5*-3-O-(thio)triphosphate) binding in the two
preparations also gave evidence for higher affinity
D2/Go interaction. In the D2/Go preparation, agonist
stimulation of [35S]GTPgS binding occurred at higher
potency for several agonists, and a higher stimulation
(relative to dopamine) was achieved in D2/Go compared
with D2/Gi2. Some agonists were able to stimulate
[35S]GTPgS binding in the D2/Go preparation but not in
D2/Gi2. The extent of D2 receptor selectivity for Go over
Gi2 is therefore dependent on the agonist used, and thus
agonists may stabilize different conformations of the
receptor with different abilities to couple to and acti-
vate G proteins.

There is considerable interest in understanding the action
mechanisms of agonists at receptors (1–3). Agonists must bind
to receptors, and this may be characterized in terms of an
affinity of agonist binding. Agonists must also activate the
receptor and associated signaling systems, and this property is
often referred to as efficacy. Efficacy is exhibited in terms of the
maximal effect induced by the agonist and also in the EC50 of
the agonist in activating the signaling system, which is often
lower than the concentration of agonist which achieves half-
maximal occupancy of the receptor.

For G protein-coupled receptors, an influential model of ag-
onist action is the ternary complex model and its recent exten-

sions (4–6). In this model the receptor exists in an inactive
ground state, which may isomerize to a partially activated
state (R*)1 that is able to couple more efficiently to the G
protein to form the coupled active species (R*G). The formation
of R*G may occur spontaneously, but in the presence of an
agonist both R* and R*G are stabilized, and the ternary com-
plex (AR*G) is formed. Guanine nucleotide exchange (GDP/
GTP) occurs in both the binary complex (R*G) and the ternary
complex (AR*G). The binary and ternary complexes dissociate
releasing aGTP and bg subunits of the G protein which can
alter effector activity. The agonist may also influence ternary
complex breakdown (7, 8) so that there are several places at
which agonism is determined.

There is, however, evidence that some receptors may interact
with more than one G protein so that influences on different
signaling pathways can occur. If a receptor can interact with
more than one G protein this may influence the potency of ago-
nist action and the pattern of agonist effects, i.e. the pharmaco-
logical profile of the response observed through the different G
proteins. For the 5HT1A serotonin receptor, it was shown that
the receptor interacts preferentially with Gi/Go/Gz subtypes of G
protein (9) and that the nature of the G protein subtype influ-
enced the agonist selectivity of the response (10). This question
was addressed more explicitly for the a2-adrenergic receptor (11).
Expression of Gao, together with the endogenous G proteins of
NIH 3T3 cells, altered the agonist selectivity of the receptor; the
partial agonists, oxymetazoline and clonidine, exhibited in-
creased efficacy. The possibility that the pharmacological profile
of the response depends on the nature of the G protein has been
termed “agonist trafficking” (12).

The D2 dopamine receptor has been shown to interact with
different G proteins to influence different signaling events (13,
14). In one study, interaction with Go has been shown to lead to
inhibition of calcium channels, whereas interaction with Gi

subtypes has been shown to lead to inhibition of adenylyl
cyclase (15). Also, the two splice variants of the D2 receptor
(D2short and D2long) have been reported to interact with differ-
ent G proteins (13), although a clear definition of the selectivity
pattern has not emerged as yet. Furthermore, the relative
efficacies of quinpirole and (1)-3-PPP are reversed when tested
on the D2 receptor in the striatum and the pituitary gland (16),
suggesting agonist trafficking, possibly via different G
proteins.

To investigate these phenomena we have expressed the D2
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dopamine receptor together with the G proteins Go and Gi2 in
insect cells, using the baculovirus system (17). This system
provides a powerful tool for the reconstitution of receptor/G
protein interactions. Insect cells do not contain endogenous
dopamine receptors, and interaction between recombinant re-
ceptors and the endogenous G proteins of the cells is minimal.

EXPERIMENTAL PROCEDURES

Materials

[phenyl-4-3H]Spiperone (25Ci/mmol) was from Amersham Pharma-
cia Biotech, and [35S]GTPgS (1,250 Ci/mmol) was from PerkinElmer
Life Sciences. Antibodies specific for different G protein subunits were
from Chemicon and Santa Cruz as indicated. Other reagents were
obtained as indicated or were of the highest purity available from
commercial suppliers.

Methods

Cell Culture—Sf21 cells were grown either in monolayers or in sus-
pension, using shaker flasks (25–100-ml cultures) agitated at 116 rpm.
Cells were cultured at 26 °C in TC100 medium supplemented with 8%
fetal calf serum and 0.1% Pluronic F-68 (Life Technologies, Inc.). CHO
cells expressing the long form of the rat D2 dopamine receptor (18, 19)
were grown in RPMI medium containing 5% fetal calf serum, 2 mM

L-glutamine, and 2 mM active Geneticin.
Construction and Isolation of Recombinant Baculovirus and Expres-

sion of the D2 Dopamine Receptor and G Protein Subunits in Sf21
Cells—The baculovirus transfer vector, containing the cDNA for the
FLAG-tagged D2long dopamine receptor, was constructed from three
DNA fragments (20). The first fragment consisted of the generic bacu-
lovirus transfer nonfusion vector, pVL1392 (PharMingen), digested
with PstI and BamHI. The second fragment was generated by polym-
erase chain reaction and comprised at its 59-end, a PstI restriction site,
to facilitate ligation to the vector, an ATG start codon, immediately
followed by DNA encoding the FLAG epitope and the first 116 amino
acids of the rat D2long receptor sequence, and at its 39-end, an Alw44I
restriction site to allow ligation to the final cDNA fragment. The final
fragment was a 1.0-kilobase cDNA fragment, coding for the remaining
amino acids of the dopamine receptor, and was excised from an existing
baculovirus transfer vector containing receptor cDNA (pVL1392D2),
using Alw44I and BamHI. The sequence of the DNA corresponding to
the polymerase chain reaction fragment and the three ligation sites was
confirmed by dideoxy DNA sequencing using the Sequenase version 2.0
DNA sequencing kit (United States Biochemical). Transfer of the
FLAG-D2long cDNA into the Autographa californica nuclear polyhedrosis
virus genome in the form of BaculoGold (PharMingen) was achieved by
cotransfecting Sf21 cells with plasmid DNA and BaculoGold in the pres-
ence of Lipofectin (Life Technologies, Inc.). Recombinant baculovirus was
purified by a single round of plaque purification (17) and stocks amplified
(100-ml cultures, multiplicity of infection 5 0.1). For expression, cells
were infected at a cell density of 1 3 106 cells/ml with recombinant
baculovirus at a multiplicity of infection of 10. Baculoviruses containing G
protein sequences were constructed as described (21).

Preparation of Washed Cell Homogenates—All operations were car-
ried out at 0–4 °C. Sf21 cells were harvested 48 h after infection by
centrifugation at 3,000 3 g for 10 min and resuspended at ;5 3 107

cells/ml in 20 mM HEPES, pH 7.4, 6 mM MgCl2, 1 mM EDTA, 1 mM

EGTA, and protease inhibitors (Boehringer COMPLETE ™). Sf21 cells
were homogenized with 50 strokes of a Dounce homogenizer and cen-
trifuged at 3,000 3 g for 10 min. The supernatant was collected and
centrifuged at 48,000 3 g for 60 min, and the pellet was resuspended in
20 mM HEPES, pH 7.4, 10 mM EDTA, 1 mM EGTA, and protease
inhibitors (Boehringer COMPLETE ™). The resulting washed mem-
brane homogenates were stored at 280 °C until used for Western blot
analysis or ligand binding assays.

Membrane preparations from CHO cells expressing D2 dopamine
receptors were made as described by Castro and Strange (18, 19).

Protein Determination—Protein was determined using the Lowry
method (22), with bovine serum albumin as the standard.

Ligand Binding Assays—Binding to washed membrane homogenates
(15–50 mg of protein) was assayed in triplicate using [phenyl-4-3H]spip-
erone (25Ci/mmol; 0.1–5 nM for saturation analyses and 1 nM for com-
petition assays). Except where indicated, assays were performed in a
final volume of 1 ml of assay buffer: 20 mM HEPES, 1 mM EDTA, 1 mM

EGTA, 6 mM MgCl2, pH 7.4. In agonist binding assays, 100 mM dithio-
threitol was added as an antioxidant. For substituted benzamide an-
tagonists, the standard assay buffer was supplemented with 100 mM

NaCl or N-methyl D-glucamine (NMDG) as indicated. Binding was
measured in the presence of 3 mM (2)-butaclamol and (1)-butaclamol to
define total and nonspecific binding, respectively, over a period of 180
min at 25 °C. Bound and free radioligands were separated by rapid
filtration through GF/B filters on a Brandel cell harvester with four
washes of 4 ml of phosphate-buffered saline (0.14 M NaCl, 3 mM KCl, 1.5
mM KH2PO4, and 5 mM Na2HPO4, pH 7.4). Bound radioactivity was
determined by liquid scintillation counting. Ligand binding data were
analyzed by nonlinear least squares regression using the computer
program GraphPad Prism (GraphPad Software Inc.).

In some saturation assays a total assay volume of 10 ml was em-
ployed. The protein amount was the same as in the 1-ml assays so that
the protein concentration was 10-fold lower. The concentrations of other
substances were the same as in the 1-ml assays, but the time of
incubation was 7 h.

[35S]GTPgS Binding Assays—In agonist stimulation experiments, 50
mg of cell membranes were incubated in triplicate with 10 mM GDP and
increasing concentrations of agonist in a final volume of 0.9 ml of buffer
(20 mM HEPES, 10 mM MgCl2, 100 mM NaCl, pH 7.4) for 30 min at 30 °C
as described by Gardner et al. (23–25). 0.1 ml of [35S]GTPgS (1,250
Ci/mmol) was added to a final concentration of 100 pM and the incuba-
tion continued for a further 20 min. Basal levels of [35S]GTPgS binding
were defined as that in the absence of agonist. Incubations were termi-
nated by rapid filtration through Whatman GF/B glass fiber filters
using a Brandel cell harvester with four washes of 4 ml of phosphate-
buffered saline, and radioactivity determined as above. When different
agonists were tested, a 1 mM dopamine control was always present in
the assay to allow relative efficacy determinations to be made.

In saturation binding experiments, 40 mg of cell membranes was
incubated in triplicate with 10 mM GDP, 100 pM [35S]GTPgS, 100 pM-100
nM GTPgS in the absence or presence of 1 mM dopamine in a final
volume of 1 ml of buffer for 2 h at 30 °C. Dopamine-stimulated
[35S]GTPgS binding was obtained by subtraction, and total dopamine-
stimulated GTPgS binding was determined as dpm bound 3 ([total
GTPgS]/[[35S]GTPgS]).

Determination of G Protein Level Using Quantitative Western Blot—
Before analysis, proteins (Sf21 membranes or pure G protein subunits)
were denatured by the addition of 10 ml of electrophoresis loading buffer
(100 mM Tris-Cl, 200 mM dithiothreitol, 4% SDS, 0.2% bromphenol blue,
20% glycerol) and heated at 90 °C for 5 min. Sf21 membrane proteins
(20–40 mg) and G protein standards were separated by SDS-polyacryl-
amide gel electrophoresis on 12% acrylamide gels. Samples were then
transferred to nitrocellulose membranes using the Bio-Rad semidry
transfer system. Nitrocellulose membranes were incubated for 1 h with
5% dried milk (w/v) in buffer (137 mM NaCl, 3 mM KCl, 25 mM Tris-Cl,
0.1% Tween). Membranes were then incubated overnight at 4 °C with
single primary antibodies (monoclonal antibody 3073 anti-ao, 1 mg/ml
(Chemicon); C-10 anti-a1–3, 1 mg/ml (Santa Cruz, see Fig. 2); monoclonal
antibody 3077 anti-ai2, 1 mg/ml (Chemicon, see Fig. 3); C-16 anti-b1, 0.4
mg/ml (Santa Cruz); A-16 anti-g2, 0.4 mg/ml (Santa Cruz)) in buffer
containing 5% dried milk (w/v). Membranes were washed five times
with buffer (10 min each) and then incubated with secondary antibody
(anti-mouse (ao, ai2)/rabbit (ai1–3, b1, g2) immunoglobin horseradish
peroxidase conjugate (Sigma, 1:5,000)) for 1 h. Membranes were then
washed three times (10 min each) with buffer before exposure to equal
volumes of Enhanced Chemiluminescence (ECL) detection reagents 1
and 2 (Amersham Pharmacia Biotech). Membranes were then wrapped
in Clingfilm and exposed to Hybond-ECL x-ray film for between 30 s
and 2 min. Densitometry was performed using a GS710 calibrated
imaging densitometer (Bio-Rad), and data were analyzed using Graph-
Pad Prism. Determinations of levels of G protein subunits were always
performed using ECL exposures that ensured a linear dependence of
band density on protein amount.

In some experiments membranes were extracted with 1% cholate, 1
M NaCl (10 mg of membranes/ml of cholate/NaCl) for 1 h at 4 °C. The
mixture was centrifuged at 4,500 3 g for 5 min at 4 °C, and the
supernatant and pellet were collected. These were then analyzed using
Western blotting as above, the pellet having been dissolved in 1%
cholate, 1% Nonidet P-40, and 1 M NaCl.

RESULTS

Expression of D2 Dopamine Receptors in Sf21 Cells—D2 do-
pamine receptors were expressed in Sf21 insect cells using the
baculovirus expression system. The expressed receptors were
characterized using ligand binding with [3H]spiperone. Satu-
ration analyses of [3H]spiperone binding (1-ml assay volume)
gave a Kd of 145 pM (pKd 9.84 6 0.03, mean 6 S.E., n 5 3) and

D2 Dopamine Receptor/G Protein Specificity28668



a Bmax of ;2 pmol/mg. When these assays were repeated in a
10-ml format a similar Kd was observed (171 pM (pKd 9.77 6
0.21, mean 6 S.E., n 5 3)). The similarity of the Kd values from
1-ml and 10-ml assays demonstrates that radioligand depletion
artifacts are absent from the assays (26).

A series of antagonists exhibited competition curves versus
[3H]spiperone which were best fitted by one-binding site mod-
els. The derived Ki values are given in Table I for experiments
using buffer containing sodium ions and where the sodium had
been replaced by NMDG to maintain ionic strength. The rank
order of Ki values is similar to that observed for the D2 receptor
expressed in other systems, so the receptor is being expressed
with fidelity in the present experiments. The substituted benz-
amide antagonists, e.g. sulpiride, are sensitive to the removal
of sodium ions in these assays. Some data are also given for
these drugs when binding to D2 receptors expressed in CHO
cells. In the presence of sodium ions Ki values are similar for
the receptor expressed in the two cell backgrounds, whereas
upon removal of sodium ions, binding of substituted benzamide
drugs is of lower affinity for the receptors expressed in Sf21
cells.

Competition binding experiments were also performed with
the agonists N-propyl norapomorphine (NPA) and dopamine
and, except in one experiment with NPA, the data fitted best to
a single-binding site model, and there was no significant effect
of the addition of 100 mM GTP (see Table III). Formation of
receptor-G protein complexes cannot, therefore, be detected in
this way. Also, dopamine stimulation of [35S]GTPgS binding
could not be detected in membranes expressing the D2 receptor
without exogenous G proteins, whereas (see below) this activity
was clearly present in membranes expressing exogenous G
protein. The D2 dopamine receptor does not, therefore, interact
strongly with the endogenous G proteins of Sf21 cells. Simi-
larly, when the formyl peptide receptor was expressed in Sf 9
insect cells no agonist stimulation of [35S]GTPgS binding to the
endogenous G proteins could be detected (27).

Coexpression of D2 Dopamine Receptors and G Proteins in

Sf21 Cells—In these experiments the D2 dopamine receptor
was expressed in Sf21 cells together with G protein a, b, and g
subunits. The G protein a subunits (ao and ai2) were used
because the D2 receptor has been reported to interact with
these (13). The b1 and g2 subunits were used for all of the
studies here because these subunits support coupling between
several receptors and G protein a subunits (27–31). In prelim-
inary experiments, different multiplicity of infection values for
the different baculoviruses containing the four proteins were
tested to obtain similar receptor expression levels and a high
[35S]GTPgS binding response to dopamine. Based on these
findings (data not shown), in the experiments described below,
multiplicity of infection values were used as follows: for mem-
branes expressing Gai2, receptor/ai2/b1/g2–2/2/1/1; for mem-
branes expressing Gao, receptor/ao/b1/g2–3/1/1/1.

The levels of D2 receptor were determined in the membranes
using saturation analyses with [3H]spiperone (Fig. 1 and Table
II). Levels of D2 dopamine receptor were similar in the two
preparations, and there was no significant difference in the
radioligand affinity. The affinity for [3H]spiperone binding was
unaffected by the addition of 100 mM GTP in both preparations
and was not significantly different from that for the receptor
expressed alone.

The levels of G protein a, b, and g subunits were determined
by quantitative Western blot, and the levels were not signifi-
cantly different in the two preparations (Table II). Represent-
ative blots are shown in Fig. 2. Levels of a subunits were also
determined after extraction of the membranes with 1% cholate.
In each preparation 60–70% of the a subunit was found in the
cholate extract, suggesting that the majority of the expressed
subunits were fully active (Fig. 3). [35S]GTPgS saturation bind-
ing assays in the presence of dopamine were also performed in
the two preparations, and these showed Bmax and Kd values for
[35S]GTPgS binding which were not significantly different (Ta-
ble II and Fig. 1).

Agonist Binding to D2 Dopamine Receptors Coexpressed with
G Proteins—The binding of agonists to D2 dopamine receptors

TABLE I
Binding of drugs to D2 dopamine receptors expressed in Sf21 and CHO cells

Competition experiments versus [3H]spiperone for various substances were performed as described under “Experimental Procedures,” and Ki
values (pKi 6 S.E., Ki from three or more experiments) were derived from the best fit curves to one-binding site models.

Ligand

Sf21 CHO

pKi 6 S.E. Fold affinity
change

pKi 6 S.E. Fold affinity
changeNMDG Na1 NMDG Na1

nM nM

[3H]Spiperone 9.46 6 0.04 9.72 6 0.05 1.81 10.02 6 0.08 10.08 6 0.13 1.0
(0.34)a (0.19) (0.09) (0.08)

(1)-Butaclamol 8.38 6 0.10 8.37 6 0.14 1.0 NDb ND ND
(4.2) (4.3)

Nemonapride 7.83 6 0.15 9.57 6 0.09 551 8.89 6 0.19 10.05 6 0.19 141
(15.0) (0.27) (1.3) (0.09)

Clozapine 6.32 6 0.03 6.63 6 0.07 21 6.58 6 0.13 6.20 6 0.05 2.02
(480) (240) (260) (630)

Clebopride 5.89 6 0.07 8.11 6 0.05 1651 7.07 6 0.09 8.40 6 0.11 211
(1,300) (7.7) (85) (4.0)

Raclopride 5.79 6 0.09 7.44 6 0.27 451 ND ND ND
(1,600) (36.0)

(2)-Sulpiride 5.15 6 0.20 6.48 6 0.16 221 ND ND ND
(7,100) (330)

Metoclopramide 4.81 6 0.05 6.68 6 0.14 731 5.26 6 0.13 6.93 6 0.04 471
(15,000) (210) (5,500) (120)

Tiapride ,4.11 6.01 6 0.15 731 ND ND ND
(.77,000) (1,000)

Remoxipride ,4.0 5.66 6 0.22 .291 ,5.1 5.95 6 0.14 .71
(.100,000) (2,200) (.7,900) (1,100)

Dopamine 3.98 6 0.13 4.51 6 0.10 31 ND ND ND
(100,000) (31,000)

a Values in parentheses are Ki, in nM.
b ND, not determined.
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was determined in competition with [3H]spiperone in the prep-
arations containing Go and Gi2. Competition curves for several
agonists (NPA, dopamine, (1)-3-PPP, m-tyramine), in both
preparations, were best fitted by a two-site binding model with
20–30% higher affinity sites (Figs. 4 and 5; Table III). The
proportion of higher affinity sites for a ligand did not differ
significantly between the two preparations. Competition exper-
iments for dopamine and NPA were also performed in the
presence of 100 mM GTP, and competition curves under these
conditions were best described by one-binding site models; the
affinity in the presence of GTP was similar to that of the lower
affinity site observed in the absence of GTP and also similar to
that observed in preparations expressing receptor alone. For
(2)-3-PPP, data obtained in the preparation containing Go

were also fitted best to a two-site model. For other agonists in
both preparations (bromocriptine and p-tyramine) and for (2)-
3-PPP in the preparation containing Gi2 the competition curves
were best fitted by a one-binding site model. When Ki values for
the different sites were compared between the two prepara-
tions there were significant differences for some agonists (NPA,
m-tyramine) at the higher affinity site, but for other agonists
affinities at this site were not significantly different. Affinities
at the lower affinity site and for the single affinity site seen for
some agonists were not significantly different between the two
preparations.

Stimulation of [35S]GTPgS Binding by Agonists—G protein
activation by agonists in the two preparations was assessed by
determining agonist-stimulated [35S]GTPgS binding (Fig. 6).

FIG. 1. Saturation analyses for [3H]spiperone and [35S]GTPgS binding in membranes of Sf21 cells expressing D2 dopamine
receptors and G proteins. [3H]Spiperone and [35S]GTPgS saturation binding experiments were performed on membranes expressing D2
dopamine receptors and either Go (panels A, C, and E) or Gi2 (panels B, D, and F) as described under “Experimental Procedures.” In panels C and
D data are given for [35S]GTPgS binding in the absence (E) and presence (●) of 1 mM dopamine. The dopamine-stimulated [35S]GTPgS binding was
determined by subtraction and was corrected for the added nonradioactive GTPgS as described under “Experimental Procedures” to give the data
in panels E and F. Data are from representative experiments replicated as in Table I, and the curves in panels A, B, E, and F are best fit curves
to one-site binding models.
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These assays were conducted in the presence of 10 mM GDP to
suppress basal [35S]GTPgS binding and to observe agonist
stimulation of [35S]GTPgS binding over the basal level (23–25).
Basal levels of [35S]GTPgS binding may be high in this system
because of the high levels of G protein a subunit expression.
Under these conditions (i.e. in the presence of 10 mM GDP), full

agonists lead to an approximate doubling of the rate of
[35S]GTPgS binding relative to the basal rate in both prepara-
tions. The EC50 values and maximal effects for a range of
agonists are given in Table IV, and there are significant differ-
ences between the preparations containing Go and Gi2. Several
compounds stimulated [35S]GTPgS binding to the same or
greater extent than dopamine in both preparations. Four ago-
nists (m-tyramine, p-tyramine, (1)-3-PPP, (2)-3-PPP), gave
greater maximal stimulation in the preparation containing Go

compared with the preparation containing Gi2. Indeed, two of
the compounds (p-tyramine and (2)-3-PPP) were unable to
stimulate [35S]GTPgS binding in the preparation containing
Gi2. In addition to these differences in maximal stimulation,
there were also significant differences (4–16-fold) in the EC50

values for the stimulation of [35S]GTPgS binding between the
two preparations for all the compounds tested, with the excep-
tion of bromocriptine.

DISCUSSION

In this study we have expressed the D2 dopamine receptor
together with the G proteins Go and Gi2 in insect cells using the

TABLE II
Expression of D2 dopamine receptors and G proteins in Sf21 cells

D2 dopamine receptors were expressed together with G protein subunits as described under “Experimental Procedures,” and saturation binding
analyses using [3H]spiperone were performed to determine levels of D2 receptor. Binding parameters (Kd and Bmax) were derived from the data,
and values are expressed as the mean 6 S.E. (3). G protein levels were determined using quantitative Western blot and are expressed as the
mean 6 S.E. (3–4). Neither D2 receptor nor G protein levels were significantly different in the two preparations (p . 0.05). [35S]GTPgS saturation
binding assays were performed, and Kd and Bmax values are given; these were not significantly different between the two preparations (p . 0.05).

Preparation

[3H]Spiperone binding
G protein Western blot [35S]GTPgS saturation binding

pKd 6 S.E. (Kd)
Bmax control

Control 1 GTP (100 mM) a-subunit b1-subunit g2-subunit pKd 6 S.E.
(Kd) Bmax

pmol/mg pmol/mg pmol/mg

D2/ao/b1/g2 10.01 6 0.12 9.74 6 0.26 1.16 6 0.08 410 6 140 110 6 50 38 6 13 8.80 6 0.17 1.34 6 0.30
(98 pM) (180 pM) (1.6 nM)

D2/ai2/b1/g2 9.78 6 0.02 9.67 6 0.09 1.11 6 0.07 180 6 60 130 6 40 34 6 15 8.34 6 0.12 2.61 6 0.91
(160 pM) (220 pM) (4.6 nM)

FIG. 2. Determination of G protein levels by quantitative West-
ern blot. Samples of membranes expressing receptor and G proteins
were analyzed by Western blot together with known amounts of pure G
protein a, b, or g subunit as described under “Experimental Proce-
dures.” Representative blots are shown for the preparations containing
Go and Gi2. The amount of G protein expressed was calculated, and the
mean values from replicate experiments are given in Table II. In panels
A and B lanes 1–3 contain 0.5, 0.25, and 0.1 mg of pure G protein a
subunit, respectively (panel A, ao; panel B, ai2), and lane 4 contains 20
mg of membrane protein. In panel C (lanes 1–4) 0.3, 0.2, 0.1, and 0.05 mg
of pure bg dimer, respectively, was analyzed, and lanes 5 and 6 contain
20 mg of membrane protein (lane 5, Go; lane 6, Gi2), and the blot was
probed for the b1 subunit. In panel D (lanes 1–4) 0.15, 0.05, 0.025, and
0.0125 mg of pure bg dimer, respectively, was analyzed, and lanes 5 and
6 contain 40 mg of membrane protein (lane 5, Go; lane 6, Gi2), and the
blot was probed for the g2 subunit.

FIG. 3. Extraction of G protein a subunits by cholate. Mem-
branes from preparations expressing Go or Gi2 were extracted with 1%
cholate as described under “Experimental Procedures,” and the levels of
G protein a subunit were determined as in Fig. 2. In panels A and B,
lanes 1–5 contain 1, 0.5, 0.1, 0.05, and 0.01 mg of pure G protein a
subunit, respectively (panel A, ao; panel B, ai2), and lanes 6 and 7
contain, respectively, the supernatant and pellet from the cholate ex-
tract (equivalent to 100 mg of membrane protein). The distribution of a
subunit in the two preparations was: Go supernatant, 68 6 5%; pellet,
32 6 5%; Gi2 supernatant, 59 6 8%; pellet, 41 6 8% (mean 6 S.E. (3)).
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baculovirus system. We show that the D2 receptor interacts
more strongly with Go than Gi2 and that this influences the
functional selectivity of agonist signaling. We also show that
the extent of the selectivity of the interaction between the D2

receptor and Go or Gi2 depends on the agonist used. Thus,
agonists may stabilize different conformations of the receptor
with different abilities to interact with and activate G proteins.
This is the first study to address this issue for the D2 dopamine
receptor in a fully defined system.

The levels of receptor (R) and G protein (G) subunits (ao/ai2,
and b1 and g2) in the preparations expressing Go and Gi2 were
determined using saturation analysis with the radioligand
[3H]spiperone and quantitative Western blot, respectively. The
levels of a subunit detected were similar to those reported in
other studies on expression of receptors and Gi or Gs proteins in
insect cells (27, 32). The g2 subunit was expressed at lower
levels than either the b1 or a subunits and so may limit the
levels of G protein heterotrimers. Membranes were also ex-
tracted with 1% cholate because this has been proposed to
extract active G protein (33–36); in each preparation 60–70% of
the a subunit was extractable. Based on these values and the
limiting level of g2 subunit, there was a ratio of heterotrimeric
G protein to receptor of ;20-fold in both preparations. This
ratio is comparable with to obtained in other studies on expres-
sion of receptors and G proteins. G/R ratios of ;30–100 have
been reported in insect cells (27, 31, 32), and G/R ratios of ;50
have been reported for a2 adrenergic receptors in platelets (37)
and ;100 for b-adrenergic receptors in lymphoma cells (38).

[35S]GTPgS saturation binding assays were performed in the
two preparations. These assays have been used by others to

assess G protein levels (see, e.g. Ref. 39). In the present system,
[35S]GTPgS saturation binding assays gave similar values for
the level of dopamine-stimulated [35S]GTPgS binding in the
two preparations. The levels determined by [35S]GTPgS bind-
ing are low compared with the numbers of G proteins measured
by quantitative Western blot. This is probably because there is
a high concentration of GDP in the [35S]GTPgS binding assays
which reduces the binding of the radioligand substantially. At
the highest concentrations of GTPgS used, there is more than
a 100-fold excess of GDP, and therefore it is not surprising that
the levels of a subunits detected by Western blotting are
roughly 100-fold higher than detected in the [35S]GTPgS bind-
ing assays. Nevertheless, in the present study, based on these
different determinations, the levels of receptor and G protein
subunits were similar in the membranes expressing Go and Gi2.
The two preparations are, therefore, comparable, and any dif-
ferences between the preparations are unlikely to be caused
either by receptor or G protein numbers.

Agonist binding in the membranes expressing receptor and
G protein (Go, Gi2) could, for many agonists, be resolved into
contributions from sites of higher and lower affinity in similar
proportions in the two preparations. This shows that the ex-
pressed D2 receptor and G proteins are able to interact. For two
of the agonists (dopamine, NPA), GTP abolished the higher
affinity binding site. The affinity seen in the presence of GTP
was similar to both the lower affinity site seen in the absence of
GTP and the affinity for these agonists seen in a preparation
containing receptor alone. These data follow the predicted be-

FIG. 4. Binding of agonists to membranes of Sf21 cells express-
ing D2 dopamine receptors and G proteins. The binding of dopam-
ine (●), bromocriptine (ƒ), and (2)-3-PPP (E) to membranes expressing
D2 receptor and either Go (panel A) or Gi2 (panel B) was determined in
competition versus [3H]spiperone as described under “Experimental
Procedures.” Data shown are from representative experiments repli-
cated as in Table II, and the curves are the best fit curves to one-site
(R/Go, ƒ; R/Gi2, ƒ, E) or two-site models (R/Go, E, ●; R/Gi2, ●).

FIG. 5. Binding of agonists to membranes of Sf21 cells express-
ing D2 dopamine receptors and G proteins. The binding of NPA to
membranes expressing D2 receptor and either Go (panel A) or Gi2 (panel
B) was determined in competition versus [3H]spiperone in the absence
(E) or presence (●) of 100 mM GTP as described under “Experimental
Procedures.” Data shown are from representative experiments repli-
cated as in Table II, and the curves are the best fit curves to one-site (●)
or two-site models (E).
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havior of a system that conforms to a ternary complex model
with an excess of receptor over G protein (40, 41). The data on
the levels of receptor and G protein in the membranes show,
however, that there is an excess of G protein over receptor of
about 20-fold. Similar discrepancies between inferred and
measured R/G ratios have been noted in other systems. It has
been proposed (37, 42) that receptors and G proteins may not
interact freely and that there may be microdomains with dif-
ferent amounts of receptor and G protein. Alternatively, the
ternary complex models are an oversimplification and receptor
and G protein may form oligomers with properties different
from the predictions of the models (43).

Two observations from the ligand binding studies suggest
that there may be a greater affinity of the D2 receptor for Go

than for Gi2 when occupied by several agonists. First, the
affinity of the higher affinity site is higher in the preparation
containing Go, for m-tyramine and NPA. This affinity differ-
ence should reflect the affinity of R/G coupling, given that the
ground state affinity of the receptor is similar in the two prep-
arations. Also, (2)-3-PPP is unable to stabilize the higher af-
finity state in the preparation containing Gi2 but can do so in
the preparation containing Go. In agreement with these find-
ings, differences in agonist affinity for one receptor coupled to
different G proteins have been described by others (11, 44, 45).

A range of agonists was used to stimulate [35S]GTPgS bind-
ing in the two preparations to assess G protein activation.
Maximal agonist effects (relative to dopamine) were greater in
the preparation containing Go, and some agonists (p-tyramine,
(2)-3-PPP) were unable to stimulate [35S]GTPgS binding at all
in the preparation containing Gi2. The potencies of agonists to
stimulate [35S]GTPgS binding were also generally greater in
the preparation containing Go, with the exception of bromocrip-
tine. These data suggest that there is a more productive inter-
action between the D2 receptor and Go. The affinity of the
interaction between receptor and G protein may contribute to
this, as suggested above from the ligand binding data. The
pattern of agonist binding and potencies in [35S]GTPgS binding
assays is very similar in the preparation containing Go com-
pared with that seen for the D2 receptor expressed in CHO cells

FIG. 6. Stimulation of [35S]GTPgS binding by agonists in mem-
branes of Sf21 cells expressing D2 dopamine receptors and G
proteins. The stimulation of [35S]GTPgS binding by agonists was de-
termined as described under “Experimental Procedures” in membranes
expressing D2 receptor and either Go (panel A) or Gi2 (panel B). Agonists
used were as follows: bromocriptine (M), dopamine (l), NPA (f), quin-
pirole (�), m-tyramine (‚), p-tyramine (ƒ), (2)-3-PPP (E), and (1)-3-
PPP (�). The data are representative stimulation curves replicated as
in Table IV.

TABLE III
Agonist binding to D2 dopamine receptors expressed in Sf21 cells

Competition experiments versus [3H]spiperone were used to derive the binding parameters from the best fit curves (Ki from one-binding site
models and Kh, Kl, and percent high affinity sites from two-binding site models) for experiments using membranes expressing D2 receptors and G
proteins. Data are expressed as the mean 6 S.E. from three or more experiments. In preparations of membranes that had been infected only with
the baculovirus coding for D2 receptor, the following values were obtained: dopamine 2GTP (4.80 6 0.13 (16 mM)) 1GTP (4.83 6 0.08 (15 mM)); NPA
2GTP (7.51 6 0.19 (31 nM)) 1GTP (7.11 6 0.10 (77 nM)) (competition curves fit best to a one binding site model).

Ligand

Preparation

D2/ao/b1/g2 D2/ai2/b1/g2

pKh (mean 6 S.E.)
(Kh)

pKl (mean 6 S.E.)
(Kl)

% High affinity
sites

pKh (mean 6 S.E.)
(Kh)

pKl (mean 6 S.E.)
(Kl)

% High affinity
sites

nM nM

Bromocriptine 9.09 6 0.20 8.97 6 0.03
(0.82) (1.1)

Dopamine 7.12 6 0.20 4.68 6 0.13 23 6 8 7.15 6 0.17 4.40 6 0.24 19 6 5
(76) (21,000) (70) (40,000)

Dopamine 1 GTP (100 mM) 4.69 6 0.14 4.93 6 0.04
(20,000) (12,000)

NPA 10.24 6 0.23 7.47 6 0.37 33 6 9 9.44 6 0.08 7.22 6 0.16 33 6 6
(0.06) (34) (0.36) (61)

NPA 1 GTP (100 mM) 7.40 6 0.17 7.49 6 0.32
(40) (32)

(1)-3-PPP 7.97 6 0.29 4.55 6 0.09 22 6 6 7.74 6 0.29 4.32 6 0.10 19 6 4
(11) (28,000) (18) (48,000)

(2)-3-PPP 7.73 6 0.10 4.96 6 0.01 19 6 5 4.80 6 0.03
(19) (11,000) (16,000)

m-Tyramine 7.60 6 0.18 4.79 6 0.30 36 6 9 6.76 6 0.36 .100,000 31 6 4
(25) (16,000) (170)

p-Tyramine 4.27 6 0.03 4.13 6 0.04
(54,000) (74,000)
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(23–25). The present system is, therefore, behaving similarly to
a system in which the receptor couples exclusively with endog-
enous mammalian G proteins.

To understand the differences between the two preparations
in more detail, the data were analyzed to provide the Kl/EC50

ratio (ratio of agonist binding dissociation constant to agonist
potency) (Table V). The Kl/EC50 ratio (or amplification ratio
(24, 25, 46)) indicates the extent to which agonist activation of
a response occurs at lower concentrations than agonist binding
to the receptor and so is a measure of receptor/G protein acti-
vation. The Kl/EC50 ratio of the agonists is greater in the
preparation containing Go than in the preparation containing
Gi2, providing a further indication that there is a more produc-
tive interaction between the D2 receptor and Go.

For the preparation containing Go, greater Kl/EC50 ratios are
generally observed for the agonists that give greater maximal
effects for stimulation of [35S]GTPgS binding. In this prepara-
tion, therefore, the two measures of efficacy, agonist maximal
effect and Kl/EC50, are in agreement for a range of compounds.
For the preparation containing Gi2, lower values of Kl/EC50 are
seen for several agonists, but for two of the agonists, p-tyra-
mine and (2)-3-PPP, no agonism is seen at all. For these
compounds, binding to the receptor appears to be insufficient to
stabilize receptor/G protein interaction. In this preparation,
therefore, receptor/G protein interaction is less efficient, and
for some agonists there is a complete failure to signal. The data

outlined earlier show that the affinity of the D2 dopamine
receptor is greater for Go than for Gi2. This cannot be the only
factor influencing the activation of the G proteins because
otherwise a general reduction in signaling efficiency would be
seen for all agonists tested when the lower affinity interaction
is present, i.e. in the Gi2 preparation. This suggests that dif-
ferent agonists are able to stabilize different conformations of
the receptor with different affinities for the G protein and
different functional activities in the ternary complex rather
than there being differential stabilization of the same activated
state by different agonists. As a result, the selectivity of the D2

receptor for Go over Gi2 is dependent on the agonist used. The
two agonists that show the greatest selectivity, p-tyramine and
(2)-3-PPP, are both monohydroxylated compounds. It is inter-
esting that for the a2A-adrenergic receptor, catechol agonists,
e.g. noradrenaline, lead to stimulation of both Gi- and Gs-de-
pendent pathways, whereas monohydroxylated agonists,
e.g. octopamine, lead only to activation of Gi-dependent path-
ways (47).

Further evidence that agonists may regulate the activity of
the ternary complex comes from analysis of the Kl/Kh ratio
(ratio of low affinity and high affinity agonist dissociation con-
stants). The Kl/Kh ratio was derived from the ligand binding
data (Table V) because this has been proposed to be an index of
the ability of the agonist to stabilize receptor/G protein cou-
pling (see, e.g. Ref. 40). There is no clear relationship between

TABLE V
Agonist signaling parameters

Parameters were derived from data in Tables III and IV. Kh and Kl are respectively the dissociation constants for the higher and lower affinity
agonist binding sites as in Table III. EC50 is the concentration of agonist which gives a 50% maximal response in the [35S]GTPgS binding assays
as in Table IV.

Ligand

Preparation

Kl/Kh Kl/EC50

D2/ao/b1/g2 D2/ai2/b1/g2 D2/ao/b1/g2 D2/ai2/b1/g2

Bromocriptine 1 1 0.6 0.6
Dopamine 270 570 23 2.8
NPA 600 170 19 4.8
(1)-3-PPP 2,600 2,700 7.9 3.3
(2)-3-PPP 600 1 7.5
m-Tyramine 660 .600 8.7 6.4
p-Tyramine 1 1 1.3

TABLE IV
Agonist stimulation of [35S]GTPgS binding via D2 dopamine receptors expressed in Sf21 cells

The stimulation of [35S]GTPgS binding in membranes expressing D2 receptors and G proteins was determined as described under “Experimental
Procedures.” The maximum response (relative to dopamine) and the EC50 were determined. Data are expressed as the mean 6 S.E. from three or
more experiments.

Ligand

Preparation

D2/ao/b1/g2 D2/ai2/b1/g2

pEC50 6 S.E.
(EC50)

% Maximal dopamine
response

pEC50 6 S.E.
(EC50)

% Maximal dopamine
response

nM nM

Bromocriptine 8.82 6 0.17 145 6 13 8.70 6 0.09 97 6 15
(1.5) (2.0)

Dopamine 6.05 6 0.20 100 4.84 6 0.10 100
(890) (14,000)

NPA 8.75 6 0.22 113 6 9 7.90 6 0.08 134 6 15
(1.8) (13)

(1)-3-PPP 5.45 6 0.12 86 6 1 4.84 6 0.14 64 6 5
(3,600) (15,000)

(2)-3-PPP 5.83 6 0.27 53 6 5 NDa 0
(1,500)

Quinpirole 6.29 6 0.15 95 6 11 5.57 6 0.15 101 6 6
(510) (2,700)

m-Tyramine 5.73 6 0.15 104 6 13 4.80 6 0.05 68 6 6
(1,900) (16,000)

p-Tyramine 4.40 6 0.23 52 6 5 ND 0
(40,000)

a ND, not determined.
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the maximal effects of the agonists in [35S]GTPgS binding
assays and the Kl/Kh ratio. Therefore, stabilization of recep-
tor/G protein coupling is not a clear predictor of agonist effi-
cacy, and similar results were seen in other studies on the D2

receptor expressed in CHO cells (24, 25). Agonists may, there-
fore, influence the activity of the ternary complex as well as its
formation (7, 8, 24, 25).

The behavior of bromocriptine provides further support for
the idea that agonists stabilize different receptor conforma-
tions. Bromocriptine is a full agonist on both preparations, and
its potency (EC50) and binding affinity (Kl) are similar in each
preparation, leading to identical Kl/EC50 ratios, in contrast to
the other agonists tested. This suggests that the bromocriptine-
receptor complex has a similar affinity for the two G proteins.
Bromocriptine is an unusual compound in that its binding to D2

receptors conforms to a single-site binding model (Table II) and
is insensitive to guanine nucleotides (24, 25, 48). It has been
suggested that this is because bromocriptine is able to stabilize
a conformation of the receptor which is close to the conforma-
tion in the active receptor-G protein complex (49, 50) so that
there is little energy gain in coupling to the G protein. This
would be consistent with the present findings in that the bro-
mocriptine-receptor complex does not show any discrimination
between Go and Gi2, and the G protein is fully active in each
case. The close agreement between Kl and EC50 supports this
contention.

In conclusion, we have shown that the D2 dopamine receptor
has a greater affinity for the G protein Go than for Gi2. Activa-
tion of Go occurs with higher potencies for agonists and greater
relative efficacies for partial agonists, and this is in agreement
with the findings of Yang and Lanier (11) for the a2-adrenergic
receptor. The data do not provide evidence for agonist traffick-
ing in that there are no clear reversals of agonist potency. The
pattern of agonist potencies is, however, different for the two
receptor-G protein combinations. Therefore, the extent of se-
lectivity of the D2 dopamine receptor for the two G proteins (Go,
Gi2) depends on the agonist used. Different agonists, therefore,
stabilize different conformations of the receptor which can cou-
ple to and activate G proteins differentially.
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