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ABSTRACT 

Effects of Fixed and Mixed Delays on Responding under Variable-Interval Schedules 

James E. Cook 

Delays to reinforcement are ubiquitous in the natural environment, where those delays often 
vary. Still, most research examining delayed reinforcement has focused only on fixed delays. 
Little research has examined the effects of variable delays. Nonresetting fixed and mixed delays 
to reinforcement were imposed on the responding of 4 pigeons previously maintained on a 
multiple variable-interval (VI) VI schedule of immediate reinforcement. Mixed delays consisted 
of two alternating delay values, the mean of which equaled the value of the fixed delay. A 
progressive delay procedure was used, in which delay durations increased across successive 
sessions. Conditions included using unsignaled (Mixed-Change) and signaled delays (Mixed-
Signaled) in which both mixed delay values changed across sessions. A third condition (Mixed-
Constant) involved using unsignaled delays in which one of the mixed delay values remained 
constant while the other progressively increased across sessions. Mixed delay components 
maintained higher rates of responding in some conditions. Response rates decreased more and 
changes in interresponse times were greater with unsignaled than signaled delays. With 
unsignaled delays, changes in responding were a function of the average obtained delay within 
each component of the multiple schedule, regardless of whether the delays were fixed or mixed. 
Obtained delays tended to be shorter in the mixed delay component, resulting in higher rates of 
responding. 
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Effects of Fixed and Mixed Delays on Patterns of Responding 

 Delays of reinforcement are ubiquitous, occurring whenever time elapses between a 

response and the delivery of the reinforcer it produces —waiting for someone to answer the 

phone, listening for the reply to a knock on the door, watching an old computer open a file. 

Given the regularity with which delays are encountered, it is unsurprising the topic serves as a 

rich area of study for the experimental analysis of behavior, where it has been demonstrated as 

one of the principal parameters affecting the efficacy of a reinforcer and the patterns of 

responding maintained by it (for a review see Lattal, 2010). 

Knowledge of the effects of delayed reinforcement is relevant as not all behavior is 

immediately reinforced. Rarely is the phone call immediately answered. Time creeps in between 

the last number dialed and the answer on the other end. Furthermore, not all delays are marked 

merely by time passing. In the moments between response and reinforcer delivery, much can 

happen. The phone may ring three or eight times, and when on hold, the caller may hear music 

rather than rings. Numerous distractions may occur in the environment around the caller, and the 

caller may engage in other behavior while waiting. Such factors make an understanding of the 

delay itself and its influence on behavior in the natural environment difficult, requiring 

experiments be conducted to control for other variables.  

Many such experiments have examined the effects of delayed reinforcement on behavior, 

but the full picture is still unrevealed. For instance, compared to the effects of fixed delays to 

reinforcement, little is known about the effects of variable delays, despite the frequency with 

which they are encountered. It is unknown if they differentially affect rates and patterns of 

responding, and if so, to what extent. The following review of the literature examines those 
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studies that laid the groundwork for much of the current knowledge regarding delayed 

reinforcement and forms the basis for a question and experiment designed to assess the effects of 

fixed and mixed delays to reinforcement on responding previously maintained by immediate 

reinforcement. 

Literature Review  

Effects of Delay of Reinforcement 

 The more temporally contiguous two events are, the more likely a cause and effect 

relation will be attributed to them. This applies not only to observations of events in the physical 

environment, for instance a fallen tree might be attributed to a recent storm rather than the earlier 

one that actually felled it, but also to the behavior of organisms (Wallace, 1974). Thus the more 

temporally contiguous a response (cause) is to the reinforcer produced by it (effect), the stronger 

the relation between them and the greater the impact that stimulus change will have on future 

behavior.   

Thorndike (1911) in fleshing out those parameters that influenced the law of effect noted 

one of the key factors that influenced acquiring a response was the interval of time between the 

response and the satisfaction or discomfort produced by it. The greater the interval of time 

between the response and its consequence, whether appetitive or aversive, the slower the rate of 

learning. Following Thorndike, numerous experiments were conducted examining the effect of 

delay to reinforcement on responses as varied as digging (Watson, 1917), maze-running 

(Hamilton, 1929), and escaping a problem box (Roberts, 1930) such that by 1933 the evidence 

on delayed reinforcement supported the following conclusions: Immediate reinforcement was 

preferred to delayed reinforcement, and delays to reinforcement increased errors and time to 
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respond across trials (Renner, 1964). Though research on the effects of delayed reinforcement on 

discrete trial performance continued (for reviews, see Renner, 1964; Tarpy & Sawabini, 1974), 

Skinner (1938) began examining the effects of delayed reinforcement on free-operant 

responding. 

 Here too learning was impaired by delays to reinforcement. Skinner (1938) first observed 

this when he demonstrated that a lever-press response could be acquired following an unsignaled 

resetting 8-s delay to reinforcement, but the rate of acquisition was slower as the delay increased. 

Acquisition of responding under unsignaled delayed reinforcement was later investigated by 

Lattal and Gleeson (1990). Across several experiments, they demonstrated that response 

acquisition was possible within a few hours under conditions of unsignaled delayed 

reinforcement with both resetting and nonresetting delays, in which the delay interval between 

response and reinforcer delivery is or is not reset with each response. The former holds the delay 

interval static, while the latter may have a nominal or programmed delay and a different obtained 

delay that consists of the time between the last response and reinforcer delivery. Wilkenfield, 

Nickel, Blakely, and Poling (1992) later compared the rates of acquisition and patterns of 

responding of a lever press response for groups of rats in which responding was reinforced never, 

immediately, or after unsignaled resetting or nonresetting delays of 4-32 s. The response was 

acquired for all groups except for those that never received reinforcement. Furthermore, speed of 

acquisition under delayed reinforcement was slower in comparison to immediate reinforcement 

only for those groups where responding was reinforced after a resetting 16 or 32-s delay.  

As further demonstration of the effects of delays on response acquisition, Escobar and 

Bruner (2007) exposed experimentally naïve rats to a chamber equipped with seven levers. 

Among these levers, only the center lever produced reinforcers on a tandem random interval (RI) 
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x fixed time (FT) y schedule. The values of x and y varied across subjects but always summed to 

32 s. The other levers were inoperative but responses on them were recorded. When the FT 

component was 0 or 2 s, responding was concentrated on the center lever, but as the FT value 

increased, responding spread across the other levers. These findings illustrate how the temporal 

contiguity between response and reinforcer focuses responding on that behavior which produces 

reinforcement (Staddon, 1979). Greater delays allow for the induction and adventitious 

reinforcement of other behavior (Lattal, 2010), slowing down the acquisition of the response 

upon which reinforcement is dependent. 

To date, the majority of studies that have been conducted on the effects of delays of 

reinforcement on free-operant responding have focused on their effects on steady-state 

responding maintained by immediate reinforcement. The results of such studies show that as 

delays to reinforcement increase, response rates generally decrease from baseline levels. Skinner 

(1938) began the study of the effects of delays on free-operant responding by imposing 

unsignaled resetting delays on lever-pressing maintained on fixed-interval (FI) schedules of 

reinforcement. He observed that the changes in responding when delays were imposed were 

similar to extinction, but the extent of this similarity was not explored as none of his studies on 

delayed reinforcement followed the decrease in responding to stability. With each of his subjects 

that experienced delays, he reintroduced immediate reinforcement and found that responding 

resumed patterns observed before delays were imposed. 

Subsequent researchers expanded on Skinner’s work with delayed reinforcement by 

modifying both the delay and the maintaining reinforcement schedule in various ways. For 

instance, Ferster (1953) examined the effects of signaled delays to reinforcement. Key-pecking 

was maintained on a variable-interval (VI) 60-s schedule of reinforcement when he introduced a 
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signaled delay in the form of a chamber blackout that began when the schedule requirement was 

met and terminated with reinforcer delivery. Ferster was able to introduce delays of up to 60 and 

120 s gradually with some subjects and abruptly with others with little disruption in responding. 

Ferster and Hammer (1965) maintained responding using fixed ratio (FR) schedules with 

signaled delays of up to 24 hours while maintaining the break-run pattern typical of FR 

schedules. That responding could be maintained with such long delays is attributed to the 

immediate delivery of the signal that bridged the delay when the schedule requirement was met 

and the conditioned reinforcing effects that the signal acquired (Dews, 1960; Ferster & Hammer, 

1965; Lattal, 1984; Lattal, 2010). 

Dews (1960) compared the effects of resetting and nonresetting unsignaled delays of 10, 

30, or 100 s on the key-pecking of pigeons maintained by a schedule of continuous 

reinforcement (CRF). Cumulative records of the pigeons’ responding showed that as the delay 

increased, rate of responding decreased. Nonresetting delays also maintained higher rates of 

responding than did comparable resetting delays. The patterns of responding that developed 

under these delays also were different. Under resetting delays, as each response further 

postponed the delivery of the reinforcer, responding gradually became more efficient. The 

subject emitted very few responses followed by a long pause until the delivery of the reinforcer. 

This pattern persisted for three of the five subjects when transitioned to the nonresetting delay, 

but for the remaining two, the break-run pattern typical of FR responding developed under 

delays of 10 and 30 s as nonresetting delays may have had the effect of adventiously reinforcing 

bursts of responding.  Because all subjects transitioned from resetting to nonresetting delays, it is 

unknown if different patterns of responding might have been obtained when transitioning from 

nonresetting to resetting delays. 
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These early studies laid the groundwork for further studies of delayed reinforcement. In 

those studies that followed, numerous methods—signaled and unsignaled delays (Chung 1965; 

Richards, 1981; Sizemore & Lattal, 1978), resetting and nonresetting delays (Dews, 1960; Lattal 

& Zeigler, 1982), imposing delays on simple (Lattal & Zeigler, 1982; Richards, 1981; Sizemore 

& Lattal, 1977; Sizemore & Lattal, 1978) and concurrent schedules (Chung, 1965; Chung & 

Herrnstein, 1967)—were used, allowing a more complete understanding of the effects of delayed 

reinforcement. 

Signaled and Unsignaled Delays. A common method for assessing the effects of delays 

involves imposing delays that are either unsignaled, wherein no stimulus change accompanies 

the delay (Sizemore & Lattal, 1978), or signaled, wherein some stimulus change occurs at the 

start of the delay interval and continues to its end. This signal is often a houselight or keylight 

blackout (Chung, 1965; Chung & Herrnstein, 1967; Richards, 1981), but other stimuli have been 

used (Pearce & Hall 1978; Pierce, Hanford, & Zimmerman, 1972). In such arrangements, the 

imposition of a signaled or unsignaled delay functions respectively as either a chain or a tandem 

schedule. Given that signaled or unsignaled delays constitute different schedules (i.e., chained or 

tandem, respectively), it is to be expected that these delays have different effects on responding.  

These different effects may be observed in the overall response rate and in patterns of 

responding that develop when these delays are imposed. Richards (1981) compared the effects of 

imposing signaled or unsignaled delays on responding maintained by immediate reinforcement. 

Baseline rates of responding were obtained for pigeons responding on VI 60-s or differential-

reinforcement-of-low-rate (DRL) 20-s schedules. Signaled and unsignaled delays of .5, 1, 2.5, 5, 

and 10 s then were imposed on these schedules across different conditions. The delay gradient 

obtained using signaled delays depicted a gradual decline in response rates across delay values, 
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while delay gradients obtained using unsignaled delays depict increases in response rates at brief 

( ≤ 1 s) delay values and a much steeper decline as the delay value increases.  

These changes examined at the level of response rate may be reflective of changes on a 

smaller scale, affecting the pattern and structure of responding (Arbuckle & Lattal, 1988; Dews, 

1960; Lattal & Ziegler, 1982; Richards, 1981; Sizemore & Lattal, 1978). Lattal and Ziegler 

(1982) imposed .5-s signaled and unsignaled delays on responding maintained on VI and DRL 

schedules. When an unsignaled delay was used, they observed a shift in the distribution of 

interresponse times (IRTs) towards shorter IRTs (< .5 s). Arbuckle and Lattal (1988) replicated 

and extended these results by showing that brief unsignaled delays also increase the occurrence 

of bursts of responding (a sequence of responses separated by extremely short IRTs) and that 

imposing a 5-s delay may shift the distribution of IRTs towards longer intervals. These changes 

in responding may occur as a result of adventitiously reinforcing bursts of responding in the case 

of brief delays in which the first response that initiates the delay interval is followed by one or 

more responses that are temporally contiguous with the delivery of the reinforcer. In the case of 

longer delays, pausing or behavior other than the target response that occurs during the delay 

may be adventitiously reinforced. These changes are not observed when the delay is signaled as 

potential bursts are disrupted by the immediate production of the signal that starts the delay 

(Lattal & Ziegler, 1982; Pierce et al., 1972; Richards, 1981). Additionally, the immediate 

delivery of a signal at the start of the delay interval may have a conditioned reinforcing, eliciting, 

or overshadowing effect (Lattal, 2010) which may account for the much slower decline in 

responding when a signaled delay is imposed compared to an unsignaled delay on the same 

schedule (Richards, 1981). 
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Expanding on the work of both Ferster (1953) and Dews (1960), Pierce et al.(1972) in 

their first experiment, compared different delay procedures on lever-pressing maintained on VI 

schedules by imposing resetting and nonresetting delays and retracting the lever during the delay. 

Delay intervals of 10, 30, and 100 s were used. Each delay condition was signaled with a cue 

light, and for each, similar effects were observed; as the delay interval increased, the response 

rate decreased and the latency to respond following reinforcer delivery increased. In their second 

experiment, a comparison of patterns of responding was made between chain VI FI and chain VI 

FT schedules. Though there were no systematic differences in overall rates of responding or in 

the VI components, there were differences in the patterns of responding in the FI and FT 

components. In the FI component, responding was positively accelerated (as is characteristic of 

responding under FI schedules), while responding was low and flat over time or did not occur 

during the FT component. That responding in the VI component was maintained at similar rates 

with both the FI and FT components provides support for the conditioned reinforcing effect of 

signaled delays. 

The potential conditioned reinforcing effect of signaled delays also raises the issue of 

ensuring that potential variables apart from the delay that may affect responding are controlled. 

Ferster (1953) found no significant differences in responding on VI 60-s schedules when 

blackouts of up to 60 or 120 s were delivered at the beginning of delay intervals and terminated 

with reinforcement, were made response-dependent but uncorrelated with reinforcers, or were 

delivered independent of responding. His data, however, consisting only of a few cumulative 

records, did not give a full picture of responding. Later Pearce and Hall (1978) delivered brief 

signals either correlated or uncorrelated with reinforcers delivered contingent on lever-pressing. 

They found that delivery of a signal correlated with reinforcement suppressed response rates 
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compared to an uncorrelated signal. When that signal was paired with either immediate or briefly 

delayed reinforcement, responding was suppressed compared to reinforcement delivered without 

a signal. These findings led Pearce and Hall to conclude that the stimulus-reinforcer relation 

formed by the presentation of the signal with the reinforcer overshadowed the response-

reinforcer relation between lever-pressing and the reinforcer. The signal also maintained 

responding when food reinforcement was discontinued, demonstrating the signal had acquired 

conditioned reinforcing effects. Investigating the function of signals in delayed reinforcement, 

Lattal (1984) found that delivering a 20-s blackout, whether response-dependent or independent, 

increased responding maintained on a VI schedule of immediate reinforcement. In his discussion, 

Lattal suggested that in evaluating the effects of a signaled delay, these effects may be made 

clearer by comparing the signaled delay condition to a baseline that includes the presentation of 

the relevant signal presented uncorrelated with the reinforcer.  

Distribution and Rate of Reinforcement. Imposing a delay on a schedule of immediate 

reinforcement affects not only the temporal contiguity between reinforcer deliver and the 

response that produced it, but also the rate and distribution of reinforcer delivery (Lattal, 1987). 

This makes it difficult to disentangle the effects of reinforcer delay from a reduction in 

reinforcement rate when constructing a delay gradient (Richards, 1981). One way of controlling 

reinforcement rate was described by Chung (1965), who compared the effects of imposing 

signaled delays of different durations on the distribution of responding in concurrent VI VI 

schedules. Responding on either of two keys was reinforced on independent VI 1-min schedules 

during a baseline. In subsequent conditions, the schedules that produced reinforcement on both 

keys remained the same, but on one key (the delay key) reinforcers occurred after blackout-

signaled delays that varied between 1 and 28 s across different conditions.  On the other key, 
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responding produced either immediate reinforcement or blackouts of equal length to the delays 

on the delay key. These blackouts occurred with equivalent frequency as those produced on the 

delay key but did not terminate with reinforcement, maintaining a constant reinforcement rate 

between the immediate and delayed reinforcement schedules.  

Another way of examining concurrent changes in reinforcement rate when investigating 

the effects of delayed reinforcement is by comparing responding maintained by a baseline 

schedule of immediate reinforcement (e.g. a VI 60-s schedule) to a schedule in the delay 

condition with the same approximate rate and distribution of reinforcement (e. g. a tandem VI 

57-s FT 3-s schedule). This was done by Sizemore and Lattal (1978) in comparing the effects of 

various unsignaled delays on responding previously maintained on a VI 60-s schedule of 

immediate reinforcement. Shahan and Lattal (2005) also used this method in examining the 

effects on responding of imposing the same delay value (FT 3 s) on VI schedules of immediate 

reinforcement of different reinforcement rates (multiple VI 15-s VI 90-s VI 540-s). Using such 

methods may allow for a clearer evaluation of the effects of delays upon responding when 

constructing delay gradients. 

Fixed and Variable Delays. Almost all studies examining the effects of delayed reinforcement 

have examined responding when fixed delays are imposed. These delays may be held constant 

when resetting delays are used (Dews, 1960; Elcoro & Lattal, 2011; Lattal & Ziegler, 1982), 

ensuring that there is always a constant amount of time between the response and the reinforcer 

with each response during the delay interval resetting the delay. With a nonresetting delay, 

responses during the delay neither produce reinforcement nor reset the delay (Arbuckle & Lattal, 

1988; Chung, 1965; Chung & Herrnstein 1967; Elcoro & Lattal, 2011; Lattal & Zeigler, 1982; 

Sizemore & Lattal, 1978; Shahan & Lattal, 2005). When these responses do occur during the 
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delay interval, this changes the programmed fixed delay to a shorter, often more variable 

obtained delay. Regardless, if a delay gradient is generated using either the programmed or 

obtained delays, orderly patterns are produced (Sizemore & Lattal, 1978). Though there still 

exists plenty of ground to cover in investigating the effects of fixed delays on responding, a 

potential area of study has been left open, namely the effects of programmed variable delays to 

reinforcement on patterns of responding.  

Little research has been conducted on the effects of variable delays to reinforcement, but 

what has been done has suggested more responding occurs on schedules of reinforcement 

associated with variable delays compared to fixed delays of equivalent average duration. As with 

other early experiments investigating effects of delays to reinforcement, comparing the effects of 

reinforcement following fixed and variable delays first examined changes in performance across 

discrete trials. Logan (1960) compared the running speeds of rats through a runway when 

traversing the runway produced reinforcement following fixed or mixed delays. Mixed delays 

consist of two delay intervals that vary from trial to trial. The performance of a group of rats that 

received reinforcement after a fixed 5-s delay was compared to another group that received 

reinforcement after mixed delays consisting of a 1-s delay on half of trials and a 9-s delay on the 

other half of trials, producing an average delay of 5 s for both groups. Logan found that running 

speeds were greater for the group that experienced the mixed delays. 

 Pubols (1962) compared responding in a Y-maze when reinforcement was associated 

with fixed and mixed delays to reinforcement. One arm of the maze was paired with a fixed 

delay to reinforcement and the other arm was paired with mixed delays. One of the mixed delay 

values was always twice the duration of the fixed delay and the other was 0 s, such that the 
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average of the mixed delays was equal to the fixed delay. By the end of the experiment all 

responding for all subjects occurred on the arm associated with the mixed delays. 

In a second experiment, Pubols (1962) used a similar procedure to that just described. 

One arm of a Y-maze was associated with a fixed delay and the other with mixed delays of 0 s 

and twice the fixed delay value. Four groups of rats were compared. The mixed delays for two of 

these groups were 0 and 4 s and for the other two groups, delays were 0 and 40 s. For one of the 

groups from each pair, reinforcement was only delivered on those trials where the delay was 0 s 

and not following the longer of the two delays. Again, all responding occurred on the arm 

associated with the mixed delays even when reinforcement was only delivered on half of trials. 

This demonstrated that in this arrangement additional reinforcers following the longer delay of 

the pair did not have a substantial impact on responding compared to immediate reinforcement 

following just half of responses. Given these results, then it would suggest that as the smallest 

delay value of an array of variable delays approached the value of the fixed delay, less 

differentiation in responding would be observed. However, this claim was not fully evaluated as 

all the conditions that Pubols used compared a fixed delay to a pair of delay values, one of which 

was always twice the value of the fixed delay and the other of which was always 0 s—immediate 

reinforcement. 

These findings are consistent with the results of Herrnstein’s (1964) demonstration that 

subjects respond more on alternatives associated with aperiodic (VI) schedules of reinforcement 

than periodic (FI) schedules programmed to deliver an equivalent rate of reinforcement when 

presented in a concurrent-chains arrangement. In light of these results and those of Logan (1960) 

and Pubols (1962), Cicerone (1976) compared how pigeons responded between two concurrent 

independent VI 60-s VI 60-s schedules, one arranging a constant FT delay prior to each 
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reinforcer delivery and the other arranging mixed time (MT) delays. Cicerone, like Logan (1960) 

and Pubols (1962), used two delay values in the MT delay condition, the mean of which was 

equal to an FT delay of either 8 s for four pigeons or 30 s for two other pigeons. He also 

examined how responding changed as the range of time between the two delay durations 

comprising the mixed delays varied. Cicerone found that more responding occurred on the 

schedule associated with the mixed delays, generally, and more responding occurred on the 

schedule associated with the mixed delay when the range of time between the two delays was 

greater. The wider the range of the delays in the mixed delay condition, the more responding 

occurred on the schedule associated with them. 

These results were not supported by Richards and Marcattilio (1978). Their experiment 

was principally designed to assess the effects of stimulus control and behavioral contrast, but in 

the study, groups of pigeons were exposed to multiple schedules in which one component was 

paired with immediate reinforcement, and the other component was paired with either fixed or 

variable delays to reinforcement. Results did not show a significant difference in rates of 

responding between subjects in the fixed and variable delay conditions. The authors speculated 

that the reason differences were not observed may have been influenced by a number of factors 

including the range of interval durations, the mean duration of the delays, and the number of 

intervals in the variable delay condition. 

In part to account for these finding as well as attempt to better estimate the value of 

reinforcers, or overall effectiveness of reinforcers in maintaining responding, when delivered 

after equivalent fixed and variable delays, Mazur (1984) developed a quantitative model to 

describe the different values of reinforcers delivered after fixed and variable delays. Mazur 

presented two equations, both based on the premise that reinforcers delivered after shorter delays 
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have greater value than those delivered after longer delays. The first described the value of a 

reinforcer when delivered following a fixed delay, and the second equation described the value 

of a reinforcer when presented following variable delays as a weighted average of the values of 

the delay intervals. Mazur tested these models by applying them to a series of conditions in 

which pigeons made a single response to either of two keys. Responding to either of the keys 

produced a reinforcer following either a standard or adjusting delay. Responses to the standard 

key delivered reinforcers following FT, MT, variable time (VT), or random time (RT) delays 

depending on the condition. (The number of intervals that comprise the schedule distinguishes 

MT delays from VT delays. The former consists of only two intervals and the latter of three or 

more.) Responses to the adjusting key delivered reinforcers following FT delays that changed 

depending on the subjects history of responding (i.e., more responses to the standard key 

decreased the FT delay of the adjusting key and vice versa). Pigeons continued to respond in any 

one condition until responding was equally distributed between the two keys. The FT delay of 

the adjusting key when the condition ended was deemed the indifference point, meant to 

approximate when reinforcers delivered following FT delays were equivalent to those delivered 

following delays of the relevant schedule in that condition. Mazur’s models described the 

relation between the distribution of delays and the equivalent adjusting FT delay. His model also 

described how the greater the range of intervals among MT and VT delays, the greater the 

overall value of reinforcers delivered following those delays, and hence the lower the adjusting 

equivalent FT delay would be. 

 Chelonis, King, Logue, and Tobin (1994) in evaluating the effects of variable delays 

relative to FT delays in a delay discounting procedure compared Mazur’s (1984) hyperbolic 

decay model to two other models: one based on Killeen’s (1982) incentive theory and the other 
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based on a modification of Baum’s (1974) generalized matching law. They compared responding 

in a nonindependent concurrent VI 30-s VI 30-s schedule arrangement. One of the schedules was 

associated with a fixed delay that terminated with reinforcement, and the other schedule was 

associated with either a mixed or a variable delay consisting of intervals that averaged twice the 

length of the fixed delay and terminated with a reinforcer twice the magnitude of the other 

schedule. Baum’s (1974) model best described the ratio to which subjects allocated responding 

to the variable delay schedule (i.e. larger-later, self-controlled choice) relative to the fixed delay 

schedule (i.e. smaller-sooner, impulsive choice). Further, even as the arithmetic mean of the 

intervals used in the variable-delay schedule remained the same, the ratio of responding that 

occurred on the variable-delay schedule increased as the range between intervals was increased, 

and decreased as the standard deviation of the variable delay intervals decreased through the 

addition of more intervals to the variable delay array. 

Statement of Problem 

Delays of reinforcement are encountered all the time, occurring whenever a person sends 

an e-mail, makes a phone call, or calls for the dog to come. The response rarely, if ever, produces 

the reinforcer immediately. Delays to reinforcement arise with such regularity that a science of 

behavior must account for them. As has been described, a greater understanding of delayed 

reinforcement has been accomplished by controlling for several of the variables that may 

accompany delays as they occur in the natural environment: changes in rate of reinforcement, 

delays that are signaled or unsignaled, resetting or nonresetting, fixed or variable. It is this last 

factor that perhaps has been the least researched and is least understood even though it could be 

argued that those delays encountered in the natural environment are just as often variable as they 

are fixed, if not more so: Replies to e-mails sometimes arrive sooner or later, the phone is 
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sometimes answered after two or four rings, and the dog may come a few seconds or a minute 

after it is called. 

Most investigations of the effects of delayed reinforcement have used programmed fixed 

delays. Variable delays have been studied before by either imposing two different delay values in 

random order, labeled mixed delays (Chelonis et al., 1994; Cicerone, 1976; Logan, 1960; Mazur, 

1984; Pubols, 1962), or three or more delay values arranged in random order, labeled variable 

delays (Bryan, 1978; Chelonis et al., 1994; Mazur, 1984). As noted above, these have been 

examined before, but mostly in the context of concurrent schedules (e.g., Chelonis et al, 1994; 

Cicerone, 1976; Mazur, 1984) or in a between-groups design (Richards & Marcattilio, 1978). 

Within-subject effects of imposing mixed or variable delays to reinforcement in nonconcurrent 

schedules previously maintained by immediate reinforcement have not been studied. Given that 

subjects respond more on schedules associated with variable rather than fixed delays of 

reinforcement, it may be that mean variable delay values, programmed and obtained, may affect 

responding in a different manner than equivalent fixed delays. Similar effects that have been 

observed in responding in concurrent schedules also may be observed in responding on multiple 

schedules—reinforcement following variable delays may maintain higher rates of responding as 

the range of intervals is increased. To provide a greater understanding of the effects of variable 

delays to reinforcement, the purpose of this study was to compare the effects of variable delays 

to reinforcement on responding previously maintained by immediate reinforcement to those of 

equivalent fixed delays in a multiple schedule. As the greatest differences in responding between 

fixed and variable delays was obtained when fewer intervals comprised the variable delay 

(Chelonis et al., 1994; Mazur, 1984), the effects of FT delays will be compared to MT delays of 

equivalent average duration. As all of the past research on variable delays has involved signaled 
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delays, these were assessed. Unsignaled delays also were examined to assess the potential 

confounding effects of conditioned reinforcement.  

Previous research found the greatest difference in responding between schedules 

associated with fixed, mixed, and variable delays when there was the widest range between the 

shortest and longest delays comprising the mixed and variable delays. Larger differences were 

also observed when the array of delay values comprising the mixed and variable delays included 

shorter delay values. The effects of mixed delay arrays with different interinterval ranges but 

equivalent average durations were assessed by comparing two conditions using unsignaled 

mixed delays. In one condition both mixed delay durations changed, and in the other the shorter 

delay remained constant while the longer delay increased across sessions. 

Method 

Subjects 

 Four White Carneau pigeons served as subjects. Water was freely available in the home 

cage, but food, which consisted of Purina Nutri-Blend™ pellets, was restricted to maintain 

pigeons at 80% of free-feeding weight ± 15 g. Pigeons were individually housed and maintained 

on a 12-hr light/dark cycle in the vivarium. 

Apparatus 

 A single operant chamber with a work area of 31 cm H x 30 cm W x 33 cm L was used. 

The work panel was equipped with one 2-cm diameter response key located 14 cm from the side 

and 7 cm below the ceiling. The key was lit by three 7-W 110-V bulbs colored red, white, and 

blue. One 7 W 110-V houselight located on the ceiling behind a 2-cm circular aperture located 5 
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cm from the front wall and 12.5 cm from the side provided illumination during the session. 

Reinforcers were delivered via a hopper located on the back wall behind a 5-cm circular aperture 

located 18 cm below the ceiling and 12.5 cm from the side. The aperture was illuminated by a 7- 

W, 110-V light during reinforcement, which consisted of 3-s access to pellets in the hopper. 

Extraneous sounds were be masked by white noise and ventilating fans. The experiment was 

controlled and data recorded by a PC running Med-PC IV® software located in an adjacent 

room. 

Procedure 

Pretraining. Key-pecking first was reinforced on a multiple CRF CRF schedule before 

transitioning to a multiple VI VI schedule. Either component of the multiple schedule was 

associated with a different keylight color. Component VI schedules consisted of intervals 

randomly selected without replacement from a Catania and Reynolds (1968) distribution with an 

initial average interval duration of 1 s. Separate lists of intervals were drawn from for each VI 

component of the multiple schedule. Intervals of these schedules were progressively leaned 

across sessions to an average duration of 60 s (VI 60 s). Components changed every 10 min. The 

order of components within each session was determined by selecting randomly without 

replacement from a list of the two components, ensuring that either component did not occur 

more than twice in a row. Sessions were conducted 6-7 times per week at approximately the 

same time each day and terminated after 60 reinforcer deliveries or 300 s elapsed without a 

keypeck either component, whichever occurred first. 

Progressive-Delay Procedure. This experiment used a progressive-delay procedure described 

by Jarmolowicz and Lattal (2011) to assess the effects of a greater range of delay durations in a 
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more rapid manner than is possible with the typical steady-state arrangement. During the 

experiment, blocks of baseline, delayed reinforcement, and yoked-immediate reinforcement 

conditions alternated in a fixed sequence. Sessions were conducted as in pretraining except for 

the differences noted below.  

During baseline sessions reinforcement was delivered on a multiple VI 60-s VI 60-s 

schedule of immediate reinforcement. Baseline sessions were in effect for a minimum of 13 

sessions and continued until responding was stable. Responding was considered stable when the 

means of responding in both components of the multiple schedule in the first three and last three 

of the six most recent sessions did not differ from the mean of the six most recent sessions by 

more than ± 10 % with no systematic trends evident as deemed by visual analysis. 

In the delayed-reinforcement condition, pigeons responded on a multiple schedule, the 

components of which were labeled as either the fixed or the mixed component. Fixed 

components were associated with a red keylight and mixed components were associated with a 

blue keylight for Pigeons 12 and 60 and vice versa for Pigeon 627 in all conditions and for 

Pigeon 983 in the Mixed-Change and Mixed-Constant conditions (described below). The 

keylight color associated with the mixed component for Pigeon 983 was changed to white in the 

Mixed-Signaled condition (described below) due to especially low response rates in baseline in 

the presence of the blue keylight. In the fixed component, reinforcement was delivered on a 

tandem VI 60-s FT x-s schedule. In the mixed component, reinforcement was delivered on a 

mixed (tandem VI 60-s FT y-s) (tandem VI 60-s FT z-s) schedule. The tandem schedule of the 

mixed component in effect for any particular interval was determined by randomly selecting 

without replacement from a list of the two tandem schedules, ensuring that either tandem 
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schedule did not occur more than twice in a row. The values of x, y, and z varied across sessions, 

but the average of y and z always equaled x for any particular session. 

The effects on responding as a function of how the delays were arranged was examined 

in the conditions outlined below. The order of conditions for each pigeon is shown in Table 1. 

Mixed-Change. In this condition the programmed FT delay value in the fixed component 

(x) was set at 0.5 s in the first session, 1 s in the second session, and then increased by 1 s in each 

subsequent session to a maximum of 30 s or until 300 s elapsed without a keypeck in the interval 

portion of either the fixed or mixed component. In the mixed component the delay values of y 

and z were set to .5x and 1.5x, respectively. Delays were unsignaled and nonresetting. 

Mixed-Signaled. Sessions in this condition were similar to the Mixed-Change Condition 

except that delays were signaled with a chamber blackout that lasted the duration of the 

programmed delay and terminated with reinforcer delivery. 

Mixed-Constant. The shorter delay value in the mixed component (y) was held constant at 

a value of 1 s.  The programmed FT delay value of x in the fixed component began at 2 s in the 

first session and increased by 1 s in subsequent sessions to a maximum of 30 s or until 300 s 

elapsed without a keypeck in the interval portion of either the fixed or mixed component. The 

value of the larger delay in the mixed component (z) was adjusted across successive sessions 

such that the average of y and z always equaled x. Delays were unsignaled and nonresetting. 

To control for those changes in responding that occurred as a function of decreases in the 

reinforcement rate across the delayed-reinforcement condition, a yoked-immediate reinforcement 

condition was conducted for each condition following termination of the delay condition. This 

was executed by recording the interreinforcer intervals (IRIs), interblackout intervals (Mixed-
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Signaled condition only), and the order of components from each session of the delayed-

reinforcement condition. These intervals and order of components were then played back in a 

multiple schedule of yoked-immediate reinforcement. The yoked-immediate reinforcement 

control sessions for Mixed-Change and Mixed-Constant conditions were constructed by dividing 

the IRIs of the delayed-reinforcement condition into their VI interval and FT delay portions and 

converting these into equivalent tandem yoked time (YT) FI schedules. The yoked-immediate 

reinforcement control sessions for Mixed-Signaled condition were each constructed by playing 

back the IRIs of the delayed-reinforcement condition in a yoked interval (YI) schedule. To 

equate the delivery of signals, the interblackout intervals of each component were played back in 

a response-independent schedule of blackout delivery with the duration of the blackouts yoked to 

their respective delayed-reinforcement sessions. These sessions hereafter will be referred to as 

YI control sessions. Following completion of the YI control sessions, pigeons began baseline 

sessions for the next condition listed in Table 1. 

Data were collected on the frequency, time, and rate of responding in both the interval 

and delay portions of each component across all conditions. Changes in response rates were 

assessed only in the interval portion of each component and their equivalent portions of the YI 

control sessions. This is typical of past research focused on the effects of delays on responding 

previously maintained by immediate reinforcement (Richards, 1981; Sizemore and Lattal, 1978). 

Changes in patterns of responding were assessed by examining IRT distributions derived from 

responding that occurred in both the interval and delay portions of each component. Responding 

from both portions of the component were included in the IRT analysis because IRTs can be 

extended over periods of time that include both the interval and delay portions of the component 

(e.g. the time between the last response in the delay portion that precedes reinforcer delivery and 
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the first response of the interval portion that follows). Examining IRT distributions in this way 

provides a more complete picture of response patterns, including the prevalence of bursts of 

responding and pausing. 

Results 

 Figures 1-4 show the results of the Mixed-Change condition. Figure 1 shows the absolute 

rates of responding across sessions in the interval portions of the fixed and mixed components 

and their respective YI controls, beginning with the last session of baseline at 0 s. For three of 

four pigeons, rates of responding tended to decrease rapidly across sessions as the programmed 

delay was increased before leveling out at a low rate, forming a delay gradient typical of past 

research (Richards, 1981; Sizemore & Lattal, 1978). For Pigeon 627, responding declined across 

the first few sessions before leveling off until the programmed delay reached 15 s when it 

declined for several sessions and leveled off again until the end of the condition. For all pigeons 

responding was generally lower in the delay components than in their controls. A consistent 

difference in the absolute rate of responding between the fixed and mixed components was only 

observed with Pigeon 983, where more responding occurred in the mixed component, and even 

increased above baseline levels at delays of .5 and 1 s.  

Figure 2 shows responding calculated as a percentage of the response rate in the last 

baseline session, determined by dividing the response rate of the interval portion of the relevant 

session by the response rate in the last baseline session and multiplying by 100. When viewed as 

a function of the average programmed delay (left column), there is little difference between these 

data and the absolute response rates. As delays were nonresetting, there were differences 

between the programmed delay and the obtained delay, the period of time that elapsed between 
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the last response emitted and reinforcer delivery. When viewed as a function of the obtained 

delay in the right-side graphs of Figure 2, a more typical delay gradient can be observed in the 

responding of Pigeon 627. Here, the high concentration of data points around obtained delays of 

less than 2 s occur at levels similar to those data points at the shorter programmed delays in the 

left panel of Figure 2. Those data points spread across the longer obtained delays occur at levels 

similar to those data points at longer programmed delays. Also when viewed in this way, the 

difference between responding in the fixed and mixed components for Pigeon 983 disappears, 

forming overlapping delay gradients.  

Results of the YI components are not displayed in any figures depicting responding as the 

function of the obtained delay as the obtained delay in all YI components was 0 s. 

 Past research (Arbuckle & Lattal, 1988; Elcoro & Lattal, 2011; Lattal & Ziegler, 1982) 

has examined the effect of delayed reinforcement on not only rates of responding, but also 

changes in IRTs. Figures 3 and 4 show the distribution of IRTs that comprised each pigeon’s 

responding in each component of the delay condition and its respective control. IRTs were 

recorded and sorted into .25-s bins. The number of IRTs in each bin was divided by the total 

number of IRTs and multiplied by 100. Generally across sessions of the delay condition from the 

last session of the baseline condition depicted at 0 s, the distribution of IRTs shifted towards the 

extremes, with responding being characterized by a large percentage of extremely short ( < .5 s) 

and extremely long (> 5 s) IRTs with comparatively few IRTs between. Such extreme changes in 

the distribution of IRTs were not observed across the YI control sessions, which remained 

largely similar to baseline. This shift is less pronounced for Pigeon 627, but a slight rightward 

shift in the IRT distribution towards longer IRTs and an increase IRTs > 5 s can be observed, a 

change absent in the YI control sessions. 
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 Figures 5-8 show the results for the Mixed-Signaled condition. Figure 5 shows the 

absolute rates of responding across sessions in the interval portions of the fixed and mixed 

signaled delay components and their respective YI controls. Responding decreased gradually 

across sessions for all pigeons in both delay components at about the same rate. These declines 

were not as great and were more gradual than those observed in the Mixed-Change condition. 

Differences in responding between the delay conditions and their yoked controls were not 

consistently observed across sessions except for Pigeon 12 and during the last few sessions for 

the other pigeons, when the level of responding decreased in the delay conditions and remained 

stable in the controls. No systematic differences were observed between the two delay 

components as the programmed delay increased across sessions when viewed in absolute 

responses rates or when viewed as a percentage of baseline responses rates as depicted in Figure 

6 (left column). Figure 6 (right column) also depicts percentages of baseline response rates as a 

function of obtained delays, but as obtained delays in the Mixed-Signaled condition deviated 

little from the programmed delays, there appears to be little difference between the two. 

 Figures 7 and 8 show the distribution of IRTs in responding during the delay conditions 

and their YI controls for the fixed and mixed components, respectively. There was little change 

from baseline in the distribution of IRTs across sessions for the fixed and mixed delay 

components and only small differences between each delay component and its respective control. 

In all conditions, there was an increasing trend in the extremely long IRTs across sessions, but as 

little responding occurred during the blackouts in these sessions, a portion of these long IRTs 

may be attributed to pausing that occurred during the blackouts. However there was a larger 

percentage of IRTs in excess of 5 s and an overall slightly greater rightward shift in the IRTs in 
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the delay components, compared to their controls, especially in the later sessions when declines 

in response rates were greatest. 

 Figures 9-12 show the results from Mixed-Constant condition. Figure 9 depicts the 

absolute response rates as a function of the programmed delay. For all pigeons responding was 

generally lower in the delay condition than in their respective yoked controls, though this 

difference was only observed in later sessions for Pigeon 627 and was more variable for Pigeon 

983. For three of four pigeons, response rates in the fixed delay components decreased rapidly in 

the early sessions before leveling off at low rate. For Pigeon 627, responding maintained at 

baseline levels in the fixed delay condition until a 9-s programmed delay was imposed, after 

which responding decreased rapidly across sessions. In the mixed delay condition, results were 

more varied. For Pigeon 12, response rates in the mixed delay condition decreased rapidly as 

programmed delays increased before leveling off at a low rate alongside the fixed delay 

condition until an average 17-s delay was imposed, after which response rates began to increase 

across sessions, well above responding in the fixed delay condition. For Pigeon 60, response 

rates in the mixed delay condition decreased rapidly before leveling off at a low rate, but one 

slightly higher than the fixed delay condition. For Pigeon 627, responding in the mixed delay 

condition maintained at about baseline levels until an average 9-s programmed delay was 

imposed, after which responding rapidly decreased across sessions before leveling off at a low 

rate while responding continued to decrease in the fixed delay condition. For Pigeon 983, 

response rates in the mixed delay condition showed a variable but gradually downward trend 

across sessions as the programmed delay increased which generally remained higher than 

response rates in the fixed delay condition. 
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 Figure 10 shows rates of responding in the Mixed-Constant condition as a percentage of 

the baseline response rate. When plotted as a function of the programmed delay (left column), 

there is little difference from the absolute response rate data in Figure 9. When plotted as a 

function of the obtained delay, the data in both fixed and mixed components form typical delay 

gradients with no systematic difference between the two save that obtained delays were more 

often shorter in the mixed than in the fixed delay condition.  

 Figures 11 and 12 show the distribution of IRTs in responding during the delay 

conditions and their YI controls for the fixed and mixed components, respectively. Generally 

across sessions of the delay condition, the distribution of IRTs shifted towards the extremes, with 

responding being characterized by a large percentage of extremely short ( < .5 s) and extremely 

long (> 5 s) IRTs with comparatively few IRTs between. This shift is not as pronounced for 

Pigeon 627, especially in the mixed delay component, where there appears to be a more general 

shift towards longer IRTs, which began when the average 9-s delay was imposed and changes in 

response rates first were observed. In the YI control components, for all pigeons there was a 

slight shift in the IRT distributions across sessions towards the longer IRTs, but the distributions 

otherwise remained largely similar to baseline. 

 Figure 13 shows the obtained reinforcement rates for each pigeon in all conditions and 

components. These data indicate that imposing the delays not only reduced the obtained 

reinforcement rate, but that in some components the changes in responding were such that the 

obtained rate of reinforcement declined well below the programmed rate of reinforcement. Little 

to no separation occurred between the obtained reinforcement rate in each delay component and 

their respective controls. This indicates the YI conditions effectively controlled for changes in 
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reinforcement rate, and the differences in responding between delay conditions and their controls 

are not due to differences in reinforcement rate. 

 Figures 14 and 15 show responses rates for each pigeon plotted as a percentage of 

baseline responding across average programmed and obtained delays for each of the conditions 

in the fixed and mixed components, respectively. Generally, the rates of responding for all three 

conditions were similar at the short average programmed and obtained delay values (~ 0-2 s; top 

and middle graphs, respectively). Beyond those values, responding maintained at higher rates 

when delays were signaled. Generally, there were no systematic differences between the rates of 

responding maintained in the Mixed-Change and Mixed-Constant conditions when viewed as a 

function of the average programmed and obtained delays, though responding in the Mixed-

Constant condition tended to maintain across longer programmed delays and maintain shorter 

obtained delays.  

Figure 16 displays the temporal contiguity between response and reinforcer delivery by 

plotting the obtained delay as a function of the programmed delay in the fixed and mixed 

components across all conditions. For all pigeons, the obtained delays for the Mixed-Signaled 

condition deviated little from the programmed delay. Obtained delays tended to increase faster 

and level off at higher obtained delays in the fixed components than in the mixed components. 

Additionally obtained delays tended to increase faster and level off at higher obtained delays in 

the Mixed-Change condition than in the Mixed-Constant condition. In comparing Figure 16 to 

Figures 14 and 15, changes in the obtained delays tended to coincide with changes in response 

rates, with shorter obtained delays tending to coincide with higher response rates. 
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Figures 17 and 18 show the absolute response rates for each pigeon in each condition 

plotted as a function of obtained delay and those same data plotted as a percentage of baseline 

responding for the fixed and mixed components, respectively. Pigeons emitted responses at 

different absolute rates, particularly in sessions associated with low obtained delays, but when 

viewed as a percentage of baseline responding, there is a greater amount of overlap indicating 

that similar obtained delays have similar proportional effects on rates of responding. 

Discussion 

 In this experiment, the effects of imposing programmed, nonresetting fixed and mixed 

delays on responding previously maintained on a VI schedule of immediate reinforcement were 

compared. As shown in the results, responding in these conditions changed at the levels of both 

the session rate of responding and the distribution of IRTs, and the main contributing factors to 

these changes appeared to be the average obtained delay and whether the delay was signaled or 

unsignaled. What follows is a discussion of the changes in responding as a function of these 

variables, as well as how the general results align with those of previous experiments on delay of 

reinforcement and the possible contributions of procedural differences to any discrepancies in 

results between this and those previous experiments. 

Response rates and changes in reinforcement rates. Imposing delays of reinforcement on 

responding previously maintained by immediate reinforcement necessarily decreases 

reinforcement rates, which in turn decreases response rates in conjunction with the effects of the 

delay. It therefore is necessary to separate the effects of these two confounded changes on 

responding. The YI control conditions delivered immediate reinforcement at the same rate as 

corresponding delay conditions. Across all conditions for almost all pigeons, even as 
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reinforcement rates decreased, the YI controls maintained response rates at approximately 

baseline levels while response rates in the delay conditions declined. Thus, although declines in 

reinforcement rate and the effects of these declines cannot be exorcised from the effects of the 

delay, the differences between responding in the delay conditions and their YI control 

counterparts cannot be attributed to changes in reinforcement rate, making them effectively the 

consequence of the delays. Additionally there were no systematic differences in the 

reinforcement rates between the fixed and mixed components, so any differences between the 

fixed and mixed components were the consequence of the way the delays were programmed. 

Response rates and delay-related variables. When delays were unsignaled, regardless of 

whether one or both of the mixed delay intervals changed across sessions, schedules associated 

with mixed delays maintained higher rates of responding than did those associated with fixed 

delays for some pigeons, even as average programmed delays were increased. When changes in 

responding were viewed as a function of the average obtained delay, however, there was little 

difference between the two components. When viewed in this manner, the results also formed 

delay gradients typical of the findings of past research (Richards, 1981; Sizemore & Lattal, 

1978) with increases in responding for some pigeons at very brief ( < .5 s) obtained delays, 

followed by rapid declines in responding before leveling off at a low rate of responding as 

obtained delays increased. Those differences that did occur between components when delays 

were unsignaled appeared to have been more a function of the average obtained delay than of 

whether the delays were fixed or mixed. When the delays were signaled, there were no 

systematic differences between the two delay components and, typical of past research 

(Richards, 1981), the rate of decline in responding was more gradual in comparison to that with 

unsignaled delays. The average obtained delay in Condition B differed little from the average 
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programmed delay, so any changes in responding across sessions were more directly the result of 

changes in the average programmed delay. 

Differences in the average obtained delays may account for those differences in 

responding between fixed and mixed components as the programmed delay was increased, with 

shorter obtained delays maintaining higher response rates. Across all pigeons in all conditions, 

systematic differences in responding were only observed when there were systematic differences 

in the average obtained delay. For example, in the Mixed-Change condition, only Pigeon 983 

showed any systematic difference in rates of responding, with higher rates in the mixed 

component. The data in Figures 2, 14, and 15 show that as average programmed delays increased 

for Pigeon 983, though both fixed and mixed components maintained average obtained delays 

shorter than programmed delays, obtained delays were shorter in the mixed delay component. In 

the Mixed-Change condition there were no systematic differences in the rates of responding 

between the delay components for the other three pigeons but nor were there systematic 

differences in the average obtained delays for those pigeons. 

In comparing the rates of responding during each condition within and between pigeons, 

as shown in Figures 14 and 15, the results show similar delay gradients in the Mixed-Change and 

Mixed-Constant conditions when changes in rates of responding are plotted as a function of 

average obtained delay for three of four pigeons. The exception was Pigeon 627, where the delay 

gradients were similar up to an average obtained delay of about 1.5 s. Additionally it can be seen 

across pigeons that at average obtained delay values of less than 2 s, unsignaled and signaled 

fixed and mixed delays were functionally equivalent in their effects on response rates. Signaled 

delays maintained response rates at these levels across longer obtained delays than did 
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unsignaled delays. These data support and extend the results of Richards (1981), showing similar 

effects for some pigeons of both signaled and unsignaled delays when the durations were short.  

Considering the difference between programmed and obtained delays, average obtained 

delays in the Mixed-Signaled condition differed little from the average programmed delays as 

they increased across sessions. Except for Pigeon 627, average obtained delays generally were 

shorter in the Mixed-Constant condition than in Mixed-Change condition in sessions with 

equivalent average programmed delay durations. Subsequently, responding maintained across a 

greater number of sessions and at higher rates in the Mixed-Constant condition than in Mixed-

Change condition. These results in part support previous research (Chelonis et al., 1994; 

Cicerone, 1976; Mazur, 1984) showing that variable delay conditions with a wider range in delay 

interval durations maintained higher rates of responding. Past experiments also examined the 

effect of manipulating the number of values in the variable delay array, finding less 

differentiation in responding between variable and fixed delay alternatives as the number of 

intervals in the variable delay array increased. This would be expected, if adding additional 

programmed values to a variable delay array reduced the difference in obtained delays between 

the variable and fixed delay conditions. 

In a further comparison of effects between pigeons, as shown in Figures 17 and 18, at the 

conclusion of baseline, the pigeons had quantitatively different rates of responding, but when 

unsignaled fixed and mixed delays were imposed, responding changed as a function of the 

average obtained delay in not only a qualitatively but also a quantitatively similar manner for 

each pigeon when viewed as a percentage change from baseline rates of responding. These 

results support and extend the results of Shahan and Lattal (2005) which showed that equivalent 

delay durations produced equivalent proportional changes in responding across different 
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response and reinforcement rates. Given these results it appears that higher rates of responding, 

by keeping obtained delays shorter, insulates behavior from the potential effects of longer 

programmed delays. For instance, compare the results of Pigeons 627 and 60. Pigeon 627 

responded at a much higher rate than Pigeon 60, as a result the obtained delays for Pigeon 627 

are typically shorter, and changes in responding occur much more slowly across sessions. Pigeon 

60’s rates of responding were lower, obtained delays typically longer, and changes in responding 

more rapid. Nevertheless, once an obtained delay of some duration is contacted, it has an 

equivalent proportional effect on responding, whether that initial rate was low or high.  

Similar quantitative changes in responding were not observed in the Mixed-Signaled 

condition. The likely immediate conditioned reinforcing effect of the signal was sufficient to 

maintain rates of responding at levels much closer to baseline than did unsignaled delays of 

equivalent duration. This accounts for the persistence of different rates of responding for each 

pigeon, and factors in each pigeon’s history likely are relevant to why signaled delays of equal 

duration were differentially effective in maintaining responding for each pigeon. 

Changes in IRT distributions. Changes were observed not only in the rates of responding but 

also in the patterns of responding as reflected in the changes in IRT distributions. In Mixed-

Change and Mixed-Constant conditions, changes in responding in both fixed and mixed delay 

components were characterized by a shift in the distribution of IRTs towards extremely short (< 

.5 s) and extremely long  (> 5 s) IRTs with comparatively fewer moderate duration IRTs which 

became more extreme across sessions.  Though there was a change in the IRT distribution in the 

Mixed-Signaled condition, this change was more subtle with a gradual shift to longer IRTs and 

an increase in extremely long IRTs, though not to the degree seen with unsignaled delays. 
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The changes in IRT distributions in this experiment were broadly consistent with those 

found in previous research (Arbuckle & Lattal, 1988; Elcoro & Lattal, 2011; Lattal & Zeigler, 

1982). As delays were imposed in the Mixed-Change and Mixed-Constant conditions, the IRT 

distributions shifted towards extremely short and extremely long IRTs with relatively few in 

between, taking on a break-run pattern of responding.  As in previous research, these changes 

may be the result of adventitious reinforcement of either bursts of responding, resulting in a shift 

towards the shorter IRTs, or of pausing, resulting in a shift towards the longer IRTs. These shifts 

in IRT distributions, whichever way they go, may be a factor of the kind of IRTs that comprise 

responding in baseline, which may account for why brief delays of reinforcement often, but not 

always, result in response rate increases. 

When signaled delays were imposed, in the Mixed-Signaled condition, there was a slight 

rightward shift towards longer IRTs across sessions in general and an increase in the percentage 

of extremely long IRTs specifically. Changes in these extremely long IRTs were gradual and 

tended to increase as the programmed delays increased, with significant changes only occurring 

in later sessions when response rates were rapidly decreasing. Given that similar changes in 

extremely long IRTs occurred in the YI sessions of the Mixed-Signaled condition, these changes 

were likely the result of the IRTs that occurred between the response that immediately preceded 

the blackout and the first response that occurred afterwards. As little to no responding occurred 

during the blackouts, and as blackouts got longer across sessions, these IRTs also became longer. 

Less dramatic changes in the general distribution of IRTs in the Mixed-Signaled condition may 

be attributed to the immediate conditioned reinforcing properties of a signal that reliably 

preceded reinforcement, which may account for the similarity between IRT distributions of the 

delay condition to those in the YI controls. Additionally as a blackout was used to signal the 
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delay this likely truncated potential bursts of responding, preventing their adventitious 

reinforcement (cf. Lattal & Ziegler, 1982). 

These results illustrate the value of assessing changes in IRT distributions in conjunction 

with changes in rates of responding. In this experiment, differences in rate of responding were 

not present between delay sessions and their control in every instance, but in those instances, 

there often were differences in IRT distributions. This can be seen in Figures 2 and 4 for Pigeon 

12 between the session when a programmed average 14-s mixed delay was imposed and its YI 

control. Response rates in those sessions were similar but the distribution of IRTs was not. 

Examination of individual cumulative records for these sessions in conjunction with the response 

rates would result in similar conclusions, but examining changes in IRT distributions as 

presented in Figures 3, 4, etc. allows the experimenter a more precise analysis of changes in 

responding at the level of individual sessions as well as those that occur over the breadth of an 

entire condition. 

Examining changes in IRT distributions may also reveal changes in responding that occur 

over time that are not evident when only changes in response rates are examined. For instance, 

across the last few sessions for Pigeon 12, overall reinforcement rate and average obtained 

delays in both delay components remained relatively stable, and changes in not only response 

rate, but also in IRT distributions occurred.  The IRT durations principally remained either 

extremely short or extremely long, but the percentage of extremely short IRTs increased while 

the percentage of extremely long IRTs decreased over the last few sessions. This resulted in 

response rates that were quantitatively similar to those at shorter programmed and equivalent 

obtained delay values but were qualitatively different when the IRT distributions were examined. 

Given the equivalent average obtained delays in these sessions, it is possible that these changes 
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in IRT distributions were a result of time spent in a condition of delayed-reinforcement. A 

comparison of results obtained in the progressive-delay procedure to those obtained from steady-

state research would be most useful in clarifying these effects. 

Relation to previous experimental analyses of delays of reinforcement. The present delay 

gradients based on the average obtained delays for both fixed and mixed components are 

consistent with previous research that has examined changes in responding as a consequence of 

imposing fixed delays (Richards, 1981; Sizemore & Lattal, 1978). However, this similarity in 

results between fixed and mixed components is not consistent with previous research that found 

differences in responding in schedules associated with fixed and mixed delays, with mixed 

delays maintaining higher rates of responding (Chelonis et al, 1994; Cicerone, 1976; Logan, 

1960; Mazur, 1984; Pubols, 1962). Procedural differences between the current and past studies 

may in part account for these differences. Although some used discrete trial arrangements 

(Logan, 1960; Mazur, 1984; Pubols, 1962), all of these studies used only signaled delays and 

some variant of a concurrent schedule, and continued conditions out to stability rather than 

change delays with each session, any of these differences may have contributed to the difference 

in results. 

All previous studies used only signaled delays, and for those that used pigeons as subjects 

(Chelonis et al, 1994; Cicerone, 1976; Mazur, 1984; Richards & Marcattilio, 1978), the signal 

consisted of darkening the keylights and turning on different houselights associated with either 

fixed or variable delays. The degree to which using different signals for different delays just as 

Cicerone (1976), Mazur (1984), and Chelonis et al (1994) did may have facilitated 

differentiation compared to using the same signal (blackout) in all delay conditions is another 

question. The chamber blackout used in this study kept obtained delays largely comparable to the 
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programmed delays, and though obtained delays were not assessed in previous studies examining 

variable delays, it seems likely that the signaled delays used in those studies did the same (Pierce 

et al., 1972). This was not often the case in unsignaled delay conditions, where the obtained 

delay frequently differed from the programmed delay, thus it is unclear if using resetting delays 

(signaled or unsignaled) may have produced different results.  

All previous studies also used concurrent schedules to compare the effects of fixed and 

variable delays, excepting Richards and Marcattilio (1978). The extent to which imposing 

programmed fixed or variable delays on different schedules of reinforcement, including CRF 

(Mazur ,1984) and VI schedules  (Cicerone, 1976),  in concurrent schedules or in a single, simple 

schedule, rather than a multiple schedule, thus avoiding the potential confounding effects of 

schedule interactions, including but not limited to behavioral contrast and induction (Hemmes & 

Eckerman, 1972; Lattal & Smith, 2011; Reynolds, 1961, 1963; Richards, 1972; Richards & 

Marcattilio, 1978; Spealman, 1978; Spealman & Gollub, 1978), may produce different results 

also is unclear. 

Perhaps the greatest procedural difference between this study and past research was in the 

use of the progressive-delay procedure. In all previous research, sessions at each delay value 

continued until responding met some predetermined stability criterion, as is typical of steady-

state research. Delay gradients produced by imposing fixed delays on responding previously 

maintained by immediate reinforcement in steady-state research are well-documented (Richards, 

1981; Sizemore & Lattal, 1978). These gradients typically consist of only a few data points 

based on the average of the last several sessions of each delay condition and are the fruit of what 

ultimately may be hundreds of sessions. Reilly and Lattal (2004) used a progressive delay 

procedure that increased the programmed delay in VI and FI schedules previously maintained by 
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immediate reinforcement by 2 s after each reinforcer delivery. Their results produced more 

complete delay gradients within one session and these gradients were qualitatively similar to 

those produced by steady-state procedures across a wider range of delay values than are typically 

studied. Jarmolowicz and Lattal (2011), upon which the procedures in this study are based, 

increased the programmed delays imposed on FR schedules across sessions and produced delay 

gradients qualitatively similar to those in past experiments, just as did this study, in a fraction of 

the time required to continue each condition to stability. What was potentially sacrificed though 

was a more in-depth analysis of responding at any one particular delay value and any associated 

changes in responding that may take time to develop. These results lend support to using a 

method of more rapidly assessing the effects of different reinforcement parameters when the 

general parametric function is already well established by the thorough, in-depth analysis of 

steady-state arrangements. Studying the effects of some variable across a range of different 

reinforcement parameters within or across sessions may be useful in analyzing drug effects when 

tolerance, chronic dosing effects, or the time-course of the drug are factors or in the applied 

realm when circumstances may demand more rapid assessments. Ultimately, though, the results 

of such a rapid assessment demand their utility be validated by comparison to the results of 

steady-state conditions. 

Concluding Observations. Research into the effects of delayed reinforcement has been 

conducted since the beginnings of operant psychology (Skinner, 1938). The delays used in these 

past experiments have been varied in a multitude of manners—signaled, unsignaled, resetting, 

nonresetting, in concurrent and in simple schedules, in the acquisition and maintenance of 

responding, and yes, even whether those delays were fixed or variable—but  no previous study 

has directly compared the effects of fixed and variable delays on responding. Most previous 
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research focused on the effects of delayed reinforcement have examined the effects of fixed 

delays to reinforcement, and comparatively little has examined the effects of variable delays, 

including but not limited to mixed delays, despite the more variable delays that occur in the 

natural environment. Previous research that has examined the effects of variable delays 

demonstrated that more responding occurs on alternatives associated with variable delays to 

reinforcement than with fixed delays of equivalent average duration, suggesting that behavior 

may be maintained at higher rates on schedules associated with variable delays. The results of 

this experiment suggest that whether the programmed delays are fixed or variable may not be the 

relevant factor in the maintenance of responding, but rather the average obtained delays are more 

directly responsible for the changes observed in responding, though these obtained delays were 

derived, in part, from the manner in which the delays were programmed. Shorter obtained delays 

occurred in the mixed delay components than in the fixed delay components and higher rates of 

responding occurred in the mixed delay components, but when responding was compared 

between fixed and mixed components at similar obtained delays, there was little difference. 

It is not surprising that the present results do not align in every way with those from 

previous experiments. There are several nontrivial procedural differences between this and past 

experiments, any of which may have contributed to those discrepancies. Each is grounds for 

further investigation; however, despite these differences, this experiment produced delay of 

reinforcement results strikingly similar to those obtained using more conventional methods and 

extended the analysis of delayed reinforcement effects to situations involving mixed delays.  
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Table 1 

Order of Conditions for Each Pigeon 

Pigeon Order of Conditions 

12 Mixed-Change, Mixed-Signaled, Mixed-Constant 

60 Mixed-Constant, Mixed-Change, Mixed-Signaled 

627 Mixed-Constant, Mixed-Signaled, Mixed-Change 

983 Mixed-Change, Mixed-Constant, Mixed-Signaled 
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Figure 1. Absolute response rates in the Mixed-Change condition measured as responses per 

minute (rpm). The last session of baseline is listed at 0 s.  
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Figure 2. Response rates in the Mixed-Change condition, measured as a percentage of 

responding in the last baseline session as a function of the average programmed (left) and 

obtained delay (right). 
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Figure 3. IRT distributions in the fixed delay component (left) and its YI control (right) of the 

Mixed-Change condition arranged as a function of the average programmed delay. 
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Figure 4. IRT distributions in the mixed delay component (left) and its YI control (right) of the 

Mixed-Change condition arranged as a function of the average programmed delay. 
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Figure 5. Absolute response rates in the Mixed-Signaled condition measured as responses per 

minute (rpm). The last session of baseline is listed at 0 s.  
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Figure 6. Response rates in the Mixed-Signaled condition, measured as a percentage of 

responding in the last baseline session as a function of the average programmed (left) and 

obtained delay (right). 
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Figure 7. IRT distributions in the fixed delay component (left) and its YI control (right) of the 

Mixed-Signaled condition arranged as a function of the average programmed delay. 
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Figure 8. IRT distributions in the mixed delay component (left) and its YI control (right) of the 

Mixed-Signaled condition arranged as a function of the average programmed delay. 
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Figure 9. Absolute response rates in the Mixed-Constant condition measured as responses per 

minute (rpm). The last session of baseline is listed at 0 s.  
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Figure 10. Response rates in the Mixed-Constant condition, measured as a percentage of 

responding in the last baseline session as a function of the average programmed (left) and 

obtained delay (right). 
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Figure 11. IRT distributions in the fixed delay component (left) and its YI control (right) of the 

Mixed-Constant condition arranged as a function of the average programmed delay. 
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Figure 12. IRT distributions in the mixed delay component (left) and its YI control (right) of the 

Mixed-Constant condition arranged as a function of the average programmed delay. 
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Figure 13. Obtained reinforcement rates measured as reinforcers delivered per minute (rpm) in 

each component of each condition for all pigeons. The dotted line depicts the programmed 

average reinforcement rate. 
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Figure 14. Response rates measured as a percentage of responding in the last baseline session in 

the fixed component of all conditions for all pigeons presented as a function of the average 

programmed (left) or average obtained delay (right). 
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Figure 15. Response rates measured as a percentage of responding in the last baseline session in 

the mixed component of all conditions for all pigeons presented as a function of the average 

programmed (left) and average obtained delay (right). 
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Figure 16. Average obtained delays across sessions as a function of average programmed delay 

for all pigeons in all conditions for the fixed (left) and mixed components (right). The dotted line 

depicts perfect correspondence between the obtained and programmed delays. 



62 
 

 

Figure 17. Absolute response rates measured as responses per minute (rpm) as a function of the 

average obtained delay in the fixed component of each condition for all pigeons (left), and those 

same data measured as a percentage of responding of the last baseline session (right). 
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Figure 18. Absolute response rates measured as responses per minute (rpm) as a function of the 

average obtained delay in the mixed component of each condition for all pigeons (left), and those 

same data measured as a percentage of responding of the last baseline session (right). 
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