
Graduate Theses, Dissertations, and Problem Reports

2012

Development of a Low-Cost Robotics Platform that Facilitates the Development of a Low-Cost Robotics Platform that Facilitates the

Enhancement of Microcomputer Structures and Interfacing Enhancement of Microcomputer Structures and Interfacing

Learning Objectives Learning Objectives

Justin Ryan Morris
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Morris, Justin Ryan, "Development of a Low-Cost Robotics Platform that Facilitates the Enhancement of
Microcomputer Structures and Interfacing Learning Objectives" (2012). Graduate Theses, Dissertations,
and Problem Reports. 601.
https://researchrepository.wvu.edu/etd/601

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/601?utm_source=researchrepository.wvu.edu%2Fetd%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Development of a Low-Cost Robotics Platform that Facilitates the Enhancement of

Microcomputer Structures and Interfacing Learning Objectives

Justin Ryan Morris

Thesis Submitted to the

College of Engineering and Mineral Resources

at West Virginia University

In partial fulfillment of the requirements

for the degree of

Master of Science

in

Electrical Engineering

Powsiri Klinkhachorn, Ph.D., Chair

Roy S. Nutter, Ph.D.

Afzel Noore, Ph.D.

Benjamin M. Statler College of Engineering and Mineral Resources

Morgantown, West Virginia

2012

Keywords: Robotics, Competition, Curriculum, Micromouse, Microprocessors

Copyright 2012 © Justin R. Morris

Abstract

Development of a Low-Cost Robotics Platform that Facilitates the Enhancement of

Microcomputer Structures and Interfacing Learning Objectives

Justin R Morris

Robotics has become a common educational tool to teach basic concepts in mathematics,

science, engineering, technology, world affairs, and much more. Programs such as For

Inspiration and Recognition of Science and Technology (FIRST) robotics are demonstrating that

the recipe for student inspiration and learning involves robotics, problem solving, teamwork, and

friendly competition. The successes of FIRST robotics programs and results from universities

that have integrated robotics platforms into their curriculum provide evidence that infusing

robotics platforms and curriculum into engineering departments better their capabilities and

increase attractiveness to current and future students. This effort details the design and

development of a low-cost robotics platform and seamless set of supporting curriculum. The

platform and seamless curriculum set is implemented in the West Virginia University’s Lane

Department of Computer Science and Electrical Engineering (LCSEE) microcomputer structures

and interfacing laboratory, an undergraduate computer engineering course. The results provide

detailed information on the robotics platform as well as detailed information on the seamless set

of modules that make up the curriculum. The results demonstrate that a subset of students

become significantly more motivated and are more willing to work additional hours to improve

upon their design as compared to traditional laboratory sessions. These results are significant

and demonstrate that robotics and seamless curriculum sets provide a solid platform to introduce

computer engineering concepts that inspire and motivate students.

iii

Acknowledgements

Justin McCarty. Justin was the primary software developer of the Micromouse robot software

during the spring 2009 semester and helped me get started with this work. A few of the source

code modules were reengineered from Justin’s work on this effort during a previous semester.

Sam Castillo. Sam provided valuable insight into 2011 and 2012 results from the

implementation of the micromouse curriculum. Sam also enhanced the micromouse curriculum

and source code during the 2011 and 2012 semesters.

Dr. Powsiri Klinkhachorn. Dr. Klink provided continual oversight during the course of this

effort. In addition, Dr. Klink provided the training and support in the design, development, and

manufacturing of the eleven Micromouse robots that were used during the 2010 spring semester.

Spring 2010 CPE 313 students. These students were essentially the guinea pigs for trying out a

brand new set of curriculum and helped iron out bugs, typos, and errors in lab handouts,

questions, and assignments. Their comments, grades, and one-on-one conversations form the

basis for the results described herein.

I would like to acknowledge my wife and son for providing continual support throughout the

duration of my thesis. I love them very much and thank them for everything that they do.

iv

Contents

 ABSTRACT ...II

ACKNOWLEDGEMENTS ... III

CONTENTS .. IV

LIST OF TABLES .. VI

LIST OF FIGURES ... VII

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION ... 1
1.2 STATEMENT OF THE PROBLEM .. 5
1.3 THESIS OUTLINE .. 5

CHAPTER 2 LITERATURE REVIEW .. 6

2.1 ROBOTICS PLATFORM ... 6
2.2 MECHANICAL PLATFORM .. 9
2.3 ELECTRICAL PLATFORM .. 10

2.3.1 Computing Platform ... 11
2.3.2 Sensors ... 13
2.3.3 Motors .. 16
2.3.4 Power Source ... 17

2.4 MAZE ALGORITHMS (SOFTWARE) ... 18
2.4.1 Wall Follower Algorithm ... 18
2.4.2 Flood Fill Algorithm .. 18
2.4.3 Modified Flood Fill Algorithm ... 19
2.4.4 DIJKSTRA Algorithm ... 21
2.4.5 A* Algorithm .. 22

CHAPTER 3 ROBOTICS PLATFORM ... 23

3.1 MICROMOUSE ARCHITECTURE .. 24
3.1.1 Drive Train ... 24
3.1.2 Sensor Platform .. 27
3.1.3 Computing Platform ... 31
3.1.4 Micromouse Platform ... 33

3.2 FUNCTIONAL OPERATION .. 34
3.2.1 Dragonflybot Single Board Computer ... 35
3.2.2 Infrared Sensors ... 36
3.2.3 Stepper Motors ... 36

3.3 SOFTWARE PLATFORM .. 39
3.3.1 Software Development Environment and Summary ... 39
3.3.2 Micromouse Application Overview .. 40
3.3.2.1 Initialize Hardware ... 41
3.3.2.2 Initialize Map .. 42
3.3.2.3 Read Sensors ... 43
3.3.2.4 Update Wall Map .. 43
3.3.2.5 Correct Alignment ... 43
3.3.2.6 Determine Next Move .. 46
3.3.2.7 Move Micromouse Forward .. 46

3.4 BILL OF MATERIALS.. 47

v

CHAPTER 4 RESULTS ... 48

4.1 MICROMOUSE CURRICULUM RESULTS .. 49
4.1.1 The Micromouse and Modified Flood Fill ... 49
4.1.2 Microcontroller Basics ... 49
4.1.3 LCD Interfacing ... 50
4.1.4 Proximity Sensors... 50
4.1.5 Stepper Motor Operation ... 50
4.1.6 PID Controller ... 51
4.1.7 Micromouse Final Project ... 51
4.1.8 Micromouse Curriculum Summary .. 51

4.2 MICROMOUSE CURRICULUM ASSESSMENT ... 54

CHAPTER 5 CONCLUSION & FUTURE WORK ... 57

5.1 CONCLUSION ... 57
5.2 FUTURE WORK .. 59

REFERENCES ... 61

APPENDIX A: 2010 REGION 2 MICROMOUSE RULES [13] .. 64

APPENDIX B: DRAGONFLYBOT PIN-OUTS ... 69

APPENDIX C: PROCESSOR EXPERT – SOFTWARE COMPONENTS .. 70

APPENDIX D: MICROMOUSE SOFTWARE ... 71

APPENDIX D.1: MAIN PROGRAM (MAIN.C) ... 71
APPENDIX D.2: INTERRUPT ROUTINES (EVENTS.C) ... 75
APPENDIX D.3: MOTOR FUNCTIONALITY (MOTOR.C) .. 78
APPENDIX D.4: MAZE SOLVING ALGORITHM (MAZE.C) .. 83
APPENDIX D.5: LCD INITIALIZATION (LCD.C) .. 91

APPENDIX E: MICROMOUSE CURRICULUM SET .. 96

APPENDIX E.1: LABORATORY #1: THE MICROMOUSE & MODIFIED FLOOD FILL ... 97
APPENDIX E.2: LABORATORY #2: MICROCONTROLLER INTRODUCTION AND BASICS ... 104
APPENDIX E.3: LABORATORY #3: LCD INTERFACING .. 115
APPENDIX E.4: LABORATORY #4: PROXIMITY SENSORS .. 121
APPENDIX E.5: LABORATORY #5: STEPPER MOTOR OPERATION .. 124
APPENDIX E.6: LABORATORY #6: IMPLEMENTING PID CONTROLLER .. 131
APPENDIX E.7: MICROMOUSE PROJECT DESCRIPTION .. 139

APPENDIX F: ADDITIONAL LABORATORY MODULES ... 142

APPENDIX F.1: KEYPAD INTERFACING .. 143
APPENDIX F.2: SERIAL COMMUNICATIONS INTERFACE .. 147
APPENDIX F.3: ALARM CLOCK ... 150
APPENDIX F.4: I2C AND DS1624 DIGITAL THERMOMETER .. 153
APPENDIX F.5: SQUARE WAVE FREQUENCY CALCULATION ... 157
APPENDIX F.6: DC MOTOR CONTROL USING PWM .. 158
APPENDIX F.7: SERVO MOTOR CONTROL USING PWM .. 163
APPENDIX F.8: XBEE WIRELESS MODULE INTERFACING ... 166
APPENDIX F.9: BIDIRECTIONAL DC MOTOR CONTROL PROJECT .. 171
APPENDIX F.10:SERVO MOTOR CONTROL USING A PHOTOTRANSISTOR PROJECT ... 172

vi

List of Tables

TABLE 2.1: MICROCONTROLLER PROJECT BOARD COMPARISON [17], [18] ... 12
TABLE 2.2: STEPPER VERSUS DC MOTORS [15].. 16
TABLE 2.3: BATTERY TYPE COMPARISON [23], [24] .. 17
TABLE 3.1: SENSOR MEASUREMENTS TAKEN AT DIFFERENT MOUNTING ANGLES ... 28
TABLE 3.2: SENSOR VALUES AT DIFFERENT DISTANCES .. 30
TABLE 3.3: STEPPER MOTOR ENERGIZING PATTERN [33]... 38
TABLE 3.4: EFFECTS OF CONTROLLER PARAMETER ... 44
TABLE 3.5: BILL OF MATERIALS .. 47
TABLE 4.1: MICROMOUSE CURRICULUM .. 52
TABLE 4.2: SUPPLEMENTARY MODULES .. 53
TABLE 4.3: LABORATORY STATISTICS (2007 – 2011) ... 54
TABLE 4.4: STUDENT MOTIVATION RATINGS (2007 – 2011) .. 55

vii

List of Figures

FIGURE 1.1: BRANDEIS UNIVERSITY FIRST SURVEY RESULTS [1]... 2
FIGURE 1.2: FIRST LEGO LEAGUE GROWTH [1]... 3
FIGURE 2.1: MICROMOUSE MAZE EXAMPLE [10] ... 7
FIGURE 2.2: MICROMOUSE DESIGNS [11] ... 7
FIGURE 2.3: WHEELCHAIR VERSUS 4-MOTOR DESIGN [16] .. 10
FIGURE 2.4: ELECTRICAL PLATFORM BLOCK DIAGRAM .. 11
FIGURE 2.5: MICROCONTROLLER PROJECT BOARDS [18], [19] ... 12
FIGURE 2.6: INFRARED SENSOR READING [22] ... 14
FIGURE 2.7: SHARP ELECTRONICS EXAMPLE SENSOR RANGES (IN CM) [22] .. 14
FIGURE 2.8: SHARP GP2D120 ANALOG VOLTAGE OUTPUT [22] .. 15
FIGURE 2.9: FLOOD FILL ALGORITHM [15] ... 18
FIGURE 2.10: MODIFIED FLOOD FILL ALGORITHM [15] .. 19
FIGURE 3.1: AIRAT-2 ROBOT BOTTOM PLATE PICTURE [11] .. 24
FIGURE 3.2: MICROMOUSE BOTTOM PLATE CAD DRAWING ... 25
FIGURE 3.3: MICROMOUSE BALL WHEEL CASTOR AND MOUNT .. 26
FIGURE 3.4: MICROMOUSE DRIVE TRAIN ... 26
FIGURE 3.5: SENSOR MOUNTING POSITIONS... 27
FIGURE 3.6: MICROMOUSE SENSOR MOUNTING POSITION ... 28
FIGURE 3.7: MICROMOUSE SENSOR MOUNT CAD DRAWING ... 29
FIGURE 3.8: MICROMOUSE SENSOR MOUNT AND PROXIMITY SENSORS ... 29
FIGURE 3.9: PROXIMITY SENSOR OUTPUT (DETECTABLE RANGE) ... 30
FIGURE 3.10: DRAGONFLYBOT MOUNTED ON MICROMOUSE TOP FRAME PLATE ... 31
FIGURE 3.11: MICROMOUSE DRAGONFLYBOT SINGLE BOARD COMPUTER MOUNT ... 32
FIGURE 3.12: 8.4 V 1400 MAH NI-MH RECHARGEABLE BATTERY PACK [31] ... 33
FIGURE 3.13: MICROMOUSE FRONT AND REAR VIEW .. 33
FIGURE 3.14: MICROMOUSE SIDE VIEWS ... 34
FIGURE 3.15: MICROMOUSE ELECTRICAL PLATFORM .. 34
FIGURE 3.16: DRAGONFLYBOT BOARD – COMPONENT SIDE SCHEMATIC [19] ... 35
FIGURE 3.17: SHARP GP2D120 PROXIMITY SENSOR AND TERMINAL CONNECTIONS [22] ... 36
FIGURE 3.18: HALF-BRIDGE CIRCUIT ... 37
FIGURE 3.19: MICROCONTROLLER INTERFACE TO STEPPER MOTORS... 37
FIGURE 3.20: MOTOR DRIVER INPUT PULSE ... 38
FIGURE 3.21: MICROMOUSE APPLICATION OVERVIEW ... 41
FIGURE 3.22: PID CONTROLLER BLOCK DIAGRAM [37] ... 44
FIGURE 3.23: P, PI, AND PID CONTROL RESPONSES [38] ... 45
FIGURE 3.24: MICROMOUSE CONTROL LOOP DIAGRAM [37] ... 45

1

Chapter 1

Introduction

1.1 Motivation

Robotic platforms have become a common educational tool to teach students basic

concepts in mathematics, science, engineering, technology, world affairs, and much more. Over

200,000 students worldwide are expected to participate in the 2012 For Inspiration and

Recognition of Science and Technology (FIRST) LEGO Robotics League; a sports-like robotics

competition for students ages 9-14 [3]. The program aims to inspire young people’s interest and

participation in science. At the core of the FIRST LEGO League is a robotics kit manufactured

by LEGO which includes a 32-bit ARM7 processor, Bluetooth wireless communications, a series

of input-output ports, and a 9 volt battery [3].

In addition to LEGO Robotics, FIRST offers two robotics programs for high school aged

students as well as a program for children ages 6-8. To complement the efforts of FIRST and

similar programs, higher education institutions have developed supporting robotics curriculum

and materials. For example, Carnegie Mellon University (CMU) has developed a Robotics

Academy to “Use the motivational effects of robotics to excite students about science and

technology” [4]. The Academy develops and maintains a rich set of curriculum and student and

educator robotics resources.

2

Government agencies such as NASA have invested in robotics education by standing up

programs such as the NASA Robotics Alliance Project [5]. The Robotics Alliance Project

strives to increase American support for the advancement of Robotics Technologies, inspire

American high school students to pursue Robotics Engineering degrees, and inspire

undergraduate and graduate students to pursue advanced degrees in robotics [5]. The Robotics

Alliance Project sponsors FIRST robotics teams along with other educational robotics programs

such as Botball, Boosting Engineering Science and Technology (BEST), National Underwater

Robotics Challenge (NURC), and VEX robotics [6], [7]. Each of these programs differs in their

organization but their underlying goals are generally the same; to teach students fundamental

skills in science, technology, engineering, and mathematics.

Youth robotics programs are proving that integrating robotics into science, technology,

engineering, and mathematics (STEM) curriculum is an effective and efficient way to inspire and

educate students. Robotics programs such as FIRST are even inspiring students to later pursue

STEM careers. A study conducted by Brandeis University, Center for Youth and Communities,

revealed that students involved in the FIRST Robotics Competitions are twice more likely to

major in a science and technology field than students that are not enrolled in the program [1].

Figure 1.1 captures a summary of the results of this study.

Figure 1.1: Brandeis University FIRST Survey Results [1]

In addition to increasing student motivation to pursue technology-based fields, robotics

programs are continuing to demonstrate significant growth. Figure 1.2 captures the growth of

the FIRST LEGO League (FLL) program. In its initial year, the FIRST Lego League consisted

of 200 teams [8]. In 2012, it is projected that 20,500 teams and over 200,000 students across 60

countries will participate [8].

3

Figure 1.2: FIRST LEGO League Growth [1]

Traditional undergraduate engineering laboratory sessions can be described as goal-

oriented (i.e. a lab session has a predetermined set of objectives). Once students have completed

their predetermined set of objectives, they are finished with the laboratory session. Take for

example, a common electrical engineering laboratory project, a clapper. A clapper is an

electrical circuit that will turn on and off based on the detection of a loud sound such as the

clapping of hands. The clapper project thus has a predefined goal that upon recognizing a

clapping sound, a light will turn on and off. Once the basic functionality is achieved by students,

no additional work is required. Robotics-based (and competition-based) laboratories provide the

inherit capability to challenge students to achieve higher standards and remove the boundaries of

traditional laboratory sessions.

Integration of another robotics platform, called the micromouse, with conventional

undergraduate engineering curriculum has proven to be successful in motivating students and

keeping their interest high [2]. Results from a large-scale integration of the micromouse

curriculum at California State University, Fullerton, provided students with hands-on experience

and enhanced classroom instruction, student retention, and curriculum. Additionally, many of

the skills that students developed through using micromouse curriculum comply with the criteria

of evaluation from the Accreditation Board for Engineering and Technology (ABET) [9].

4

This thesis investigates the benefits of integrating robotics-based curriculum into the

West Virginia University Lane Department of Computer Science and Electrical Engineering

(LCSEE) computer engineering undergraduate laboratory, microcomputer structures and

interfacing. The demonstrated successes of the FIRST robotics programs and California State

University curriculum provide a strong case for infusion of robotics curriculum into

undergraduate engineering departments to better the their capabilities and attractiveness to

current and future students.

A low-cost robotics platform was needed that would be capable of satisfying the learning

objectives of the microcomputer and interfacing laboratory. The microcomputer and interfacing

laboratory learning objectives are as follows:

1. Draw a detailed architecture diagram of the HCS12 microcontrollers

2. Write a program for HCS12 microcontrollers, i.e. know all addressing

modes and full instruction of the HCS12 microcontrollers; and how to

write a program using HCS12 assembler and debugging tools

3. Design and use interrupt as an integral part of the microcontroller

4. Design and use programmable timers as an integral part of the

microcontroller

5. Design and use input/output ports as an integral part of the

microcontroller

6. Interface and develop software to output a wide-range of process

control signal (DC, AC, high power, variety of voltage/current

compatible levels, I2C, Keyboards, LCD, etc.)

7. Design and use Pulse Width Modulation (PWM) as an integral part of

the microcontroller

8. Understand the basic operation and use of Analog-to-Digital

Converter (ADC) and Digital-to-Analog converter with microcontroller

9. Understand the basic operation of commonly used sensors/transducers

Due to the successes with the micromouse by California State University described in [2]

and due to the fact that the micromouse platform has a set of pre-existing rules administered by

the Institute of Electronics and Electrical Engineers (IEEE), the micromouse platform was

selected as the primary alternative for a low-cost robotics framework. Additional documentation

was available based on the results of LCSEE graduate robotics courses that demonstrated that the

micromouse platform could be implemented for a reasonable cost.

5

1.2 Statement of the Problem

The first phase of this thesis identifies, designs, and develops a low-cost robotics

platform. The platform will continue to utilize the Freescale HCS12 processor family and

Freescale CodeWarrior Integrated Development Environment (IDE) with Processor Expert. The

budget shall not exceed $200 per robotics platform in order to minimize laboratory costs. The

robotics platform will be prototyped, tested, and eleven robotic platforms will be developed.

The second phase of this thesis is to develop a rich set of curriculum to accompany the

robotics platform. The curriculum will be modular, challenging and introduce new topics not

previously introduced in the LCSEE department courses. Most importantly, the curriculum will

be seamless from beginning to end to ensure that students understand the relevance of all topic

areas covered. The curriculum will be implemented and evaluated to assess the benefit of its

infusion in the department. Both student motivation and grades will be assessed and compared

with previous semesters in which the robotics platform was not utilized.

1.3 Thesis outline

Chapter 2 includes the review of literature broken into four major subsections:

micromouse, mechanical platform, electrical platform, and software platform. The micromouse

section details the micromouse, micromouse competition, and includes some standard

micromouse designs. The mechanical platform section details the research results on chasses,

sensor mounts, and motors; the electrical platform section includes details on the

microcontroller, power source, sensors, and motors; and the software platform section presents

the common micromouse maze solving algorithms. Chapter 3 includes the details of the design

and deployment of the utilized micromouse platform and bill of materials of the as-designed

micromouse platform. Chapter 4 provides the results from this research effort including the

details from implementation of the curriculum and additional applications for the micromouse

platform. Chapter 5 concludes with a summary and recommendations for future work.

6

Chapter 2

Literature Review

This chapter discusses the robotics platform followed by the discussions on the technical

trade-offs of the mechanical, electrical, and software platforms. Each section describes the

advantages and disadvantages of potential solutions to develop a low-cost robotics platform to

support the undergraduate computer engineering course, microcomputer structures and

interfacing.

2.1 Robotics Platform

The micromouse will serve as the robotics platform for this effort. The micromouse is an

autonomous robotic mouse whose objective is to solve a 16x16 maze. A maze cell is typically a

180 mm square with 50 mm high walls with passageways between the walls 168 mm wide. The

floor of the maze is painted black, and the maze walls are painted white. Figure 2.1 provides an

example of a typical micromouse maze whereas the car denotes the starting cell and mouse

position and “F” denotes the destination cell.

7

Figure 2.1: Micromouse Maze Example [10]

The micromouse is provided with a predetermined starting position and must correctly

traverse an unknown maze and determine when it has reached the goal cell. Once the correct

route has been identified, the mouse should return to the starting position, and then run the

correct route in the shortest possible time. A micromouse robot is generally composed of some

combination of motors (DC or stepper) and sensors (proximity or distance), power source,

display mechanism, chassis, wheels, and switches. A micromouse robot typically is controlled

using a microcontroller which reads sensors, controls micromouse movement, implements error

detection and correction algorithms, and implements various searching algorithms. Figure 2.2

provides a few images of some common micromouse designs [11].

Figure 2.2: Micromouse Designs [11]

8

In 1977 the Institute of Electronics and Electrical Engineers (IEEE) created the

micromouse competition concept, and the first competition was held in New York in 1979 [12].

In a matter of a few years, the competition went global, and the first world competition was held

in Japan in 1985 [12]. Competitions today are held across the United States and the world.

IEEE micromouse competitions are held based on geographical region. Region 2 includes West

Virginia, Delaware, District of Columbia, Maryland, Southern New Jersey, Ohio (except

Toledo), Pennsylvania, and Northern Virginia. The 2010 Region 2 Micromouse Competition

was hosted by Temple University and held on April 17, 2010 [13]. Appendix A includes a

complete copy of the 2010 Region 2 Micromouse Competition Rules.

The micromouse competition is a robotics competition where an autonomous robot is

constructed with the objective to solve an unknown maze in the shortest possible amount of time.

For each run, a micromouse is given ten minutes to access the maze, and the minimum time that

the mouse can solve the maze is its recorded time. The start of a micromouse maze is at one of

the four corners where the starting square is surrounded by walls on three sides, and the

destination unit is the four cells in the center of the maze. The four primary rules of a

micromouse competition are as follows [13]:

1. A micromouse shall be self-contained (no remote controls). A

micromouse shall not use an energy source employing a combustion

process.

2. A micromouse shall not leave any part of its body behind while

negotiating the maze.

3. A micromouse shall not jump over, fly over, climb, scratch, cut,

burn, mark, damage, or destroy the walls of the maze.

4. A micromouse shall not be larger either in length or in width, than

25 centimeters. The dimensions of a micromouse that changes its

geometry during a run shall not be greater than 25 cm x 25 cm. There

are no restrictions on the height of a micromouse.

9

2.2 Mechanical Platform

The mechanical platform consists of the chassis and all the required physical components

to hold the micromouse together. There are four overarching design characteristics to consider

when designing and building a micromouse robot [14]. These characteristics should be

considered during micromouse research and design.

1. Overall size should be small. Minimizing the size of the robot decreases the

probability of getting caught on walls and collisions.

2. Minimize the moment of inertia. Minimizing the moment of inertia allows the robot

to turn quicker and more accurately.

3. Low center of mass. Lowering the center of mass increases the robot’s stability and

decreases the likelihood of toppling. The chassis should be built with lightweight

and simple, replaceable components.

4. Wheel placement is important. Wheel placement affects the robot’s ability to traverse

the maze.

Two common micromouse wheel layouts were recognized [15]. The first layout is often

referred to as the wheelchair mouse. The wheelchair mouse has a castor on one or both ends of

the chassis and commonly utilizes two motors. The second layout utilizes four motors such that

one can drive all four wheels. The wheelchair design must have a good weight distribution to

prevent the robot from toppling and is less efficient during acceleration as the weight distribution

changes. The four wheel mouse will handle the weight distribution on the wheels during

acceleration better than the wheelchair mouse; however, additional wheels increase the total

weight of the robot. The four wheel mouse is also more difficult to steer and control due to the

additional motors. The additional motors require more programming to control and synchronize

the wheel movements compared to the wheelchair mouse. Figure 2.3 provides a block diagram

of the two common micromouse layouts.

10

Figure 2.3: Wheelchair versus 4-Motor Design [16]

Wheel diameter and weight need to be considered for an efficient micromouse platform.

Since speed and more importantly, acceleration, are essential to designing a quality micromouse,

the following equations are introduced to understand the relationships between wheel mass (m),

acceleration (a), wheel radius (r), and torque (τ).

, solving for acceleration yields:

To increase the robot’s acceleration, a motor that has high torque (τ) and minimal size is

most favorable. Robots with wheels that are too large are also more likely to tip over. As a

result, the micromouse design needs to minimize the wheel size while ensuring that the mouse

chassis does not drag.

2.3 Electrical Platform

The electrical platform can be broken into three basic parts: computing platform, inputs

and outputs as shown in Figure 2.4. The computing platform houses the software application

with the algorithm required for the robot to traverse the maze and provides interfaces for the

micromouse input and output components. The input components are the sensors which provide

the robot with information regarding its current state and orientation within the maze. The

output components include the motors and display devices for debugging and status information.

11

Figure 2.4: Electrical Platform Block Diagram

2.3.1 Computing Platform

The computing platform is quickly reduced to a microcontroller application due to the

mouse’s physical size constraints. The microcontroller is generically responsible for controlling

the navigation of the mouse, tracking maze information, and optimizing a path back to the

starting maze cell. The microcontroller must be low power and provide sufficient ports to

interface with all external peripherals. It is important for the microcontroller to be low cost due

to limited project budgets. In addition, the computing platform options were limited for this

project as it was desired to utilize same microcontroller family of processors that had been

utilized in previous microcomputer structures and interfacing laboratories. The computing

platform was to utilize the HCS12 family of Freescale microcontrollers.

Two single board computer project boards, shown in Figure 2.5 that utilized the HCS12

family of Freescale microcontrollers were considered in the design of the micromouse, the

TinyDragon project board (left) [17] and the Dragonflybot project board (right) [18]. Comparing

the two single board computers, the TinyDragon board provided more memory, more input-

output lines, smaller in size, and was $19 cheaper than the Dragonflybot board. The

Dragonflybot board provided more on-board switches and LEDs and also had on-board

connectors for H-bridges to drive two stepper motors or two DC motors. Table 2.1 provides an

in-depth comparison of the two single board computers.

12

Figure 2.5: Microcontroller Project Boards [17], [18]

Table 2.1: Microcontroller Project Board Comparison [17], [18]

 TinyDragon Dragonflybot

Memory
256k flash, 12k RAM, and 4K

EEPROM

32k flash, 2k RAM, and 2K

EEPROM

Features 1 PB switch, 1 LED indicator 4 PB switches, 8 LEDs

Input-Output 51 accessible I/O pins; 5 Ports 31 IO lines

On-chip

peripherals

3 SPIs, 2 SCIs, 2 CANs, I2C

interface, 8 16-bit timers,

PWMs, 8-channel 10-bit ADC

1 SPI, 1 SCI, CAN port, I2C,

PWMs, 8-channel 10-bit ADC

Speed
8 MHz, 4 MHz default bus

speed, 25 MHz PLL

8 MHz, 24 MHz default bus

speed, 25 MHz PLL

Size 1.9” x 2.5” 3.3" X 4.3"

Power Options
AC/DC Adapter or 2-position

header for external battery
USB or AC/DC adapter

Noteworthy

Features

Increased memory space for

micromouse algorithm

Dual H-bridges to control two

motors (stepper); separate

voltage supplies for motors and

microcontroller

Cost $59 $78

13

2.3.2 Sensors

The sensors on the micromouse are utilized to detect movement errors as well as provide

information needed to solve the maze. Considering the desired functionality of the micromouse

to successfully traverse the unknown maze, there are a few factors that must be considered when

selecting the appropriate sensors. These factors include repeatability, accuracy, and sampling

time [14]. Repeatability is “the ability of a component to repeat producing the same result under

the same conditions”, and highly repeatable sensors produce samples that have small variance

[14]. As a result of the importance of getting consistent sensor results as a micromouse traverses

a maze to avoid collisions and incorrect turns, one can conclude that selecting a highly repeatable

sensor will help produce a more robust micromouse design.

The final sensor characteristic that should be considered is the sampling time, the amount

of time it takes for the sensor to capture an object (wall in our case) to the time that the software

is aware that the sampling has occurred [14]. Micromouse applications require short sampling

times as the robot is constantly in motion. If sample times are too great, the robot may no longer

be in the same location and the readings will be received too late to be useful.

In Tondra De’s, The Inception of Chedda [19], three primary sensor types are compared

for effectiveness in micromouse applications: infrared, ultrasonic, and touch. De concludes that

touch sensors may be useful to guide the robot but should not be used for primary sensing; sonar

sensors have their advantages but are subject to interference; and infrared sensors provide the

best alternative as they are not subject to electromagnetic interference and more often cheaper

than sonar sensors [19]. Taking this work into consideration and examining other primary

references [14], [15], [20], sensor type research is limited to infrared proximity sensors.

Infrared sensors operate by sending a pulse of infrared light (light emitter) and the light

travels outward in the field of view and either hits an object or continues. If the light does not

reflect off an object, the sensor does not return a reading; however, if the light reflects off an

object, it returns to the linear sensor array (detected by what is called a light detector) [21]. Now

having three information points (reflection point, emitter location, and detector location), the

sensor can calculate the distance to the object by knowing the reflected angle the light returned

[21]. Figure 2.6 provides an illustration depicting a typical infrared sensor reading.

14

Figure 2.6: Infrared Sensor Reading [21]

Due to the nature of infrared sensors, infrared sensors come in many varieties as there are

many different distance ranges that would need to be detected for different applications. Figure

2.7 provides two examples of infrared sensors provided by Sharp Electronics [21] . The black-

shaded area is the distance range that the sensor cannot detect, and the gray-shaded region is the

sensor’s detectable distance range. For example, the Sharp GP2D120 can detect distances in the

range of 4 to 30 cm [22].

Figure 2.7: Sharp Electronics Example Sensor Ranges (in cm) [21]

15

Figure 2.8 captures the analog output voltage versus distance from the reflected surface

(in cm) for the Sharp GP2D120 infrared sensor [22]. The detectable range of the GP2D120

sensor is from 4 to 30 cm. Figure 2.8 illustrates that in this range, the curve is not completely

linear. Additionally it is important to recognize that this curve will be slightly different for each

detector utilized [21]. As a result, it is recommended to linearize the output using either a lookup

table or a parameterized function in order to calibrate each detector.

In addition, the plot illustrates that voltage readings less than 4 cm from the reflective

object drop off significantly. Readings less than 4 cm could be misinterpreted as a further

distance. As a result, it is important to design a micromouse platform that prevents an infrared

sensor from receiving a reading that is not within the sensor’s detectable range.

Figure 2.8: Sharp GP2D120 Analog Voltage Output [21]

16

2.3.3 Motors

Stepper motors and direct current (DC) motors are the two most common types of motors

used in micromouse applications [15]. Ideally, the motors will be able to be easily controlled in

terms of acceleration, position, and speed [15]. Table 2.2 presents the desired features for the

micromouse robot and compares and contrasts stepper motors versus DC motors.

Table 2.2: Stepper versus DC Motors [15]

Feature Notes Selection

Weight
Stepper motors are generally heavier than DC

motors
DC

Speed

DC motors perform better than stepper motors in

regards to speed and acceleration; DC motor

requires a gearbox to provide ample torque

DC

Control

Stepper motors achieve movement through

stepping through small increments; DC motion

control is often more difficult as feedback

control plus encoders are necessary to obtain

position information

Stepper

Mounting

Stepper motors are extremely easy to mount to

chassis. DC motors require gearbox to leverage

available motor torque.

Stepper

Torque

DC motors require gearbox to provide ample

torque. Stepper motors are available off-the-

shelf that provide suitable torque for

micromouse robots.

Stepper

Software

Stepper motor software requires two

independent pulses, and stepper motors are

sensitive to achieving smooth pulse trains.

Stepper

Examining Table 2.2, either DC motors or stepper motors are appropriate for micromouse

development. Selection is based on designer preference in comparing and contrasting the design

tradeoffs of selecting one or the other.

17

2.3.4 Power Source

Batteries are the most practical power source for micromouse platforms. Batteries are

rated based on a nominal voltage and power rating. Voltage readings will range from 15% above

voltage rating (fully charged) to 15% below voltage rating (fully discharged), and batteries of

different types provide different amounts of current [23]. In order to increase battery voltage,

wire multiple batteries in series, and in order to increase current output, wire multiple batteries in

parallel.

The following battery types are good candidates for micromouse robots: Alkaline,

Lithium-Ion/Polymer, and Nickel Metal-Hydride (NiMH). The advantages and disadvantages of

these battery types are highlighted in Table 2.3. When selecting a battery type, size and weight

are also important factors. Battery size is limited by the size of the maze cells, and battery

weight should be minimized in order to minimize the total weight of the robot [19]. Since many

potential micromouse users may have limited experience with working with electronics, another

factor that should be considered during battery selection is operational safety.

Table 2.3: Battery Type Comparison [23], [24]

Alkaline Rechargeable

Nickel Metal-Hydride

(NiMH)
Lithium-Ion/Polymer

Pros  Lose charge gradually

(provides warning

batteries need replaced)

 Low self-discharge rates

 High voltage

 Non-toxic

 High current output

 High energy capacity

 Rechargeable as often as

necessary

 Lightweight

 Non-toxic

 Safest alternative

 High energy capacity

 High power rates

Cons  Low power capacities

 Lose portion of capacity

after each recharge

 Comes in different

capacities (must purchase

wisely)

 Less voltage than

Alkaline

 Short shelf life when not

in use

 Most expensive type

 Potential to catch fire

 It is important to recognize that battery size and selection will need to be considered

during the design of the micromouse chassis. The micromouse chassis must have enough free

space to support the battery pack, one of the largest and heaviest components. The battery

should also be mounted to facilitate recharging.

18

2.4 Maze Algorithms (Software)

The micromouse robot’s primary objective is to solve an unknown maze in a repeatable

and efficient manner; as a result, the micromouse robot must deploy a maze solving algorithm in

order to solve the course. Traditional maze solving algorithms typically break down when faced

with real-world constraints as the maze information changes as the mouse progresses [25]. The

following sections introduce five common maze solving algorithms: wall follower [25],

DJIKSTRA [25], flood fill [15], modified flood fill [15], and A* algorithm [26], and discuss

their respective advantages and disadvantages. Relevant to all algorithms is that on the returning

trip from the maze center, it is often a good practice to double check the wall positions [15].

2.4.1 Wall Follower Algorithm

The wall follower algorithm involves a simple strategy to have the mouse follow either

the left or right wall until the center/goal cell is reached. Since the wall follower algorithm is

quite simple, its main advantage is that it is easy to implement. The disadvantage of the wall

follower algorithm is that it lacks intelligence by not detecting position or direction [25]. There

are many wall follower competitions; however, the algorithm is not suitable for the micromouse

competition as mazes are designed such that this algorithm will not work [15].

2.4.2 Flood Fill Algorithm

The flood fill is an algorithm that determines the area connected to a given node in a

multi-dimensional array. It sets the goal values (destination cells) to zero and “floods” the

surrounding cells with radiating, increasing values. Figure 2.9 provides an example using a 5x5

maze.

4 3 2 3 4

3 2 1 2 3

2 1 0 1 2

3 2 1 2 3

4 3 2 3 4

Figure 2.9: Flood Fill Algorithm [15]

19

Examining Figure 2.9, note that the center value is zero and all other cells are filled with

values corresponding to their distance from the goal cell. After “flooding” the maze with values,

the algorithm then searches the adjacent nodes for the smallest value to determine which cell to

travel [15]. It then continues to follow the values in descending order until it has reached the

center. This algorithm is rather simple and provides a reliable method to finding the center of the

maze. The disadvantages with the flood fill are that the software algorithm is more difficult to

implement than the wall follower and the entire maze map has to be flooded after every move

[27].

2.4.3 Modified Flood Fill Algorithm

Most implementations of the flood fill algorithm are tailored versions and are rightfully

called modified flood fill algorithms. The modified flood fill algorithm is similar to the flood fill

algorithm for it also uses distance values to navigate the maze [15]. The primary difference is

that the modified flood fill algorithm does not “flood” the entire maze with values. It modifies

only the values that need to be changed. For example, if a wall is encountered and the robot is

not in the destination cell, it updates the value of that cell to 1 + the minimum value of its open

neighbors. Figure 2.10 provides an example of this process.

Figure 2.10: Modified Flood Fill Algorithm [15]

20

When the robot encounters a wall to the east and can only move north or south, the north

and south cells (open neighbors) are checked and we find that the current cell’s new value is 1 +

the minimum value of its open neighbors or 1+3=4. Once the robot has found the destination

cell, it can return to the beginning of the maze using the distance values. Pseudo code for the

modified flood fill process for updating the distance values [15] is provided.

 Update the distance values (if necessary)

 Make sure the stack is empty

 Push the current cell (one robot is standing on) onto stack

 Repeat the following instructions until stack = empty

 {

 Pull cell from stack

 Is distance value of cell = 1+min value of open neighbors?

 No

 {

Change cell to 1+min value of open neighbors

Push all of cell’s open neighbors onto stack to be

checked

 }

 Yes

{

 Do nothing

 }

}

The modified flood fill algorithm yields improvements over the flood fill algorithm in not

requiring the entire maze to be flooded with new values upon each step of the maze. The

disadvantage, as with the flood fill algorithm, is that the modified flood fill algorithm can be

difficult to implement in software.

21

2.4.4 DIJKSTRA Algorithm

The DIJKSTA’s algorithm is a more advanced algorithm that finds the shortest path for

solving the unknown maze. For a node in the graph, the algorithm identifies the shortest path

between the vertex and every other vertex [25]. An outline of the steps necessary to implement

the DJIKSTRA algorithm is described is the following steps [25], [28].

/* Assign a distance value to every unvisited node except starting

node. Set starting node = 0 and all other nodes = infinity */

 for every i in the vertex

 distance (i) = infinity;

 previous (i) = undefined;

 end for

 /* The distance from the starting node to starting node is zero */

 distance (s) = 0;

/* Examine all unvisited vertices and select the node with the shortest

distance value from starting point that is not in the Ready set */

 while vertices exist that are unvisited

 pick the vertex,v, in unvisited vertices with shortest path to s

 add v to list of visited vertices

 for each edge of v (v1, v2)

 if distance(v1) + length (v1,v2) < distance (v2)

 distance(v2) = distance (v1) + length (v1,v2)

 previous(v2) = v1

 update list of finished vertices as necessary

 end if

 end for

 end while

The main advantage of this algorithm is that it finds the shortest path to solve the maze.

The disadvantages are that the whole maze must be examined to identify the nodes as such it

requires a significant amount of time to find the shortest path [25]. The algorithm is also

requires a high demand on data memory [14].

22

2.4.5 A* Algorithm

The A* algorithm combines the DIJKSTRA algorithm (in finding the shortest possible

path) with Best-First-Search information (utilizes heuristic function to guide itself toward the

goal/center cell) [26]. As the maze is traversed, the A* algorithm maintains a sorted priority

queue of alternate path options. If the portion of the maze has a higher cost (longer distance to

goal cell) than any previously traversed portion, the algorithm goes back and traverses the lower-

cost path. This process continues until the goal/center cell is reached. The most important

component of the algorithm is the heuristic estimate function as this function directly relates to

the efficiency and performance of the algorithm [26]. The A* star algorithm is an improvement

over the DJIKSTRA algorithm; however, it is more difficult to implement. The A* algorithm

also requires a high demand on data memory [14] which makes it a less attractive solution for

microcontroller applications with limited available resources.

23

Chapter 3

Robotics Platform

The objective of this chapter is to provide a detailed description of the micromouse

platform designed, developed, and deployed for the undergraduate computer engineering course,

microcomputer structures and interfacing. The micromouse was selected as it provided a

framework to design, develop, and utilize a low-cost robotics platform. The micromouse has a

set of pre-existing rules that can be leveraged to form the foundation of the curriculum set.

The first part of this chapter introduces each major micromouse subsystem in isolation

(drive train, sensor platform, and computing platform). The second part of this chapter describes

the functional operation of the micromouse platform and the interactions between the

micromouse subsystems. The third part of this chapter describes the micromouse application

software and development. The final part of this chapter details the micromouse bill of

materials.

24

3.1 Micromouse Architecture

The micromouse architecture is decomposed into the three subsystems: drive train,

sensor platform, and computing platform. The drive train consists of a bottom frame plate, two

servo motors, two ball castor wheels, and two rubber wheels. The sensor platform includes a

sensor mount and three infrared sensors. The computing platform consists of the microcontroller

platform and a top frame plate.

3.1.1 Drive Train

The micromouse drive train includes a bottom frame plate, two servo motors, two ball

castors wheels, two rubber wheels, and connectors. The bottom frame plate was inspired by the

commercial AIRAT-2 robot [11], shown in Figure 3.1, due to its simple and practical design.

The plate material is an aluminum-alloy. The aluminum-alloy is a durable material with a high

strength-to-weight ratio and will wear well over several years with little to no maintenance. The

aluminum alloy material was also readily available at the university at no additional cost. The

bottom frame plate stands one centimeter from the driving surface in order to lower the center of

gravity. Figure 3.2 provides a CAD drawing of the bottom frame plate.

Figure 3.1: AIRAT-2 Robot Bottom Plate Picture [11]

25

Figure 3.2: Micromouse Bottom Plate CAD Drawing

The wheelchair chassis was selected over the four wheel mouse to minimize the cost,

weight, and complexity of the micromouse platform. The wheelchair design allows the

utilization of low cost ball castors to provide the micromouse with sufficient turning capability.

The castors are easily replaceable and can be adjusted to raise and lower the position of the

micromouse. Two 7.5 mm (in radius) ball wheel castors are mounted through the bottom frame

plate. The ball wheel castors are fastened with a piece of aluminum-alloy, spacer, and screws.

The wheel castors can be adjusted higher or lower by inserting different sized spacers and fine-

tuned by adjusting the screws. Figure 3.3 provides a picture of one of the micromouse ball

wheel castors and mounts connected to the bottom frame plate.

26

Figure 3.3: Micromouse Ball Wheel Castor and Mount

In the center of the micromouse, two Shinano Kenshi unipolar stepper motors [29] are

mounted side-by-side. The primary reason that stepper motors were chosen over DC motors is

due to the fact that stepper motors provide a more maintenance free micromouse robotics

platform for the microcomputer structures and interfacing laboratory. DC motors require

additional circuitry and a gearbox to have a suitable amount of torque for the micromouse

application, whereas stepper motors can be simply controlled using two independent pulses.

Utilizing the stepper motors provide students with the ability to precisely control the robot’s

movement by incrementing and decrementing the motors in small steps while being able to hold

motor position and resist turning [19].

Connected to the stepper motor shafts are two 3.0 cm (radius) rubber wheels. Rubber

wheels were chosen in order to reduce wheel slippage on the maze floor and minimize the total

weight of the micromouse. Figure 3.4 provides a complete picture of the micromouse drive train

including the bottom plate, ball caster wheels and mounts, stepper motors, and rubber wheels.

Figure 3.4: Micromouse Drive Train

27

3.1.2 Sensor Platform

The micromouse application requires a means to determine the location of the walls and

detect when the micromouse gets too close to the maze walls during maze traversal. Sharp

GP2D120 proximity sensors were chosen due to their small sampling time, low cost, and

micromouse application-appropriate sensing range from 4-30 cm. The sampling time of the

GP2D120 proximity sensor is 48 milliseconds.

Two mounting positions, shown in Figure 3.5, were initially tested to determine which

mounting positioned better functioned. In sensor mounting method 1 (left), the sensors are

mounted perpendicular to the reflective surface. In sensing method 2 (right), the front sensor is

still perpendicular to the front wall; however, the left and right sensors are mounted at 60 degrees

and 120 degrees, respectively.

Figure 3.5: Sensor Mounting Positions

 Table 3.1 provides the empirical results from reading proximity sensor outputs taken five

centimeters away from a white reflective maze wall. Two measurements were taken at each

28

mounting angle, and the difference between the two measurements was calculated to determine

the sensor consistency. The results demonstrated that sensors mounted at a 90 degree angle from

the wall produce more regular outputs than sensors mounted at the 60 and 120 degree angles.

Based on these results and since mounting the sensors at 60 and 120 degree angles proved more

difficult than mounting sensors at right angles, it was determined that the sensors would be

mounted to directly face the maze walls.

Table 3.1: Sensor Measurements taken at Different Mounting Angles

Method
Angle

(Degrees)

Measurement #1

(V)

Measurement #2

(V)

Difference

(V)

1 90 2.441 2.431 0.01

2
60 2.441 2.422 0.019

120 2.432 2.456 0.024

Considering the sharp drop-off of proximity sensor readings outside of the detectable

range (less than 4 cm for the GP2D120 sensor), sensor mounting method 1 was adjusted to

ensure that the sensors could not get closer than 4 cm from the maze walls. This was

accomplished by positioning the sensors within the body of the micromouse versus external to

the mouse body as described in mounting methods 1 and 2. Figure 3.7 illustrates this adjustment

and ensures that sensor readings are only taken in the sensor’s detectable range. The sensors are

mounted directly facing the maze walls.

Figure 3.6: Micromouse Sensor Mounting Position

29

Figure 3.7 provides a CAD drawing of the micromouse sensor mount. An aluminum-

alloy was also used to build the sensor mount. The sensor mount, shown in Figure 3.8, provides

three vertical mounting points for the micromouse sensors. The sensor mount also connects to

the bottom plate. The height of the sensor mount was driven by the height of the proximity

sensors.

Figure 3.7: Micromouse Sensor Mount CAD Drawing

Figure 3.8: Micromouse Sensor Mount and Proximity Sensors

30

Since the GP2D120 infrared sensors vary in their output measurements on a sensor-by-

sensor basis, multiple sensor readings must be considered to determine the range of values

acceptable for a certain sensor reading (distance value). As a result, multiple sensor readings

from multiple sensors were taken at different distances to identify a range of acceptable readings.

Table 3.2 provides the list of sensor readings (converted to voltage readings, V) measured by the

GP2D120 sensor and an average sensor reading at varying distances from the maze wall (4 to 8

cm). Figure 3.9 plots the voltages (V) versus distance from the wall. This information could be

used for the micromouse and error correction algorithms to track the position of the micromouse

within the maze.

Table 3.2: Sensor Values at Different Distances

Distance

(cm)

Sensor

Reading 1

(V)

Sensor

Reading 2

(V)

Sensor

Reading 3

(V)

Average

Reading (V)

4 2.715 2.802 2.823 2.780

5 2.349 2.403 2.355 2.369

6 1.909 2.001 2.111 2.007

7 1.763 1.777 1.753 1.764

8 1.563 1.555 1.568 1.562

Figure 3.9: Proximity Sensor Output (Detectable Range)

31

 The sensor data can be further simplified for the micromouse application for both the

micromouse and error correction algorithms. First, to determine if a maze wall is present, a

threshold can be identified to notify the micromouse algorithm of an existing wall. Thus if the

sensor ADC reading comes back higher than this threshold, the micromouse knows that a wall is

present. For example, left and right 10-bit ADC sensor readings greater than 240 indicate that a

wall is present. Secondly, to input information to the error correction algorithm, a nominal value

is measured by positioning the micromouse is the center of the maze cell. The 10-bit ADC

measured value for this implementation of the micromouse application is 365 or 1.782V. Based

on this sensor reading, the error correction algorithm can be tuned to adjust the path of the

micromouse robot as it traverses the maze.

3.1.3 Computing Platform

A Dragonflybot single board computer was selected over the TinyDragon single board

computer to serve as the computing platform due to the fact that the Dragonflybot is equipped

with the necessary components to interface with two stepper motors (or DC motors) and

simplifies the micromouse design. The Dragonflybot single board computer is mounted on top

of the top frame plate as shown in Figure 3.10. Consequently, the top frame plate dimensions

were driven by the physical dimensions of the Dragonflybot single board computer. Similar to

the bottom frame plate, the top frame plate material is an aluminum-alloy metal. Figure 3.11

provides a CAD Drawing of the top frame plate.

 Figure 3.10: Dragonflybot Mounted on Micromouse Top Frame Plate

32

Figure 3.11: Micromouse Dragonflybot Single Board Computer Mount

 A single 8.4 volt 1400 mAh nickel metal hydride (NiMH) rechargeable battery pack was

selected as the power source for the micromouse. Separate power sources could have proved

beneficial to energize the motor and microcontroller separately; however, a single battery was

selected in order to minimize the size and weight of the micromouse. With this decision, the

micromouse utilizes an 8.4 V battery with stepper motors that require 3.3 V input.

The NiMH batteries were selected because of their high current output and high energy

capacity. In addition, the NiMH batteries were selected as they can be recharged and do not

have to be completely discharged in order to recharge. NiMH batteries have no memory [23].

NiMH batteries are the safest alternative. These characteristics of NiMH batteries make them

ideal for lab environments. The packaging style of the battery pack was chosen based on the

amount of spare space on the rear of the micromouse. Figure 3.12 provides an image of the

33

battery pack. The battery pack fits snugly between the top and bottom plates and is not

connected to the mouse. This allows the batteries to be interchanged between the robots.

Figure 3.12: 8.4 V 1400 mAh Ni-MH Rechargeable Battery Pack [30]

3.1.4 Micromouse Platform

 The micromouse platform is assembled with the drive train, proximity sensors and

mount, and Dragonflybot single board computer mount. The drive train provides mounting

points for both the sensor mount and Dragonflybot computer mount. The sensor mount is

connected using screws to the drive train bottom frame plate, and the Dragonflybot computer

mount is connected to the two stepper motors with a pair of set screws. Figures 3.13 and 3.14

provide pictures of the assembled micromouse.

Figure 3.13: Micromouse Front and Rear View

34

Figure 3.14: Micromouse Side Views

3.2 Functional Operation

 The purpose of this section is to detail the interactions and connections between the

micromouse major electrical components (infrared sensors, computing platform, stepper motors)

and their functional operation in the micromouse application. Figure 3.15 provides an updated

illustration of the micromouse electrical platform including these components.

Figure 3.15: Micromouse Electrical Platform

35

3.2.1 Dragonflybot Single Board Computer

The Dragonflybot computing platform includes the Dragonflybot prototype board and the

Dragonfly12 module. The Dragonfly12 module houses the HCS12 microcontroller and makes

40 breakout pins available for the micromouse application by connecting to the Dragonflybot

board. The micromouse application utilizes the following components on the prototype board.

 Analog sensor input headers (AN0-AN2) for infrared sensor inputs (J5, J6, J7)

 Dual H-Bridge headers (U5 and U7)

 Motor terminal blocks (T4 and T5)

 External Motor Voltage (T3)

 LCD Port (J13)

 5V Regulator for VCC (U2)

Figure 3.16 provides a component side schematic of the Dragonflybot prototype board, and

Appendix B contains a list of the pin-out connections for the micromouse application

Figure 3.16: Dragonflybot Board – Component Side Schematic [18]

36

3.2.2 Infrared Sensors

The micromouse utilizes three Sharp GP2D120 proximity sensors. All three sensors are

utilized to detect maze walls, and the right and left mounted sensors serve as inputs to the

micromouse error correction algorithm. Each sensor requires a supply voltage, ground

connection, and output voltage as shown in Figure 3.17. The Dragonflybot prototype board

provides the required +5V supply voltage, ground connection, and input pins for the sensors.

The analog sensor reading signals are converted to discrete numbers using the HCS12

microcontroller’s analog-to-digital converters. It is also important to note that the GP2D120

proximity sensor takes 48 ms to take one distance reading. This time should be accounted for in

the micromouse software algorithm.

Figure 3.17: Sharp GP2D120 Proximity Sensor and Terminal Connections [21]

3.2.3 Stepper Motors

 The micromouse utilizes two bipolar stepper motors to move the micromouse through the

maze. Each stepper motor requires four wires to be driven by the HCS12 microcontroller. The

port pins on the HCS12 microcontroller can only supply a maximum of 25 mA and the stepper

motors require 1 A. This causes the need to introduce SN754410 half-bridge motor drivers into

the stepper motor circuitry. The SN754410 half-bridge (H-bridge) is equipped with four half-H

drivers whereas each driver provides 1 A output-current capability [31]. The H-bridge is utilized

by turning on switches in pairs to allow current to flow through the motor. The H-bridge is

enabled using enable lines and consists of a single input-output connection for each motor

connection. Figure 3.18 shows a simplified diagram showing a typical H-bridge circuit.

37

Figure 3.18: Half-Bridge Circuit

Each microcontroller output pin is thus connected to one of the four half-H drivers, and

the output of the driver is connected to the respective stepper motor input pin. The Dragonflybot

prototype board is equipped with two 16-pin connectors (U5 and U7) for the SN754410 motor

drivers, and jumpers are available to configure the prototype board in this configuration for

stepper motor operations. No additional wiring is required between the microcontroller, drivers,

and stepper motors. Figure 3.19 provides a block diagram showing the connections from the

microcontroller to one of the stepper motors.

Figure 3.19: Microcontroller Interface to Stepper Motors

38

The stepper motors are rotated by properly energizing the motor coils in the correct

sequence. Table 3.3 provides the energizing pattern used to energize the micromouse stepper

motor coils. This energizing pattern energizes one phase at a time and consumes the least

amount of power compared to other energizing patterns [32].

Table 3.3: Stepper Motor Energizing Pattern [33]

MOT 1 MOT 2 MOT 3 MOT 4

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

A design limitation of the stepper motor circuitry was encountered during long duration

micromouse runs. When the micromouse operated for long periods of time, the SN754410

motor drivers would often overheat. To mitigate the overheating of the drivers, each motor

driver required a large heat sink to dissipate the heat. This solution was effective; however, it

did not completely resolve the problem, and in future tests, the motor drivers continued to

overheat. In order to mitigate this problem, a separate pulse was sent to the micromouse stepper

motors in order to reduce the amount of current flowing through the drivers. Figure 3.19

provides an illustration of the original motor input (black) with the separate overlaid (gold).

Figure 3.20: Motor Driver Input Pulse

 Pulse width modulation (PWM) can be utilized to generate the separate pulse. The

inclusion of PWM enhances the learning capabilities of the micromouse platform. This provides

the opportunity to demonstrate PWM’s ability to simplify the task of waveform generation [34].

39

Finally, the introduction of generated noise from the motors should also be considered

when designing a micromouse robot. Noise is introduced by the motors when the current applied

is switched on and off [19]. The simplest mechanism to limit the effects of noise is to utilize two

separate power supplies, one for the motors and one for the remaining circuitry; however, the

disadvantage with this strategy is that it increases the total weight of the robot by requiring

additional batteries [19]. A more appropriate mechanism for the micromouse application is the

utilization of capacitor circuits to reduce the noise effects. A filtering capacitor should be placed

near batteries and any other sources of noise [19], and decoupling capacitors should be wired

across power and ground on any Integrated Circuits [35]. A voltage regulator can also be

utilized to keep the voltage used by the processor constant.

3.3 Software Platform

3.3.1 Software Development Environment and Summary

The micromouse software application was written in the C programming language

(standard ANSI C) and was compiled, linked, and loaded onto the HCS12 target device using the

Freescale Codewarrior Integrated Development Environment version 5.9.0 with Processor

Expert plug-in version 3.02. The Freescale interface provides basic IDE programmer windowing

and functionality. Processor Expert is a rapid application development tool that provides easy-

to-use component-based application development [36]. Processor Expert utilizes software

components (beans) to encapsulate a set of functionality that is commonly reused such as an

input-output (IO) component; and Processor Expert utilizes methods for each component based

on the functionality needed such as output to an IO component.

The microcontroller is programmed using an on-board HCS12 serial monitor. Using the

serial monitor, one can connect a personal computer to the Dragonflybot board using a standard

USB cable. Before programming, one must also ensure that the software application is

configured to enable the phase lock loop (PLL) clock; set the clock frequency to 8 MHz; and set

the internal bus clock to 24 MHz. Once the proper configurations are made, the Freescale

CodeWarrior IDE makes it easy to debug, build, and load applications onto the target device.

40

The software was developed in a modular and iterative fashion. The software application

includes six sets of Processor Expert beans and five user application files. The beans include all

required internal peripherals to support CPU, LCD, Sensors, PID, Motor1, and Motor2

functionality. The user models include the main function and global variable declarations,

interrupt service routines, motor code, maze solving algorithms, and LCD functions. Each user

application was developed and tested as an individual module to ensure that each module worked

properly and later integrated to create an example micromouse application. It is also important

to note that some of the code modules were re-engineered from the code base of the spring 2009

micromouse robotics team [20].

3.3.2 Micromouse Application Overview

The micromouse application is composed of several integrated components to allow the

mouse to solve an unknown maze. The main components within the software application are

the LCD (for debugging and displaying information), motors (1 and 2); sensors (1, 2, and 3);

Proportion-Integral-Derivative (PID) code, and maze solving code. Each of these components

utilizes both Processor Expert methods as well as user-defined functions to implement the

necessary functionality.

The general execution of the micromouse application is captured in Figure 3.21. At

power-on, the hardware is initialized and all necessary variables and maze initializations are

defined. Once all initializations are completed, the mouse enters a looping condition that is only

completed when the mouse enters one of the center cells. This loop involves reading the

proximity sensors, updating the wall map based on wall positions, correcting mouse alignment,

determining the next logical move, and then moving to the desired cell. The most challenging

aspect of the micromouse software is implementing the desired functionality in a small amount

of memory (2K RAM and 32K Flash available). The software algorithm and data must be

implemented and stored in an effective and efficient manner. Due to the limited resources, the

modified flood fill algorithm was chosen as the maze solving algorithm as typically it only

requires about 20 kB in program size and 2 kB of data [14]. More complex algorithms such as

Dijkstra and A* require more resources. The following sections describe the micromouse

software functions as shown in Figure 3.21. Appendix C includes a complete list of all the

41

Freescale Processor Expert methods utilized by the micromouse application. Appendix D

includes a copy of the commented source code for the micromouse application.

Figure 3.21: Micromouse Application Overview

3.3.2.1 Initialize Hardware

Initialize Hardware involves initialization of the Processor Expert generated code and the

initialization of the LCD. The Processor Expert auto-generated code is initialized by calling the

PE_low_level_init function which initializes beans and provides common register initialization.

This initialization is utilized by the Processor Expert only. The LCD initialization routine turns

on the 8x2 display, and initializes the LCD to operate in 4-bit mode with 2 lines and a blinking

cursor. The LCD initialization routine also clears the LCD. The LCD code is only executed one

time during start-up.

42

3.3.2.2 Initialize Map

Initializing the maze requires two straightforward functions. The first function initializes

the maze distance values in a one-dimensional array as defined by the Modified Flood Fill

Algorithm. The array created is of the size of the maze to be solved. In the case with the

micromouse, the maze is a 6x13 array. As a result, the maze array is initialized as follows:

 maze[] = 7 6 5 4 3 2 2 2 3 4 5 6 7

 6 5 4 3 2 1 1 1 2 3 4 5 6

 5 4 3 2 1 0 0 0 1 2 3 4 5

 5 4 3 2 1 0 0 0 1 2 3 4 5

 6 5 4 3 2 1 1 1 2 3 4 5 6

 7 6 5 4 3 2 2 2 3 4 5 6 7

The second function required to initialize the maze is to setup a wall map that will be

used to by the modified flood fill algorithm to track the location of the walls. Since some of the

wall locations are known beforehand (outer walls and first maze cell), the wall map will include

a set of initial values. The values in the wall map (single dimension array) can be stored as byte

values where each bit (0, 1, 2, 3) is used to indicate wall position. Bit 0 set means there is a

southern wall; bit 1 set means that there is an eastern wall; bit 2 set means that there is a northern

wall; and bit 3 set means that there is a western wall. Using this mapping, the wall map array is

initialized as follows:

walls[] = 3 2 2 2 2 2 2 2 2 2 2 2 6

 1 0 0 0 0 0 0 0 0 0 0 0 4

 1 0 0 0 0 0 0 0 0 0 0 0 4

 1 0 0 0 0 0 0 0 0 0 0 0 4

 1 0 0 0 0 0 0 0 0 0 0 0 4

9 8 8 8 8 8 8 8 8 8 8 8 12

43

3.3.2.3 Read Sensors

The proximity sensors on the micromouse serve two purposes. The first purpose of the

sensors is to determine if the robot is getting too close to the maze walls. This information is

provided using the left and right facing sensors only and serves as inputs to the error correction

algorithm. The second purpose is to map the maze by determining the location of the walls (all

three sensor readings are utilized).

In order to read the proximity sensors, the micromouse initializes an analog-to-digital

converter (ADC) embedded bean to change the continuous signal into discrete digital numbers.

The ADC is initialized with a 10-bit resolution, right justified, performs 8 conversions, and

allows 20 microseconds per conversion. Within the application, the sensors are read at a regular

interval as the main loop executes. The sensor values are stored in global variables to make them

easily accessible to all other coding modules within the application.

3.3.2.4 Update Wall Map

The wall map contains the location of the walls within the maze. As the micromouse

traverses the maze; the wall map must continuously be updated as specified by the modified

flood fill algorithm. Once the maze is solved, the mouse will be located at the center of the maze

and the distance value will be zero. As you move away from the maze each cell position, the

distance value will be increased by one. The wall map is stored in an array of bytes where each

bit represents the presence of a existing wall as described in Section 3.3.2.2.

3.3.2.5 Correct Alignment

Although the stepper motors are quite precise in their movements, as the micromouse

traverses the maze, the mouse will veer from the center of each cell. As a result, the software

application must provide a means to monitor and correct the micromouse’s position. This

functionality is accomplished using a proportional-integral-derivative error (PID) controller [37].

The PID controller is a control loop feedback mechanism used in many control systems and are

widely used since they are easy to tune. Figure 3.22 illustrates the basic PID algorithm. The

weighted sum of three controller parameters (proportional, integral, and derivative terms) is used

to adjust the process.

44

Figure 3.22: PID Controller Block Diagram [37]

The PID controller is tuned using three separate parameters: proportional, integral, and

derivative. The proportional parameter (Kp) determines the controller’s reaction to the current

error, the integral parameter (Ki) determines the reaction based on the sum of the recent errors,

and the derivative parameter (Kd) determines the reaction based on the rate at which the error has

been changing [37]. Kp, Kd, and Ki, are the gains for each term. Table 3.4 captures the effects of

each of the controller parameters. Figure 3.23 provides an example of response curves and

captures the effects of the introduction of the control parameters.

Table 3.4: Effects of Controller Parameter

Controller

Parameter
Rise Time Overshoot Settling Time

Steady State

Error

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate

Kd Small Change Decrease Decrease No Change

 For the micromouse application, the parameters are tuned to keep the micromouse in the

center of the maze and avoid hitting the maze walls. The left and right infrared sensors are used

as a feedback mechanism and flag when the micromouse gets too close to the wall. Additionally,

the infrared sensors take approximately 55 microseconds per reading. This delay must be

accounted for to ensure that the PID algorithm is not executing too quickly. As a result, a PID

control loop of 100 milliseconds is utilized. Figure 3.24 illustrates the micromouse control loop

algorithm.

45

Figure 3.23: P, PI, and PID Control Responses [38]

Figure 3.24: Micromouse Control Loop Diagram [37]

46

 The micromouse PID algorithm was developed by selecting an appropriate set point for

the infrared sensor readings. The micromouse set point was calculated by taking multiple sensor

readings from both the left and right sensors with the micromouse placed in center of a maze cell

in multiple locations within the maze. From these readings, average set point values were

calculated for both the right and left sensors. The set point was utilized to calculate the error in

the sensor readings by subtracting the actual value from the measured value. The higher the

error, the greater the control adjustment needed.

 In development of the micromouse PID algorithm, the proportional term was introduced

first by implementing an immediate response to a movement error. The proportional term can be

used solely to correct errors for the micromouse application; however oftentimes the proportional

term causes steady state error and overshoot. The introduction of the integral term takes the

sensor reading errors over time and makes adjustments based on the errors over time. The

integral term improves the steady state error but cause addition overshoot. A proportional-

integral (PI) controller was typically sufficient for the micromouse application. However if the

overshoot was too high or settling time needed decreased, the derivative term was introduced to

make adjustments to future error corrections.

It is recommended to keep the controller as simple as possible. Some successful

micromouse applications have successfully traversed the maze with solely a proportional

controller while others implement a PI or PD controller.

3.3.2.6 Determine Next Move

To determine the next move, the micromouse application checks all of the potential next

moves. The potential next moves are row+1, row-1, column+1, and column-1 (as long as there

are no walls in the way). The micromouse now is ready to move into the cell with the lowest

distance value (distance from the maze center).

3.3.2.7 Move Micromouse Forward

The final step in the application is to have the micromouse move into the correct cell. This

functionality is accomplished using timer interrupts and global variables to keep track of how

many steps to move. The approximate number of steps to move forward one cell is 378 steps.

47

Appendix C includes a complete list of all the Freescale Processor Expert methods that are

utilized by the micromouse application. Appendix D includes the source code for all the major

user-defined functions.

3.4 Bill of Materials

The micromouse robot bill of materials is provided in Table 3.5. The most expensive items

were the Dragonflybot single board computer platform and stepper motors.

Table 3.5: Bill of Materials

Part Qty Price Total

Dragonflybot Board 1 $78.00 $78.00

Stepper Motors 2 $15.00 $30.00

Proximity Sensors 3 $13.95 $41.85

Battery 1 $18.95 $18.95

Screws and Nuts 1 $7.20 $7.20

Banebot Wheels 2 $2.75 $5.50

Chassis & Mount

Materials

1 $4.00 $4.00

Custom ball canister

mounts

2 $1.75 $3.50

Sensor Connectors 3 $1.05 $3.15

Toggle Switch 1 $1.95 $1.95

4-40 x 1/4” standoffs 4 $0.20 $0.80

3 mm PVC spacers 2 $0.10 $0.20

 TOTAL $195.10

The associated bill of materials’ costs demonstrate that the micromouse platform

provides a framework to support the development of a rich set of seamless curriculum that can be

integrated into undergraduate engineering curriculum with minimal associated costs.

48

Chapter 4

Results

Eleven micromouse robots were built to support the West Virginia University Lane

Department of Computer Science and Electrical Engineering (LCSEE) microcomputer structures

and interfacing undergraduate laboratory. Overall, the micromouse performed as well, and it

provided a low-cost, durable educational robotics platform. A seamless set of micromouse

curriculum was developed that included six laboratory modules that introduces students to basic

microcontroller principles and programming and concludes with a tangible, operational product.

An additional ten supplementary laboratory modules were developed to highlight specific topics

such as I2C communications, digital sensors, servo motor operations, keypad interfacing, DC

bidirectional motor control, basic input and output, and serial communications interface, etc.

Appendix E includes copies of the six core laboratory modules as well as the micromouse final

project description, and Appendix F includes copies of the ten additional lab modules.

The first part of this chapter details the six core micromouse laboratory modules and

micromouse project curriculum. The second part of this chapter provides an assessment of the

curriculum and its contributions and value to the microcomputer structures and interfacing

laboratory.

49

4.1 Micromouse Curriculum Results

4.1.1 The Micromouse and Modified Flood Fill

 The objective of the micromouse and modified flood fill laboratory is to introduce the

micromouse platform, the micromouse competition rules, and the modified flood fill algorithm.

The laboratory primarily provides an introduction to C programming. Introductory C

programming topic areas are covered such as header and source files, conditional statements, for

and while loop, arrays, global variables, use of extern, type casting, bit-wise versus logic

operators, and recursion. The Freescale CodeWarrior Integrated Development Environment

(IDE) is introduced. Students gain insight into the development environment that is utilized

throughout the course of the semester and learn how to compile, link, and build HCS12

microcontroller projects.

 Both the flood fill and modified flood fill searching algorithms are introduced in this

module. As a result, several functions are implemented to update wall map, update distance

values, determine the neighbor cell with the lowest distance value, and move to the neighboring

cell with the lowest distance value. Students are encouraged to implement the algorithm as well

using MatLab.

4.1.2 Microcontroller Basics

 The objective of the microcontroller basics laboratory is to introduce the HCS12

microcontroller architecture and capabilities. A four bit counter is utilized to meet the lab’s

objectives. The module introduces the Dragonflybot project board, Dragonfly12 module, and the

HCS12 microcontroller family and presents the documentation set for the MC9S12C controller,

including the MC9S12C-family block diagram. This provides a high level understanding of its

features such as voltage regulator, timer module, PWM module, CPU, memory, SPI, SCI, etc.

 In addition, more details are provided on the CodeWarrior development environment.

Details on using the Processor Expert plug-in are introduced. Processor Expert implements

reusable software components to encapsulate the functionality of basic elements such as the CPU

core, on-chip peripherals, and pure software algorithms. Specially, the CPU and basic IO

reusable components are initialized and utilized.

50

4.1.3 LCD Interfacing

 The LCD interfacing laboratory’s objective is to develop a set of functions to

communicate with an 8x2 LCD using the HCS12 microcontroller. The purpose of this module is

to provide a set of reusable functions that can be utilized throughout the course of the semester to

debug future modules as well as debug the micromouse application. The LCD datasheet is

provided and students are encouraged to utilize it to develop the software functions versus using

the handout. The following five functions are implemented for this module.

1. Initialize 8x2 LCD

2. Send single character to LCD

3. Send command to LCD

4. Clear the LCD

5. Display Numerical Values

The module also introduces additional topic areas such as bit shifting, basic input-output

functions, and time delays.

4.1.4 Proximity Sensors

 The purpose of the sensors module is to develop a set of functions to read the GP2D120

infrared sensor and utilize the returned values to determine the distance from an object (maze

wall). The initial topic covered is the infrared sensor, its properties, electrical connections, and

operations. The module requires the utilization of three analog-to-digital converter (ADC)

channels to change the continuous sensor output signal to discrete numbers. ADC topics such as

resolution, step size, accuracy, and conversion times are introduced. The module also introduces

other types of sensors such as ultrasonic, touch, and sound and their operations and applications.

4.1.5 Stepper Motor Operation

 The stepper motor operation module’s purpose is to develop the functionality to control

two stepper motors and essentially control the speed and direction of the micromouse. The

module introduces the basics of stepper motors and their operation. Differences in unipolar and

51

bipolar motors are realized and driving stepper motors using timer interrupts. Pulse Width

Modulation (PWM) is introduced as an option for simplification of waveform generation.

Specifically, the following functions or some combination of these functions are implemented.

1. Move the micromouse forwards and backwards

2. Turn the micromouse left

3. Turn the micromouse right

4. Start/enable the stepper motors

5. Stop the stepper motors

4.1.6 PID Controller

 The objective of the PID controller module is to implement a PID algorithm that can be

utilized for the micromouse application. The module details an overview of the PID controller

and walks through each of the controller parameters (proportional, integral, and derivative

terms). The module encourages students to develop the controller in MatLab Simulink.

4.1.7 Micromouse Final Project

Upon successful completion of the core laboratory modules, students are prepared to

implement their own micromouse application. The seamless set of curriculum is designed to

provide the students three weeks to implement, test, and improve their micromouse application.

The micromouse final project utilizes a subset of the IEEE Region 2 Student Activities

Conference Rules. Appendix E provides a copy of the micromouse project description.

4.1.8 Micromouse Curriculum Summary

Table 4.1 maps the learning objectives for the undergraduate computer engineering

microcomputer structures and interfacing laboratory to both the core micromouse laboratory

modules and supplementary laboratory modules. The core micromouse laboratory modules

directly map and satisfy all nine learning objectives. The introduction of the micromouse

platform and curriculum enhances the current set of learning objectives to include control

algorithms such as PID and wireless communications (IEEE 802.15.4 protocol XBee modules).

52

Table 4.1: Micromouse Curriculum

Objective Module

1. Draw a detailed architecture diagram of the HCS12

microcontrollers
Core: Microcontroller Introduction and Basics

2. Write a program for HCS12 microcontrollers, i.e.

know all addressing modes and full instruction of the

HCS12 microcontrollers; and how to write a program

using HCS12 assembler and debugging tools

All Laboratory Modules

(Core and Supplementary)

3. Design and use interrupt as an integral part of the

microcontroller

Core: Proximity Sensors

Core: Implementing PID Controller

Supplementary: Servo Motor Control using a

Phototransistor

4. Design and use programmable timers as an integral

part of the microcontroller

Core: Microcontroller Introduction and Baiscs

Core: Stepper Motor Operation

Supplementary: Alarm Clock

Supplementary: Square Wave Frequency Calculation

5. Design and use input/output ports as an integral part of

the microcontroller

Core: Microcontroller Introduction and Basics

Core: Micromouse Final Project

Supplementary: Bidirectional DC Motor Control

6. Interface and develop software to output a wide-range

of process control signal (DC, AC, high power,

variety of voltage/current compatible levels, I2C,

Keyboards, LCD)

Core: LCD Interfacing

Core: Micromouse Final Project

Supplementary: Keypad Interfacing

Supplementary: Alarm Clock

Supplementary: I2C and DS1624 Digital Thermometer

7. Design and use Pulse Width Modulation (PWM) as an

integral part of the microcontroller

Core: Micromouse Final Project

Supplementary: Bidirectional DC Motor Control

8. Understand the basic operation and use of Analog-to-

Digital Converter (ADC) and Digital-to-Analog

converter with microcontroller

Core: Proximity Sensors

Supplementary: ADC Using the Potentiometer

Supplementary: XBee Wireless Module Interfacing

9. Understand the basic operation of commonly used

sensors/transducers

Core: Proximity Sensors

Supplementary: I2C and DS1624 Digital Thermometer

** Enhancement to microcomputer structures and

interfacing laboratory: Common Feedback Controller

Core: Implementing PID Controller

Supplementary: XBee Wireless Module Interfacing

Table 4.2 provides a list of the supplementary laboratory modules. The supplementary

modules (servo motor operation and using photodetectors, bidirectional DC motor operations,

and I2C communications and DS1624 temperature sensors) were developed to enhance specific

learning objectives. These supplementary modules can optionally be integrated into the

53

micromouse curriculum to enable specific topics to be given an increased amount of coverage on

an as-needed basis. Appendix F includes copies of the supplementary modules.

Table 4.2: Supplementary Modules

Optional Module Objectives Topic Areas

1 Keypad Interfacing
Interface a 4x4 keypad using HSC12

microcontroller

Keypad initialization, basic IO, and CPU

generated time delays. Introduction to

reusable software components with

Freescale Code Warrior IDE

2

Serial

Communications

Interface (SCI)

Introduce SCI communications device by

configuring microcontroller to

communicate with HyperTerminal

application through RS-232 port

SCI communications, baud rate, parity

checking

3 Alarm Clock

Develop an alarm clock using a timer

interrupt, buzzer, and HyperTerminal

display

MCU Project Board, buzzer, timer

interrupts, working with interrupts in

Freescale Code Warrior (events.c)

4

I2C and DS1624

Digital

Thermometer

Implement Inter Integrated Circuit (I2C)

external communications to read a

DS1624 digital thermometer

I2C communications, master/slave logic,

digital input device (DS1624)

5

Square Wave

Frequency

Calculation

Utilize the HCS12 timer capture function

to calculate the period and frequency of a

square wave

Function generator, square wave, timer

capture, frequency and period calculations

6

Controlling DC

motor and Servo

Motors using Pulse

Width Modulation

(PWM)

Control the speed and rotation of a DC

motor using PWM and control servo

motors with PWM

PWM, DC motor control and operation,

L293B push-pull four channel driver,

bypass capacitor, basic IO, switches,

servo motor operations, diodes

7
ADC Using the

Potentiometer

Utilize a potentiometer to generate an

output voltage than can be read by an

analog-to-digital converter. Display the

digital voltage reading.

ADC, step size, resolution, accuracy,

potentiometers

8
XBee Wireless

Module Interfacing

Develop custom applications with the

Xbee wireless module. Demonstrate

communications between two Xbee

modules

UART, ADC, step size, resolution,

accuracy, network topologies (point-to-

point, point-to-multipoint, peer-to-peer),

X-CTU software application

9
Bidirectional DC

Motor Control

Create user interface using keypad and

LCD to control a bidirectional motor and

lamp dimmer

Basic IO, keypad, LCD, PWM, DC

motor, L293 driver, bypass capacitor,

lamp dimmer, diodes, SPI

10

Servo Motor Control

using a

Phototransistor

Utilize two servo motors, parabolic

mirror, and phototransistor to locate the

position of a flashlight

Basic IO, keypad, LCD, PWM, servo

motor, SPI, ADC, shift register,

phototransistor

54

4.2 Micromouse Curriculum Assessment

 The micromouse curriculum was implemented during the spring 2010 and 2011

semesters for the West Virginia University Computer Engineering 313 laboratory. Twenty-eight

students enrolled and completed the laboratory during the spring 2010 semester, and forty-six

students enrolled and completed the laboratory during the spring 2011 semester. These students’

grades/performance and motivation form the basis of these results. The results from the 2010-

2011 semesters are gauged against prior semesters from 2007-2009 where traditional-based

curriculum was utilized (2007-21 students; 2008-24 students; and 2009-20 students).

Table 4.3 provides the details of the average student scores, standard deviation of the

scores, and number of students that dropped the course in 2010 and 2011 (micromouse)

compared to the student statistics from 2007-2009. Note that the average scores are higher and

the standard deviation is smaller in the semester that the micromouse curriculum was

implemented. During the 2010 and 2011 semesters, it was also noted that no students dropped

the course during the semester as in previous semesters. This is most likely due to other factors

but in future semesters, in which the micromouse curriculum is implemented, it may be worth

monitoring.

Table 4.3: Laboratory Statistics (2007 – 2011)

Semester 2007 2008 2009 2010 2011

No. of Students 21 24 20 28 46

Mean 89.89 81.19 85.57 91.71 89.84

Standard Deviation 7.63 26.44 9.71 5.42 8.22

Dropped* 2 1 1 0 0

*Dropped is defined as the number of students that dropped out of the course after

the beginning of the semester and before the semester ended.

Student motivation is the area in which the implementation of the micromouse

curriculum demonstrated the most noticeable results. Students during the semester of the

micromouse curriculum were consistently more motivated than students from previous

semesters. Students not only put forth additional effort to complete the micromouse project but

spent considerable more time than in previous semesters to improve their design and

55

implementation. In order to rate the student’s motivation, three categories are defined: excellent,

average, and below average. An excellent rating is defined as an extremely motivated student

which put forth considerable effort to engineer and re-engineer final project. An average rating

is defined as a student that spent the allocated lab hours in additional to some extra time to

complete the final project. A below average rating is defined as a student that spent an

inappropriate amount of time to complete the final project. Table 4.4 provides the student

motivation ratings from 2007-2011.

Table 4.4: Student Motivation Ratings (2007 – 2011)

Semester 2007 2008 2009 2010 2011

Below Average 1 2 0 1 4

Average 18 20 18 21 33

Excellent 2 2 2 6 9

Examining Table 4.4 from 2007-2009, 6 out of 65 (9.23%) students demonstrated

excellent motivation towards the project curriculum and final project whereas in 2010 and 2011

(micromouse curriculum), 15 out of 74 (20.27%) students demonstrated excellent motivation

towards the project curriculum and final project. Student motivation was a factor 2.20 higher

when the micromouse curriculum was implemented versus previous semesters when it was not

implemented. Student motivation and the benefits of introducing the micromouse curriculum

were also demonstrated in many of the comments that were found in the students’ final projects.

“This entire lab series presented a number of interesting challenges

which encouraged critical thinking and clever solutions. It presented a

large spectrum of problems while still managing to keep them all

related and tied to a greater theme. That and the ability to actually

see your effort accomplish something real,...”

~ Kaur, Costa

I had a good time working on this project; though we didn’t achieve

every goal, the satisfaction of knowing how much was learned and

accomplished is enough to relish the class as a whole.

~ Blosser, Thomson

56

“project brought together all the labs that we had done during the

semester”

~ Cox, Justice

Overall, it was definitely the most cohesive set of labs that I have

ever taken and definitely the best lab experience I have ever had.

Thanks for going above the call of duty to create such a wonderful lab!

~ Dilello, Britt-Cane

“This setup resulted in a more positive learning experience and

environment in the lab. The purpose and necessity of each lab was

clearly visible which in turn results in a more motivated group.”

~ Boustany, Glymph, Wight

“Topics that were discussed in class were demonstrated and exemplified

in our lab exercises. This provided for a deeper understanding of the

fundamentals.”

~ Walters, Crawford, Smith

“Getting to see the micromouse come to life over the course of the

semester, bit by bit, was definitely the best part.”

Kelly, Perhinschi, Tucker

“Overall, this was a great project to teach us about the practical uses

of microcontrollers such as the HCS12. We were introduced to a wide

variety of topics including LCDs, beans, analog to digital converters,

sensors, stepper motors, PID controllers, and C coding. Not only did we

learn a lot while working on this project, we also had fun.”

~Bowman, Hamilton

 The seamless set of micromouse platform and curriculum has been developed,

implemented, and improved upon through the course of this effort. These results demonstrate

that the introduction of the micromouse platform and curriculum has significantly enhanced the

WVU LCSEE microcomputer structures and interfacing undergraduate laboratory by expanding

upon the courses learning objectives, introducing more complex topic areas, and motivating

students to not only meet the lab objectives but also strive to perfect their individual micromouse

application.

57

Chapter 5

Conclusion & Future Work

5.1 Conclusion

This thesis resulted in the development of a low-cost micromouse robotic platform. The

platform was developed by researching and testing alternative solutions for the various

micromouse subsystems (mechanical, electrical, and software). The mechanical subsystem was

driven by maze dimensions. Factors such as mobility and microcontroller board were taken into

account to design and build the micromouse. The mechanical subsystem resulted in a durable

and flexible robotics chassis capable of supporting multiple sensors and motors. The electrical

subsystem included the Dragonflybot board, three proximity sensors, two stepper motors, and a

NiMH battery. The Dragonflybot was selected for the micromouse application and was

equipped with convenient connectors for the proximity sensors and stepper motors. The

proximity sensors were ideal for the micromouse application. The stepper motors provided

precision control and were operated with limited circuitry. The NiMH battery provided a safe

and effective power source. The software subsystem implemented the various algorithms and

controls necessary to operate the micromouse. The most significant accomplishment in the

software subsystem was the demonstration to implement the micromouse algorithms in a small

memory space.

58

The results of this thesis provide a rich set of curriculum that supports and enhances the

learning objectives of the microcomputer structures and interfacing laboratory. The core set of

curriculum includes learning modules that are centered on the micromouse robot and the IEEE

Region II Micromouse Competition Rules. In addition to the core set of micromouse curriculum,

additional topic-specific lab modules were developed to supplement the theoretical learning from

the lecture portion of the CPE 313 laboratory (microcomputer structures and interfacing). These

topics enhance the undergraduate computer engineering curriculum. The specific topics

developed under this research include I2C communications, XBEE wireless communications,

timer capture, DC motor theory and operations, and servo motor operations.

The integration of the micromouse platform into the microcomputer structures and

interfacing laboratory transformed a modular-based lab environment into a seamless set of

laboratory sessions. Traditional lab sessions introduced a new learning module each week, and

there was no overlap or connection between the set of labs. The micromouse curriculum

provided students with a clear set of objectives throughout the semester. The integrated

curriculum made it transparent to students the importance of every lab session, and as a result,

students were more motivated than in previous semesters to ensure that they understood the

content.

 The micromouse provides a flexible, low-cost robotics platform that can be expanded to

be utilized in middle school and high school science, technology, engineering, and mathematics

courses and robotics teams. General topics such as problem solving, environmental factors,

design parameters, constraints, and trade-off analysis are inherent to the micromouse problem.

Specific topics such as analog-to-digital conversion (ADC), stepper motor operation, control

algorithms, maze algorithms, and proximity sensors can also be realized with this platform.

The following contributions are made by this thesis,

1. A low-cost robotics platform with accompanying curriculum was designed, developed,

and utilized to accomplish the learning objectives of the West Virginia University’s Lane

Department of Computer Science and Electrical Engineering Microcomputer Structures

and Interfacing Laboratory, an undergraduate computer engineering course. Evaluation

of the deployment of developed curriculum provided evidence that competitive-based

learning increases motivation and performance for a subset of students.

59

2. The developed robotics platform identifies a low-cost robotics platform that could be

utilized in high school science, technology, engineering, and mathematics courses and

robotics teams. The platform has the potential to supplement current robotics programs

in the state of West Virginia.

3. Additional topics with supporting hands-on modules to supplement theoretical learning

were introduced into the core set of the undergraduate computer engineering curriculum

including I2C communications, and XBee wireless communications.

5.2 Future Work

The micromouse performed well and fully satisfies the requirements of the

microcomputer structures and interfacing laboratory. The platform subsystems (mechanical,

electrical, and software) were effective and efficient; however, additional improvements can be

made to better the platform’s flexibility and utility for both mobile robotics research and

curriculum development. Regarding the mechanical platform, the author recommends that the

micromouse dimensions be reduced to provide more leeway for error detection and correction

during maze traversal. Future versions of the as-designed micromouse should be taller (in

height) and smaller in width and length. This will provide the micromouse more room for error

correction handling and maneuvering the maze. Regarding the electrical platform, future

versions of the sensor mounts should provide students with the option to mount sensors in

different locations as well as provide the capability to mount additional sensors to provide sensor

redundancy. Regarding the electrical platform, DC motors and drivers should be available to

support hands-on experimentation of stepper motor operation versus DC motor operation.

Ideally, a second set of micromouse robots would be designed and built to include DC motors.

In regards to the sensors, it is recommended to explore the addition of I2C and/or SPI digital

range sensors to the micromouse platform to enhance its capabilities.

It is to consider migrating from the current microcomputer structures and interfacing

hardware platform to a different platform such as Raspberry Pi. The Raspberry Pi is a very small

single board computer that consists of much more resources that the Dragonflybot. The

Raspberry Pi is equipped with 256 MB or 512 mB RAM, USB port(s) and an optional Ethernet

port that can be purchased for $25-$35 [39]. Additionally, configuration options should be

added to the micromouse framework such as wireless communications. This addition would not

60

be suitable for the micromouse competition; however, it would improve the capabilities and

benefits of the micromouse framework.

The evidence of increased student motivation makes a strong case for more integrated

laboratories. The results of this effort serve as a starting point for future investigation of robotics

based curriculum and platforms in the engineering students. Parallel efforts to the micromouse

platform should be undertaken in other laboratory sessions as appropriate.

The micromouse platform also demonstrated to be a low-cost, effective solution to

introduce engineering concepts such as digital input-output, analog-to-digital converters, pulse

width modulation, etc. Considering the currently available robotics programs in the state of

West Virginia, the micromouse platform has the potential to serve as an ideal platform for

robotics education in middle school and high school-aged children. The primary current

program available to these students is FIRST Robotics. FIRST Robotics has demonstrated to be

an excellent robotics program for students; however, the costs associated with the FIRST

Robotics Program when compared to the micromouse platform are considerably higher. Costs

based on materials, software, tools, and travel to FIRST Robotics competition are estimated

around $15,000/team. The price of participation significantly reduces the ability of the FIRST

Robotics Program to reach many potential engineering and scientists. The FIRST Tech

Challenge Program provides a lower-cost solution than the FIRST Robotics Program; however,

this program has not gained significant traction in West Virginia. Future research is

recommended to pilot the micromouse platform to provide a low-cost, flexible robotics platform

to support science, technology, engineering, and mathematics education.

61

References

[1] “FIRST,” US FIRST,

http://www.usfirst.org/roboticsprograms/resourcecenter.aspx?id=16935

[2] N. Chen, H. Chung, and Y. Kwon, “Integration of Micromouse Project with

Undergraduate Curriculum: A Large-Scale Student Participation Approach,” in IEEE

Transactions on Education: 1995, Vol. 38.

[3] “FLL Team Resource,” FIRST Lego League,

http://www.usfirst.org/roboticsprograms/fll/content.aspx?id=14158, 2010.

[4] “CMU Robotics Education Academy,” CMU, http://www.education.rec.ri.cmu.edu/,

2010.

[5] “Robotics Alliance Project Goals,” NASA, http://robotics.nasa.gov/goals.php, 2010.

[6] “NURC,” NURC, http://www.h2orobots.org/zindex.htm.

[7] “BEST Robotics,” BEST Robotics, Inc, http://best.eng.auburn.edu/b_about_best.php.

[8] “The FIRST Lego League: Around the World,” US FIRST Lego League,

http://www.usfirst.org/uploadedFiles/Robotics_Programs/FLL/Communications_Resourc

e_Center/Flyers/FLL_Growth_FNL.pdf, 2012.

[9] S. Garcia-Vergara, J. Pabon-DeLeon, and Y.Diaz-Mercado, Dr. E. Ortiz-Rivera, “An

Integrated Undergraduate Research Experience in Control, Power Electronics, and

Design Using a Micromouse,” IEEE Washington, DC, USA, 2010, Session T3D.

[10] “Maze Solver Heats Maze,” Micromouse UK,

http://micromouse.cs.rhul.ac.uk/events/2000/mm2000/mazes.html, 2004.

[11] “Maze Solving Robot – AIRAT 2,” Active Robots,

http://www.active-robots.com/products/robots/maze-details-1.shtml.

[12] “UK Micromouse Site,” Technology Innovation Centre,

http://www.tic.ac.uk/micromouse/history.asp.

[13] “Temple University. Region 2 Student Activities Conference,” Temple University IEEE

Student Branch, College of Engineering,

http://www.temple.edu/students/ieee/SAC/hotelinfo.html.

[14] “Micromouse Handbook,” T. Auyeung, Ph.D.,

http://www.drtak.org/teaches/UCD/book/book/node1.html, 2003.

http://www.usfirst.org/roboticsprograms/resourcecenter.aspx?id=16935
http://www.usfirst.org/roboticsprograms/fll/content.aspx?id=14158
http://www.education.rec.ri.cmu.edu/
http://robotics.nasa.gov/goals.php
http://www.h2orobots.org/zindex.htm
http://best.eng.auburn.edu/b_about_best.php
http://www.usfirst.org/uploadedFiles/Robotics_Programs/FLL/Communications_Resource_Center/Flyers/FLL_Growth_FNL.pdf
http://www.usfirst.org/uploadedFiles/Robotics_Programs/FLL/Communications_Resource_Center/Flyers/FLL_Growth_FNL.pdf
http://micromouse.cs.rhul.ac.uk/events/2000/mm2000/mazes.html
http://www.active-robots.com/products/robots/maze-details-1.shtml
http://www.tic.ac.uk/micromouse/history.asp
http://www.temple.edu/students/ieee/SAC/hotelinfo.html
http://www.drtak.org/teaches/UCD/book/book/node1.html

62

[15] “Micromouse Info,” MicromouseInfo,

http://www.micromouseinfo.com/introduction/mfloodfill.

[16] “Materials,” Society of Robots, http://www.societyofrobots.com/materials.shtml.

[17] “TinyDragon Project Board,” EVB Plus,

http://www.evbplus.com/TinyDragon_9s12/TinyDragon_9s12.html.

[18] “DF12-BBU DragonflyBot Board with USB port,” EVB Plus,

http://www.evbplus.com/c32_modules/bbu_hc12_68hc12_9s12_hcs12.html.

[19] T. De, “The Inception of Chedda,” in Honors Thesis I, UNLV, 2004.

[20] J. McCarty, “Spring 2009 Micromouse Project,” in Graduate Robotics, WVU, 2009.

[21] “Sharp IR Ranger Information,” Acroname Robotics,

http://www.acroname.com/robotics/info/articles/sharp/sharp.html#e2.

[22] “GP2D120 Optoelectronic Device,” Sharp, http://www.sharpsma.com/webfm_send/1205.

[23] “Robot Batteries,” Society of Robots, http://www.societyofrobots.com/batteries.shtml.

[24] “Battery Type Comparison Chart,” Rechargeable Batteries,

http://www.rechargeablebatt.com/.

[25] S. Mishra and P. Bande, “Maze Solving Algorithms for Microm Mouse,” in IEEE

Computer Society, 2008, Vol. 2008.

[26] “Introduction to A*,” stanford.edu,

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html#algorithms.

[27] “Micromouse Algorith,” Robotix, http://www.robotix.in/rbtx09/tutorials/m4d4.

[28] “Dijkstra’s Algorithm for Shortest Paths,” CProgramming.com,

 http://www.cprogramming.com/tutorial/computersciencetheory/dijkstra.html.

[29] “Stepping Motors,” Shinano Kenshi, http://www.shinano.com/stepping-motors.php.

[30] “Tenergy 8.4 V 1400 mAh Hi-Power NIHM Battery Pack”, All-Battery.com,

http://www.all-battery.com/84v1400mahhi-powernimhbatterypackforfirebirdrcplane.aspx.

[31] “Quadruple H-Bridge Driver,” Texas Instruments,

http://www.ti.com/lit/ds/symlink/sn754410.pdf, 2008.

[32] “Stepper Motors and Control,” Stepperworld,

http://www.stepperworld.com/Tutorials/pgBipolarTutorial.htm.

http://www.micromouseinfo.com/introduction/mfloodfill
http://www.societyofrobots.com/materials.shtml
http://www.evbplus.com/TinyDragon_9s12/TinyDragon_9s12.html
http://www.evbplus.com/c32_modules/bbu_hc12_68hc12_9s12_hcs12.html
http://www.acroname.com/robotics/info/articles/sharp/sharp.html#e2
http://www.sharpsma.com/webfm_send/1205
http://www.societyofrobots.com/batteries.shtml
http://www.rechargeablebatt.com/
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html#algorithms
http://www.robotix.in/rbtx09/tutorials/m4d4
http://www.cprogramming.com/tutorial/computersciencetheory/dijkstra.html
http://www.shinano.com/stepping-motors.php
http://www.all-battery.com/84v1400mahhi-powernimhbatterypackforfirebirdrcplane.aspx
http://www.ti.com/lit/ds/symlink/sn754410.pdf
http://www.stepperworld.com/Tutorials/pgBipolarTutorial.htm

63

[33] H. Huang, “Parallel Ports,” in The HCS12/9S12: An Introduction to Software &

Hardware Interfacing, 1
st
 ed. New York: Thomas Delmar Learning, 2005, ch. 7, section

12, pp. 312-319.

[34] H. Huang, “Timer Functions,” in The HCS12/9S12: An Introduction to Software &

Hardware Interfacing, 1
st
 ed. New York: Thomas Delmar Learning, 2005, ch. 8, section

10, pp. 379-392.

[34] G. McComb, “The Robot Builder’s Bonanza,” New York: McGraw-Hill, 2001.

[35] “Processor Expert”, Freescale Semiconductor,

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PROCESSOR-

EXPERT.

[36] A. Kyoto, “PID Control,” in Control Systems, Robotics, and Automation, Vol II.

[37] “Introduction: PID Controller Design”, University of Michigan,

http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPI

D#14.

[38] “Raspberry Pi FAQ,” Raspberry Pi Foundation, http://www.raspberrypi.org/faqs.

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PROCESSOR-EXPERT
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PROCESSOR-EXPERT
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID#14
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID#14
http://www.raspberrypi.org/faqs

64

Appendix A: 2010 Region 2 Micromouse Rules [13]

The following rules will be observed for the Region 2 Micromouse competition which will take

place at the Youngstown State University during the annual Region 2 Student Activities

Conference. These rules are based on a set of rules used by Region 6, which in turn were adapted

from the 1986 Official Rules for North American Micromouse Contest.

A. Objective

In this contest the contestant or team of contestants design and build an autonomous robotic

"mouse" that negotiates a maze of standard dimensions from a specified corner to its center in

the shortest time.

B. Contest Eligibility

1. All contestants must be an undergraduate IEEE student member at a Region 2 school

from within the Area of Region 2 in which contest they will compete at the time of entry

in the micromouse contest. Any student who graduates anytime during the Fall-Spring

academic year in which the contest is held is eligible to enter the contest. A student

graduating after competing in the contest still remains eligible to compete in succeeding

Area, Region, and higher contests as an undergraduate student. Up to two graduate

students per team are also allowed as stated in Rule B.5 below, providing they meet all

other requirements.

2. All contestants must be an IEEE Student Member or must have submitted an application

for membership (and have it accepted by their Student Branch Counselor) prior to entry

in the Student Branch and/or Chapter Contest.

3. The contestant(s) will make a brief presentation of their mouse design prior to the

competition (5 minutes max) if time allows.

4. The micromouse entry may be the effort of an individual or a team. In the case of a team

it should be possible to demonstrate that each individual made a significant contribution

and that they are all IEEE members.

65

5. A team may consist of up to five people. A team of four or five people may include no

more than two graduate students. A team of two or three people may have no more than

one graduate student. A team consisting of a single graduate student is not allowed.

6. All entrants to the contest must declare their intention to enter the contest at least 4 weeks

before the date of the regional contest. This notice must be submitted to the current

Student Activities Coordinator, appropriate Area, Region 2, by mail, email, or phone (see

the names and addresses at the end of this document). If the total number of declared

mice, from all schools, is less than the number of eligible schools to compete in that

Area, all shall be eligible to compete in the area contest. Two or more mice of near

identical design from the same school are not allowed. If more mice than the number of

eligible schools to compete are entered in the contest (ie., four mice from the same

school), a qualifying competition will be held in the morning. A qualifying contest might

involve, for example, having the mice transverse a specific numbers of cells.

C. Rules for the Micromouse

1. A micromouse shall be self-contained (no remote controls). A micromouse shall not use

an energy source employing a combustion process.

2. A micromouse shall not leave any part of its body behind while negotiating the maze.

3. A micromouse shall not jump over, fly over, climb, scratch, cut, burn, mark, damage, or

destroy the walls of the maze.

4. A micromouse shall not be larger either in length or in width, than 25 centimeters. The

dimensions of a micromouse that changes its geometry during a run shall not be greater

than 25 cm x 25 cm. There are no restrictions on the height of a micromouse.

5. Any violation of these rules will constitute immediate disqualification from the contest

and ineligibility for the associated prizes.

D. Rules for the Maze

1. The maze is composed of multiples of an 18 cm x 18 cm unit square. The maze

comprises 16 x 16 unit squares. The walls of the maze are 5 cm high and 1.2 cm thick

(assume 5% tolerance for mazes). The outside wall encloses the entire maze.

66

2. The sides of the maze walls are white, the tops of the walls are red, and the floor is black.

The maze is made of wood, finished with non-gloss paint.

a. WARNING: Do not assume the walls are consistently white, or that the tops of

the walls are consistently red, or that the floor is consistently black. Fading may

occur; parts from different mazes may be used. Do not assume the floor provides

a given amount of friction. It is simply painted plywood and may be quite slick.

The maze floor may be constructed using multiple sheets of plywood. Therefore

there may be a seam between the two sheets on which any low-hanging parts of a

mouse may snag.

3. The start of the maze is located at one of the four corners. The start square is bounded on

three sides by walls. The start line is located between the first and second squares. That

is, as the mouse exits the corner square, the starts. The destination goal is the four cells at

the center of the maze. At the center of this zone is a post, 20 cm high and each side 2.5

cm. (This post may be removed if requested.) The destination square has only one

entrance.

4. Small square zones (posts), each 1.2 cm x 1.2 cm, at the four corners of each unit square

are called lattice points. The maze is so constituted that there is at least one wall at each

lattice point.

5. Multiple paths to the destination square are allowed and are to be expected. The

destination square will be positioned so that a wall-hugging mouse will NOT be able to

find it.

E. Rules for the Contest

1. Each contesting micromouse is allocated a total of 10 minutes of access to the maze from

the moment the contest administrator acknowledges the contestant(s) and grants access to

the maze. Any time used to adjust a mouse between runs is included in the 10 minutes.

Each run (from the start cell to the center zone) in which a mouse successfully reaches

the destination square is given a run time. The minimum run time shall be the mouse’s

official time. First prize goes to the mouse with the shortest official time. Second prize to

the next shortest, and so on. NOTE, again, that the 10-minute timer continues even

between runs. Mice that do not enter the center square will be ranked by the maximum

67

number of cells they consecutively transverse without being touched. All mice who enter

the center square within their 10 minute allotment are ranked higher than those who do

not enter the center square.

2. Each run shall be made from the starting square. The operator may abort a run at any

time. If an operator touches the micromouse during a run, it is deemed aborted, and the

mouse must be removed from the maze. If a mouse has already crossed the finish line, it

may be removed at any time without affecting the run time of that run. If a mouse is

placed back in the maze for another run, a one-time penalty of 30 seconds will be added

to the mouse’s next run time.

3. After the maze is disclosed, the operator shall not feed information on the maze into the

micromouse however, switch positions may be changed.

4. The illumination, temperature, and humidity of the room shall be those of an ambient

environment. (40 to 120 degrees F, 0% to 95% humidity, noncondensing).

a. BEWARE: Do not make any as unit square clockwise. The finish line is at the

entrance to the destination square.

5. Every time the mouse leaves the start square, a new run begins. If the mouse has not

entered the destination square, the previous run is aborted.

6. For example, if a mouse re-enters the start square (before entering the destination square)

on a run, that run is aborted, and a new run will be deemed begun, with a new time that

starts when the starting square is exited.

7. The mouse may, after reaching the destination square, continue to navigate the maze, for

as long as their total maze time allows.

8. If a mouse continues to navigate the maze after reaching the destination square, the time

taken will not count toward any run. Of course, the 10-minute timer continues to run.

When the mouse next leaves the start square, a new run will start. Thus, a mouse may and

should make several runs without being touched by the operator. It should make its own

way back to the beginning to do so.

9. The judges reserve the right to ask the operator for an explanation of the micromouse.

The judges also reserve the right to stop a run, declare disqualification, or give

instructions as appropriate (e.g., if the structure of the maze is jeopardized by continuing

operation of the mouse).

68

10. A contestant may not feed information on the maze to the micromouse. Therefore,

changing ROMs or downloading programs is NOT allowed once the maze is revealed.

However, contestants are allowed to:

a. Change switch settings (e.g. to select algorithms)

b. Replace batteries between runs

c. Adjust sensors

d. Change speed settings

e. Make repairs

11. However, a contestant may not alter a mouse in a manner that alters its weight (e.g.

removal of a bulky sensor array or switching to lighter batteries to get better speed after

mapping the maze is not allowed). The judges shall arbitrate.

12. There is only one official IEEE micromouse contest each year in each Area or Region.

All mice, whether or not they have competed in previous contests, compete on an equal

basis. All mice must be presented to the judges by the original design team, which must

meet all other qualifications. First prize will go to that mouse which travels from the start

square to the destination square in the least amount of time. Second and third prizes will

be awarded to the second and third fastest respectively.

13. As stated in Rule E.1, mice that do not enter the center square will be ranked by the

maximum number of cells they consecutively transverse without being touched.

14. A rotating trophy is awarded to the first place mouse. Verbal recognition and certificates

will be given to the top three mice among those who are competing for the first time. If

you and your mouse are first-time contestants be sure to so stipulate when you register

for the contest and notify the contest judge at the time of the contest.

15. If requested, a break will be provided for a mouse after any run if another mouse is

waiting to compete. The 10-minute timer will stop. When the mouse is re-entered, the 10-

minute timer will continue. The judges shall arbitrate on the granting of such breaks.

69

Appendix B: Dragonflybot Pin-outs

Table B.1 provides a list of the pin numbers and numbers utilized on the HCS12 microcontroller

and to what it is connected to on the micromouse platform.

Table B.1: Dragonflybot board pin-outs
Pin
Number

Pin Name Connection

1 Gnd

2 Vcc

3 /Reset

4 PT0 Motor 1 Enable 1

5 PT1 Motor 1 Enable 2

6 PT2

7 PT3

8 PT4 Motor 1 Orange

9 PT5 Motor 1 Red

10 PT6

11 PT7

12 PE1

13 PE0 Motor 2 Enables

14 PE4

15 PM0 Motor 1 Brown

16 PM1 Motor 1 Yellow

17 BKGN

18 PE7 LCD Enable Bit

19 CAN_HIGH

20 CAN_LOW

40 PP5

39 PM2 LCD Data Bit 0 / Motor 2 Brown

38 PM3 LCD Data Bit 1 / Motor 2 Yellow

37 PM4 LCD Data Bit 2 / Motor 2 Orange

36 PM5 LCD Data Bit 3 / Motor 2 Red

35 PS1/TXD

34 PS0/RXD

33 VRH

32 AN7/PAD07

31 AN6/PAD06

30 AN5/PAD05

29 AN4/PAD04

28 AN3/PAD03

27 AN2/PAD02 ADC Input (Right Sensor Input)

26 AN1/PAD01 ADC Input (Left Sensor Input)

25 AN0/PAD00 ADC Input (Front Sensor Input)

24 XTAL CPU Clock Output Pin

23 EXTAL CPU Clock Input Pin

22 PA0 LCD RS Bit

21 PB4

70

Appendix C: Processor Expert – Software Components

The Freescale CodeWarrior software includes an integrated development environment that auto-

generates source code for Freescale applications. The software components and descriptions of

their utilization in the micromouse application are provided in Table C.1.

Table C.1: Processor Expert Software Components

Software

Components

Method Prototype Description

CPU void Cpu_Delay100US (input) Creates software delay. Length of delay is 100

microseconds * input parameter
ADC byte Sensors_GetChanValue

(byte channel, void *Values)
Reads ADC channel into Values variable and

returns an error value.
ADC byte Sensors_Measure (bool

WaitforResult)
Performs one measurement on all channel

Timer void PID_OnInterrupt(void) Instantiates PID controller code every 55

milliseconds
Timer Motor1_Timer1_OnInterrupt Moves Motor 1 forward or backward
Timer Motor1_Timer2_OnInterrupt Toggles Motor 1 output to reduce effective

current
Timer Motor2_Timer1_OnInterrupt Moves Motor 2 forward or backward
Timer Motor2_Timer2_OnInterrupt Toggles Motor 2 output to reduce effective

current
Timer Motor1_Timer1_SetPeriodUS Sets the period of the timer interrupt for Motor

1
Timer Motor2_Timer1_SetPeriodUS Sets the period of the timer interrupt for Motor

2
Timer void PID_OnInterrupt(void) Instantiates PID controller code every 55

milliseconds
Timer Motor1_Timer1_OnInterrupt Moves Motor 1 forward or backward
Timer Motor1_Timer2_OnInterrupt Toggles Motor 1 output to reduce effective

current
Timer Motor2_Timer1_OnInterrupt Moves Motor 2 forward or backward
Timer Motor2_Timer2_OnInterrupt Toggles Motor 2 output to reduce effective

current
Timer Motor1_Timer1_SetPeriodUS Sets the period of the timer interrupt for Motor

1
Timer Motor2_Timer1_SetPeriodUS Sets the period of the timer interrupt for Motor

2

71

Appendix D: Micromouse Software

Appendix D includes a copy of the source code of all major software functions.

Appendix D.1: Main Program (main.c)

/** ###

** Filename : Micromouse.C

** Project : Micromouse

** Processor : MC9S12C32MFA25

** Version : Driver 01.13

** Compiler : CodeWarrior HC12 C Compiler

** Date/Time : 1/5/2010, 11:33 PM

** Abstract :

** Main module.

** This module contains user's application code.

** ###*/

/* MODULE Micromouse */

/* Including used modules for compiling procedure */

#include "Cpu.h"

#include "Events.h"

#include "PID.h"

#include "Sensors.h"

#include "Motor2_Enable1234.h"

#include "Motor1_Timer1.h"

#include "Motor1_Timer2.h"

#include "Motor2_Timer1.h"

#include "Motor2_Timer2.h"

#include "Motor1_Enable12.h"

#include "Motor1_Enable34.h"

#include "Motor1_Brown.h"

#include "Motor1_Orange.h"

#include "Motor1_Red.h"

#include "Motor1_Yellow.h"

#include "DataBits.h"

#include "ENBit.h"

#include "RSBit.h"

/* Include user modules */

#include "LCD.h"

#include "Motor.h"

#include "Maze.h"

/* Include shared modules, which are used for whole project */

#include "PE_Types.h"

#include "PE_Error.h"

#include "PE_Const.h"

#include "IO_Map.h"

//**

// Motor 1 Global Variables

// Wired Motor1 - Brown (A)

// Databits = M0, M1, T4, T5 and Enable12=Port T0 and Enable34=Port T1

72

// steps1 = keeps track of the number of steps for Motor1

// direction1: 0-forward and 1-reverse

//**

char Motor1Step[NUM_OF_STATES] =

{0x01, 0x09, 0x08, 0x0C, 0x04, 0x06, 0x02, 0x03};

volatile char next_state1 = 0;

volatile bool toggle1 = 0;

unsigned int steps1 = 0;

volatile bool direction1 = 0;

//**

// Motor 2 Global Variables

// Wired Motor5 - Brown (A), Motor6 -

// Databits = M2, M3, M4, M5 and Enable12=Port T2 and Enable34=Port T3

// steps2 = keeps track of the number of steps for Motor2

// direction2: 0-forward and 1-reverse

//**

char Motor2Step[NUM_OF_STATES] =

{0x01, 0x09, 0x08, 0x0C, 0x04, 0x06, 0x02, 0x03};

volatile char next_state2 = 0;

volatile bool toggle2 = 0;

unsigned int steps2 = 0;

volatile bool direction2 = 0;

//**

// Sensor values

//**

word valueR, valueL, valueF;

//**

// Micromouse Position Variables

//**

byte currentR, currentC;

byte lastR, lastC;

byte walls[ROWS*COLS];

byte maze[ROWS*COLS];

//**

// To change Motor Timer Values based on PID

//**

volatile word timer1, timer2;

volatile byte Motor1, Motor2;

volatile int rev1, rev2;

//**

// PID Global Variables

//**

volatile byte reset = 0;

73

//**

// Main Program

//**

void main(void)

{

 /* Write your local variable definition here */

 byte Error = 0;

 bool initial = 0;

 byte value = 0;

 byte lowValue = 0x00;

 byte direction = 1;

 byte newdirection = 1;

 int i = 0;

 /* Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! */

 PE_low_level_init();

 /*** End of Processor Expert internal initialization.***/

//**

// Initialize LCD

//**

 LCD_Init();

//**

// Implementation of Modified Flood Fill Algorithm requires two arrays

// 1. Flood-fill Numbers - stored in maze[] array

// 2. Wall Information - stored in walls[] array

//**

 InitializeMaze();

 SetUpWalls();

//**

// Initialize currentC and currentR values

//**

 currentC = 0;

 currentR = 0;

 reset = 0;

 for (;;){

 MoveForward(400);

 Error = Sensors_Measure(1);

 Error = Sensors_GetChanValue(0, &valueL);

 Error = Sensors_GetChanValue(1, &valueF);

 Error = Sensors_GetChanValue(2, &valueR);

 display_pulseWidths(valueL, valueR);

 // Update wall map

 UpdateWallMap(direction);

 display_pulseWidths(valueF, valueR);

 // Update distance values as necessary

 UpdateMaze(currentR, currentC);

74

 // Store value of current cell

 lastR = currentR;

 lastC = currentC;

 // Determine which neighbor has lowest value

 // lowValue = upper nibble=row, lower nibble=col

 lowValue = NextMove(currentR, currentC);

 // Update position based on NextMove function results

 currentC = (lowValue & 0x0F);

 currentR = ((lowValue & 0xF0) >> 4);

 // Move to the new current cell

 newdirection = MoveMouse(direction);

 direction = newdirection;

 Cpu_Delay100US(5000);

 }

 /*** Processor Expert end of main routine. DON'T MODIFY THIS CODE!!! ***/

 for(;;){}

 /*** Processor Expert end of main routine. DON'T WRITE CODE BELOW!!! ***/

 /*** End of main routine. DO NOT MODIFY THIS TEXT!!! ***/

}

75

Appendix D.2: Interrupt Routines (events.c)

/** ###

** Filename : Events.C

** Project : Micromouse

** Processor : MC9S12C32MFA25

** Beantype : Events

** Version : Driver 01.04

** Compiler : CodeWarrior HC12 C Compiler

** Date/Time : 1/5/2010, 11:33 PM

** Abstract :

** This is user's event module.

** Put your event handler code here.

** ###*/

/* MODULE Events */

#include "Cpu.h"

#include "Events.h"

#include "Motor.h"

#include "float.h"

#pragma CODE_SEG DEFAULT

extern char Motor1Step[];

extern volatile char next_state1;

extern volatile bool toggle1;

extern unsigned int steps1;

extern volatile bool direction1;

extern char Motor2Step[];

extern volatile char next_state2;

extern volatile bool toggle2;

extern unsigned int steps2;

extern volatile bool direction2;

extern word valueR, valueL;

volatile word Motor1_Timer = 5000, Motor2_Timer = 5000;

extern volatile byte reset;

//**

// Motor 1 Interrupt Service Routine – Step Motor 1

//**

void Motor1_Timer1_OnInterrupt(void)

{

 byte Error = 0;

 if (next_state1 > 7) {

 next_state1 = 0;

 }

 if (next_state1 < 0){

 next_state1 = 7;

 }

 Motor1_WriteBits(Motor1Step[next_state1]);

76

 if (direction1 == 0){

 next_state1++;

 }

 else {

 next_state1--;

 }

 steps1++;

}

//**

// Motor 2 Interrupt Service Routine – Step Motor 2

//**

void Motor2_Timer1_OnInterrupt(void)

{

 if (next_state2 > 7) {

 next_state2 = 0;

 }

 if (next_state2 < 0){

 next_state2 = 7;

 }

 DataBits_PutVal(Motor2Step[next_state2]);

 if (direction2 == 0){

 next_state2++;

 }

 else {

 next_state2--;

 }

 steps2++;

}

//**

// Motor 1 Interrupt Service Routine – Pulse to reduce effective current

//**

void Motor1_Timer2_OnInterrupt(void)

{

 if (toggle1){

 Motor1_WriteBits(0);

 toggle1 = 0;

 }

 else {

 Motor1_WriteBits(Motor1Step[next_state1]);

 toggle1 = 1;

 }

}

//**

// Motor 2 Interrupt Service Routine – Pulse to reduce effective current

//**

void Motor2_Timer2_OnInterrupt(void)

{

 if (toggle2){

 Motor2_WriteBits(0);

 toggle2 = 0;

 }

 else {

77

 Motor2_WriteBits(Motor2Step[next_state2]);

 toggle2 = 1;

 }

}

//**

// Event=PID_OnInterrupt (module Events)

// PID Interrupt Service Routine (P Controller Implementation)

//**

void PID_OnInterrupt(void)

{

 static int olderrorL = 0, olderrorR = 0;

 float Kp = 0.625;

 int error = 0;

 word setpoint = 400;

 float correct;

 float P=0, D=0;

 // Left Sensor Value

 error = setpoint - valueL;

 P = error*Kp;

 correct = P;

 Motor1_Timer += correct;

 if (Motor1_Timer >= 5000)

 Motor1_Timer = 5000;

 if (Motor1_Timer <= 2000)

 Motor1_Timer = 2000;

 Motor1_Timer1_SetPeriodUS(Motor1_Timer);

 olderrorL = error;

 // Right Sensor Value

 error = setpoint - valueR;

 P = error*Kp;

 //D = (error - olderrorR)*Kd;

 correct = P;

 Motor2_Timer += correct;

 if (Motor2_Timer >= 5000)

 Motor2_Timer = 5000;

 if (Motor2_Timer <= 2000)

 Motor2_Timer = 2000;

 Motor2_Timer1_SetPeriodUS(Motor2_Timer);

 olderrorR = error;

 reset = 0;

}

78

Appendix D.3: Motor Functionality (motor.c)

/** ###

** Filename : Motor.C

** Project : Project_44

** Processor : MC9S12C32CFA25

** Compiler : CodeWarrior HC12 C Compiler

** Date/Time : 10/24/2009, 10:39 PM

** Contents :

** User source code

** ###*/

/* MODULE Motor */

#include "Cpu.h"

#include "Events.h"

#include "Motor.h"

#include "Maze.h"

#include "LCD.h"

#include "Motor1_Brown.h"

#include "Motor1_Orange.h"

#include "Motor1_Red.h"

#include "Motor1_Yellow.h"

#include "DataBits.h"

#include "float.h"

#include "math.h"

#include "PE_Types.h"

#include "PE_Error.h"

#include "PE_Const.h"

#include "IO_Map.h"

extern volatile unsigned int steps1;

extern volatile unsigned int steps2;

extern volatile bool direction1;

extern volatile bool direction2;

extern word valueR, valueL, valueF;

extern byte currentR, currentC;

extern byte lastR, lastC;

extern volatile byte Motor1, Motor2;

extern volatile word timer1, timer2;

extern volatile int rev1, rev2;

//**

// Motor 1 – Function to drive stepper motor 1 pins

//**

void Motor1_WriteBits (byte value) {

 // Write values to appropriate pins

 Motor1_Brown_PutVal ((value & 0x08) && 0x08);

 Motor1_Yellow_PutVal((value & 0x04) && 0x04);

 Motor1_Orange_PutVal((value & 0x02) && 0x02);

 Motor1_Red_PutVal ((value & 0x01) && 0x01);

}

79

//**

// Motor 2 – Function to drive stepper motor 2 pins

//**

void Motor2_WriteBits (byte value){

 DataBits_PutBit(3, (value & 0x08) && 0x08);

 DataBits_PutBit(2, (value & 0x04) && 0x04);

 DataBits_PutBit(1, (value & 0x02) && 0x02);

 DataBits_PutBit(0, (value & 0x01) && 0x01);

}

//**

// Move the micromouse forward by number of steps

//**

void MoveForward (unsigned int steps){

 // 400 steps = 1 rotation

 // 1.8 degree / step = 200 steps and 400 1/2 steps

 direction1 = 0;

 direction2 = 0;

 StartMotors();

 while ((steps1 < steps) && (steps2 < steps)){} // Do nothing

 StopMotors();

 steps1 = 0;

 steps2 = 0;

}

//**

// Move the micromouse backward by number of steps

//**

void MoveBackward (unsigned int steps) {

 direction1 = 1;

 direction2 = 1;

 StartMotors();

 while ((steps1 < steps) && (steps2 < steps)){} // Do nothing

 StopMotors();

 steps1 = 0;

 steps2 = 0;

}

//**

// Turn the micromouse to the left

//**

void MoveLeft () {

 direction1 = 1;

 direction2 = 0;

 StartMotors();

 while ((steps1 < 200) && (steps2 < 200)){} // Do nothing

 StopMotors();

 steps1 = 0;

 steps2 = 0;

}

80

//**

// Turn the micromouse to the right

//**

void MoveRight (){

 direction1 = 0;

 direction2 = 1;

 StartMotors();

 while ((steps1 < 200) && (steps2 < 200)){} // Do nothing

 StopMotors();

 steps1 = 0;

 steps2 = 0;

}

//**

// Turn the micromouse around

//**

void TurnAround (){

 direction1 = 0;

 direction2 = 1;

 StartMotors();

 while ((steps1 < 315) && (steps2 < 315)){} // Do nothing

 StopMotors();

 steps1 = 0;

 steps2 = 0;

}

//**

// Enable both stepper motors

//**

void StartMotors(){

 Motor1_Timer1_EnableEvent();

 Motor2_Timer1_EnableEvent();

 // This was the PWM code that was used to reduce motor current

 Motor1_Timer2_EnableEvent();

 Motor2_Timer2_EnableEvent();

}

//**

// Stop/Disable both stepper motors

//**

void StopMotors (){

 Motor1_Timer1_DisableEvent();

 Motor2_Timer1_DisableEvent();

 // This was the PWM code that was used to reduce motor current

 Motor1_Timer2_DisableEvent();

 Motor2_Timer2_DisableEvent();

}

81

//**

// Moves the mouse to the next cell based on its current facing direction

//**

byte MoveMouse (byte direction){

 byte forwardCount=0;

 unsigned int onecell = 378;

 switch(direction){

 case NORTH:

 if (currentR < lastR){

 MoveLeft();

 forwardCount = 0;

 direction = WEST;

 writeData4('1');

 }

 else if (currentR > lastR){

 MoveRight();

 forwardCount = 0;

 direction = EAST;

 writeData4('2');

 }

 else if (currentC < lastC){

 TurnAround();

 direction = SOUTH;

 writeData4('3');

 }

 else{

 forwardCount++;

 writeData4('4');

 }

 break;

 case EAST:

 if (currentC > lastC){

 MoveLeft();

 forwardCount = 0;

 direction = NORTH;

 }

 else if (currentC < lastC){

 MoveRight();

 forwardCount = 0;

 direction = SOUTH;

 }

 else if (currentR < lastR){

 TurnAround();

 direction = WEST;

 }

 else{

 forwardCount++;

 }

 break;

 case SOUTH:

 if (currentR > lastR){

 MoveLeft();

 forwardCount = 0;

 direction = EAST;

82

 }

 else if (currentR < lastR){

 MoveRight();

 forwardCount = 0;

 direction = WEST;

 }

 else if (currentC > lastC){

 TurnAround();

 direction = NORTH;

 }

 else{

 forwardCount++;

 }

 break;

 case WEST:

 if (currentC < lastC){

 MoveLeft();

 forwardCount = 0;

 direction = SOUTH;

 }

 else if (currentC > lastC){

 MoveRight();

 forwardCount = 0;

 direction = NORTH;

 }

 else if (currentR > lastR){

 TurnAround();

 direction = EAST;

 }

 else{

 forwardCount++;

 }

 break;

 }

 Cpu_Delay100US(2000);

 MoveForward(onecell);

 return direction;

}

83

Appendix D.4: Maze Solving Algorithm (maze.c)

/** ###

** Filename : Maze.C

** Project : Project_44

** Processor : MC9S12C32CFA25

** Compiler : CodeWarrior HC12 C Compiler

** Date/Time : 10/25/2009, 8:40 PM

** Contents :

** User source code

** ###*/

#include "Cpu.h"

#include "Events.h"

#include "Maze.h"

#include "float.h"

#include "math.h"

#include "PE_Types.h"

#include "PE_Error.h"

#include "PE_Const.h"

#include "IO_Map.h"

extern byte walls[ROWS*COLS];

extern byte maze[ROWS*COLS];

extern byte currentR, currentC;

extern word valueL, valueR, valueF;

//**

// Initializes maze values --> Modified Flood Fill Algorithm

// Puts values in maze[] array

// Example of 6x13 array

// maze[] = 7 6 5 4 3 2 2 2 3 4 5 6 7

// 6 5 4 3 2 1 1 1 2 3 4 5 6

// 5 4 3 2 1 0 0 0 1 2 3 4 5

// 5 4 3 2 1 0 0 0 1 2 3 4 5

// 6 5 4 3 2 1 1 1 2 3 4 5 6

// 7 6 5 4 3 2 2 2 3 4 5 6 7

//**

void InitializeMaze()

{

 byte i,j;

 for (i=0; i< COLS; i++)

 for (j=0; j< ROWS; j++)

 {

if (((i == COLS/2) || (i == COLS/2 -1)) && (((j == ROWS/2)

|| (j == ROWS/2 -1))))

 maze[j*COLS + i] = (byte)0;

 else if (i <= COLS/2 -1)

 {

 if (j <= ROWS/2 -1)

maze[j*COLS + i] = (byte)(fabs(((COLS/2 -1) -

i)) + fabs(((ROWS/2 -1) - j)));

 else

84

maze[j*COLS + i] = (byte)(fabs(((COLS/2 -1) -

i)) + fabs(((ROWS/2) - j)));

 }

 else

 {

 if (j <= ROWS/2 -1)

maze[j*COLS + i] = (byte)(fabs(((COLS/2) - i))

+ fabs(((ROWS/2 -1) - j)));

 else

maze[j*COLS + i] = (byte)(fabs(((COLS/2) - i))

+ fabs(((ROWS/2) - j)));

 }

 } // close for

}

//**

// Sets up the return maze path as follows

// maze[] = 0 1 2 3 4 5 6 7 8 9 10 11 12

// 1 2 3 4 5 6 7 8 9 10 11 12 13

// 2 3 4 5 6 7 8 9 10 11 12 13 14

// 3 4 5 6 7 8 9 10 11 12 13 14 15

// 4 5 6 7 8 9 10 11 12 13 14 15 16

// 5 6 7 8 9 10 11 12 13 14 15 16 17

//**

void SetUpReturn(int currentRow, int CurrentCol, int StartRow, int StartCol)

{

 int i, j;

 for (i=0; i< COLS; i++)

 for (j=0; j< ROWS; j++)

 {

 if ((i == StartCol) && (j == StartRow))

 maze[j*COLS + i] = (byte)0;

 else

 {

 maze[j*COLS + i] = (byte)(i+j);

 }

 }

}

//**

// Update Maze

// Function updates the maze's distance values - stores in maze[] array

// Pull a cell from the stack

// Is the distance value of this cell = 1 + the minimum value of its open

neighbors?

// No -> Change the cell to 1 + the minimum value of its open neighbors

and

// push all of the cell's open neighbors onto the stack to be checked

// Yes -> Do nothing

// Example:

// If no wall to the South

// If south's cells "d" value is less than current cell's value

// Yes, this is OK

85

// No, this needs fixed

//**

void UpdateMaze(byte r, byte c)

{

 byte toFix[(ROWS*COLS)];

 int pointer=1;

 bool fixed, change;

 byte element;

 byte val;

 toFix[pointer-1] = (((byte)r << 4) | (byte)c);

 while (pointer > 0) // Outer Loop

 {

 element = toFix[pointer-1];

 r = (byte)(element >> 4);

 c = (byte)(element & 0x0F);

 pointer--;

 fixed = 0;

 change = 0;

 val = maze[r*COLS+c];

 if (val != 0) // Haven't reached the center

 {

 do

 {

 if((walls[r*COLS+c] & 0x01) == 0 && c > 0)

 {

 if(maze[r*COLS + c-1] < val)

 fixed = 1;

 }

 if((walls[r*COLS+c] & 0x02) == 0 && r > 0)

 {

 if(maze[(r-1)*COLS + c] < val)

 fixed = 1;

 }

 if((walls[r*COLS+c] & 0x04) == 0 && c < COLS -1)

 {

 if(maze[r*COLS + c+1] < val)

 fixed = 1;

 }

 if((walls[r*COLS+c] & 0x08) == 0 && r < ROWS -1)

 {

 if(maze[(r+1)*COLS + c] < val)

 fixed = 1;

 }

 if(!fixed)

 {

 val+=1;

 change = 1;

 }

 }

 while (!fixed);

 maze[r*COLS+c] = val;

86

 if (change)

 {

 if((walls[r*COLS+c] & 0x01) == 0 && c > 0)

 {

 pointer++;

 toFix[pointer-1] = (((byte)r << 4) | (byte)(c-

1));

 }

 if((walls[r*COLS+c] & 0x02) == 0 && r > 0)

 {

 pointer++;

 toFix[pointer-1] = (((byte)(r-1) << 4) |

(byte)c);

 }

 if((walls[r*COLS+c] & 0x04) == 0 && c < COLS -1)

 {

 pointer++;

 toFix[pointer-1] = (((byte)r << 4) |

(byte)(c+1));

 }

 if((walls[r*COLS+c] & 0x08) == 0 && r < ROWS -1)

 {

 pointer++;

 toFix[pointer-1] = (((byte)(r+1) << 4) |

(byte)c);

 }

 }

 }

 }

}

//**

// Function sets up the number of walls in the maze - puts in walls[]

// walls[] = 3 2 2 2 2 2 2 2 2 2 2 2 6

// 1 0 0 0 0 0 0 0 0 0 0 0 4

// 1 0 0 0 0 0 0 0 0 0 0 0 4

// 1 0 0 0 0 0 0 0 0 0 0 0 4

// 1 0 0 0 0 0 0 0 0 0 0 0 4

// 9 8 8 8 8 8 8 8 8 8 8 8 12

//**

void SetUpWalls()

{

 byte r=0,c=0;

 byte wls;

 for(r=0; r < 6; r++)

 {

 for(c =0; c < 13; c++)

 {

 wls = 0x00;

 if (r == 0)

 {

 wls = (wls | 0x02);

 }

 if (c == 0)

87

 {

 wls = (wls | 0x01);

 }

 if (r == ROWS - 1)

 {

 wls = (wls | 0x08);

 }

 if (c == COLS - 1)

 {

 wls = (wls | 0x04);

 }

 walls[r * COLS + c] = wls;

 }

 }

}

//**

// Updates Maze Values to Robot's New Position within the Maze

// Checks all of the potential next moves to determine where to move next

// Checks: row+1, row-1, col-1, col+1

// Return value is the cell of the next move

// upper nibble is the row value; lower nibble is the column value

//**

byte NextMove(byte currentRow, byte CurrentCol)

{

 byte move =0;

 byte r = ROWS+1,c = COLS+1;

 byte value = maze[currentRow*COLS + CurrentCol];

 byte next;

 //Check Row+1

 if (currentRow < ROWS -1)

if (maze[(currentRow+1)*COLS + CurrentCol] < value &&

 (walls[(currentRow)*COLS + CurrentCol] & 0x8) == 0x00)

 {

 r = currentRow+1;

 c = CurrentCol;

 value = maze[(currentRow+1)*COLS + CurrentCol];

 }

 //Check Row-1

 if (currentRow > 0)

 if (maze[(currentRow-1)*COLS + CurrentCol] < value &&

 (walls[(currentRow)*COLS + CurrentCol] & 0x2) == 0x00)

 {

 r = currentRow-1;

 c = CurrentCol;

 value = maze[(currentRow-1)*COLS + CurrentCol];

 }

 //Check Column+1

 if (CurrentCol < COLS -1)

 if (maze[(currentRow)*COLS + CurrentCol+1] < value &&

 (walls[(currentRow)*COLS + CurrentCol] & 0x4) == 0x00)

 {

 r = currentRow;

 c = CurrentCol+1;

88

 value = maze[(currentRow)*COLS + CurrentCol+1];

 }

 //Check Column-1

 if (CurrentCol > 0)

 if (maze[(currentRow)*COLS + CurrentCol-1] < value &&

 (walls[(currentRow)*COLS + CurrentCol] & 0x1) == 0x00)

 {

 r = currentRow;

 c = CurrentCol-1;

 value = maze[(currentRow)*COLS + CurrentCol-1];

 }

 //upper half will be row, lower col

 next = ((byte)r << 4) | (byte)c;

 return next;

}

//**

// Insert Wall -

// walls matrix when called

//**

void InsertWall(byte wallSide)

{

walls[(int)(currentR*COLS + currentC)] = walls[(int)(currentR*COLS +

currentC)] | wallSide;

 /*switch (wallSide)

 {

 case 1:

 if (currentC > 0)

 walls[(int)((currentR)*cols + (currentC-1))] =

 walls[(int)((currentR)*cols + (currentC-1))] | 0x04;

 break;

 case 2:

 if (currentR > 0)

 walls[(int)((currentR-1)*cols + currentC)] = walls[(int)((currentR-

 1)*cols + currentC)] | 0x08;

 break;

 case 4:

 if (currentC < cols -1)

 walls[(int)((currentR)*cols + (currentC+1))] =

 walls[(int)((currentR)*cols + (currentC+1))] | 0x01;

 break;

 case 8:

 if (currentR < rows -1)

 walls[(int)((currentR+1)*cols + (currentC))] =

 walls[(int)((currentR+1)*cols + (currentC))] | 0x02;

 break;

 } */

}

//**

// UpdateWallMap

// Updates the wall map based on the direction the mouse is facing

89

// NORTH=1, EAST=2, SOUTH=3, WEST=4

//**

void UpdateWallMap (byte direction){

 switch (direction){

 case NORTH:

 if(valueL > WALLSENSE)

 {

 InsertWall(0x02);

 }

 if(valueR > WALLSENSE)

 {

 InsertWall(0x08);

 }

 if(valueF > FRONTSENSE)

 {

 InsertWall(0x04);

 }

 break;

 case EAST:

 if(valueL > WALLSENSE)

 {

 InsertWall(0x04);

 }

 if(valueR > WALLSENSE)

 {

 InsertWall(0x01);

 }

 if(valueF > FRONTSENSE)

 {

 InsertWall(0x08);

 }

 break;

 case SOUTH:

 if(valueL > WALLSENSE)

 {

 InsertWall(0x08);

 }

 if(valueR > WALLSENSE)

 {

 InsertWall(0x02);

 }

 if(valueF > FRONTSENSE)

 {

 InsertWall(0x01);

 }

 break;

 case WEST:

 if(valueL > WALLSENSE)

 {

 InsertWall(0x01);

 }

 if(valueR > WALLSENSE)

 {

 InsertWall(0x04);

 }

 if(valueF > FRONTSENSE)

 {

90

 InsertWall(0x02);

 }

 break;

 } // End Switch Statement

}

//**

// UpdateAll calls updateMaze in order to loop through all the elements as

appropriate

//**

void UpdateAll()

{

 byte i, j;

 for (i=0; i < COLS; i++)

 for (j=0; j < ROWS; j++)

 {

 UpdateMaze(j,i);

 } // close for

}

91

Appendix D.5: LCD Initialization (lcd.c)

/** ###

** Filename : LCD.C

** Project : Project_44

** Processor : MC9S12C32CFA25

** Compiler : CodeWarrior HC12 C Compiler

** Date/Time : 10/25/2009, 12:13 PM

** (c) Copyright UNIS, spol. s r.o. 1997-2008

** ###*/

/* MODULE LCD */

#include "Cpu.h"

#include "Events.h"

#include "DataBits.h"

#include "ENBit.h"

#include "RSBit.h"

#include "PE_Types.h"

#include "PE_Error.h"

#include "PE_Const.h"

#include "IO_Map.h"

byte out_hundreds, out_tens, out_ones = 0x00;

byte final_out_hundreds, final_out_tens, final_out_ones;

//**

// This routine sends a command to the LCD Module

// The routine operates in 8-bit mode. The upper nibble is

// sent, and the lower nibble is ignored. For commands, the

// RS bit is always set equal to 0

//**

void writeCom8(byte command){

 // Start of Command Sequence

 // Transmit upper nibble with Enable = 0

 ENBit_PutVal(0);

 RSBit_PutVal(0);

 DataBits_PutVal(command >> 4);

 // Write Command

 // Transmit upper nibble with Enable = 1

 ENBit_PutVal(1);

 RSBit_PutVal(0);

 DataBits_PutVal(command >> 4);

 // End of Command Sequence

 // Transmit upper nibble with Enable = 0

 ENBit_PutVal(0);

 RSBit_PutVal(0);

 DataBits_PutVal(command >> 4);

 Cpu_Delay100US(1);

}

92

//**

// This routine sends a command to the LCD Module

//

// The routine operates in 4-bit mode. The upper nibble is

// sent, then the lower nibble is sent. For commands, the

// RS bit is always set equal to 0

//**

void writeCom4(byte command){

 // Start of Command Sequence (Upper Nibble)

 // Transmit upper nibble with Enable = 0

 ENBit_PutVal(0);

 RSBit_PutVal(0);

 DataBits_PutVal(command >> 4);

 // Write Command (Upper Nibble)

 // Transmit upper nibble with Enable = 1

 ENBit_PutVal(1);

 RSBit_PutVal(0);

 DataBits_PutVal(command >> 4);

 // End of Command Sequence (Upper Nibble)

 // Transmit upper nibble with Enable = 0

 ENBit_PutVal(0);

 RSBit_PutVal(0);

 DataBits_PutVal(command >> 4);

 // Start of Command Sequence (Lower Nibble)

 // Transmit lower nibble with Enable = 0

 ENBit_PutVal(0);

 RSBit_PutVal(0);

 DataBits_PutVal(command);

 // Write Command (Lower Nibble)

 // Transmit lower nibble with Enable = 1

 ENBit_PutVal(1);

 RSBit_PutVal(0);

 DataBits_PutVal(command);

 // End of Command Sequence (Lower Nibble)

 // Transmit lower nibble with Enable = 0

 ENBit_PutVal(0);

 RSBit_PutVal(0);

 DataBits_PutVal(command);

 Cpu_Delay100US(1);

}

//**

// This routine sends a single character to the LCD Display

//

// The routine operates in 4-bit mode. The upper nibble is

// sent, then the lower nibble is sent. For data, the RS bit

// is always set equal to 1

//**

void writeData4(byte data){

93

 // Start of Data Sequence (Upper Nibble)

 // Transmit upper nibble with Enable bit = 0

 ENBit_PutVal(0);

 RSBit_PutVal(1);

 DataBits_PutVal(data >> 4);

 // Write Data (Upper Nibble)

 // Transmit upper nibble with Enable bit = 1

 ENBit_PutVal(1);

 RSBit_PutVal(1);

 DataBits_PutVal(data >> 4);

 // End of Data Sequence (Upper Nibble)

 // Transmit upper nibble with Enable bit = 0

 ENBit_PutVal(0);

 RSBit_PutVal(1);

 DataBits_PutVal(data >> 4);

 // Start of Data Sequence (Lower Nibble)

 // Transmit lower nibble with Enable bit = 0

 ENBit_PutVal(0);

 RSBit_PutVal(1);

 DataBits_PutVal(data);

 // Write Data (Lower Nibble)

 // Transmit lower nibble with Enable bit = 1

 ENBit_PutVal(1);

 RSBit_PutVal(1);

 DataBits_PutVal(data);

 // End of Data Sequence (Lower Nibble)

 // Transmit lower nibble with Enable bit = 0

 ENBit_PutVal(0);

 RSBit_PutVal(1);

 DataBits_PutVal(data);

 Cpu_Delay100US(1);

}

//**

// This routine initializes the 8x2 LCD Display

//

// The routine begins in 8-bit Mode, and requires the command

// 0x30 to be sent three consecutive times before setting up

// the LCD. After communication is established, the routine

// switches over to 4-bit mode to continue setting up the LCD

//**

void LCD_Init(void){

 // Wait 20ms for initial Power-On (15ms minimum)

 Cpu_Delay100US(200);

 // COMMAND #1

 // Send 0x30 the first time (8-bit Mode)

 writeCom8(0x30);

94

 // Wait 5 ms (4.1 ms minimum)

 Cpu_Delay100US(50);

 // COMMAND #2

 // Send 0x30 the second time (8-bit Mode)

 writeCom8(0x30);

 // Wait 200 us (100us minimum)

 Cpu_Delay100US(2);

 // COMMAND #3

 // Send 0x30 the third time (8-bit Mode)

 writeCom8(0x30);

 // COMMAND #4: Switches to 4-bit Mode w/ Function Set Command

 // Send 0x20 (Still in 8-bit Mode)

 writeCom8(0x20);

 // ********** NOW IN 4-BIT MODE **********

 // COMMAND #5: FUNCTION SET -> [0 0 1 DL N$ RE/F 0 #]

 // Result: [0 0 1 0 1 0 0 0] = 0x28

 // Write 0x28 (Now in 4-bit Mode: Send upper nibble then lower nibble)

 writeCom4(0x28);

 // COMMAND #6: DISPLAY ON -> [0 0 0 0 1 D C B]

 // Result: [0 0 0 0 1 1 1 1] = 0x0F

 //

 //Write 0x0F (In 4-bit Mode: Send upper nibble then lower nibble)

 writeCom4(0b00001100);

 // COMMAND #7: DISPLAY CLEAR -> [0 0 0 0 0 0 0 1]

 // Result: [0 0 0 0 0 0 0 1] = 0x01

 //

 // Write 0x01 (In 4-bit Mode: Send upper nibble then lower nibble)

 writeCom4(0x01);

 // Additional delay required when clearing screen & returning home

 Cpu_Delay100US(35);

 // COMMAND #8: ENTRY MODE SET -> [0 0 0 0 0 1 I/D S]

 // Result: [0 0 0 0 0 1 1 0] = 0x06

 //

 // Write 0x06 (In 4-bit Mode: Send upper nibble then lower nibble)

 writeCom4(0x06);

 // Delay to allow initialization to complete before writing data (10 ms)

 Cpu_Delay100US(100);

 writeCom4(0x80);

 Cpu_Delay100US(100);

}

//**

// The routine sends the command to clear the screen then

// delays for the appropriate amount of time

//**

void clrLCD(void){

95

 writeCom4(0x01);

 Cpu_Delay100US(35);

}

//**

// This routine displays the sensor readings on the LCD

//**

void display_sensors(byte *sensors)

{

 byte hundreds1, hundreds2, hundreds3, hundreds4;

 byte tens1, tens2, tens3, tens4;

 byte ones1, ones2, ones3, ones4;

 // Convert Rear Sensor Values for LCD Display

 hundreds1 = (sensors[0] / 100);

 tens1 = (sensors[0] - hundreds1 * 100) / 10;

 ones1 = (sensors[0] - hundreds1 * 100 - tens1 * 10);

 // Convert Front side Sensor Values for LCD Display

 hundreds2 = (sensors[1] / 100);

 tens2 = (sensors[1] - hundreds2 * 100) / 10;

 ones2 = (sensors[1] - hundreds2 * 100 - tens2 * 10);

 // Convert Front Sensor Values for LCD Display

 hundreds3 = (sensors[2] / 100);

 tens3 = (sensors[2] - hundreds3 * 100) / 10;

 ones3 = (sensors[2] - hundreds3 * 100 - tens3 * 10);

 // Convert Sensor Values for LCD Display

 hundreds4 = (sensors[3] / 100);

 tens4 = (sensors[3] - hundreds4 * 100) / 10;

 ones4 = (sensors[3] - hundreds4 * 100 - tens4 * 10);

 // DO WRITE COMMANDS HERE!

 writeCom4(0x80);

 writeData4(hundreds1 + 48);

 writeData4(tens1 + 48);

 writeData4(ones1 + 48);

 writeData4(0x20);

 writeData4(0x20);

 writeData4(hundreds3 + 48);

 writeData4(tens3 + 48);

 writeData4(ones3 + 48);

 writeCom4(0xA8);

 writeData4(hundreds2 + 48);

 writeData4(tens2 + 48);

 writeData4(ones2 + 48);

 writeData4(0x20);

 writeData4(0x20);

 writeData4(hundreds4 + 48);

 writeData4(tens4 + 48);

 writeData4(ones4 + 48);

}

/* END LCD */

96

Appendix E: Micromouse Curriculum Set

The micromouse curriculum is broken into six mandatory modules/laboratories. This appendix

includes copies of the laboratory modules and micromouse final project description.

97

Appendix E.1: Laboratory #1: The Micromouse & Modified Flood Fill

Goals

The objective of this lab is to introduce the Micromouse competition and to introduce one of the

many algorithms that can be utilized by a Micromouse to solve an unknown maze, the modified

flood fill algorithm. At the completion of this lab, students should be able to write a program to

implement the modified flood fill algorithm.

Background

Micromouse and Micromouse Competition

The Micromouse is an autonomous robotic mouse whose objective is to solve a 16x16 maze.

The Micromouse is provided with a predetermined starting position and must correctly traverse

an unknown maze and determine when it has reached the goal cell. Once the correct route has

been identified, the mouse should return to the starting position, and then run the route in the

shortest possible time. Figure 1 provides a few images of some common Micromouse designs.

Figure 1: Micromouse Designs (Active Robots)

A Micromouse robot is generally composed of some combination of motors (DC or stepper) and

sensors (proximity or distance), power source, display mechanism, chassis, wheels, and switches.

A Micromouse robot typically is controlled using a microcontroller which reads sensors, controls

98

Micromouse movement, implements error detection and correction algorithms, and implements

various searching algorithms.

The Micromouse framework is often utilized for robotics competitions. Micromouse

competitions are generally targeted for student IEEE members (college undergraduates). The

Micromouse competition was created by the Institute of Electronics and Electrical Engineers in

1977, and the first competition was held in New York in 1979 (IEEE) (Technology Innovation

Centre). In a matter of a few years, the competition went global, and the first world competition

was held in Japan in 1985 (Technology Innovation Centre). Competitions today are held across

the United States and the world.

IEEE Micromouse Competitions are held based on Region. Region 2 includes West Virginia,

Delaware, District of Columbia, Maryland, Southern New Jersey, Ohio (except Toledo),

Pennsylvania, and Northern Virginia. The 2010 Region 2 Micromouse Competition was hosted

by Temple University and held on April 17, 2010 (Temple University IEEE Student Branch).

Appendix A includes a copy of the 2010 Region 2 Micromouse Competition Rules.

The Micromouse framework and competition serve as the foundation for this laboratory.

Students will learn many features of the HSC12 microprocessor family by building,

programming, and debugging a Micromouse robot.

Searching Algorithms

In order to solve an unknown maze, a Micromouse can implement a variety of different

algorithms such as the flood fill algorithm, modified flood fill algorithm, A*, etc. In this lab, we

will implement the modified flood fill algorithm but additional algorithms are encouraged to be

explored by students throughout the course of the semester.

Flood Fill Algorithm

To first introduce the modified flood fill algorithm, let’s first take a look at the flood fill

algorithm. The flood fill is a simple algorithm that determines the area connected to a given

99

node in a multi-dimensional array. It sets the goal values (destination cells) to zero and “floods”

the surrounding cells with radiating, increasing values. Figure 2 provides an example.

Figure 2: Flood Fill Algorithm [1]

Examining Figure 2, notice that the center value is zero and all other cells are filled with values

corresponding to their distance from the goal cell. After “flooding” the maze with values, the

algorithm then searches the adjacent nodes for the smallest value to determine which cell to

travel. It then continues to follow the values in descending order until it has reached the center.

This algorithm is rather simple and provides a reliable method to finding the center of the maze;

however, the modified flood fill algorithm can find the center more quickly so we will introduce

this algorithm as well.

Modified Flood Fill Algorithm

The modified flood fill algorithm is similar to the flood fill algorithm for it also uses distance

values to navigate the maze. The primary difference is that the modified flood fill algorithm

does not “flood” the entire maze with values. It modifies only the values that need to be

changed. For example, if a wall is encountered and the robot is not in the destination cell, it

updates the value of that cell to 1 + the minimum value of its open neighbors. Figure 3

provides an example of this process.

100

Figure 3: Modified Flood Fill Algorithm [1]

Examining Figure 3, when the robot encounters a wall to the east and can only move north or

south. The north and south cells (open neighbors) are checked and we find that the current cell’s

new value is 1 + the minimum value of its open neighbors or 1+3=4.

Once the robot has found the destination cell, it can return to the beginning of the maze using the

distance values. On return, it is often a good practice to double check the wall positions. Once

the micromouse has returned to the beginning, the maze is solved and the mouse can scamper off

for a speed run to the center of the maze.

In summary, the modified flood fill process for updating the distance values is:

Figure 4: Updating Distance Values with Modified Flood Fill Algorithm [1]

101

Using the algorithm from Figure 4 and the wall map, the modified flood fill algorithm now

becomes the following and should be executed every time the mouse enters a new cell.

1. Update the wall map (using the sensor readings)

2. Update the distance values (only if necessary)

3. Determine which neighbor cell has the lowest distance value

4. Move to the neighboring cell with the lowest distance value

Procedure

Develop C or MatLab functions to implement the Modified Flood Fill Algorithm described in the

Background section. Note: There are several on-line references and video tutorials describing

the modified flood fill algorithm on-line as well. Recommendations and more details on how to

implement the algorithm are provided below.

The first thing that the Micromouse must keep track of is the location of the walls in the maze.

One manner to store this information is by using an array. In order to store this information, we

must first define the directions within the maze and assign a value to each direction as shown in

Figure 5. Let’s look at an example. If we are at the starting position of a 16x16 maze and we

have three walls surrounding us: wall to the west, wall to the south, and wall to the east, the wall

array would have the value = 0x02 + 0x01 + 0x08 = 0x0B or walls[0] = 0x0B.

Figure 5: Direction Definitions

102

So, as you quickly realize, the walls array say of a 6x13 maze can already be defined with the

positions of the outer walls and the starting cell (which always has 3 surrounding walls per

competition rules).

B 2 2 2 2 2 2 2 2 2 2 2 6

1 0 0 0 0 0 0 0 0 0 0 0 4

1 0 0 0 0 0 0 0 0 0 0 0 4

1 0 0 0 0 0 0 0 0 0 0 0 4

1 0 0 0 0 0 0 0 0 0 0 0 4

9 8 8 8 8 8 8 8 8 8 8 8 C

The second value you must store for the Micromouse to successfully traverse the maze are called

distance values. Distance values (as mentioned earlier) store a value indicating the number of

moves you are from the center of the maze. Taking the 6x13 maze, the distance value array

should be initialized as shown below.

Besides distance values and wall values, there are two other items that must be accounted for to

solve the maze: the Micromouse’s current row, column position and which direction the

Micromouse is facing. These items can be stored in several different manners and will be left up

to you to implement.

Finally, you may want to write a function that checks all the possible next moves to determine

which neighboring cell has the lowest distance value. You will only have to check the

following: (row – 1, row + 1, column + 1, and column – 1).

Demonstrate that your algorithm can solve the following maze to your Teaching Assistant. If

unable to complete this lab before the allotted time, you must demonstrate your completed

algorithm prior to the fifth week of the semester.

103

Lab Questions / Notebook

1. Using the C programming language, write the code necessary to create two integer

variables, A and B, initializing A to 10 and B to 20. Add A and B and store result in A.

2. What is the difference between logical and bit-wise operators?

3. Include a brief description of what was accomplished in this lab. Be sure to include all

functions with comments.

4. Identify three additional algorithms besides the flood fill and modified flood fill

algorithm that are used to solve an unknown maze

5. Read through the C Programming Tutorial on the class website at

http://csee.wvu.edu/classes/cpe313/references/C_Tutorial.ppt. Answer the following

questions.

a. Show how to declare and initialize a variable X to 0x33;

b. Show how to declare and initialize a character array of 10 characters with values

a-j

c. Show how to shift the upper nibble (lower four bits) of a character value “y” to

the lower nibble (lower four bits).

References

 http://sites.ieee.org/sb-osu/

 http://www.micromouseinfo.com/introduction/mfloodfill.html

http://csee.wvu.edu/classes/cpe313/references/C_Tutorial.ppt

104

Appendix E.2: Laboratory #2: Microcontroller Introduction and Basics

Goals

The main objective of this lab is to introduce the microcontroller hardware and in particular,

understand the process for creating, executing, and debugging application programs for the

MC912C32 microcontroller.

1. Develop, execute, and debug a program on the microcontroller using the HCS12 serial

monitor.

2. Become familiar with Dragonflybot Board Hardware features

3. Understand the advantages and disadvantages of using the Processor Expert plug-in

All manuals and complete schematics for the MC9S12C-family microcontroller, Dragonflybot

board, and Dragonfly12 module are located on the class website at

http://www.csee.wvu.edu/classes/cpe313/labs.html.

Background

MC9S12C Microcontroller

The MC9S12C microcontroller features a 16-bit CPU, up to 128K bytes of Flash EEPROM, 4K

bytes of RAM, serial communications interface (SCI), serial peripheral interface (SPI), 8-channel

10-bit analog-to-digital converter (ADC), 6-channel 8-bit pulse width modulation (PWM), and a

8-channel 16-bit timer module (TIM). Figure 1 provides an illustration of the MC9S12C, and

Figure 2 provides the MC9S12C-Family Block Diagram.

Figure 1: MC9S12C Microcontroller

http://www.csee.wvu.edu/classes/cpe313/labs.html

105

Figure 2 MC9S12C-Family Block Diagram

106

Dragonfly12 Module

The Dragonfly12 Module provides a convenient prototype platform for engineers who want to

design, develop, and prototype new MC9S12C32 applications. The Dragonfly12 module bonds

40 of the MC9S12C32 microcontroller pins to the package. This allows programmers to access

the MCS12C32 microcontroller to access its features. Figure 3 provides a snapshot of the

Dragonfly12 module, and Figure 4 provides its pin-out diagram.

Figure 3 Dragonfly12 Module

Figure 4 Dragonfly12 Module Pin-outs (40 pins)

107

Dragonflybot Board

The Dragonflybot board is a low-cost robot control board made to connect Dragonfly12-DIP

modules [1]. Some of the features of the Dragonflybot board include four robot servo

controllers, four push button switches, 5V regulator, dual H-bridge for controlling two DC

motors or one stepper motor, support 4 GP2-D12 distance measuring sensors, and 20x2 female

headers which provides input-output pins of the MC912C32. The Dragonflybot board also

includes 28 jumpers. The jumpers are generally used to enable and disable features and change

settings. In this lab, we will use the on-board push buttons and LEDs on the Dragonflybot board.

Figure 5 provides the schematic of the component side of the Dragonflybot board.

Figure 5: Dragonflybot Board – Component Side Schematic

[http://www.evbplus.com/c32_modules/bbu_hc12_68hc12_9s12_hcs12.html]

108

Freescale CodeWarrior with Processor Expert

CodeWarrior is a complete Integrated Development Environment (IDE) for developing

embedded applications. CodeWarrior integrates the editor, compiler, linker, debugger, and other

software modules. The IDE manages the control and execution of the tools. CodeWarrior enables

engineers to build efficient HCS12 systems.

Processor Expert is a CodeWarrior plug-in that is designed for rapid application development of

embedded applications for a variety of microcontrollers. Processor Expert implements embedded

beans, reusable software components, to encapsulate the functionality of basic elements such as

the CPU core, on-chip peripherals, and pure software algorithms. The plug-in also consists of a

Bean Wizard, which is a graphical user interface specifically designed for the creation and

modification of embedded beans [Processor Expert Online].

Setup

To get started, the first thing you need to do is create a new CodeWarrior project with Processor

Expert enabled. To create a new CodeWarrior Project, follow these steps.

Creating a New CodeWarrior Project

Note: It is very important that you follow these instructions because this project will be used

throughout the semester.

1. Select File > New Project

2. Select the HCS12C Family > MC912C32 microcontroller

3. Choose “Full Chip Simulation” as the default connection and make sure that the Serial

Monitor is also a selected (as necessary based on software version)

4. Change the project name as desired and make sure you jot down where the project is

going to be saved. When you save a CodeWarrior project, it is recommended that

you save the entire workspace.

5. Make sure the “C” programming language is checked to be supported

6. Select “Processor Expert” for Rapid Application Development Options

7. Choose ANSI startup code, small memory model, and add floating numbers support by

selecting the “float is IEEE32, double is IEEE32” option

109

8. Select No to create project setup for PC_lint

9. When prompted by Processor Expert, select the 48-pin MCU (MFA25 will be fine)

Notice in your leftmost window the option to change your hardware connection type or select the

simulator. Since we will be connecting board through the serial monitor, go ahead and make this

change within your project as shown below. Note: You may have to change the default COM

port later before the program will successfully load. Also, you are encouraged to use the

simulator to help debug your applications.

Next, you must modify the CPU settings using Processor Expert’s bean inspector to match the

bus speed of the Dragonflybot board. The default bus speed on the Dragonflybot Board is 8

MHz. You need to enable the PLL clock, set the input clock frequency to 8.0 MHz, and the

internal bus clock to 24.0 MHz. These settings can be modified by selecting the CPU in the

Processor Expert window and modifying the settings in the Bean Inspector window. If the bean

inspector window is not displayed, select Processor Expert > View > Bean Inspector.

110

In the leftmost window under the Processor Expert tab, you will notice there is a main.c module.

This is the location of your main function for your program. You will notice if you double click

on the file, you will get an error stating that the main module cannot be found. The reason for

this is that since you are using the Processor Expert plug-in, the main module is not generated

until you leverage Processor Expert by generating any autogenerated code. Go ahead and select

Processor Expert > Generate Code. After the code is generated, you will now be able to open

your main module. Now, you are ready to write your application that can be loaded on the

microcontroller. Note: As expected, if you add any Processor Expert beans or modify any

methods, you will need to regenerate the Processor Expert code.

Procedure:

Activity #1: Write a function that creates a 4-bit counter that counts down from 15-0. When the

counter reaches 0 it stops until a pushbutton is pressed to initiate the counter again. For this

experiment, you can use pushbutton “S4” and LEDs PT0-PT3 on the Dragonflybot board.

1. In this lab, we will leverage the functionality encapsulated in the Processor Expert beans

to use the microcontroller’s features.

111

2. First, use Processor Expert’s bean selector (Categories View) and select the appropriate

Port IO beans to implement this functionality. You can view descriptions of the beans by

right clicking the bean and clicking “Help on Bean”. You can add the beans to your

project by double clicking them. (You can remove them if needed as well). The added

beans will show up in your “Beans” directory. You can view the properties for a given

bean in the Bean Inspector Window.

3. Tailor the properties of the beans for the functionality you need to implement. You need

4 bits or a nibble for the LEDs, and you need one bit for the push button switch.

4. Once the beans have been selected and configured, go ahead and Generate the Processor

Expert code by selecting “Processor Expert” > “Generate Code”.

Note: Processor Expert generates code based on the beans and properties selected.

This code resides in the “Generated Modules” directory. The main routine is located

in the “User Modules” directory.

5. Write a function that uses the beans to create the 4-bit down counter.

6. Compile, Debug, and Load your code on the microcontroller.

7. Demonstrate the successful execution of your program to your TA.

Compiling, Debugging, and Running

 To compile the project: Select Project > Make or Hit Make Button or Hit “F7”

112

 To debug and download the project: Select Project > Debug or Hit Debug Button or Hit

“F5”

 To run the project with the Real-Time Debugger: Select the Run button

113

Programming the Microcontroller

 In CodeWarrior, Generate Processor Expert code and compile code

 Make sure the HCS12 serial monitor is selected.

 Properly connect the USB cable to the Dragonflybot board and your workstation. The

PWR LED should illuminate on the Dragonflybot. If not, check

 At Switch 5 (S5) on the Dragonflybot board, there is a “Run/Load” switch. Make sure

the switch is in the “Load” position.

 Press the “Reset” button located at S7.

 In CodeWarrior, download the code.

 Select the appropriate COM port as necessary

o If unsure of correct COM port, use Windows Device Manager to find it

 You should now see the Real-Time Debugger window

 You can run the code using the debugger

Activity #2: Real-Time Debugger. The real-time debugger is a powerful tool that provides

insight into your application. It provides real-time information on global and local variables,

assembly language equivalent commands, register values, and memory values.

1. Using the Real-Time Debugger, step through your program.

2. Insert breakpoints into your program and execute your code.

3. Examine the following: start/continue, single step, step into, step out, assembly step,

stop, and reset. Be sure to document what each of these functions do in your lab

report.

Questions

1. Discuss some advantages and disadvantages of Processor Expert

2. Examine the Dragonflybot Board Manual. Identify the jumper connections that allow

you to enable and configure the on-board LCD.

3. Read the LCD Manual (8X2 Display).

a. Determine the amount of wait time required before you can communicate with the

LCD after powering on (4-bit interface). How would you create this delay in your

program?

114

b. Examining the Character Font Table, in order to send a decimal 3 to the LCD, you

must send the byte 0011 0011. If you wanted to write a function called

writeData(3) which would write the value 3 to the LCD, how would you have to

manipulate the parameter value inside your function. Does this work for all

ASCII values? Note: You don’t have to write out the function.

References:

 http://www.evbplus.com/c32_modules/bbu_hc12_68hc12_9s12_hcs12.html

 http://download.datasheet1.com/down/160417_HANTRONIX_HDM08216L.html

 http://www.eng.auburn.edu/~nelson/courses/elec3050/

http://www.evbplus.com/c32_modules/bbu_hc12_68hc12_9s12_hcs12.html
http://download.datasheet1.com/down/160417_HANTRONIX_HDM08216L.html
http://www.eng.auburn.edu/~nelson/courses/elec3050/

115

Appendix E.3: Laboratory #3: LCD Interfacing

Goals

The objective for this laboratory is to learn how to communicate with an 8x2 LCD using a

HCS12 microcontroller. In particular, you will have to write five functions to interface with the

LCD.

1. Initialize the 8x2 LCD

2. Send a single character to the LCD

3. Send a command to the LCD

4. Clear the LCD

5. Display Numerical Value (Sensor Values)

Background:

Hantronix HDM08216L 8x2 LCD

A LCD is a display device that requires small amounts of electrical power and can prove very

useful when debugging robotic applications. This lab uses the Hantronix HDSM0216L 8x2

Liquid Crystal Display (LCD). The 8x2 display connects on the Dragonflybot Board at J13, and

the LCD backlight can be enabled at J14. The complete datasheet is at:

http://www.csee.wvu.edu/classes/cpe313/references/LCD_Manual.pdf. Be sure to familiarize

yourself with the datasheet as it will help you with this experiment.

Figure 1 shows the pin-out diagrams for the Hantronix LCD. Of the 14 pins shown, only have to

be concerned with the six pins connected to the microcontroller via the J13 header (RS pin (4),

EN pin (7), and the four data pins (DB4-DB7)).

http://www.csee.wvu.edu/classes/cpe313/references/LCD_Manual.pdf

116

Figure 1 LCD Pin-outs

Control Register (CG RAM)

 The Read Select (RS) line is used to select which register with the LCD Module the data

will be going to. When RS = 0, the data is sent to the control register, and when RS = 1,

the data is sent to the data screen.

 The Read/Write (R/W) line simply used to read from the LCD or write to the LCD.

Since we will only be writing to the LCD, the R/W pin is grounded when using the J13

header on the Dragonflybot board.

 The Enable (EN) line disables the LCD (0) and enables the LCD (1).

Data Register (DD RAM)

 The Data Bus (DB4 – DB7) is used to send data to the LCD.

Examining the IO lines, you can see that to control the LCD, you have 6 lines available, but a

character is 8-bits, which would require 8 data lines (DB0-DB7). However to save IO pins, the

LCD Module also has a 4-bit mode of operation which only uses 4 data lines. In 4-bit mode, the

8-bit ASCII data is split into 2 nibbles which are sequentially sent to data lines DB4-DB7, each

with its own data strobe being presented to the Enable line.

Procedure:

Activity #1: Write a function that can be used to send a Command to the LCD in 4-bit Mode

1. Write a function that accepts a character as a parameter and writes the character to the

control register. Function Prototype: void writeCom (byte command)

117

2. As discussed in the section above, in order to send a command in 4-bit mode, you must

strobe the upper four bits and then sequentially strobe the lower four bits. Since

commands are only four bits, we only have to worry about the lower nibble in this case.

Example: Strobe Lower Four Bits.

 Send the lower four bits (to be passed into the command parameter) with the EN=0

and the correct RS value

 Send the lower four bits (to be passed into the command parameter) with the EN=1

and the correct RS value

 Send the lower four bits (to be passed into the command parameter) with the EN=0

and the correct RS value

Activity #2: Initialize the LCD. Use the function that you wrote in Activity #1.

1. Using the function from Activity 1, write a function to initialize the LCD in 4-bit mode.

Figure 2 provides the steps from the LCD Manual to accomplish this task. The values

for N, D, S, and I/D can be found in the LCD manual are provided below as well. Select

the appropriate values. You can utilize the cpu method CPUDelay100US to create the

needed delay times. Function Prototype: void InitializeLCD()

2. Compile, Load, and Run the Program. For this lab, power the Dragonflybot Board from

the USB cable and not the battery.

3. Demonstrate to your TA that the LCD initializes properly by showing a blinking cursor

on the LCD Module.

118

Figure 2 4-bit LCD Initialization Routine

119

Activity #3: Write a character to the LCD

1. Write a function that accepts a character and writes that character to the LCD screen.

This function should be similar to function written in Activity 1 except for the RS line.

With the writeData function, you will need to send the upper nibble first and then the

lower nibble (be sure to strobe the enable bit for each nibble).

Function Prototype: void writeData (byte data).

2. Demonstrate this function to your TA. Write an ‘a’ to the LCD by calling your function

in the main routine.

Activity #4: Clear the LCD

1. Write a function that clears the LCD using the commands from the LCD manual.

Function Prototype: void clearLCD()

Activity #5: Write Sensor Value to the LCD

In an upcoming lab and for your final project, you will be reading numerical values from the

sensors mounted on your Micromouse. It will be helpful for debugging purposes to have a

function which can write these values to the LCD.

1. Write a function which accepts two unsigned integer values and displays the values on

the LCD. The first value should be displayed on the first line of the LCD, and the second

value should be displayed on the second line of the LCD.

Function Prototype: void displaySensors (unsigned int value1, unsigned int value2)

2. Display two numerical values – 1024 and 255. Demonstrate your function to the TA. To

accomplish this task, you need to reference the LCD datasheet and implement the

appropriate command(s) to send the values to the correct positions. For the LCD we are

using, the 8x2 character position and respective character address of each position is

shown below.

120

Questions

1. Examine the GP2D120 Proximity Sensor datasheet located on the class website.

http://www.csee.wvu.edu/classes/cpe313/references/gp2d120.pdf

a. What is the detecting distance of the GP2D120? (5 points)

b. The Proximity Sensor has three connectors. How would you wire up these

connectors?

2. Provide some examples of analog devices and digital devices

3. How would the function that you wrote in Activity #5 change if you were using a 16x2

Hantronix LCD?

4. Why did we have to toggle the enable bit in this experiment to successfully send a

character to the LCD?

References

 http://download.datasheet1.com/down/160417_HANTRONIX_HDM08216L.html

 http://www.hobbyengineering.com/specs/gp2d120.pdf

http://www.csee.wvu.edu/classes/cpe313/references/gp2d120.pdf
http://download.datasheet1.com/down/160417_HANTRONIX_HDM08216L.html
http://www.hobbyengineering.com/specs/gp2d120.pdf

121

Appendix E.4: Laboratory #4: Proximity Sensors

Goals

In this lab, you will learn how to read the GP2D120 proximity sensors and use the returned

values to determine the distance from an object.

Background

GP2D120 Proximity Sensor

The GP2D120 proximity sensor (Figure 1) is an infrared sensor by Sharp which has a detecting

range of 4 cm to 30 cm. An infrared sensor consists of an infrared transmitter and infrared

receiver. The transmitter sends out an invisible beam of light into the environment and the

receiver absorbs the light that is reflected back. The angle of the reflected beam indicates the

distance of the receiver to the object that is reflecting the light [1].

Figure 1 GP2D120 Proximity Sensor

The sensor requires three connections: supply voltage, ground, and output values, as shown in

Figure 2. This sensor takes about 48 ms to get one distance reading. This factor is important so

that we use the sensor appropriately in our programs.

Figure 2 GP2D120 Proximity Sensor Terminal Connection

122

The micromouse configuration has three proximity sensors (left, front, and right). The left

sensor is connected to pin AD0, the front sensor is connected to pin AD1, and the right sensor is

connected to AD2. All of the sensors will be later used to detect the maze walls, and the right

and left sensors can be used as inputs to the micromouse control algorithm.

Micromouse Application of Proximity Sensors

The proximity sensors serve two purposes for our micromouse application. The first purpose is

to ensure that the robot detects errors while it’s moving through the maze. Thus, the sensors can

be use to correct the robot’s path and ensure that the robot does not crash into a wall. The left

and right sensors will be used for this purpose. The second purpose is to map the maze by

determining the location of the walls. All three sensors will be used for this purpose.

Analog-to-Digital Converter (ADC)

An analog-to-digital converter changes a continuous signal (output from the proximity sensor) to

discrete digital numbers. The digital output can then be represented in any number base

representation such as binary, hexadecimal, decimal, etc. The resolution of an ADC is the

number of bits in the output conversion. The microcontroller’s ADC can be configured to

perform either 8-bit or 10-bit conversions. The possible values that can be used to represent the

input voltage for an ADC are 2
N
 – 1, so for an 8-bit ADC, the possible values are 2

8
-1 = 255.

For example, if you have an analog input voltage with a range from 0-5 V and an 8-bit ADC, you

will have an ADC voltage resolution or step size = (5-0)/2
8
 = 0.0195 V. In conclusion, your

analog signal can be represented by 256 discrete values with 0.0195 V steps. It is also important

to note that if you increase the resolution, then you increase the accuracy of the ADC.

Procedure

Activity #1: Read proximity sensor values and display values on LCD.

1.) Open up your Freescale Project.

2.) Insert the ADC embedded bean into project.

3.) Initialize the ADC bean

a. Use a 10-bit resolution ADC

123

b. Modify the number of conversions to 8. Increasing the number of conversions

decreases the probability of sensor read errors.

c. Select a conversion time of 20 us. This value represents the amount of time for

each conversion.

d. Select the appropriate number of channels and ensure that the appropriate pins are

selected

4.) Generate the processor expert code.

5.) Select the appropriate method(s) to read the sensor values.

6.) Display the sensor values on the LCD as follows: display left sensor, delay, display right

sensor, delay, display front sensor, delay.

Activity #2: Convert the sensor values into centimeters and display the values on the LCD.

1.) Write the necessary code to convert the sensor values into centimeters.

Questions

1. Sensors are used to provide information to the robot about its environment. Robots

process the information from sensors and then react in a predetermined way. We will use

the proximity sensors (a type of light sensor) to detect the surrounding walls in the maze

to keep track of the path to the center and to keep the robot aligned within the maze.

Describe how some other types of sensors work and describe some applications for each

type of sensor.

- Ultrasonic Sensor

- Touch Sensor

- Sound Sensor

2. If an ADC has a resolution of 16 bits with reference voltages of -5V to +5V, what is the

step size for this setup? What would an analog input of -1.24 V be converted to if the

output was in binary code?

3. What are the advantages and disadvantages of using stepper motors for a micromouse

application?

References

- http://www.physics.unlv.edu/~bill/ecg497/Drew_Tondra_report.pdf

http://www.physics.unlv.edu/~bill/ecg497/Drew_Tondra_report.pdf

124

Appendix E.5: Laboratory #5: Stepper Motor Operation

Goals

This lab provides an introduction of how to control a stepper motor using the HCS12

microcontroller. At the conclusion of this lab, students should be able to effectively control

stepper motor speed. Students will also try to develop the fastest Micromouse possible.

Background

Stepper Motor

A stepper motor is a brushless, electric motor that can divide a full rotation into a large number

of steps [1]. This allows the motor’s position to be controlled precisely without any type of

feedback mechanism. Stepper motor’s have multiple electromagnets arranged around a central

gear. The electromagnets can be energized by an external device such as an HCS12

microcontroller. To make the stepper motor move one step, power the first electromagnet to

make the gear’s teeth to align to the first electromagnet. As current is applied to electromagnets

and they are energized in sequence, the motor turns. Figure 1 provides a snapshot of a stepper

motor’s internal components.

Figure 1: Stepper Motor Internal Components [2]

125

Driving a Stepper Motor

Stepper motors have a set of input pins that allow current from a supply source (in our case, a

microcontroller) into the coil windings of the motor [2]. Sending pulsed waveforms in the

correct sequence can be generated to create the electromagnetic fields needed to drive the motor.

There are a few different techniques to choose from when selecting a waveform to drive a

stepper motor. Two of these techniques are full stepping and half stepping. Standard motors

have 200 rotor teeth or 200 full steps per revolution of the motor shaft. Dividing 200 steps into

360 degrees per rotation equals 1.8 degrees full step angle. Thus in full step mode, one digital

input is equivalent to one step. Half stepping means that the motor is now rotating at 400 steps

per revolution and that for each digital input, the motor only rotates half a step or 0.9 degrees. In

this lab, you will drive the stepper motors in half stepping mode.

Driving a Stepper Motor using a HCS12 Microcontroller

The HCS12 microcontroller can be programmed to interface with many different types of stepper

motors [2]. Microcontrollers can generate the appropriate waveforms to make stepper motors

rotate. The micromouse stepper motors used in this lab are Shinano Kenshi stepper motors. Each

motor has 4 input pins. The input voltage of the motor is 3.15 V with a typical current of 1 amp.

To control the four pins of the motor, the microcontroller needs four output pins that are capable

of sinking somewhere between 1 amp out of each pin [2]. The port pins on the HCS12

microcontroller are not suitable for this task. As a result, some additional circuitry (a motor

driver) is necessary to drive the stepper motors with the HCS12 microcontroller. As a result, you

will notice on the Dragonflybot Board (U5 and U7) that there are two SN754410 drivers (one for

each motor) to drive the currents up to 1 amp [4]. Figure 2 provides the pin-out diagram for the

SN754410 drivers. The motor drivers can be enabled on the Dragonflybot Board by

appropriately configuring jumpers J24, J25, J26, and J27 for stepper motor operation. When

these jumpers are configured correctly, no wiring is required between the microcontroller, the

drivers, and the motor terminal blocks T4 and T5. Figure 3 provides diagrams of the wiring

connections of the motor drivers on the Dragonflybot Board.

126

Figure 2: SN754410 Pin-out Diagram [4]

The drivers can be enabled/disabled using the connections at pins 1 and 9. The inputs to the

driver at located at pins 2, 7, 10, and 15, and the outputs are located at pins 3, 6, 11, and 14.

Figure 3: Dragonflybot Motor Driver Wiring Connections

Examining Figure 3, there are two items to note before performing this lab experiment. First,

pin PE4 is also used as the external clock pin on the microcontroller and will thus have to be

disabled so that it can be used to enable and disable the motor driver at U7. Secondly, pins PM2-

PM5 are used as the input pins for the right motor. These pins were also used to control the

LCD. As a result, you will not have to add any additional control bits to your project but will

have to be careful when using these pins in this lab and future labs to when controlling the motor

and using the LCD functions.

127

Figure 4 provides a block diagram of the MCU interface to the stepper motor coils.

Figure 4: MCU Interface to Stepper Motor Coils [5]

By energizing the coils of the stepper motor in the correct sequence, the stepper motor can be

rotated in either the clockwise or counterclockwise direction. Table 1 provides the pattern used

to energize the coils of the stepper motor.

MOT 1 MOT 2 MOT 3 MOT 4

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

Table 1: Stepper Motor Energizing Pattern [5]

Setup

Before you get started, two functions are provided to reduce the current sent through the motor

drivers. To accomplish this task, you will need to create 2 timer interrupts and name them

Motor1_Timer2 and Motor2_Timer 2 and select the settings that follow.

128

1. Set the interrupt priorities to “low priority”

2. Set the interrupt period to 200 microseconds for both timer interrupts

3. Create two global bool variables toggle1 and toggle2

4. In the Events code for each timer interrupt, write the following code

//**

void Motor1_Timer2_OnInterrupt(void)

{

 if (toggle1){

 Motor1_WriteBits(0);

 toggle1 = 0;

 }

 else {

 Motor1_WriteBits(Motor1Step[next_state1]);

 toggle1 = 1;

 }

}

//**

void Motor2_Timer2_OnInterrupt(void)

{

 if (toggle2){

 Motor2_WriteBits(0);

 toggle2 = 0;

 }

 else {

 Motor2_WriteBits(Motor2Step[next_state2]);

 toggle2 = 1;

 }

}

If you need assistance with this initial code, please ask your teaching assistant.

Procedure

Activity #1: Write two functions (one for each motor) that can be used to send the appropriate

energizing sequences to the drive the stepper motors. These functions should move the motor a

half step every time they are called.

 Open up your previous project

 Create a Motor.h header file and create a Motor.c user module to write your code in

 Select and initialize the necessary Processor Expert beans

o To send correct energizing sequences

o To enable the motor drivers

 Write the two functions using the methods from the beans you selected

129

 Test your functions by calling them in main in a loop with a 4 millisecond time delay.

 Helpful Hints

o One method to accomplishing this task is to store your motor sequences in a

global array such as char Motor2Seq[8] = {…,…,} and having a variable that

keeps track of the current position in the array. You should also have a variable

for each motor that keeps track of the motor direction.

o For Motor #1, you will need six bits to control. 2 for the enables and 4 for control

bits. For Motor #2, you will need 1 bit for enable (PE4) and you will notice that

you already have bits in place to use the control pins (PM2-PM5) from the LCD

code. You’ll have to keep track of where you’re writing the bits to but should be

fine and do not need to add any beans to the project to write to these pins.

 Demonstrate to your TA.

In Activity #1, you used a time delay to control when the next step occurred. By changing the

length of the delay, you are able to change the speed of the motors. Another technique used in

stepper motor control is to use a timer interrupt to control the length of time between steps. A

timer interrupt is an interrupt generated from an internal clock. For example, you can use a timer

interrupt to toggle an output pin to an LED every 50 milliseconds.

Activity #2: Using a Timer Interrupt

 Insert two “TimerInt” beans from the Bean Inspector (one for each motor)

 Initialize both timer interrupts with a interrupt period of 4 milliseconds

 Using the timer interrupt event routines (in the Events.c file), use your code from Activity

1 such that each time the timer interrupt occurs, the respective stepper motor will move

one step.

 Demonstrate to your TA.

Activity #3: Write the following functions to control your motor.

 Move Forward

 Turn Left (90 degree turn)

 Turn Right (90 degree turn)

130

 Turn Around (180 degree turn)

 Demonstrate to your TA

Activity #4: At a time specified by your TA, you will have to demo your Micromouse running at

full speed. You will run your Micromouse against your classmates to determine which lab group

has the fastest mouse.

Questions

1. Develop a schematic showing the connections from the HCS12 microcontroller, motor

drivers, and motors.

2. Stepper motors have two basic winding arrangements for the coils in a two phase stepper

motor: unipolar and bipolar. Discuss the differences between unipolar and bipolar

stepper motors

3. There are two primary options for selecting a motor when building a micromouse robot: a

DC motor or stepper motor. Which motor would you choose for the micromouse

application? Why?

4. HCS12 microcontrollers can drive small motors without a motor driver. What is the

output current of a HCS12 microcontroller pin?

5. Describe how Pulse Width Modulation (PWM) can be utilized rather than timer

interrupts.

6. What is a Proportional, Integral, and Derivative (PID) controller? Define each term in

PID. In regards to designing a micromouse, why would you need something similar to a

PID controller?

References

 http://en.wikipedia.org/wiki/Stepper_motor

 http://www.freescale.com/files/microcontrollers/doc/app_note/AN2974.pdf

 http://www.ams2000.com/stepping101.html

 http://www.datasheetcatalog.org/datasheet/texasinstruments/sn754410.pdf

 http://www.freescale.com/files/microcontrollers/doc/app_note/AN1285.pdf

http://en.wikipedia.org/wiki/Stepper_motor
http://www.freescale.com/files/microcontrollers/doc/app_note/AN2974.pdf
http://www.ams2000.com/stepping101.html
http://www.datasheetcatalog.org/datasheet/texasinstruments/sn754410.pdf
http://www.freescale.com/files/microcontrollers/doc/app_note/AN1285.pdf

131

Appendix E.6: Laboratory #6: Implementing PID Controller

Goals

This lab introduces the PID controller and discusses how to apply the PID controller in regards to

the Micromouse application.

Background

PID Controller

Proportional, Integral, Derivative Controller (PID Controller) is a control loop feedback

mechanism used in many control systems. PID controllers are one of the most widely used

controllers today since it is fairly easy to tune the PID parameters without having much

knowledge of control theory. A PID controller calculates the “error” value as the difference

between a measured process variable and a desired set point [2]. To minimize the error, the

controller adjusts the process control inputs and the controller is tuned according to the nature of

the system.

A PID controller consists of three separate parameters: proportional, integral, and derivative.

The proportional parameter (Kp) determines the controller’s reaction to the current error, the

integral parameter (Ki) determines the reaction based on the sum of the recent errors, and the

derivative parameter (Kd) determines the reaction based on the rate at which the error has been

changing [2]. Kp, Kd, and Ki, are the gains for each term. The weighted sum of these three

parameters is used to adjust the process such as the position of a micromouse in a maze. Figure

1 provides a block diagram of a PID controller.

Figure 1: PID Controller Block Diagram

132

Proportional

The proportional parameter makes a change to the output that is proportional to the current error

value. Essentially, you are multiplying a scalar (Kp) values times the error to adjust. So, a high

proportional gain results in a large change to the output, and a small gain results in a small output

response.

Figure 2: Proportional Term [2]

Integral

The integral parameter takes into consideration both the magnitude of the error and the duration

of the error (by summing the error over time). The integral term with the proportional term

increases the movement to the desired state (setpoint) and eliminates the steady-state error that is

caused with only a proportional only controller [2]. However, since the integral term takes into

consideration past errors, it does invoke the possibility to make the current adjustment overshoot

the desired state.

Figure 3: Integral Term [2]

Derivative

The derivative parameter involves using the rate of change of the error to reach the destination

state. One can take the slope of the error and multiply it by Kd. This term decreases the rate of

change of the controller output to reduce overshooting the setpoint.

133

Figure 4: Derivative Term [2]

The PID controller output then takes each term and sums them together as shown in Figure 5.

Figure 5: PID Controller Equation

So, the PID controller can be modified for use in different systems by changing the gains of the

different terms described above. Table 1 captures the effects of increasing each of these

parameters.

Table 1: PID Controller – Effects of Increasing Parameters

It is also important to note that there are several variations of PID controllers. Often times,

systems only need to implement a few of the PID parameters to suitably correct the error. So, a

PID controller may be called a PI, PD, P, or I controller when one of the respective control

actions is not used in the current system. There are also several ways to tune the parameters of a

PID controller such as mathematical models, software tools, and manually. Given that each

134

group only has a limited amount of time to finish this lab and the project, you will implement the

PID algorithm and tune it by trial and error.

Micromouse

Due to the quality of the stepper motors, the robot does not have much trouble going in a straight

line or even making a near perfect 90 degree or 180 degree turn. The stepper motors will rotate

exactly the number of steps you need them to rotate. However, for our application, we saw the

need to have some sort of feedback system in place to help find the center of the maze and help

the robot go in a straight line (detect error’s in its path) while it’s moving through the maze.

Using the distance measuring sensors as a feedback, the robot can keep track of its position and

maintain a straight orientation in the maze to avoid from hitting the walls. To maintain the

robot’s orientation straight with reference to the wall is accomplished using a controller such as a

PID controller. [1]

Examining our micromouse robot, we have two proximity sensors mounted on the left and right

front of the robot. These sensors can be used to determine whether or not the robot is too close

to the right wall or too close to the left wall. This calculation is the error for our controller and

can generate the necessary signal to correct the error [1]. However, looking to the proximity

sensor datasheet shows that it takes almost 55 milliseconds to complete the distance measuring

operation. This time slows down our ability to fix the error in our control system and increases

our chances to run into the wall especially if the micromouse is moving fast. As a result, we

tailor the parameters of the PID controller to keep from hitting the walls while keeping in mind

the time to perform the distance measuring operation.

A couple other things that you will want to consider in regards to the control problem are the

stepper motor dynamics and single sensor readings. You will need to be careful when adjusting

your stepper motor speed as stepper motors operate best within a certain range. If you go outside

of this range, the stepper motor may become jerky or not respond correctly. In regards to the

sensors, since there is only one sensor on each side of the robot, we are prone to sensor reading

errors.

135

Let’s take a look at an example scenario.

Suppose the robot begins to move towards the left wall instead of going straight through the

maze. Based on the sensor readings, an error signal should be generated. Using this error, the

controller should generate a control signal which increases the speed of the left wheel and

decreases the speed of the right wheel which will make the robot turn slightly in the desire

direction to straighten its path. The amount of the increase and decrease of each wheel is

controlled by the magnitude of the control signal [1]. Figure 6 provides an illustration of how to

correct the robot’s movement.

Figure 6: Adjusting Speed when in Error to Straighten Micromouse [1]

Now, pulling all of this together, we have the system as shown in Figure 7.

Figure 7: Micromouse Control Loop Diagram [1]

136

Procedure

Your task is to develop a control loop inside of a timer interrupt subroutine that is executed every

55 milliseconds. The 55 millisecond control loop is limited by the proximity sensors as

discussed above. The subroutine should read the sensor data from all three sensors and can

optionally convert the data into centimeters. The subroutine should use the distances to make the

robot go straight with respect to the walls. For the purposes of this experiment, you will just

have to keep the robot between two walls (a straight line traversing 13 cells) – you will not have

to worry about turning and your program should be organized similar the flowchart in Figure 8.

Figure 8: Program Flowchart

 Correct Alignment Action

o Initially, both motors should be driven at the same speed

o Once the robot is not centered, an error should be sent to the controller

o Based on the magnitude of the error, the controller should generate a control

signal to make the mouse turn slightly left or slightly left. You can make these

adjustments by increasing the speed of one wheel which decreasing the speed of

the other.

137

First, implement a Proportional controller (P controller) using your left sensor and right sensor

readings. We can calculate the proportional error by performing the following calculation shown

in Figure 9.

Figure 9: Proportional Error Calculation [1]

Using this equation, you notice that if the error is negative, the robot is moving towards the left,

and if the error is positive, the robot is moving to the right.

Let’s take a look at an example.

Looking at Figure 10, we note that the left sensor distance is 6” and the right sensor distance is

2”, and thus we consider this an error. We can calculate the error by using our equation above.

Figure 10: Determining Error using Sensor Values [1]

For the proportional term, you can take this error and multiply it by the proportional gain (Kp).

Demonstrate your results to your TA.

Second, now try to improve your controller by adding the integral term to the control algorithm

to create a PI controller. The integral term is proportional to the magnitude of the error and the

duration of the error. When finished, demonstrate your results to your teaching assistant.

Finally if necessary implement the derivative term to your control algorithm to create a PID

controller. Demonstrate your results to your TA.

138

Questions

1. Clearly indicate your PID code and highlight your values for the gains KP, KI, and KD.

2. What did you notice when you were using just a proportional controller? What are some

advantages and disadvantages of a proportional controller?

3. What did you notice when you added the derivative controller? What are some

advantages and disadvantages of the proportional-derivative controller?

4. Revisit your code from Lab #1 on initializing the wall map and distance values. Then,

research the modified flood fill algorithm and describe how the algorithm works in your

own words.

5. By putting together everything you learned throughout the semester, you now have the

skills you need to develop your own micromouse. Develop an outline for your final

project indicating the following.

 Functions that will be called to perform each action within the flowchart

 References for each action within the flowchart

 Percent Complete for each function within the flowchart

 Identify the areas that you believe will be the most difficult

 Keeping in mind the time remaining to complete the final project, come up with a

brief schedule of what you need to have accomplished each week to have a

working micromouse by the end of the semester.

6. Design your controller in Matlab/Simulink. Turn in your completed code and a brief

write-up on your design including all references used.

References

 http://www.scribd.com/doc/16400768/Ishu-Pradhan-Implementing-PD-controller-in-a-

Robot-Micro-mouse. A good portion of the text in this lab experiment handout was

derived from this reference.

http://www.scribd.com/doc/16400768/Ishu-Pradhan-Implementing-PD-controller-in-a-Robot-Micro-mouse
http://www.scribd.com/doc/16400768/Ishu-Pradhan-Implementing-PD-controller-in-a-Robot-Micro-mouse

139

Appendix E.7: MICROMOUSE PROJECT DESCRIPTION
[Modified from IEEE Region 2 Student Activities Conference 2007 Micromouse Competition Rules]

Objective

The objective is to program your robot to negotiate a 6x13 maze from the bottom, left corner of

maze to its center in the shortest amount of time.

Micromouse Rules

1. Micromouse must be self-contained (no remote controls).

2. Micromouse shall not leave any part of its body behind while solving the maze.

3. Micromouse shall not jump over, fly over, climb, scratch, cut, burn, mark, damage, or

destroy the walls of the maze.

Maze Rules

1. The maze is composed of multiples of 18 cm x 18 cm unit square. The maze comprises

of 6x13 unit squares. The walls of the maze are 5 cm high and 1.2 cm thick. Assume 5%

tolerance for all maze dimensions. The outside wall encloses the entire maze.

2. The sides of the maze walls are white, the tops of the walls are white (red in actual

competition), and the floor is black. The maze is made of wood, finished with non-gloss

paint.

a. Do NOT assume that the walls are consistently white or floor is consistently

black. Fading may occur. Do not assume that the floor provides a certain amount

of friction. The maze floor is constructed of a single piece of plywood.

3. The start of the maze is located at the bottom left corner of the maze. The start square is

bounded on three sides by walls. The start line is located between the first and second

squares. That is, as the mouse exits the corner square, the time starts. The destination

goal is the six cells at the center of the maze. The destination cell only has one entrance.

Figure 1 provides an illustration showing the starting cell highlighted gray and the

destination cells highlighted yellow.

140

Figure 1: 6x13 Maze

4. Small square zones (posts), each 1.2 cm x 1.2 cm, at the four corners of each unit square

are called lattice points. The maze is so constituted that there is at least one wall at each

lattice point.

5. Multiple paths to the destination square are allowed.

Contest Rules

1. Each lab group is allocated a total of 10 minutes to access the maze from the moment the

teaching assistant acknowledges the lab group and grants access to the maze. Any time

used to adjust a mouse between runs is included in the 10 minutes. Each run (from the

start cell to the center zone) in which a mouse successfully reaches the destination square

will be given a run time. The minimum run time shall be the mouse’s official time. First

place goes to the mouse with the shortest run time. Mice that do not enter the center

square will be ranked by the maximum number of cells they consecutively transverse

without being touched. All mice that enter the center square within their 10 minute

allotment are ranked higher than those that don’t enter the center square.

2. Each run shall be made from the starting square. The operator may abort a run at any

time. If the operator touches the micromouse during a run, it is deemed aborted, and the

mouse must be removed from the maze. If a mouse has already crossed the finish line, it

may be removed at any time without affecting the time of that run. If a mouse is placed

back in the maze for another run, a one-time penalty of 30 seconds will be added to the

mouse’s next run time.

3. After the maze is disclosed, the operator shall not feed information on the maze into the

micromouse; however, switch positions may be changed.

141

4. The illumination, temperature, and humidity of the room shall be those of an ambient

environment.

5. The run timer will start when the front edge of the mouse crosses the start line and stops

when the front edge of the mouse crosses the finish line. The start line is at the boundary

between the starting unit square and the next unit square clockwise. The finish line is at

the entrance to the destination square.

6. Every time the mouse leaves the start square, a new run begins. If the mouse has not

entered the destination square, the previous run is aborted.

7. The mouse may, after reaching the destination square, continue to navigate the maze, for

as long as their maze time allows.

8. If a mouse continues to navigate the maze after reaching the destination square, the time

taken will not count toward any run. Of course, the 10-minute timer continues to run.

When the mouse next leaves the start square, a new run will start. Thus, a mouse may and

should make several runs without being touched by the operator. It should make its own

way back to the beginning to do so.

9. A contestant may not feed information on the maze to the Micromouse. Therefore,

changing ROMs or downloading programs is NOT allowed once the maze is revealed.

However, contestants are allowed to:

a. Change switch settings (e.g. to select algorithms)

b. Replace batteries between runs

c. Adjust sensors

d. Change speed settings

e. Make repairs

10. However, lab groups may not alter a mouse in a manner that alters its weight (e.g.

removal of a bulky sensor array or switching to lighter batteries to get better speed after

mapping the maze is not allowed). The TA shall arbitrate.

Lab Rules

1. Each lab group will program their own micromouse.

2. All maze solving algorithms are allowed even though the one taught in the course is the

modified flood fill algorithm.

142

Appendix F: Additional Laboratory Modules

This appendix includes an additional set of standalone laboratory modules to support the learning

objectives of the microcomputer structures and interfacing undergraduate laboratory that were

developed as part of this effort for DC motors, Zigbee wireless communications, I2C

communications, and servo motors. These modules are intended to be utilized during any week

of a given semester (intended to align with the instructional course CPE 312).

143

Appendix F.1: Keypad Interfacing

Objective

The primary objective for this laboratory is for students to develop an understanding of how to

interface with a given keypad using the HSC12 microcontroller. Students will learn how to use

the 4x4 keypad and how to communicate with the microcontroller. The students are expected to

be able to successfully interface the keypad with the microcontroller and be able to implement it

in a practical application.

Background

Using the 4x4 Keypad

 The first thing you will notice with the 4x4 keypad is that there are 8 pins. As a result,

each key is not directly correlated with only one of the pins. To determine the button that is

being pressed you must determine the row and column. Table 1 illustrates how the rows and

columns correspond to the pressed key. Example: (1,1) corresponds to the first column and the

first row of the keypad.

(1,1)=1 (1,2)=2 (1,3)=3 (1,4)=A

(2,1)=4 (2,2)=5 (2,3)=6 (2,4)=B

(3,1)=7 (3,2)=8 (3,3)=9 (3,4)=C

(4,1)=* (4,2)=0 (4,3)=# (4,4)=D

Table 1: Row and Column configuration (Row, Column)

 In order to determine the row of a button that is pressed, you must receive input from the

low nibble of Port T. Figure 1 provides the possible received values. To do this you must first

set the appropriate direction of Port T (you will only want to receive input from the low nibble).

Then, wait 100 us. Finally, you must receive input from the full port and filter out the high

nibble (which you will not use).

144

Figure 1: Low Nibble - Possible Received Values

 Secondly, in order to determine the column of a button that is pressed, you must receive

input from the high nibble of Port T. Figure 2 provides the possible received values. To do this

you must first set the direction of Port T (you will only want to receive input from the high

nibble). Then, wait 100 us. Finally, you must receive input from the full port and filter out the

low nibble (which you will not use).

Figure 2: High Nibble - Possible Received Values

In this lab, you must also handle the case when no buttons are pressed. A row or column input

of 0 means that no buttons are pressed.

Ports

 Port T will be used to interface with the keypad. You will have to define alternate ports

to be used for additional inputs or outputs. Refer to the CSM12C32 manual to choose a port.

4x4 Keypad Initialization Code

The 4x4 keypad must be initialized before using it. Be sure that to select pull-down resistors,

resistors used to hold the input low when no other component is driving the input (or pull-up

145

resistors) for the appropriate port when using the keypad. The only power supplied to the

keypad is that which is supplied using the output port, thus the pull-down resistors are necessary

to ensure that the input port pins don’t have floating values. Using pull-down resistors, the input

ports will be at “0” when no key is pressed and a “1” written on the output port can be detected.

The low nibble initially should be set as an output and the high nibble must be initially set an

output. Both nibbles (high and low) should be initialized with high inputs/outputs (use Processor

Expert to ensure that PTT = 0xFF).

Delays

In this experiment, you will need to implement delays. To implement a delay in Processor

Expert, you can use the Delay100US method found in the Processor Expert window using the

Cpu selected for the current project. Figure 3 provides an illustration of where this is located in

CodeWarrior.

Figure 3: Using a CPU Delay

146

Experiment

Hexadecimal Representation of the Keypad

Assign 4 bits to be used as output to LEDs. You will have to choose another port besides Port T

for these outputs. Represent the hexadecimal value from the keypad using a 4 bit binary

representation. Treat the * as E, # as F and 0 as 0. This means that no LEDs will light up when

button “0” is pressed.

Questions

1. What is a SPI? What are some applications of a SPI?

2. If an SPI is operating in master mode, meaning that the MSTR bit is set, what values

must the MODFEN and SSOE bits have to operate with the slave select as an output.

Hint: Refer to the Serial Peripheral Interface Block Description document.

3. What Processor Expert bean and method can be used to generate a delay? What

parameter value is required to generate a 250 ms delay?

4. Why is it necessary to use pull-down resistors on the input ports?

5. Please read Part 2 of this lab before next week.

References

 1. Processor Expert Online. UNIS, Ltd. 14 January 2007. <http://www.processorexpert.com/>.

Appendix

Figure A.1 MCU Port Connector

147

Appendix F.2: Serial Communications Interface

Objective

 The purpose of this lab is to introduce students to the serial communications interface

(SCI). Students will learn how to use Processor Expert to initialize and implement the SCI. The

lab will also require students to use the communication program, HyperTerminal, to emulate a

text terminal.

Background

Serial Communications Interface (SCI)

The SCI is a communications device that allows data exchange between a microprocessor and

peripherals such as printers, scanners, or mice [3] and can be used to communicate with other

microprocessors. Some of the features provided by the SCI are as follows: full-duplex

operation, programmable 8-bit or 9-bit data format, separately enabled transmitter and receiver,

hardware parity checking, etc. The SCI has three modes of operation: run, wait, and stop. Refer

to the SCI Block Description (Chapter 13 in Motorola Datasheet) for more information.

HyperTerminal

HyperTerminal is a communications program which can be configured to connect using a

modem or directly over a serial port [2]. HyperTerminal allows the following parameters to be

configured: baud rate, parity, stop bits, and flow control. To access HyperTerminal, go to

Start > All Programs > Accessories > Communications > HyperTerminal. Figure 1 provides a

screenshot of HyperTerminal.

Figure 1: HyperTerminal

148

Experiment

Part #1: Echo keypad input on HyperTerminal

1. Create a new processor expert project.

2. Select the AynchroSerial embedded bean using the bean selector. This bean is a CPU

Internal Peripheral used for communication.

3. Using the Bean Inspector, configure the bean to operate at 9600 baud, 8 data bits, and 1

stop bit. (HyperTerminal should also be configured using the same parameters as port

settings). Make the appropriate changes to generate an interrupt when a character is

received.

4. After choosing the appropriate settings, generate the code.

5. Write code in the main routine and OnRxChar event to receive a character from the

computer’s keyboard and display it back on HyperTerminal.

6. After writing the necessary code, open up HyperTerminal as described in the Background

and Step 3. Run the program. You should be able to enter characters from the

computer’s keypad, and they should output on HyperTerminal.

7. Now, using ASCII character codes (http://www.asciitable.com/), handle the following

cases:

a. When ENTER is pressed, go to the beginning of a new line

b. When BACKSPACE is pressed, ring the bell.

Questions

1. If you were going to transmit in 9-bit format, does it matter which data register you read

first? (Hint: Refer to SCI Block Guide)

2. What is non-return-to-zero (NRZ) encoding?

3. Illustrate the data format when the following information is sent using the SCI.

Byte: 10011011, 1 stop bit, 1 stop bit.

4. In Lab #2, you were required to display characters from a keypad onto an LCD. Using

the functions (writeData, writeCommand, and the CpuDelay100US) from Lab #2 and

Figures A.2 and A.3 in the Appendix, write the necessary code to display text from a

computer keyboard to the LCD. Also, write the code to do the following:

http://www.asciitable.com/

149

a. When ENTER is pressed, clear the LCD screen

b. When BACKSPACE is pressed, delete the previous character and move the

cursor backwards.

5. To simplify circuit construction, the MCU Project board has several user features that

have been connected to the MCU_PORT through FET switches. The FET switches are

controlled by enable signals that are also routed to the MCU_PORT header. This setup

allows the user to electronically connect and disconnect each connected feature group.

The buzzer and potentiometer on the bottom left of the MCU Project Board are examples

of the connected features.

a. What do you need to do to enable the potentiometer on the MCU Project Board?

b. What do you need to do to enable the buzzer on the MCU Project Board?

Appendix

Figure A.1 ASCII Codes [5]

150

Appendix F.3: Alarm Clock

Objective

The main objective of this lab is to create a simple alarm clock using the MCU features, buzzer,

and HyperTerminal. Students will learn how to generate a timer interrupt, gain an understanding

of the connected features on the MCU project board such as the buzzer, and gain a further

understanding of the Serial Communications Interface (SCI) and related Processor Expert

methods.

Background

MCU Project Board Buzzer

The buzzer for the MCU project board 2 is a connected feature of the MCU Project Board and

thus is connected to pin 13 via field effect transistors. The buzzer is enabled by connecting the

jumper on the MCU Project Board at JP10-1. After enabling the buzzer, you can utilize it by

generating a square wave output from Port T, Pin 0 (pin 13) as shown in Figure 1.

Figure 1: Square Wave with Period T

Example: So if you would like to generate a pitch, you would be concerned with selecting the

correct frequency to represent that pitch. The period (T) of your waveform is the inverse of that

frequency in Hz or cycles per second. The delay of your function will represent the amount of

time you would like to hold a value without changing. Thus, the delay would be approximately

half of the period.

Timer Interrupt

A timer interrupt can be used to indicate the need for attention or a synchronous event in the

software indicating the need for a change in execution or indicating that something should be

151

done. In this lab, we can utilize a timer interrupt by using the TimerInt bean. Using this bean,

we can enable and disable a timer and generate events after certain time delays.

Experiment

Goal: Design a simple alarm clock that can be set via HyperTerminal from 1-9 seconds. Once

the alarm clock is set, the buzzer should sound until the user turns it off via a switch on the MCU

project board.

Example Scenario:

Execute the program

HyperTerminal Displays “Please enter alarm time (1-9s):”

User enters: 9

9 Seconds pass

The buzzer sounds until turned off via a switch

HyperTerminal Displays “Please enter alarm time (1-9s):”

Questions

1. If you would encounter a hardware or software problem with the lab, please describe the

necessary steps that you would take to try to resolve the problem.

2. Look at the SCI Block Guide on the class website. Fill out the following table.

Register Value for this bit = 0 Value for this bit = 1

SCICR1 bit 7

SCICR1 bit 6

SCICR1 bit 5

SCICR1 bit 4

SCICR1 bit 3

SCICR1 bit 2

SCICR1 bit 1

SCICR1 bit 0

Copy each phrase exactly from below into the table above.

152

 8 bit data format

 9 bit data format

 Count idle bits after start bit

 Count idle bits after stop bit

 Disable loop operation (Normal operation)

 Disable SCI in wait mode

 Enable loop operation

 Enable SCI in wait mode

 Even parity

 Odd Parity

 Parity disabled

 Parity enabled

 Receiver connected externally to transmitter

 Receiver internally connected to transmitter output

 Wake on address mark

 Wake on idle line

3. Take a look at the datasheet of the DS1624 thermometer at http://datasheets.maxim-

ic.com/en/ds/DS1624.pdf and briefly describe its operation.

4. Describe the concept of the Inter-Integrated Circuit Bus (I
2
C) and explain how it may be

useful when interfacing with microprocessors.

References

1. http://www.freescale.com/files/microcontrollers/doc/app_note/AN2949.pdf

2. MCU Project Board-2http://www.csee.wvu.edu/classes/cpe313/MCUPB2_SCH_C.pdf

http://datasheets.maxim-ic.com/en/ds/DS1624.pdf
http://datasheets.maxim-ic.com/en/ds/DS1624.pdf

153

Appendix F.4: I2C and DS1624 Digital Thermometer

Objective

 The purpose of this lab is to teach students how to implement Inter Integrated Circuit

(I
2
C) external communications on the microcontroller unit to read a DS1624 digital thermometer.

Students will learn how to use Processor Expert to properly initialize the I
2
C embedded bean and

use the bean’s methods. The lab utilizes the serial communications interface for a display.

Background

Inter-Integrated Circuit Bus (I
2
C)

I
2
C is a serial and synchronous bus protocol that uses two bidirectional lines, serial data (SDA)

and serial clock (SCL). The protocol generally has one master and multiple slaves, and the main

difference between the master and slave is that the master generates the clock pulse [1]. The

master is usually the microcontroller. I
2
C designs can either utilize 7 or 10 bit addressing with

some reserved addresses. For example, with 7 bit addressing, there are 16 reserved addresses

leaving room for 112 nodes on the same bus. Figure 1 is a schematic of a typical hardware

configuration. In this lab, the microcontroller will be configured as the master and will use 7 bit

addressing.

Figure 1: Typical 2-Wire Bus Configuration [1]

DS1624 Digital Thermometer and Memory

The DS1624 consists of a digital thermometer and 256 bytes of E
2
 memory [3]. The

thermometer measures temperatures from -55 degrees Celsius to +125 degrees Celsius in

0.03125 degrees Celsius increments, whereas the temperature values are read as a 13-bit value

154

(two byte transfer) [3]. Figure 2 illustrates the two byte transfers. The MSB is read first and

then the LSB.

Figure 2: DS1624 Temperature Representation [3]

Figure 3 provides some temperature/data relationships.

Figure 3: Temperature/Data Relationships [3]

The data is read/written using a 2-wire serial interface (open drain I/O lines) using the SDA and

SCL lines. Figure 4 provides the pin assignments and descriptions for the DS1624.

Figure 4: DS1624 8-Pin DIP (300 MIL) and Pin Description [3]

155

Figure 5 shows the master’s (microcontroller’s) bus activity to write to and read from the

DS1624.

Figure 5: 2-Wire Communication with the DS1624 [3]

The complete datasheet for the DS1624 is located on the class website and at

http://datasheets.maxim-ic.com/en/ds/DS1624.pdf. If unclear about the operation of the

DS1624, please refer to this document.

Experiment

Read Temperature Sensor and Display on HyperTerminal using SCI

Goal: Utilize the I
2
C protocol to communicate with the DS1624. HyperTerminal will be used to

control when the temperature sensor should be read. Pressing a key from HyperTerminal should

initiate a transfer from the DS1624 and display the results back on HyperTerminal. For example,

if I press the “T” key on the computer’s keypad, a temperature value in degrees Celsius should

be displayed on HyperTerminal. The temperature only has to be displayed with a temperature

resolution of 1 degree Celsius.

1.) Initialize the SCI Internal Communication device to be able to communicate with the

HyperTerminal program.

2.) Initialize the CPU External Communication Device – SW_I2C using the Bean Inspector.

http://datasheets.maxim-ic.com/en/ds/DS1624.pdf

156

From the DS1624 datasheet, the 4 MSB bits of the initialization address are 1001.

3.) Generate code using Processor Expert.

4.) Using the embedded beans methods, accomplish the goal stated above. Be sure to look

through the methods, understand what they do, and utilize your best options. To

accomplish this goal, the Memory Function Example and Command Set provided in the

DS1624 datasheet can be implemented. These portions of the datasheet are inserted in

Appendix A of this handout for mere convenience.

Note: Writing to the configuration register requires approximately 10 ms at room

temperature. Thus after issuing a write command, no further reads or writes should be

requested for at least 10 ms [3].

Questions

1. What would be the 7-bit address needed to initialize the slave address if

A0 = +5V, A1 = +5V, and A2 = 0 V? What is the purpose of the 8
th

 bit (R/W)?

2. How would the DS1624 output a temperature value of -33 degrees?

3. When you issued the command sequence to set the DS1624 for continuous conversion,

you accessed the configuration/status register. What byte value would you send to the

DS1624’s configuration to make the device perform only one temperature conversion?

4. Provide some examples of analog devices and digital devices.

5. In your own words, describe ZigBee. What are some potential applications for ZigBee?

References

1. Using the I
2
C Protocol

http://avrhelp.mcselec.com/bascom-avr.html?Using_the_I2C_protocol

2. Motorola Datasheet. Motorola.

http://www.csee.wvu.edu/classes/cpe313/motoroladatasheet.pdf

3. DS1624 Digital Thermometer and Memory

http://datasheets.maxim-ic.com/en/ds/DS1624.pdf

157

Appendix F.5: Square Wave Frequency Calculation

Objective

 The objective of this lab is to introduce the capture Processor Expert embedded bean.

You will create a program to calculate & display period and frequency of arbitrary square wave.

Background

Capture Embedded Bean

The Capture bean is simply a capture function of a timer. The counter counts in free run mode.

Using this bean, one can capture the input signal (on the input pin) on a selected edge (either the

rising or falling edge). The capture bean captures values from a 16-bit, programmable counter.

Experiment

Calculate the period and frequency of an inputted square wave

Using the function generator on the NI-ELVIS, generate a 50 Hz square wave and wire it to an

appropriate pin on the MCU Port. The output from the function generator is wired to a pin on

the top left on the MCU Project Board (SYNC OUT). You can control the amplitude and

frequency of the wave by using the dials on the front of the NI-ELVIS. Create a program using

the Capture embedded bean to calculate the period and frequency of the square wave. Display

this value using HyperTerminal either periodically or by pressing a key on the keyboard.

Change the frequency of the square wave on the NI-ELVIS and display a variety of periods and

their respective frequencies. You could confirm your displayed values by viewing the square

wave on the oscilloscope.

Questions

1. How do you reset the counter register using the capture embedded bean? Please give the

correct syntax.

2. How many channels are on the timer module (TIM)?

3. What is a real-time clock?

4. What is a DC motor? Be sure to list the main components.

5. Why is it necessary to have an H-bridge to drive the motor?

158

Appendix F.6: DC Motor Control using PWM

Objective

The objective of this lab is to introduce the concept of pulse width modulation (PWM), a

function included on many microcontrollers to simplify the task of waveform generation. In this

lab, students will use Pulse Width Modulation (PWM) to control the speed and rotational

direction of a DC motor. Along with using the PWM characteristics of CodeWarrior, the students

will also get hardware experience in using the L293B chip, a four channel driver that is

commonly used in controlling DC motors.

Background

Pulse Width Modulation (PWM)

PWM of a signal involves modulating a pulses duty cycle whereas duty cycle D = t/T.

 t = pulse duration

 T = pulse period

PWM is used to transmit information over a communications channel or control amount of

power sent to a load. Figure 1 illustrates a signal with a duty cycle D and pulse duration T.

Figure 1: PWM Signal

DC Motor

DC Motors are used extensively in control systems as positional devices because their speeds

and their torques can be precisely controlled over a wide range. The DC motor has a permanent

magnetic field and its armature is a coil. When voltage and a subsequent current flow are

applied to the armature, the motor begins to spin. The voltage level applied across the armature

determines the speed of rotation.

159

One means to control a DC motor is to vary the pulse width of a digital signal input to the motor.

By varying the pulse width, the average voltage delivered to the motor changes and so does the

speed of the motor. The HCS12 PWM system can be used to control the DC motor. The HCS12

interfaces with a DC motor through a driver, as explained in the next section. The pin that

controls the direction can be an ordinary I/O pin, but the pin that controls the speed must be a

PWM pin.

L293B Push-Pull Four Channel Driver

 Although some DC motors can operate at 5 V or less, the HCS12 cannot supply the

necessary current to drive a motor directly. The minimum current required by any practical DC

motor is much higher than any microcontroller can supply. Depending on the size and rating of

the motor, a suitable driver must be selected to take control signals from the HCS12 and deliver

the necessary voltage and current to the motor. One of these driver chips is the 16-pin four-

channel L293B. This chip has four separate channels that can drive a total of one amp each.

Figure 2 provides a pin-out of the L293B. The Chip Enable 1 controls channels one and two,

and Chip Enable 2 controls channels three and four.

Figure 2: Pin-out of the L293B

160

Figure 3 provides a block diagram from the L293B datasheet showing the different pulses

needed to create single direction and bi-directional motor controls. For the single directional

portion of the lab assignment, please use channel #4. As mentioned above, pin #9 is the chip

enable for the right side of the chip. This pin can be controlled by any basic I/O pin on the

HSC12 microcontroller. Pin #15 accepts the PWM signal from the microcontroller to control the

speed of the motor, and pin #14 is the output signal from the motor driver to the DC motor. Also

notice that pins #4, #5, #12, and #13 must be grounded. You should use a separate power source

to drive the motor than what is used to power the chip – this means that Vs (VCC) (pin #8)

should be connected to a different supply than Vss (pin #16). Finally, be sure to pay attention to

the waveform shown in the top right of Figure 3 for it is important to generate the waveform as

shown to correctly drive the motor (low  high).

Figure 3: PWM Pulses to control

NOTE: In Figures 3, there are diodes used in each circuit. The diodes are EXTREMELY

important, because we must control the direction of the current so we do not destroy the driver

chip or microcontroller. Remember the line on the diode represents the negative side of a diode.

161

Figure 4 provides an additional diagram from the L293B motor driver datasheet that may help in

this experiment.

Figure 4: DC Motor Controls (w/ connection to ground and to the supply voltage)

Bypass Capacitor

A bypass capacitor (decoupling capacitor) is a capacitor used to decouple one part of an electric

circuit from another. One common kind of decoupling is of a powered circuit from signals in the

power supply as shown in Figure 5. The charged capacitor helps fill in any ‘dips’ in the voltage

VCC (Vs, in our case) by releasing its charge when the voltage drops. The precise value of a

bypass capacitor is not very important. For this lab, we can use a few microfarad capacitor or

higher at the VCC and ground of the L293B chip.

Figure 5: Bypass Capacitor

162

Experiment

Part 1: Control a LED using PWM

Goal: Generate a PWM signal with a period of 500 milliseconds and a duty cycle of 50%. Wire

the output of the PWM signal to an LED.

Part 2: Controlling the speed of a single direction Motor control

Goal: Use HyperTerminal to allow the user to control the speed of the motor and turn the motor

‘ON’ and ‘OFF’. When the motor is ‘ON’, the user should be able to increment the speed by

pressing an ‘I’. When the motor is ‘ON’, the user should be able to decrement the speed by

pressing ‘D’. The user should also be able to turn the motor ‘ON’ by pressing an ‘N’ and turn

the motor ‘OFF’ by pressing an ‘F’.

Setup the appropriate circuit as described above in Figure 3 and be sure to use a separate power

source to drive the motor, make sure you have a common ground between the supplies, and

utilize a bypass capacitor to keep power surges from resetting the power supply. For this portion

of the experiment, you may use a period of 100 microseconds.

VERY IMPORTANT NOTICE: DO NOT grab the motors shaft while it is running.

Questions

1. Why is it so important that we used diodes in all of our circuits?

2. What is the purpose of the capacitors connected to the L293B chip?

3. If we wanted to use motors that draw 2 amps each, what would we have to do to

accomplish this task?

4. If operating in bi-directional mode, why would you have to stop the motor and wait

before switching directions?

5. What is the maximum voltage that can be supplied to the L293B driver?

6. Provide some example applications for a servo motor.

163

Appendix F.7: Servo Motor Control using PWM

Objective

The objective of this lab is to introduce the servo motor and its operation. The students

will learn how to use Pulse Width Modulation to control 2 servo motors using the switches as

inputs.

Background

Servo Motor

A servo motor is a small device that has an output shaft. The servo’s shaft can be

positioned by sending the servo a coded signal. As long as the coded signal exists on the input

line, the servo will maintain the angular position of the shaft. As the inputted signal changes, the

angular position of the shaft changes. One of the main uses of servo motors is in robotics.

A servo motor consists of some control circuits and a potentiometer that is connected to

the output shaft. The potentiometer allows the control circuitry to monitor the current angle of

the motor. If the shaft is in the correct position, the motor shuts off. If the circuit finds that the

angle is not correct, it turns the motor to the correct direction until the angle is correct. The

output shaft is usually capable of traveling around 180 degrees. The amount of power applied to

the motor is proportional to the distance it needs to travel. For example, if the motor needs to

turn a large distance, the motor will run at full speed, and if it needs to turn only a small amount,

the motor will run at a slower speed.

A servo motor consists of three wires – ground, supply, and a control wire. To

communicate the angle at which the servo should run, you use the control wire. The angle of the

motor is determined by the duration of the pulse that is applied to the control wire. This is called

Pulse Coded Modulation. The servo expects to see a pulse every 20 milliseconds. The length of

the pulse will determine how far the motor turns. For example, a 1.5 millisecond pulse will

make the motor turn 0 degrees. If the motor is shorter than 1.5 ms, then the motor will turn the

shaft closer to 0 degrees or counterclockwise. If the pulse is longer than 1.5 ms, the shaft turns

closer to 180 degrees or clockwise. Figure 1 provides an illustration of the servo motor angular

positions based on the pulse duration.

164

Figure 1: Pulse duration and Output Shaft Positions

Figure 1 is representative of the Hitec servos (HS-475) that are used in the lab experiment. Hitec

servo motors require 3-5 V peak-to-peak square wave pulse. Their pulse duration is from 0.9 ms

to 2.1 ms with 1.5 ms as center. The pulse refreshes at 50 Hz meaning that the servo motor

expects to see a pulse every 20 milliseconds. The initial polarity of the pulse is ‘High. All Hitec

Servos can be operated within a 4.8-6V range. On all Hitec servos the Black wire is ‘ground’,

the Red wire (center) is ‘power’, and the third wire is ‘signal’). All Hitec servos turn in the

clockwise direction. For more information on the Hitec servo motor, take a look at the Hitec

servo datasheet (HS-475).

Experiment

Use the three switches on SW1 on the MCU Project Board to control the bottom Hitec servo

motor. If SW1-1 is ‘ON’, the motor should be at 0 degrees. If SW1-2 is ‘ON’, the motor should

be at 90 degrees (neutral). If SW1-3 is ‘ON’, the motor should be at 180 degrees. If any

165

combination of the switches is selected, the servo motor should not move from its previous

position until only a single switch is turned ‘ON’.

The top motor should be controlled in the same manner as described above except it should use

the switches SW2 on the MCU Project Board.

Questions

1. What is a phototransistor? List some practical applications of a phototransistor.

In order read a phototransistor, what processor expert bean would you have to use?

2. Design a circuit to operate a phototransistor in “Active” mode of operation. Be sure to

indicate the appropriate resistor value and show how you found this value.

3. What is a lamp dimmer? What processor expert bean(s) could you use to create a lamp

dimmer?

4. When implementing a bidirectional DC motor circuit, it is recommended to have a delay

when switching the direction of the motor – forwards to backwards and vice versa. Why

is this delay necessary?

5. Work with your lab partner to decide which final project you are going to do. Indicate

either ‘project1’ or ‘project2’ as the answer to this question. Projects are posted on the

class website under the ‘Projects’ tab.

References

1. What is a Servo? Seattle Robotics Society. http://www.seattlerobotics.org/guide/servos.html.

http://www.seattlerobotics.org/guide/servos.html

166

Appendix F.8: XBee Wireless Module Interfacing

Objective

The purpose of this lab is to provide students with an understanding of how to create custom

applications with the XBee modules. The students must successfully demonstrate the

communications between two XBee modules using the provided template project, Wireless

UART Demonstration. Students should accept analog input values from the MCU project board

potentiometer, convert these values using the Analog-to-Digital Converter on one of the XBee

modules, transmit the converted values to another XBee module, and upon a keyboard press,

display the converted values using HyperTerminal in the format “xxx” where “xxx” can range

from 000-255.

Background

Potentiometer

A potentiometer is a variable resistor that can be used to acquire a manually adjustable output

voltage. The potentiometer on the MCU Project Board -2 will be used to provide an analog input

signal to the XBee ADC. Figure 1 provides the circuit schematic of a potentiometer.

Figure 1: Potentiometer

 Analog to Digital Converter (ADC)

An analog-to-digital converter changes a continuous signal to discrete digital numbers. The

digital output can then be represented in any number base representation such as binary,

hexadecimal, decimal, etc. The resolution of an ADC is the number of bits in the output

conversion. The MCU’s ADC can be configured using processor expert to perform either 8-bit

or 10-bit conversions. The possible values that can be used to represent the input voltage for an

ADC are 2
N
 – 1, so for an 8-bit ADC, the possible values are 2

8
-1 = 255. For example, if you

have an analog input voltage with a range from 0-5 V and an 8-bit ADC, you will have an ADC

voltage resolution or step size = (5-0)/2
8
 = 0.0195 V. In conclusion, your analog signal can be

167

represented by 256 discrete values with 0.0195 V steps. It is important to note that if you

increase the resolution, then you increase the accuracy of the ADC.

XBee Modules

The XBee modules were developed to provide a low-cost, low-power solution to support

wireless sensor networks. These modules provide a line-of-sight range up to 300 feet, a RF data

rate of 250 kilobits per second, operate from 2.8 – 3.4 V, and support the following network

topologies: point-to-point, point-to-multipoint, and peer-to-peer. Table 1 provides a detailed

specification of the XBee module [8].

Table 1 XBee OEM RF Module Specifications [8]

Performance

Indoor/Urban Range up to 100 feet

Outdoor RF line-of-sight range up to 300 feet

Transmit Power Output (software selectable) 1 mW (0 dBm)

RF Data Rate 250,000 bps

Serial Interface Data Rate (software selectable) 1200-115200 bps

Receiver Sensitivity -92 dBm (1% packet error rate)

Power Requirements

Supply Voltage 2.8-3.4V

Transmit Current (typical) 45 mA (@3.3 V)

Idle/Receive Current (typical) 50 mA (@3.3 V)

Power-down Current < 10 μA

General

Operating Frequency ISM 2.4 GHz

Dimensions 0.960" x 1.087"

Operating Temperature -40 to 85 °C

Networking and Security

Supported Network Topologies Point-to-Point, Point-to-Multipoint, Peer-to-Peer

Number of Channels (software selectable) 16 Direct Sequence Channels

Addressing Options PAN ID, Channel and Addresses

The main components of the XBee modules include a MC9S08GT60 microcontroller and

MC13193 RF chip. The MC9S08T60 is a member of the HCS08 Freescale microcontroller

family. The HCS08 family utilizes a 40 MHz HCS08 central processor unit, features two serial

168

communications interface (SCI) modules and a serial peripheral interface module, and includes

8-channel, 10-bit analog-to-digital converters (ADCs) [3]. The MCS08GB60 datasheet provides

a full list of features and can be found on the Freescale website at www.freescale.com. The

MC13193 chip is a short range, low-power transceiver developed by Freescale Semiconductor

which when used with an appropriate microcontroller, provides an efficient solution to short-

range networks [4]. The datasheet for this chip can also be found on the Freescale website [3].

The XBee modules combine these two components and provide a 20-pin output. Table 2

provides a list of the XBee pin assignments taken from the XBee datasheet, and Figure 2

provides an illustration of the XBee breakout board.

Table 2 XBee Module Pin Assignments [4]

Pin Name Direction Description

1 VCC - Power supply

2 DOUT Output UART Data Out

3 DIN / CONFIG' Input UART Data In

4 DO8* Output Digital Output 8

5 RESET' Input Module Reset (reset pulse must be at least 200 ns)

6 PWM0/RSSI Output PWM Output 0 / RX Signal Strength Indicator

7 PWM1 Output PWM Output 1

8 [reserved] - Do not connect

9 DTR' / SLEEP_RQ / DI8 Input Pin Sleep Control Line or Digital Input 8

10 GND - Ground

11 AD4 / DIO4 Either Analog Input 4 or Digital I/O 4

12 CTS' / DIO7 Either Clear-to-Send Flow Control or Digital I/O 7

13 ON / SLEEP' Output Module Status Indicator

14 VREF Input Voltage Reference for A/D Inputs

15 Associate / AD5 / DIO5 Either Voltage Reference for A/D Inputs

16 RTS' / AD6 / DIO6 Either RTS Flow Control, Analog Input 6 or Digital I/O 6

17 AD3 / DIO3 Either Analog Input 3 or Digital I/O 3

18 AD2 / DIO2 Either Analog Input 2 or Digital I/O 2

19 AD1 / DIO1 Either Analog Input 1 or Digital I/O 1

20 AD0 / DIO0 Either Analog Input 0 or Digital I/O 0

The modules can operate with minimum connections of VCC, GND, DOUT, and DIN, and firmware

upgrades can be made with minimum connections of VCC, GND, DIN, DOUT, RTS, and DTR.

169

Figure 2 XBee Breakout Board

X-CTU Software

The X-CTU Software was developed by MaxStream to provide an interface for configuring and

testing the XBee modules. The software is easy to use and install and works well with Freescale

CodeWarrior. After installing the software on your machine, the X-CTU software will execute

when you compile a CodeWarrior project. Figure 3 provides a screenshot of the X-CTU

software with the serial communications properties setup.

Figure 3 X-CTU Software Screenshot

170

Experiment

Goal: Utilize one of the XBee Analog to Digital Converters to read an analog inputted value

from the MCU Project Board potentiometer on a XBee module (1), transmit the values to another

XBee module (2), and upon a keyboard press, display the values using HyperTerminal onto the

computer screen.

1. For this experiment, we will want create a project using Freescale CodeWarrior for the

HCS08 since the XBee houses an 8-bit microcontroller

2. Use the Analog-to-Digital Converter Module section in [5] to figure out how to properly

initialize the control registers for an 8-bit resolution, continuous conversion

3. Open up the provided CodeWarrior project “Wireless2.mcp”

4. Insert the register initialization code into the “Wireless2.c” file

a. Be sure to include this code after the MCUInit() and RadioInit() functions in order

to prevent the overwriting of your initialization of the ATD registers

5. Upon a keyboard press – read, transmit, and display the converted values

6. Properly wire and connect the XBee modules to the MCU Project Board -2. The RS-232

port on the bottom right of the MCU Project Board -2 will be connected to the computer,

and pins TXD and RXD will be connected to the XBee module. Refer at Table 2 and

Figure 2 for wiring details.

7. Select ‘Project’ >> ‘Make’ (X-CTU software should automatically prompt if no errors)

8. On the “PC Settings” tab, select the appropriate COM port. The COM port settings are

38400 baud, flow control = NONE, 8 data bits, parity bits = NONE, and 1 stop bit.

9. On the “Modem Configuration” tab, select the ‘XB24’ modem, update firmware

checkbox, and the ‘Wireless UART Demonstration’ function set. Then click the ‘Write’

button.

10. When the Info box appears the XBee module should be reset. The module can be reset

either using the button on the programming board or using the XBee pin 5 (RESET). The

X-CTU software should resume and program the XBee module.

11. Repeat steps 6-10 for the second XBee module.

12. Open ‘Programs’ >> ‘Accessories’ >> ‘Communications’ >> ‘HyperTerminal’ to test the

programs

13. Be sure that the HyperTerminal settings match the settings provided in Step 8

171

Appendix F.9: Bidirectional DC Motor Control Project

Objective

Create a user interface using the keypad and LCD to control a bidirectional motor and lamp

dimmer. Display the speed and direction of the motor the LCD and provide the user with options

to change the direction and speed. The user should be able to control the motor, the lamp, or

both simultaneously.

Additional Information

 Lamp Dimmer Portion

o Refer to pages 379-392 in your textbook

o Be sure to design the appropriate circuit to drive the LED (Assume: VLED =

1.8V)

 Bidirectional Motor Control

o Refer to pages 393-398 in your textbook

o Utilize the L293B datasheet

o When switching between forward and reverse mode make sure to stop the motor

and wait.

o Utilize the information from your past lab experiments and the references located

on the class website at http://www.csee.wvu.edu/classes/cpe313/labs.html under

Links.

http://www.csee.wvu.edu/classes/cpe313/labs.html

172

Appendix F.10: Servo Motor Control using a Phototransistor Project

Goal

Utilize two servo motors, parabolic mirror, and phototransistor to locate the position of a

flashlight. The servo motors should be controllable by the keypad. The LCD should be used to

display the status of the search and display three states “Waiting”, “Searching”, and “Found”.

Additional Information

 Refer to the OP599 transistor datasheet (located on the class website) for information on

the phototransistor

 Be sure to design the interface to the phototransistor correctly – refer to

http://www.er-online.co.uk/minisumo/EdgeDetection.php for more information

 Utilize the information from your past lab experiments and the references located on the

class website at http://www.csee.wvu.edu/classes/cpe313/labs.html under Links.

http://www.er-online.co.uk/minisumo/EdgeDetection.php
http://www.csee.wvu.edu/classes/cpe313/labs.html

	Development of a Low-Cost Robotics Platform that Facilitates the Enhancement of Microcomputer Structures and Interfacing Learning Objectives
	Recommended Citation

	Development of a Low-Cost Robotics Platform that Facilitates the Enhancement of Microcomputer Structures and Interfacing Learning Objectives

