
Zhongxiang Wang
Anne M. Archibald
John R. Thorstensen
Victoria M. Kaspi
Duncan R. Lorimer

See next page for additional authors

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

Digital Commons Citation
https://researchrepository.wvu.edu/faculty_publications/667

This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.
SDSS J102347.6+003841: A MILLISECOND RADIO PULSAR BINARY THAT HAD A HOT DISK DURING 2000–2001

ZHONGXIANG WANG1, ANNE M. ARCHIBALD1, JOHN R. THORSTENSEN2, VICTORIA M. KASPI1, DUNCAN R. LORIMER3, INGRID STAIRS4,5, SCOTT M. RANSOM6

ABSTRACT

The Sloan Digital Sky Survey (SDSS) source J102347.6+003841 was recently revealed to be a binary 1.69 millisecond radio pulsar with a 4.75 hr orbital period and a $\sim$0.2 $M_\odot$ companion. Here we analyze the SDSS spectrum of the source in detail. The spectrum was taken on 2001 February 1, when the source was in a bright state and showed broad, double-peaked hydrogen and helium lines—dramatically different from the G-type absorption spectrum seen from 2002 May onward. The lines are consistent with emission from a disk around the compact primary. We derive properties of the disk by fitting the SDSS continuum with a simple disk model, and find a temperature range of 2000–34000 K from the outer to inner edge of the disk. The disk inner and outer radii were approximately $10^9$ and $5.7 \times 10^{10}$ cm, respectively. These results further emphasize the unique feature of the source: it is a system likely at the end of its transition from an X-ray binary to a recycled radio pulsar. The disk mass is estimated to have been $\sim 10^{23}$ g, most of which would have been lost due to pulsar wind ablation (or due to the propeller effect if the disk had extended inside the light cylinder of the pulsar) before the final disk disruption event. The system could undergo repeated episodes of disk formation. Close monitoring of the source is needed to catch the system in its bright state again, so that this unusual example of a pulsar-disk interaction can be studied in much finer detail.

Subject headings: binaries: close — stars: individual (J102347.6+003841) — stars: low-mass — stars: neutron

1. INTRODUCTION

The Sloan Digital Sky Survey (SDSS) source J102347.6+003841 (hereafter J1023) is located well off the Galactic plane at $b = 45.8^\circ$. At $V = 17.5$ and $K_s = 15.9$, it is bright enough to have been detected by several optical and near-infrared sky surveys since 1950 (e.g., Zacharias et al. 2004; Skrutskie et al. 2006). Bond et al. (2002) first drew attention to this source following its detection in the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) survey (Becker et al. 1995). Their follow-up optical observations revealed flickering and a spectrum showing strong, double-peaked hydrogen and helium emission lines. Based on these, they suggested that the system was a cataclysmic variable (CV), that is, a binary system in which a white-dwarf primary accretes from a close companion through Roche-lobe overflow. Around the same time, optical spectra obtained by SDSS and Szkody et al. (2003) appeared similar to those found by Bond et al. (2002).

It was therefore surprising when Thorstensen & Arm-
interesting. The double-peaked emission lines are commonly seen in CVs and LMXBs, and are a typical feature of accretion disks. This suggests that during the period in which emission-line spectra were observed, the companion star overflowed its Roche lobe and mass transfer occurred, forming a disk surrounding the MSP. It is not clear whether significant mass accreted onto the neutron star, because no evidence of strong, accretion-powered X-ray emission has been found. In any case, by showing both an accretion disk and radio pulsations, this system is likely the first such binary found at the end of its transition from an LMXB to a radio MSP. It is a valuable laboratory for studying the evolution of X-ray binaries and the formation of radio MSPs.

In this paper, we report the results of the first detailed analysis of the SDSS spectrum. We summarize in § 1.1 the binary properties of J1023, estimated from previous optical and recent radio observations (TA05; Archibald et al. 2009). In § 2 we briefly describe the SDSS spectroscopic observation of J1023, and present our study of spectral features in § 3. From this, we derive the properties of the short-lived disk. We discuss the implications of the results in § 4.

1. Binary Properties

From radio timing of the pulsar in J1023, the pulsar’s Keplerian mass function is found to be $1.1 \times 10^{-3} M_\odot$. Combining this with the measured radial velocity amplitude of the companion star, the mass ratio $q$ is determined, $q = M_{\text{ns}}/M_2 = 7.1 \pm 0.1$. Here $M_{\text{ns}}$ and $M_2$ are, respectively, the neutron star and companion masses. For a canonical neutron star mass $M_{\text{ns}} = 1.4 M_\odot$, this implies $M_2 \approx 0.2 M_\odot$. If we allow a wider range of $M_{\text{ns}}$ from 1 to 3 $M_\odot$, then $M_2 = 0.14$–0.42 $M_\odot$. Accordingly, the orbital inclination angle $i$ is limited to $34^\circ$–$53^\circ$, nearly identical to the range of inclinations estimated from the heating effect by TA05. If in addition the radius of the companion star $R_2$ is equal to that of its Roche lobe, then the companion star’s radius is almost entirely a function of its mass. Figure 1 shows the derived mass and radius values for the companion star. The TA05 light curve fits showed the companion to have an effective temperature $T_{\text{eff}}$ of 5600–5700 K, similar to that of a mid G-type dwarf. Based on the discussion above, we adopt canonical values of $M_{\text{ns}} = 1.4 M_\odot$ and $M_2 = 0.2 M_\odot$ throughout this paper, unless mentioned otherwise.

2. SDSS Spectroscopy

The spectrum of J1023 was taken on 2001 February 1 using the dedicated SDSS 2.5-m telescope at Apache Point Observatory (York et al. 2000), and was included in the 7th SDSS data release (Abazajian et al. 2009). The spectrum covers from 3800 to 9200 Å with a spectral resolution $\lambda/\Delta \lambda \sim 2000$; the total on-source time was over 1 hr. It was reduced using the SDSS Spectro2d pipeline (version v5.1.12; details can be found on the SDSS webpages, e.g., http://www.sdss.org/dr7/products/spectra/index.html). In the pipeline flux calibration procedure, a few standard stars are observed on each spectroscopic plate, and flux calibration is achieved by comparing the spectra of the standard stars to their model spectra. Generally, the $3\sigma$ uncertainty of SDSS spectra in $r'$ filter is 0.15 mag. The SDSS spectrum of J1023 is shown in Figure 2. The wavelengths are vacuum heliocentric.

3. Spectral Analysis

3.1. Emission Lines

The SDSS spectrum shows emission lines, mostly from the hydrogen Balmer series and He I, on a smooth, blue continuum. All the emission lines are double-peaked. The spectrum resembles those of compact LMXBs and CVs; in those systems, the optical emission arises mostly in an accretion disk, and the double-peaked profiles reflect the line-of-sight components of the disk rotation velocity (e.g., Horne & Marsh 1986). The Bowen fluorescence blend near 4640 Å, which is commonly seen in LMXBs, is notably absent. This emission feature consists of N III, C III, and O II lines (e.g., Kallman & McCray 1988; Schachter et al. 1989) and is thought to arise from X-ray irradiated companion stars (e.g., Deuschl 1986; Steeghs & Casares 2002). The absence of the 4640 Å feature suggests the lack of X-ray irradiated, highly ionized gas in the system and probably indicates a low X-ray luminosity at the time. This is consistent with expectations given the X-ray flux upper limit of the source $F_{2-10 keV} \lesssim 1.2 \times 10^{-10}$ ergs s$^{-1}$ cm$^{-2}$, derived from the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor data; Archibald et al. 2009). LMXBs that show the Bowen emission feature typically have large X-ray luminosities, $\sim 10^{36}$ erg s$^{-1}$.

For each emission line, we measured the total flux in $10^{-3}$. From studies of MSP binaries, the companion stars have often been found to be close to filling their Roche lobes (TA05; Stappers et al. 2001; Reynolds et al. 2007).
from [Fitzpatrick 1999] and taking $A_V = 0.14$ from [Schlegel, Finkbeiner, & Davis 1998]. We then estimated the continuum with a 6–order polynomial. To fit the continuum-subtracted double-peaked lines, we used either two-Gaussian or two-Lorentz functions. For most of the lines, the two-Lorentz profile gave the better fit. Tables 1 and 2 give the results for the hydrogen and helium lines, respectively. The vacuum wavelength values used are from the atomic spectra database at the National Institute of Standards and Technology (NIST).8

Because of the crowding of the lines in the blue region, it is difficult to determine the continuum flux exactly; in measuring those lines, we estimated the continuum from the polynomial fit.

We focus here on the hydrogen lines, since they are stronger than the helium lines and thus more accurately measurable. As can be seen, the blue and red peaks of the Hβ, γ, ε, and ζ lines have velocities in the ranges of $-(610–710)$ and $(470–490)$ km s$^{-1}$ (Figure 3). The average values are $-660$ km s$^{-1}$ and $480$ km s$^{-1}$. Comparing to these four lines, Hδ has a stronger, more red-shifted profile, while the blue and red peak velocities of Hα are significantly smaller. The blue and red peaks of the lines are not symmetric, suggesting contributions from other components. A hot spot on a disk, arising from the interaction between the gas flow from a companion star and the disk, can cause such asymmetry (e.g., [Orosz et al. 1998]).

The fluxes of the Balmer lines in the SDSS spectrum are labelled. The arrow in the top panel indicates the absence of the $\lambda$ 4640 Å emission feature. This feature is commonly seen in LMXBs (e.g., [van Paradijs & McClintock 1994]), in which it arises from X-ray irradiated companion stars.

From [Fitzpatrick 1999] and taking $A_V = 0.14$ from [Schlegel, Finkbeiner, & Davis 1998]. We then estimated the continuum with a 6–order polynomial. To fit the continuum-subtracted double-peaked lines, we used either two-Gaussian or two-Lorentz functions. For most of the lines, the two-Lorentz profile gave the better fit. Tables 1 and 2 give the results for the hydrogen and helium lines, respectively. The vacuum wavelength values used are from the atomic spectra database at the National Institute of Standards and Technology (NIST).8

Because of the crowding of the lines in the blue region, it is difficult to determine the continuum flux exactly; in measuring those lines, we estimated the continuum from the polynomial fit.

We focus here on the hydrogen lines, since they are stronger than the helium lines and thus more accurately measurable. As can be seen, the blue and red peaks of the Hβ, γ, ε, and ζ lines have velocities in the ranges of $-(610–710)$ and $(470–490)$ km s$^{-1}$ (Figure 3). The average values are $-660$ km s$^{-1}$ and $480$ km s$^{-1}$. Comparing to these four lines, Hδ has a stronger, more red-shifted profile, while the blue and red peak velocities of Hα are significantly smaller. The blue and red peaks of the lines are not symmetric, suggesting contributions from other components. A hot spot on a disk, arising from the interaction between the gas flow from a companion star and the disk, can cause such asymmetry (e.g., [Orosz et al. 1998]).

The fluxes of the Balmer lines in the SDSS spectrum are labelled. The arrow in the top panel indicates the absence of the $\lambda$ 4640 Å emission feature. This feature is commonly seen in LMXBs (e.g., [van Paradijs & McClintock 1994]), in which it arises from X-ray irradiated companion stars.

Fig. 2.— SDSS spectrum of J1023. The emission lines in the spectrum are labelled. The arrow in the top panel indicates the absence of the $\lambda$ 4640 Å emission feature. This feature is commonly seen in LMXBs (e.g., [van Paradijs & McClintock 1994]), in which it arises from X-ray irradiated companion stars.

8 see [http://physics.nist.gov/PhysRefData/ASD/lines_form.html]
Because changes of \( r_1 \) only cause small disk area and flux changes and \( i \) is limited by the central valley region, only a small fraction of the whole line profile, \( r_1 \) and \( i \) cannot be tightly constrained. The 99% confidence ranges are \( r_1 \leq 0.04 \) and \( i \leq 44^\circ \) (note that since the inner disk radius cannot be smaller than that of the neutron star, \( r_1 \) has a lower limit, \( r_1 \geq 10^{-5} \)). We tested fitting \( \text{H} \beta \) and found different results: \( V_p = 540 \pm 30 \, \text{km s}^{-1} \), \( r_1 = 0.0002–0.08 \), and \( i \leq 60^\circ \) (99% confidence; \( \alpha \approx 1.6 \)). The deep valley in the \( \text{H} \beta \) line and other bluer hydrogen lines favors a large inclination angle \cite{Horne_Mars_1986}. However, inclination angles determined from fitting double-peaked lines obviously are not reliable. For example, the hydrogen lines in the SDSS spectrum have different central depths, which would suggest different inclination angles. Also, in other cases, the central valley of a line from the same source was seen to be variable (e.g., \cite{Orosz_etal_1994}).

If we assume the disk is Keplerian, the disk outer edge rotation velocity \( V_d \) and \( r_{\text{out}} \) can be inferred to be \( V_d = V_p / \sin i \) and \( r_{\text{out}} = (GM_{\text{ns}}/V_p^2) \approx 1.1–1.3 \times 10^{11} \, \text{km}^2 \, \text{s}^{-2} \, \text{sin}^2 (i) \) cm. The Roche lobe radius \( R_1 \) of the neutron star can be found and the disk is expected to be cut off at the tidal radius \( R_{\text{tides}} = 0.9R_1 = 5.7 \times 10^{-10} \) cm (for \( M_2 = 0.2 \, M_\odot \) and \( M_{\text{ns}} = 1.4 \, M_\odot \)). Since \( r_{\text{out}} \) cannot be larger than \( R_{\text{tides}} \), we find \( i \leq 41^\circ–46^\circ \), consistent with the low inclination angle value set by the mass ratio. On the other hand, this implies that \( r_{\text{out}} \approx R_{\text{tides}} \), because when \( M_{\text{ns}} = 1.4 \, M_\odot \) is assumed, \( i \) should not be significantly different from \( 46^\circ \). We checked the case when \( M_{\text{ns}} = 2.9 \, M_\odot \). The resulting \( i \) is between \( 31^\circ–34^\circ \), also approximately consistent with the value given above in §1.1. The larger peak velocities of other hydrogen lines probably suggest that they were emitted from a smaller disk area. For example, for \( V_p = 540 \, \text{km s}^{-1} \) (\( \text{H} \beta \) peak velocity) and \( i = 46^\circ \), \( r_{\text{out}} \approx 3.3 \times 10^{-10} \) cm.

The peak velocities of the hydrogen lines have negative mean values, which would suggest that the disk (and the neutron star) was moving towards us. The velocities of the lines are significantly different. If we consider only \( \text{H} \gamma \), \( \epsilon \), and \( \zeta \) lines, which have similar velocity values, the average radial velocity is \( -72 \pm 36 \, \text{km s}^{-1} \), not well determined. This velocity would be orbital because \cite{Tang_etal_2003} found nearly zero radial velocity for the binary system. Considering the radio timing measurements of the system and the orbital phase 0.65–0.92 (phase 0.0 corresponds to the ascending node of the pulsar) for the SDSS observation, the radial velocity of the neutron star was in the range of \((-22)–(+33) \, \text{km s}^{-1}\) during the observation. The median velocity value is \( \sim 10 \, \text{km s}^{-1} \). These possible radial velocity values are different from the observed value, suggesting that either the lines were distorted by emission from other components such as a hot spot, or the disk was not axis-symmetric (e.g., \cite{Mason_etal_2000} and references therein). Generally, radial velocity curves derived from emission lines from a disk may not be a reliable indicator for the primary’s orbital motion (e.g., \cite{Orosz_etal_1994}, \cite{Mason_etal_2000}).

The helium lines in the SDSS spectrum are rela-

---

Fig. 3.—Balmer \( \text{H} \beta \)–\( \text{H} \zeta \) emission lines in the SDSS spectrum. The blue- and red-shifted peaks are not symmetric. The right wing of the red-shifted \( \text{H} \delta \) peak may be contaminated by another line component.

Fig. 4.—\( \text{H} \alpha \) emission line in the SDSS spectrum. The disk model profile with \( \alpha = 1.6 \), \( V_p = 395 \, \text{km s}^{-1} \), \( r_1 = 0.004 \), and \( i = 40^\circ \), is plotted as the dashed curve. Because of the asymmetry in the two peaks, the model profile does not fit the peak regions well.
tively strong. For example, the flux ratio between Hα and He I λ6680 is approximately 3.3, lower than typical values found in normal CV systems (e.g., Thorstensen et al. 2002b). It is likely that helium is enhanced (Williams & Ferguson 1982). As can be seen in Figure 1, the companion must be much less massive than a main-sequence star of the same radius. Also, it is much hotter than a main-sequence star in the allowed mass range. While J1023 is not a CV, it is similar in much of J1023 (approximately consistent with the 2MASS measurements). A few CVs do show similar ‘too-hot’ secondary stars (Thorstensen et al. 2002b); in those cases, the secondary in J1023 appears to be a similar, evolved, stripped core, much hotter, and much larger in radius, than one would expect given its mass. The star probably had a mass of \( \gtrsim 1\,M_\odot \) at onset of mass transfer (Deloye 2008), and has lost much of its mass during its X-ray binary phase.

3.2. Continuum

The SDSS spectrum is substantially brighter than those spectra obtained after 2002 May; to show this, its continuum is plotted with the spectrum from TA05 in Figure 5. The latter spectrum, also dereddened with \( A_V = 0.14 \), is a mean of 23 spectra obtained in 2003–2004. Based on the spectra, a mid-G spectral type has been identified for the low-mass companion star in J1023. The average \( V \) magnitude of the companion is 17.5 (TA05), corresponding to a dereddened flux of \( 9.9 R_1 \approx 5.7 \times 10^{10} \) cm (for \( M_\text{in} = 1.4 \, M_\odot \) and \( i = 46^\circ \)). The distance \( D \) is constrained by the flux from the companion, since it is a function of \( (R_2/D)^2 \).

For example, if we assume a G5V dwarf (\( T_{\text{eff}} \approx 5600 \) K, radius \( R_\odot = 0.92 \, R_\odot \), and absolute magnitude \( M_\odot = 5.1 \) as the companion, \( V = 17.5 \) would imply a distance of 2.8 kpc. When \( R_2 \) is assumed to be equal to the Roche-lobe radius (0.38 \( R_\odot \)) of the companion, \( D \approx 1.2 \) kpc, inferred from \( (R_2/D) = (0.92 R_\odot)/2.8 \) kpc. Similarly, TA05 have found \( D \approx (2.2 \) kpc)(\( M_2/M_\odot \))\( ^{1/3} \), and \( D \approx 1.3 \) kpc when \( M_2 = 0.2 M_\odot \). Therefore, we searched for the best fit in the range of \( D = 0.9–1.7 \) kpc.

Optical emission from J1023 is modulated because the visible area of the heated face of the companion star varies as a function of orbital phase (TA05). We assumed this flux modulation the same in the bright state as in the quiescent, which is expected since no strong X-ray emission (to heat the companion) was seen. The SDSS
observation was made at orbital phase 0.65–0.92, right within the flat top of the companion’s modulated light curve (TA03). Note that because phase 0.0 is defined differently here from in TA03, the phase in this paper leads by 1/4. The average V magnitude during the phase range is 17.35±0.014, implying a 15% flux increase at the time from the companion. We simply increased the flux of the G5V spectrum by 15%. Because the flux increases are caused by the heated half surface of the companion star, they are actually wavelength-dependent (TA05). However, since the SDSS spectrum is much brighter than that of the companion, the differences are negligible in the fitting.

The flux uncertainties on the SDSS spectrum are approximately 2% in the middle region and 4% at the end regions. If we use the uncertainties, the minimum reduced $\chi^2$ (2922 degrees of freedom) resulting from the fitting is 4.6. We therefore included a systematic uncertainty, which on average could be $\sim$5% in the $r^1$ band. In addition, it should also contain uncertainties on the companion’s spectrum, since no uncertainties for the G5V library spectrum were assumed. This systematic uncertainty was added in quadrature, while its value was adjusted to have the minimum reduced $\chi^2 = 1$. A value of 3.4% for the uncertainty was required. The fitting is sensitive to the parameters, and we found $D \sim 1.0$ kpc, $r_{\text{in}} \sim 1.5 \times 10^8$ cm, and $T_d^0 \sim 34000$ K. The $r_{\text{in}}$ value is consistent with those from our Hα fitting, while $D$ is $\sim$20% lower than those derived above and by TA05. The $D$ value may suggest that $R_2$ was not equal to, but lower than the Roche lobe radius. If $D = 1.3$ kpc is required, the spectrum is less well fit, and $r_{\text{in}} \sim 1.4 \times 10^8$ cm and $T_d^0 \sim 40000$ K. In Figure 5, the best-fit model spectrum is shown.

We further considered that this was a steady thin disk case. Given the values obtained above, the mass accretion rate $\dot{M}$ in the disk can be estimated from $T_d \simeq 8000M_{\odot}^{1/4}r_{\text{in}}^{-3/4}$ K (Frank et al. 1992), $M_{\text{in}} \simeq 1.1$, where $r_{\text{in}}$ and $M_{\text{in}}$ are $r$ and $M$ in units of $10^{10}$ cm and $10^{16}$ g s$^{-1}$, respectively. Based on this $M$ value, the Alfvén radius $r_{\text{Al}}$, which is expected to be the inner disk radius, is much smaller than the obtained $r_{\text{in}}$. $r_{\text{Al}} \sim 2.5 \times 10^{6}(M_{\text{in}}/1.1)^{-2/7}(B/10^8 \text{ G})^{1/7}$ cm, where $B$ is the surface magnetic field strength of the neutron star ($B \sim 10^8 \text{ G}$; see §4 below). The discrepancy indicates inconsistency in the results when the steady thin disk case is considered. We therefore tested to find the alternative best fit by setting $r_{\text{in}} \sim R_\Omega \simeq 2.4 \times 10^6$ cm (where $R_\Omega$ is the corotation radius) and $T_d \propto \dot{M}^{-1/4}r_{\text{in}}^{-3/4}$. Generally, when $r_{\text{in}} \sim R_\Omega$, accretion onto a neutron star occurs and the pulsed radio emission from the pulsar is quenched due to accretion. It can be noted that to satisfy $r_{\text{in}} \sim r_{\text{Al}} \sim R_\Omega, M_{\text{in}} \sim 1$. Since $r_{\text{in}}$ is weakly dependent on $\dot{M}$, a large range of $\dot{M}$ values will result in small changes of $r_{\text{in}}$ (or $r_{\text{in}}$), indicating that it is reasonable to fix $r_{\text{in}}$ at the $R_\Omega$ value. To search for a good fit, $r_{\text{out}}$ was set to be a free parameter in the reasonable range: $r_{\text{out}} \leq 5.7 \times 10^{10}$ cm. We found from the fitting, $\dot{M} \sim 1.0 \times 10^{16}$ g s$^{-1}$ (which is consistent with the assumed $r_{\text{in}}$ value), $r_{\text{out}} = 5.7 \times 10^{10}$ cm, and $D = 1$ kpc, but the minimum reduced $\chi^2 \simeq 1.9$. In order to have $\chi^2 \simeq 1$, a systematic uncertainty of 5% would have to be included in the fitting.

4. DISCUSSION

We analyzed the SDSS spectrum, which was obtained in 2001 February when J1023 was in a bright state. Although the double-peaked hydrogen lines in the spectrum have shapes more complex than those in a standard disk profile, our detailed study of them shows that their properties are consistent with those of a disk around the neutron star in J1023. Considering a G5V spectrum normalized to the brightness of the companion star, we have also found that the SDSS continuum can be fit with a simple disk model, supporting its disk origin. These studies thus help indicate that in the bright state a disk existed in the binary, demonstrating the important feature implied by the source: at the beginning of a radio MSP life, its companion star in the binary is still able to overflow its Roche lobe and a disk can thus be formed around the MSP.

From fitting the continuum, the temperature profile of the disk is estimated to be $9100r_{\odot}^{-3/4}$ K. Such a temperature profile implies $\dot{M} \simeq 1.1 \times 10^{16}$ g s$^{-1}$ and a small, $\sim 2.5 \times 10^6$ cm Alfvén radius when the standard steady thin disk is assumed. The radius value is much smaller than the $r_{\text{in}}$ value obtained from the fitting, indicating inconsistency in the results. However, it can be shown that given the derived $\dot{M}$ value, the viscous (or radial drift) timescale could be as long as $\sim 110$ days (the viscosity coefficient $\alpha = 0.1$ is assumed; Frank et al. 1992) for the outer disk. The starting time of the disk formation is constrained by the SDSS imaging observations, which were made on 1999 March 22 and indicate that J1023 was in the quiescent state at the time (e.g., $d' = 17.99, r' = 17.43$; Bond et al. 2002; Szkody et al. 2003). The disk formed at some time later but before 2000 May 6 when the first bright-state spectrum was taken by Bond et al. (2002), and had existed for $\sim 8$ month but $< 2$ yr before the SDSS spectroscopic observation. Because the viscous timescale is comparably long, these constraints suggest that the disk could have had $r_{\text{in}} \sim 10^8$ cm if it had not fully extended to the allowed smallest radius. We note that $B$ currently is estimated to be low, $B \sim 10^8$ G (although the spin-down rate $\dot{P}$ of the pulsar is quite uncertain, $\dot{P} \sim 7 \times 10^{-21}$ s s$^{-1}$; Archibald et al. 2009), supporting a small Alfvén radius.

Our assumption of a standard thin disk could be too simplified. On the other hand, it is plausible that the SDSS spectrum was not well calibrated in flux—the real spectrum would be steeper and thus $r_{\text{in}}$ could be as small as $\sim 2.5 \times 10^6$ cm ($M_{\text{in}} = 1.0$ and $B = 10^8$ G are used). This $r_{\text{in}}$ value would be comparable to $R_\Omega$, suggesting that accretion onto the pulsar could have occurred. However, the $\dot{M}$ value would imply an accretion luminosity of $L_X \sim GM_{\text{in}}M/R_{\text{in}} \simeq 2 \times 10^{36}$ ergs s$^{-1}$. Comparing this luminosity to the X-ray flux upper limit, either the source is $>10$ kpc away or no accretion onto the neutron star occurred. Since multiple lines of evidence point at a distance of $\sim 1.3$ kpc, the latter is the likely case.

The light cylinder (LC) radius of the MSP in J1023 is $r_{\text{lc}} \simeq 8.1 \times 10^6$ cm. Generally, if $R_\Omega \ll r_{\text{in}} < r_{\text{lc}}$, the system would have been in the propeller
phase [Illarionov & Sunyaev 1975] and the radio pulsar would have been quenched by the accretion flow (e.g., Campana et al. 1998). The minimum luminosity L_{lc} produced from the accretion flux would have been when \( r_{in} \sim r_{lc} \), \( L_{lc} \simeq GM_{in}/r_{lc} \simeq 2 \times 10^{35} M_{16} \text{ erg s}^{-1} \). For \( D = 1.3 \) kpc, \( F_{\text{in}} \simeq 10^{-9} M_{16} \text{ erg s}^{-1} \text{ cm}^{-2} \). This flux would have been detected by the RXTE All-Sky Monitor. The upper limit on \( M_{\text{d}} \) given by the X-ray flux upper limit is \( 10^{15} \text{ g s}^{-1} \). Therefore, if the \( M \) value we have derived is approximately correct, \( r_{in} \) would have been larger than \( r_{lc} \) and the radio pulsar would not have been quenched at the time. This is consistent with the large \( r_{in} \) value we obtained. On the other hand, if the \( M \) value is overestimated, the disk could have extended inside the LC and quenched the radio pulsar.

We estimate the total disk mass \( M_{d} \) by simply using the standard, \( \alpha \)-prescription disk model and integrating the surface density \( \Sigma \) over the disk area.

\[
\Sigma \simeq \frac{5.7 \alpha^{-4/5} M_{16}^{-3/4} r_{10}^{-3/4}}{36(\alpha/0.1)^{-4/5} M_{16}^{-3/4} r_{10}^{-3/4}} \text{ cm}^{-2}.
\]

Using the inner and outer disk radii obtained above, \( M_{d} \approx 1.7 \times 10^{23} \text{ g} \). The formation time would have been 0.5 yr if the mass transfer rate had been constant and equal to \( 10^{16} \text{ g s}^{-1} \). This timescale is consistent with the constraints on the disk formation time set by the optical observations.

The existence of a disk for more than a year makes J1023 an interesting case for studying the pulsar-disk interaction. According to the standard pulsar accretion scenario (Campana et al. 1998 and references therein), the minimum mass accretion rate \( M_{\text{min}} \) in a disk, which is required for the disk to be stable against a pulsar’s radiation pressure, is obtained when \( r_{\text{D}} \approx r_{\text{lc}} \). Detailed calculations made by Eksi & Alpar (2005) show that a disk can still be stable if its inner radius is only slightly larger than \( r_{\text{lc}} \). For the J1023 MSP, \( M_{\text{min}} \sim 2 \times 10^{14} \text{ g s}^{-1} \). With such a low rate, the disk in J1023 would have lost most (~95%) of its mass before the final disk disruption. The mass loss rate of the disk would have been \( 3 \times 10^{15} \text{ g s}^{-1} \) on average, where 2.0 yr is assumed for the disk lifetime. Because the spin-down luminosity of the pulsar is probably as large as \( 5 \times 10^{34} \text{ erg s}^{-1} \) (from the light curve fitting, TA05 have found that the required luminosity from the MSP is \( 10^{34} \text{ erg s}^{-1} \), supporting the spin-down luminosity value), the mass loss could have been due to the pulsar wind ablation of the disk (Miller & Hamilton 2001). On the other hand, if the disk had extended inside the LC and quenched the pulsar wind, the mass loss would have been caused by the propeller effect: the mass inflow is halted by the magnetic field outside of the corotation radius and the material is repelled away from the system.

It is likely that J1023 will repeat its process of having an outflow and forming a disk, although the timescale between two such events is not known. If we do see the next event in the near future, it would provide a great opportunity for studying the pulsar-disk interaction. The short lifetime and brightness of the disk would allow close multiwavelength monitoring, from which we might be able to test current pulsar accretion theory. For example, we might find at which stage of the disk evolution pulsed radio emission is quenched. Would it be, as generally suggested, when the disk extends right inside the LC? If the transition to the propeller phase occurs, we might be able to seek direct evidence for mass loss due to the propeller effect (e.g., Romanova et al. 2009). On the other hand, we would study the evolution of an accretion disk as its being ablated by a pulsar wind. More importantly we might directly observe how a disk is disrupted by a pulsar.

Funding for SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

This research was supported by NSERC via Discovery Grants and by the FORNT and CIFAR. VMK holds a Canada Research Chair and the Lorne Trotter Chair in Astrophysics & Cosmology, and is a Fellow of the Royal Society of Canada. JRT acknowledges support from the U.S. National Science Foundation, through grants AST-0307413 and AST-0708810. IHS acknowledges support from the Swinburne University of Technology Visiting Distinguished Researcher Scheme.

REFERENCES

### TABLE 1

<table>
<thead>
<tr>
<th>Line</th>
<th>$\lambda_{\text{vac}}$ (Å)</th>
<th>$\delta \lambda$ (Å)</th>
<th>$V$ (km s$^{-1}$)</th>
<th>FWHM (km s$^{-1}$)</th>
<th>EW (Å)</th>
<th>Flux/10$^{-16}$ (ergs s$^{-1}$ cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$\beta$ b</td>
<td>3890.1</td>
<td>$-8.9 \pm 0.3$</td>
<td>$-690 \pm 23$</td>
<td>610$\pm 210$</td>
<td>3.01$\pm 0.22$</td>
<td>78.0$\pm 5.7$</td>
</tr>
<tr>
<td>H$\beta$ r</td>
<td>3890.1</td>
<td>$6.3 \pm 0.4$</td>
<td>$488 \pm 31$</td>
<td>720$\pm 260$</td>
<td>2.76$\pm 0.23$</td>
<td>71.1$\pm 5.8$</td>
</tr>
<tr>
<td>H$\gamma$ b</td>
<td>3971.2</td>
<td>$-9.4 \pm 0.3$</td>
<td>$-709 \pm 22$</td>
<td>640$\pm 210$</td>
<td>3.07$\pm 0.21$</td>
<td>77.1$\pm 5.3$</td>
</tr>
<tr>
<td>H$\delta$ r</td>
<td>3971.2</td>
<td>$6.3 \pm 0.3$</td>
<td>$479 \pm 24$</td>
<td>660$\pm 220$</td>
<td>2.96$\pm 0.21$</td>
<td>74.0$\pm 5.2$</td>
</tr>
<tr>
<td>H$\rho$ b</td>
<td>4102.9</td>
<td>$-9.1 \pm 0.3$</td>
<td>$-669 \pm 22$</td>
<td>690$\pm 210$</td>
<td>2.14$\pm 0.13$</td>
<td>51.2$\pm 3.0$</td>
</tr>
<tr>
<td>H$\zeta$ r</td>
<td>4102.9</td>
<td>$10.0 \pm 0.3$</td>
<td>$729 \pm 25$</td>
<td>1030$\pm 320$</td>
<td>3.55$\pm 0.16$</td>
<td>83.7$\pm 3.8$</td>
</tr>
<tr>
<td>H$\gamma$ r</td>
<td>4341.7</td>
<td>$-9.3 \pm 0.2$</td>
<td>$-639 \pm 16$</td>
<td>600$\pm 190$</td>
<td>3.89$\pm 0.21$</td>
<td>85.2$\pm 4.5$</td>
</tr>
<tr>
<td>H$\delta$ r</td>
<td>4341.7</td>
<td>$7.2 \pm 0.3$</td>
<td>$495 \pm 24$</td>
<td>890$\pm 290$</td>
<td>4.76$\pm 0.23$</td>
<td>103.4$\pm 5.1$</td>
</tr>
<tr>
<td>H$\beta$ b</td>
<td>4862.7</td>
<td>$-9.9 \pm 0.3$</td>
<td>$-610 \pm 20$</td>
<td>780$\pm 250$</td>
<td>5.09$\pm 0.25$</td>
<td>93.0$\pm 4.5$</td>
</tr>
<tr>
<td>H$\beta$ r</td>
<td>4862.7</td>
<td>$7.7 \pm 0.4$</td>
<td>$474 \pm 23$</td>
<td>760$\pm 250$</td>
<td>4.39$\pm 0.23$</td>
<td>79.9$\pm 4.2$</td>
</tr>
<tr>
<td>H$\alpha$ b</td>
<td>6564.7</td>
<td>$-9.5 \pm 0.4$</td>
<td>$-432 \pm 19$</td>
<td>770$\pm 290$</td>
<td>8.45$\pm 0.35$</td>
<td>97.5$\pm 4.1$</td>
</tr>
<tr>
<td>H$\alpha$ r</td>
<td>6564.7</td>
<td>$7.8 \pm 0.3$</td>
<td>$355 \pm 15$</td>
<td>600$\pm 190$</td>
<td>7.45$\pm 0.29$</td>
<td>85.5$\pm 3.3$</td>
</tr>
</tbody>
</table>

### TABLE 2

<table>
<thead>
<tr>
<th>Line</th>
<th>$\lambda_{\text{vac}}$ (Å)</th>
<th>$\delta \lambda$ (Å)</th>
<th>$V$ (km s$^{-1}$)</th>
<th>FWHM (km s$^{-1}$)</th>
<th>EW (Å)</th>
<th>Flux/10$^{-16}$ (ergs s$^{-1}$ cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$\beta$</td>
<td>4027.3</td>
<td>$-6.3 \pm 0.5$</td>
<td>$-472 \pm 34$</td>
<td>910$\pm 300$</td>
<td>3.22$\pm 0.22$</td>
<td>79.2$\pm 5.5$</td>
</tr>
<tr>
<td>H$\gamma$</td>
<td>4027.3</td>
<td>$10.1 \pm 0.8$</td>
<td>$755 \pm 58$</td>
<td>580$\pm 300$</td>
<td>0.96$\pm 0.18$</td>
<td>23.4$\pm 4.4$</td>
</tr>
<tr>
<td>H$\delta$</td>
<td>4472.7</td>
<td>$-8.1 \pm 0.7$</td>
<td>$-541 \pm 48$</td>
<td>580$\pm 290$</td>
<td>1.33$\pm 0.29$</td>
<td>27.8$\pm 6.0$</td>
</tr>
<tr>
<td>H$\rho$</td>
<td>4472.7</td>
<td>$4.9 \pm 1.2$</td>
<td>$327 \pm 83$</td>
<td>1500$\pm 530$</td>
<td>4.52$\pm 0.33$</td>
<td>108.2$\pm 10.8$</td>
</tr>
<tr>
<td>H$\gamma$</td>
<td>4680.7</td>
<td>$-10.2 \pm 0.3$</td>
<td>$-650 \pm 21$</td>
<td>430$\pm 160$</td>
<td>1.69$\pm 0.17$</td>
<td>32.7$\pm 3.3$</td>
</tr>
<tr>
<td>H$\delta$</td>
<td>4680.7</td>
<td>$9.2 \pm 0.8$</td>
<td>$591 \pm 49$</td>
<td>1340$\pm 470$</td>
<td>3.99$\pm 0.26$</td>
<td>76.8$\pm 5.0$</td>
</tr>
<tr>
<td>H$\beta$</td>
<td>4923.3</td>
<td>$-9.1 \pm 0.6$</td>
<td>$-550 \pm 33$</td>
<td>640$\pm 240$</td>
<td>1.94$\pm 0.20$</td>
<td>34.9$\pm 3.5$</td>
</tr>
<tr>
<td>H$\gamma$</td>
<td>4923.3</td>
<td>$8.5 \pm 0.5$</td>
<td>$519 \pm 29$</td>
<td>520$\pm 200$</td>
<td>1.74$\pm 0.16$</td>
<td>31.0$\pm 3.2$</td>
</tr>
<tr>
<td>H$\delta$</td>
<td>5017.1</td>
<td>$-7.6 \pm 0.6$</td>
<td>$-452 \pm 35$</td>
<td>700$\pm 260$</td>
<td>2.29$\pm 0.22$</td>
<td>39.8$\pm 3.8$</td>
</tr>
<tr>
<td>H$\gamma$</td>
<td>5017.1</td>
<td>$11.5 \pm 0.5$</td>
<td>$691 \pm 29$</td>
<td>870$\pm 290$</td>
<td>3.98$\pm 0.23$</td>
<td>68.9$\pm 4.0$</td>
</tr>
<tr>
<td>H$\delta$</td>
<td>5877.3</td>
<td>$-7.6 \pm 0.6$</td>
<td>$-388 \pm 31$</td>
<td>720$\pm 240$</td>
<td>1.82$\pm 0.26$</td>
<td>52.4$\pm 3.6$</td>
</tr>
<tr>
<td>H$\gamma$</td>
<td>5877.3</td>
<td>$5.9 \pm 0.3$</td>
<td>$300 \pm 17$</td>
<td>350$\pm 130$</td>
<td>2.40$\pm 0.19$</td>
<td>32.8$\pm 2.6$</td>
</tr>
<tr>
<td>H$\delta$</td>
<td>6604.0</td>
<td>$-10.7 \pm 1.0$</td>
<td>$-482 \pm 45$</td>
<td>800$\pm 320$</td>
<td>2.80$\pm 0.27$</td>
<td>31.2$\pm 3.0$</td>
</tr>
<tr>
<td>H$\gamma$</td>
<td>6608.0</td>
<td>$9.5 \pm 0.9$</td>
<td>$427 \pm 40$</td>
<td>630$\pm 260$</td>
<td>2.25$\pm 0.23$</td>
<td>25.0$\pm 2.6$</td>
</tr>
<tr>
<td>H$\delta$</td>
<td>7067.1</td>
<td>$-10.0 \pm 1.0$</td>
<td>$-425 \pm 44$</td>
<td>620$\pm 250$</td>
<td>1.98$\pm 0.25$</td>
<td>20.1$\pm 2.6$</td>
</tr>
<tr>
<td>H$\gamma$</td>
<td>7067.1</td>
<td>$9.1 \pm 0.9$</td>
<td>$388 \pm 39$</td>
<td>560$\pm 240$</td>
<td>1.99$\pm 0.23$</td>
<td>20.1$\pm 2.4$</td>
</tr>
</tbody>
</table>