Lipschitz Restrictions of Continuous Functions and a Simple Construction of Ulam-Zahorski C1 Interpolation

Krzysztof Ciesielski
West Virginia University, krzysztof.ciesielski@mail.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

Part of the Mathematics Commons

Digital Commons Citation
Ciesielski, Krzysztof, "Lipschitz Restrictions of Continuous Functions and a Simple Construction of Ulam-Zahorski C1 Interpolation" (2018). Faculty Scholarship. 852.
https://researchrepository.wvu.edu/faculty_publications/852

This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.
LIPSCHITZ RESTRICTIONS OF CONTINUOUS FUNCTIONS AND A SIMPLE CONSTRUCTION OF ULAM-ZAHORSKI C^1 INTERPOLATION

Abstract

We present a simple argument that for every continuous function $f: \mathbb{R} \to \mathbb{R}$ its restriction to some perfect set is Lipschitz. We will use this result to provide an elementary proof of the C^1 free interpolation theorem, that for every continuous function $f: \mathbb{R} \to \mathbb{R}$ there exists a continuously differentiable function $g: \mathbb{R} \to \mathbb{R}$ which agrees with f on an uncountable set. The key novelty of our presentation is that no part of it, including the cited results, requires from the reader any prior familiarity with the Lebesgue measure theory.

1 Introduction and background

The main result we like to discuss here is the following 1985 theorem of Agronsky, Bruckner, Laczkovich, and Preiss [1]. It implies that every continuous function $f: \mathbb{R} \to \mathbb{R}$ must have some traces of differentiability, even though there exist continuous functions $f: \mathbb{R} \to \mathbb{R}$ that are nowhere differentiable (see e.g. [10, 22, 23]) or, even stronger, nowhere approximately and \mathcal{L}-approximately differentiable. In fact, the first coordinate of the classical Peano curve (i.e., $f_1: [0, 1] \to [0, 1]$, where $f = (f_1, f_2): [0, 1] \to [0, 1]^2$ is a continuous surjection constructed by Peano) has these properties, see [6] or

Mathematical Reviews subject classification: Primary: 26A24; Secondary: 26B05

Key words: differentiation of partial functions, extension theorems, Whitney extension theorem

Received by the editors June 28, 2017

Communicated by: Paul Humke
[7, Example 4.3.8]. Such a function cannot agree with a C^1 function on a set which is either of second category or of positive Lebesgue measure.

Theorem 1. For every continuous $f : \mathbb{R} \to \mathbb{R}$ there is a continuously differentiable function $g : \mathbb{R} \to \mathbb{R}$ such that the set $[f = g] = \{x \in \mathbb{R} : f(x) = g(x)\}$ is uncountable. In particular, $[f = g]$ contains a perfect set P and the restriction $f \upharpoonright P$ is continuously differentiable.

In the statement of Theorem 1 the differentiability of $h = f \upharpoonright P$ is understood as the existence of its derivative, that is, of the function $h' : P \to \mathbb{R}$ defined, for every $p \in P$, as $h'(p) = \lim_{x \to p, x \in P} \frac{h(x) - h(p)}{x - p}$.

The story behind Theorem 1 spreads over a big part of the 20th century and is described in detail in [2] and [16]. Briefly, around 1940 S. Ulam asked, in Scottish Book, Problem 17.1, see [21], whether every continuous $f : \mathbb{R} \to \mathbb{R}$ agrees with some real analytic function on an uncountable set. Z. Zahorski showed, in his 1948 paper [25], that the answer is no: there exists a C^∞ (i.e., infinitely many times differentiable) function which can agree with every real analytic function on at most finite set of points. At the same paper Zahorski stated a problem, refereed to as Ulam-Zahorski problem: does every continuous $f : \mathbb{R} \to \mathbb{R}$ agrees with some C^∞ (or possibly C^n or D^n) function on some uncountable set? Clearly, Theorem 1 shows that Ulam-Zahorski problem has an affirmative answer for the C^1 class of functions. This is the best possible result in this direction, since A. Olevskii constructed, in his 1994 paper [16], a continuous function which can agree with every C^2 function on at most countable set of points.

The format of our proof of Theorem 1 is relatively straightforward. First we provide a simple argument that for every continuous function $f : \mathbb{R} \to \mathbb{R}$ its restriction to some perfect set $P \subset \mathbb{R}$ is Lipschitz. Here the key case, presented in Sec. 2, is when f is monotone. Then we will follow an argument of Morayne [15] to show that there is a perfect $Q \subset P$ for which $f \upharpoonright Q$ satisfies the assumptions of Whitney’s C^1 extension theorem [24]. At this point, to make the argument more accessible, we point the reader to a version of Whitney’s C^1 extension theorem from [4], whose proof is elementary and simple.

1Of course this result follows immediately from Theorem 1, as g from Theorem 1 is Lipschitz on any bounded interval. However, we are after a simpler proof of Theorem 1, so using it to argue for our step to prove it is pointless.
2 Lipschitz restrictions of monotone continuous maps

In what follows f will always be a continuous function from \mathbb{R} into \mathbb{R}, Δ will stand for the set $\{(x,x) : x \in \mathbb{R}\}$, and $q : \mathbb{R}^2 \setminus \Delta \to \mathbb{R}$ be the quotient function for f, that is, defined as $q(x,y) = \frac{f(x) - f(y)}{x-y}$. For $Q \subset \mathbb{R}$ we will use the symbol $q \mid Q^2$ to denote the restriction of q to the set $Q^2 \setminus \Delta$.

Theorem 2. Assume that $f : \mathbb{R} \to \mathbb{R}$ is monotone and continuous on a non-trivial interval $[a,b]$. For every $L > |q(a,b)|$ there exists a closed uncountable set $P \subset [a,b]$ such that $f \mid P$ is Lipschitz with constant L.

The difficulty in proving Theorem 2 without measure theoretical tools comes from the fact that there exist strictly increasing continuous functions $f : \mathbb{R} \to \mathbb{R}$ which posses finite or infinite derivative at every point, but that the derivative of f is infinite on a dense G_δ-set. The first example of such function was given by Pompeiu in [18]. More recent description of such functions can be found in [20, sec. 9.7] and [5]. These examples show that a perfect set in Theorem 2 should be nowhere sense. Thus we will use a measure theoretical approach, in which the measure theoretical tools will be present only implicitly or, as in case of Fact 5, given together with a simple proof.

We extract the proof of next theorem from the proof, presented in [8], of a Lebesgue theorem that every monotone function $f : \mathbb{R} \to \mathbb{R}$ is differentiable almost everywhere.

Our proof of Theorem 2 is based on the following 1932 result of Riesz [19], known as the rising sun lemma. For reader’s convenience we include its short proof.

Lemma 3. If g is a continuous function from a non-trivial interval $[a,b]$ into \mathbb{R}, then the set $U = \{x \in [a,b) : g(x) < g(y) \text{ for some } y \in (x,b]\}$ is open in $[a,b)$ and $g(c) \leq g(d)$ for every open connected component (c,d) of U.

Proof. It is clear that U is open in $[a,b)$. To see the other part, let (c,d) be a component of U. By continuity of g, it is enough to prove that $g(p) \leq g(d)$ for every $p \in (c,d)$. Assume by way of contradiction that $g(d) < g(p)$ for some $p \in (c,d)$ and let $x \in [p,b]$ be a point at which $g \mid [p,b]$ achieves the maximum. Then $g(d) < g(p) \leq g(x)$ and so we must have $x \in [p,d) \subset U$, as otherwise d would belong to U. But $x \in U$ contradicts the fact that $g(x) \geq g(y)$ for every $y \in (x,b)$.

Remark 4. In Lemma 3 we also have $g(c) \geq g(d)$, since $c \in [a,b) \setminus U$. But we do not actually need this fact.
For an interval I let $\ell(I)$ be its length. We need the following simple well-known observations.

Fact 5. Let $a < b$ and \mathcal{J} be a family of open intervals with $\bigcup \mathcal{J} \subset (a, b)$.

(i) If $[\alpha, \beta] \subset \bigcup \mathcal{J}$, then $\sum_{I \in \mathcal{J}} \ell(I) > \beta - \alpha$.

(ii) If the intervals in \mathcal{J} are pairwise disjoint, then $\sum_{I \in \mathcal{J}} \ell(I) \leq b - a$.

Proof. (i) By compactness of $[\alpha, \beta]$ we can assume that \mathcal{J} is finite, say of size n. Then (i) follows by an easy induction on n: if $(c, d) = J \in \mathcal{J}$ contains β, then either $c \leq \alpha$, in which case (i) is obvious, or $\alpha < c$ and, by induction, $\sum_{I \in \mathcal{J}} \ell(I) = \ell(J) + \sum_{I \in \mathcal{J}\setminus\{J\}} \ell(I) > \ell([\alpha, \beta]) + \ell([\alpha, c]) = \beta - \alpha$.

(ii) Once again, it is enough to show (ii) for finite \mathcal{J}, say of size n, by induction. Then, there is $(c, d) = J \in \mathcal{J}$ to the right of any $I \in \mathcal{J}\setminus\{J\}$. Hence, by induction, $\sum_{I \in \mathcal{J}} \ell(I) = \ell(J) + \sum_{I \in \mathcal{J}\setminus\{J\}} \ell(I) \leq (b-c) + (c-a) = b-a$. \qed

Proof of Theorem 2. If there exists a nontrivial interval $[c, d] \subset [a, b]$ on which f is constant, then clearly $P = [c, d]$ is as needed. So, we can assume that f is strictly monotone on $[a, b]$. Also, replacing f with $-f$, if necessary, we can also assume that f is strictly increasing.

Fix $L > |q(a, b)| = \frac{f(b) - f(a)}{b-a}$ and define $g : \mathbb{R} \to \mathbb{R}$ as $g(t) = f(t) - Lt$. Then $g(a) = f(a) - La > f(b) - Lb = g(b)$. Let $m = \sup\{g(x) : x \in [a, b]\}$ and $\bar{a} = \sup\{x \in [a, b] : g(x) = m\}$. Then $f(\bar{a}) - L\bar{a} = g(\bar{a}) \geq g(a) > g(b) = f(b) - Lb$, so $a \leq \bar{a} < b$ and we still have $L > |q(\bar{a}, b)| = \frac{f(b) - f(\bar{a})}{b-\bar{a}}$. Moreover, \bar{a} does not belong to the set

$$U = \{x \in [\bar{a}, b] : g(y) > g(x) \text{ for some } y \in (x, b]\}$$

from Lemma 3 applied to g on $[\bar{a}, b]$. In particular, U is open in \mathbb{R} and the family \mathcal{J} of all connected components of U contains only open intervals (c, d) for which, by Lemma 3, $g(c) \leq g(d)$.

The set $P = [\bar{a}, b] \setminus U \subset [a, b]$ is closed and for any $x < y$ in P we have $f(y) - Ly = g(y) \leq g(x) = f(x) - Lx$, that is, $|f(y) - f(x)| = f(y) - f(x) \leq Ly - Lx = L|y-x|$. In particular, f is Lipschitz on P with constant L. It is enough to show that P is uncountable.

To see this notice that for every $J = (c, d) \in \mathcal{J}$ we have $f(d) - Ld = g(d) \geq g(c) = f(c) - Lc$, that is, $\ell(f[J]) = f(d) - f(c) \geq L(d-c) = L\ell(J)$. Since the intervals in the family $\mathcal{J}^* = \{f[J] : J \in \mathcal{J}\}$ are pairwise disjoint and contained in the interval $(f(\bar{a}), f(b))$, by Fact 5(ii) we have $\sum_{J \in \mathcal{J}^*} \ell(J^*) \leq f(b) - f(\bar{a})$.

So, $\sum_{J \in \mathcal{J}} \ell(J) \leq \frac{1}{L} \sum_{J \in \mathcal{J}} \ell(f[J]) = \frac{1}{L} \sum_{J \in \mathcal{J}} \ell(J^*) \leq \frac{f(b) - f(\bar{a})}{L} < b - \bar{a}$. Thus, by Fact 5(i), $P = [\bar{a}, b] \setminus U = [\bar{a}, b] \setminus \bigcup \mathcal{J} \neq \emptyset$. However, we need more,
that P cannot be contained in any countable set, say $\{x_n : n \in \mathbb{N}\}$. To see this, fix $\delta > 0$ such that $\frac{f(b) - f(\bar{a})}{L} + \delta < b - \bar{a}$, for every $n \in \mathbb{N}$ choose an interval $(c_n, d_n) \ni x_n$ of length $2^{-n}\delta$, and put $\hat{J} = J \cup \{(c_n, d_n) : n < \omega\}$. Then

$$
\sum_{J \in \hat{J}} \ell(J) = \sum_{J \in J} \ell(J) + \sum_{n \in \mathbb{N}} \ell((c_n, d_n)) \leq \frac{f(b) - f(\bar{a})}{L} + \delta < \beta - \alpha
$$

so, by Fact 5(i), $U \cup \bigcup_{n \in \mathbb{N}} (c_n, d_n) \supset U \cup \{x_n : n \in \mathbb{N}\}$ does not contain $[\bar{a}, b]$. In other words, $P = [\bar{a}, b] \setminus U$ is uncountable, as needed.

Remark 6. A presented proof of Theorem 2 actually gives a stronger result, that the set $[a, b] \setminus P$ can have arbitrary small Lebesgue measure.

3 Perfect set on which the difference quotient map is uniformly continuous

The next proposition is a version of a theorem of Morayne [15], which implies that the conclusion of Proposition 7 holds when f, defined on a perfect subset of \mathbb{R}, is Lipschitz (i.e., the quotient map for such f has bounded range). The key innovation in Proposition 7 is that we prove this result without assuming that f, or some restriction of it, is Lipschitz.

Proposition 7. For every continuous $f : \mathbb{R} \to \mathbb{R}$ there exists a perfect set $Q \subset \mathbb{R}$ such that the quotient map $q \mid Q^2$ is bounded and uniformly continuous.

Proof. If f is monotone on some non-trivial interval $[a, b]$, then, by Theorem 2, there exists a perfect set $P \subset \mathbb{R}$ such that $f \mid P$ is Lipschitz. Thus, by Morayne’s theorem applied to $f \mid P$, there exists a perfect $Q \subset P$ for which the quotient map q is as needed. On the other hand, if f is monotone on no non-trivial interval, then, by a 1953 theorem of Padmavally [17] (compare also [14, 13, 9]) there exists a perfect set $Q \subset \mathbb{R}$ on which f is constant. Of course, the quotient map on such Q is as desired.

4 The main result

The following theorem is a restatement of Theorem 1 in a slightly different language.

Theorem 8. For every continuous function $f : \mathbb{R} \to \mathbb{R}$ there exists a perfect set $Q \subset \mathbb{R}$ such that $f \mid Q$ can be extended to C^1 function $F : \mathbb{R} \to \mathbb{R}$.
Let $Q \subset \mathbb{R}$ be as Proposition 7. It is well known, see e.g. [12], that uniform continuity of $q \upharpoonright Q^2$ implies that the assumptions of the Whitney's C^1 extension theorem (see [24]) are satisfied, that is, $f \upharpoonright Q$ has a desired C^1 extension $F: \mathbb{R} \to \mathbb{R}$. The problem with the citation [12], and many other papers containing needed extension result, is that the proofs presented there can hardly be considered simple. Thus, we like conclude the extendability of $f \upharpoonright Q$, having uniformly continuous $q \upharpoonright Q^2$, to C^1 extension $F: \mathbb{R} \to \mathbb{R}$ from the following recent result of Ciesielska and Ciesielski [4] which has simple elementary proof.

For a bounded open interval J let I_J be the closed middle third of J and for a perfect set $Q \subset \mathbb{R}$ let

$$\hat{Q} = Q \cup \bigcup \{I_J : J \text{ is a bounded connected component of } \mathbb{R} \setminus Q\}.$$

Proposition 9. [4] Let $f : Q \to \mathbb{R}$, where Q is a perfect subset of \mathbb{R}, and put $\hat{f} = f \upharpoonright \hat{Q}$, where $\hat{f} : \mathbb{R} \to \mathbb{R}$ is a linear interpolation of $f \upharpoonright Q$. If $f \upharpoonright Q$ is differentiable, then there exists a differentiable extension $F: \mathbb{R} \to \mathbb{R}$ of \hat{f}. Moreover, F is C^1 if, and only if, \hat{f} is continuously differentiable.

Proof of Theorem 8. If $Q \subset \mathbb{R}$ is from Proposition 7, then $q \upharpoonright Q^2$, defined on $Q^2 \setminus \Delta$, can be extended to uniformly continuous \hat{q} on Q^2 and $\hat{f} : \hat{Q} \to \mathbb{R}$ is continuously differentiable with $(f \upharpoonright Q)'(x) = \hat{q}(x, x)$ for every $x \in Q$. By Proposition 9, \hat{f} is differentiable (as a restriction of differentiable F). In particular, $\hat{f}'(x) = F'(x) = (f \upharpoonright Q)'(x)$ for every $x \in Q$ and $\hat{f}'(x) = \hat{q}(c, d)$ whenever $x \in I_J$, where $J = (c, d)$ is a bounded connected component of $\mathbb{R} \setminus Q$.

By Proposition 9, we need to show that \hat{f}' is continuous. Clearly \hat{f}' is continuous on $\hat{Q} \setminus Q$, as it is locally constant on this set. So, let $x \in Q$ and let $\varepsilon > 0$. We need to find an open U containing x such that $|\hat{f}'(x) - \hat{f}'(y)| < \varepsilon$ whenever $y \in \hat{Q} \cap U$. Since \hat{q} is continuous, there exists an open $V \subset \mathbb{R}^2$ containing (x, x) such that $|\hat{f}'(x) - \hat{q}(y, z)| = |\hat{q}(x, x) - \hat{q}(y, z)| < \varepsilon$ whenever $(y, z) \in \mathbb{R}^2 \cap V$. Let U_0 be open interval containing x such that $U_0^2 \subset V$ and let $U \subset U_0$ be an open set containing x such that: if $U \cap I_J \neq \emptyset$ for some bounded connected component $J = (c, d)$ of $\mathbb{R} \setminus Q$, then $c, d \in U_0$. We claim that U is as needed. Indeed, let $y \in \hat{Q} \cap U$. If $y \in Q$, then $(y, y) \in U_0^2 \subset V$ and $|\hat{f}'(x) - \hat{f}'(y)| = |\hat{q}(x, x) - \hat{q}(y, y)| < \varepsilon$. Also, if $y \in I_J$ for some bounded connected component $J = (c, d)$ of $\mathbb{R} \setminus Q$, then $(c, d) \in U_0^2 \subset V$ and, once again, $|\hat{f}'(x) - \hat{f}'(y)| = |\hat{q}(x, x) - \hat{q}(c, d)| < \varepsilon$. \hfill \qedsymbol
Lipschitz Restrictions and C^1 Interpolation Theorem

References

[17] K. Padmavally, *On the roots of equation $f(x) = \xi$ where $f(x)$ is real and continuous in (a,b), but monotonic in no subinterval of (a,b)*, Proc. Amer. Math. Soc., 4 (1953), 839–841.

