Lipschitz Restrictions of Continuous Functions and a Simple Construction of Ulam-Zahorski C1 Interpolation

Krzysztof Ciesielski
West Virginia University, krzysztof.ciesielski@mail.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

Part of the Mathematics Commons

Digital Commons Citation
Ciesielski, Krzysztof, "Lipschitz Restrictions of Continuous Functions and a Simple Construction of Ulam-Zahorski C1 Interpolation" (2018). Faculty & Staff Scholarship. 852.
https://researchrepository.wvu.edu/faculty_publications/852

This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty & Staff Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact researchrepository@mail.wvu.edu.
LIPSCHITZ RESTRICTIONS OF CONTINUOUS FUNCTIONS AND A SIMPLE CONSTRUCTION OF ULAM-ZAHORSKI C^1 INTERPOLATION

Abstract

We present a simple argument that for every continuous function $f: \mathbb{R} \to \mathbb{R}$ its restriction to some perfect set is Lipschitz. We will use this result to provide an elementary proof of the C^1 free interpolation theorem, that for every continuous function $f: \mathbb{R} \to \mathbb{R}$ there exists a continuously differentiable function $g: \mathbb{R} \to \mathbb{R}$ which agrees with f on an uncountable set. The key novelty of our presentation is that no part of it, including the cited results, requires from the reader any prior familiarity with the Lebesgue measure theory.

1 Introduction and background

The main result we like to discuss here is the following 1985 theorem of Agronsky, Bruckner, Laczkovich, and Preiss [1]. It implies that every continuous function $f: \mathbb{R} \to \mathbb{R}$ must have some traces of differentiability, even though there exist continuous functions $f: \mathbb{R} \to \mathbb{R}$ that are nowhere differentiable (see e.g. [10, 22, 23]) or, even stronger, nowhere approximately and I-approximately differentiable. In fact, the first coordinate of the classical Peano curve (i.e., $f_1: [0, 1] \to [0, 1]$, where $f = (f_1, f_2): [0, 1] \to [0, 1]^2$ is a continuous surjection constructed by Peano) has these properties, see [6] or
Such a function cannot agree with a C^1 function on a set which is either of second category or of positive Lebesgue measure.

Theorem 1. For every continuous $f : \mathbb{R} \to \mathbb{R}$ there is a continuously differentiable function $g : \mathbb{R} \to \mathbb{R}$ such that the set $[f = g] = \{ x \in \mathbb{R} : f(x) = g(x) \}$ is uncountable. In particular, $[f = g]$ contains a perfect set P and the restriction $f \restriction P$ is continuously differentiable.

In the statement of Theorem 1 the differentiability of $h = f \restriction P$ is understood as the existence of its derivative, that is, of the function $h' : P \to \mathbb{R}$ defined, for every $p \in P$, as $h'(p) = \lim_{x \to p, x \in P} \frac{h(x) - h(p)}{x - p}$.

The story behind Theorem 1 spreads over a big part of the 20th century and is described in detail in [2] and [16]. Briefly, around 1940 S. Ulam asked, in Scottish Book, Problem 17.1, see [21], whether every continuous $f : \mathbb{R} \to \mathbb{R}$ agrees with some real analytic function on an uncountable set. Z. Zahorski showed, in his 1948 paper [25], that the answer is no: there exists a C^∞ (i.e., infinitely many times differentiable) function which can agree with every real analytic function on at most finite set of points. At the same paper Zahorski stated a problem, refereed to as Ulam-Zahorski problem: does every continuous $f : \mathbb{R} \to \mathbb{R}$ agrees with some C^∞ (or possibly C^n or D^n) function on some uncountable set? Clearly, Theorem 1 shows that Ulam-Zahorski problem has an affirmative answer for the C^1 class of functions. This is the best possible result in this direction, since A. Olevskii constructed, in his 1994 paper [16], a continuous function which can agree with every C^2 function on at most countable set of points.

The format of our proof of Theorem 1 is relatively straightforward. First we provide a simple argument that for every continuous function $f : \mathbb{R} \to \mathbb{R}$ its restriction to some perfect set $P \subset \mathbb{R}$ is Lipschitz. Here the key case, presented in Sec. 2, is when f is monotone. Then we will follow an argument of Morayne [15] to show that there is a perfect $Q \subset P$ for which $f \restriction Q$ satisfies the assumptions of Whitney’s C^1 extension theorem [24]. At this point, to make the argument more accessible, we point the reader to a version of Whitney’s C^1 extension theorem from [4], whose proof is elementary and simple.

\[^1\]Of course this result follows immediately from Theorem 1, as g from Theorem 1 is Lipschitz on any bounded interval. However, we are after a simpler proof of Theorem 1, so using it to argue for our step to prove it is pointless.
2 Lipschitz restrictions of monotone continuous maps

In what follows \(f \) will always be a continuous function from \(\mathbb{R} \) into \(\mathbb{R} \), \(\Delta \) will stand for the set \(\{ (x,x) : x \in \mathbb{R} \} \), and \(q : \mathbb{R}^2 \setminus \Delta \to \mathbb{R} \) be the quotient function for \(f \), that is, defined as \(q(x,y) = \frac{f(x) - f(y)}{x-y} \). For \(Q \subset \mathbb{R} \) we will use the symbol \(q \restriction Q^2 \) to denote the restriction of \(q \) to the set \(Q^2 \setminus \Delta \).

Theorem 2. Assume that \(f : \mathbb{R} \to \mathbb{R} \) is monotone and continuous on a non-trivial interval \([a,b]\). For every \(L > |q(a,b)| \) there exists a closed uncountable set \(P \subset [a,b] \) such that \(f \restriction P \) is Lipschitz with constant \(L \).

The difficulty in proving Theorem 2 without measure theoretical tools comes from the fact that there exist strictly increasing continuous functions \(f : \mathbb{R} \to \mathbb{R} \) which possess finite or infinite derivative at every point, but that the derivative of \(f \) is infinite on a dense \(G_\delta \)-set. The first example of such function was given by Pompeiu in [18]. More recent description of such functions can be found in [20, sec. 9.7] and [5]. These examples show that a perfect set in Theorem 2 should be nowhere sense. Thus we will use a measure theoretical approach, in which the measure theoretical tools will be present only implicitly or, as in case of Fact 5, given together with a simple proof.

We extract the proof of next theorem from the proof, presented in [8], of a Lebesgue theorem that every monotone function \(f : \mathbb{R} \to \mathbb{R} \) is differentiable almost everywhere.

Our proof of Theorem 2 is based on the following 1932 result of Riesz [19], known as the rising sun lemma. For reader’s convenience we include its short proof.

Lemma 3. If \(g \) is a continuous function from a non-trivial interval \([a,b]\) into \(\mathbb{R} \), then the set \(U = \{ x \in [a,b) : g(x) < g(y) \text{ for some } y \in (x,b) \} \) is open in \([a,b)\) and \(g(c) \leq g(d) \) for every open connected component \((c,d)\) of \(U \).

Proof. It is clear that \(U \) is open in \([a,b)\). To see the other part, let \((c,d)\) be a component of \(U \). By continuity of \(g \), it is enough to prove that \(g(p) \leq g(d) \) for every \(p \in (c,d) \). Assume by way of contradiction that \(g(d) < g(p) \) for some \(p \in (c,d) \) and let \(x \in [p,b) \) be a point at which \(g \restriction [p,b) \) achieves the maximum. Then \(g(d) < g(p) \leq g(x) \) and so we must have \(x \in [p,d) \subset U \), as otherwise \(d \) would belong to \(U \). But \(x \in U \) contradicts the fact that \(g(x) \geq g(y) \) for every \(y \in (x,b) \).

Remark 4. In Lemma 3 we also have \(g(c) \geq g(d) \), since \(c \in [a,b) \setminus U \). But we do not actually need this fact.
For an interval I let $\ell(I)$ be its length. We need the following simple well-known observations.

Fact 5. Let $a < b$ and \mathcal{J} be a family of open intervals with $\bigcup \mathcal{J} \subset (a, b)$.

(i) If $[\alpha, \beta] \subset \bigcup \mathcal{J}$, then $\sum_{I \in \mathcal{J}} \ell(I) > \beta - \alpha$.

(ii) If the intervals in \mathcal{J} are pairwise disjoint, then $\sum_{I \in \mathcal{J}} \ell(I) \leq b - a$.

Proof. (i) By compactness of $[\alpha, \beta]$ we can assume that \mathcal{J} is finite, say of size n. Then (i) follows by an easy induction on n: if $(c, d) = J \in \mathcal{J}$ contains β, then either $c \leq \alpha$, in which case (i) is obvious, or $\alpha < c$ and, by induction, $\sum_{I \in \mathcal{J}} \ell(I) = \ell(J) + \sum_{I \in \mathcal{J} \setminus \{J\}} \ell(I) > \ell([\alpha, \beta]) + \ell([\alpha, c]) = \beta - \alpha$.

(ii) Once again, it is enough to show (ii) for finite \mathcal{J}, say of size n, by induction. Then, there is $(c, d) = J \in \mathcal{J}$ to the right of any $I \in \mathcal{J} \setminus \{J\}$. Hence, by induction, $\sum_{I \in \mathcal{J}} \ell(I) = \ell(J) + \sum_{I \in \mathcal{J} \setminus \{J\}} \ell(I) \leq (b - c) + (c - a) = b - a$. \qed

Proof of Theorem 2. If there exists a nontrivial interval $[c, d] \subset [a, b]$ on which f is constant, then clearly $P = [c, d]$ is as needed. So, we can assume that f is strictly monotone on $[a, b]$. Also, replacing f with $-f$, if necessary, we can also assume that f is strictly increasing.

Fix $L > |g(a, b)| = \frac{f(b) - f(a)}{b - a}$ and define $g: \mathbb{R} \to \mathbb{R}$ as $g(t) = f(t) - Lt$. Then $g(a) = f(a) - La > f(b) - Lb = g(b)$. Let $m = \sup\{g(x): x \in [a, b]\}$ and $\bar{a} = \sup\{x \in [a, b]: g(x) > m\}$. Then $f(\bar{a}) - L\bar{a} = g(\bar{a}) \geq g(a) > g(b) = f(b) - Lb$, so $a \leq \bar{a} < b$ and we still have $L > |q(\bar{a}, b)| = \frac{f(b) - f(\bar{a})}{b - \bar{a}}$. Moreover, \bar{a} does not belong to the set

$$U = \{x \in [\bar{a}, b): g(y) > g(x) \text{ for some } y \in (x, b]\}$$

from Lemma 3 applied to g on $[\bar{a}, b]$. In particular, U is open in \mathbb{R} and the family \mathcal{J}' of all connected components of U contains only open intervals (c, d) for which, by Lemma 3, $g(c) \leq g(d)$.

The set $P = [\bar{a}, b] \setminus U \subset [a, b]$ is closed and for any $x < y$ in P we have $f(y) - Ly = g(y) \leq g(x) = f(x) - Lx$, that is, $|f(y) - f(x)| = f(y) - f(x) \leq Ly - Lx = L|y - x|$. In particular, f is Lipschitz on P with constant L. It is enough to show that P is uncountable.

To see this notice that for every $J = (c, d) \in \mathcal{J}$ we have $f(d) - Ld = g(d) \geq g(c) = f(c) - Lc$, that is, $\ell(f[J]) = f(d) - f(c) \geq L(d - c) = L\ell(J)$. Since the intervals in the family $\mathcal{J}' = \{f[J]: J \in \mathcal{J}\}$ are pairwise disjoint and contained in the interval $(f(\bar{a}), f(b))$, by Fact 5(ii) we have $\sum_{J \in \mathcal{J}'} \ell(J^*) \leq \ell(f(\bar{a}) - f(b)).$ So, $\sum_{J \in \mathcal{J}} \ell(J) \leq \sum_{J \in \mathcal{J}} \ell(f[J]) = \sum_{J' \in \mathcal{J}'} \ell(J^*) \leq \frac{L(b - \bar{a})}{b - a} < b - \bar{a}$.

Thus, by Fact 5(i), $P = [\bar{a}, b] \setminus U = [\bar{a}, b] \setminus \bigcup \mathcal{J} \neq \emptyset$. However, we need more,
that \(P \) cannot be contained in any countable set, say \(\{x_n: n \in \mathbb{N}\} \). To see this, fix \(\delta > 0 \) such that \(\frac{f(b) - f(\bar{a})}{L} + \delta < b - \bar{a} \), for every \(n \in \mathbb{N} \) choose an interval \((c_n, d_n) \ni x_n \) of length \(2^{-n}\delta \), and put \(\mathcal{J} = \mathcal{J} \cup \{(c_n, d_n): n < \omega\} \). Then

\[
\sum_{J \in \mathcal{J}} \ell(J) = \sum_{J \in \mathcal{J}} \ell(J) + \sum_{n \in \mathbb{N}} \ell((c_n, d_n)) \leq \frac{f(b) - f(\bar{a})}{L} + \delta < \beta - \alpha
\]

so, by Fact 5(i), \(U \cup \bigcup_{n \in \mathbb{N}} (c_n, d_n) \supset U \cup \{x_n: n \in \mathbb{N}\} \) does not contain \([\bar{a}, b]\).

In other words, \(P = [\bar{a}, b] \setminus U \) is uncountable, as needed.

Remark 6. A presented proof of Theorem 2 actually gives a stronger result, that the set \([a, b] \setminus P\) can have arbitrary small Lebesgue measure.

3 Perfect set on which the difference quotient map is uniformly continuous

The next proposition is a version of a theorem of Morayne [15], which implies that the conclusion of Proposition 7 holds when \(f \), defined on a perfect subset of \(\mathbb{R} \), is Lipschitz (i.e., the quotient map for such \(f \) has bounded range). The key innovation in Proposition 7 is that we prove this result without assuming that \(f \), or some restriction of it, is Lipschitz.

Proposition 7. For every continuous \(f: \mathbb{R} \to \mathbb{R} \) there exists a perfect set \(Q \subset \mathbb{R} \) such that the quotient map \(q \mid Q^2 \) is bounded and uniformly continuous.

Proof. If \(f \) is monotone on some non-trivial interval \([a, b]\), then, by Theorem 2, there exists a perfect set \(P \subset \mathbb{R} \) such that \(f \mid P \) is Lipschitz. Thus, by Morayne’s theorem applied to \(f \mid P \), there exists a perfect \(Q \subset P \) for which the quotient map \(q \) is as needed. On the other hand, if \(f \) is monotone on no non-trivial interval, then, by a 1953 theorem of Padmavally [17] (compare also [14, 13, 9]) there exists a perfect set \(Q \subset \mathbb{R} \) on which \(f \) is constant. Of course, the quotient map on such \(Q \) is as desired.

4 The main result

The following theorem is a restatement of Theorem 1 in a slightly different language.

Theorem 8. For every continuous function \(f: \mathbb{R} \to \mathbb{R} \) there exists a perfect set \(Q \subset \mathbb{R} \) such that \(f \mid Q \) can be extended to \(C^1 \) function \(F: \mathbb{R} \to \mathbb{R} \).
Let $Q \subset \mathbb{R}$ be as Proposition 7. It is well known, see e.g. [12], that uniform continuity of $q | Q^2$ implies that the assumptions of the Whitney’s C^1 extension theorem (see [24]) are satisfied, that is, $f | Q$ has a desired C^1 extension $F: \mathbb{R} \to \mathbb{R}$. The problem with the citation [12], and many other papers containing needed extension result, is that the proofs presented there can hardly be considered simple. Thus, we like conclude the extendability of $f | Q$, having uniformly continuous $q | Q^2$, to C^1 extension $F: \mathbb{R} \to \mathbb{R}$ from the following recent result of Ciesielska and Ciesielski [4] which has simple elementary proof.

For a bounded open interval J let I_J be the closed middle third of J and for a perfect set $Q \subset \mathbb{R}$ let

$$\check{Q} = Q \cup \bigcup \{I_J : J \text{ is a bounded connected component of } \mathbb{R} \setminus Q\}.$$

Proposition 9. [4] Let $f: Q \to \mathbb{R}$, where Q is a perfect subset of \mathbb{R}, and put $\hat{f} = f | \check{Q}$, where $\hat{f}: \mathbb{R} \to \mathbb{R}$ is a linear interpolation of $f | Q$. If $f | Q$ is differentiable, then there exists a differentiable extension $F: \mathbb{R} \to \mathbb{R}$ of \hat{f}. Moreover, F is C^1 if, and only if, \hat{f} is continuously differentiable.

Proof of Theorem 8. If $Q \subset \mathbb{R}$ is from Proposition 7, then $q | Q^2$, defined on $Q^2 \setminus \Delta$, can be extended to uniformly continuous \tilde{q} on Q^2 and $f: Q \to \mathbb{R}$ is continuously differentiable with $(f | Q)'(x) = \tilde{q}(x, x)$ for every $x \in Q$. By Proposition 9, \hat{f} is differentiable (as a restriction of differentiable F). In particular, $\hat{f}'(x) = F'(x) = (f | Q)'(x)$ for every $x \in Q$ and $\hat{f}'(x) = \tilde{q}(c, d)$ whenever $x \in I_J$, where $J = (c, d)$ is a bounded connected component of $\mathbb{R} \setminus Q$.

By Proposition 9, we need to show that \hat{f}' is continuous. Clearly \hat{f}' is continuous on $Q \setminus Q$, as it is locally constant on this set. So, let $x \in Q$ and let $\varepsilon > 0$. We need to find an open U containing x such that $|\hat{f}'(x) - \hat{f}'(y)| < \varepsilon$ whenever $y \in Q \cap U$. Since \tilde{q} is continuous, there exists an open $V \in \mathbb{R}^2$ containing (x, x) such that $|\tilde{q}'(x) - \tilde{q}'(y, z)| = |\tilde{q}(x, x) - \tilde{q}(y, z)| < \varepsilon$ whenever $(y, z) \in Q^2 \cap V$. Let U_0 be open interval containing x such that $U_0^2 \subset V$ and let $U \subset U_0$ be an open set containing x such that: if $U \cap I_J \neq \emptyset$ for some bounded connected component $J = (c, d)$ of $\mathbb{R} \setminus Q$, then $c, d \in U_0$. We claim that U as needed. Indeed, let $y \in Q \cap U$. If $y \in Q$, then $(y, y) \in U^2 \subset V$ and $|\hat{f}'(x) - \hat{f}'(y)| = |\tilde{q}(x, x) - \tilde{q}(y, y)| < \varepsilon$. Also, if $y \in I_J$ for some bounded connected component $J = (c, d)$ of $\mathbb{R} \setminus Q$, then $(c, d) \in U_0^2 \subset V$ and, once again, $|\hat{f}'(x) - \hat{f}'(y)| = |\tilde{q}(x, x) - \tilde{q}(c, d)| < \varepsilon$. \qed
References

[17] K. Padmavally, *On the roots of equation $f(x) = \xi$ where $f(x)$ is real and continuous in (a,b), but monotonic in no subinterval of (a,b)*, Proc. Amer. Math. Soc., 4 (1953), 839–841.

