Some Additive Darboux-like functions

Krzysztof Ciesielski
West Virginia University, krzysztof.ciesielski@mail.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

Part of the Mathematics Commons

Digital Commons Citation

This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty & Staff Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact researchrepository@mail.wvu.edu.
SOME ADDITIVE DARBOUX–LIKE FUNCTIONS

K. CIESIELSKI

Received June 11, 1997 and, in revised form, September 16, 1997

Abstract. In this note we will construct several additive Darboux-like functions \(f: \mathbb{R} \to \mathbb{R} \) answering some problems from (an earlier version of) [4]. In particular, in Section 2 we will construct, under different additional set theoretical assumptions, additive almost continuous (in sense of Stallings) functions \(f: \mathbb{R} \to \mathbb{R} \) whose graph is either meager or null in the plane. In Section 3 we will construct an additive almost continuous function \(f: \mathbb{R} \to \mathbb{R} \) which has the Cantor intermediate value property but is discontinuous on any perfect set. In particular, such an \(f \) does not have the strong Cantor intermediate value property.
1. Preliminaries

Our terminology is standard and follows [3]. We consider only real-valued functions of one real variable. No distinction is made between a function and its graph. By \(\mathbb{R} \) and \(\mathbb{Q} \) we denote the set of all real and rational numbers, respectively. We will consider \(\mathbb{R} \) and \(\mathbb{R}^2 \) as linear spaces over \(\mathbb{Q} \). In particular, for a subset \(X \) of either \(\mathbb{R} \) or \(\mathbb{R}^2 \) we will use the symbol \(\text{LIN}_{\mathbb{Q}}(X) \) to denote the smallest linear subspace (of \(\mathbb{R} \) or \(\mathbb{R}^2 \)) over \(\mathbb{Q} \) that contains \(X \). Recall also that if \(D \subset \mathbb{R} \) is linearly independent over \(\mathbb{Q} \) and \(f: D \to \mathbb{R} \) then \(F = \text{LIN}_{\mathbb{Q}}(f) \subset \mathbb{R}^2 \) is an additive function (see definition below) from \(\text{LIN}_{\mathbb{Q}}(D) \) into \(\mathbb{R} \). Any linear basis of \(\mathbb{R} \) over \(\mathbb{Q} \) will be referred as a Hamel basis. By a Cantor set we mean any nonempty perfect nowhere dense subset of \(\mathbb{R} \).

The ordinal numbers will be identified with the sets of all their predecessors, and cardinals with the initial ordinals. In particular \(2 = \{0, 1\} \), and the first infinite ordinal \(\omega \) number is equal to the set of all natural numbers \(\{0, 1, 2, \ldots\} \). The family of all functions from a set \(X \) into \(Y \) is denoted by \(Y^X \). In particular, \(2^n \) will stand for the set of all sequences \(s: \{0, 1, 2, \ldots, n-1\} \to \{0, 1\} \), while \(2^{<\omega} = \bigcup_{n<\omega} 2^n \) is the set of all finite sequences into 2. The symbol \(|X| \) stands for the cardinality of a set \(X \). The cardinality of \(\mathbb{R} \), is denoted by \(\mathfrak{c} \) and referred as continuum. A set \(S \subset \mathbb{R} \) is said to be \(\mathfrak{c} \)-dense if \(|S \cap (a, b)| = \mathfrak{c} \) for every \(a < b \).

We will use also the following terminology [4]. A function \(f: \mathbb{R} \to \mathbb{R} \) is:

- **additive** if \(f(x + y) = f(x) + f(y) \) for every \(x, y \in \mathbb{R} \);
- **almost continuous** (in sense of Stallings) if each open subset of \(\mathbb{R} \times \mathbb{R} \) containing the graph of \(f \) contains also a continuous function from \(\mathbb{R} \) to \(\mathbb{R} \) [11];
- has the **Cantor intermediate value property** if for every \(x, y \in \mathbb{R} \) and for each Cantor set \(K \) between \(f(x) \) and \(f(y) \) there is a Cantor set \(C \) between \(x \) and \(y \) such that \(f[C] \subset K \);
- has the **strong Cantor intermediate value property** if for every \(x, y \in \mathbb{R} \) and for each Cantor set \(K \) between \(f(x) \) and \(f(y) \) there is a Cantor set \(C \) between \(x \) and \(y \) such that \(f[C] \subset K \) and \(f[C] \) is continuous.

Recall also that if the graph of \(f: \mathbb{R} \to \mathbb{R} \) intersects every closed subset \(B \) of \(\mathbb{R}^2 \) which projection \(\text{pr}(B) \) onto the \(x \)-axis has nonempty interior then \(f \) is almost continuous. (See e.g. [10].)
2. An additive discontinuous almost continuous function with a small graph

In this section we will show that the continuum hypothesis implies the existence of an additive almost continuous function \(f: \mathbb{R} \to \mathbb{R} \) whose graph is first category (or null) in the plane. This answers a question of Grande [5]. (See also [6] and [4, Question 5.2].) The author likes here to thank Udayan B. Darji for very helpful conversations on the subject.

Theorem 2.1. For \(i = 1, 2 \) let \(S_i \subset \mathbb{R} \) be such that \(q \cdot S_i \subset S_i \) for every \(q \in \mathbb{Q} \) and that the set
\[
\bigcap_{r \in T} (r + S_i)
\]
is \(c \)-dense for any subset \(T \) of \(\mathbb{R} \) of cardinality less than continuum. Then there exists an additive discontinuous almost continuous function \(f: \mathbb{R} \to \mathbb{R} \) such that \(f \subset (S_1 \times \mathbb{R}) \cup (\mathbb{R} \times S_2) \).

Before we prove this theorem we like to notice the following corollary.

Corollary 2.2.

1. If \(\mathbb{R} \) is not a union of less than continuum meager sets then there exists an additive discontinuous almost continuous function \(f: \mathbb{R} \to \mathbb{R} \) with the graph of measure zero.
2. If \(\mathbb{R} \) is not a union of less than continuum sets of measure zero then there exists an additive discontinuous almost continuous function \(f: \mathbb{R} \to \mathbb{R} \) with a meager graph.

Proof. (1) Let \(S \) be a dense \(G_\delta \) subset of \(\mathbb{R} \) of measure zero and put \(S_1 = S_2 = \bigcup_{q \in \mathbb{Q}} q \cdot S \). Then the sets \(S_1 \) and \(S_2 \) satisfy the assumptions of Theorem 2.1, while the set \((S_1 \times \mathbb{R}) \cup (\mathbb{R} \times S_2) \) has measure zero.

(2) Replace \(S \) with a meager set of full measure. \(\Box \)

Proof of Theorem 2.1. Let \(S = (S_1 \times \mathbb{R}) \cup (\mathbb{R} \times S_2) \), and \(\{A, C\} \) be a partition of \(c \) with each set having cardinality \(c \). Let \(\{B_\xi: \xi \in A\} \) be an enumeration of all closed subsets \(B \) of \(\mathbb{R}^2 \) with \(\text{pr}(B) \) having nonempty interior, and \(\{r_\xi: \xi \in C\} \) be an enumeration of \(\mathbb{R} \). By induction on \(\xi < c \) we will choose a sequence \(\langle (x_\xi, y_\xi): \xi < c \rangle \) such that the following inductive assumptions are satisfied for every \(\xi < c \).

(i) \(x_\xi \notin \text{LIN}_\mathbb{Q}(\{x_\zeta: \zeta < \xi\}) \).
(ii) \(f_\xi = \text{LIN}_\mathbb{Q}(\{x_\zeta, y_\zeta: \zeta \leq \xi\}) \subset S \).
(iii) If \(\xi \in A \) then \((x_\xi, y_\xi) \in B_\xi \).
(iv) If \(\xi \in C \) then \(r_\xi \notin \text{LIN}_\mathbb{Q}(\{x_\zeta: \zeta \leq \xi\}) \).
Note first if we have such a sequence then, by (i) and (iv) the set \(\{ x_\xi : \xi < \mathfrak{c} \} \) is a Hamel basis. Thus \(f = \text{LIN}_\mathbb{Q}(\{ (x_\xi, y_\xi) : \xi < \mathfrak{c} \}) \) is an additive function from \(\mathbb{R} \) into \(\mathbb{R} \) for which, by (ii), \(f \subset S = (S_1 \times \mathbb{R}) \cup (\mathbb{R} \times S_2) \). Moreover, by (iii), \(f \) is almost continuous and has a dense graph in \(\mathbb{R}^2 \).

To construct a sequence as described above assume that for some \(\xi < \mathfrak{c} \) the sequence \(\langle (x_\zeta, y_\zeta) : \zeta < \xi \rangle \) satisfying (i)–(iv) is already constructed. Then, by the inductive hypothesis,

\[
g_\xi = \text{LIN}_\mathbb{Q}(\{ (x_\zeta, y_\zeta) : \zeta < \xi \}) = \bigcup_{\zeta < \xi} f_\zeta \subset S.
\]

Let \(D_\xi \) be the domain of \(g_\xi \). The difficulty in choosing \((x_\xi, y_\xi) \) is to make sure that

\[
f_\xi = \{ (x, y) + q \cdot (x_\xi, y_\xi) : (x, y) \in g_\xi \& q \in \mathbb{Q} \} \subset S
\]

which is equivalent to the choice of \((x_\xi, y_\xi) \) from the set

\[
\bigcap_{(x,y) \in g_\xi} [(x, y) + S] \supset \left(\bigcap_{x \in D_\xi} (x + S_1) \right) \times \mathbb{R} \bigcup \mathbb{R} \times \left(\bigcap_{x \in D_\xi} (g_\xi(x) + S_2) \right).
\]

(Note that \(S \) is closed under rational multiplication.)

Assume first that \(\xi \in C \). If \(r_\xi \notin D_\xi \) put \(x_\xi = r_\xi \). Otherwise pick an arbitrary \(x_\xi \in \mathbb{R} \setminus D_\xi \). This will guarantee (i) and (iv). In order to have (ii) choose \(y_\xi \) from \(\bigcap_{x \in D_\xi} (g_\xi(x) + S_2) \), which is nonempty by the assumption from the theorem since \(|D_\xi| \leq |\xi| + \omega < \mathfrak{c} \). Then \((x_\xi, y_\xi) \in \mathbb{R} \times \left(\bigcap_{x \in D_\xi} (g_\xi(x) + S_2) \right) \) implying (ii).

To finish the proof, assume that \(\xi \in A \). The set \(T = \bigcap_{x \in D_\xi} (x + S_1) \) is \(\mathfrak{c} \)-dense so we can choose \(x_\xi \in T \cap \text{pr}(B_\xi) \setminus D_\xi \). Take \(y_\xi \) such that \((x_\xi, y_\xi) \in B_\xi \). Then (i), (ii), and (iii) are satisfied.

To state the last corollary of this section we need the following lemma, that seems to have an interest of its own.

Lemma 2.3. There exists a meager set \(S \subset \mathbb{R} \) of measure zero with the properties that \(p + q \cdot S \subset S \) for every \(p, q \in \mathbb{Q} \), and the set

\[
\bigcap_{i<\omega} (r_i + S)
\]

contains a perfect set for every sequence \(\langle r_i \in \mathbb{R} : i < \omega \rangle \).
Proof. For $1 < k < \omega$ and a sequence $\langle s_n \subset n : k \leq n < \omega \rangle$ of nonempty sets let

$$T(\langle s_n \rangle) = \left\{ \sum_{n=2}^{\infty} \frac{i_n}{n!} : \forall k \leq n < \omega \ (i_n \in s_n) \right\}.$$

Note that $T(\langle s_n \rangle)$ is a nonempty closed subset of $[0, 1]$. It is nowhere dense, unless $s_n = n$ for all but finitely many n. Moreover, if there exists $k \leq N < \omega$ such that $s_n = n$ for all $n > N$ then

$$m(T(\langle s_n \rangle)) = \prod_{n=k}^{N} \frac{|s_n|}{n}.$$

Also if $c_n = n - 1$ for $k \leq n < \omega$ then we denote the set $T(\langle c_n \rangle)$ by T^k.

Define

$$S = \bigcup \left\{ p + qT^k : p, q \in \mathbb{Q} \ & 1 < k < \omega \right\}.$$

Then S is meager, has measure zero, and is closed under \mathbb{Q} addition and multiplication. To finish the proof, choose a sequence $\langle r_i \in \mathbb{R} : i < \omega \rangle$. It is enough to prove that $\bigcap_{3 < i < \omega} T(\langle r_i \rangle)$ contains a perfect set. To prove this notice first that for every $r \in \mathbb{R}$ and every $1 < k < \omega$ there exists a sequence $\langle s_n \subset n : k \leq n < \omega \rangle$ with each $|s_n| \geq n - 2$ and such that

$$T(\langle s_n \rangle) \subset r + \bigcup \left\{ p + T^k : p \in \mathbb{Q} \right\} \subset r + S.$$

This follows from the fact that if $x, y \in T^k$ have the same “m-th digit” i_m in the representation $\sum_{n=2}^{\infty} (i_n/n!)$, then the “$m$-th digits” of $r + x$ and $r + y$ can differ by at most 1 modulo m. (To see it, assume that r is of the form $p + \sum_{n=2}^{\infty} (j_n/n!)$ with p being an integer. Then $x + p + \sum_{n=2}^{m} (j_n/n!)$ and $y + p + \sum_{n=2}^{m} (j_n/n!)$ have the same “m-th digit”, while by adding to any number the remainder $\sum_{n=m+1}^{\infty} (j_n/n!)$ of r, we increase the “m-th digit” by either 0 or 1 modulo m.)

Now, for each $3 < i < \omega$ choose a sequence $\langle s^i_n \subset n : 2i \leq n < \omega \rangle$ with $|s^i_n| \geq n - 2$ for every $n \geq 2$ for which

$$T(\langle s^i_n \rangle) \subset r_i + \bigcup \left\{ p + T^{2i} : p \in \mathbb{Q} \right\} \subset r_i + S.$$

For every $8 \leq n < \omega$ let $s_n = \bigcap_{8 \leq 2i \leq n} s^i_n \subset n$. Then each s_n has at least two elements and

$$T(\langle s_n \rangle) \subset \bigcap_{3 < i < \omega} T(\langle s^i_n \rangle) \subset \bigcap_{3 < i < \omega} (r_i + S).$$

This finishes the proof. \qed
Corollary 2.4. If the continuum hypothesis holds then there exists an additive discontinuous almost continuous function \(f : \mathbb{R} \to \mathbb{R} \) with the graph which is simultaneously meager and of measure zero.

Proof. Apply Theorem 2.1 to \(S_1 = S_2 = S \), where \(S \) is from Lemma 2.3.

Problem 2.1. Is it possible to find in ZFC an example of additive discontinuous almost continuous function \(f : \mathbb{R} \to \mathbb{R} \) with small graph (in sense of measure, category, or both)?

3. An additive almost continuous function with the Cantor intermediate value property which is discontinuous on any perfect set

In this section we will construct in ZFC an additive almost continuous function \(f : \mathbb{R} \to \mathbb{R} \) with the Cantor intermediate value property which is discontinuous on any perfect set. In particular, such a function does not have a strong Cantor intermediate value property. A similar example has been constructed by K. Banaszczyk and T. Natkaniec [2]: they constructed an almost continuous function \(f : \mathbb{R} \to \mathbb{R} \) with the Cantor intermediate value property which is of Sierpiński–Zygmund type, i.e., is discontinuous on any set of cardinality continuum. However, they had to use an additional set theoretical assumption in their construction (\(\mathbb{R} \) is not a union of less than continuum many meager sets) which is necessary, since there is a model of ZFC with no Darboux (so almost continuous) Sierpiński–Zygmund function [1]. The constructed example answers Question 3.11 from [4].

Theorem 3.1. There exists an additive almost continuous function \(f : \mathbb{R} \to \mathbb{R} \) which has the Cantor intermediate value property, but is not continuous on any perfect set. In particular, \(f \) does not have the strong Cantor intermediate value property.

The proof of the theorem is based on the following two lemmas.

Lemma 3.2. Every perfect set \(P_0 \subset \mathbb{R} \) has a perfect subset \(P \subset P_0 \) which is linearly independent over \(\mathbb{Q} \).

Proof. This can be proved by a minor modification of the proof presented in [7, thm. 2, Ch. XI sec. 7] that there exists a perfect subset of \(\mathbb{R} \) which is linearly independent over \(\mathbb{Q} \). (See also [8, 9].)
Lemma 3.3. There exists a Hamel basis H which can be partitioned onto the sets $\{P_\xi : \xi \leq \xi\}$ with the following properties.

1. For every $\xi < \xi$ the set P_ξ is perfect.
2. Every nonempty interval contains continuum many sets P_ξ and continuum many points from P_ξ.

Proof. Let P be a perfect set which is linearly independent over \mathbb{Q}. (See Lemma 3.2.) Let K be a proper perfect subset of P and $\{x_\xi : \xi \leq \xi\}$ be an enumeration of $P \setminus K$. Then there is a sequence $\langle (p_\xi, q_\xi) \in (\mathbb{Q} \setminus \{0\})^2 : \xi < \xi\rangle$ such that the sets $P_\xi = p_\xi x_\xi + q_\xi K$ satisfy the first part of (2). They also clearly satisfy (1).

Now, it is easy to extend $\bigcup_{\xi < \xi} P_\xi$ to a Hamel basis H such that $P_\xi = H \setminus \bigcup_{\xi < \xi} P_\xi$ is a ξ-dense.

Proof of Theorem 3.1. Let $\langle (I_\alpha, K_\alpha) : \xi < \xi\rangle$ be a list of all pairs $\langle I, K \rangle$ such that I is a nonempty open interval and K is a perfect set. By (2) of Lemma 3.3 we can reenumerate sets P_ξ to have $P_\alpha \subset I_\alpha$ for every $\alpha < \xi$. We will construct function f to have $f[I_\alpha] \subset K_\alpha$. This will guarantee the Cantor intermediate property of f. Next, let $\{B_\xi : \xi < \xi\}$ be an enumeration of all closed subsets B of \mathbb{R} with $\text{pr}(B)$ having nonempty interior, $\{x_\xi : \xi < \xi\}$ be an enumeration of the Hamel basis H from Lemma 3.3, and $\{C_\xi : \xi < \xi\}$ be an enumeration of all perfect sets C in \mathbb{R} such that C is linearly independent over \mathbb{Q}. By induction on $\xi < \xi$ construct a sequence of functions $\langle f_\xi : D_\xi \to \mathbb{R} : \xi < \xi\rangle$ such that the following inductive assumptions are satisfied for every $\xi < \xi$.

1. $\{D_\xi : \xi \leq \xi\}$ are countable pairwise disjoint subsets of H.
2. If $x \in D_\xi \cap P_\alpha$ for some $\alpha < \xi$ then $f_\xi(x) \in K_\alpha$.
3. There exists $z \in D_\xi$ such that $\langle z, f_\xi(z) \rangle \in B_\xi$.
4. If $F_\xi = \text{LIN}_\mathbb{Q}\left(\bigcup_{\xi \leq \xi} f_\xi\right)$ then $x_\xi \in \text{dom}(F_\xi)$ and $F_\xi |C_\xi$ is discontinuous.

To construct such a sequence assume that for some $\xi < \xi$ a sequence $\langle f_\xi : \xi < \xi\rangle$ satisfying (i)–(iv) is already constructed. Let $V = \text{LIN}_\mathbb{Q}\left(\bigcup_{\xi < \xi} D_\xi\right)$, choose a perfect subset $Z \subset C_\xi \setminus V$, and a countable dense subset D of Z.

Also, let $A = \bigcup_{z \in D} \text{supp}(z)$, where $\text{supp}(z)$ is the support of z, i.e., the smallest set $S \subset H$ for which $z \in \text{LIN}_\mathbb{Q}(S)$. Then A is countable, so we can choose $z_\omega \in Z \setminus \text{LIN}_\mathbb{Q}(A)$ and a sequence $\langle z_n \in D : n < \omega\rangle$ converging to z_ω. Then $\{z_n : n \leq \omega\} \subset C_\xi \setminus V$. Moreover, if $H_\eta = \text{supp}(z_\eta)$ for $\eta \leq \omega$ then there exists $y \in H_\omega \setminus (V \cup \bigcup\{H_n : n < \omega\})$. Choose $z \in \text{pr}(B_\xi) \cap P_\xi \setminus (V \cup \bigcup\{H_n : n \leq \omega\})$.
and define
\[D_\xi = \left(\{x_\xi, z\} \cup \bigcup \{H_n : n \leq \omega\} \right) \setminus V. \]

Function \(f_\xi \) is defined on \(D_\xi \) as follows. For \(x \in D_\xi \setminus \{y, x_\xi, z\} \) we define \(f_\xi(x) \) arbitrarily, making only sure that condition (ii) is satisfied. By now, \(F_\xi \) is already defined on \(\bigcup \{H_n : n \leq \omega\} \setminus \{y\} \). Thus, the sequence \(\langle F_\xi(z_n) : n < \omega \rangle \) is already determined. If it does not converge, define \(f_\xi \) on \(y \) arbitrarily, making sure that condition (ii) is satisfied. If it converges to a limit \(L \), define \(f_\xi(y) \) to force \(F_\xi(z_\omega) \neq L \). This can be done even if \(y \in P_\alpha \) for some \(\alpha < \kappa \) since we still have many choices (all elements from \(K_\alpha \)) for the value of \(f_\xi(y) \). Notice that such a choice implies that \(F_\xi | \{z_n : n \leq \omega\} \) is discontinuous, while \(\{z_n : n \leq \omega\} \subset C_\xi \). Thus (iv) is satisfied. We finish the construction by choosing \(f_\xi(z) \) such that (iii) is satisfied, and \(f_\xi(x_\xi) \) in arbitrary way (subject to condition (ii)) if \(x_\xi \in D_\xi \) and \(f_\xi(x_\xi) \) is not defined so far. The construction is completed.

Now, define \(f = \text{LIN}_0 \left(\bigcup_{\xi<\kappa} f_\xi \right) \). Then \(f : \mathbb{R} \to \mathbb{R} \) is additive, since \(\bigcup_{\xi<\kappa} D_\xi = H \). Clearly, by (iv), \(f \) is discontinuous on any perfect set since, by Lemma 3.2, every perfect set contains some \(C_\xi \). Also, (iii) guarantees that \(f \) is almost continuous, while (ii) guarantees that \(f \) has the Cantor intermediate value property.

References

[1] Balcerzak, M., Ciesielski, K., Natkaniec, T., Sierpiński–Zygmund functions that are Darboux, almost continuous, or have a perfect road, Arch. Math. Logic 31(1) (1997), 29–35. (Preprint* available.)
[2] Banaszewski, K., Natkaniec, T., Sierpiński–Zygmund functions that have the Cantor intermediate value property, preprint*.

1Preprints marked by * are available in electronic form accessible from Set Theoretic Analysis Web Page: http://www.math.wvu.edu/homepages/kcies/STA/STA.html
Some additive Darboux–like functions

Krzysztof Ciesielski

Department of Mathematics

West Virginia University

Morgantown, WV 26506-6310

USA

KCies@wvnvms.wvnet.edu