
Graduate Theses, Dissertations, and Problem Reports

2000

Assessment of a Space Shuttle trajectory evaluation system Assessment of a Space Shuttle trajectory evaluation system

(DOLILU II) (DOLILU II)

Diwakar Chakravarthy
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Chakravarthy, Diwakar, "Assessment of a Space Shuttle trajectory evaluation system (DOLILU II)" (2000).
Graduate Theses, Dissertations, and Problem Reports. 1001.
https://researchrepository.wvu.edu/etd/1001

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1001&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1001?utm_source=researchrepository.wvu.edu%2Fetd%2F1001&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Assessment of A Space Shuttle Trajectory Evaluation System

(DOLILU II)

Diwakar Chakravarthy

Thesis submitted to the College of Engineering and Mineral Resources
at the West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science

In

Computer Science

Dr. Bojan Cukic (Chair)

Dr. Jim Mooney
Dr. Franz Hiergeist

Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2000

Keywords: Software Reliability, Bayesian Statistics, High Assurance Systems

Copyright 2000, Diwakar Chakravarthy

Assessment of a Space Shuttle Trajectory Evaluation System

(DOLILU II)

by
Diwakar Chakravarthy

Abstract

 DOLILU II is a ground control system that generates space shuttle’s launch
trajectories, first stage guidance commands and verifies whether the generated
trajectories are safe for the flight. It is a safety critical system and a high degree of
confidence in its safety and reliability must be gained through assessment. We addressed
three issues related to its safety and reliability assessment. We developed a reliability
assessment framework for DOLILU II system. We proposed techniques to speed up test
case execution and designed methodologies for the generation of input conditions needed
to test the system.
 We used a Bayesian statistical framework for reliability assessment. Bayesian
statistics uses knowledge about the system to be incorporated into the reliability model
before testing. DOLILU II has been operational for nearly five years. We use this
information when developing the reliability model. This information is introduced in the
form of prior beliefs.
 DOLILU II system requires an average time of 30 minutes for each test run. This
translates into a large time period required for testing to demonstrate that DOLILU II
exhibits the required failure rate. Vertical slicing, a semantic transformation technique, is
used to prove the possibility of parallel execution and enhance each test case execution.
 DOLILU II is an on-demand system. Many test trajectories are needed for its
assessment. Regression methods were used to develop models for the generation of input
data.

 iii

Acknowledgements

 I would like to sincerely thank my advisor Dr. Bojan Cukic for his interminable

patience and able guidance without which this document would have never been written.

I would like to thank Dr. Jack Callahan (CSEE department, WVU) for his timely advice

and information regarding DOLILU II system.

The work presented in the thesis was partially supported by the research grant

from Averstar, Inc. I would like to thank Mr. D. McCaugherty of Averstar, for providing

the necessary documentation for the system. He was very helpful in sharing vivid

descriptions of testing strategies previously used to test the system.

 I would like to thank my committee members Dr. Jim Mooney and Dr. Franz

Hiergeist for their kind cooperation.

 I would like to thank Dr. Iskander from IMSE department, WVU, for his help

with statistics and regression methodologies used in this thesis.

 I would also like to thank my friends for their efforts in perusing this document

and making valuable suggestions.

 iv

Table of Contents

1.0 Chapter 1: Introduction and Overview.. 1

1.1 Introduction... 1

1.2 Software Usage And Experiences... 2
1.2.1 Ariane 5 ... 3
1.2.2 Mars Climate Orbiter... 4

1.3 Motivation... 6

1.4 Thesis Overview ... 9

2.0 Chapter 2: Related Work .. 10

2.1 Reliability Assessment Methods... 10
2.1.1 Static Assessment Techniques... 12
2.1.2 Dynamic Assessment Techniques ... 13

2.1.2.1 Statistical Assessment Methods ... 14

3.0 Chapter 3: Day of Launch I-Load Update System (DOLILU II).. 18

3.1 DOLILU II – Primary System .. 20

3.2 Day-of-launch I-Load Verification Data Table (DIVDT) .. 21

3.3 Assessment Methodologies for DIVDT.. 24
3.3.1 Inspection... 25
3.3.2 Analysis ... 26
3.3.3 Testing ... 26
3.3.4 Demonstration ... 26
3.3.5 Comparison Against Results from Previous Version .. 26

4.0 Chapter 4: Assessment Methodologies ... 28

4.1 Bayesian Inference Framework .. 30
4.1.1 Classical Probability Theory versus Bayesian Inference... 31
4.1.2 Advantages of Bayesian Inference in Software Reliability ... 33
4.1.3 Bayes’ Theorem with Subjective Probabilities.. 34

4.2 Bayesian Reliability Assessment of DIVDT (DOLILU II) .. 35

 v

4.2.1 Choice of Prior Distribution .. 35
4.2.2 Extended testing with occurrence of failure .. 43

5.0 Chapter 5: Acceleration of Test Cases... 45

5.1 Transformations for Accelerated Execution of Test Cases... 45

5.2 Source Transformations .. 46
5.2.2 Reducing numerical precision ... 48

5.3 Environment Changes... 49

5.4 Transformations applied for DIVDT (DOLILU II) .. 49
5.4.1 Applying Vertical Slicing to DIVDT (DOLILU II) .. 49
5.4.2 Applying Numerical Precision Reduction for DIVDT.. 51
5.4.3 Environment Changes.. 52

6.0 Chapter 6: Automated Test Case Generation... 53

6.1 Basic Philosophy... 53

6.2 Regression Models, Surface Models Analysis.. 54
6.2.1 Linear Regression models.. 55
6.2.2 Estimation of the Regression Model.. 57

6.2.2.1 Method of Least Squares .. 57
6.2.2.2 Method of Maximum Likelihood ... 58

6.2.3 Multiple Regression Models – Surface Models... 61
6.2.3.1 Estimating variability and multiple correlation coefficient 62
6.2.3.2 Estimation of the regression coefficients.. 63

6.3 Selecting the Best Regression Equation for Prediction.. 64
6.3.1 Forward Selection.. 65
6.3.2 Backward Elimination ... 66
6.3.3 Stepwise Regression .. 66

6.4 Development of Model ... 67
6.4.1 Pressure Model .. 69
6.4.2 Temperature Model ... 70
6.4.3 Wind Model... 71

6.5 Generating Values... 72

 vi

7.0 Chapter 7: Conclusions and Further Work .. 73

Bibliography .. 76

Appendix A.. 80

Appendix B.. 99

List of Tables

Table 4.1: Number of test cases from Random Sampling (C=0.99) .. 41

Table 4.2: Number of Test Cases using Bayesian Framework (C=0.99), assuming θ=10-5 41

Table 4.2: Number of Test Cases using Bayesian Framework (C=0.99)... 42

Table 5.1: DOLILU II Quality Assurance Rules .. 49

Table A.2 Rule S1... 82

Table A.3 Rule S2... 83

Table A.4: Rule S3.. 83

Table A.5: Rule S4.. 84

Table A.6: Rule S5.. 84

Table A.7: Rule S6.. 85

Table A.8: Rule S7.. 85

Table A.9: Rule S8.. 85

Table A.10: Rule S9.. 86

Table A.11: Rule S13.. 87

Table A.12: Rule S14.. 87

Table A.13: Rule S15.. 88

Table A.14: Rule S16.. 88

Table A.15: Rule S19.. 89

Table A.16: Rule S20.. 89

Table A.17: Rule S21.. 90

Table A.18: Rule S22.. 90

Table A.19: Rule S23.. 91

Table A.21: Rule S24.. 91

Table A.22: Rule E1 ... 92

Table A.23: Rule E2 ... 92

Table A.24: Rule E3 ... 92

Table A.25: Rule E4 ... 93

Table A.26: Rule E5 ... 93

Table A.27: Rule E6 ... 94

 vii

Table A.27: Rule E7 ... 95

Table A.27: Rule E8 ... 95

Table A.28: Rule E9 ... 96

Table A.29: Rule E10 ... 96

Table A.30: Rule E11 ... 97

Table A.31: Rule E14 ... 97

Table A.32: Rule E15 ... 98

Table B.1: priors for corresponding belief in θ... 102

Table B.2 Variation in tests with decreasing variance, confidence = 0.99, θ = 10-4 105

List of Figures

Figure 3.1: Integrated Day-of-Launch I-Load Update (DOLILU II) System Diagram 19

Figure 4.1: Classical Model for Inferences ... 31

Figure 4.2: Bayesian Inference Model .. 32

Figure 4.3: Graph for beta(p,q) with p=q=1, equally likely distribution .. 36

Figure 5.1: Parallel Execution of DIVDT... 51

Figure 6.2: Regression Plot f(y) = 0.1342x + 20.84 ... 56

Figure 6.3: Simple Linear Regression Model ... 56

Figure 6.4 Graph showing variation in temperature with height .. 68

Figure 6.5 Variation of Pressure with Altitude ... 69

Figure 6.6 Variation of Wind Speed with Altitude ... 69

Figure 6.7: Surface Plot of Temperature with Pressure and Altitude.. 71

Figure B.4 Showing Variation of no. of test for θθθθ =10-4, C=0.99 with variation in p and q. 105

 1

1.0 Chapter 1: Introduction and Overview

1.1 Introduction

From Blaise Pascal’s modest invention of the first adding machine, to present day

fast computing machines; computers have undergone a significant metamorphosis.

Starting with the big bulky computers (UNIVAC, ENIAC) that cost over a million

dollars to fast desktop machines available today, they have progressed slowly from

solving problems of the scientific community, to permeate all occupations.

With computers becoming increasingly indispensable, there exists growing

awareness about the “untrustworthiness” of one of man’s greatest inventions. Though

computer systems firmware consists of both hardware and software, there has been more

emphasis on how much one’s reliance on software can be trusted. There are several

factors that abet this cause. The chief one that plagues software engineering unlike other

major engineering disciplines, including even computer hardware, is that they have a

more disciplined approach to both designing and addressing problems that persist in their

fields. There is generally a predictable life span for a given hardware product. It can be

modeled as a decaying rate of efficiency at which the product will deliver service.

Software, on the other hand, cannot be attributed with any of these factors. Most

disciplines are characterized by having a strong mathematical backbone they can rely on,

a simplistic design process and a more gradual change attaching more reliability to the

products thus evolved.

Design of software based systems is characterized by inherent “complexity” of

software involved. Idiosyncratic nature of software have been exhibited by one and all

 2

computer systems. Despite several fallacies, there is still a widespread acceptance of

software. The tolerance towards software failures is inversely proportional to the cost a

person is willing to pay for the software.

Failures in certain systems, however, are unacceptable. We may classify them into

two categories

• Money critical systems: systems that fall into this category are transaction

processing like banking software, telecommunications like networking systems

deployed for stock exchanges. Erroneous data processing could lead to

bankruptcy of a firm!

• Safety Critical Systems: software systems controlling/monitoring process control

systems like nuclear power plants, chemical plants, satellite software, flight

control. These systems are characterized by an enormous capital investment in

creating them and a failure that could endanger human life. In this thesis, we

deal with systems belonging to this category.

1.2 Software Usage And Experiences

Bev Littlewood and Lorenzo Stringini expressed their views regarding the

deployment of software in “systems where software is critical for safety”. In their

article[3], they delineated their growing concern, emphasizing the shortfall to guarantee

software correctness. They state “an appropriate level of safety can only be granted if the

applicability of software manning critical process is limited”. Despite several problems

that cripple software, it is still been used in several areas inclusive of process control

environments. The main advantage is that it allows a great degree of flexibility when

subsequent changes needs to be done to the system. Furthermore, automation of

 3

equipment in environments like nuclear power plants decrease the risk of the human user

controlling the process from exposure to hazardous radiation.

There is an adage that goes “one learns from one’s own experiences”. The best

way to know how software behaves when actually put to use is gathered only from field

experiences [3]. To attest to this fact, we may quote several examples where, software

failure has not only wasted enormous capital investment but also endangered and killed

human life. The following subsections relate these very instances.

1.2.1 Ariane 5

The maiden flight of Ariane5 (European Space Agency), launcher ended in a

failure on 4 June 1996. The launcher veered off its intended flight course, broke up and

exploded. The board documented the proceedings of the investigation [4]. The Flight

Control Systems on Ariane5 measured the altitude movements of the spacecraft in space

by an Inertial Reference System (SRI). The data from the SRI was conveyed through a

databus to the On-board Computer (OBC). The OBC executes the flight program and

controls the nozzles of the solid boosters and cryogenic engine through hydraulic

actuators and servovalves. In order to improve reliability, there were two SRI's operating

in parallel with identical hardware and software. The design of Ariane5 SRI was

practically the same as on its predecessor and hence the software was reused.

After about 40 seconds into flight, due to an angle of attack of more than 20

degrees high aerodynamic loads were caused. This in turn led to the separation of the

boosters from the main stage, triggering the self-destruct system.

The angle of attack was caused by full nozzle deflections of the solid boosters and

Vulcain main engine. This was commanded by the OBC on data that was received from

 4

the SRI system. This was because of a bit pattern from SRI 2 that was misconstrued to be

the flight data.

An internal software exception was generated on SRI 1 when a data conversion

from a 64-bit floating point to a 16-bit integer was made. SRI 1 shut down transferring

control to SRI 2. SRI 2 also detected the same fault but could not switch back to the SRI

1. SRI 2 hence conveyed incorrect flight data to OBC. The error occurred in the part of

the software that only performs alignment strap-down inertial platform. This software

provides meaningful information only before the lift off. This function was, by mistake,

operational for 40 seconds into flight. This time sequence was a requirement in Ariane4

but not in Ariane5. The operand error resulted in a high value of Horizontal Bias (BH),

related to horizontal velocity. The value of BH was higher than expected for Ariane5 as

the early part of the trajectory was different from Ariane4. This cascade led to the

destruction of the launcher.

1.2.2 Mars Climate Orbiter

On December 11, 1998, NASA launched the Mars Climate Orbiter (MCO) with

the objective to observe the planets surface, profile the structure of the atmosphere, and

detect surface reservoirs. This was a part of the Mars Surveyor Program started in

1993.[5]

 Nine and half months into the flight, on September 1999, MCO was to fire its

main engine to achieve an elliptical orbit around mars. A technique called

“aerobreaking” was being used to maneuver the flight through Mars’ upper atmosphere,

to reduce velocity and move into circular orbit. On September 23 1999, MCO mission

was lost when it entered the atmosphere on lower trajectory than expected.

 5

 The board investigated the mishap and proposed the following reasons for the

failure. On September 8 1999, the interplanetary Trajectory Correction Maneuver-4

(TCM-4) was planned. This maneuver was expected to adjust the trajectory such that

after the orbital insertion burn the point closest to the planet would be at a distance of 226

km. The data was up-linked to the orbiter in metadata files (AMD files). The on-board

computer computed the orbital insertion distance. TCM-4 was executed as planned on

September 15, 1999. Mars orbit insertion (MOI) was planned for September 23. During

this period, orbit determination processing by the navigation team received data

indicating that the first periapse distance had decreased to the range of 150-170km. 24

hours before MOI, MCO began to feel strong effects of Mars’ gravitational field. Before

one hour of MOI, first periapse altitude was 110 km.

 The MOI was started and all systems performed nominally until Mars’ occultation

loss of signal. Signal was to be reacquired after the 21-minute interval predicted for the

occultation period. There was no retrieval.

 On September 27, 1999, the operations navigation team discussed navigation

discrepancies regarding velocity change modeling issues. After two days it was found

that the small forces, ∆V’s, used in orbit determination on the orbiter before the

initialization burn (MOI) was low by a factor of 4.45 (1 pound force = 4.45 Newton). The

impulse bit data contained in the AMD file was delivered in lb.-sec instead of expected

units Newton-sec.

 After navigation estimates, using available data through loss of signal, with

corrected values the initial periapsis of 57 km was calculated which was too low for the

spacecraft survival. The estimated minimum altitude for survival was 80km.

 6

1.3 Motivation

 Safety in today’s technological terms seems akin to the notion of “risk”. R.N.

Charette [9] defined risk as an action/event having the following characteristics

• Having a loss associated with it

• Where uncertainty or chance is involved

• Some choice is also involved

Safety based on the above observations may be phrased as “ freedom from exposure to

danger, or the exemption from hurt or loss” [11].

 Several safety-critical systems follow this description. These systems require a

very high degree of confidence in their functioning. With so much at stake, a rigorous

framework of development is deemed essential when dealing with such high consequence

systems. Assurance of specifications was the first step taken to ensure the correctness of

requirements for the system. Languages like Z [20] have been successfully used to

formally specify the requirements thereby minimizing design errors that might creep in

due to an incorrect requirement definition document. Furthermore, to achieve greater

reliability by masking faults introduced at the design phase of the project, design diversity

[26] was adopted leading to fault tolerant and fault preventive systems [6]. Consequently,

these systems seldom exhibit failures. The question now arises, are all the above factors

sufficient to attest that the software will function without failures? When such a high

degree of dependability is a requirement, when subversion of the system could cause a

loss of life, it becomes apparent that one needs to endorse that the system indeed satisfies

the reliability requirement.

.

 7

Our work involved in developing assessment methods for NASA’s Day of

Launch I-Load Update (DOLILU II) system. The system evaluates trajectory parameters

against the I-Loads (Initialization Loads) that dictate the guidance commands for the

space shuttle. Wrongly approved trajectories and guidance commands could lead to the

destruction of the space shuttle. This system was a high consequence system.

Rigorous development methodologies were adopted to develop the system.

During each phase in the software life cycle, stringent and scrupulous techniques were

followed to ensure proper design and development (the requirements and design phase

went through 8 levels before final approval). During the verification and validation phase,

however, methodologies only stress tested the system with no effort to quantify the

reliability of the system. Furthermore, the system has been operational for the past 5

years. This gave us an opportunity to analyze the system and also develop a framework to

assess its reliability.

We looked into several theories that have been proposed over the years on

estimating the reliability of software in safety critical systems. They could be classified

into three main categories

• Formal methods

• Exhaustive testing

• Statistical testing

Formal methods have their genesis in years of mathematical formulation. The

underlying paradigm is that a program meets the “correctness” requirement if it satisfies

its intended purpose. In other words, it is said to be functionally correct if it behaves

according to the specifications. Program correctness is an absolute measure; the program

 8

under verification is either valid or invalid. There is no quantification of reliability; it is

either zero or one.

The drawback with this method is the assumption that the specifications

themselves are correct in nature. A correct implementation of a specification may still

lead to unreliable execution of program due to an imperfect specification [10] . It’s

tedious to provide proofs for complex systems. Hence it was difficult to formally verify

the entire DOLILU II system.

The more traditional way to estimate reliability of software is testing. Huang et al.

[12] stated in his paper that exhaustive testing is impossible as it is difficult to cover the

entire input domain for complex systems, to ensure complete execution of all paths in a

program. With a complex system like DOLILU II, this methodology was ruled out.

In this thesis we lay emphasis on the third form of software assessment based on

statistical testing techniques. These models perform repeated executions of software to

provide a certain level of confidence that the required degree of reliability has been

successfully achieved.

There were several challenges that we were posed with applying statistical

methods to DOLILU II system.

� Our discussions with the NASA IV&V personnel revealed that DOLILU system

required a demonstration of probability of failure less than 10-5. With a statistical

assessment framework this would translate into a large number of test cases.

However, we had information regarding the development process, the testing that had

already been done and the fact that the system has been in operational use for several

years. We needed an assessment framework, which would incorporate this

 9

information into our assessment model to determine an acceptable time frame to

assess the system.

� After developing a framework for assessment, we now needed to have sufficient

inputs generated to test the system.

� As the execution time for DOLILU II was in the order of minutes, we needed to

decrease the time required for each test case execution

1.4 Thesis Overview

The remaining thesis is organized as follows. Chapter 2 overviews existing

reliability assessment techniques. Chapter 3 analyzes the different systems that comprise

the DOLILU II system. Emphasis is laid on DIVDT (Day of launch I-Load Verification

Table). This chapter also enumerates the different techniques that have been used to

evaluate the working of DIVIDT, inclusive of test plans and their executions.

Chapter 4 introduces the notion of reliability as applicable to software. A

comparison is made between classical sampling theory and Bayesian inference,

delineating the merits of the Bayesian approach and its implications on assessing

ultrahigh reliability for software based systems.

Chapter 5 describes the use of slicing techniques to split the system into subparts,

and demonstrate the accelerated test case execution of the DIVIDT subsystem.

Chapter 6 address issues for auto generation of test cases. Here we explore

regression methodologies that could be adopted for generation of input conditions. It also

addresses issues regarding oracles.

Chapter 7 summarizes the thesis and suggests further work and other approaches

for evaluating the system.

 10

2.0 Chapter 2: Related Work

Historically, software creation has been viewed as a two-stage process. The first is

the translation of requirements from informal description into formal specifications.

Second is the translation of specifications into executable code.

When viewing this two-tier hierarchy one realizes that, there are at least two

processes where faults can be introduced. The main problem with achieving such high

reliability is the probability that subtle design faults always exist [13]. Design faults arise

due to incorrect understanding of requirements or due to omission in the specification

stage. Implementation faults occur during the second phase due to insufficient testing,

verification and validation.

This leads to three schools of thought for ensuring the reliability of critical

software. One way is verifying the correctness of specifications, indicating that all

desirable properties were captured. The second group aims at masking the effect of faults.

Techniques belonging to this category are fault tolerance and fault prevention. The third

group of methods, applicable at the tail end of software life cycle, includes assessment

techniques that instill the confidence that the requirements of reliability are met [6].

The remaining part of this chapter illustrates reliability assessment techniques,

mainly statistical reliability assessment methods.

2.1 Reliability Assessment Methods

Techniques, like assurance of specifications, vouch for the correctness of the

specifications. They reflect that all the properties were captured. It improves the removal

of faults introduced during the requirement specification stage. Nevertheless, the question

 11

remains does it truly reflect the reliability of the system. One cannot assure that the

implementation and design were devoid of faults. One might however reduce any

ambiguity in understanding the specifications.

Fault Tolerant and Fault Preventive systems attempt at nullifying subtle design

errors that might encroach. They adopt design diversity, to decrease the faults in the

system. Fault tolerant systems appeals to the robustness of software. These types of

systems increase the reliability by making the software execute in an acceptable manner

for spurious inputs. This is achieved by having different versions of the software. Fault

Prevention strives to achieve the same by making comparisons of different designs and

then taking the union of them. These systems enhance the reliability, but they do not

provide any information that justifies the reliability level they claim to have achieved

There are two approaches to assess the reliability of software:

• Static Assessment Analysis.

• Dynamic Assessment Analysis.

Static analysis requires no execution of the program that is being analyzed.

Program verification uses mathematical logic to prove program correctness. It proves

beyond the element of doubt that the program functions as specified under all possible

input conditions, implying all execution conditions.

Dynamic assessment analysis adheres to the more conventional technique of

executing the program to check for conformance with specifications. The program

undergoing evaluation is subjected to different inputs. The outputs of the program are

then compared with the expected results for the tested inputs.

 12

2.1.1 Static Assessment Techniques

The main technique used for static assessment is formal verification. It is based on

reasoning whether a program will work in accordance to specifications using

mathematical proof checking. There are several theories that have matured over the years

and culminated in proper proving techniques. A few of these are Hoare’s axiomatic

method [34], Floyd’s inductive method [35] and structural induction [35][36]. Several

textbooks explain these methods in detail [35].

One of the chief drawbacks with formal verification is the lack of mechanized

proof verification tools [6]. To prove a program functionally correct, one manually

performs the proof. When dealing with high consequence systems, the complexity of the

software may be high. Consequently, this leads to two main problems. The proof turns

out to be tedious and, abiding by the adage “to err is human”, erroneous proofs can

result.

Another aspect is transcribing the program into mathematical models. With

increased complexity of systems and increased complexity of languages, it seems

difficult to apply formal techniques to assess the correct functioning.

In principle, reliability of software can be quantified either by formal verification

or by statistical testing. The requirements specification of DOLILU II was written in

plain English and no attempt was made to formalize it with any form of mathematical

notation. Furthermore, the size and complexity of the specification documents make

formal program verification virtually impossible. Therefore the assessment of the

DOLILU system was done by program testing.

 13

2.1.2 Dynamic Assessment Techniques

Several techniques have been proposed over the years that fall into this category.

Some of the notable ones are, fault based assessments and statistical based methods.

Voas, Miller and others [38] proposed fault injection techniques to assess reliability. In

this method, one physically injects faults into the program. The process is termed

software fault injection. The software is then tested to determine whether faults can be

detected. Intuitively, this form of testing gives us insight into the test coverage obtained

from test cases. For more information on this type of testing one might refer to

[6][38][37]. When dealing with safety critical systems, which have a tendency almost

never to fail, fault-based methods do not provide sufficient knowledge of the reliability of

software.

In this thesis, we shall deal with what is termed black box testing. In this type of

testing we treat the software as a black box and test it statistically until it satisfies the

reliability requirements.

Musa proposed, that, to quantify the reliability of the software we need to have a

proper, well-defined, approach towards testing. He suggested the use of operational

profiles to dictate testing [19]. Operational profiles portray the likely field use of the

software. He even illustrated how one may develop the operational profile by doing a

case study. Exhaustive testing is infeasible and testing alone does not guarantee the

absence of faults. The rationale behind Musa’s work is, if testing was directed by the

operational usage (operations that take place most often) of the software, the likelihood of

detecting faults is enhanced and thus, the reliability estimate becomes more realistic.

 14

The major drawback is that it is difficult to determine the operational profile for

much software and it is difficult to predict the changes in the estimate of reliability, for

changes in the input profile. Interestingly, if one wanted to develop the operational

profile for DOLILU II system, it is noted that all the functions of the system need to be

exercised. The rules for evaluation may be divided into single point evaluation and a

range evaluation (for different parts of the trajectory). We shall now discuss the statistical

reliability assessment method.

2.1.2.1 Statistical Assessment Methods

In this thesis, we have used methods for evaluation of reliability of DOLILU II.

In this method of analysis, there are two approaches, black box approach and white box

approach. In the black box approach, the program under test is visualized as a function f

that maps all points in the input space into the corresponding points in the output space.

No knowledge of the implementation of the program is required. There is another school

of thought that uses the knowledge of the implementation (the code) to direct tests. This

methodology is termed white box testing. Here test cases are derived from the input based

on execution path coverage, or specifications. Both these methods divide the input

domain is into two portions, failure causing and non-failure causing inputs. We shall now

introduce the notion of reliability.

Intuitively, reliability is tied with failures, the more the number of failures the

lesser the reliability. If a total of n test runs were conducted and, of these, if nf inputs led

to incorrect results, according to the Nelson model, which derives the relationship

between reliability and the number of test cases executed, the estimated reliability R

(which is the proportion of right executions) is

 15

R
n n

n
f=

−

or

If number of test runs is large, n->∞, the fraction nf / n approaches zero, when nf is

significantly smaller than n. The above equation approaches unity. According to this

model, the more the test cases that are executed and the fewer failures one observes; the

higher is the reliability of the software.

Safety critical systems are characterized by a very high degree of dependability.

Development is rigorous in nature and the possibility of faults in design process is

reduced. Reliability assessment is done during the validation phase of the software life

cycle. Due to the nature of the software, it is unlikely that the software would exhibit

failures during final testing. Consider the case when we have executed 1000 test cases

and observed no failures (nf = 0), then, according to the Nelson model the estimate of

reliability is 1. The fraction nf / n is the failure probability. Is this a true estimate? The

question now arises, how do we predict the failure probability when we do not see any

failures?

Statistical assessment is done by selecting inputs randomly from the input domain

and testing the software. The foundation for this form of assessment lies in statistical

sampling theory [27]. Testing is done by randomly picking out inputs from the input

space. From statistical point of view this may be represented as a Bernoulli trial [6].

Reliability assessment assumes sampling with replacement for easier and economical

implementation of software testing. Since the input space is astronomical in size, the

probability of selecting the same test case twice is minimal.

R
n
n

f= −1

 16

Classical theory helps predict the probability of failure using the Laplace rule of

succession [31]. If one samples the input space which has an unknown number of failure

causing inputs and after running t tests on the software, if no faults are detected then the

probability of failure in a single run is given by

1

2t +
.

This indicates that failure probability is inversely proportional to the number of test cases

executed. This is intuitive as the greater the number of correctly executed test cases the

more is one’s confidence in the software being tested.

To establish a failure rate of less than 10-9 failures per hours we need to test the

program for 109 hours. The alternative solution is to make prior assumptions about the

quality of software [28][13][3][6]. Chapter 4 in the thesis deals with the Bayesian

framework for reliability assessment, which uses prior subjective beliefs to be

incorporated into the model.

It is not sufficient if one could predict the failure probability θ, of the program.

We must gain confidence that the predicted value of θ does in fact depict the realistic

estimate of θ .

Input domain models are plagued by the following shortcomings

• large number of test cases

• The assumption of a test oracle: oracles decide whether the result from a test

run is correct or incorrect unequivocally. Building test oracles is difficult. In

this thesis, we define premises on how to create a test oracle.

• Reliability estimation depends upon the ability to closely approximate/predict

the operational profile of the field use.[41]

 17

Despite these potential problems, a strong theoretical background of sampling

theory is the basis for choosing the input domain approach to assessing DOLILU II.

There are several techniques suggested in literature for effective testing of the

software. They all address the method of test data selection. The most popularly known

are code coverage techniques (branch testing and path testing), specification based

strategies [16][21], data flow criteria [17][18], and the domain strategy [22]. All these

methods share a common characteristic: the program’s input domain is divided into

subsets called subdomains. One or more inputs from each of these subdomains are

selected as representatives of the subdomain. This approach is called partition-testing

[24].

Studies by Duran and Naftos[29] and Hamlet and Taylor[30] showed that there is

only a marginal difference in finding bugs between partition testing and random testing.

 In the remaining part of the thesis, chapter 4 and 5, we shall discuss the

applicability of these methods for the assessment of DOLILU II system. We discuss the

relative merits and their problems in trying to assess the reliability of the trajectory

evaluation system.

 18

3.0 Chapter 3: Day of Launch I-Load Update System (DOLILU II)

The DOLILU II system for the Space Shuttle program has been developed for

the generation of launch trajectories and to allow modification of the shuttle’s first stage

guidance commands based on wind conditions (atmospheric conditions) measured hours

preceding the launch. The system consists of trajectory software required to generate

trajectories and verify guidance commands to recommend decisions on whether to fly or

not to fly. It is clear that DOLILU is a high consequence system i.e., there is very high

cost and a risk of life associated with the eventual occurrence of a failure.

The decision making process may me viewed as consisting of four independent

stages:

• Tracking and Wind Profiling stage: forms the first stage in the process. This process

assimilates data the from the launch balloons (tracking system), uses interpolation and

extrapolation techniques for the generation of wind, temperature and pressure profiles

based on altitude and time (wind profiling). This is shown as Tracking and Generate

Wind Profile in figure 3.1.

• Trajectory and Guidance Commands stage: there are two processes involved in this

stage. They are Day-of-launch Ascent Design System (DADS) and Space Vehicle

Dynamic Simulation (SVDS). DADS, generates the initialization loads (first stage

guidance commands) and the launch trajectories for the day-of-launch (DOL)

atmospheric conditions. SVDS generates a trajectory for mean monthly atmospheric

conditions surrounding DOL with DADS generated guidance commands for these

conditions and one for DOL conditions.

 19

Figure 3.1: Integrated Day-of-Launch I-Load Update (DOLILU II) System Diagram

• Verification stage: this stage forms the penultimate stage in the decision process. This

process evaluates wind and trajectory conditions against the guidance commands to

ensure the launch would not be fatal. We call this stage the Trajectory Evaluation

Stage.

• Experts Team: after the evaluation process is completed by DOLILU II system, a

team of experts analyze the results obtained from the system and finally decide

whether to make the flight or not.

In order to increase the reliability of the system, NASA adopted design diversity,

to make the system more fault tolerant. There are two separate computational lanes

indicated as primary and secondary systems in figure 3.1. Guidance commands and flight

E
X
E
C
U
T
I
V
E

SHUTTLE
ORBITER

RANGE
SAFETY

Generate
Wind
Profile

Range Data

Guidance Cmds

Tracking
Data

Wind
Data

Design Guidance
Cmds
Simulate Trajectory

Verify Trajectory and
Guidance Cmds

 DIVDT

Generate Range Data

Transmit Guidance
Cmds and Range Data

 Verify Trajectory and
Guidance Cmds

Simulate Trajectory

Evaluate
Results

Decision Data

Decision
Data

Primary System

Secondary System

 20

trajectories generated are deemed valid only if the outputs of both the lanes agree in their

analysis. In this thesis, we are interested in the assessment methodologies for the primary

system, especially the Trajectory Evaluation System.

3.1 DOLILU II – Primary System

The tracking systems receive the wind and atmospheric data from the balloons

released a few hours before the scheduled time of launch. The data is fed into the wind

profile generation processor. As the name suggests the primary function of this processor

is to generate the profiles in the required data format understandable to the remaining part

of the system.

The TLAMS (Trajectory and Load Analysis Management System, shown in the

diagram as the executive) initiates the next sequence of events for trajectory and guidance

commands generation and their validation. It invokes the Day-of-launch Ascent Design

System (DADS). DADS processor generates the guidance commands and simulates the

trajectories for the day of launch conditions. Guidance commands (I-Loads) and

measured winds are passed on to the Space Vehicle Dynamic Simulation (SVDS)

processor. SVDS produces two trajectory files, one is called the reference trajectory

(REFTRAJ), and this is simulated for mean monthly wind conditions. It also creates a

second trajectory file (DOLITRAJ) which uses the updated I-loads and present wind

conditions.

Near real-time verification is the most critical function of the DOLILU system.

Successfully simulated trajectories and their corresponding I-loads (guidance commands)

are verified for conformance with safety related rules, called envelopes. The envelopes

have been derived from previous experience (experience envelopes) and known system

 21

constraints (system envelopes). If any of the system constraint rules are violated then the

violation must be reported. A violation, when plotted, would be clearly seen to exceed the

system and experience envelopes. Such a flight trajectory is generally deemed invalid and

must be dismissed. TLAMS executive invokes the Day of launch I-Load Verification

Table (DIVDT) processor, which performs trajectory verification. DIVDT verifies

trajectories based on a predefined set of rules[40].

The DIVDT should detect all potentially unsafe flight conditions, verifying the outputs

from all the other processors of DOLILU system. Therefore, the reliability quantification

of the DIVDT processor is highly desirable.

3.2 Day-of-launch I-Load Verification Data Table (DIVDT)

DIVDT evaluates the trajectory conditions against the guidance commands (I-

loads) that are generated. The process of evaluation is done based on rules defined in the

Quality Assurance Document [40]. Rules are classified as (in their increasing order of

importance)

• System Constraint Rules (S-rules): Any violation is considered being a failure to

make the flight. These rules affect the integrity of the system.

• Experience Constraint Rules (E-rules): Design engineers based on their experience

with the system determine these rules. They are similar to S-rules but provide some

more latitude in their evaluation. They help the experts’ team in their final decision

E.g. if the percentage of exceedance is not large for a given S-rule and is contained

well within limits of the corresponding E-rule then the team may pass the rule.

 22

• Processor Rules (P-rules): these sets of rules are defined for the processor integrity.

They deal with the interfaces between the various processors. They check whether the

data is conveyed properly between the various processors.

• Abort Region Determinator Rules: special rules that are defined for the safety of the

flight.

DIVDT has two modes of execution

• Normal Mode

• QA mode

In the normal mode, it verifies that I-Loads generated by DADS is acceptable for

flight by evaluating trajectory parameters in accordance with the DOLILU II Quality

Assurance Rules. [40] The QA mode provides rapid quality assurance of a trajectory

without a preceding DADS I-Loads generation. The trajectory is generated close to

launch using the latest day-of-launch (DOL) environment, generated at an earlier balloon

release time. All functions of the QA mode remain the same as normal mode except for

the following

• Omission of the DADS-generated trajectory files

• Omission of DIVDT “P” and “A” rules evaluation.

• Omissions of outputs for “P” and “A” rules in the DIVDT output summary.1

DIVDT requires several inputs for it proper operation. They are as follows

I. SVDS simulated trajectories

There are two trajectory files that are generated by SVDS

1 P = Processor rules, A = Abort Region Determinator Rules

 23

� svds_15_ref: a reference trajectory, which could be any of the previously created

SVDS trajectory files. This helps in the definition of experience envelope. Typically

it contains mean monthly environments and pre-launch predicted mass properties.

The I-Loads used are DADS generated I-Loads designed for the launch month’s mean

environments.

� svds_15: is SVDS trajectory file that is usually generated with the DADS updated I-

Loads and measured winds (normal mode).

II. DADS generated trajectories and I-Loads

� dads_15: is a trajectory that is internally created by DADS. This is required only in

the normal mode of execution.

� dads_iloads: is required only in the normal mode of operation. Contains the DADS

generated I-Loads (guidance commands) and the ARD (abort region determination)

engine modeling data.

� ard_divdt: is created by DADS and contains ARD parameters to be verified by

DIVDT. Required only in the normal mode.

III. Limits input files

� DIVDTINPUT: limits input file used to input the variable limit values for each rule

identified in [40].

� VENTDATA: contains limit arrays for the venting carpet constraint.

During the entire execution of the program there is no user intervention. DIVDT

evaluates the rules and provides a summary of the results in ASCII (text summary files)

as well as binary data files (plot data files). The evaluation takes place in three stages,

first stage of flight, staging (this refers to pre-orbital insertion stage) and orbiting stage

 24

(MECO). Plot files created by DIVDT are passed to the DIVPLT program, which

generates plot outputs. The output files of DIVDT are described below

• Divdt_control: file containing the flight number, atmosphere balloon release time,

wind balloon release time, and up to ten of the highest DIVDT rule violations.

• Divdt_stdplt: a file containing plot data for all the rules.

• Divdt_rsplot: containing plot data for Range Safety Rule, a system constraint rule.

• Divdt_thrplt: containing plot data for Altitude Constraint Rule.

• Divdt_trjsum: a file containing trajectory summary and evaluation of parameters at

critical points in the trajectory (i.e. first stage, staging, MECO).

• Divdt_topten: a top-ten summary of the discrete rules with the highest percentage of

exceedance. A summary of the DOLILU I-Loads is also given.

• Divdt_detail: a detailed summary of all the rules evaluated with their percentage of

exceedance and a verdict of PASS or FAIL for each rule.

• Divdt_summary: a summary of the list of rules arranged in the descending order by

their percentage of exceedance.

Further information about the quality assurance rules and DIVDT functioning could be

obtained from the following documents [39][40].

3.3 Assessment Methodologies for DIVDT

As mentioned earlier, DOLILU II is a high consequence system. Prior to this

work there has been no attempt to determine the reliability assessment of the software.

Acceptance test cases identified in [43] represent the minimum testing required to

evaluate the completeness and accuracy of the software. Testing criteria specifically

addresses verification of logic paths, data handling, and design constraints that may be

 25

encountered during the normal operation of DIVDT. Tests are performed to verify

compliance with functional requirements. After system testing, one of the following

decisions must be made

• Acceptance of software: following the designated testing period the formal software

configuration will be completed.

• Conditional Acceptance of software: contains conditions that had errata in them. It

furnishes information of testing that needs to be done after the errors have been

corrected. It is observed that only the corrected regions of the software are re-tested,

but from our experience we know that changes made in the software could affect

other regions in the program. Hence we need to perform tests on the complete

software to ensure that the changes did not create new errors.

• Rejection of software: this is accompanied by the details of the requirements that

were not met. Rejected software needs to be re-tested with all tests before formal

acceptance.

The test philosophy ensures that all the rules are being exercised. The tests were

designed for external interfaces, design, and program logic. Some of the techniques used

are enumerated in the following subsections.

3.3.1 Inspection

Inspection is a manual verification technique in which the program (code, data) is

examined to discover discrepancies with requirements. Code walk-through and code

inspections were some of the techniques adopted here.

 26

3.3.2 Analysis

Analysis involved formal verification methods, to analyze the functions. As these

methods required rigorous mathematics, only a subset of the functions was analyzed this

way.

3.3.3 Testing

Testing is performed with a specified set of steps, which will result in some

expected results. The expected results are also documented along with the test results.

3.3.4 Demonstration

Typically this method is used to gain confidence that software will not abort

under certain conditions. Incorrect input file format or a missing file is typical conditions

that require demonstration

3.3.5 Comparison Against Results from Previous Version

Regression testing of the software is done to ensure that changes have not

adversely altered the function form the previous version. Identical data sets are used to

test both the versions and the results are compared.

Software testing is based on the criticality of the part during the evaluation

process. Tests were classified into 5 sections,

� External interfaces: deal with the P-rules, external processors communicating with

DIVDT. They tested for conformance of data.

� Internal interfaces: deals with testing DIVDT for correct rules evaluation. A

combination of the aforementioned techniques was adopted.

� Limit testing: deals with limit based checking

 27

� Top ten testing: manually manipulated trajectory data for a selected 10 rules and

checked for confirmation from the DIVDT output summary.

� Worst Value testing.

Further description of strategies may be obtained from [43].

The techniques described were not used to assess the reliability of DOLILU II

system. They only stress tested the system for conformance with the specifications. This

gave us an opportunity to devise new techniques to assess the reliability of the software.

The next chapter deals with the Bayesian Inference Framework for reliability assessment.

In the framework we try to incorporate our belief in the system using the knowledge that

it has already been in use and tested. We do this by incorporating subjective probability

into our model.

 28

4.0 Chapter 4: Assessment Methodologies

Reliability assessment of systems must be based on precisely defined concepts in

order to make comparisons between systems possible and to provide a logical basis to

improve the system’s reliability [28].

In most life critical applications, one has to establish that software reliability is

indeed high. Butler and Finelli [51] classified software systems into three types namely,

• Ultrahigh reliability: < 10-7 failures/hour,

• Moderate Reliability: 10-3 – 10-7 failures/hour,

• Low Reliability: > 10-3 failures/hour.

Unlike hardware, where reliability is associated with physical faults, software programs

have faults induced in them from the beginning (requirements documents) to through out

the life cycle. Nevertheless, when we view the system as an entity, subjecting it to inputs

and observing the outputs, the system either produces a correct or an incorrect result. This

may be viewed as a stochastic process, where the software produces errors in a stochastic

manner [51]. Based on this observation we may now define software reliability:

Software reliability is the probability of failure free executions of the

software, over a given period of time and within a specified environment.

Consider the following simplistic model for modeling software reliability. The software

is subjected to external inputs. The program is viewed as a black box function f that maps

the inputs to the corresponding points in the output domain. The same software is

repeatedly executed for each of these inputs. There exist only two possible outcomes,

either the software executes correctly and produces the right output, or the software

executes incorrectly and produces an incorrect result. If we assume a constant failure rate

 29

(per input), say θ, then testing can be modeled as a binomial process. The number of

failures F after n inputs is then given by

rnr
r

nCrFP −−==)1()(θθ (4.1)

where r represents the total number of failures observed for n inputs. The term r
nC is an

alternative form for representing combinations, computed as 








r
n

.

We need to determine the probability of system failure for n inputs, failures can

occur for all F>0. Therefore, using (4.1),

 nnP
FPFPnP

)1(1)(
)0(1)0()(

θ−−=

=−=>=
 (4.2)

With our assumption of constant failure rate over time, we may represent n in terms of

time; n = kt where k = number of inputs/unit time then

 kttP)1(1)(θ−−= (4.3)

With kt being large in comparison with θ, (1-θ)kt may be approximated as e-θkt. This is

obtained from the Poisson approximation to binomial discrete distribution. Hence some

researchers assume that the time to failure distribution is exponential.

Traditionally, the method of software creation involves a cycle, where the

software is created, then sufficiently tested. When an error is found, the bug is fixed and

the software is tested again. This forms the basis for “Reliability growth models” (RGM).

The goal for these models is to fit mathematical models to predict what would be the

estimated reliability of the final version of the software, based on inter-failure time

observation. There are numerous RGMs, the reader may refer to [6] for a concise

description of these.

 30

There are several problems in potentially applying reliability growth models for

assessment of DIVDT (DOLILU II). When considering reliability growth models, the

mean time to failure increases, (shown to exponential by Musa's model, others used log-

linear distribution [51]) and consequently the failure probability decreases as more and

more bugs are fixed. However, what should be an acceptable time frame before the model

can achieve ultrahigh reliability? Miller and Keiller [52] stated that the time frame would

be prohibitively large. Another problem is when the software itself doesn’t exhibit any

failures. This is typical of safety-critical software. How could one fit a distribution with

no observed failures during acceptance testing? We require a model that overcomes these

difficulties.

4.1 Bayesian Inference Framework

Rev. Thomas Bayes’ paper first published in 1763 provides the basis for

“Bayesian Statistical Inference”. Due to its fundamental importance, the paper was re-

published in 1958 [28,45]. Several factors have contributed towards the recent resurgence

and wide scale acceptance of the theory.

The cornerstone of Bayesian inference is the notion of subjective probability.

Such a notion contrasts with the well-perceived notion of frequency for probability

estimation. The axiom of probability states that the probability of an event has to be

estimated by determining the value of success ratio. To progress towards this empirical

estimation, one has to conduct trials repeatedly, in which the event occurs.

Subjective probability deals not only with the events but with propositions as

well. A proposition is considered as a collection of events that contribute towards the

estimation based on previous events, observed behavior or the reflection of one’s belief in

 31

the system. In statistical terms, we hypothesize that the event does occur with the

estimated probability. As evidence increases relevant to the hypothesis, we then change

our degree of belief in the hypothesis. Interestingly, some argue that subjective

probabilities assigned to a particular hypothesis may indeed be quite individualistic [28].

In other words, the probabilities assigned by different individuals would reflect different

beliefs yielding different results. Bayesian inference theory circumvents this in the

posterior analysis where our degree of belief changes with the observations made.

However, egregious probability assumptions are definitely not permissible.

4.1.1 Classical Probability Theory versus Bayesian Inference

There are distinctive differences between the classical theory and Bayesian

methods of inference. In classical theory approach, the unknown parameter to be

estimated (θ) is assumed to be a fixed constant. A point estimator, which is a function of

the data set (observed) is chosen according to some principle such as minimum variance,

least squares or the method of moments. Classical theory inferences are then made using

inductive reasoning. The Classical method of inference is depicted in Figure 4.1. The

process begins with the postulating of a sampling model. Inductive reasoning is used in

conjunction with the sample observations to produce inferences about the unknown

parameters.

Figure 4.1: Classical Model for Inferences

Assumptive
Sampling Model

Sample Data Inductive
Reasoning

Statistical Inferences

 32

Bayesian method of reasoning is deductive. The parameter of interest (θ) is

assumed to be a random variable with a priori distribution g(θ). This distribution

expresses the assessor’s state of knowledge or ignorance about θ before the sample data,

say y, is analyzed. Given the prior distribution, and the data set y, Bayes’ theorem is used

to calculate the posterior distribution g(θ|y).

The prior distribution in a Bayesian analysis usually embodies a subjective notion

of probability. It is the distribution of degree of belief about θ before the observational

data (y) is obtained. A distinctive feature of Bayesian inference is that it takes explicit

account of prior information in the analysis. This contrasts with the classical approach of

sampling theory. Figure 4.2 depicts the Bayesian method of inference. The process

begins with a postulated sampling model. A prior probability distribution is also assumed.

The sample data and the prior distribution are combined by the use of Bayes’ theorem

(explained in section 4.1.3). Deductive reasoning is then used in conjunction with the

resulting posterior distribution to produce the desired inferences about the parameters of

the assumed sampling model.

 There are two further distinctive differences between sampling theory and

Bayesian procedures. Bayes’ use of relevant past experience, which is quantified by the

Figure 4.2: Bayesian Inference Model

Assumptive
Sampling Model

Sample data

Assumptive
Prior Model

Bayes
Theorem

Deductive
Reasoning

Statistical
Inferences

 33

prior distribution, produces inferences that are more informative. The second distinction

is that the Bayesian method usually requires less sample data to achieve the same quality

of inferences than methods based on sampling theory.

4.1.2 Advantages of Bayesian Inference in Software Reliability

Software reliability estimation methods based on sampling theory have been

found useful for a variety of problems. There are, however, many instances in which the

classical methods have been found to be less than satisfactory. There has been an ever-

increasing demand for cost-effectiveness in reliability assessments of systems, typically

safety critical systems. Sampling methods for software reliability estimation cause

problems when based on scarce failure data. When observing the failure rates of software

for commercial nuclear power plants [28], it was observed that the mean time to failures

is t = 7.9 x 106 h. As a consequence it is not possible to determine a two-sided

confidence interval estimate on a constant failure rate, assuming an exponential failure

time model. The point estimate would be zero, an overly optimistic estimate.

As another example, consider estimating the failure rate based on sample data

consisting of zero observed failures in many reactor years of commercial operation. We

are faced with the same situation as in our preceding example. These examples are

reflective of problems in estimating the reliability of DIVDT (DOLILU II) software since

no failures have been observed during test executions. We do know that the software has

been successfully operating over the past five years. How does one incorporate this

information into the estimation model? In situations like these, the methods based on

sampling theory are frequently replaced in favor of more useful methods, like the

Bayesian approach.

 34

As mentioned earlier there are two important practical benefits in using Bayesian

analysis. One is the increased quality of inferences, provided the prior information

incorporated in the model reflects the true variation in the parameter(s). The other is the

reduction in testing requirements. There is yet another advantage. Inferences that are

inaccurate arise from incorrect assumptions and not from inadequacies of the method

used to provide them.

Bayesian methods provide a satisfactory way of explicitly introducing and

organizing assumptions regarding prior knowledge or ignorance. These assumptions lead,

via Bayes’ theorem, to posterior inferences about the reliability of parameter(s) of

interest.

4.1.3 Bayes’ Theorem with Subjective Probabilities

Bayes’ theorem is the fundamental tool used to arrive at Bayesian inferences. Let

θ denote the parameter of interest that we would like to estimate. The prior model

represents the subjective information available about θ before the observation of the

sample data x.

.)|(
.)|(

.)(
.

xgivenofondistributiposteriorthexg
givenxofndistrbutioyprobabilitlconditionathexf

ondistributiyprobabilitpriortheg
datasampletheonsobsevationx

θθ
θθ

θ

=
=

=
=

The posterior model tells us what is known about θ given the knowledge of the data x. It

is intuitive that the posterior model should represent an updated version of our prior

knowledge of θ. If the data supports our belief, there should be an increased confidence

in the subjective notions. On the other hand if the sample data does not support the

subjective information, the posterior model should give a weighted consideration of both

 35

assessments, the sample data and prior. This is achieved by using Bayes’ theorem. The

posterior distribution is given by

 g x
f x g

f x
(|)

(|) ()
()

θ
θ θ

= ,

where f(x) represents the marginal distribution and may be obtained by

 f x f x g d() (|) ()= ∫ θ θ θ .

4.2 Bayesian Reliability Assessment of DIVDT (DOLILU II)

The primary reason in adopting the Bayesian approach is to incorporate in our

reliability assessment model the knowledge that the system has already been in use and,

prior to that, rigorously tested. Furthermore, the techniques adopted for the creation of the

software shows that the system was indeed developed using proper software engineering

practices.

4.2.1 Choice of Prior Distribution

There are several papers in literature [13,46] and books [28,47] that have provided

guidelines in choosing a proper prior distribution. For our framework, we chose beta

distribution to accurately reflect prior beliefs. There are two primary reasons in choosing

this distribution.

i. By proper choice of the parameters, it is possible to depict any type of distribution

that is actually exhibited by the system.

ii. The distribution forms a conjugate family. The conjugate family has the property

that both the prior and posterior distributions will be members of the same

parametric family of distributions [46,47]. Intuitively this represents a kind of

 36

homogeneity in the way in which our beliefs are represented, and how they change

as we receive extra information [13].

The intention here is to devise a framework that attests that if the system executes

n demands without failure then it is deemed to have achieved the required confidence in

reliability estimate. Within the Bayesian framework we represent our prior knowledge

about the parameter of interest, here the probability of failure on demand denoted as θ, by

the prior distribution. The prior distribution from the conjugate family is the beta

distribution

f
B p q

p q

()
()
(,)

θ
θ θ

=
−− −1 11

 (4.4)

where B(p,q) is the beta function with p>0, q>0, p and q represent our prior belief in θ

for the software under test. Assuming ignorance prior implies that it is equally likely to

 Figure 4.3: Graph for beta(p,q) with p=q=1, equally likely distribution

have any value of θ in the range 0-1. If we set the values of p and q as p=q=1 and

substitute in equation (1) we obtain a f(θ) = 1, rectangular probability distribution as

in Figure 4.3.

Retangular Prior PDF

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

values of theta

va
lu

es
 o

f p
df

 fu
nc

tio
n

 37

The goal of reliability assessment is not just to estimate the failure probability but

to gain statistical confidence that the estimate is indeed realistic. In practice the required

failure rate θ and the confidence level C are usually predefined. The question is how

much testing needs to be done?

Let T be a random variable denoting the total number of test cases that need to be

executed until the first failure is detected. To achieve a required confidence, an unknown

number of test cases U needs to be executed such that

 .)(Pr CUTob =≤ (4.5)

Considering the classical sampling theory for estimating, the distribution of T is assumed

geometric and the probability that T assumes a particular value t is given by

 .)1()(Pr 1−−== ttTob θθ (4.6)

Combining equation (4.5) and (4.6), we get the equation relating U and C.

 .)1()(Pr
1

1
∑

=

−−=≤
U

t

tUTob θθ (4.7)

 .)1(
1

1 C
U

t

t =−∑
=

−θθ (4.8)

The left-hand side of the equation (4.8) is a geometric series and can be computed as

 .
)1(1

)1(1)1(
1

0









−−
−−=−∑

−

= θ
θθθθ

UU

t

t (4.9)

Substituting (4.9) in (4.8) we get

 (())1 1− − =θ U C (4.10)

Solving equation (4.10) for U we get

 CU −=− 1)1(θ . (4.11)

 38

Taking loge on both sides, the required number of test cases U, is therefore

 U
C

=
−
−

ln()
ln()

1
1 θ . (4.12)

In the Bayesian framework of assessment if the system has executed n demands and we

have seen r failures, we get posterior distribution of f(θ) to be [46,47].

 f n r p q
B p r q n r

p r q n r

(| , , ,)
()

(,)
θ

θ θ
=

−
+ + −

+ − + − −1 11
. (4.13)

Assuming ignorance prior, we get p=q=1, therefore

 f n r
B r n r

r n r

(| , , ,)
()

(,)
θ

θ θ
11

1
1 1

=
−

+ + −

−

. (4.14)

If we require U demands before detecting the first failure then n=U, r=0, therefore

 f U
B U

U

(| , , ,)
()
(,)

θ
θ

0 11
1
11

=
−

+
 (4.15)

B(1,1+U) is the complete beta function. The generalized form is

 ∫
−− −=

1

0

11)1(),(babaB θθ (4.16)

Therefore B(1,1+U) is given by

 B U d
U

U(,) ()11 1
1

10

1

+ = − =
+∫ θ θ (4.17)

It is required that the failure rate θ should be less than the pre-mediated value p0 with

confidence level C. Now Prob(θ<p0) is the cumulative density function given by

 Pr () (| , , ,)ob p f U d
p

θ θ θ≤ = ∫0
0

0 1 1
0

. (4.18)

Mathematically we represent the above statement as

 39

 Pr ()ob p Cθ ≤ ≥0 . (4.19)

Substituting equation (4.17) in (4.18) we get

 f U C
o

p

(| , , ,)θ 0 1 1
0

∫ ≥ . (4.20)

Substituting for f(θ|U,0,1,1) from equation (4.14) we get

()
(,)
1
1 10

0 −
+

≥∫
θ

θ
Up

B U
d C . (4.21)

Combining equations (4.20) and (4.16) and integrating we get

 ()()1 1
0

0

+ − =∫ U d CU
p

θ θ . (4.22)

The solution for the above equation yields the result in the following form

 ()
()

()()
1

1
1 1

1

0

0

+
−

+ −








 =

+

U
U

C
U p

θ
. (4.23)

Simplifying equation (4.22) we get

 Cp U =−− +1
0)1(1 . (4.24)

Taking loge on both sides and solving equation (4.23) for U, we get the total number of

test cases required to achieve with defined confidence C that the reliability requirement

p0 is satisfied as

 1
)1ln(
)1ln(

0

−
−
−=

p
CU . (4.25)

Comparing equation (4.24) and (4.12) we realize that they are the same. It is clear that

since p=q=1 provide no knowledge, they do not influence the interpretation of the test

results. Hence, both Classical and Bayesian theory require almost the same number of

cases in the absence of prior knowledge of failure distribution.

 40

Now we shall introduce our prior belief into the framework. Before we do this we

need to justify our claim in the prior distribution. Two main reasons encourage our belief

� The software has been in use for the past couple of years. As already discussed in

chapter 3, several methodologies, partial correctness proofs, inspection, code walk-

through were already adopted in testing the software piecewise. However we would

like to reiterate that there has been no attempt in assessing the reliability of the

software.

� A rigorous development process was adopted and two different versions of the

software were developed for added redundancy adding to the fault tolerance of the

system.

Considering the above factors, especially the fact that the software has been

operational failure free for more than five years, rigorously tested and stringently

developed, we could safely assume that the software at least exhibited a failure

probability of 10-3 failures/h. According to [13,28,47] we could assign the values to p

and q to reflect this belief. We get p=8 and q=9850 (see Appendix B Table B.1) Now our

complete beta function is (taking a=p and b=q+U)

 B p q U p q U(,) ()+ = −− + −∫ θ θ1 1

0

1

1 (4.26)

Repeated integration by parts and simplification yields (see Appendix B Solve B.1)

 B p q U
p

q U q U q U p
(,)

() !
()(). . . . ()

+ =
−

+ + + + + −
1

1 1
 (4.27)

Taking n=U, r=0 (no failures observed), equation (4.12) reduces to

 f U p q
B p q U

p q U

(| , , ,)
()

(,)
θ

θ θ
0

11 1

=
−

+

− + −

. (4.28)

 41

In equation (4.18) we substitute (4.27), we get

 f U p q C
p

(| , , ,)θ 0
0

0

≥∫ (4.29)

()(). ()

() !
()

q U q U q U p
p

d Cp q U

o

p+ + + + + −
−

− =− + −∫
1 1

1
11 1

0

θ θ θ (4.30)

Integrating equation (4.27) by parts and simplifying we get

C
p

UqpUqpUq
p

UqpUqpUq
p

UqpUq
p

UqpUqpUq

UqpUqp

UqpUqp

=−−
−

++−++−++−−
−

++−++−++

−−
−

++−++−−
−

++−++−++−

++−++−

++−+−

.......)1(
)!4(

)4)..(2)(1()1(
)!3(

)3)...(2)(1(

)1(
)!2(

)2).....(1()1(
)!1(

)1)....(2)(1(1

3423

111

θθθθ

θθθθ

We used MathCAD to solve equation (4.28). We substituted the values for p0 = 10-3, 10-

4...10-7 with C = 0.99. Numerical solutions obtained for the above equation is given in

table 4.2.

A comparison between the total number of test cases required by random

sampling and the equivalent number of test cases required using the Bayesian framework

is shown in tables 4.1 and 4.2 and figure 4.7 and 4.8

Table 4.1: Number of test cases from Random Sampling (C=0.99)
Random Sampling

Values of θ Number of test cases
10-3 4,604
10-4 46,052
10-5 460,516
10-6 4,605,168
10-7 46,051,700

Table 4.2: Number of Test Cases using Bayesian Framework (C=0.99),

 assuming θθθθ=10-5
 Bayesian Method

Values of θ Number of test cases
10-3 950
10-4 22,052
10-5 260,780
10-6 4,295,000
10-7 41,541,171

 42

 In [13] Bev Littlewood states that in order to assess the reliability in a Bayesian

Framework, we first need to believe that the system indeed exhibits the proposed failure

rate before testing. The posterior analysis would then endorse this belief in our system

from the testing results.

Table 4.3: Number of Test Cases using Bayesian Framework (C=0.99)
 Bayesian Method

Values of θ Number of test cases
10-3 950
10-4 2678
10-5 9436
10-6 20796
10-7 51987

 When testing reveals failures it translates into our posterior model by decreasing

our belief that the probability of failure has been achieved. Consider equation 4.14, when

testing reveals failures, the value of r in the equation increases. This decreases the power

for the factor (1-θ) and increases the power for the factor θ . This shows that the new

distribution now decreases our initial belief. If no errors were detected, then the

distribution changes with an increase our original belief (as the power of (1-θ) now

increases).

In table 4.3, we compute the total number of test cases required before the first

failure occurs to ensure with a confidence of 0.99 (having a prior belief obtained from

Table B.2 in Appendix B for each θ) that the software did indeed exhibit the proposed

failure probability.

It is clear from the tables, that in order to obtain a reasonable time frame to test a

system, we need to believe that the system did indeed achieve the proposed degree of

 43

failure rate before testing. The purpose for testing is to endorse this belief. If the system

did not achieve the proposed reliability, then this is reflected in our posterior analysis.

The cornerstone for Bayesian Inference is the subjective knowledge of the system

that is incorporated into the assessment model. One has to understand how one might

provide values for the priors p and q.

Consider Table B.3 is Appendix B. This shows the variation in the number of test

cases when we try to decrease the amount of variation in our prior model. As one

traverses the table downwards, this is indicative of decreased variance in our prediction

and the consequent increase in the number of test cases.

Hence, if we need a greater degree of confidence in our prior beliefs itself we

need to execute more number of test cases.

4.2.2 Extended testing with occurrence of failure

The above subsection predicts the total number of test cases that needs to be

executed correctly before we deem that the software has indeed achieved the required

failure probability at the required confidence. How should one proceed in the eventuality

of a failure? When using the Bayesian Framework in reliability assessment, we could use

the information that testing has yielded until the first failure was observed [46]. To

predict how many future test cases need to be done after the failure has been revealed we

could use the posterior distribution obtained until the first failure occurred. Let us assume

that a failure occurred after the execution of s demands (s < n the estimated number of

demands). The posterior for θ immediately following the failure on the sth demand

 f s p q
B p s q

p s

(| , , ,)
()

(,)
θ

θ θ
1

1
1 1

2

=
−

+ + −

−

 (4.31)

 44

This forms the prior distribution for θ for further testing that needs to be conducted. We

now need to compute U1 the total number of failure-free executions required for the

software to exhibit the required probability density function; this is

 f U s p q
B p U s q

p U s q

(| , , ,)
()

(,)
θ

θ θ
1

2

1

1
1
1 1

1

+ =
−

+ + + −

+ + −

 (4.32)

Notice that this is simply the posterior distribution after seeing both (s-1) failure free

executions followed by a failure, and then seeing U1 further failure free demands. This

posterior distribution will be the same whenever the single failure occurred among s+U1

demands: it depends only upon the total number of demands, and the number of failures.

Now we may compute U1 for which

0

2

1

0 11
1 1

p p U s q

B p U s q
C∫

−
+ + + −

≥
+ + −θ θ()

(,)
 (4.33)

In general, if we have seen in the rth failure and the failures occurred on the s1th, (s1+s2)th,

…….,(s1+s2+s3+…..+sr)th demands we should require an additional Ur demands

executed failure-free, such that

0

1
0

0 0
1

1p p r
s U q r

a

r

a

r

B p r U s q r
C∫

∑

+
+ + −

−
∑

+ + + −
≥

θ θ()

(,)
 (4.34)

Having developed a framework to assess DIVDT (DOLILU II), we need to address two

important issues when estimating software. How does one accelerate the execution of

software in order to achieve an agreeable period for testing the software? How does one

generate the input conditions to test the system?

 45

5.0 Chapter 5.0: Acceleration of Test Cases

 After establishing a framework for reliability assessment of DIVDT (DOLILU II)

using Bayesian inference, we were faced with another unique problem that required

immediate attention. The time taken for the execution of each test run of the software is

too long given the amount of testing required. Typically DIVDT (DOLILU II) takes on

an average (assuming a normal mode of execution for Day of Launch I-Load Verification

Data Table (DIVDT)) 20 to 25 minutes [43] for a single run. Despite the reduction in the

number of test cases, around 200000 test case executions still need to be performed. This

would amount to around 9-10 years of execution time to certify with 99% confidence that

DIVDT (DOLILU II) indeed achieved ultrahigh reliability!! Consequently we required a

reduction in the time for each test case execution.

5.1 Transformations for Accelerated Execution of Test Cases

Program transformations have been used for code modifications especially in

code optimizations in order to enhance certain desirable properties such as performance

or portability. The application of a transformation to a given program is a three-step

process:

� Decision: which part of the program do we apply the transformation and what type of

transformation are we going to use.

� Verification: ensure that the transformation doesn’t change the meaning (semantics)

of the program or if it changes it is done in a restricted manner that is acceptable.

� Actual transformation of the program.

 46

 Transformations can be effective only if it is possible to discern whether there are

benefits in their application. We expect benefits in the speed of execution of the

program.

Semantically equivalent transformations preserve the exact meaning of the

program under transformation. In other words, the transformed program does operations

in exactly the same sequence as the original program. It is important to note and quoted

from [50], that, “semantic transformation is the property of the program execution and

not the program”. By that, we mean, if the transformed program executes correctly for

some input we can conclude the original program also executes correctly. If the

transformed program executes incorrectly for some other input, we can justifiably claim

the same for the original program.

 The above transformations are based on source code. One may even speed up

testing by changing other parameters of influence. E.g. environment conditions can be

changed, like using a faster processor, or opting for centralized parallel processing to

distributed computing. These types of transformations are termed configuration

transformations.

In this thesis, whenever we refer to a transformed program, it may either refer to a

source-to-source transformation with unchanged environment conditions, or only

configuration transformations or a combination of both.

5.2 Source Transformations

Source-to-source transformations are based on making changes to the software to

increase the speed of operation of the program. We shall now discuss the different

techniques that we tried to adopt to decrease the execution time of the software.

 47

5.2.1 Vertical Slicing

Process control programs are usually very large complex programs constructed by

composing smaller components like procedures; user defined data types and others. They

usually compute several output parameters. When developers/users attempt to understand

and manipulate programs, they achieve this by decomposing the program. This general

observation led to the concept of program slices first introduced by Weiser [48]. It is a

straightforward method of decomposing a program into different data flow blocks, by

analyzing control and data flow. The original algorithm generated static program slices

from data flow graphs. A static program slice extracted all the statements that affect a

variable or a subset of variables in the program. A static slice groups statements that

directly or indirectly affect the value of a given output variable or output variables. The

program slice constitutes a separately executable program, which preserves a specified

projection of the original program’s behavior, viz., it computes a subset of the original

program’s output variables. This form of slicing is referred to as “vertical slicing” as it

decomposes programs into data blocks in the direction of data flow and control [6][50].

The interesting feature of this slicing technique is that, each program slice is

capable of executing and reproducing the exact behavior of the original program within

the specified sub-domain in which the slice is defined.

From the point of view of speed-up gain we have three major consequences by

using the slicing technique

� Potential reductions in the number of program statements in each individual slice,

leading to smaller, faster executable programs.

 48

� Each slice is independently executable and consequently this makes parallel

execution of all the slices feasible. Furthermore, when run concurrently the union of

the outputs of the all slices forms the output of the original program.

� Consider when some of the vertical slices could be formally verified. The execution

of these is deemed unnecessary. Hence, we could reduce the number of vertical slices

that needs to be executed.

5.2.2 Reducing numerical precision

This monotonic transformation technique is based on the fact that, double

precision arithmetic is more CPU intensive than single precision arithmetic [50]. The

same applies between single precision and integer computations.

When programs are decomposed using vertical slicing, each slice can be further

transformed to hasten the computation process. We can transform all double declarations

to floats. This transformation is applicable only if the slice itself isn’t computationally

sensitive. The definition of slice functions that are not sensitive to computational

precision is borrowed from [50].

A program function slice is not sensitive to computational precision if and

only if small fluctuations of the input variables produce a small fluctuation

in the output variables.

During the execution of the program slice, if a disparity occurs, the original slice

is run to compare whether a fault did occur or not. Program slices with sensitive slice

functions are tested with the original slices.

When it is known that there is a requirement for only a fixed number of

significant digits, we may manipulate the calculations to be integer computations. We

 49

replace the decimal computations with integer computations by multiplying by a factor of

10n. After the computations are done, we can determine the final value by dividing the

final result by 10n. However fractional computations may lead to erroneous results.

5.3 Environment Changes

Changing environment conditions in which the program is being tested can

further accelerate testing. One method would be by running on a faster processor. It is

important to note that the processors used should be “binary compatible” (representation

of data types and executables should be alike).

5.4 Transformations applied for DIVDT (DOLILU II)

We shall now apply the aforementioned methods to decrease the total execution

time of DIVDT.

5.4.1 Applying Vertical Slicing to DIVDT (DOLILU II)

DIVDT evaluates trajectory conditions with the generated I-Loads (initial

guidance commands) based on pre-defined rules [40]. When decomposing the software, it

became apparent that we should make the decomposition rules based. This is further

reassured when one observes output from DIVDT. Every rule is evaluated based on

trajectory parameters and a verdict is given as a PASS or FAIL for each rule. A list of all

the rules evaluated as adapted from [40][43][42] is given in Table 5.1.

Table 5.1: DOLILU II Quality Assurance Rules
Rule No Title E6 Roll, Pitch and Yaw Actual

Accelerations
S1 Pitch and Yaw I-Load within

SAIL Envelope
E7 Roll, Pitch and Yaw Actual Body

Rates
S2 Staging Dynamic Pressure E8 SSME Pitch and Yaw Gimbal

Commands
S3 Staging Angle of Attack E9 SRB Rock and Tilt Gimbal Cmds
S4 Staging Angle of Sideslip E10 Pitch and Yaw I-Loads Within

 50

Parameter Experience
S5 Staging Roll, Yaw and Pitch Rates E11 Elevon Hinge Moment Experience
S6 SRB Apogee Constraint E12 (deleted)
S7 Elevon Hinge Moment System E13 (deleted)
S8 Venting Carpet Constraint E14 Staging Velocity
S9 Heating Carpet Constraint E15 Altitude Rate at SRB Separation
S10 (deleted)
S11 (deleted) P1 (deleted)
S12 (deleted) P2 (deleted)
S13 Throttle-Altitude Constraint P3 (deleted)
S14 Range Safety P4 (deleted)
S15 Margin P5 (deleted)
S16 Roll, Pitch and Yaw Actual Body

Rates (Post SAR)
P6 (deleted)

S17 (deleted) P7 (deleted)
S18 Flight Control System P8 DADS Convergence Check
S19 DADS Wind I-Loads Within SAIL

Envelope
P9 (deleted)

S20 TREF Within SAIL Envelopes P10 SVDS/DADS I-Loads Comparison
S21 Throttle I-Loads within SAIL and

Certification Envelopes
P11 I-Loads File Validation

S22 AGT Occurrence P12 SVDS/DADS Weights @ 150
Seconds Comparison

E1 Staging Gamma
E2 Staging Altitude A1 ARD DELT
E3 Staging Azimuth A2 ARD AGT
E4 Roll, Pitch and Yaw Guidance Altitude

Errors

E5 Roll, Pitch and Yaw Commanded
Body Rates

Before we proceed to apply vertical slicing techniques for speed enhancement, we

shall define a few terms that would aid in our explanation of the data flow proofs

provided in Appendix A. A program slice is defined as a set of all program statements for

a relevant computation. A slicing criterion specifies the slice (computation) for a variable,

v, at statement n. Program slices for a given criterion are obtained by deleting zero or

more statements from the given program P but still computing the same value for v at

statement n.

 51

An important pre-condition for applying vertical slicing is to provide data flow proofs for

each slice establishing complete independence and semantic integrity of each individual

slice. Data-flow proofs are given for each rule in Appendix A.

There is a great degree of redundancy in all the vertical slices. This is because

even before the execution of rules for evaluation one does checks for input parameter

consistency and a variety of checks for correct formats.

Having established the independence of all the slices our model of execution is as

shown in figure 5.1. We need to replicate the data across all the processes. Certain

processes like evaluation of P8, P9, P11 may be eliminated as they only check for

convergence checks. These can be formally verified.

 Figure 5.1: Parallel Execution of DIVDT

5.4.2 Applying Numerical Precision Reduction for DIVDT

After consulting with NASA personnel and as documented in [43] for testing

purposes it was sufficient if the precision was considered upto 5 significant digits. We

transformed all double declarations to floats. As mentioned earlier this method is

applicable for slices that are not sensitive computationally. As most of the rules evaluated

Rule
S1

Rule
S2

Rule
E1

Rule
P2

Rule
P13

 52

are based on flow dynamics small changes in the input does not produce large changes in

the outputs.

As the number of significant digits were fixed we could use the transformation to

integer computations by multiplication by 10n and division later by 10n. This could

further help the computation process.

5.4.3 Environment Changes

Now that the possibility of parallel execution has been established, we could opt

for distributed computing or parallel machine. When changing environments we need to

ensure binary compatibility. Hence we need to choose binary compatible computers

during distributed computing. Hence we could chose a parallel machines as this reduces

latency delays in networks and all the processors are binary compatible.

In the next chapter we shall discuss the generation of input conditions for

automated testing of DIVDT.

 53

6.0 Chapter 6: Automated Test Case Generation

Several papers have been published on automated test case generation for testing

software. They are usually based on criteria like specifications [16] or data flow graphs

[17][18]. Data flow methods usually give a comprehensive logical path coverage.

In this thesis we develop an automated test strategy for testing the Trajectory

Evaluation Stage (DIVDT) of DOLILU II system. DIVDT does the evaluation by

exercising one function per rule to determine if the input files are indeed valid flight

trajectories. Conceptually, there are only two types of execution:

� Either an incorrect data in any of the input files terminates the evaluation process and

DIVDT displays an appropriate message, or

� The evaluation of all the rules is successfully completed.

To automate generation of test cases, we need to generate input conditions. Even

though our primary aim was to test DIVDT, we could not simulate the required trajectory

files generated by DADS and SVDS (If we could simulate it then we could replace the

functionality of DADS and SVDS!!). Hence we needed to generate inputs to the system,

namely atmospheric conditions.

6.1 Basic Philosophy

The idea behind this methodology is simple. We first analyze the data (the

observations) and then attempt to fit models to predict/interpolate data. In order to

achieve this we needed to first establish interactions between the factors that comprise the

system. We chose one of the factors to be the independent variable and determine others

based on changes to this variable.

 54

The algorithm is as follows

� Assimilate data

� By the rule of the thumb, chose 80% of the data to fit the model and the remaining

20% to evaluate the model.

� Determine first, the possibility of liner relationships between factors, considering two

factors at a time and then three (line on plane).

� Remove any outliers that might exist. These produce erroneous models.

� Fit models, first starting with linear models. We should get a fairly good idea in

previously mentioned step about linearity between factors.

� Determine goodness fit for the model chosen

� Fit “mutators”; mutators change the independent variable and then predict other

values based on this change to simulate a new input suite.

In our model we have four factors of interest, namely, pressure, temperature, wind

and direction of wind. We chose pressure as the independent variable as it had a near

linear relationship with altitude for the first 2km of the atmosphere and later on a near

exponential curve. We then establish the models to predict temperature and wind speeds

based on changes in pressure.

6.2 Regression Models, Surface Models Analysis

We applied regression methods for establishing predictor functions between the

various factors. In this section we will introduce regression models that we analyzed and

applied to automate generation of test cases. We first analyze linear models, both one

factor and multiple factor parameters and then address models that fit polynomial curves,

and log linear curves for the data.

 55

6.2.1 Linear Regression models

 Regression is a statistical methodology that determines the relationship between

two or more factors and utilizes it to predict one from the others. When we address

relationships there are two types that generally come to mind: a pure functional

relationship and statistical relationship. The two differ in their models and predictions.

Functional relationships define precise mathematical formulae between two or more

factors. The observations for functional relationship all fall on the curve. Statistical

models on the other hand are not perfect. Statistical models determine best-fit curves for

the data observed and hence observations do not fall directly on the curve. This is made

clear from graphs given below. Figure 6.1 shows a perfect linear fit depicting functional

Figure 6.1: Functional Relationship f(y) = 1.5x

relationship that exists. Consider the statistical model fit in the graph shown in Figure

6.2. It is clear that the fit model is not linear. However regression models are statistical

guesses as to the best-fit possible for the given data. Clearly, a linear fit does not

accommodate the data given. Further on in this chapter we shall discuss transformation

techniques to rectify this situation and explain the goodness-fit for the given regression

model.

Functional Relationship

0

50

100

150

200

250

300

350

0 50 100 150 200 250

X

Y f(y) = 1.5x

 56

Regression Plot

y = 0.1342x + 20.849

0
10
20
30
40
50
60
70
80
90

0 50 100 150 200 250 300 350

X

Figure 6.2: Regression Plot f(y) = 0.1342x + 20.84

The linear regression model is given by

 21 ββ += ii xy (6.1)

The parameters β1 and β2 are called the regression coefficients. β1 is the slope of the

regression line. It indicates the change in the mean of the probability distribution of y per

 Y values

 100

 60

 0 25 45 X values

Figure 6.3: Simple Linear Regression Model

unit increase in x. β2 is the y-intercept of the regression line. We know that regression

models do have errors in their prediction. Errors are assumed normally distributed around

the predicted point. The bell shaped curves at every value of y show this in the diagram.

The mean value of this distribution (the expected value) is our predicted value. Hence, we

E[y] = 2.1x

εi

 57

talk about the “mean probability distribution” of y. The equation of a linear model with

errors is

 iii xy εββ ++= 21 …(6.2)

The alternative model is to use the predictor variable deviation XX i − rather than Xi. To

leave the model unchanged we alter equation (6.2) as follows

 imeanmeanii xxxy εβββ +++−= 211)(…(6.3)

This can be reduced to

 imeanii xxy εββ ++−= *
01)(…(6.4)

where β0
* = β1xmean + β2.

6.2.2 Estimation of the Regression Model

The observational data used for predicting the parameters in a regression function

consists of observations on the predictor variable X and the corresponding observations of

the response variable Y. In general, we group each trial as a pair (Xi , Yi), where i denotes

the trial number. There are two main methods for estimation

� Method of Least Squares.

� Method of Maximum Likelihood.

6.2.2.1 Method of Least Squares

To find “good” estimates for β1 and β2, we employ the method of least squares.

Method of least squares is based on minimizing the error between the estimated value for

the response variable and the actual value for the response variable. In essence, method of

least squares requires that the sum of squared deviation be minimum. The criterion may

be mathematically formulated as

 58

Minimize ∑
=

+−=
n

i
ii xyQ

1

2
21)]([(ββ …(6.5)

We need to determine the values of β1 and β2 for which the fitted regression

model would have minimum errors in the estimates. We determine the values β1=b1 and

β2 = b2 for which the criterion is satisfied. The values are derived by partially

differentiating equation (6.5) with respect to β1 and β2, we get

 ∑
=

−−−=
∂
∂ n

i
iii xxyQ

1
21

1

)(2 ββ
β

 (6.6)

and ∑
=

−−−=
∂
∂ n

i
ii xyQ

1
21

2

)(2 ββ
β

 (6.7)

Equating equations (6.6) and (6.7) to zero for minimization we get

 0)(
1

21 =−−∑
=

n

i
iii xxy ββ (6.8)

and 0)(
1

21 =−−∑
=

n

i
ii xy ββ (6.9)

Solving the two above equation we get

∑

∑

−

−−
= n

i

n

ii

xx

yyxx
b

1

2

1
1

)(

))((
 (6.10)

and xbyxby
n

b
n

i

n

i 1
1

1
1

2
1 −=







 −= ∑∑ (6.11)

6.2.2.2 Method of Maximum Likelihood
No matter what may be the form of the distribution of the error terms εi, the least

squares method provides unbiased estimators of β0 and β1 that have minimum variance

among all unbiased linear estimators. The normal error regression model is as follows:

 59

Yi = β0 +β1 Xi+εi ….(6.12)

Where:

Yi is the observed response in the ith trial,

β0 and β1 are parameters,

Xi is a known constant, the level of the predictor variable in the ith trial,

εi are independent N(0,σ2),

i = 1……, n.

The regression model implies that the Yi are independent normal random

variables, with mean E (Yi) = β0 +β1 Xi and variance σ2. The normality assumption for the

error terms is justifiable in many situations because the error terms frequently represent

the effects of factors omitted from the model that effect the response to some extent and

vary at random without reference to the variable X. When the functional form of the

probability distribution of the error terms is specified, estimators of the parameters β0 , β1

and σ2 can be obtained by the method of maximum likelihood.

Essentially, the method of maximum likelihood chooses as estimates those values

of the parameters that are most consistent with the sample data. The concepts presented

for maximum likelihood estimation of a population mean carry over directly to the

estimation of the parameters of normal error regression model. For this model, each Yi

observation is normally distributed with mean β0 +β1 Xi and standard deviation σ.

In general, the density of a function YI for the normal error regression model is as

follows utilizing the fact that E (Yi) = β0 +β1 Xi and σ2(Yi) = σ2:

 60



















 Χ−−−=
2

10

2
1exp

2
1

σ
ββ

πσ
ii

i
Yf (6.13)

The likelihood function for n observations Y1, Y2… ,Yn is the product of the

individual densities. Since the variance σ2 of the error terms is usually unknown, the

likelihood function is a function of three parameters, β0, β1, and σ2.:

() 




 Χ−−−=∏
=

2
102

1
2/12

2
10 2

1exp
)2(

1),,(ii

n

i
YL ββ

σπσ
σββ (6.14)

 () 






 Χ−−−= ∑
=

n

i
iin YL

1

2
1022/2

2
10 2

1exp
)2(

1),,(ββ
σπσ

σββ (6.15)

The values of β0, β1, and σ2 that maximize this likelihood function are the

maximum likelihood estimators and are denoted by 0β̂ ,, 1̂β and 2σ̂ respectively. These

estimators can be found analytically, and they are as follows:

Parameter Maximum Likelihood Estimator

β0 0β̂ = b0

β1
1̂β = b1

σ2 2σ̂ = Σ(Yi - iY) 1..n

Thus the maximum likelihood parameters of β0 and β1 are the same estimators as

provided by the method of least squares. Here maximum likelihood estimator 2σ̂ is

biased, and ordinarily the unbiased estimator MSE is used. Note that the unbiased

 61

estimator MSE differs but slightly from the likelihood estimator 2σ̂ , especially if n is not

small:

2

2

∧










−
= σ

n
nMSE (6.16)

6.2.3 Multiple Regression Models – Surface Models

Every so often the linear regression model may not suffice to delineate the nature

of the data that one is trying to model. The reason is two-fold,

� Either the response variable in the model does not relate to only one parameter but

may be dependent on several factors in reality.

� There is also the plausible causality between two or more predictor variables. These

are termed statistically as interactions between the factors.

When scenarios like these arise, we adopt multiple linear regression models also

called surface models (the reason being that the fitted regression model forms a surface in

the n-dimensional space). In general, we term all models as multiple linear regression

models even if they contain quadratic factors or exponential terms. This is made clear

further on in this chapter.

We may represent the multiple regression model as

iipipiiii XXXXY εβββββ ++++++=3322110 (6.17)

where

YI is the predicted variable,

Xi1 – Xip: are the predictor variables,

β1 - β2 are the regression coefficients.

 62

In order to simplify the explanation let us consider the case of bivariate

regression. In this case Yi is dependent on two variables represented as Xi1 and Xi2. The

regression model takes the form

 iiii XXY εβββ +++= 22110 (6.18)

Here the coefficients β1 and β2 represent the variability of Xi1 and Xi2 with

changes in Yi. In other words the β1 denote the per unit change in the value Yi for a small

change in the value of Xi1 provided Xi2 is held constant. The vice versa is the definition

for β2. εii represents the error in the estimate for Yi.

6.2.3.1 Estimating variability and multiple correlation coefficient

We define the multiple regression correlation coefficient R2 as a measure of the

prediction of Y obtained from the regression equation. If Y is perfectly predicted then R2 =

1. If the multiple regression equation predicts no better than the equation YY = , then R2

= 0. The proportion of the variability of Y accounted for by regression on p predictor

variables is given by

y

reg
pY SS

SS
R =2

....12. (6.19)

where SSreg = 2)ˆ(YYi∑ − is the amount of variability in Y accounted by regression.

The variability of Y defined as SSy is partitioned into two main parts SSreg and

SSerror. The first is the variability by regression alone and the second is the error or

residuals. SSreg for multiple regression with p predictor variables with completely

uncorrelated variables leads to non-overlapping error components associated with each of

the predictors. Hence the total variability is the sum of individual variability for each

 63

predictor variable. However, if the variables are correlated then we need the regression

coefficient to be adjusted to reflect the true variability and goodness fit estimate. For our

purposes to determine adjusted R2 we use

)1(

)1(12

−

−−−=

N
SS

pN
SS

R
y

error

adj (6.20)

where N is the sampled population size and p is the number of predictor variables

6.2.3.2 Estimation of the regression coefficients

We may represent the regression equation in matrix terms as follows (assuming

two predictor variables for illustration purposes)























nY

Y
Y
Y

.
3

2

1

 =























21

3231

2221

1211

..1
...

1
1
1

nn XX

XX
XX
XX

 X
















3

2

1

β
β
β

 +























5

4

3

2

1

ε
ε
ε
ε
ε

 (6.21)

This forms a set of linear equations that needs to be solved to determine the regression

coefficients. The equation may be represented as

ε+= BXY (6.22)

Let X’ represent the transpose of matrix X. Similarly β’ and Y’ represent the respective

matrix transposes for β and Y. Therefore we have

[]nYYYYY .' 321= (6.23)

[]321' ββββ = (6.24)

and X’ as

 64

















=

n

n

XXXXX
XXXXXX

334333231

224232221

.

.
111111

' (6.25)

We can then determine the coefficient matrix β to be given by

 YXXX ')'(1−=β (6.26)

The various statistics are then given by

 2'' YnYXESS −= β (6.27)

 2' YnYYTSS −= (6.28)

TSS
ESSR =2 (6.29)

)/()1(

)1(
2

2

knR
k

R
F

−−
−= (6.30)

1

)1(1 22

−
−−−=

k
knRRadj (6.31)

where n is the number of observations and k is the number of variables involved in the

regression equation. The value of R2 approaching 1 shows a very good fit for the data. To

formally verify the goodness fit we determine the equivalent F-statistic. A high value for

the F-statistic is indicative of a good fit and a low value closer to 1 is indicative of a bad

regression fit for prediction.

6.3 Selecting the Best Regression Equation for Prediction

Sometimes the criterion of interest is predicted by developing a regression

equation containing a subset of the potentially useful predictor variables that are

available. A number of automated procedures have been developed to produce the best

possible predictions with regression equations that contain relatively few predictors.

 65

These procedures include

� Forward selection

� Backward elimination

� Stepwise regression.

With these procedures it is often possible to select a subset of the potential predictors

that accounts for nearly as large a proportion of the variability in Y as does the entire

pool of predictors.

6.3.1 Forward Selection

In this procedure, one variable at a time is used to build the regression equation.

Initially the predictor with the highest correlation (positive or negative) is selected. If it

fails to meet the criterion for inclusion, the procedure ends with no predictors in the

equation, and the final equation is

YYi = ..(6.32)

If the first predictor meets the criterion, on the next step a second predictor is

selected and tested to determine whether it should be entered into the equation. The

predictor selected is the one that would result in the greatest increment in R2 if added to

the equation. If the second predictor does not meet the criterion for inclusion, the

procedure terminates with only a single predictor in the equation. If it does meet the

criterion, on the third step, a third predictor is selected and tested, and so on. At each

step, a partial F test is performed on the selected variable, and the criterion for inclusion

is stated in terms of the critical value or the significance level of the F. In forward

selection and stepwise regression, a liberal criterion for entering variables into the

 66

equation is often employed. This will generally allow the investigation of more variables

than would normally be used, so that a number of possible equations can be considered.

It should be noted that for procedures like forward selection, the usual

significance levels obtained from the F distribution are not appropriate. This is because

at each step a number of possible predictors are examined and only one- the one that

produces the greatest increment in R2 or, equivalently, the one that has the largest partial

F- is tested. If only a single predictor variable is to be chosen from a pool of m possible

predictors, the situation is analogous to choosing the largest member of a family of m

contrasts and testing it for significance.

6.3.2 Backward Elimination

Backward elimination begins with all the predictors in the equation and removes

them one by one until the final equation is obtained. At each step, the predictor in the

equation that produces the smallest increment in R2 is tested to determine whether it

should be removed from the equation. Again the criterion for removal is generally stated

in terms of the significance level of a partial F test. If the selected variable is removed,

another predictor is selected and tested on the next step. The procedure terminates when

a predictor that has been selected for testing is not removed from the equation; it and all

other predictors remaining in the equation are included in the final regression equation.

6.3.3 Stepwise Regression

Stepwise regression is a combination of forward selection and backward

elimination. The procedure is essentially the same as the forward selection with the

exception that after each new predictor has been added to the regression equation, all the

predictors already in the equation are reexamined to determine whether they should be

 67

removed. A partial F test is performed on the predictor already in the equation that

produces the smallest increment in R2. If the predictor no longer satisfies the criteria for

inclusion, it is removed from the equation. Statistical packages allow the user to set the

significance levels for entering or removing a variable. The F for entering the variables

into the equation should be set at least as high as the F for removing them. Otherwise,

variables may be cycled in and out of the equation.

It is not difficult to see why it is sometimes desirable to remove a predictor that

had been entered early in the analysis. For example, suppose that X5 is highly predictable

from X4 and X9 but is more highly correlated with Y than either of them. Even though X5

may enter the equation early because of its high correlation with Y, it will become

superfluous after X4 and X9 are entered. That is even if X5 contributes significantly to the

predictability of Y by itself, it may not make a significant contribution over and above the

predictability provided by the other two variables.

Again it is important to emphasize that when predictor variables entered into the

equation are selected from a larger pool, the significance levels printed out by stepwise

programs are not ‘real’ p values. Because many practitioners seem to be unaware of this

fact, stepwise regression outputs are often misinterpreted.

Finally we again emphasize that the sole motivation for the automated procedures

described in this section is to develop useful prediction equations that include subsets of

the available variables.

6.4 Development of Model

 68

We needed to develop vertical atmospheric profiles for wind, temperature and

pressure. As outlined earlier on in this chapter our first stage in this process is to analyze

the data. We first determine the variations of temperature, pressure and wind with

increasing altitude. We plotted graphs to determine the variation. Figure 6.4-6.6 shows

the individual variations of temperature, pressure and wind with height.

 Figure 6.4 Graph showing variation in temperature with altitude

Figure 6.5 Variation of Pressure with Altitude

The graph for pressure (Figure 6.5) shows the greatest linearity with altitude.

Hence we choose pressure as the independent variable and expressed all other parameters

in terms of pressure. The basic philosophy is to fit regression models to predict pressure

Temperature vs Altitude

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500

Altitude(in m)

Te
m

pe
ra

tu
re

 (i
n

ce
lc

iu
s)

Pressure vs Altitude

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500

Altitude(in m)

Pr
es

su
re

 (i
n

lb
/s

ec
)

 69

changes with altitude and then determine the corresponding values of temperature and

wind based on generated values of pressure. We fit normal or Gaussian mutators to

generate different but close values around the mean value of pressure in a given day at

the ground level. The purpose of mutations is to generate a new set of test trajectories.

We then predict the value sets as described above.

 Figure 6.6 Variation of Wind Speed with Altitude

6.4.1 Pressure Model

The following fitted models presented in this section provide prediction for a

single day, the chosen day is 28th May 1996. The subsections explain how we fit a model

for predicting pressure, temperature and wind conditions.

We first ran a correlation between pressure and altitude. We obtained the index as

CORRpres,wind = -0.99923. This is indicative of a possibly high probability of linearity

between the two factors. Hence we choose a linear regression function to predict pressure

based on altitude. The fitted regression equation may be represented as

 11)(caltbpressure += ..(6.33)

Solving we get b1 = -0.09795 and c1 = 969.2212. Hence the equation is

 2212.969)(09795.0 +−= altpressure ..(6.34)

Wind Speed vs Altitude

0
2

4
6
8

10
12
14

16
18

0 500 1000 1500 2000 2500 3000 3500

A lt itude (in m)

 70

In order to test to goodness fit we determine the correlation regression coefficient

and the F-statistic, the values found were R2 = 0.999 and F-stat = 124860. Both these

values indicate a very good regression fit between the predicted (dependent) and

predictor (independent) variables.

6.4.2 Temperature Model

 To determine temperature variation with altitude, we ran a correlation with

pressure and altitude. The respective correlation coefficients obtained were CORRtemp,press

= 0.95 and with altitude CORRtemp, alt = -0.9574. We shall now adopt a forward regression

methodology. Develop a model with only altitude as a parameter. The correlation

regression coefficient R2 = 0.9164. This is a good fit but we decided to introduce pressure

in the equation too and find out if there is an improvement in prediction. Now the

regression coefficient improved to R2 = 0.9448. This is a significant improvement over

the previous prediction.

We investigated whether temperature varies linearly with a transformed variable

(like either log(alt) or (alt)2). In fact the temperature had a better correlation with alt2. We

now did stepwise regression. We needed to determine if all the factors contributed

towards the prediction. When adopting the stepwise regression methodology we

determined that the combined contribution of pressure and height is better in predicting

the temperature than alt2. The equation is

 5906.225)(02547.0)(21257.0 +−−= altpressuretemp ..(6.35)

The fitted regression plot function visualized as a surface forms a plane in the 3-D space.

This is as shown in the figure below

 71

Figure 6.6: Surface Plot of Temperature with Pressure and Altitude

6.4.3 Wind Model

The challenge was to model wind values in terms of altitude, pressure and

temperature. Wind’s vicissitudes in values needed some form of transformation to be

applied to the predictor and response values to try and conform it to as near linearity as

possible. We adopted certain standard transformations like log, exponential, square root

and others. There was a great degree of randomness in the values for wind. Stepwise

regression was then performed. The fitted regression equation was

)log(*3876)Pr/1(*2045765)log(*2121.20383 pressureessuretempwind −−+= .(6.36)

 72

6.5 Generating Values

There are two approaches for developing models for predicting atmospheric

conditions. One model is to develop atmospheric conditions similar to mean monthly

wind and pressure. The second model is to have a new model generated for each day and

predict for that particular day. Since the DOLILU II system required to have near real

time situations to test, and as mean monthly atmospheric conditions do not capture the

nuances in atmospheric conditions on a particular day, we decided on having a separate

model for each day.

Having predicted the equations in the preceding subsections we shall now

generate input conditions to form different test suites. One major advantage with the

second approach is we generate closely related input trajectory parameters, which helps

us in creating an oracle that unambiguously decides on the output generated.

We now fit a mutator, say a normal mutator, that randomly generates pressure

values in range at the ground level. We then generate the corresponding values of for

pressure, wind, and temperature based on the values generated.

 73

7.0 Chapter 7.0: Conclusions and Further Work

In this thesis we have attempted to address three primary issues involved when

assessing software,

� A framework of assessment. We used a Bayesian framework to incorporate our

knowledge of the system into our assessment model. We needed to determine how we

could assign priors to reflect the belief in our system. We investigated and determined

that we may assign values for p, q based on mean probability of failure and the

tolerance for variance.

� Enhancing the speed for test execution. Apart from vertical slicing, we attempted at

alternative schemes for enhancing speed for execution. Monotonic transformations

like changing numerical precision could enhance the speed. But we couldn’t

incorporate these changes permanently to the software. If we needed to do so, we

required an oracle that decides whether the output was incorrect. With an occurrence

of an error the oracle then runs original program segment to determine the correct

output.

� Automated generation of test cases.

The first two address the economic feasibility for testing software, especially high

assurance software. The last issue deals with automating generation of test cases for

ensuring the reliability of the software when there is scarcity of previous data.

We developed a statistical framework for assessing software reliability of a high

assurance system DOLILU II. We used a Bayesian Inference Framework, primarily

because of the use of subjective prior knowledge in the reliability assessment model.

Bayesian methods not only provide better interpretation of test results but also achieve it

 74

with fewer test executions. A comparison between Random Sampling and Bayesian

methodologies clearly shows a superior framework for assessment when using Bayesian

Statistics.

 One of the important areas for further research would be how to translate different

methodologies of quality assurance into prior beliefs for the software? For Example if the

specification for the software was extensively exercised, how could this translate into a

belief within the assessment model. How could bayesian statistics support analysis in an

earlier stage in the software lifecycle?

 It is clear that no single assessment method is capable of an accurate prediction of

software quality. We could further research into marrying different methods like formal

verification, testing coupled with bayesian framework to achieve a better framework

which assesses high assurance software economically, and in a reasonable time frame.

 We also discussed methods for enhancing the speed for each test execution. We

focused primarily on program slices (semantic transformation), that are partial programs,

which are capable of executing independently. The union of all the outputs produced by

the individual slices forms the output of the original program. We also suggested

changes for numerically intensive slices to further enhance the speed.

Research could be directed on how we may achieve this. We need to research into

applicability of the transformation with their criterion of inclusion, in other words what

should be an acceptable degree of latitude one may give to these transformed

computations so that they would not adversely affect the output. Research could be done

also in predicting the change in the output for the proposed changes.

 75

One aspect that wasn’t addressed in this thesis is generation of a test oracle. An

oracle unambiguously decides whether a given output is correct or incorrect. For

DOLILU II system the generated outputs for any two input trajectories are expected to be

close for near similar input conditions. An oracle could simply decide on an erroneous

output by determining the difference in the two simulated outputs for closely related

inputs. Research can be done further on generating an automated oracle on the

aforementioned premise. One has to decide what statistical distance would qualify to

define the degree of closeness for the inputs and the outputs.

There are ample opportunities were we could apply a different approach for

assessing. We could also look into genetic algorithms, which may be used to generate test

suites for a program. Genetic algorithms are learning based algorithms, which continually

enrich themselves. We could research into the applicability of these algorithms for test

case generation based on criterion like logical path coverage and others.

 76

Bibliography

[1] T. Forester, P Morrison, Computer Ethics: Cautionary Tales and Ethical

Dilemmas in Computing, (Second Edition), MIT Press, Cambridge, 1994.

[2] L. Hatton, A Roberts, "How accurate is Scientific Software", IEEE Trans.

Software Engineering Vol. 20, Oct. 1994, pp. 785-797.

[3] Littlewood Bev, L. String00ini, "The Risks of Software", Scientific America, Nov.

1992, pp. 62-75.

[4] "Ariane 501- Report by the Inquiry Board", European Space Agency, available on

http://www.esrin.esa.it/tidc/Press/Press96/ariane5rep.html.

[5] "Mars Climate Orbiter Mishap", Mars Climate Orbiter Failure Investigation

Board, Phase I Report, Art Stephenson, Lia L. LaPiana, D. R. Mulville, Peter J.
Rutledge, D. Folta, Greg Dukeman, R. Sackheim, Peter Norvig, Dec. 1999, JPL
Pasadena, CA. available on
ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf

[6] Cukic, Bojan "Transformational Approach to Software Reliability Assessment",

Doctoral Thesis, Department of Computer Science, University of Houston,
August 1997.

[7] “Software in Safety Related Systems”, IEE/BCS Joint Study Report, A Special

Report, B. A. Wichmann, John Wiley & Sons, Chichester, 1992, pp. 1-122.

[8] S. Bhattacharya, A. Onama, F. B. Bastani, “High Assurance Systems”, Comm. of

the ACM, Vol40, No.1, Jan. 1997, pp. 67.

[9] A.N. Charette, Application Strategies for Risk Analysis, Software Engineering

Series, McGraw Hill, 1990.

[10] C. Ghezzi, M. Jazayeri, Programming Language Concepts, John Wiley & Sons,

New York, 1982.

[11] Jonathan Bowen “Formal Methods in Safety-Critical Standards”, Proc. 1993

Software Engineering Standards Symposium (SESS'93), Brighton, UK, 30th Aug.
- 3 September 1993, pp 168-177.

[12] J.C. Huang, “An Approach to Program Testing”, ACM Computing Surveys, Vol.

8, No. 3, Sept. 1975, pp. 113-128.

http://www.esrin.esa.it/tidc/Press/Press96/ariane5rep.html
ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf
ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Jonathan.Bowen/sess93.ps.Z

 77

[13] Bev Littlewood, Lorenzo Strigini, “Validation of Ultrahigh Dependability for
Software-based Systems”, Comm. of the ACM, Vol. 36, No. 11, Nov. 1993, pp.
69-79.

[14] S. Gerhart, D. Craigen, T. Ralston, “Experience with Formal Methods in Critical

Systems”, IEEE Software, Vol. 11,No. 1, Jan. 1994, pp. 21-28.

[15] C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of Software Engineering,

Prentice-Hall, (Third ed.) 1997.

[16] I.J. Hayes, “Specification directed module testing”, IEEE Trans. Software

Engineering, vol. 12, No. 1, Jan. 1986, pp. 124-133.

[17] J.W. Laski, B. Korel, “A Data Flow oriented program testing strategy”, IEEE

Trans. Software Engineering, vol. 20, No. 5, March 1985, pp. 72-87.

[18] S. Rapps and E.J. Weyuker, “Selecting software test data using data flow

information”, IEEE Trans. Software Engineering, vol. 11, no. 4, April 1985, pp.
367-375.

[19] J.D. Musa, “Operational profiles in software reliability engineering”, IEEE

Software, March 1993, pp. 14-32.

[20] J. Jacky, “Specifying a Safety Critical Control System in Z”, IEEE Trans. in

Software Engineering, Vol. 21, No. 2, Feb. 1995, pp. 99-106.

[21] G. Luo, A. Das, G.V. Bochmann, “Software testing based on SDL specifications

with save”, IEEE Trans. Software Engineering, vol.20, Jan. 1994, pp. 72-87.

[22] L.J. White, E.I. Cohen, “A domain strategy for computer program testing”, IEEE

Trans. Software Engineering, vol. 6, no. 7, July 1991, pp. 247-257.

[23] L. Dalton, E. Collins, P. Perry, G. Pollac, C. Sicking, “A Review of Research and

Methods for Producing High Consequence Software”, Proc. 1995 IEEE
Aerospace Applications Conference, Vol. 1, Aspen, CO, 1995, pp. 197-245.

[24] T.Y. Chen, Y.T.Yu, “On the Expected Number of failures Detected by Sub-

domain Testing and Random Testing”, IEEE Trans. Software Engineering, vol.
22, No. 2, Feb. 1996, pp. 109-119.

[25] P.G. Bishop, “The variation of Software Survival Tine for Different Operational

Input Profiles, Proc. IEEE Intl Symp. on Fault-Tolerant Computing FTCS-23,
Toulouse, France, June 1993, pp. 98-107.

[26] A. Avizienis, L. Chen, “On the Implementation N-Version Programming”, Proc.

Computer Software and Applications Conference, 1977, pp. 149-155.

 78

[27] F. B. Bastani, A. Pasquini, “Assessment of a Sampling Method for Measuring
Safety-Critical Software Reliability”, Proc. of 5th Int’l. Symp. on Software
Reliability Engineering(ISSRE ’94), Montery, CA., Nov.1994.

[28] Harry F. Martz, Ray A. Waller, Bayesian Reliability Analysis, John Wiley and

Sons Inc., New York, 1982.

[29] J.W. Duran, S.C. Ntafos, “An Evaluation of Random Testing”, IEEE Trans.

Software Engineering, vol. 10, no. 7, July 1984, pp. 438-444.

[30] R. Hamlet, R. Taylor, “Partition Testing does not inspire confidence”, IEEE

Trans. Software Engineering, vol. 16, no. 12, Dec. 1990, pp. 1402-1411.

[31] W. G. Cochran, Sampling Techniques, John Wiley and Sons Inc., New York,

N.Y., 1977.

[34] C.A.R. Hoare, “An Axiomatic Basis for Computer Programming”, Comm. of the

ACM, vol. 12, No. 10, Oct. 1969, pp. 576-583.

[35] R. B. Anderson, Proving Programs Correct, John Wiley & Sons Inc., New York,

N.Y., 1979.

[36] R.M. Burstall, P.J. Landin, “Programs and their proofs: An Algebraic Approach”,

Machine Intelligence, No. 4, Edinburgh University Press, 1969, pp. 17-43.

[37] R. DeMillo, R. Lipton, F. Sayad, “Hints on test data selection: help for the

practicing programmer”, IEEE Computer, vol. 11, no. 4, Apr. 1978, pp. 34-41.

[38] J.M. Voas, K.W. Miller, “Software testability: The new verification”, IEEE

Software, May 1995, pp. 17-28.

[39] Software Requirements Specification, Flight Design and Dynamics, Ascent

Discipline, Ascent Subsystem, Day-of-Launch Function, DIVDT Program,
Version 4.2P, STSOC-RQ-820754, Rockwell Space Operations Company, March
22, 1993.

[40] NSTS 08329, DOLILU II System Definition and Requirements Document,

Volume VI, DOLILU II Quality Assurance Rules, Day-of-Launch Function,
DIVDT Program, NASA, Feb 1992.

[41] B. Cukic, D. McCaugherty, D. Chakravarthy, “Reliability Prediction of a

Trajectory Verification System”. 1998 IEEE Workshop on Application-Specific
System and Software Engineering, Richardson, TX, March 1998.

 79

[42] Detailed Design Document: Flight Design and Dynamics, Ascent Discipline,
Ascent Subsystem, Day-of-Launch Function, DIVDT Program, Version 4.4FP,
SOC-SP-820949B, Rockwell Space Operations Company, May 22, 1993.

[43] Acceptance Test Procedures, Flight Design and Dynamics, Ascent Discipline,

Ascent Subsystem, Day-of-Launch Function, DIVDT Program, Version 4.4FP,
Rockwell Space Operations Company, December 15, 1994.

[44] N.G. Leveson, M. Heimdahl, H. Hildreth, J. Reese, “Requirements Specification

for Process Control Systems”, IEEE Trans. Software Engineering, vol. 20, no. 9,
September 1994.

[45] Bayes T., 1958 Essay Towards Solving a Problem in the Doctrine of Chances,

Biometrica, Vol. 45, pp. 293-315.

[46] Bev Littlewood, David Wright, “Stopping Rules for the Operational Testing of

Safety Critical Software”,25th Conference on FTCS, Pasadena, CA, June 1995,
pp. 444-451.

[47] N.L. Johnston, S. Kotz, Distributions in Statistics: Discrete Distributions Vol. 1 &

2, John Wiley, New York, 1969.

[48] M. Weiser, “Program Slicing”, IEEE Transactions on Software Engineering, vol.

10, no. 7, July 1984, pp. 352-357.

[49] K. Ottenstein and L. Ottenstein, “The Program Dependence Graph in Software

Development Environments”, In Proceeding of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development
Environments, May 1984, pp. 177-184.

[50] Anouar Jamoussi, Cukic B., Hilford V., Bastani F.B., “Accelerated Execution of

Test Cases for Software Reliability Assessment”

[51] Butler R.W., Finelli G.B., “The Infeasibility of Quantifying the Reliability of

Life-Critical Real-Time Software”, NASA Langley Research Center, Hampton,
VA.

[52] Keiller P.A., Miller D.R., “On the use and the performance of software reliability

growth models”, Reliability Engineering and System Safety, 1991, pp. 95-117.

 80

Appendix A

We adopted a tabular form of representation for ease of explanation. Consider

table A.2, which provides the proof for the evaluation of rule S1 (pitch and yaw I-load

with Sail envelopes). The format is as follows, each procedure call forms a separate row

in the table. The keyword procedure and a descriptive name delineating the purpose of

the procedure precede them. Variables declared locally within the procedure are defined

in the row immediately following the procedure. Variables indicated as global are either

defined as common in FORTRAN (or passed by reference in C) to the function.

When DIVDT is invoked the first procedure executed is to set up input files for

DIVDT’s proper functioning. If any of the input files are missing, DIVDT terminates the

evaluation process and an appropriate message is displayed or logged in a file. This

procedure is shown in row 1 of table A.2.

The next procedure called checks for the format of the input trajectory and limit

files. In order to maintain consistency in representing data for trajectories and input files,

NASA adopted a standard method of representation. If any of the files deviate from their

expected format or if there are missing values or an incorrect data type (e.g. a float value

is expected in the file but textual string is found) DIVDT terminates the evaluation

process and logs the error in a file. The file contains information on where the error

occurred, the filename and the line at which the error occurred, the type of error that

caused the termination. This is procedure in row 2 in table A.2.

The third row in table A.2 indicates reading in the input limits for each individual

rule. Although the limits for all the rules are read in, when vertically slicing only

variables that affect the evaluation of a specific rule are required. These variables are

 81

indicated in the succeeding row. Allocations are done on the heap so that the values may

be passed on to evaluation procedure.

Rows 5 through 15 are executed in a loop. This is shown alongside the table with

an arrow starting at row 15 and ending in row 5. This loop terminates with the end of the

trajectory files. Trajectory files are large and cannot be stored in memory. Hence DIVDT

loops through each point in the trajectory file. Every point in the trajectory file is stored

in specified format referred to as a record. Every record in the file is preceded by a

textual line, indicating which record type to use based on which stage (first stage, pre-

orbital insertion or orbiting stage) in the flight trajectory is the evaluation taking place.

The record names used are

� STDRCD:- this indicates the standard record format for the first stage conditions in

the trajectory.

� SRBSTD:- indicates the standard record format for pre-orbital insertion stage in the

trajectory.

� MECSTD:- indicates the standard record format for the orbiting stage.

� SRBSUP:- this is a supplementary record format required for certain rules during pre-

orbital insertion stage.

� MECSUP:- supplementary record format required for certain rule evaluations during

the orbiting stage.

Each record is an array and follows a common naming convention. Record names

are of one of the following types STDRCD_XXX, SRBSTD_XXX, MECSTD_XXX,

SRBSUP_XXX and MECSUP_XXX. Here _XXX = DOLIT to indicate SVDS simulated

 82

trajectory for day-of-launch conditions, or _XXX = DADS to indicate DADS simulated

trajectory or _XXX = REFT indicating reference trajectory.

Row 5 in table A.2, refers to the procedure call that reads in SVDS trajectory

record into the appropriate array, followed by DADS trajectory record (row 7 in table

A.2) and finally Reference trajectory record (row 9 in table A.2).

Row 12 calls procedure read DADS I-Loads (guidance commands) which reads

the corresponding DADS I-Loads from the dads_iloads file into ILRECD array.

Row 14 in table A.2 calls procedure evaluate ruleS1. This procedure evaluates the

rule for the given point in the trajectory. It stores percentage exceedance and the

reference values. Once the evaluation is completed for all points in the trajectory, the data

is stored in files (ASCII for textual files like detailed summary and binary for plot files).

Row 16 in table A.2 calls DIVDTPLT to generate the plot files.

We can repeat the same procedure for the other rules.

Table A.2 Rule S1

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read_Input_File_Limits
4 ARV[51]

PSI_LOW_LIM[51]
PSI_HI_LIM[51]
THET_HI_LIM[51]
THET_LOW_LIM[51]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
11 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

12 Procedure Read DADS_Iloads
13 ILRECD[200]
14 Procedure Evaluate RuleS1

 83

15 PSI_ACTUAL , PEREXCEEDANCE [90] (global), REFVALUES[90](global)
THET_ACTUAL,
RESULT[90](global)

16 Procedure DIVDTPLT

Table A.3 Rule S2

1 Procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read_Input_File_Limits
4 QBR_LIM
5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
11 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

12 Procedure Evaluate_RuleS2
13 QBAR_ACTUAL , PERCENTEXCEEDANCE[90], REFVALUES[90]

RESULT[90]
14 Procedure DIVDTPLT

Table A.4: Rule S3

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read_Input_File_Limits
4 ALD_LIM_LOW

ALD_LIM_HI

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleS3
12 ALD_ACTUAL (iterative process evaluating the rule for each record in the i/p traj.)

RESULT
13 Procedure DIVDTPLT

 84

Table A.5: Rule S4
1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Read Limits RuleS4
4 BED_LIM_LOW

BED_LIM_HI
5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Evaluate RuleS4
12 BED_ACTUAL (iterative process evaluating the rule for each record in the input trajectory)

RESULT
13 Procedure DIVDTPLT

Table A.6: Rule S5

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS5
4 PD_LIM_LOW

PD_LIM_HI
QD_LIM_LOW
QD_LIM_HI
RD_LIM_LOW
RD_LIM_HI

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleS5
12 ROLL_RATE (iterative process evaluating the rule for each record in the i/p traj.)

YAW_RATE
PITCH_RATE
RESULT

13 Procedure DIVDTPLT

 85

Table A.7: Rule S6
1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS6
4 DELTA_WIND_MARGIN

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleS6
12 Wind_Margin

RESULT
13 Procedure DIVDTPLT

Table A.8: Rule S7

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS7
4 ARV[50]

ELVHM_INB_SYST_LIM_LOW[50]
ELVHM_OUTB_SYST_LIM_LOW[50]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleS7
12 Array_Size

Elvm_Left_Inboard
Elvm_Right_Inboard
Evlm_Left_Outboard
Evlm_Right_Outboard
RESULT

13 Procedure DIVDTPLT

Table A.9: Rule S8

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS8 (VENTDATA)

 86

4 NMCH (number of Mach Values)
MACH (MACH number)
NBET (number of Batches)
PTS (number of Points)
CALD (Center Altitude)
CBAR (Center Pressure)
ALD (Altitude Coords.)
QBAR (Pressure)
DALD (Delta Altitude (change))
DBAR (Change in Pressure)

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
11 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

14 Procedure Evaluate RuleS1
15 ALPHA

QBAR
RESULT

16 Procedure DIVDTPLT

Table A.10: Rule S9

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS9
4 ARRAY_SIZE

MACH_REF[50] (Mach Reference)
MIN_ALPHA_5[50]
MIN_BETA_5[50]
MAX_DENSITY_1[50]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleS9
12 RESULT
13 Procedure DIVDTPLT

 87

Table A.11: Rule S13
1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS13
4 ARRAY_SIZE

ALT_LIM[50]
THR_LIM[50]
KMIN_ALT[50]
DEL_ALT_TWO[50]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleS13
12 QPOLY_3_SIGMA

RESULT
13 Procedure DIVDTPLT

Table A.12: Rule S14

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS14
4 VP_SIZE (array_sizes)

ZVRT_REF[50]
MIN_XVRT_ALLOWED[50]
PR_SIZE[50]
TIME_REF[50]
MIN_PRANGE[50]
PL_SIZE[50]
PLONG_REF[50]
MIN_PLAT_ALLOWED[50]
MAX_PLAT_ALLOWED[50]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleS14

 88

12 XVRT
ZVRT
YVRT
HPLN_PRANGE
HPLN_PLAT
RESULT

13 Procedure DIVDTPLT

Table A.13: Rule S15

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS15
4 WTZMAR

MARGIN_LIM
5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleS15
12 WEIGHT_MARGIN

RESULT
13 Procedure DIVDTPLT

Table A.14: Rule S16

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS16
4 ADI_TIME_LIM

PD_ADI_LIM_LOW
PD_ADI_LIM_HI
QD_ADI_LIM_LOW
QD_ADI_LIM_HI
RD_ADI_LIM_HI
RD_ADI_LIM_LOW

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleS16

 89

12 YAW_RATES
PITCH_RATES
ROLL_RATES
RESULT

13 Procedure DIVDTPLT

Table A.15: Rule S19

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS19
4 ARRAY_SIZE

WIND_ALT[50]
WNDNT_LIM_LOW[50]
WNDNT_LIM_HI[50]
WNDET_LIM_HI[50]
WNDET_LIM_LOW[50]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Read DADS_Iloads
12 ILRECD[200]
13 Procedure Evaluate RuleS19
14 WND_EAST_CPMT

WND_NORTH_CPMT
RESULT

15 Procedure DIVDTPLT

Table A.16: Rule S20

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS20
4 TREF_LIM_HI

TREF_LIM_LOW
5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate S20
12 TIME_REF

RESULT

 90

13 Procedure DIVDTPLT

Table A.17: Rule S21

1 Procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Read Limits RuleS21
4 QPOLY_SYS_LOW

QPOLY_SYS_HI
QPOLY_SYS_LIM_LOW
QPOLY_SYS_LIM_HI
QPOLY1_SYS_LOW
QPOLY1_SYS_HI
QPOLY1_SYS_LIM_LOW
QPOLY1_SYS_LIM_HI
QPOLY2_SYS_LOW
QPOLY2_SYS_HI
QPOLY2_SYS_LIM_LOW
QPOLY2_SYS_LIM_HI
QPOLY3_SYS_LOW
QPOLY3_SYS_HI

QPOLY3_SYS_LIM_LOW
QPOLY3_SYS_LIM_HI
QPOLY4_SYS_LOW
QPOLY4_SYS_HI
QPOLY4_SYS_LIM_LOW
QPOLY4_SYS_LIM_HI
THROT1_SYS_LOW
THROT1_SYS_HI
THROT1_SYS_LIM_LOW
THROT1_SYS_LIM_HI
THROT2_SYS_LOW
THROT2_SYS_HI
THROT2_SYS_LIM_LOW
THROT2_SYS_LIM_HI

THROT3_SYS_LOW
THROT3_SYS_HI
THROT3_SYS_LIM_LOW
THROT3_SYS_LIM_HI
THROT4_SYS_LOW
THROT4_SYS_HI
THROT4_SYS_LIM_LOW
THROT4_SYS_LIM_H

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate Rule S21
12 QPLOY[4]

THROT[4]
RESULT

13 Procedure DIVDTPLT

Table A.18: Rule S22

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS22
4 TDEL_LIM
5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

 91

11 Procedure Evaluate RuleS22
12 RESULT
13 Procedure DIVDTPLT

Table A.19: Rule S23

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS23
4 ARRAR_SIZE

MACH_REF[50]
ACCEL_X_LOW[50]
ACCEL_X_HI[50]

ACCEL_Y_LOW[50]
ACCEL_Y_HI[50]
ACCEL_Z_LOW[50]
ACCEL_Z_HI[50]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate Rule23
12 X_CPMT

Y_CPMT
Z_CPMT
RESULT

13 Procedure DIVDTPLT

Table A.21: Rule S24

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleS24
4 ARRAY_SIZE

TIME[50]
ALT_PLUME_LIM[50]
LOW_CONST[50]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleS24
12 RESULT
13 Procedure DIVDTPLT

 92

Table A.22: Rule E1

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleE1
4 GAMMA_STG_LIM_MAX

GAMMA_STG_LIM_MIN
5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleE1
12 GAMMA_STG

RESULT
13 Procedure DIVDTPLT

Table A.23: Rule E2

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleE2
4 ALT_STG_LIM_MAX

ALT_STG_LIM_MAX
5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleE2
12 ALT_STG

RESULT
13 Procedure DIVDTPLT

Table A.24: Rule E3

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleE3
4 MAX_DEL_AZI

MIN_DEL_AZI
5 Procedure Process_DOLITRAJ (read in record)

 93

6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]
MECSUP_DOLIT[50]

SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleE3
12 AZIMUTH_STG

RESULT
13 Procedure DIVDTPLT

Table A.25: Rule E4

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleE4
4 ARRAY_SIZE

TIME[50]
EBFB1_LIM_LOW[50]
EBFB1_LIM_HI[50]
EBFB2_LIM_LOW[50]
EBFB2_LIM_HI[50]
EBFB3_LIM_LOW[50]
EBFB3_LIM_HI[50]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleE4
12 ROLL_ERROR

YAW_ERROR
PITCH_ERROR
RESULT

13 Procedure DIVDTPLT

Table A.26: Rule E5

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleE5

 94

4 ARRAY_SIZE
TIME[50]
WFBFB1_LIM_LOW[50]
WFBFB1_LIM_HI[50]
WFBFB2_LIM_LOW[50]
WFBFB2_LIM_HI[50]
WFBFB3_LIM_LOW[50]
WFBFB3_LIM_LOW[50]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleE5
12 ROLL_RATES

YAW_RATES
PITCH_RATES
RESULT

13 Procedure DIVDTPLT

Table A.27: Rule E6

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleE6
4 ARRAY_SIZE

TIME[50]
DPD_LIM_LOW[50]
DPD_LIM_HI[50]
DQD_LIM_HI[50]
DQD_LIM_LOW[50]
DRD_LIM_LOW[50]
DRD_LIM_HIH[50]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleE6
12 ACCEL1

ACCEL2
ACCEL3
RESULT

13 Procedure DIVDTPLT

 95

Table A.27: Rule E7

1 Procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleE7
4 ARRAY_SIZE

TIME[50]
PD_LIM_LOW[50]
PD_LIM_HI[50]
PD_LIM_LOW[50]
RD_LIM_LOW[50]
RD_LIM_LOW[50]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleE7
12 YAW_ACT_BODY_RATE

PITCH_ACT_BODY_RATE
ROLL_ACT_BODY_RATE
RESULT

13 Procedure DIVDTPLT

Table A.27: Rule E8

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleE8
4 ARRAY_SIZE

TIME[50] VREL[50]
SSME1_PITCH_LIM_LOW[50]
SSME1_PITCH_LIM_HI[50]
SSME2_PITCH_LIM_LOW[50]
SSME2_PITCH_LIM_HI[50]
SSME3_PITCH_LIM_LOW[50]
SSME3_PITCH_LIM_HI[50]
SSME4_PITCH_LIM_LOW[50]
SSME4_PITCH_LIM_HI[50]

SSME5_PITCH_LIM_LOW[50]
SSME5_PITCH_LIM_HI[50]
SSME1_YAW_LIM_HI[50]
SSME1_PITCH_LIM_LOW[50]
SSME2_PITCH_LIM_HI[50]
SSME2_PITCH_LIM_LOW[50]
SSME3_PITCH_LIM_HI[50]
SSME3_PITCH_LIM_LOW[50]
SSME4_PITCH_LIM_HI[50]
SSME4_PITCH_LIM_LOW[50]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleE8

 96

12 PITCH_RATES[3]
YAW_RATES[3]
RESULT

13 Procedure DIVDTPLT

Table A.28: Rule E9

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleE9
4 ARRAY_SIZE

VREL
SRBRC_LEFT_LIM_LOW
SRBRC_LEFT_LIM_HI
SRBRC_RIGHT_LIM_LOW

SRBRC_LEFT_LIM_HI SRBTC_LEFT_LIM_LOW
SRBRC_LEFT_LIM_HI
SRBRC_RIGHT_LIM_LOW
SRBRC_LEFT_LIM_HI

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleE9
12 RESULT
13 Procedure DIVDTPLT

Table A.29: Rule E10

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleE10
4 MISSION_INCLINATION

ARRAY_SIZE
ARV[50]
THET_LOW[50]

THET_HI[50]
PSI_LOW_DELTA[50]
PSI_HI_DELTA[50]

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Read DADS_Iloads
12 ILRECD[200]
13 Procedure Evaluate RuleE10

 97

14 YAW
PITCH
ROLL
RESULT

15 Procedure DIVDTPLT

Table A.30: Rule E11

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Read Limits RuleE11
4 ARRAY_SIZE

ELVHM_INB_EXP_LIM_HI
ELVHM_INB_EXP_LIM_LOW
ELVHM_OUTB_EXP_LIM_HI
ELVHM_OUTB_EXP_LIM_LOW

5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleE11
12 ELV_LEFT_INBOUND

ELV_RIGHT_INBOUND
ELV_RIGHT_OUTBOUND
ELV_LEFT_OUTBOUND
RESULT

13 Procedure DIVDTPLT

Table A.31: Rule E14

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleE14
4 VREL_LIM_HI

VREL_LIM_LOW
5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleE14
12 RESULT

 98

13 Procedure DIVDTPLT

Table A.32: Rule E15

1 procedure SETUP_INPUT_FILES
2 Procedure CHECK_UNIT15 (format for all files)
3 Procedure Read Limits RuleE11
4 HDOT_STG_LIM_HI

HDOT_STG_LIM_LOW
5 Procedure Process_DOLITRAJ (read in record)
6 STDRCD_DOLIT[250] MECSTD_DOLIT[200]

MECSUP_DOLIT[50]
SRBSTD_DOLIT[200]
SRBSUP_DOLIT[50]

7 Procedure Process_DADSTRAJ (read in record)
8 STDRCD_DADS[250] MECSTD_DADS[200]

MECSUP_DADS[50]
SRBSTD_DADS[200]
SRBSUP_DADS[50]

9 Procedure Process_REFTRAJ (read in record)
10 STDRCD_REFT[250] MECSTD_REFT[200]

MECSUP_REFT[50]
SRBSTD_REFT[200]
SRBSUP_REFT[50]

11 Procedure Evaluate RuleE15
12 ALT_RATE

RESULT
13 Procedure DIVDTPLT

 99

Appendix B

B.1 Solve Integration by Parts

 Integration by parts may be done according to the following formula

 ()∫ ∫ ∫ ∫−== dudvdvuudvI . (B.1)

This implies

 ∫−= vduuvI . (B.2)

We may represent the equation in another form

 ()∫ ∫ ∫ ∫ 






−== dx
dx
duvdxvdxuuvdxI . (B.3)

Consider the generalized complete beta function given by

 θθθ dbaB ba
∫

−− −=
1

0

11)1(),(. (B.4)

We have a>0 and b>0, assuming only integer values for a, b we shall now repeatedly

integrate equation (B.4) using (B.3). Let I denote the final integration result, therefore

 θθθ dbaBI ba
∫

−− −==
1

0

11)1(),(. (B.5)

According to equation (B.3) we have

 ∫ ∫∫ 





















−−−=

−
−−− θ

θ
θθθθθθ d
d

dddI
a

bba
1

111)1()1(. (B.6)

Therefore, applying the limits [0,1], we get

 θθθθθ d
b
a

b
I baba)1(

)1(
])1([1 2

1

0

1
0

1 −
−−

−−−= −−
∫ . (B.7)

 100

This evaluates to

 θθθ d
b

a
b

I ba
∫ −−+−−= −
1

0

2)1()1()00(1 . (B.8)

Therefore

 θθθ d
b

aI ba
∫ −

−
= −

1

0

2)1(
)1(

. (B.9)

Let I1 denote

 θθθ dI ba
∫ −= −
1

0

2
1)1(. (B.10)

I now become

 1
)1(I

b
aI −= (B.11)

Using equation (B.3) again to evaluate I1 we get

 ∫ ∫∫ 





















−−−=

−
− θ

θ
θθθθθθ d
d

dddI
a

bba
2

2
1)1()1(. (B.12)

Therefore applying limits [0,1] we get I1 to be

 θθθθθ d
b
a

b
I baba 13

1

0

1
0

12
1)1(

1
)2(])1([

)1(
1 +−+− −

+
−−−−

+
−= ∫ . (B.13)

This implies

 θθθ d
b
a

b
I ba

∫
+− −

+
−

+−
+

−=
1

0

13
1)1(

)1(
)2(

)00(
)1(

1 (B.14)

 θθθ d
b
aI ba

∫
+− −

+
−

=
1

0

13
1)1(

)1(
)2(

 (B.15)

Let I2 denote the integration in equation (B.15). Therefore I1 is

 101

 21)1(
)2(I

b
aI

+
−

= (B.16)

This is clearly seen to be recursive (observe equations (B.16) and (B.11)). In general

 1)(
)1(

++
−−= ii I
ib

iaI (B.17)

where Ii+1 denotes

 θθθ dI ibia
i ∫

++−+−−
+ −=

1

0

)1()1()1(1
1)1((B.18)

This continues till the power of θ a-1 becomes 0. Therefore

 12)2(
)12(

−− −+
−+−

= aa I
ab

aaI (B.19)

and θθθ dI abaa
a ∫

−+−−−−
− −=

1

0

)1()1()1(1
1)1((B.20)

Solving for Ia-1, we get

 θθ dI ab
a ∫

−+
− −=

1

0

)2(
1)1((B.21)

 []102
1)1(

)1(
1 −+

− −
−+

−= ab
a ab

I θ (B.22)

)1(

1)10(
)1(

1
1 −+

=−
−+

−=− abab
I a . (B.23)

Substituting for Ia-1 in equation (B.19) we get

 .
)1(

1.
)2(

1
2 −+−+

=− abab
I a (B.24)

Therefore I would be equal to

)1(

1.......
)2(
)3(

.
)1(
)2(

.
)1(

−++
−

+
−−

=
abb

a
b
a

b
aI . (B.25)

 102

If we take a=p and b=q+U then we

)1(

1.....
)1(

)2(.
)(
)1(),(

−++++
−

+
−=+

pUqUq
p

Uq
pUqpB . (B.26)

This implies

)1).....(2)(1)((

)!1(),(
−+++++++

−=+
pUqUqUqUq

pUqpB (B.27)

Table B.1: priors for corresponding belief in θθθθ
Value of θθθθ Value p Value q

10-2 5 990
10-3 8 9850
10-4 10 99800
10-5 100 4510488
10-6 120 1997988
10-7 150 990371123

B.2 Priors based on µµµµ and σσσσ2 for beta distribution

 We know that the mean and variance for beta distribution is given by

)(qp

p
+

=µ (B.28)

and
)1()(2

2

+++
=

qpqp
pqσ (B.29)

We believe that the system has exhibited a mean µ = 10-5. It is required that the variance

be very less to instill better confidence in our belief. Let us assume that the variance be

atleast 10-10. We shall now derive p and q in terms for the mean and variance.

 Using equation (B.28), we get

 pqp =+ µ)(. (B.30)

 103

This implies

 qp µµ =−)1(. (B.31)

Therefore

)1(µ

µ
−

= qp . (B.32)

Now we have variance given by equation (B.29). Using (B.29), we get

 2
2)1()(

σ
pqqpqp =+++ . (B.33)

This implies

 2
22)1)(2(

σ
pqqpqpqp =++++ . (B.34)

Therefore

 2
22322223 222

σ
pqqpqpqpqqppqqpp =++++++++ . (B.35)

Rearranging and combining terms we have

 2
222233 233

σ
pqpqpqqpqpqp =++++++ . (B.36)

Substituting for p in equation (B.36) from (B.32) we get

2
2

233
2

2
22

2

2
33

3

3

)1()1(
2

)1(
3

)1(
3

)1()1(
qqqqqqqq

σµ
µ

µ
µ

µ
µ

µ
µ

µ
µ

µ
µ

−
=

−
+

−
+

−
++

−
++

−
(B.37)

Since q>0, the above equation reduces to (dividing throughout by q2) we get,

22

2

2

2

3

3

)1()1(
2

)1(
3

)1(
31

)1()1(σµ
µ

µ
µ

µ
µ

µ
µ

µ
µ

µ
µ

−
=

−
+

−
+

−
++

−
++

−
qqqq . (B.38)

Combining different parts of the equation, we get

() 








−
+

−
+−

−
=

−
+

−
++

− 2

2

22

2

3

3

)1(
2

)1(
1

)1()1(
3

)1(
31

)1(µ
µ

µ
µ

σµ
µ

µ
µ

µ
µ

µ
µ q . (B.39)

 104

This simplifies to

2

2

3

)1(
11

)1()1(
1 









−
+−

−
=









−
+

µ
µ

σµ
µ

µ
µ q . (B.40)

Simplifying further

2

2

3

)1(
11

)1()1(
1










−
−

−
=









− µσµ
µ

µ
q . (B.41)

Therefore






























−










−−






























−

−= 3

2

3

2

)1(
1

)1(
1

1(
1

1
)1(

µ

µ

µ

σµ
µ

q . (B.42)

Simplifying, we get

)1()1(
2

2

µ
σ

µµ −−−=q . (B.43)

Taking σ2 = 10-10, and µ = 10-5, we get

 q = 10-5 x 1010 x (1-0.00001)2 - (1-0.00001) (B.44)

Approximating to the nearest integer

 q = 99997

Therefore p will be

 p = 10-5 x 99997 / 0.99999 = 1

If we take σ2 = 10-15, we get q = 9999800000 and p = 99998.

 105

Table B.2 Variation in tests with decreasing variance, confidence = 0.99, θθθθ = 10-4
VarVariance P q tests

2x10-9 5 49995 13691
1.25x10-9 8 79992 24277
4x10-10 25 249975 67597

1.6x10-10 60 599940 126773
1.4x10-10 70 699930 140632

 Figure B.4 Showing Variation of no. of test for θθθθ =10-4, C=0.99
 with variation in p and q.

Variat io n in T ests R equired with variat io n in (p, q)

0

20000

40000

60000

80000

100000

120000

140000

160000

(5, 49995) (8, 79992) (25, 248875) (60, 599940) (70, 699930)

values (p ,q)

	Assessment of a Space Shuttle trajectory evaluation system (DOLILU II)
	Recommended Citation

	Chapter 1: Introduction and Overview
	Introduction
	Software Usage And Experiences
	Ariane 5
	Mars Climate Orbiter

	Motivation
	Thesis Overview
	Chapter 2: Related Work
	Reliability Assessment Methods
	Static Assessment Techniques
	Dynamic Assessment Techniques
	Statistical Assessment Methods

	Chapter 3: Day of Launch I-Load Update System (DOLILU II)
	DOLILU II – Primary System
	Day-of-launch I-Load Verification Data Table (DIVDT)
	Assessment Methodologies for DIVDT
	Inspection
	Analysis
	Testing
	Demonstration
	Comparison Against Results from Previous Version

	Chapter 4: Assessment Methodologies
	Bayesian Inference Framework
	Classical Probability Theory versus Bayesian Inference
	Advantages of Bayesian Inference in Software Reliability
	Bayes’ Theorem with Subjective Probabilities

	Bayesian Reliability Assessment of DIVDT (DOLILU II)
	Choice of Prior Distribution
	Extended testing with occurrence of failure

	Chapter 5.0: Acceleration of Test Cases
	Transformations for Accelerated Execution of Test Cases
	Source Transformations
	Reducing numerical precision

	Environment Changes
	Transformations applied for DIVDT (DOLILU II)
	Applying Vertical Slicing to DIVDT (DOLILU II)
	Applying Numerical Precision Reduction for DIVDT
	Environment Changes

	Chapter 6: Automated Test Case Generation
	Basic Philosophy
	Regression Models, Surface Models Analysis
	Linear Regression models
	Estimation of the Regression Model
	Method of Least Squares
	Method of Maximum Likelihood

	Multiple Regression Models – Surface Models
	Estimating variability and multiple correlation coefficient
	Estimation of the regression coefficients

	Selecting the Best Regression Equation for Prediction
	Forward Selection
	Backward Elimination
	Stepwise Regression

	Development of Model
	Pressure Model
	Temperature Model
	Wind Model

	Generating Values
	Chapter 7.0: Conclusions and Further Work
	Bibliography
	Appendix A
	Appendix B

