

Graduate Theses, Dissertations, and Problem Reports

2000

Emissions and operational aspects of methanol as an alternative fuel in a stationary gas turbine

Richard William Guiler West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation

Guiler, Richard William, "Emissions and operational aspects of methanol as an alternative fuel in a stationary gas turbine" (2000). *Graduate Theses, Dissertations, and Problem Reports*. 1004. https://researchrepository.wvu.edu/etd/1004

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact researchrepository@mail.wvu.edu.

EMISSIONS AND OPERATIONAL ASPECTS OF METHANOL AS AN ALTERNATIVE FUEL IN A STATIONARY GAS TURBINE

by

Richard Guiler

THESIS

Submitted to The College of Engineering and Mineral Resources West Virginia University

> In partial fulfillment of the requirements For the degree of

Master of Science in Aerospace Engineering Department of Mechanical and Aerospace Engineering

> John Loth, Ph.D., Chair Robert Bond, Ph.D. Gary J. Morris, Ph.D.

Morgantown, West Virginia 2000

Keywords: Gas Turbine, Methanol, Emissions, Alternate Fuel, Lubricity.

By Richard Guiler

During the past thirty years two major concerns have developed with our current fuels. These concerns are reliable supplies and pollution. Because of these problems there has been a great interest in alternate fuels such as alcohol and natural gas. Since 1997 research has been conducted at West Virginia University on methanol as an alternate fuel for gas turbines. There have been two main areas of study in this research, the problems associated with operating a gas turbine on methanol and exhaust gas emissions. There are two major differences between methanol and aviation kerosene that affect the operation of a gas turbine. The first is methanol's poor lubricating properties and the second is methanol's lower heating value. During this research techniques have been developed to measure the lubricating properties of methanol and various additives. Suitable lubricant additives were found to improve methanol's lubricity to equal that of aviation kerosene, with as little as 1% additive. The lower heating value of methanol required modifications to the WVU gas turbine's fuel system and atomizer, to provide higher flow rate of fuel then required with aviation kerosene. The gas turbine was modified and operated on methanol for an extended period, without failure. Exhaust gas emissions were tested for carbon monoxide (CO), carbon dioxide (CO₂), oxides of nitrogen (NO_x), total hydrocarbons (HC), and particulate matter (PM). During operation on methanol significant reductions in NO_x and HC emissions were observed. Without significant change in turbine inlet temperature, this observation can only be explained by a significant reduction in primary combustion zone peak temperature. Combustion completion with methanol must then extend into the secondary dilution air zone. Start-up at idle and even at low bleed air power levels, proved to be impossible on methanol. At these low power levels, engine flame-out was experienced during fuel change over from aviation kerosene to methanol.

ACKNOWLEDGEMENTS

I like to express my special thanks to my research advisor Dr. John Loth and my academic advisor Dr. Gary Morris. I highly appreciate the help received from Dr. Robert Bond who worked alongside with me in all phases of the experimental testing procedures. I like also express my thanks to my friend and colleague Erika Echavarria, my girlfriend Bettina Kersten, my family and many others who gave me the motivation necessary and assisted me throughout my masters degree program. Also, I would like to thank Peter Tijm and Edward Heydorn of Air Product and Chemicals for their valuable suggestions and for funding this project.

TABLE OF CONTENTS

Title		Page
		Number
	EPAGE	i
ABS	TRACT	ii
ACK	NOWLEDGMENTS	iii
TABI	LE OF CONTENTS	iv
LIST	OF TABLES	vii
LIST	S OF FIGURES	viii
NOM	IENCLATURE	Х
I.	INTRODUCTION	1
	A. Methanol as an Alternative Fuel For Gas Turbines	1
	B. Previous Work	3
	1. United States Department of Energy and WVU Methanol	3
	Demonstration Project	
	2. Department of the Environment California Research	5
	3. Gas Turbine / Methanol Future	7
II.	WVU UNMODIFIED GAS TURBINE OPERATION ON METHANOL	9
	A. Test Set-Up	9
	B. General Description of the Gas Turbine	10
	1. Compressor Section	10
	2. Turbine Section	14
	3. Combustion Chamber	14
	4. Lubrication System	14
	5. Electrical System and Instrumentation	14

Title

Page Number

	6. Fuel/RPM Controller and Bleed Air Valve	17			
	C. Fuel System Design				
	D. Problems Encountered During Turbine OperationE. Emission Testing Equipment				
	F. Data Collection and Reduction	27			
	G. Conclusions and Recommendations About Emissions When Operating on	34			
	Methanol.				
III.	METHANOL LUBRICITY PROBLEMS AND SOLUTIONS	37			
	A. Introduction to Lubricity	37			
	1. Ball on Cylinder Lubricity Evaluator (BOCLE) (ASTM 5001)	38			
	2. High Frequency Reciprocating Rig (HFRR)	39			
	3. Field Testing	39			
	B. WVU Lubricity Tests	39			
	1. Ball on Flat Disc (Type 1)	39			
	2. Cylinder on Washer (Type 2)	40			
	3. Armature with One Ball on a Stationery Washer (Type 3)	41			
	4. Armature with Three Flattened Balls on a Washer (Type 4)	44			
	a) Test Procedure	46			
	b) Test Results	48			
IV.	WVU MODIFICATIONS TO OPERATE GAS TURBINE ON METHANOL	58			
	PLUS ADDITIVES				
	A. Fuel System Modifications	58			
	B. Ignition System and Instrumentation Modifications	59			
	C. Combustor Can Modifications	60			
V.	GAS TURBINE OPERATION WITH METHANOL AND 2% OF TWO	62			
	CYCLE BLUE ADDED				
	A. Modified Gas Turbine Operation with Methanol Plus Additives	62			
B. Emissions Test Set-Up					

Page Number

C. Analytical Tests	63
1. Gaseous Emissions	63
2. Particulate Matter (PM)	64
D. Emissions Data and Data Reduction	64
1. Gaseous Emissions	64
2. Particulate Matter (PM)	70
3. Data Reduction	70
VI. CONCLUSIONS AND RECOMMENDATIONS	80
VII. RECOMMENDATIONS	84
VIII. REFERENCES	86
APPENDIX 1 - 1st Years Contract Report	88
APPENDIX 2 - Varies Photographs	114
APPENDIX 3 - ISME Lubricity Report	116
APPENDIX 4 - Test Index for WVU Lubricity Evaluator tests Conducted	119
APPENDIX 5 - Computer Program for Lubricity Data	122
APPENDIX 6 - Raw Emissions Data	125
APPENDIX 7 - Computer Program for Power and Emissions	134

LIST OF TABLES

Table	Title	Page
Number		Number
1.1	Fuel Properties	2
1.2	Alternate Fuel Transit Bus Emissions	5
1.3	Gas Turbine Emissions Results from Department of the Environment	7
	California Research	
2.1	Sample Computer Program for Power and Emissions	31
3.1	Friction Coefficient Data from Engineering Handbooks and WVU Data	51
3.2	Statistical Data and Coefficients of Friction for Significant WVU Lubricity	57
	Tests	
5.1	WVU Mobile Emissions Analyzers	64
5.2	Gas Turbine Emissions Testing 9/15/98 & 3/14/00	65
5.3	Reduction in Emission When Switching from Aviation Kerosene to	78
	Methanol/2 Cycle Blue Solution	

LIST OF FIGURES

Figure	Title	Page
Number		Number
2.1	Photographs of Instrumentation, Controls and Bleed Air Manifold Shown	11
	with Operator Protective Shield	
2.2	WVU STOL Research Aircraft Containing the GTC-85-72 Gas Turbine	12
	Engine and View Looking Down its Exhaust Stack	
2.3	Six Basic GTC-85-72 Gas Turbine Assemblies	13
2.4	A. Exploded View of the Fuel Controller	15
	B. Schematic of the Combustor Can of the GTC-85-72 Gas Turbine	
2.5	Combustion Chamber View with Fuel Atomizer, Igniter, Glow Plugs and	16
	Holes for Secondary Cooling	
2.6	Schematic of Fuel/RPM Control System	18
2.7	GTC-85-72 Gas Turbine Spray Nozzle Calibration	19
2.8	Fuel Supply System	22
2.9	Fuel Selector and Emulsifier	23
2.10	A. WVU Mobile Emissions Lab	26
	B. Mobile Testing Equipment	
2.11	Emissions Testing Setup	28
2.12	Emissions During Fuel Type Change Over from Aviation Kerosene to	29
	Methanol 8/18/98	
3.1	Photograph of Type 4 - 3 Ball Holder and Steel Type 2 Cylinder	42
3.2	High Signal to Noise Ratio in Raw Torque Data for Methanol and Aviation	43
	Kerosene Using the Type 2 Lubricity Evaluator	
3.3	Exploded View of the Type 4 Lubricity Evaluator	45
3.4	Type 4 Lubricity Evaluator, Aviation Kerosene Break-in Period, Test 123	47

Figure	Title	Page
Number		Number
3.5	Type 4 Lubricity Evaluator (Aviation Kerosene Tests), Raw Coefficient of	49
	Friction Data	
3.6	Type 4 Lubricity Evaluator (Methanol Tests), Raw Coefficient of Friction	50
	Data	
3.7	Statistically Averaged Coefficients of Friction for Aviation Kerosene (Jet	52
	A) and M100 from Torques measured by the Type 4 Lubricity Evaluator	
3.8	Coefficient of Friction versus RPMs	53
3.9	Coefficient of Friction versus Fraction of Fuel Additive	56
4.1	Photographs of Thermocouple Equipped Combustor Can as Modified by	61
	WVU and Pratt and Whitney Canada	
5.1	CO Emissions in g/s versus Compressor Bleed Air Power	68
5.2	CO ₂ Emissions versus Compressor Bleed Air Power	69
5.3	NO _x Emissions versus Compressor Bleed Air Power	72
5.4	HC Emissions versus Compressor Bleed Air Power	73
5.5	PM Emissions versus Compressor Bleed Air Power	74
5.6	Turbine Inlet Temperature versus Bleed Air Power	76
5.7	Emissions During Fuel Type Change Over from Aviation Kerosene to	77
	Methanol, 3/14/00 tests – idle, test 14J (Aviation Kerosene @ 70.62 KW),	
	15M (70.44 KW) and back to Aviation Kerosene @ 70.62 KW.	

NOMENCLATURE

Α	Combustor cross-sectional area
А, С	Experimental constants
a, b, c	Algebraic constants
f	Fraction of total air participating in combustion
L	Length of combustion zone
<i>m</i> , <i>n</i>	Reaction orders
\dot{m}_A	Air mass flow rate
Р	Pressure
ΔP	Pressure drop
R	Gas constant
Т	Ambient air temperature
T_3	Combustion chamber air inlet temperature
t	Time
V	Volume
V_c	Combustion-zone volume
<i>x</i> , <i>y</i> , <i>z</i>	Algebraic constants
η_c	Combustion efficiency
ρ	Density
ϕ	Equivalence ratio
ϕ_{pz}	Primary-zone equivalence ratio
-	

I. INTRODUCTION

A. Methanol as an Alternative Fuel

During the past thirty years two major problems have developed, associated with our currently used fuels. These problems are increasing demand for a limited supply and its harmful emissions, which make air quality intolerable in heavy traffic areas. Political problems and instability in many oil producing regions of the world have made most fossil fuel supplies unreliable and expensive. Harmful emissions from fossil fueled cars, trucks, aircraft and power generation facilities have been shown to have profound effects on the environment we live in. As a result there is an increased need for cleaner burning alternate fuels such as alcohols and natural gas.

Methanol or Methyl Alcohol (CH₃OH) is a liquid petrochemical made from natural gas, wood or coal. Methanol is used to manufacture the gasoline additive methyl tertiary butyl ether (MTBE), acetic acid and many other chemicals. It can also be used as a low emissions alternative fuel. Fuel properties of methanol and aviation kerosene are shown in Table 1.1.

Until recently, the manufacturing capability to produce methanol has just kept up with the demand of the chemical industry and has been insufficient to supply methanol as an alternative fuel. Currently there are 18 methanol production plants in the United States with a total annual capacity of over 2.6 billion gallons per year. Worldwide, over 90 methanol plants have the capacity to produce over 11 billion gallons of methanol annually.

The U.S. Department of Energy (DOE), Air Products and Chemicals and Eastman Chemical Company have constructed a facility in Kingsport, Tennessee to take advantage of a new process (liquid phase methanol (LPMEOHTM)) to produce methanol from coal-derived synthesis gas. LPMEOHTM was used exclusively throughout this research and will be referred to as methanol from this point forward. This demonstration project has shown that methanol could be produced at much higher volumes and at lower cost.

Property	Aviation Kerosene (Avtur)	Methanol
Chemical formula	$C_{12}H_{26}$	CH ₃ OH
Relative Density @ 15.5C	0.80	0.797
Lower Specific Energy MJ/kg	42.80	22.67
Molecular Mass	170.3	32.04
Boiling point K (F)	423-573(301-571)	338(148)
Stoichiometric Fuel /Air ratio	0.0676	0.155
Surface Tension N/m	0.02767	0.0226
Viscosity @ 293 K, m ² /s	1.65×10^{-6}	0.75×10^{-6}

B. Previous Work

Large fluctuations in conventional fuel costs make methanol and its reduced NO_x emissions, an attractive alternate fuel when its cost per unit energy becomes competitive. The U.S. Department of Energy and many state agencies have sponsored a number of methanol demonstration projects, which have included methanol-fueled automobiles, buses, trucks and gas turbines. International car and truck companies have also conducted demonstration projects using methanol.

1. United States Department of Energy and WVU Methanol Demonstration Project.

A number of alternate fuels DOE sponsored operational and emissions tests have been conducted at WVU in internal combustion piston engines for cars, buses and trucks. Test fuels included methanol, ethanol, and compressed natural gas. The program involved collecting operational and maintenance data from over 100 buses across the country. The WVU mobile emission lab and transportable dynamometer were used to perform power and emissions testing.

Corrosion and lubricity additives proved to be essential for reliable piston engine operation on alcohol fuels such as methanol and ethanol as the lubricating quality of these fuels is much lower than diesel fuel. The associated excessive wear of fuel injectors can be reduced when methanol is treated with a lubricity additive. Fuel filter fouling, associated with poor fuel quality at the test sites, was another problem that was easily remedied.

Emissions testing showed significant reductions in oxides of nitrogen (NO_x) emissions and in particulate matter (PM) when compared to diesel fueled trucks and buses, which were not equipped with particulate traps. NO_x concentrations ranged between 6 and 12 ppm when fueled with methanol and ranged from 25 to 27 ppm when using diesel fuel. PM concentrations ranged between 0.1 to .4 mg/m^3 with methanol and ranged between 0.72 and 2.6 when using diesel fuel without particulate traps. Total Hydrocarbon (HC) and Carbon Monoxide (CO) appeared to be higher in fleets operating on methanol. HC concentrations were between 2 and 38 ppm when fueled by methanol and between 2 and 4 ppm when fueled by diesel. CO concentrations were between 8 and 26 on methanol and between 6 and 16 when using diesel fuel. It was noted that the large diversity in data obtained on the alcohol fueled buses may be attributed to differences in engines and maintenance (Motta et al, 1996). See emissions data in Table 1.2.

Table 1.2. Alternate Fuel Transit Bus Emissions.

Urban Transit Buses					
	СО	NO _x	НС	PM	
1991-92	15.5	5.0	1.3	0.25	
1993	15.5	5.0	1.3	0.10	
1994-95	15.5	5.0	1.3	0.07	
1996-97	15.5	5.0	1.3	0.05	
1998	15.5	4.0	1.3	0.05	
	Units = g/b	hp-hr			

U.S. EPA Heavy-Duty Engine Emissions Certification Standards for Urban Transit Buses

2. Department of the Environment California Research

During 1980 and 1981, The Electric Power Research Institute and Southern California Edison Company (SCE) conducted a test to compare the operational and emissions characteristics of two 26 MW power generation gas turbines running on methanol and aviation kerosene fuel with and without water injection. These tests were conducted at SCE's Ellwood Energy Support Facility in Goleta California.

The heating value of methanol is approximately half that of aviation kerosene turbine fuel. To maintain the same electrical output, the fuel flow rate had to be doubled. Approximately 30,000 gallons of methanol were burned daily.

To supply the large volumes of methanol needed and to deal with corrosion and lubricity issues the original fuel pumps were replaced with electric centrifugal pumps made of methanol compatible materials. The fuel nozzle orifices had to be enlarged, to accommodate the increased flow rate.

In the first tests a fuel heater and Mobilead F800 lubricant additive were used when operation on methanol. These precautionary steps were discontinued for most of the later tests without any problems. Examinations of the fuel pump showed minor wear on the pump shaft after testing.

On-line fuel change-overs were conducted, but not without some difficulties. The fuel system could not adjust fast enough for the higher fuel flow rate necessary when operating on methanol. This problem may have been avoided if a large volume fuel mixer loop had been placed inside the fuel line.

Emissions testing showed significant reductions in both oxides of nitrogen (NO_x) and particulate matter (PM). NO_x emissions were further reduced with the use of water injection. Hydrocarbons (HC) were slightly higher when running on methanol (Weir, et al, 1981). Emissions results are summarized in Table 1.3.

Emission Species	Aviation Kerosene (Avtur)	Methanol
NOx, engine A, 6/27/79, 15MW Load (ppm)	90	19.1
CO2, engine A, 6/27/79, 15MW Load (%)	2.9	2.78
CO, engine A, 6/27/79, 15MW Load (ppm)	66	108
HC, engine A, Baseload, (ppm)	3	5
Solid Particulates EPA-5, lb/106 Btu	0.018	0.003
Total POM, 15MW Load, (µg/SCM)	7.98	3.44

Table 1.3.Gas Turbine Emissions Results from Department of theEnvironment California Research.

3. Gas Turbine / Methanol Future

Volvo has introduced two new demonstration projects the Environmental Bus (ECB) and the Environmental Concept Truck (ECT). Both projects are alcohol fueled gas turbine electric hybrids. The ECT has shown over 90 percent reductions in NO_x (Borg, M., 1998).

General Motors has introduced its new gas turbine electric hybrid car. It is powered by a Williams micro auxiliary power unit (APU) gas turbine and GM's EV1 electric drive train. Gas turbine/electric school buses have been suggested as an offshoot of this technology to reduce pollution. The Southern Coalition for Advanced Transportation (SCAT), based in Atlanta reports that America's 425,000 school buses produce pollution equivalent to the emissions of 68 million cars. Incorporating General Motors (GM) series hybrid technology could pay off big environmental dividends just in this one transportation category alone, making the school buses of the future quiet, clean and efficient (EV World and Digital Revolution, 1998). Ford introduced it's methanol Taurus FFVs in the 1980's which with the help of the State of California has done well. Today, in California over 14,000 methanol FFVs serve in federal, state and municipal governments fleets, corporate fleets, rental car fleets, and are driven by hundreds of individual consumers.

To serve these vehicles, an extensive network of 55 public methanolrefueling stations stretches from Los Angeles to Sacramento, including a station in Yosemite National Park. This methanol-fueling infrastructure was established by the California Energy Commission in cooperation with the State's major gasoline retailers. In addition, more than 50 private fueling stations are operated in California by individual fleet operators (Dolan, G. A., 1996).

Currently, the largest market for methanol in the U.S. is for the production of methyl tertiary butyl ether or (MTBE). Methanol production capacity is expanding (AMI, 1996). MTBE has recently been linked with large-scale ground water contamination and has been outlawed in some states. Therefore large quantities of methanol may become available for use as an alternate fuel, if current legislation continues.

II. WVU UNMODIFIED GAS TURBINE OPERATION ON METHANOL

A. Test Set-Up

The GTC-85-72 gas turbine, which is installed in the West Virginia University STOL research aircraft had to be modified for use in this research project. For safety reasons, a shield was installed on one side of the airplane to protect the operator in the event of a gas turbine failures. The operational controls and instruments for the turbine, including the starter switch, air bleed switch, tachometer and compressor pressure gage were relocated from the cockpit to the operator side of the airplane. In addition to these controls, engine performance measuring equipment had to be installed including K-type thermocouples to read the exhaust gas temperature, bleed air temperature and venturi inlet air temperature.

Additional hardware required for testing includes a motor-generator set gas turbine start cart used to supply the required 26 volts for start-up. To measure the total air mass flow into the turbine, a venturi with a 7-inch throat diameter was installed inline with the turbine intake. The vacuum reading in the venturi throat was used in addition to the atmospheric pressure and temperature to calculate the engine airflow rate. Power loading was accomplished through the use of a bleed air manifold containing various numbers of choked flow metering nozzles. Bleed air power was calculated from the total nozzle area, bleed air pressure and temperature, which were read from a pressure gage and K-type thermocouple respectively. The test fuel was pumped directly from a 55-gallon drum to the fuel selector valve system, described in section B-6.

B. General Description of the Gas Turbine

The GTC-85-72 engine is a gas turbine auxiliary power unit (APU) that is primarily used to provide pneumatic jet engine start-up power at airports. This particular engine was manufactured by AiResearch/Garrett in the late 1960's. In 1972 the engine was installed in the West Virginia University STOL research aircraft, Figures 2.1 & 2.2. This aircraft is no longer airworthy and therefore grounded.

There are six basic engine assemblies, which include: the compressor section, the turbine section, the combustion chamber, the lubrication system, the electrical system and the fuel flow and RPM controller, Figure 2.3.

1. Compressor Section

The centrifugal compressor provides about 40 psig compressed air for the turbine and the bleed air for pneumatic power. The compressor is a two stage centrifugal type with a pressure ratio of 3.4: 1 and a total air mass flow of 5.5 lb./sec, at 40,800 rpm.

Figure 2.1 -Photographs of Instrumentation, Controls and Bleed Air Manifold Shown with Operator Protective Shield

Figure 2.2 - WVU STOL Research Aircraft Containing the GTC-85-72 Gas Turbine Engine and View Looking Down its Exhaust Stack

2. Turbine Section

The turbine section provides power to the compressor and the accessories and is designed to operate at inlet temperatures up to 1200° F.

3. Combustion Chamber

The combustion chamber is a reverse flow can type, which is comprised of a cylindrical liner mounted concentrically inside a cylindrical casing. The chamber's key components include an air casing, diffuser, liner, fuel atomizer, glow plugs and spark igniter, Figure 2.4.

4. Lubrication System

The lubrication system is a self-contained positive pressure, dry sump type. This system provides pressurized splash lubrication to all gears, shafts and bearings.

5. Electrical System and Instrumentation

The electrical system requires approximately 26 volts DC to operate the starter, solenoid, instrumentation and the ignitions system. The ignition system is a high-energy step up transformer charging capacitors, which build up voltage across the igniter plug. In addition to the igniter, a pair of 8 amp glow plugs, Figure 2.5, and their voltage regulator from a PT-6 jet engine have been added to provide a higher energy ignition source. Power is

Figure 2.4 - A. Exploded View of the Fuel Controller B. Schematic of the Combustor Can of the GTC-85-72 Gas Turbine

Figure 2.5 - Combustion Chamber View with Fuel Atomizer, Igniter, Glow Plugs and Holes for Secondary Cooling

supplied to this system by a 26 volt DC generator for the main engine circuits and a 24 volt battery for the glow plug voltage regulator.

Instrumentation for the engine's operation and for testing include three Ktype thermocouples located to measure exhaust gas temperature, bleed air temperature and ambient air temperature, one gear driven tachometer, one compressor outlet pressure gauge, one bleed-air pressure gauge, one fuel pressure gauge, fuel flow meter, and one charging voltage gauge.

6. Fuel/RPM Controller and Bleed Air Valve

The fuel and bleed air control system automatically adjusts fuel flow to maintain a near constant turbine operating RPM under the varying load conditions, which depends on the amount of bleed-air extracted. A gear in the accessory section drives the fuel pump and control unit, Figure 2.6. This gear type fuel pump capable of 230 psi incorporates a fuel filter, acceleration limiting valve, fuel pressure relief valve, fuel solenoid, and connections for the pneumatic control, and electric control. A constant operating speed is achieved through a combination of an acceleration limiting flyweight-type governor bypass fuel dump valve and a diaphragm bypass valve activated by the bleed air pressure. Fuel is transferred under pressure to the fuel atomizer located in the end of the combustor cap. The fuel atomizer consists of a screen, a flow divider valve, distributor head and housing. The distributor head divides the fuel passageway within the core.

Figure 2.6 - Schematic of Fuel/RPM Control System

The center passage leading to a small orifice plate and an annulus leading to a large orifice. The flow divider valve directs fuel at low pressure through the small center orifice and at high pressure to both the small and large orifice.

During May 1998 the fuel atomizer was calibrated in a spray booth at Pratt and Whitney Engine Services in Bridgeport, West Virginia. This calibration was necessary to ensure that there would be adequate atomization and correct spray cone geometry under all the operating pressures expected during operation of the engine with aviation kerosene and methanol, Figure 2.7.

C. Fuel System Design

For safety reasons a separate fuel system was designed so that it could be disconnected at the end of each test and stored in an approved storage facility. Because of the corrosive nature of methanol, and to eliminate cold starting problems, it was necessary to perform engine start-up and shutdown using conventional aviation kerosene (Jet A). The gas turbine is started on aviation kerosene, operated under load to bring the combustor up to operating temperature before gradually changing over to methanol. After the tests are completed, the fuel type was changed back to aviation kerosene prior engine shutdown.

To accomplish the desired fuel change-over procedure, a special fuel supply system was developed. It consists of two 55 gallon DOT #17 fuel drums one containing methanol and the other containing aviation kerosene, Figure 2.8. Each of these drums was equipped with a separate pneumatic powered fuel pump, capable of 4.6 gpm, which discharges to the fuel type selector valve, Figure 2.9. The selected fuel then traveled to the fuel emulsifier. This allows a gradual change in mixture concentration during fuel type change-over. The components of this emulsifier are shown in Figure 2.9 they consist of a small orifice, a clear sight glass and a recirculating pneumatic fuel pump. During fuel change-over, this sight glass becomes cloudy with the emulsified aviation kerosene/methanol mixture. Downstream of the fuel emulsifier, a fuel pressure spike damper was installed, Figure 2.9. This damper consists of a volume of captured air in a clear sight glass to compensate for the pulsating nature of the pneumatic fuel supply pumps. Following the pressure spike damper, the fuel was routed to a volumetric flow meter and on to the gas turbine fuel controller.

Figure 2.8 - Fuel Supply System

Figure 2.9 - Fuel Selector and Emulsifier

D. Problems Encountered During Turbine Operation

During the course of this project, various unforeseen problems were encountered. The first of which was engine flameout due to the too sudden fuel type change over. This problem was solved by the addition of the fuel emulsifier recirculating pump described in section C.

With the modified fuel supply system, another problem surfaced, in that the gas turbine would not operate at idle or even at very low power settings on methanol. This is believed to be due to the nearly 5 time greater heat of vaporization of methanol when compared to aviation kerosene. Because of this, methanol requires more ignition energy upstream of the point where the dilution air enters the burner.

A second, and predictable, operation limitation was uncovered whereby the gas turbine could not be operated on methanol at high power levels. This is due to the inability of the fuel system to double the volumetric fuel rate flow for the same combustion temperature when operating on methanol. If fuel type change-over from aviation kerosene to methanol was attempted at a high power setting, then the turbine experiences a gradual loss in RPM, which terminates in combustor flame-out. Operation of this turbine on methanol at these elevated power settings, requires a new fuel controller system capable of higher flow rates.

In addition to the power operation limitations found when operating on methanol, additional durability issues were encountered. The first of these was the quick destruction of the aged rubber diaphragms in the gas turbine fuel controller. These diaphragms failed after only a short exposure to the methanol fuel. As a result, this fuel controller was rebuilt using all new diaphragms and seals. After overhaul this seals performed flawlessly throughout the remainder of the tests. However, one additional problem was experienced. This was the destruction of the brass gear pump housing and the fuel controller RPM governor both caused by the poor lubricating properties of methanol.

E. Emissions Testing Equipment

WVU Mechanical and Aerospace Engineering (MAE) has designed and built two mobile emissions testing labs that are capable of testing vehicles up to 30,000 kg. (66,000 lbs.) in the field. WVU has tested over 700 buses and trucks from more than thirty-five locations throughout the United States. Much of the data collected from the buses and trucks are available in database from WVU.

The mobile emission lab is comprised of two tractors, an emission measuring instrument trailer and a flat-bed chassis dynamometer with the rollers, flywheels and power absorbers, Figure 2.10. Inside the instrument trailer there is an environmental chamber for preparation of the particulate filters and a microgram scale for measuring them, there are also precision gases for calibrating the analyzers, racks of data acquisition and dynamometer control equipment, emissions analyzers etc. The trailer also has a blower and the power supply for the sonic flow venturi constant

Β.

Figure 2.10 - A. WVU Mobile Emissions Lab B. Mobile Testing Equipment

volume sampling (CVS) system and the stainless steel dilution tunnel on top of the instrument trailer.

The emissions lab can measure and characterize emissions from a wide range of vehicles that use various types of fuels. However, most of the vehicles tested use alternative fuels. The exhaust emissions from vehicles are measured using a dilution tunnel and full exhaust gas emissions measurement instrumentation. Each test is run three times to ensure repeatability and data quality. The laboratories measure carbon monoxide, carbon dioxide, oxides of nitrogen or NO_x, methane, total hydrocarbons, aldehydes and particulate as per USEPA standards. Figure 2.11 shows the emissions lab set up for testing of the GTC-85-72 gas turbine installed in the WVU STOL airplane. Because of the exhaust gas flow rates and dilution ratios, the dilution tunnel was removed in favor of a slip stream sampling probe.

F. Data Collection and Reduction

The self regulating gas turbine operates in a near steady state flow rate condition with the exception of the fuel flow rate, which varied depending on output power level and varied slowly during fuel type change over. All turbine operating parameters measured, varied slowly enough, that the data could be collected manually by reading gages, see Figure 2.12. The transportable laboratory comes equipped with a standard 18 inch diameter dilution tunnel. It has choked flow metering nozzles, which are sized for various flow rates up to 3000 CFM. As its flow should be diluted to below 290°F, about two-thirds of the dilution tunnel flow

Figure 2.11- Emissions Testing Setup

Figure 2.12 - Emissions During Fuel Type Change Over from Aviation Kerosene to Methanol 8/18/98

must come from outside air. The GTC-85-72 gas turbine exhaust flow rate is about 3.5 pounds/second = 2700 SCFM at more than 700°F . Therefore the standard 18 inch diameter dilution tunnel cannot process this much exhaust flow. Instead a 3/8th cooled copper tube slip stream probe was inserted in the exhaust stack.

A sampling pump draws a metered steady flow through the analysis equipment inside the transportable emission laboratory.

Carbon monoxide is measured by infrared absorption, nitrogen oxides are measured by chemical luminescence and unburned hydrocarbons are measured by flame ionization detection. From these the fuel/air ratio could be calculated. However in the gas turbine tests this is not necessary. From the measured turbine air inflow rate and compressor bleed air flow rate together with fuel flow rate, this ratio is determined. This is done in a simple computer program, for example see test #2, shown in Table 2.1., and other test data as shown in Appendix 7. Program formulas are also listed in this Appendix. For example in test 2J on aviation kerosene the stoichiometric air/fuel ratio by mass is 14.7. The burner air flow rate is 3.48 lbm/s and the burner fuel flow rate is 0.0456 lbm/s this results in an actual air/fuel ratio 3.48/0.0456=76.31 or equivalence ratio $\Phi = 14.7/76.31=0.19$. From an emission point of view this very lean equivalence ratio is meaningless as the combustion takes place near stoichiometric at the burner inlet.

Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch	0.625	
Number of bleed air nozzle installed in the bleed air manifold is given by Nr		
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		
Recorded test data running on jet-A fuel is indicated by (A pi=	3.141593	
1A) Outside air temperature OAT is measured in degrees F, called OATF=	- 80	
local sealevel barometer reading reported by airport tower in " mercury Hg=	30.13	
Vacuum measured in throat of intake air flow metering venturi in " water H2	(11.8	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree	F 400	
Bleed air nozzle total pressure measured in the manifold Pn in psi =	36.75	
Turbine RPM during test under load with flow control bleed air valve on =	42700	
Compressor outlet pressure in psi gage	38	
2A) Turbine engine air inlet flow calculation in units of pound mass	per second	
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and	: 28.8	
Ambient air absolute pressure in units of PSFA is from local barometer	2036.791	
Ambient air absolute temperature in degrees Rankine =	540	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=	0.002198	
Venturi throat area calculated in square feet Av=	0.267254	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =	236.287	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=	4.469457	
3A) Turbine bleed air output power load calculation		
Calculate combined bleed air nozzle throat in square feet defined as An=	0.007457	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=	7328.791	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		
Calculate total bleed air nozzle flow rate in lbm/s	0.990099	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=	76.03957	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=	107.5524	
4A) Turbine inlet temperature calculation from exhaust gas tempera		
Turbine type fuel flow meter reading in gallon per minute	0.41	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. = 0.8	-	
Turbine combustion chamber pressure Pt3, not measured assume= bleed		
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)		
Assume Turbine shaft HP power output =1.1*compressor power input=	534.059	
Turbine shaft power output in BTU/s =	377.5797	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =	909	
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F	1305.723	
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heatin	ng value	
Stoichiometric reaction equation, assuming complete combustion	40000	
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/		
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2C		=kg fuel per mole
Then moles product to moles of stoichiometric air ratio is		= (1+0.965+5.574)/(1.4825*(1+3.76)
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.5		
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=	7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate	3.479359	
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C	0.04563	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric a		this is both mass and volume or m
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+pr		
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow	0.013114	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)	0.19248	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s	3.524988	
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =	18400	
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=	1280.533	air out specific heat Cpt=0.27 BTL
6A) Alternate calculation of turbing inlet Tt4 using average On in K l	Kmolek	
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ		nd N2 with Cnc_2 5*9 214-20
Cold dual molecule gas has specific heat =3.5R which on mole basis is sa		Ind N2 with Cpc=3.5 8.314=29
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=3		
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O w		
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N	۷	
Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2	1040.000	Emissions data conversion facto
Sum of product: moles*specific heat = sum(nP*Cpt)=	1216.623	
Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-29		
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK=	-30681	ppm*(M/Mex). To get gm/s multip
Geal of eaction for the A to K t/K molek = - Kukk (2) to be ker (2) a 0.07 (2.3) a 0.001	-596204	(kg/s(exhaust)/1000)
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)	GAT AFAF	To got atd, ap/a multiply by (00400)
Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=		To get std. cc/s multiply by (22400/ To get gm/Joule fuel at 42800kJ/kg

 Table 2.1- Sample Computer Program for Power and Emissions

Therefore, NO_x and unburned hydrocarbons HC are formed as a function of an unknown equivalence ratio during combustion. After reaching peak flame temperature, the combustion products are diluted with secondary air to the allowable turbine inlet temperature. Only by measuring or modeling the temperature profile along the length of the combustor can one analyze the effect of dilution air on the NO_x and HC concentrations in the exhaust. Chemical kinetics show that the concentration of NO_x increases rapidly with flame temperature, and is greater than predicted by equilibrium thermodynamics. The rate of forward reaction is different from the backward reaction, and there is insufficient time for equilibrium to be reached.

In Table 2.1, the turbine inlet temperature has been calculated three ways. First the compressor bleed air power is calculated from the temperature rise and flow rate, this is 102 HP in test #2. From the measured bleed air and total inlet airflow the compressor power is calculated to be 485 HP. Equating this to the turbine power, allows one to calculate the turbine temperature drop. This added to EGT of 824°F in test #2J results in a turbine inlet temperature 1221°F. The second and third methods are based on assuming 100% adiabatic combustion and neglecting emissions other than CO₂, H₂O, O₂ and N₂. The expected results will be slightly higher. They are 1280°F using a mean specific heat and 1241°F using individual specie specific heats.

Measurements were recorded on a concentration basis. The emissions data were recorded by computer at 1 second intervals during 10 minute periods for single-fuel steady state operation. If these tests were conducted on an engine for a car, then the emissions would be reported in grams per mile. For a stationary engine it would be reported in grams per HP. As this turbine does not provide shaft HP but only compressed air, it is more appropriate to report emissions in units of standard cc per second. First reduce the turbine exhaust gas flow rate to a room temperature volume flow rate, using density 0.0765 FT^3/lbm. For test #2J the exhaust gas flow rate is 3.48+0.0456=3.5256 lbm/s= 46 STD FT^3/s = 46*28317 cc/s.=1.3*10^6 cc/s. Thus, in test 2J if the ppm values are multiplied by 1.3 then one gets the emissions in cc/s.

During the transient fuel type change-over maneuver, another automotive type emission test apparatus was employed. This one was capable of printing data in five seconds intervals. Such high speed data acquisition was essential, as the fuel-change-over lasts less than 0.5 minutes, depending on the power setting. In that time the fuel concentration ratio changes gradually from 0% to 100%. Data were collected continuously and printed out in 5 seconds intervals. Because the equipment used for this test was designed for simple automotive testing, the data presented here should only be used for relative comparisons. These data are plotted as a function of time in Figure 2.12.

For this test, the turbine was operated on aviation kerosene until steady state was reached at which time the data acquisition was initiated at t = 0. Because of the steady nature of the data on aviation kerosene, data were only plotted starting at t = 4 minutes. At t = 5 minutes, fuel type change-over was initiated from aviation kerosene to Air Products methanol. Immediately following this change-over, Figure 2.12 shows a dramatic decrease in NO_x production as methanol replaces aviation kerosene. At approximately t = 6 minutes, one minute after the initiation of the fuel change over, the NO_x data approach the pure methanol equilibrium value. At t = 11 minutes the reverse fuel type change-over, from methanol to aviation kerosene, is initiated. Following this procedure, the NO_x production rapidly approaches the aviation kerosene steady state value as represented by value at t = 4 minutes. It can be seen from Figure 2.12, that while fuel type has a strong effect on the NO_x production, it has little effect on the other species sampled.

G. Conclusions and Recommendations About Emissions When Operating on Methanol.

The GTC-85-72 gas turbine was successfully operated on both aviation kerosene fuel and on fuel grade methanol produced by Air Products and Chemicals Inc. Emission data were collected on each fuel during steady state (defined as unchanged during at least 6 minutes). In addition emission data were collected during the transient fuel-change over procedure which lasted about less than 0.5 minutes. Some alcohols like ethanol are entirely miscible with jet fuel, but methanol is only partially miscible. The miscibility reduces with the presence of water and at lower

temperatures. To prevent separation, chemicals such as benzene and acetone can be added. Engine starting proved to be only possible on aviation kerosene, due to the low volatility of methanol and the high heat of vaporization. To minimize corrosion and diaphragm deterioration during storage, and permit starting, it was decided to change over to methanol only after the engine was warmed up and return to aviation kerosene prior to engine shut-down. A sight-glass in the fuel supply manifold clearly demonstrated the poor miscibility between aviation kerosene and methanol. They can only be forcibly mixed, just like oil and vinegar. After a fuel emulsifier pump was installed, the transition from one type of fuel to the other becomes visible like a milky cloud, which only clears up after change-over is completed. To achieve fuel change-over without engine flame-out, it proved to be essential to raise the EGT to more than 750°F, which is done by applying at least 25% bleed air load. In an attempt to improve this low power flame-out problem, two PT-6 engine glow plugs were added to the existing spark plug. The continued inability to operate on methanol at idle and below 25% bleed air load, is most likely due to the cooling effect from the high heat of vaporization. This delays ignition and moves the flame front to further downstream in the burner. Because the mixture is diluted by secondary air and becomes too lean to ignite. Giving more separation between the primary and secondary air supply zones might solve this problem.

Unfortunately the fuel controller was unable to supply enough methanol to permit operation at more than 50% bleed air. This problem was later solved by installing a fuel controller and burner nozzle of a larger model. The lack of methanol lubricating properties destroyed the bearings and the cylindrical RPM control fuel valve inside the fuel controller. It is imperative that all future turbine tests on methanol must incorporate a suitable lubricant additive.

The significant change in NO_x level from about 25 ppm on aviation kerosene down to about 5 ppm on methanol, is most likely caused by the before mentioned burning of the methanol spray at a location further downstream, where the mixture gets cooled by secondary air flow, thereby lowereing the peak flame temperature and thus reducing the production of thermal NO_x .

III. METHANOL LUBRICITY PROBLEMS AND SOLUTIONS

A. Introduction to Lubricity

During the 1998 initial gas turbine tests at WVU on fuel grade methanol, without additives, the poor lubricating properties of methanol caused repeated mechanical failures of the gas turbine's RPM governor and fuel pump. It became obvious that a suitable methanol additive must be used to improve its lubricating properties to equal or better than that of aviation kerosene fuel. Such an additive is also needed for corrosion inhibition, and must be readily miscible with methanol and be able to remain in solution during storage inside fuel barrels. Further it had to be readily available and be economical. Measuring the lubricity of methanol as a function of percent of additive, turned out to be the most challenging portion of this research project.

The wear of lubricated bearing surfaces depends not only on the lubricant, but also on the materials used, the bearing load, and surface finish. Lack of sufficient lubricating properties results in wear, which alters the surface finish and produces loss of material from the surface. One can experience four types of wear: corrosion, adhesive wear, abrasive wear and surface fatigue. Wear can be reduced by the presence of lubricants and corrosion inhibitors at the point of contact of the wear bodies.

One distinguishes two types of fluid lubrication "Boundary Lubrication" and "Hydrodynamic Lubrication". Boundary Lubrication occurs when the lubricant surface tension maintains a boundary between the solid surfaces, thereby reducing the frictional forces between them. Hydrodynamic lubrication is when a lubricant is forced or pumped in between the two surfaces, to limit their interaction. Many tests have been developed to characterize lubricating fluids. The three most common test methods are: BOCLE (Ballon-Cylinder Lubricity Evaluator), the HFRR (High Frequency Reciprocating Rig), and field-testing. Each of these tests uses test specific criteria, as measures of lubricity, to compare different fluids.

1. Ball on Cylinder Lubricity Evaluator (BOCLE) (ASTM 5001)

The BOCLE (American Society for Testing and Materials, 1999) test was designed for testing the lubricity of diesel and jet fuel. The test consists of placing a $\frac{1}{2}$ " diameter ball on cylinder rotating at 244 RPM, submerged in the test fluid at 25°C. Each test starts with a new ball loaded with a 9.81 Newton force and lasts 30 minutes. Upon completion of the test, the scar on the ball is measured to the nearest 0.01 mm

A variation of this test is called the Lubrizol Scuffing $BOCLE^2$. This test is similar to the before mentioned test but applies a steady load provided by a 7 kilogram mass. The test is run on the cylinder for 2 minutes. The average scar diameter is then measured and used to compare lubricating qualities.

2. High Frequency Reciprocating Rig (HFRR)

The HFRR³ test uses a ¹/₂" ball, which is rapidly vibrated back and forth over a flat surface. A load of 200 grams is placed on the ball and moved back and forth with a 1-mm stroke. The time necessary to wear a scar into the ball is measured; the size of the scar gives the lubrication qualities of the fuel being tested.

3. Field Testing

Field-tests are the most reliable tests, because all of the operating conditions are duplicated exactly. However, this type of testing is usually very expensive and can be impractical. The WVU methanol fueled GTC-85-72 gas turbine, experienced two fuel controller/gear-pump failures, which proved to be very expensive to repair. This emphasizes the importance of fuel additives to provide the required lubricity.

B. WVU Lubricity Tests

1. Ball on Flat Disc (Type 1)

One lubricity test apparatus was available at WVU. It was a variation of the Lubrizol Scuffing BOCLE method. Here the cup, containing the sample material is filled with the test fluid and rotated. A stationary ¹/₂" steel ball is lowered onto the sample at a distance from the center of rotation. This test is designed to quantify fluid lubricity by measuring changes in wear rate, either from mass loss or from scarring.

When used with methanol, it was found that once wear had begun, the data collected over different time intervals, keeps on changing, rendering it difficult or impossible to produce repeatable data. This erratic performance was due to a changing wear pattern.

2. Cylinder on Washer (Type 2)

To get repeatable data, a new fluid lubricity test machine was developed at WVU. It is like a thrust bearing, submerged in the fluid to be tested. It measures torque due to friction at the points of contact, instead of measuring wear related to mass loss. This test was developed to measure the friction coefficient at a specific bearing load, the justification being that friction is ultimately responsible for wear. The new apparatus was designed for operation in a vertical milling machine with a digital position readout. This assured a vibration free drive system with accurate and steady RPM control. The first design was based on a rotating steel cylinder on a stationary washer made of brass. Force was applied to the cylinder by a free-floating 5 kg. mass. The region of contact between the two surfaces was submerged in the fluid mixture to be tested. RPM of the disc, normal load, and the torque imparted to the stationary disc were all measured. Using the load, RPM and torque data a coefficient of friction for the apparatus and the specific fuel mixture being test was calculated.

The contact surface area between the discs was approximately 0.002 m^2 , which is relatively large when compared to other test methods. The 0.002 m^2 area disc is

shown in Figure 3.1. Any irregularities in the steel cylinder, the brass wear washer or any particles from wear created unreliable torque. A $.001 \text{ m}^2$ wear disc was constructed to remedy this, but demonstrated the same inherent problems. The high noise to signal ratio can be seen in the typical raw torque data in Figure 3.2.

3. Armature with One Ball on a Stationary Washer (Type 3)

This Type 3 configuration combines features of the Type 1 and Type 2. This Armature with One Ball on a Stationary Washer configuration used the Type 1-¹/₂" steel ball rotating in an armature on a stationary brass washer to measure torque. A force was initially applied to the ball with a spring, but this was changed to a brass dead weight to avoid changes in force during rotation.

This configuration was an improvement over the first two, but the repeatability of data was poor. When the force, applied to the ball was low, between 5 and 10 N it was difficult to distinguish between two different lubricating fluids. When the force was increased above 10 N wear began to occur between the ball and the brass washer. The contact surface area needed to be increased to prevent wear without the problems associated with the previous method. These problems were eliminated in the final (Type 4) configuration of the WVU lubrication evaluator. Tests results from this research can by found in Appendix 4.

Figure 3.1 - Photograph of Type 4 - 3 Ball Holder and Steel Type 2 Cylinder

Figure 3.2 - High Signal to Noise Ratio in Raw Torque Data for Methanol and Aviation Kerosene Using the Type 2 Lubricity Evaluator

4. Armature with Three Flattened Balls on a Washer (Type 4)

The final WVU lubricity apparatus was designed to operate at normally used bearing pressures on a rotating disc containing three balls (Figure 3.1). The three balls transferred the load onto a fixed brass washer and were mounted at a distance of 31mm from the centerline of the disc holder. The three balls were ground to form flats of 3.81-mm diameter. With the 56.501 N dead weight load in use these flats reduced the lubricated contact pressure to 1.65 M Pa, which is 3.5% of the maximum design load limit for a well-lubricated lead-bronze bearing. This contact pressure reduction proved to be necessary to prevent marring the surface when operating on methanol. To guarantee that the disc rotates smoothly about its axis, it was guided by a ball bearing installed on a centering pin in the middle of the fixed washer. The wear disc and the bearing holder were mounted inside an aluminum cup, which was 100 mm in diameter and 50 mm in depth. This cup was filled with the test fluid so that the contact surface between the load balls and brass disc was fully submerged. The cup was mounted on a 76mm ball bearing, which allows it to rotate freely. Torque measurements were taken with strain gauges, mounted on a 197 mm aluminum arm, which extends from the cup. Using the contact area, the load, and the measured torque, coefficients of friction were calculated for each fuel/lubricant mixture. The data were very stable when the load ball holder is rotated at 200 RPM. An exploded view of the complete testing apparatus is shown in Figure 3.3. Shown here is the disc three-ball drive head, to be installed on a vertical mill. A disc drive shaft extends from the end of the mill attachment, passes through the dead weight, and is connected

Figure 3.3 - Exploded View of the Type 4 Lubricity Evaluator

to the disc in a manner that allows only rotational forces to be transferred from the mill. The dead weight slides on the shaft, so that its weight is entirely supported by the balls in the driven disc. Torque is transferred from the drive shaft to the dead weight by a pin and from there to the driven disc by two pins, which protrude from the bottom of the weight. The dead weight normal force is transferred to the driven disc through a ¹/₂ inch steel ball on the system centerline. This configuration insured that the driven disc was loaded at the center, so that all three flattened balls transfer the same normal force.

a) Test Procedure

Prior to testing, great care was taken to prepare the contact surfaces for testing. The washer was machined to insure that its surface was perfectly flat and both contact surfaces, balls and washer, were hand finished by wet sanding using 1500 grit abrasive paper on a flat steel surface. No matter how fine both of these surfaces were ground, the system required additional rotational polishing before the surface finish was good enough to provide steady and repeatable friction coefficient data. This was accomplished by running the system at 200 rpm using aviation kerosene fuel as a lubricant. During this procedure, the friction coefficient data were monitored until a steady-state value was reached usually requiring 45 minutes of run time. A data set obtained during the first 30 minutes of the 45-minute "break-in" period can be seen in Figure 3.4.

Figure 3.4 - Type 4 Lubricity Evaluator, Aviation Kerosene Break-in Period, Test 123

Following the break-in procedure, testing was accomplished by filling the test cup with fluid to be tested, such that the contact surfaces between the load balls and brass disc were fully submerged. The system was operated at 200 rpm and friction torque data were collected at approximately 2 Hz for a period of 10 minutes. When a lubricant, such as castor oil, was tested at various concentrations, tests were run starting with pure methanol followed by ever increasing oil concentrations. This prevented the possibility of oil deposits from higher oil/methanol concentrations, to introduce errors at the lower concentrations.

Following the 30 minute "break-in" period, time dependent data acquired during six of the aviation kerosene and M100 tests are shown in Figures 3.5 and 3.6. Because of the starting transients experienced during many of these tests, the first two minutes of data were discarded prior to data averaging. A Quick Basic computer program was written to process the raw data. This program is included in Appendix 5.

b) Test Results

Measurement of the lubricating qualities of both aviation kerosene and methanol were necessary prior to evaluating the performance of the different methanol-lubricant solutions. Of the 74 tests conducted with the Type 4 evaluator, 22 of them were with either aviation kerosene and methanol.

Figure 3.6 - Type 4 Lubricity Evaluator (Methanol Tests), Raw Coefficient of Friction Data

Six methanol and aviation kerosene tests, which had the lowest standard deviation, were chosen to calculate the statistically averaged coefficients of friction for each. The coefficient of friction for aviation kerosene was found to be 0.167 and 0.309 for methanol. Table 3.1 contains the experimental friction coefficients obtained experimentally for both methanol and aviation kerosene as compared to various handbook data. The six statistically averaged measurements for the coefficients of friction for aviation kerosene and methanol are shown in Figure 3.7.

Table 3.1.Friction Coefficient Data from Engineering Handbooks andWVU Data.

System	Friction Coefficient		
Metal on Metal, Dry [*]	0.15 - 0.20		
Metal on Metal, Wet^*	0.3		
Occasionally Greased [*]	0.07 - 0.08		
Continuously Greased [*]	0.05		
Mild Steel on Brass ^{**}	0.44		
Methanol (WVU)	0.309		
Aviation Kerosene (WVU)	0.167		

* - Oberg et al. (1962)

** - Avallone and Baumeister III (1987)

Experimentation indicated that the coefficient of friction depended on the velocity or the revolutions per minute of the test apparatus. In general, as the velocity increased the coefficient of friction would decrease. Tests at various RPM, between 75 and 250, were conducted with aviation kerosene as shown in Figure 3.8.

Figure 3.7 - Statistically Averaged Coefficients of Friction for Aviation Kerosene (Jet A) and M100 from Torques measured by Type 4 Lubricity Evaluator

Figure 3.8 - Coefficient of Friction versus RPMs

Few lubricity additives proved to be both: effective in reducing friction and readily soluble in methanol. Only three of all the additives tested had the required properties and produced lubricity in excess of that of aviation kerosene fuel. They were readily soluble with methanol in quantities far in excess of that needed and remained in uniform suspension during storage. One satisfactory additive was pure castor oil and the other two were Morgan Fuels *Two Cycle Blue* and Manhattan Oil Company's *Power Plus Cherry Bomb* racing fuel additives. Both of these are primarily synthetic commercial methanol fuel additives for use in racing applications.

Friction coefficient data obtained for methanol containing varying concentrations of castor oil can be seen in Figure 3.9. At low concentrations, the addition of an additive has a large effect on friction coefficient. However, once a level of approximately 5% has been reached, there is little gained by increasing the castor oil concentration. Also shown in figure 3.9 are two horizontal lines indicating the friction coefficients of both pure methanol and aviation kerosene. Using the aviation kerosene line, it can be seen that a castor oil/methanol concentration of approximately 2.5% is required to achieve the same friction coefficient as aviation kerosene.

Using the same method two commercial products were evaluated. The manufacturer recommended ratio for the *Two Cycle Blue* additive is

0.04% in racing applications. However, to achieve the same friction factor as aviation kerosene, a 1% concentration was required. Manhattan Oil Company's *Power Plus Cherry Bomb* additive required approximately 1.6%. Coefficients of friction versus additive concentrations are shown in Figure 3.8 and are included with data statistics in Table 3.2.

Figure 3.9 - Coefficient of Friction versus Fraction of Fuel Additive

				Coefficients of Friction			
					(Cf)	(Cf)	Data
		Operating		(Cf) Avg	Statistical	Standard	Rejection
Test #	Liquid	Conditions	Notes	Raw	Avg	Deviation	
85	M100	56.506N @200 RPM	M100-85	0.3077	0.3076	0.0105	0.1
93	M100	56.506N @200 RPM	M100-93	0.3104	0.3103	0.0091	0.5
125	M100	56.506N @200 RPM	M100-125	0.3221	0.3222	0.0106	0.3
107	Jet A	56.506N @200 RPM	Jet A-107	0.1717	0.1717	0.006	0.1
124	Jet A	56.506N @200 RPM	Jet A-124	0.1625	0.1624	0.0036	0.2
131	Jet A	56.506N @200 RPM	Jet A-131	0.1811	0.1811	0.0088	0
86	M100/Castor Oil	56.506N @200 RPM	0.01	0.2546	0.2546	0.0057	0.1
87	M100/Castor Oil	56.506N @200 RPM	0.02	0.2214	0.2214	0.006	0.1
88	M100/Castor Oil	56.506N @200 RPM	0.05	0.0538	0.0538	0.0128	0
89	M100/Castor Oil	56.506N @200 RPM	0.1	0.0354	0.0354	0.0015	0
90	M100/Castor Oil	56.506N @200 RPM	0.15	0.0262	0.0262	0.0013	0
100	M100/2CB	56.506N @200 RPM	0.0075	0.2674	0.2674	0.0069	0.5
101	M100/2CB	56.506N @200 RPM	0.01	0.1421	0.1421	0.0438	0
102	M100/2CB	56.506N @200 RPM	0.0125	0.064	0.0638	0.0031	1.8
103	M100/2CB	56.506N @200 RPM	0.02	0.0658	0.0655	0.0102	1
104	M100/2CB	56.506N @200 RPM	0.025	0.0399	0.0398	0.0039	0.6
105	M100/2CB	56.506N @200 RPM	0.05	0.0391	0.0394	0.001	0.7
126	M100/Power +	56.506N @200 RPM	0.01	0.2807	0.2807	0.019	0
127	M100/Power +	56.506N @200 RPM	0.02	0.1483	0.1483	0.0356	0
128	M100/Power +	56.506N @200 RPM	0.03	0.0663	0.0661	0.003	1.5
129	M100/Power +	56.506N @200 RPM	0.04	0.0593	0.0593	0.0046	0
143	Jet A	56.506N @75 RPM	75	0.2187	0.2187	0.0106	0
144	Jet A	56.506N @100 RPM	100	0.1832	0.1832	0.0052	0
145	Jet A	56.506N @125 RPM	125	0.1816	0.1816	0.0054	0
146	Jet A	56.506N @150 RPM	150	0.1643	0.1643	0.0032	0
147	Jet A	56.506N @175 RPM	175	0.1486	0.1486	0.0092	0
148	Jet A	56.506N @200 RPM	200	0.1519	0.1519	0.0023	0
149	Jet A	56.506N @250 RPM	250	0.1493	0.1493	0.0038	0

Table 3.2 - Statistical Data and Coefficients of Friction for Significant WVU Lubricity Tests

Jet A = Avia

M100 = Air Products Methanol

2CB = 2 Cycle Blue Additive

Power + = Power Plus Additive

IV. WVU MODIFICATIONS TO OPERATE GAS TURBINE ON METHANOL PLUS ADDITIVES

A. Fuel System Modifications

During the unmodified gas turbine operation on pure methanol, flame out occurred when power dropped below 25% of rated level, and again when power demand exceeded the 50% of rated level. The upper limit was due to insufficient fuel flow rate. Its original gear type fuel pump was only capable of supplying fuel at a maximum of 230 psi and 300 lbs of fuel per hour. This fuel system is adequate for all power levels possible with aviation kerosene. Approximately twice the volume of methanol is required for the same energy flow rate as with aviation kerosene. Therefore, the original fuel control system and atomizer had to be replaced. The objective is to minimize modifications to this engine but some were essential to be able to prove that using methanol in existing stationary gas turbines, is practical and significantly reduces harmful emissions. A similar APU gas turbine, the GTPC-180L, has twice the power of the GTC-85-72 and is also manufactured by Allied Signal. The fuel controller and atomizer of the GTCP-180L are capable of supplying fuel at 600 psi and 750 lbs per hour. This engine's fuel controller tolerates a similar fuel bleed air control mechanism and therefore, requires very little modification to be installed on the GTC - 85 - 72. During July 1999, Piedmont Aviation of Melfa Virginia modified a GTCP - 180L fuel controller and installed it on one of their test GTC-85s to prove to us that it would be compatible with our engine. After some minor adjustments the new fuel controller functioned flawlessly on aviation kerosene over the entire power range and was still capable of supplying over twice the fuel flow of the original controller. WVU purchased the modified fuel controller and atomizer and installed them on the WVU gas turbine. The GTCP – 180L fuel controller and atomizer both function the same as described in chapter 2 and as shown in Figure 2.8.

When running this turbine on methanol the fuel supply pressure exceeded the design pressure of the original fuel lines. Therefore, it was necessary to upgrade them to ¹/4" MSHA 84/19 1500 psi fuel lines. The higher fuel pressures also exceeded the original 300 psi gauges in the system, so they were replaced with 600 psi gauges.

B. Ignition System and Instrumentation Modifications

In the lower power range, below 25% of rated power, flameout occurred when using methanol. In an attempt to solve that problem, and additional ignition source was added in the form of two glow plugs of eight Amps. each at 28 V. These, with their voltage supply, were taken from a PT-6 turboprop engine, as shown in Figure 2.5. Adding these glow plugs to the existing spark plug reduced the flameout power limit slightly, from 70 KW to 48 KW compressor bleed air power.

All engine controls have been mounted below a ¹/4" steel protective plate to allow safe monitoring during emissions testing. All instrumentation including a 10 channel thermocouple reader, engine RPM indicator, a compressor pressure gauge, bleed air pressure gauge, fuel pressure gauge, electrical power indicator and an intake venturi pressure gauge were installed together for safe monitoring.

C. Combustor Can Modifications

Along with the installation of PT-6 glow plugs described above a second combustor can was modified by Pratt Whitney Engines Services Division in Bridgeport, West Virginia. This consisted of the installation of four thermocouples (K type – 2000° F), which can be rotated by the operator, while the engine is running. The rotational arc is more than 90 degrees in the plane perpendicular to the flow. When not in use, they are rotated into the lower temperature region near the walls of the combustor can. This modification can be seen in Figure 4.1.

Figure 4.1 - Photographs of Thermocouple Equipped Combustor Can as Modified by WVU and Pratt and Whitney Canada

V. GAS TURBINE OPERATION WITH METHANOL AND 2% OF TWO CYCLE BLUE ADDED

A. Modified Gas Turbine Operation with Methanol Plus Additives

To provide an adequate factor of safety, all the second phase emissions testing on the WVU gas turbine were conducted using a 2% methanol-*Two Cycle Blue* solution. The gas turbine was operated for an extended period using this mixture, without problems.

Modifications to expand the operating range of the GTC-85 on methanol were completed. These modifications included the installation of a fuel controller and atomizer of the GTCP-180L gas turbine. These new modifications increased the operating range of the gas turbine when fueled by methanol from between 48 and 58 KW compressor bleed air power to between 48 and 103 KW compressor bleed air power.

B. Emissions Test Set-Up

When the weather improved sufficiently the outdoor emission testing of the WVU gas turbine, which is installed inside the STOL research airplane, was resumed. During March 2000 the WVU gas turbine and the mobile emissions lab were ready for a series of emissions tests for different power and fuel combinations. The mobile emissions lab was positioned approximately 15 feet away from the WVU STOL aircraft and the GTC-85-72 gas turbine. Figure 2.11 shows the emissions lab set up for testing. Two 3/8-inch stainless steel tubes were placed in the center of the gas turbine's exhaust stream as slipstream sampling probes and were run 15 feet into the mobile lab. One tube was for gaseous emissions and the other was for solid particulates.

Table 5.1 -	WVU Mobile	Emissions	Analyzers
-------------	------------	-----------	-----------

Test	Analyzer	Type of Analysis
Total Hydrocarbons	Rosemont Analytical Model 402 High Temperature	Flame Ionization Detector
Carbon Monoxide	Rosemont Industrial Models 880A and 868	Non-dispersive Infrared Detector
Carbon Dioxide	Rosemont Industrial Models 880A	Non-dispersive Infrared Detector
Oxides of Nitrogen	Rosemont Analytical Model 955 NO/Nox	Chemical Luminescent Detector
Particulate Matter	TEOM Series 1105 Diesel Particulate Mass Monitor	TEOM Filter and Microbalance

C. Analytical Tests

1. Gaseous Emissions

The gas analysis equipment detects the concentration of each gas in ppm and relays a signal to the computer at a 10 Hz frequency. Carbon monoxide (CO) and carbon dioxide (CO₂) concentrations are measured using non-dispersive infrared absorption. Oxides of nitrogen (NO_x) concentrations are measured

using chemical luminescence and total hydrocarbons (HC) concentrations are measured using a Flame Ionization Detector (FID). See Table 5.1 for specific analyzers used by the mobile lab

2. Particulate Matter (PM)

Particulate matter was analyzed using a Diesel Particulate Mass Monitor. This mass monitor provides real-time measurements on the particulate mass generated by the exhaust stream. This microbalance instrument measures the mass of a series of TEOM filters every 0.83 seconds. This real time data allows the comparison of particulate mass flow rate and engine performance.

D. Emissions Data and Data Reduction

1. Gaseous Emissions

CO, CO₂, NO_x and HC data from the mobile emissions lab were recorded at 10 samples per second. Reduced emissions data are provided in Table 5.2 and raw data are included in Appendix 6.

Carbon monoxide concentrations over the series of power ranges tested varied between 350 ppm and 490 ppm for aviation kerosene and between 330 ppm and 390 ppm for methanol. Figure 5.1 is a graph showing CO emissions in g/s versus compressor bleed air power. When running on

Table 5.2A Gas Turbine Emmisions Testng 9/15/98 & 3/14/00

Page 1 of 2

Specific Density Jet A=0.80 Specific Density M100=0.796 A=0.80

			Fuel Flow	Fuel mass Flow	Bleed Air Manifold	Compressor Bleed Air Power		P atmosphere	I	EGT		Exhaust Mass Flow		using ideal gas law with stoichiometric combustion and exhaust gas @ SPT, R=287.135
Test #	Fuel Type	Date	GPM	g/s	# of Nozzels	HP	KW	PSFA	Pa	Degrees F	degrees K	lbm/s	kg/s	m^3/s
1J	Jet	9/15/1998	0.26	13.13	0	0.00	0.000	2036.79	97547.41	588	578.89	4.073	1.847	1.508
2J	Jet	9/15/1998	0.41	20.70	3.5	107.55	80.202	2036.79	97547.41	909	757.22	3.525	1.599	1.305
3J	Jet	9/15/1998	0.39	19.69	3	94.99	70.830	2036.79	97547.41	867	733.89	3.608	1.636	1.336
4J	Jet	9/15/1998	0.36	18.17	2.5	80.50	60.031	2036.79	97547.41	817	706.11	3.683	1.671	1.364
7J	Jet	3/14/2000	0.26	13.13	0.00	0.00	0.000	1958.29	93787.84	550.00	557.78	4.356	1.976	1.613
8J	Jet	3/14/2000	0.30	15.14	0.50	15.06	11.232	1958.29	93787.84	602.00	586.67	4.403	1.997	1.630
9J	Jet	3/14/2000	0.32	16.15	1.00	33.05	24.644	1958.29	93787.84	630.00	602.22	4.341	1.969	1.607
10J	Jet	3/14/2000	0.35	17.67	1.50	51.39	38.322	1958.29	93787.84	668.00	623.33	4.462	2.024	1.652
11J	Jet	3/14/2000	0.36	18.17	2.00	67.19	50.100	1958.29	93787.84	714.00	648.89	4.315	1.957	1.597
12J	Jet	3/14/2000	0.37	18.68	2.50	82.11	61.228	1958.29	93787.84	758.00	673.33	4.172	1.893	1.545
14J	Jet	3/14/2000	0.40	20.19	3.00	94.70	70.616	1958.29	93787.84	790.00	691.11	3.924	1.780	1.453
16J	Jet	3/14/2000	0.42	21.20	3.50	110.03	82.050	1958.29	93787.84	837.00	717.22	3.904	1.771	1.445
18J	Jet	3/14/2000	0.43	21.71	4.00	125.01	93.217	1958.29	93787.84	889.00	746.11	3.853	1.748	1.426
20J	Jet	3/14/2000	0.45	22.72	4.50	143.41	106.941	1958.29	93787.84	944.00	776.67	4.010	1.819	1.484
5M	M100	9/15/1998	0.72	36.17	3.5	79.02	58.927	2036.79	97547.41	825	710.56	3.578	1.623	1.325
6M	M100	9/15/1998	0.7	35.16	2.5	64.77	48.295	2036.79	97547.41	752	670.00	3.781	1.715	1.400
13M	M100/2CB	3/14/2000	0.74	37.17	2.50	78.92	58.851	1958.29	93787.84	714.00	648.89	3.971	1.801	1.470
15M	M100/2CB	3/14/2000	0.78	39.18	3.00	94.47	70.443	1958.29	93787.84	755.00	671.67	4.007	1.818	1.484
17M	M100/2CB	3/14/2000	0.84	42.19	3.50	107.94	80.490	1958.29	93787.84	806.00	700.00	3.792	1.720	1.404
19M	M100/2CB	3/14/2000	0.85	42.70	4.00	119.01	88.744	1958.29	93787.84	845.00	721.67	3.787	1.718	1.402
21M	M100/2CB	3/14/2000	0.90	45.21	4.50	137.74	102.713	1958.29	93787.84	892.00	747.78	3.859	1.750	1.428

Jet = Aviation Kerosene M100 - Air Products Methanol Fuel M100/2CB - Air Products Methanol Fuel with 2-Cycle Blue Fuel Additive

Table 5.2B Gas Turbine Emmisions Testng 9/15/98 & 3/14/00

Energy Density Jet A = 42800 J/g Energy Density M100 = 22670 J/g

		Energy Density M	100 – 22070 J/g								using ideal gas law				
											@ STP. RJet=48.8				
		using ideal gas law			using ideal gas lav	v		using ideal gas law			and	-			
		@ STP, R=296.92,			@ STP, R=188.95,			@ STP, R=277.133			Rm100=259.81,				
	~~	volume flow and	Emissions /		volume flow and	Emissions /		volume flow and	Emissions /		volume flow and	Emissions /		Emissions /	
	со	concentration	energy	CO2	concentration	energy	Nox	concentration	energy	HC	concentration	energy	Particulates	energy	Time into Test time @ engine/time
Test #	PPM	g/s	g/j	PPM	g/s	g/j	PPM	g/s	g/j	PPM	g/s	g/j	g/s	g/j	@ lab-Duration
1J	262.9	0.4697	8.36E-07	14376.78	40.361	7.18E-05	12.73	0.024	4.34E-08	54.47	0.59	1.05E-06	NRT	NRT	NA
2J	272.32	0.4211	4.75E-07	26523.86	64.446	7.27E-05	26.76	0.044	5.00E-08	14.42	0.14	1.53E-07	NRT	NRT	NA
3J	269.08	0.4258	5.05E-07	24497.28	60.920	7.23E-05	26.23	0.044	5.28E-08	87.11	0.84	9.95E-07	NRT	NRT	NA
4J	278.79	0.4504	5.79E-07	22924.54	58.202	7.48E-05	23.31	0.040	5.19E-08	29.12	0.29	3.68E-07	NRT	NRT	NA
7J	380.07	0.7263	1.29E-06	14650.06	43.993	7.83E-05	15.79	0.032	5.75E-08	140.11	1.63	2.90E-06	2.65E-07	4.72E-13	19:30/20-32
8J	413.56	0.7987	1.23E-06	16213.30	49.203	7.59E-05	17.08	0.035	5.45E-08	151.34	1.78	2.74E-06	3.23E-07	4.98E-13	3/3:30-32
9J	445.22	0.8479	1.23E-06	17408.19	52.095	7.53E-05	18.79	0.038	5.54E-08	153.43	1.78	2.57E-06	3.29E-07	4.76E-13	8/8:30-32
10J	466.57	0.9131	1.21E-06	18597.20	57.193	7.56E-05	20.59	0.043	5.71E-08	153.88	1.83	2.42E-06	2.67E-07	3.53E-13	12/12:30-32
11J	480.01	0.9085	1.17E-06	20128.43	59.866	7.70E-05	22.39	0.045	5.84E-08	145.20	1.67	2.15E-06	3.32E-07	4.27E-13	17/17:30-32
12J	487.33	0.8919	1.12E-06	21977.28	63.205	7.91E-05	25.12	0.049	6.16E-08	131.57	1.46	1.83E-06	2.35E-07	2.94E-13	21/21:30-32
14J	471.20	0.8110	9.38E-07	23691.34	64.080	7.41E-05	25.41	0.047	5.42E-08	183.53	1.92	2.22E-06	1.40E-07	1.62E-13	3:30/4-20
16J	452.80	0.7755	8.55E-07	25620.92	68.951	7.60E-05	28.69	0.053	5.80E-08	107.60	1.12	1.24E-06	6.89E-07	7.59E-13	16/16:30-20
18J	383.37	0.6479	6.97E-07	27537.68	73.135	7.87E-05	32.65	0.059	6.36E-08	162.27	1.67	1.80E-06	2.38E-07	2.56E-13	4/4:30-24
20J	355.49	0.6253	6.43E-07	29534.15	81.634	8.40E-05	37.35	0.070	7.24E-08	84.69	0.91	9.32E-07	2.38E-07	2.45E-13	16/16:30-24
5M	317.15	0.4978	6.07E-07	22741.24	56.092	6.84E-05	6.64	0.011	1.36E-08	24.67	0.04	5.40E-08	NRT	NRT	NA
6M	281.51	0.4669	5.86E-07	19571.51	51.013	6.40E-05	6.88	0.012	1.53E-08	28.58	0.05	6.80E-08	NRT	NRT	NA
13M	377.73	0.6579	7.81E-07	20665.05	56.561	6.71E-05	7.52	0.014	1.67E-08	98.32	0.20	2.32E-07	2.13E-07	2.53E-13	24/24:30-32
15M	384.31	0.6756	7.61E-07	22219.10	61.376	6.91E-05	12.31	0.023	2.61E-08	147.58	0.30	3.34E-07	1.23E-07	1.38E-13	6:30/7-20
17M	389.05	0.6471	6.77E-07	23020.77	60.171	6.29E-05	8.80	0.016	1.64E-08	77.04	0.15	1.53E-07	2.19E-07	2.29E-13	19/19:30-20
19M	353.66	0.5875	6.07E-07	25565.97	66.739	6.90E-05	9.30	0.017	1.71E-08	141.15	0.27	2.77E-07	2.47E-07	2.55E-13	7/7:30-24
21M	337.80	0.5717	5.58E-07	27670.11	73.594	7.18E-05	10.44	0.019	1.85E-08	69.12	0.13	1.30E-07	2.63E-07	2.57E-13	19/19:30-24

NRT = No Reading Taken NA = Not Applicable

Jet = Aviation Kerosene

M100 - Air Products Methanol Fuel M100/2CB - Air Products Methanol Fuel M100/2CB - Air Products Methanol Fuel with 2-Cycle Blue Fuel Additive

aviation kerosene fuel CO emission increased from 380 ppm at idle to 487 ppm at 60 KW. Then CO emission fell off to 355 ppm at 107 KW. Emissions results when burning methanol were similar. CO emissions climbed from 378 ppm at 60 KW to 389 ppm at 82 KW. Then concentrations fell off to 338 ppm at 107 KW.

Carbon dioxide concentrations varied between 13,000 ppm to 30,000 ppm on tests using aviation kerosene and between 20,000 ppm and 28,000 ppm . CO_2 concentrations for both aviation kerosene and methanol increased as power increased. Testing on aviation kerosene indicated a CO_2 concentration of 14,650 ppm at idle which increased to 29,534 ppm at 107 KW. methanol test results indicated a concentration of 20,665 at 60 KW which increased to 27, 670 ppm at 107 KW. (Figure 5.2).

Oxides of nitrogen concentrations varied between 15 and 37 ppm when using aviation kerosene and between 7 and 12 ppm when using methanol. Tests done when running aviation kerosene show NO_x concentrations gently increase from 15.79 ppm at idle to 25.41 ppm at 70 KW and then increased more rapidly to 37.35 ppm at 107 KW. Concentrations when using methanol increased rapidly from 7.52 to 12.31 ppm between 60 KW and 82 KW.

Figure 5.1 - CO Emissions in g/s versus Compressor Bleed Air Power

Figure 5.2 - CO2 Emissions vs. Compressor Bleed Air Power

Then concentrations fell to 8.80 ppm at 82 KW an then gradually increased to 10.44 ppm at 107 KW. (Figure 5.3).

Total hydrocarbon concentrations varied between 84 and 184 ppm for tests done on aviation kerosene and between 69 and 148 ppm when burning methanol. HC concentration when compared with power showed erratic behavior with some of the lowest reading occurring at the highest powers (Figure 5.4).

2. Particulate Emissions

Particulate mass concentrations varied between 2 and 10 ppm during aviation kerosene tests and 0.74 and 6.74 ppm during methanol tests. Both sets of data show a very general trend of lower concentrations at higher temperature and power. See Figure 5.5 and Table 5.2.

3. Data Reduction

The air fuel ratio is calculated using the measured turbine air inflow rate and compressor bleed air flow rate together with fuel flow rate. This is done in a simple computer program, for example see test 2J, shown in Table 2.1., and other test data as shown in Appendix 7. Program formulas are also listed in Appendix 7. For example in test 2J on aviation kerosene the stoichiometric air/fuel ratio by mass is 14.7. The burner airflow rate is 3.48 lbm/s and the

burner fuel flow rate is 0.0456 lbm/s. This results in an actual air/fuel ratio 3.48/0.0456=76.31 or equivalence ratio $\Phi = 14.7/76.31=0.19$.

Figure 5.3 - NOx Emissions versus Compressor Bleed Air Power

Figure 5.4 - HC Emissions versus Compressor Bleed Air Power

Figure 5.5 - Solid Particulate Emissions versus Compressor Bleed Air Power

In table 2.1., the turbine inlet temperature has been calculated three ways. First, the compressor bleed air power is calculated from the temperature rise and flow rate, this is 102 HP in test 2J. From the measured bleed air and total inlet airflow the compressor power is calculated, this is 485 HP. Equating this to the turbine power, allows one to calculate the turbine temperature drop. This added to EGT of 824°F in test 2J, provides the turbine inlet temperature 1221°F. The second and third methods are based on assuming 100% adiabatic combustion and neglecting emissions other than CO₂, H₂O, O₂ and N₂. The expected results will be slightly higher. They are 1280°F using a mean specific heat and 1241°F using individual specific heats. Turbine inlet temperatures can be seen in Figure 5.6 and Appendix 7.

During the transient fuel type change-over maneuver, data collection was continued at 10 Hz. Such high-speed data acquisition was essential, as the fuel-change-over lasts less than 0.5 minutes, depending on the power setting. In that time the fuel concentration ratio changes gradually from 0% to 100%. These data are reported in ppm and are plotted as a function of time in Figure 5.7. This shows tests 14J and 15M. The turbine was operated on aviation kerosene until a steady state idle condition was reached at which the data acquisition was initiated at t = 0. The compressor power was increased to 70.62 KW at 3.5 minutes.

Figure 5.6 - Turbine Inlet Temperature versus Bleed Air Power

Figure 5.7 - Emissions During Fuel Type Change Over From Aviation Kerosene To Methanol, 3/14/00 Tests - Idle, Test 14J (Aviation Kerosene @ 70.62 Kw), 15M (70.44 Kw) And Back To Aviation Kerosene @ 70.62 Kw

		M100/2CB			M100/2CB			M100/2CB		M100/2CB			
Power	Jet Nox	Nox	Reduction	Jet CO2	Co2	Reduction	Jet CO	CO	Reduction	Jet HC	HC	Reduction	
KW M100-													
2CB/ KW													
Jet	g/s	g/s	%	g/s	g/s	%	g/s	g/s	%	g/s	g/s	%	
59/61	0.05	0.01	71.43	63.00	56.30	10.63	0.89	0.66	25.84	1.46	0.20	86.58	
70/70	0.04	0.02	47.73	64.10	61.30	4.37	0.81	0.68	16.05	1.92	0.30	84.58	
80/82	0.05	0.02	69.81	69.00	60.00	13.04	0.77	0.65	15.58	1.12	0.15	86.96	
89/93	0.06	0.02	71.19	73.00	67.00	8.22	0.65	0.59	9.23	1.66	0.27	83.86	
103/107	0.07	0.02	72.86	81.00	74.00	8.64	0.63	0.57	9.37	0.91	0.13	85.27	
Reduction	in Emissi	on When S	witching from	om Keros	ene to Meth	nanol 9/15/9	8						
Power	Jet Nox	M100 Nox	Reduction	Jet CO2	M100 Co2	Reduction	Jet CO	M100 CO	Reduction	Jet HC	M100 HC	Reduction	
KW M100-													
2CB/ KW													
Jet	g/s	g/s	%	g/s	g/s	%	g/s	g/s	%	g/s	g/s	%	
59/60	0.04	0.01	72.50	58.20	56.09	3.62	0.45	0.49	-8.89	0.29	0.04	84.62	
59/61	0.05	0.01	73.33	59.87	51.01	14.79	0.91	0.47	48.68	1.67	0.05	96.77	

Table 5.3 - Reduction in Emission When Switching from Kerosene to Methanol-2 Cycle Blue Solution

Jet = Jet A Fuel

M100 - Air Products Methanol Fuel

M100/2CB - Air Products Methanol Fuel with 2-Cycle Blue Fuel Additive

CO, CO₂, NOx and HC increased with power, NO_x increasing the most, rising from approximately 14 ppm to approximately 25 ppm. Fuel type change-over was then initiated, from aviation kerosene to Air Products methanol. During fuel change-over all emissions species concentrations tested, decreased with CO₂ and NO_x decreasing the most. CO₂ decreased from approximately 24000 to 21500 ppm and NO_x decreased from approximately 25 to 8 ppm. Immediately following this change-over, Figure 5.6 shows this dramatic decrease in NO_x production during aviation kerosene dilution process. At approximately t = 7 minutes, one minute after the initiation of the fuel change over, the NO_x data approached the pure methanol equilibrium value. At t = 9.5 minutes the reverse fuel type changeover, from methanol to aviation kerosene, is initiated. Following this procedure, the NO_x production rapidly approaches the aviation kerosene steady state value as represented by value at t = 4 minutes. It can be seen from Figure 5.7 that while fuel type has a strong effect on the NO_x production, it has a much lesser effect on the other species sampled. A compressor power of between 70.4 and 70.6 KW was maintained during the tests shown in Figure 5.7. The results shown from tests 14J and 15M are typical of the other tests conducted.

VI. CONCLUSIONS

The initial test objectives of this research were accomplished using the GTC-85-72 gas turbine. It was successfully operated on both aviation kerosene and on fuel grade methanol as produced by Air Products and Chemicals Inc. Emission data were collected using each fuel during steady state operation (defined as unchanged during at least 6 minutes). In addition emission data were collected during the transient fuel-change over procedure. Engine starting proved to be only possible on aviation kerosene. It is suspected that this is due to the combination of the low volatility of methanol and the high heat of vaporization.

To minimize corrosion and diaphragm deterioration during storage, and permit starting, it was decided to conduct a change over to methanol only after the engine was warmed up and return to aviation kerosene prior to engine shutdown. To achieve successful fuel change-over it proved to be essential to raise the EGT to more than 750°F, which is done by applying at least, 25% bleed air load.

The original fuel controller and atomizer were unable to supply enough methanol to permit operation at more than 50% bleed air power. The lack of lubrication when using methanol caused the ball bearing and cylindrical valve of the RPM controller to seize up which resulted in loss of RPM control. Methanol also wore out the gear type fuel pump housing, so badly that the fuel pressure dropped below rated values.

There was a significant change in NO_x production during fuel type change-over from methanol to aviation kerosene, from about 25 ppm on aviation kerosene down to about 5 ppm on methanol. This occurred without any significant changes in the combustor outlet temperature, which equals the turbine inlet temperature. The reason must therefore be due to the combustion process itself, which lowers the primary combustion zone flame temperature. When fueled by methanol, combustion completion extends into the secondary dilution air zone, which would explain why its peak temperature is lower.

The lubricating properties of aviation kerosene, methanol and methanol additive mixtures needed to be measured in order to choose a suitable additive. Assessment of suitable additives would only be possible after a lubricity tester was developed, as no existing equipment was available. Three types of test apparatus were designed and tested at WVU and hundreds of tests were run without satisfying results. Finally the fourth configuration (Type 4), described herein produced the desired data, and is based on measuring the friction coefficient (ultimately responsible for wear) instead of measuring wear damage.

The Type 4 lubricity test apparatus, designed and tested at WVU, was relatively easy to use and provided the needed repeatable data. Each run was conducted over a 10-minute period. It was found that this system yielded an experimental repeatability far greater than that possible with the wear based lubricity-testing methods. Test results indicate that all three additives tested would be satisfactory for use in the WVU gas turbine. The *Two Cycle Blue* additive appeared to offer the best lubricity for the lowest concentrations when mixed with methanol. A 1% solution was sufficient to match the lubricating properties of aviation kerosene.

To provide an adequate factor of safety, all the second phase emissions testing on the WVU gas turbine were conducted using a 2% methanol-*Two Cycle Blue* solution. The gas turbine was operated for an extended period, without problems.

A new larger fuel controller and atomizer of the GTCP-180L gas turbine had to be installed in the WVU turbine to increase the operating range of the gas turbine. In the first test, completed in 1998, the compression bleed power was limited when fueled by methanol from 48 to 58 KW. With the larger controller, this range increased to between 48 and 103 KW compressor bleed air power in the year 2000 tests.

Emissions testing while operating on methanol with 2% *Cycle Blue* additive, showed significant reductions in HC and NO_x as compared to gas turbine operation on aviation kerosene. Reduction in NO_x was 2.5 times lower at low power level and 3.5 times lower at high bleed air power level. HC emissions reduced approximately 6 fold at all power levels.

Operation over the entire rated power range of the GTC-85 was not possible on methanol. To understand this problem, the details of the combustion process in this particular combustion chamber must be studied. The combustor with 4 thermocouples proved to be operational and will be needed for future studies.

VII. RECOMMENDATIONS

- The lubricity of methanol produced with the LPMEOH[™] can be made equal to that of aviation kerosene by the addition of less than 1% of the commercially available racing fuel additive *Two Cycle Blue*. However it is recommended that a more economical additive be found to make methanol more cost effective as an alternate fuel.
- The combustion chamber of the GTC-85-72 used at West Virginia University for emission testing was designed for operation on aviation kerosene. The fuel pump pressure, flow rate and spray nozzle size had to be doubled to be able to develop full power when switching to methanol. Further all seals have to be methanol resistant. Potential customers should be made aware of the need to make these modifications before switching to methanol.
- The problem of flame-out at less than 25% power, when switching from aviation kerosene to methanol at an EGT below 714°F needs to be solved. This problem also makes operation on methanol at idle or starting on methanol impossible. The turbine inlet and exit temperatures are only a function of bleed air power setting and are nearly independent of the fuel type in use. Therefore, the flame-out problem must be created upstream in the primary combustion zone of the combustion chamber. The cause of this problem needs to be studied and eliminated in future combustion chamber designs

- It is recommended to write a CFD code to determine the difference in required length of the primary combustion zone with methanol and with aviation kerosene. Further, it is recommended to verify the CFD code output experimentally by installing an aspiration probe, capable of an axial survey of the combustion products along the length of the WVU gas turbine combustion chamber. Also, create radial temperature profiles for CFD validation with the four thermocouples, currently installed in the combustion chamber.
- It is anticipated that an additional separation zone, installed between the primary combustion zone and the secondary dilution air entry, will solve the flame-out problem, without having to resort to dangerous fuel pre-heaters to solve this problem. Such design information seems essential before the wide spread adoption of methanol fuel in small gas turbines. Note the available radiation heat in large gas turbines may mask this problem.

VIII. REFERENCES

- The American Methanol Institute (AMI), "<u>Methanol Production</u>", <u>http://www.methanol.org/methanol/fact/methpr.html</u>, 1996.
- American Society for Testing and Materials, "<u>Standard Test Method for Measurement of</u> <u>Lubricity of Aviation Turbine Fuels by Ball on Cylinder Lubricity Evaluator</u>", D5001-90a(1995)a American Society for Testing and Materials, West Conshohocken, PA., 1999.
- Borg, Michael, "<u>Electric hybrid buses on test</u>", Volvo Press releases, <u>http://www.volvo.com</u>, 1998.
- Chandler, K., Motta, R., Norton, P., Kelly, K., Malcosky, M., Schumacher, L. and Lyons D., et al, "<u>Alternative Fuel Transit Bus Evaluation Program Results</u>", Society for Automotive Engineers Professional Paper, International Spring Fuels and Lubricants Meeting, Dearborn, MI., 1996.
- Dolan, G. A., "Fords Methanol Tarus Costs Less tan Gasoline Mode", The American Methanol Institute (AMI), http://www.methanol.org/methanol/fact/methpr.html, 1996.
- EPA Fact sheet OMS-7, 400-F-92-009, "Methanol Basics", http://www.epa.gov/docs/OMSWWW/07-meoh.htm, 1994.
- EPA Fact sheet OMS-9, 400-F-92-011, "<u>Alternative Fuel Demonstrations</u>", <u>http://www.epa.gov/docs/OMSWWW/09-altfu.htm</u>, 1993.
- EV World and Digital Revolution, "<u>The Re-Incarnation of the Turbine Car</u>", <u>http://www.evworld.com/testdrives/gmshev.html</u>, 1998.
- Jarrett, Ronald P., et al, "Evaluation and Correction of Moisture Deposition and Evaporation from a Tapered Element Osculating Microbalance" Thesis, West Virginia University, 1998.
- Lefebvre, Arthur H., "<u>Gas Turbine Combustion</u>", McGraw-Hill Book Company, New York, 1983, pgs 359-366.

- Loth, J. L., Lyons, D. W., Bond, R., "<u>Methanol From Coal End Use Demonstration Project On</u> <u>Gas Turbine Emissions</u>", U.S. Department of Energy and Air Products and Chemicals Project Report, 1998.
- Lubrizol Corporation, "Lubrizol Scuffing BOCLE" http://www.lubrizol.com/referencelibrary/news, Lubrizol Corporation, 2000.
- Motta, R., Norton, P., Chandler, K., Kelly, K., Schumacher, L. and Clark, N., "<u>Alternate Fuel</u> <u>Transit Buses</u>", National Renewable Energy Laboratory (NREL) Project Report, 1996.
- Oberg, Eric and Jones, F. D., "<u>Machinery's Handbook</u>", 16th Edition, The Industrial Press, New York, NY, 1962, pg 509.
- Rabinowicz, Ernest, "Friction and Wear of Materials", John Wiley & Sons, Inc New York, 1995, pgs 239-250.
- Ramamurthy, Ravishankar, "<u>Heavy Duty Emissions Inventory and Prediction</u>", Thesis, West Virginia University, Morgantown 1999.
- Weir A. Jr., VonKleinSmid, W.H., and Danko, E.A., "Test and Evaluation of Methanol in a Gas Turbine System" Internal Report Research Project 988-1, Electric Power Research Institute, Pal Alto California, 1981.

APPENDIX 1

updated Oct 9 U. S. DEPARTMENT OF ENERGY AND AIR PRODUCTS AND CHEMICALS, INC.

METHANOL FROM COAL END USE DEMONSTRATION PROJECT

West Virginia University Gas Turbine Emissions Study (LOTH/CLARK, 1998)

Final Contract Report

October 14, 1998

Prepared for Contract Monitor

Mr. Robert J. Senn Air Products and Chemicals Inc. 7201 Hamilton Blvd Allentown, Pa 18195-1501

> Tel: (610) 481-7042 Fax: (610) 706-7299

Prepared by WVU Professors: John L. Loth Nigel Clark Robert Bond and Graduate Research Assistant Richard Guiler

Department of Mechanical and Aerospace Engineering West Virginia University P. O. Box 6106, Morgantown WV 26506-6106 Tel: (304) 293-4111, Fax: (304) 293-6689

West Virginia University Gas Turbine Emissions Study

Summary

The object of this study is to demonstrate operation of a stationary gas turbine on Fuel Grade methanol, produced in La Porte Texas by Air Products and Chemicals Inc. Of interest is a comparison of the operational aspects and emissions between Jet A and Fuel Grade methanol. The gas turbine selected was a GTC-85-72 normally used at airports to start large jet engines with its 235 ΗP of compressed bleed air. This gas turbine is currently installed in the WVU experimental "Circulation Control High Lift Demonstrator" Technology aircraft. operate this unit То on methanol the following items needed to be modified: instrumentation, fuel supply system, fuel controller, ignition system and bleed air load control. One of the two WVU portable emission analysis laboratories was brought in for the gaseous and particle emissions study.

Jet A and Fuel Grade methanol are pumped directly from 55 gallon drums into a common manifold with fuel flow meter. A gradual change-over in fuel mixture ratio is desirable, to allow the gas turbine fuel controller time to adjust the fuel flow rate by up to By installing a fuel when changing over to methanol. 85% emulsifier loop in the fuel selection manifold, a gradual mixture ratio changeover can be obtained. By making the volume of the emulsifier loop equal 1/3rd of the GPM fuel flow rate, the changeover can be made to take about 20 seconds for completion. Another significant difference between these two fuels is that methanol has a five times higher heat of vaporization than jet A. The associated cooling effect required the combustor can spark plug ignition source to be augmented. For this purpose, two glow plugs from a PT-6 gas turbine were installed. Even then, flameout during fuel change over, could only be prevented by operating under at least 25% bleed air load. At this power level the exhaust gas temperature (EGT) is at least 750°F. At bleed air power level above 50%, the fuel controller with associated burner nozzle size, was unable to supply the required methanol flow rate and a gradual decrease in turbine RPM resulted followed by flame-out. Within the 25% to 50% bleed air power load level, the fuel change over is perfectly smooth. The NO_x emissions dropped from about 25 ppm on jet A to below 5 ppm on methanol. The EGT is about 75°F lower on methanol than on jet A. This alone does not explain this significant reduction in NO_x . The most likely reason is that methanol burner nozzle spray evaporates so slowly that it extends into the burner region were the secondary dilution air reduces the flame temperature thereby reducing the thermal NO_x production.

89

Other than associated problems with idling this may be a beneficial aspect of operating on methanol. The GTC gas turbine fuel flow rate controller contains a cylindrical valve, which is activated by flywheel weights. The surrounding fuel is supposed to lubricate the components and their bearings that are submerged in the fuel. The lack of lubrication in the methanol caused the ball bearings and the cylindrical valve to seize up during the emissions testing. The operational problems delayed and somewhat limited the emissions testing. These operational problems can be solved by adding a methanol lubricant such as Lubrizol. Βv increasing the size of the fuel controller and the size of the combustor nozzle this GTC-85-72 gas turbine can be modified to operate at 100% power on methanol. In order to operate at low load levels down to idle, one has to extend the burner can. This will allow completion of the methanol combustion, prior to secondary air dilution. By surveying the burner axial temperature distribution, one can calculate the required burner extension.

Table of Contents

Summary

- 1) Introduction
- 2) Test Set-Up
- 3) General Description of the Gas Turbine
- 4) Fuel System Design
- 5) Problems Encountered During Turbine Operation
- 6) Emission Testing Equipment
- 7) Data Reduction
- 8) Conclusions and Recommendations

Appendices

1) Introduction

The fuel grade methanol, storable gas turbine fuel, produced in La Porte, Texas by Air Products and Chemical Inc. is being tested for a variety of applications. This includes its application in diesel engines, gas turbines and fuel cells. Air Products and Chemical Inc. under partial support by the Department of Energy has contracted out various demonstration projects to evaluate their fuel. Two of these projects were conducted at West Virginia University, one on diesel engine emissions and the other on gas turbine engine emissions.

West Virginia University faculty and students have received national recognition for their work on transportation engine conversion to alternative fuels. These include compressed natural gas (CNG), liquified natural gas (LNG), methanol, ethanol and others. A large number of alternative fuel transportation engines in: cars, trucks, busses, marine engines and aircraft are in use throughout the country. As a service to fleet owners, operating alternative fuel heavy duty trucks and busses, WVU operates two mobile emission testing laboratories throughout the US and Canada. WVU has converted a Cessna 150 aircraft, which now operates on either aviation gasoline or E95 ethanol. Its excellent performance and in flight fuel change over capability contributed to the Department of Energy dedicating the Morgantown Airport as the "2nd Clean Airport in the USA", in 1997. WVU's experience in converting to operate on alternative fuels engines resulted in this demonstration project contract. Allied Signals Aerospace, formerly AiResearch/Garett, manufactured the WVU GTC-85-72 gas turbine. Their technical representative Mr. Jessup Hunt did not anticipate any problems with operation on alcohol fuels, other than deterioration of the rubber fuel hoses and diaphragms in the fuel controller and solenoid valves. He anticipated the need to increase the size of the fuel controller and pump as well as the burner nozzle. To minimize corrosion due to long term exposure to alcohol fuels it was decided to always start and shut down our gas turbine using jet A fuel. Only after the engine was properly warmed up would the operator change over to methanol. As these two fuels do not mix readily and have widely different heating values, the fuel controller must have time to gradually alter the fuel flow rate so as to maintain the near constant turbine RPM. These requirements determined the unique fuel supply system, which had to be designed for the methanol demonstration tests.

The 235 HP WVU GTC-85-72 gas turbine was acquired in the early 70's to provide compressed air at the rate of 2 pound per

second to develop an experimental aircraft high lift system. The 40 psi air supply was distributed along the wings trailing edge. The air flow rate was doubled in a supersonic ejector which provided boundary layer control by suction and the retractable flap hinge and circulation control by blowing over the rounded trailing edge. The aircraft was successfully test flown in 1974, and capable of operating at a wing lift coefficient CL=6.

It was decided to leave the gas turbine in the airplane for the test, as this test did not require a dynamometer for engine loading. The compressor bleed air flow represents the load. A special manifold with up to eight calibrated 5/8th of an inch diameter choked flow nozzles was used to increase the load in 12.5% increments from zero to maximum 2 pounds per second flow rate.

For exact power and turbine inlet temperature calculations the inlet air flow rate had to be measured. This was achieved by installing a 7 inch throat diameter venturi. This report describes in detail the test equipment, operating procedures used, data collected and data reduction techniques used. Photographs and drawings are used to explain the set-up and instrumentation.

2) Test Set-Up

The GTC-85-72 gas turbine which is installed in the West Virginia University STOL research aircraft had to be modified for use in this research project. For safety reasons, a shield was installed on one side of the airplane to protect the operator from the gas turbine. The operational controls and instruments for the turbine, switch, including the starter air bleed switch. tachometer and compressor pressure gage were relocated from the In addition to cockpit to the operator side of the airplane. these controls, engine performance measuring equipment had to be installed. This includes K-type thermocouples to read the: exhaust gas temperature, bleed air temperature and venture inlet air temperature.

Additional hardware required for testing includes a motor-generator set gas turbine start cart used to supply the required 26 volts for start-up. To measure the total mass flow into the turbine, a venture with a 7 inch throat diameter was installed in-line with the turbine intake. The vacuum reading in the venturi throat was used in addition to the atmospheric pressure and temperature to calculate the engine air flow rate. Power loading was accomplished through the use of a bleed air manifold containing various numbers of choked flow metering nozzles. Bleed air power was calculated from the total nozzle area, bleed air pressure and temperature, which were read from a pressure gage and K-type thermocouple respectively. The test fuel was pumped directly from a 55 gallon drum to the fuel selector valve system, described in section 4.

3) General Description of the Gas Turbine

The GTC-85-72 engine is a gas turbine auxiliary power unit (APU) which is mostly used to provide pneumatic jet engine startup power at airports. This particular engine was manufactured by AiResearch/Garrett in the late 1960's. In 1972 the engine was installed in the West Virginia University STOL research aircraft, Figures 3.1 & 3.2. This aircraft is currently no longer airworthy and therefore grounded.

There are six basic engine assemblies, which include: the compressor section, the turbine section, the combustion chamber, the lubrication system, the electrical system and the fuel flow and RPM controller, Figure 3.3.

Compressor Section

The centrifugal compressor provides about 40 psig compressed air for the turbine and the bleed air for pneumatic power. The compressor is a two stage centrifugal type with a pressure ratio of 3.4: 1 and a total air mass flow of 5.5 lb./sec, at 40,800 rpm.

Turbine Section

The turbine section provides power to the compressor and the accessories and is designed to operate up at temperatures up to 1200° F.

Combustion Chamber

The combustion chamber is a reverse flow can type, which is comprised of a cylindrical liner mounted concentrically inside a cylindrical casing. The chamber's key components include an air casing, diffuser, liner, fuel atomizer, glow plugs and spark igniter, Figure 3.4.

Lubrication System

The lubrication system is a self-contained positive pressure, dry sump type. This system provides pressurized splash lubrication to all gears, shafts and bearings.

Electrical System and Instrumentation

The electrical system requires approximately 26 volts DC to operate the starter, solenoid, instrumentation and the ignitions system. The ignition system is a high-energy step up transformer charging capacitors, which build up voltage across the igniter plug. In addition to the igniter, a pair of 8 amp glow plugs, Figure 3.5, and their voltage regulator from a PT-6 jet engine have been added to provide a higher energy ignition source. Power is supplied to this system by a 26 volt DC generator for the main engine circuits and a 24 volt battery for the glow plug voltage regulator.

Instrumentation for the engine's operation and for testing include three K-type thermocouples located to measure exhaust gas temperature, bleed air temperature and ambient air temperature, one gear driven tachometer, one compressor outlet pressure gauge, one bleed-air pressure gauge, one fuel pressure gauge, and one charging voltage gauge.

Fuel/RPM Controller and Bleed Air Valve

The fuel and bleed air control system automatically adjusts fuel flow to maintain a near constant turbine operating RPM under the varying load conditions, which depends on the amount of bleed-air extracted. A gear in the accessory section drives the fuel pump and control unit, Figure 3.6. This system incorporates a gear fuel pump capable of 230 psi, fuel filter, acceleration limiting valve, fuel pressure relief valve, fuel solenoid, and connections for the pneumatic control, and electric control. A constant operating speed is achieved through a combination of an acceleration limiting flyweight-type governor bypass fuel dump valve and a diaphragm bypass valve activated by the bleed air pressure. Fuel is transferred under pressure to the fuel atomizer located in the end of the combustor cap. The fuel atomizer consists of a screen, a flow divider valve, distributor head and housing. The distributor head divides the fuel passageway within the core. The center passage leading to a small orifice plate and a annulus leading to a large orifice. The flow divider valve directs fuel at low pressure through the small center orifice and at high pressure to both the small and large orifice. During May 1998 the fuel atomizer was calibrated in a spray booth at Whitney Engine Services in Bridgeport Pratt and West Virginia. This calibration was necessary to ensure that there would be adequate atomization and correct spray cone geometry under all the operating pressures expected during operation of the engine with Jet A and methanol, Figure 3.7.

Figure 3.1 - WVU STOL research aircraft containing the GTC-85-72 gas turbine engine to be tested

Figure 3.2 - View looking down the exhaust stack of the GTC-85-72 gas turbine

Figure 3.3 - GTC-85-72 Gas Turbine APU

Figure 3.4 - Combustion chamber view with fuel atomizer, igniter, glow plugs and holes for secondary cooling

Figure 3.5 - Modified combustor can with igniter and two 8 Amp Pratt & Whitney PT-6 glow plugs

Figure 3.6 - Fuel Control System

Figure 3.7

4) Fuel System Design

For safety reasons a separate fuel system was designed so that it could be disconnected at the end of each test and stored in an approved storage facility. Because of the corrosive nature of methanol, and to eliminate cold starting problems, it was perform engine start-up and shut-down necessary to usinq conventional Jet A. The gas turbine is started on Jet A, operated under load to bring the combustor up to operating temperature before gradually changing over to methanol. After the tests are completed, the fuel type was changed back to Jet A prior engine shut-down.

To accomplish the desired fuel change-over procedure, a special fuel supply system was developed. It consists of two 55 gallon DOT #17 fuel drums one containing methanol and the other containing Jet A, Figure 4.1. Each of these drums was equipped with a separate pneumatic powered fuel pump, capable of 4.6 qpm, which discharges to the fuel type selector valve, Figure 4.2. The selected fuel then traveled to the fuel emulsifier. This allows a change gradual in mixture concentration during fuel type The components of this emulsifier are shown in change-over. Figure 4.2 they consist of a small orifice, a clear sight glass and a recirculating pneumatic fuel pump. During fuel changeover, this sight glass becomes cloudy with the emulsified Jet Downstream of the fuel emulsifier, a fuel A/methanol mixture. pressure spike damper was installed, Figure 4.2. This damper consists of a volume of captured air in a clear sight glass to compensate for the pulsating nature of the pneumatic fuel supply pumps. Following the pressure spike damper, the fuel was routed to a volumetric flow meter and from here on to the gas turbine fuel controller.

Figure 4.1 - Fuel supply drums

Figure 4.2 - Fuel supply system, pumps, emulsification chamber, fuel selection valve, pressure damper, and the fuel flow meter are all all clearly visible

5) Problems Encountered During Turbine Operation

During the course of this project, various unforeseen problems were encountered. The first of which was engine flame-out due to the too sudden fuel type change over. This problem was solved by the addition of the fuel emulsifier recirculating pump described in section 4.

With the modified fuel supply system, another problem surfaced, in that the gas turbine would not operate at idle or even at very low power settings on methanol. This is believed to be due to the nearly 5 time greater heat of vaporization of methanol when compared to Jet A. Because of this, methanol requires more ignition energy upstream of the point where the dilution air enters the burner.

A second, and predictable, operation limitation was uncovered whereby the gas turbine could not be operated on methanol at high power levels. This is due to the inability of the fuel system to double the volumetric fuel rate flow for the same combustion temperature when operating on methanol. If fuel type change-over from Jet A to methanol was attempted at a high power setting, then the turbine experiences a gradual loss in RPM, which terminates in combustor flame-out. To operate this turbine on methanol at these elevated power settings, a new fuel controller system capable of higher flow rates will need to be installed.

In addition to the power operation limitations found when methanol, additional durability issues operating on were The first of these was the quick destruction of the encountered. aged rubber diaphragms in the gas turbine fuel controller. These diaphragms failed after only a short exposure to the methanol fuel. As a result, this fuel controller was rebuilt using all new diaphragms and seals. After overhauled it performed flawlessly throughout the remainder of the tests. However, one additional problem was experienced. This was the destruction of fuel controllers RPM governor due to the lack of lubricating property It is proposed that the use of a lubrication of methanol. additive such as Lubrizol be used to eliminate this type of problem.

6) Emissions Testing Equipment

WVU Mechanical and Aerospace Engineering (MAE) has designed and built two mobile emissions testing labs that are capable of testing vehicles up to 30,000 kg (66,000 lbs.) in the field. WVU has tested over 700 buses and trucks from more than thirty-five locations throughout the United States. Much of the data collected from the buses and trucks are available in database form.

mobile emission lab is comprised of two tractors, The an emissions measuring instrument trailer and a flat-bed with the rollers, flywheels and power absorbers, Figure 6.1. Inside the instrument trailer there is an environmental chamber for preparation of the particulate filters and a microgram scale for measuring them, there are also precision gases for calibrating the analyzers, racks of data acquisition and dynamometer control equipment, emissions analyzers etc. The trailer also has a blower and the power supply for the sonic flow venturi constant volume sampling (CVS) system and the stainless steel dilution tunnel on top of the instrument trailer. The emissions lab can measure and characterize emissions from a wide range of vehicles that use fuels. various types of Most of the vehicles tested use alternative fuels. The exhaust emissions from the vehicle are measured using a dilution tunnel and full exhaust gas emissions measurement instrumentation. Each test is run three times to ensure repeatability and data quality. The laboratories measure carbon monoxide, carbon dioxide, oxides of nitrogen or NO_x, methane, total hydrocarbons, aldehydes and particulate as per Figure 6.2 shows the emissions lab set up for USEPA standards. testing of the GTC-85-72 gas turbine installed in the WVU STOL airplane.

Figure 6.1 - WVU mobile emissions lab and mobile testing equipment

Figure 6.2- WVU mobile emissions lab and STOL research aircraft setup for engine testing

7) Data Collection and Reduction

The gas turbine was operated in near steady state conditions except for the fuel flow rate which varied slowly during fuel type change over. All turbine operating parameters to be measured, varied slowly enough, that the data could be collected manually by reading gages, see Figures 7.1. The transportable laboratory comes equipped with a standard 18 inch diameter dilution tunnel. It has choked flow metering nozzles, which are sized for various flow rates up to 3000 CFM. As its flow should be diluted to below 290°F, about two-thirds of the dilution tunnel flow must come from outside air. The GTC-85-72 gas turbine exhaust flow rate is about 3.5 pounds/second = 2700 SCFM at more than 700° F. Therefore the standard 18 inch diameter dilution tunnel cannot process this much exhaust flow. Instead a 3/8th cooled copper tube was inserted in the exhaust stack. A sampling pump draws a metered steady flow through the analysis equipment inside the transportable emission laboratory.

Carbon monoxide is measured by infrared absorption, nitrogen measured by chemical luminescence and oxides are unburned hydrocarbons are measured by flame ionization detection. From these the fuel/air ratio could be calculated. However in the gas turbine tests this is not necessary. From the measured turbine air inflow rate and compressor bleed air flow rate together with fuel flow rate, this ratio is determined. This is done in a simple computer program. For example in test #2 on iet A the stoichiometric air/fuel ratio by mass is 14.7. The burner air flow rate is 3.48 lbm/s and the burner fuel flow rate is 0.0456 lbm/s this results in an actual air/fuel ratio 3.48/0.0456=76.31 or equivalence ratio Φ =14.7/76.31=0.19. From an emission point of view this very lean equivalence ratio is meaningless as the combustion takes place near stoichiometric at the burner inlet. There NO_x and unburned hydrocarbons HC are formed as a function of an unknown equivalence ratio during combustion. After reaching peak flame temperature, the combustion products are diluted with secondary air to the allowable turbine inlet temperature. Only by measuring or modeling the temperature profile along the length of the combustor can one analyze the effect of dilution air on the NO_x and HC concentrations in the exhaust. Chemical kinetics show that the concentration of NO_x increases rapidly with flame temperature, and greater than predicted by is equilibrium thermodynamics. The rate of forward reaction is different from the backward reaction, and there is insufficient time for equilibrium to be reached.

The turbine inlet temperature has been calculated three ways. First the compressor bleed air power is calculated from the temperature rise and flow rate, this is 102 HP in test #2. From the measured bleed air and total inlet air flow the compressor power is calculated, this is 485 HP. Equating this to the turbine power, allows one to calculate the turbine temperature drop. This added to EGT of $824^{\circ}F$ in test #2, provides the turbine inlet temperature 1221°F. The second and third methods are based on assuming 100% adiabatic combustion and neglecting emissions other than CO_2 , H_2O , O_2 and N_2 . The expected results will be slightly higher. They are 1280°F using a mean specific heat and 1241°F using individual specie specific heats.

Measurements were recorded on a parts per million basis. The emission data were recorded by computer at 1 second intervals during 10 minute periods for single-fuel steady state operation. If these test were conducted on an engine for a car, then the emissions would be reported in grams per mile. For a stationary engine it would be reported in grams per HP. As this turbine does provide shaft HP, only compressed air it seems more not appropriate to report emissions in units of standard cc per second. First reduce the turbine exhaust gas flow rate to a room temperature volume flow rate, using density 0.0765 FT^3/lbm. For test #2 the exhaust gas flow rate is 3.48+0.0456=3.5256 lbm/s= 46 STD FT^3/s = 46*28317 cc/s.=1.3*10^6 cc/s. Thus in test # 2 if the ppm values are multiplied by 1.3 then one gets the emissions in cc/s.

During the transient fuel type change-over maneuver, another automotive type emission test apparatus was employed. This one was capable of printing data in five seconds intervals. Such high speed data acquisition was essential, as the fuel-change-over lasts less than 0.5 minutes, depending on the power setting. In that time the fuel concentration ratio changes gradually from 0% to 100%. Data were collected continuously and printed out in 5 seconds intervals. Because the equipment used for this test was designed for simple automotive testing, the data presented here should only be used for relative comparisons. These data are plotted as a function of time in Figure 7.1. For this test, the turbine was operated on Jet A until steady state was reached at which the data acquisition was initiated at t = 0. Because of the steady nature of the data on Jet A, data were only plotted starting at t = 4 minutes. At t = 5 minutes, fuel type change-over was initiated from Jet A to Air Products methanol. Immediately following this change-over, Figure 7.1. shows a dramatic decrease in NO_x production during Jet A dilution process. At approximately t = 6 minutes, one minute after the initiation of

109

the fuel change over, the NO_x data approach the pure methanol equilibrium value. At t = 11 minutes the reverse fuel type change-over, from methanol to Jet A, is initiated. Following this procedure, the NO_x production rapidly approaches the Jet A steady state value as represented by value at t = 4 minutes. It can be seen from Figure 7.1. that while fuel type has a strong effect on the NO_x production, it little effect on the other species sampled.

8) Conclusions and Recommendations

The principal objective of this contract has been accomplished. The GTC-85-72 gas turbine was successfully operated on both jet A fuel and on fuel grade methanol produced by Air Products and Chemicals Inc. Emission data were collected on each fuel during steady state (defined as unchanged during at least 6 minutes). In addition emission data were collected during the transient fuelchange over procedure which lasted about less than 0.5 minutes. Some alcohols like ethanol are entirely miscible with jet fuel, but methanol is only partially miscible. The miscibility reduces with the presence of water and at lower temperatures. To prevent separation, chemicals such as benzene and acetone can be added. Engine starting proved to be only possible on Jet A, due to the low volatility of methanol and the high heat of vaporization. To minimize corrosion and diaphragm deterioration during storage, and permit starting, it was decided to change over to methanol only after the engine was warmed up and return to jet A prior to engine shut-down. A sight-glass in the fuel supply manifold clearly demonstrated the lack of miscibility between Jet A and methanol. They do not freely mix, just like oil and vinegar. After a fuel emulsifier pump was installed, the transition from one type of fuel to the other becomes visible like a milky cloud, which only clears up after change-over is completed. To achieve successful fuel change-over it proved to be essential to raise the EGT to more than 750°F which is done by applying at least 25% bleed air load. Even at this elevated EGT value was it necessary to increase the ignition power. This was achieved by adding two glow plugs from a PT-6 aircraft gas turbine to the existing spark plug. The inability to operate on methanol at idle, is most likely due to the cooling effect from the high heat of vaporization. This delays ignition to further downstream in the burner. Because there the mixture is diluted by secondary air, the mixture there becomes too lean to ignite. This problem might be solved by extending the burner by four inches in length in between the primary and secondary air supply zones.

Unfortunately the fuel controller was unable to supply enough methanol to permit operation at more than 50% bleed air. This problem can probably be solved by installing a fuel controller of a larger model turbine and by opening up the burner high pressure nozzle hole size.

The lack of methanol lubricating properties destroyed the bearings and the cylindrical RPM control fuel valve inside the fuel controller. It is imperative that all future turbine tests on methanol must incorporate a suitable lubricant additive such as "Lubrizol".

These were the only significant operational problems encountered. The emission testing presented no difficulties. The ppm emission data are readily convertible to units of cc/s. The conversion coefficients are calculated in the program for each test and are in the order of 1.3.

The significant change in NO_x level from about 25 ppm on jet A down to about 5 ppm on methanol, is most likely caused by the before mentioned burning of the methanol spray at a location further downstream, where the mixture gets already cooled by secondary air flow.

This demonstration project has proven that Air Products methanol can be operated safely in gas turbines when the necessary modifications have been made.

APPENDIX 2 VARIOUS PHOTOGRAPHS

Top - GTCP-180L Middle - GTC-85-72 Bottom -GTC-85-72

Appendix 2 page 2

Top - GTC-85 APU Middle & Bottom - GTC -85 & GTCP-180L Fuel Controllers

APPENDIX 3

Paper submitted to IMECE Nov. 5-10, 2000 conference in Orlando, Florida (6/9/00)

Lubricity Problems and Solutions for a **Methanol Fueled Gas Turbine**

by

Robert E. Bond, John L. Loth, Richard W. Guiler and Nigel N. Clark Mechanical and Aerospace Engineering, West Virginia University. and

Edward C. Heydorn and Peter J. A. Tijm Air Products and Chemicals Inc.

Abstract

The Liquid Phase Methanol (LPMEOHTM) process, which was developed by Air Products and Chemicals Inc., can be used to convert coal-derived synthesis gas into a fuel or chemical grade methanol product. This technology is being demonstrated under sponsorship of the U.S. Department of Energy's Clean Coal Technology program at Eastman Chemical Company's chemicals-from-coal complex in Kingsport, TN. In 1998, fuel-grade methanol was used at WVU to operate a small unmodified (235 HP) gas turbine. During these tests, the fuel system gear pump and rpm controller failed due to the lack of lubricity of the methanol fuel. To remedy this problem, a pint (over an order of magnitude larger than the recommended amount) of a commercially available fuel additive was dissolved in half a barrel of methanol, and the fuel controller/pump was replaced. The next series of runs produced a similar failure. This prompted the WVU team to search for a suitable methanol additive, which can provide lubricity equal or better than that of jet fuel. To minimize the amount and thus cost of such an additive, it was essential to accurately measure lubricity of methanol/additive solutions, at various concentration levels. Conventional lubricity measuring apparatus are based on measuring wear. When used with methanol, the data were erratic due to a changing wear pattern. To get repeatable steady data, a new lubricity test apparatus was developed, based on comparing friction coefficients, at a typical bearing design load. After many modifications this apparatus provided satisfactory and consistent results. A few percent castor oil or even fewer percent racing fuel additives provided the needed lubricity to operate the WVU gas turbine safely on methanol.

Introduction

The wear of lubricated bearing surfaces depends not only on the lubricant, but also on the materials used, the bearing load, velocity and surface finish. Lack of sufficient lubricating properties results in wear, which alters the surface finish and produces loss of material from the surface. One can experience four types of wear: corrosion, adhesive wear, abrasive wear and surface fatigue. Wear can be reduced by the presence of lubricants and corrosion inhibitors at the point of contact of the wear bodies.

One distinguishes two types of fluid lubrication "Boundary Lubrication" and "Hydrodynamic Lubrication". Boundary Lubrication occurs when the lubricant surface tension maintains a boundary between the solid surfaces, thereby reducing the frictional forces between them. Hydrodynamic lubrication is when a lubricant is forced or pumped in between the two surfaces, to limit their interaction. Many tests have been developed to characterize lubricating fluids. The three most common test methods are: BOCLE (Ball-on-Cylinder Lubricity Evaluator), the HFRR (High Frequency Reciprocating Rig), and field-testing.

- 1) The BOCLE (American Society for Testing and Materials, 1999) test was designed for testing the lubricity of diesel and jet fuel. The test consists of placing a $\frac{1}{2}$ " diameter ball on cylinder rotating at 244 RPM, submerged in the test fluid at 25°C. Each test starts with a new ball loaded with a 9.81 Newton force and lasts 30 minutes. Upon completion of the test, the scar on the ball is measured to the nearest 0.01 mm.
- 2) A variation of this test is called the Lubrizol Scuffing BOCLE (Lubrizol Corporation, 2000). This test is similar to the before mention test but applies a steady load with a 7 kilogram mass. The test is run on the cylinder for 2 minutes. The average scar diameter is then measured and used to compare lubricating qualities.
- 3) The HFRR (Rabinowicz, 1995) test uses a ¹/₂" ball, which is rapidly vibrated back and forth over a flat surface. A load of 200 grams is placed on the ball and moved back and forth with a 1-mm stroke. The time necessary to wear a scar into the ball is measured; the size of the scar gives the lubrication qualities of the fuel being tested.
- 4) Field-tests (Rabinowicz, 1995) are the most reliable tests, because all of the operating conditions are duplicated exactly. However, this type of testing is usually very expensive and can be impractical.

The BOCLE has been used for some time, but there are few of these machines available at specialty fuel testing labs. HFRR has been accepted by ISO, SAE and is commonly in Europe for testing diesel fuel lubricity. The drawback is, there are very few of those testing machines available in North America. Field-testing is good but very expensive. The methanol fueled WVU model GTC-85-72 gas turbine, experienced two fuel controller/gear-pump failures, which costs approximately \$20,000 each to replace. This emphasizes the importance of fuel additives to provide the required lubricity.

Lubricity Tests at WVU

One lubricity test apparatus was available at WVU. It was a variation of the Lubrizol Scuffing BOCLE method. Here a cup, containing the sample material is filled with the test fluid and rotated. A stationary $\frac{1}{2}$ " steel ball is lowered onto the sample at a distance from the center of rotation. This test is designed to quantify fluid lubricity by measuring changes in wear rate, either from mass loss or from scarring.

When used with methanol, it was found that once wear had begun, the data collected over different time intervals, keeps on changing, rendering it difficult or impossible to produce repeatable data. This erratic performance was due to a changing wear pattern. To get repeatable data, a new lubricity comparison test apparatus was developed. This one was based on comparing the friction coefficient, at typical bearing loads. The reason being that friction is ultimately responsible for wear.

The WVU lubricity comparison apparatus was designed to operate at near normal bearing pressures using a 60 N dead weight. This weight was placed on a rotating disc containing three balls, as shown in Fig. 1. The three balls transferred the load onto a fixed brass washer and were mounted at a distance of 31mm from the centerline of the disc holder. The three balls were ground to form flats of 3.81-mm diameter. This reduces the lubricated contact pressure to 1.65 M Pa, which is 3.5% of the maximum design load limit for a well-lubricated lead-bronze bearing. This load reduction proved to be necessary to prevent marring the surface when operating on methanol. To guarantee that the disc rotates smoothly about its axis, it was guided by a ball bearing installed on the centering pin in the middle of the fixed washer.

To achieve high accuracy in rpm control and rotating disc position, the apparatus was installed on a vertical mill with numerical position read-out. An exploded view of the complete testing apparatus is shown in Fig. 2. Shown here is the disc three-ball drive head, to be installed on a vertical mill. A disc drive shaft extends from the end of the mill head, passes through the dead weight, and is connected to the disc in a manner that allows only rotational forces to be transferred from the mill. The dead weight slides on the shaft, so that its weight is entirely supported by the balls in the driven disc. Torque is transferred from the drive shaft to the dead weight by a pin and from there to the driven disc by two pins, which protrude from the bottom of the weight. The dead weight normal force is transferred to the driven disc through a ¹/₂ inch steel ball on the system centerline. This system insured that the driven disc was loaded at the center, so that all three flattened balls transfer the same normal force. The next item shown in the exploded view, Fig. 2, is the fluid cup containing a fixed machined washer, submerged in the fluid to be tested. The cup system was placed on a bearing assembly, attached to the table of the mill, so that accurate torque measurements could be taken with an attached beam type load cell. The load cell data were used to calculate the friction coefficient between the washer and the driven disc.

Test Procedure

Prior to testing, great care was taken to prepare the contact surfaces for testing. The washer was machined to insure that its surface was perfectly flat and both contact surfaces, balls and washer, were hand finished by wet sanding using 1500 grit abrasive paper on a flat steel surface. No matter how fine both of these surfaces were ground, the system required additional rotational polishing before the surface finish was good enough to provide steady and repeatable friction coefficient data. This was accomplished by running the system at 200 rpm using Jet A fuel as a lubricant. During this procedure, the friction coefficient data was monitored until a steady-state value was reached. A data set obtained during the

first 30 minutes of the 45-minute "break-in" period can be seen in Fig. 3.

Following the break-in procedure, testing was accomplished by filling the test cup with the fluid to be tested, such that the contact surfaces between the load balls and brass disc are fully submerged. The system was operated at 200 rpm and friction torque data were collected at approximately 2 Hz for a period of 10 minutes. When a lubricant, such as castor oil, was tested at various concentrations, tests were run starting with pure methanol followed by ever increasing oil concentrations. This prevented the possibility of oil deposits from higher oil/methanol concentrations, to introduce errors at the lower concentrations.

Time dependent data acquired during one of the Jet A and M100 tests are shown in Fig. 4. Because of the starting transients experienced during many of these tests, the first two minutes of data were discarded prior to data averaging in order to arrive at a representative friction coefficient.

Test Results

Very few lubricity additives were both: effective in reducing friction and are readily dissolved in methanol. Only three of all the additives tested had the required properties and produced lubricity in excess of that of jet-A fuel. They were readily soluble in methanol in quantities far in excess of that needed and remained in uniform suspension during storage. One satisfactory additive was pure castor oil and the other two were Morgan Fuels *Two Cycle Blue* and Manhattan Oil Company's *Power Plus Cherry Bomb* racing fuel additives. Both of these are synthetic commercial methanol fuel additives for use in racing applications.

Friction coefficient data obtained for methanol containing varying concentrations of castor oil can be seen in Fig. 5. From this plot, it can be seen that, at low concentrations, the addition of oil has a large effect on friction coefficient. However, once a level of approximately 5% has been reached, there is little gained by increasing the oil concentration. Also shown in Fig. 5 are two horizontal lines indicating the friction coefficients when using both pure methanol and Jet A. Using the Jet A line, it can be seen that a castor oil/methanol concentration of approximately 3% is required to achieve the same friction coefficient as Jet A.

Using the same method, the oil mixture ratio for the commercial additives was found. The manufacture recommended ratio for the *Two Cycle Blue* additive is 0.04% for use in racing applications. However, to achieve the same friction factor as Jet A, a 1% concentration was required.

Table 1 contains the experimental friction coefficients obtained experimentally for both Methanol and Jet A as compared to various handbook data.

Table 1: Friction Co	efficient Data
-----------------------------	----------------

System	Friction Coefficient
Metal on Metal, Dry [*]	0.15 - 0.20
Metal on Metal, Wet [*]	0.3
Occasionally Greased [*]	0.07 - 0.08
Continuously Greased [*]	0.05
Mild Steel on Brass ^{**}	0.44
Methanol (WVU)	0.309
Jet A (WVU)	0.167

* - Oberg et al. (1962)

** - Avallone and Baumeister III (1987)

Conclusions

The new lubricity test apparatus designed and tested at WVU was relatively easy to use and provided the needed steady state data. Each run was conducted over a 10-minute period. Conducting the tests at 3.5% of a lubricated bearing design load proved to be the most successful. It was also found that this system yielded an experimental repeatability far greater than that possible with the wear based lubricity-testing methods.

Following these lubricity tests, the WVU gas turbine was operated on methanol using one the *Two Cycle Blue* additive available additives for an extended period, with out failure.

Acknowledgement

This paper was prepared, pursuant to Cooperative Agreement No.DE-FC22-92PC90543 partially funded by the U. S. Department of Energy. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the U. S. Department of Energy.

References

- American Society for Testing and Materials, <u>Standard Test</u> <u>Method for Measurement of Lubricity of Aviation</u> <u>Turbine Fuels by Ball on Cylinder Lubricity Evaluator</u>, D5001-90a(1995)a American Society for Testing and Materials, West Conshohocken, PA., 1999.
- Avallone, E. and Baumeister III, T. <u>Mark's Standard Handbook</u> <u>for Mechanical Engineers</u>, Ninth Edition, McGraw-Hill, Inc., New York, NY, 1987, pg 3-26.
- Lubrizol Corporation, <u>Lubrizol Scuffing BOCLE</u>, <u>http://www.lubrizol.com/referencelibrary/news</u> Lubrizol corporation, 2000.
- Oberg, Eric and Jones, F. D., <u>Machinery's Handbook</u>, 16th Edition, The Industrial Press, New York, NY, 1962, pg 509.
- Rabinowicz, Ernest, <u>Friction and Wear of Materials</u>, John Wiley & Sons, Inc., New York, 1995, pgs 239-250.

APPENDIX 4

Gas Turbine Project 2/22/00 Index to Wear Tests

Disc 1 configuration			
Radius to inside diameter =	0.0457	m	*Notes - Problems with constant wear surface area due
Radius to outside diameter =	0.0707	m	surfaces not being perfectly parallel
Contact Area =	0.002285508	m ²	
Disc 2 configuration			
Radius to inside diameter =	0.0518	m	*Notes - Problems with constant wear surface area due
Radius to Outside diameter =	0.0648	m	surfaces not being perfectly parallel
Contact Area =	0.001190506	m ²	
Three ball configuration 1			
Single flat diameter =	0.00254	m	*Notes - Problems with excessive wear due to pressure
Radius to center of ball flat =	0.03185	m	being above brass bearing pressure
Contact Area =	1.52012E-05	m ²	
Three call configuration 2			
Single flat diameter =	0.00381	m	*Notes - Problems with iterference caused by centering shaft
Radius to center of ball flat =	0.03185	m	solved by Test # 143
Contact Area =	3.42027E-05	m ²	

Various tests prior to test number 19 with different Ball on Disc Configuration and Disc on Disc, all with inconsistant results.

Test Number	Fluid	Load (N)	RPM	Torque Average (Pre Data manipulation)	Contact Area (m ²)	Configuration	Time (min)	
19	M100	(spring load) 70	200		0.002286	Disc 1	10	-
20	M100	(spring load) 70	200		0.002286	Disc 1	10	
21	Jet-A	(spring load) 70	200		0.002286	Disc 1	10	
22	Jet-A	(spring load) 70	200		0.002286	Disc 1	10	
23	Jet-A	(spring load) 70	200		0.002286	Disc 1	10	
24	M100	(spring load) 70	200		0.002286	Disc 1	10	
25	M100	10	200		0.002286	Disc 1	10	Switched from spring load to mass load
26	M100	10	200		0.002286	Disc 1	10	
27	Jet-A	10	200		0.002286	Disc 1	10	
28	Jet-A	10	200		0.002286	Disc 1	10	
29	Jet-A	10	200		0.002286	Disc 1	10	
31	Jet-A	60	200		0.002286	Disc 1	10	
32	Jet-A	60	200		0.002286	Disc 1	10	
33	M100	60	200		0.002286	Disc 1	10	
34	M100	60	200		0.002286	Disc 1	10	
35	Jet-A	60	200		0.002286	Disc 1	10	
36	M100 / 5 % 6222	60	200		0.002286	Disc 1	10	
37	M100 / 4 % 6222	60	200		0.002286	Disc 1	10	
38	M100/3%6222	60	200		0.002286	Disc 1	10	
39	M100 / 2 % 6222	60	200		0.002286	Disc 1	10	
40	M100 / 1 % 6222	60	200		0.002286	Disc 1	10	
41	M100 / 0.5 % 6222	60	200		0.002286	Disc 1	10	
42	M100 / 5 % PinSol	60	200	0.48	0.002286	Disc 1	10	
43	M100	60	200		0.002286	Disc 1	10	
44	M100 / 5 % PinSol	60	200		0.002286	Disc 1	10	
45	M100	60	200	0.87	0.002286	Disc 1	10	

Test Number	Fluid	Load (N)	RPM	Torque Average (Pre Data manipulation)	^e Contact Area (m ²)	Configuration	Time (min)	
46	M100	60	200	0.841	0.002286	Disc 1	10	-
47	Jet-A M100 / 15%	60	200	0.702	0.002286	Disc 1	10	
48	Casteroil	60	200	0.504	0.002286	Disc 1	10	
49	Jet-A	60	200	0.674	0.002286	Disc 1	10	
50	M100 M100 / 10%	60	200	0.822	0.002286	Disc 1	10	
51	Casteroil	60	200	0.503	0.002286	Disc 1	10	
52	M100 / 5% Casteroil	60	200	0.545	0.002286	Disc 1	10	
53	M100 / 2.5% Casteroil	60	200	0.59	0.002286	Disc 1	10	
54	M100 / 1% Casteroil	60	200	0.77	0.002286	Disc 1	10	
55	M100 / 1.5% Casteroil	60	200	0.782	0.002286	Disc 1	10	
56	M100 / 3.5% Casteroil	60	200	0.59	0.002286	Disc 1	10	
57	M100 / 1.5% Casteroil	60	200	0.578	0.002286	Disc 1	10	
58	Jet-A	60	200	0.756	0.001191	Disc 2	10	New disc
59	M100	60	200	0.783	0.001191	Disc 2	10	Remachined for trueness
60	M100	60	200	0.848	0.001191	Disc 2	10	
61	Jet-A	60	200	0.581	0.001191	Disc 2	10	
62	Jet-A	60	200	0.588	0.001191	Disc 2	10	
63	M100	60	200	0.812	0.001191	Disc 2	10	Began acetone wash down between Tests
64	M100	60	200	0.653	0.002286	Disc 1	10	
65	M100	60	200	0.614	0.002286	Disc 1	10	
66	M100	60	200	0.429	0.002286	Disc 1	10	
67	M100	60	100	0.683	0.002286	Disc 1	10	Switched to Center Ball bearing for loading and centering pin and bearing
68	M100	60	100	0.366	0.002286	Disc 1	10	
69	M100	Velocity Effect Exp			0.002286	Disc 1	10	
70	M100	Test Run groove w			0.000015	3 Ball #1	10	
71	M100	Test Run groove w			0.000015	3 Ball #1	10	
72 73	Jet-A Jet-A	Test Run groove w Test Run groove w			0.000015 0.000015	3 Ball #1 3 Ball #1	10 10	
74	M100	56.506	200	~0.5	0.000015	3 Ball #1	10	Chattered at 100RPM, but satble at 200
75	M100	56.506	200	.56 & .2	0.000015	3 Ball #1	10	ut 200
76	Jet-A	56.506	200	0.42	0.000015	3 Ball #1	10	
77	Jet-A	56.506	200	0.45	0.000015	3 Ball #1	10	
78	M100	56.506	200	0.45	0.000015	3 Ball #1	10	
79-84	7 Tests Explored E Break in Tests	Break-in Periods foun	d two differen	t friction systems N	M100 (.56 & .12)	Jet A (.31 & .04)		
85	M100	56.506	200	0.567	0.000034	3 Ball #2	10	New Configuration with higher Contact Area
86	M100 / 1% Casteroil	56.506	200	0.467	0.000034	3 Ball #2	10	
87	M100 / 2% Casteroil	56.506	200	0.403	0.000034	3 Ball #2	10	

88 89 90	M100 / 5% Casteroil M100 / 10%				(m ²)		(min)	
	M100 / 10%	56.506	200	0.116	3.42E-05	3 Ball #2	10	-
90	Casteroil	56.506	200	0.066	3.42E-05	3 Ball #2	10	
	M100 / 15% Casteroil	56.506	200	0.049	3.42E-05	3 Ball #2	10	
91	Jet-A	Re Break-in Period						
92	Jet-A	56.506	200	0.26	3.42E-05	3 Ball #2	10	
93	M100	56.506	200	0.56	3.42E-05	3 Ball #2	10	
94	M100 / 1% 2CB	56.506	200	0.194	3.42E-05	3 Ball #2	10	
95	M100 / 2% 2CB	56.506	200	0.109	3.42E-05	3 Ball #2	10	
96	M100 / 5% 2CB	56.506	200	0.091	3.42E-05	3 Ball #2	10	
97	Jet-A	Breakin Period					30	
98	W1100 / 0.2370	56.506	200	0.5	3.42E-05	3 Ball #2	10	
99	M100 / 0.5% 2CB	56.506	200	0.496	3.42E-05	3 Ball #2	10	
100	WI100 / 0./J70	56.506	200	0.482	3.42E-05	3 Ball #2	10	
101	M100 / 1% 2CB	56.506	200	0.284	3.42E-05	3 Ball #2	10	
102	IVIIIOU / 1.2J70	56.506	200	0.127	3.42E-05	3 Ball #2	10	
102	M100/2% 2CB	56.506	200	0.119	3.42E-05	3 Ball #2	10	
103	M100 / 2% 2CB	56.506	200	0.081	3.42E-05	3 Ball #2	10	
104	100% 2CB	56.506	200	0.081	3.42E-05	3 Ball #2	10	
		Breakin Period	200	0.088	5.42E-05	5 Dall #2	10	
106 107	Jet-A Jet-A	56.506	200	0.315	3.42E-05	3 Ball #2	10	
108	100 Octane Low Lead gasoline	56.506	200	0.295	3.42E-05	3 Ball #2	10	
109	Jet-A	Breakin Period						
110-122	Bad data due to poss	sible rotation of wear b	oall					
123	Jet-A	Breakin Period						
124	Jet-A	56.506	200	0.293	3.42E-05	3 Ball #2	10	
125	M100	56.506	200	0.586	3.42E-05	3 Ball #2	10	
126	M100 / 1% P+	56.506	200	0.518	3.42E-05	3 Ball #2	10	
120	M100 / 2% P+	56.506	200	0.293	3.42E-05	3 Ball #2	10	
128	M100 / 3% P+	56.506	200	0.132	3.42E-05	3 Ball #2	10	
120	M100 / 4% P+	56.506	200	0.113	3.42E-05	3 Ball #2	10	
130	M100 / 5% P+	56.506	200	0.083	3.42E-05	3 Ball #2	10	
130	Jet-A	56.506	200	0.333	3.42E-05	3 Ball #2	10	
132	Jet-A	56.506	250	0.289	3.42E-05	3 Ball #2	5	132-139 Possible centering pin problem
133	Jet-A	56,506	200	0.277	3.42E-05	3 Ball #2	5	or r
134	Jet-A	56.506	175	0.297	3.42E-05	3 Ball #2	5	
135	Jet-A	56.506	150	0.289	3.42E-05	3 Ball #2	5	
136	Jet-A	56.506	125	0.291	3.42E-05	3 Ball #2	5	
137	Jet-A	56.506	100	0.299	3.42E-05	3 Ball #2	5	
138	Jet-A	56.506	75	0.319	3.42E-05	3 Ball #2	5	
139	Jet-A	56.506	60	0.316	3.42E-05	3 Ball #2	5	
157	500 11	50.500	00	0.510	5.121 05	5 Dui #2	5	Mofified centering
140-141	M100	Tried Velocity Profile	e, But got	inconsistant results th	at fell to the 0.12	2 Nm system	5	pin so would not support any load
142	Jet-A	Breakin Period						-
143	Jet-A	56.506	75	0.41	3.42E-05	3 Ball #2	5	
144	Jet-A	56.506	100	0.327	3.42E-05	3 Ball #2	5	
145	Jet-A	56.506	125	0.323	3.42E-05	3 Ball #2	5	
146	Jet-A	56.506	150	0.289	3.42E-05	3 Ball #2	5	
147	Jet-A	56.506	175	0.274	3.42E-05	3 Ball #2	5	
148	Jet-A	56.506	200	0.274	3.42E-05	3 Ball #2	5	
149	Jet-A	56.506	250	0.27	3.42E-05	3 Ball #2	5	
150-155	M100	Tried Velocity Profile					5	
156	Jet-A	56.506	200	Break in	3.42E-05	3 Ball #2	30	
157	Jet-A	56.506	200	0.314	3.42E-05	3 Ball #2	5	
157	M100/.5%eth gly	56.506	200	fell to other system		3 Ball #2	5	
158	Kendal Sae-30	56.506	200	0.08	3.42E-03 3.42E-05	3 Ball #2	5	

APPENDIX 5

'File: LUBSTAT.BAS : 6/7/00

'_____' , Program to Reduce Raw Experimental Data , by Discarding Data Points Outside of , , Plus or Minus 3 Standard Deviations , and removing staring effect data '_____' Written by Robert E Bond . '_____' Cls Dim t(15000), Cf(15000) Tdel = 120

Tdel = 120Nforce = 56.506 Rad = 0.03185

'_____' ' Read Raw Data File ' '-----Construct File Name-----' Print " On which drive is the data located: <A, C, E>" Do Drive\$ = INKEY\$ Loop Until Drive\$ = "A" Or Drive\$ = "a" Or Drive\$ = "E" Or Drive\$ = "e" Or Drive\$ = "C" Or Drive\$ = "c" 10 INPUT " Please input the test number"; file\$ file\$ = "test" + file\$ FILEIN\$ = Drive\$ + ":" + file\$ + ".dat" FILEOUT\$ = Drive\$ + ":" + file\$ + ".STA" '-----Open and Read Data File-----' Cls Open FILEIN\$ For Input As #1 Print "Reading "; FILEIN\$ Input #1, junk\$ Input #1, junk\$ Input #1, junk\$ Input #1, junk\$ I = 0Do Until EOF(1) I = I + 1Input #1, t(I), junk, Torque Cf(I) = Torque / (Nforce * Rad)

```
If t(I) < Tdel Then SAMPmin = I
Loop
SAMP = I
Close #1
```

' Average Data Sets and Determine SD , '_____' Print "Averaging Data" Sum = 0SOSUM = 0N = SAMP - SAMPmin + 1For I = SAMPmin To SAMP Sum = Sum + Cf(I) $SQSUM = SQSUM + Cf(I)^{2}$ Next I FLAG = 0 $DELTA = N * SQSUM - Sum ^ 2$ If DELTA < 0 Then DELTA = 0: FLAG = 1Ave = Sum / NSD = Sqr(DELTA / (N * (N - 1)))'_____' Recalculate Average using data . within +- 3 std Deviations '_____' Sum = 0N = 0If FLAG = 1 Then Ave2 = AveN = SAMP - SAMPmin + 1Else For I = SAMPmin To SAMP If Abs(Cf(I)) < (Abs(Ave) + 3 * Abs(SD)) Then If Abs(Cf(I)) > (Abs(Ave) - 3 * Abs(SD)) Then Sum = Sum + Cf(I)N = N + 1End If End If Next I Ave2 = Sum / NEnd If

'_____' ' Output Results '

'_____'

Cls

'----Print Results-----' Print "For the file "; FILEIN\$ Print USING; "After eliminating the first ### sec (#.# min) of data;"; Tdel; Tdel / 60 Print Print USING; " Raw Data Average (Cf) =#.####"; Ave Print USING; "Stat. Data Average (Cf) =#.####"; Ave2 Print USING; "Standard Deviation (Cf) =#.####"; SD Data Rejection =###.#%"; 100 - 100 * N / (SAMP - SAMPmin + 1) Print USING; " '-----Write Output File-----' Print Print "Would you like to write a data file? <Y/N>" Do ANS\$ = INKEY\$ Loop Until ANS\$ = "Y" Or ANS\$ = "y" Or ANS\$ = "N" Or ANS\$ = "n" If ANS = "Y" Or ANS = "y" Then Open FILEOUT\$ For Output As #2 Print #2, "T(min) Cf Cfave SD DR(%) T SDI SDh T Cf" Print #2, USING; "##.#### #.##### #.##### ##### 0 #.##### ##.### 0"; t(1) / 60; Cf(1); Ave2; SD; 100 - 100 * N / (SAMP - SAMPmin); Ave2 - 3 * SD; Ave2 + 3 * SD; Tdel / 60 Print #2, USING; "##.### #.#### ##.# #.#### #.#### ##.## 1"; t(2) / 60; Cf(2); t(SAMP) / 60; Ave2 - 3 * SD; Ave2 + 3 * SD; Tdel / 60 For I = 3 To SAMP Print #2, USING; "##.### #.####"; t(I) / 60; Cf(I) Next I Close #2 End If '-----Run Program Again?-----' Print Print "Would you like to run this program again? <Y/N>" Do ANS\$ = INKEY\$ Loop Until ANS\$ = "Y" Or ANS\$ = "y" Or ANS\$ = "N" Or ANS\$ = "n" If ANS\$ = "Y" Or ANS\$ = "y" Then GoTo 10

APPENDIX 6

Gas Turbine Emissions Tests 3/14/00 Data Corresponding To Engine Data Sample of Raw Data Number = 0847.6

Time	Time	10HZ	СО	CO ₂	NO _x	HC
Min	sec	Sample #	PPM	PPM	PPM	PPM
0	0	0	500.57	29944.92	247.09	61.67
0.0017	0.1	1	499.26	30043.10	246.61	61.37
0.0033	0.2	2	499.26	29944.92	246.97	61.80
0.0050	0.3	3	499.91	30003.81	246.61	61.40
0.0067	0.4	4	500.57	29984.18	246.85	61.55
0.0083	0.5	5	498.93	29984.18	246.25	61.67
0.0100	0.6	6	498.60	30003.81	246.97	61.61
0.0117	0.7	7	498.93	29984.18	246.61	61.55
0.0133	0.8	8	500.57	30003.81	246.61	61.70
0.0150	0.9	9	498.27	29984.18	246.61	61.46
0.0167	1	10	498.27	30043.10	246.97	61.83
0.0183	1.1	11	499.26	29944.92	246.73	61.61
0.0200	1.2	12	500.24	30003.81	246.73	61.83
0.0217	1.3	13	500.24	29964.54	246.85	61.70
0.0233	1.4	14	498.93	29984.18	246.49	61.64
0.0250	1.5	15	500.24	30043.10	246.73	61.80
0.0267	1.6	16	499.58	29964.54	246.37	61.37
0.0283	1.7	17	498.60	30043.10	246.61	61.83
0.0300	1.8	18	499.26	29984.18	246.49	61.40
0.0317	1.9	19	499.26	30043.10	246.61	61.73
0.0333	2	20	500.89	29964.54	246.49	61.46
0.0350	2.1	21	498.93	29984.18	246.25	61.58
0.0367	2.2	22	498.93	30023.46	246.49	61.61
0.0383	2.3	23	500.24	29964.54	246.25	61.70
0.0400	2.4	24	500.57	30043.10	246.97	61.61
0.0417	2.5	25	498.60	29984.18	246.25	61.80
0.0433	2.6	26	498.60	30023.46	246.61	61.52
0.0450	2.7	27	499.91	30003.81	246.25	61.86
0.0467	2.8	28	499.26	30003.81	246.73	61.52
0.0483	2.9	29	498.27	30062.76	246.13	61.92
0.0500	3	30	498.27	30023.46	246.25	61.46
0.0517	3.1	31	499.91	30082.42	246.49	61.95
0.0533	3.2	32	499.91	29984.18	246.13	61.43
0.0550	3.3	33	498.60	30003.81	246.61	61.83
0.0567	3.4	34	500.57	30023.46	246.49	61.49
0.0583	3.5	35	500.57	29984.18	246.73	61.67
0.0600	3.6	36	500.24	29984.18	246.49	61.61
0.0617	3.7	37	498.27	29925.30	246.73	61.61
0.0633	3.8	38	499.58	30043.10	246.37	61.67
0.0650	3.9	39	500.24	29925.30	246.61	61.46

Time Min	Time sec	10HZ Sample #	CO PPM	CO ₂ PPM	NO _x PPM	HC PPM
	see	Sample #			11 1/1	11111
0.0667	4	40	499.26	30003.81	246.49	61.70
0.0683	4.1	41	498.93	29964.54	246.49	61.64
0.0700	4.2	42	498.93	29984.18	246.85	61.61
0.0717	4.3	43	500.24	30023.46	246.73	61.80
0.0733	4.4	44	499.58	29984.18	247.09	61.64
0.0750	4.5	45	499.26	30023.46	246.85	61.73
0.0767	4.6	46	500.24	29944.92	247.21	61.73
0.0783	4.7	47	500.24	30043.10	246.85	61.70
0.0800	4.8	48	499.58	29925.30	247.21	61.80
0.0817	4.9	49	498.60	29984.18	246.61	61.49
0.0833	5	50	499.91	30003.81	246.97	61.80
0.0850	5.1	51	499.91	29964.54	246.49	61.46
0.0867	5.2	52	499.26	30043.10	246.25	61.86
0.0883	5.3	53	498.93	29964.54	246.49	61.43
0.0900	5.4	54	500.89	29984.18	246.61	61.77
0.0917	5.5	55	499.91	29984.18	246.61	61.46
0.0933	5.6	56	499.26	30023.46	246.37	61.70
0.0950	5.7	57	498.93	29984.18	246.73	61.58
0.0967	5.8	58	500.89	29984.18	246.25	61.70
0.0983	5.9	59	500.57	30043.10	246.49	61.67
0.1000	6	60	498.93	29984.18	246.37	61.64
0.1017	6.1	61	498.93	30043.10	246.49	61.73
0.1033	6.2	62	499.91	29964.54	246.61	61.73
0.1050	6.3	63	501.22	30043.10	246.25	61.67
0.1067	6.4	64	501.22	30043.10	246.25	61.67
0.1083	6.5	65	498.93	29964.54	246.25	61.55
0.1100	6.6	66	500.24	30003.81	246.73	61.86
0.1117	6.7	67	500.57	29964.54	246.25	61.49
0.1133	6.8	68	499.58	30043.10	246.61	61.86
0.1150	6.9	69	499.26	29944.92	246.25	61.43
0.1167	7	70	501.22	30003.81	246.49	61.86
0.1183	7.1	71	500.57	29984.18	246.49	61.46
0.1200	7.2	72	499.26	30003.81	246.73	61.70
0.1217	7.3	73	499.26	30003.81	246.85	61.49
0.1233	7.4	74	501.22	29984.18	246.85	61.77
0.1250	7.5	75	500.57	30062.76	246.85	61.58
0.1267	7.6	76	498.93	29984.18	246.61	61.64
0.1283	7.7	77	499.91	30023.46	246.97	61.73
0.1300	7.8	78	501.22	29984.18	246.49	61.64
0.1317	7.9	79	499.91	30003.81	246.85	61.73
0.1333	8	80	499.26	29984.18	246.49	61.73
0.1350	8.1	81	499.26	29964.54	246.49	61.67
0.1367	8.2	82	501.55	30043.10	246.37	61.80
0.1383	8.3	83	499.26	29964.54	246.61	61.52
0.1400	8.4	84 85	499.91	30062.76	246.85	61.98
0.1417	8.5	85 86	500.24	29984.18	246.37	61.40
0.1433	8.6 8.7	86 87	501.22	30003.81	246.85	61.86
0.1450	8.7	87	498.93	30062.76	246.61	61.37

Time Min	Time sec	10HZ Sample #	CO PPM	CO ₂ PPM	NO _x PPM	HC PPM
0.1467	8.8	88	499.26	29984.18	246.85	61.80
0.1407	8.9	89	500.89	30062.76	246.49	61.52
0.1483	8.9 9	89 90	501.22	29984.18	240.49 246.61	61.67
0.1500	9.1	90 91	499.91	30062.76	240.01 246.73	61.55
0.1517	9.1 9.2	91 92	499.91	29984.18	240.73 246.61	61.64
0.1555	9.2 9.3	92 93	499.20 500.57	29984.18	240.01 246.49	61.73
0.1550	9.3 9.4	93 94	501.22	30023.46	240.49 246.49	61.64
0.1583	9.4 9.5	94 95	499.26	29964.54	240.49 246.61	61.64
0.1385		93 96	499.20 499.58	29904.34 30043.10	246.01 246.37	61.83
	9.6 9.7	90 97	499.38 501.22	29964.54		
0.1617					246.49 246.25	61.55
0.1633	9.8	98	500.89	30023.46	246.25	61.92
0.1650	9.9	99 100	499.26	29984.18	246.73	61.58
0.1667	10	100	499.58	30003.81	246.49	61.70
0.1683	10.1	101	500.89	30023.46	246.61	61.83
0.1700	10.2	102	500.89	29984.18	246.25	61.43
0.1717	10.3	103	499.26	30043.10	246.13	62.01
0.1733	10.4	104	499.26	29964.54	246.49	61.37
0.1750	10.5	105	501.22	30023.46	246.13	61.83
0.1767	10.6	106	500.57	29984.18	246.37	61.52
0.1783	10.7	107	498.93	30043.10	245.77	61.58
0.1800	10.8	108	499.58	30043.10	246.61	61.83
0.1817	10.9	109	500.57	30023.46	247.09	61.52
0.1833	11	110	499.26	30062.76	247.82	61.80
0.1850	11.1	111	499.26	30003.81	247.70	61.64
0.1867	11.2	112	499.91	30102.09	247.57	61.64
0.1883	11.3	113	501.22	30003.81	247.21	61.67
0.1900	11.4	114	499.58	30043.10	247.45	61.77
0.1917	11.5	115	498.93	30043.10	247.21	61.55
0.1933	11.6	116	500.57	30043.10	246.85	61.86
0.1950	11.7	117	501.22	30082.42	247.21	61.49
0.1967	11.8	118	500.57	30062.76	246.73	61.86
0.1983	11.9	119	499.26	30102.09	247.33	61.70
0.2000	12	120	499.58	30003.81	247.09	61.52
0.2017	12.1	121	499.91	30003.81	247.57	61.86
0.2033	12.2	122	499.58	30023.46	247.21	61.37
0.2050	12.3	123	499.26	29984.18	247.33	61.77
0.2067	12.4	124	501.22	30043.10	246.97	61.64
0.2083	12.5	125	500.57	29964.54	247.09	61.52
0.2100	12.6	126	499.26	29984.18	246.85	61.70
0.2117	12.7	127	499.26	29944.92	246.85	61.67
0.2133	12.8	128	501.22	29964.54	246.85	61.70
0.2150	12.9	129	501.22	29964.54	246.61	61.86
0.2167	13	130	499.91	30043.10	247.09	61.52

Gas Turbine Emissions Tests 3/14/00 Data Corresponding To Engine Data Sample of Raw Data Number = 1105.10

Time	Time	10 HZ	СО	CO ₂	NO _x	НС
Min	sec	Sample #	PPM	PPM	PPM	PPM
0	0	0	328.41	12518.54	12.07	116.58
0.0017	0.1	1	327.08	12562.07	12.07	127.37
0.0033	0.2	2	326.19	12634.72	12.07	126.02
0.0050	0.3	3	327.08	12663.80	12.19	122.87
0.0067	0.4	4	327.08	12707.46	12.19	133.21
0.0083	0.5	5	326.19	12780.31	12.07	119.73
0.0100	0.6	6	327.97	12809.47	12.07	137.70
0.0117	0.7	7	326.64	12809.47	12.19	117.03
0.0133	0.8	8	327.97	12765.73	12.19	133.21
0.0150	0.9	9	328.41	12736.59	11.95	123.32
0.0167	1	10	327.53	12736.59	12.07	128.26
0.0183	1.1	11	327.53	12678.35	12.19	135.90
0.0200	1.2	12	328.41	12649.26	11.95	120.18
0.0217	1.3	13	326.64	12605.65	12.07	134.55
0.0233	1.4	14	328.41	12591.12	12.19	121.07
0.0250	1.5	15	327.08	12605.65	12.07	134.10
0.0267	1.6	16	328.41	12620.18	12.07	124.22
0.0283	1.7	17	328.41	12663.80	12.07	132.31
0.0300	1.8	18	329.30	12692.90	12.07	126.92
0.0317	1.9	19	331.09	12722.02	12.19	127.37
0.0333	2	20	332.87	12765.73	11.95	126.02
0.0350	2.1	21	332.42	12794.89	12.19	130.51
0.0367	2.2	22	334.21	12765.73	12.31	124.22
0.0383	2.3	23	335.56	12722.02	12.19	139.50
0.0400	2.4	24	336.00	12707.46	12.07	121.52
0.0417	2.5	25	337.80	12692.90	12.31	141.74
0.0433	2.6	26	336.00	12663.80	12.19	118.83
0.0450	2.7	27	337.80	12620.18	12.07	136.35
0.0467	2.8	28	336.90	12591.12	12.07	128.26
0.0483	2.9	29	336.45	12605.65	12.19	127.37
0.0500	3	30	336.45	12605.65	12.19	133.66
0.0517	3.1	31	336.00	12605.65	12.19	124.67
0.0533	3.2	32	335.56	12649.26	12.19	137.25
0.0550	3.3	33	335.56	12692.90	12.07	123.77
0.0567	3.4	34	334.66	12707.46	12.19	135.00
0.0583	3.5	35	336.45	12765.73	12.31	130.51
0.0600	3.6	36	336.00	12722.02	12.31	129.61
0.0617	3.7	37	335.56	12751.16	12.31	126.92
0.0633	3.8	38	337.80	12736.59	12.19	135.45
0.0650	3.9	39	336.00	12751.16	12.19	121.97
0.0667	4	40	336.45	12722.02	12.31	142.64
0.0683	4.1	41	336.90	12678.35	12.07	119.73

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time Min	Time sec	10HZ Sample #	CO PPM	CO ₂ PPM	NO _x PPM	HC PPM
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			~~~~				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0700	4.2	42	336.45	12663.80	12.31	143.54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0717	4.3	43	335.56	12649.26	12.07	122.42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0733	4.4	44	336.45	12663.80	12.31	134.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0750	4.5	45	335.56	12649.26	12.07	135.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0767	4.6	46	336.00	12663.80	12.19	124.67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0783	4.7	47	333.76	12663.80	12.19	140.39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0800	4.8	48	333.32	12722.02	12.07	126.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0817	4.9	49	333.76	12765.73	12.19	136.80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0833	5	50	331.53	12765.73	12.07	127.37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0850	5.1	51	332.87	12765.73	11.95	134.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0867	5.2	52	332.42	12765.73	12.19	133.66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0883	5.3	53	331.09	12765.73	12.07	134.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0900	5.4	54	330.64	12765.73	12.07	130.06
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0917	5.5	55	330.19	12722.02	12.07	130.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0933	5.6	56	330.19	12692.90	12.19	140.39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0950	5.7	57	330.19	12678.35	12.19	121.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0967	5.8	58	329.75	12692.90	12.19	141.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0983	5.9	59	330.19	12663.80	12.07	126.47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1000	6	60	331.09	12678.35	12.07	126.47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1017	6.1	61	330.64	12663.80	12.07	143.09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1033	6.2	62	331.53	12692.90	12.07	121.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1050	6.3	63	330.19	12751.16	12.19	137.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1067	6.4	64	330.19	12780.31	12.07	136.80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1083	6.5	65	331.09	12809.47	12.31	129.16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1100	6.6	66	329.75	12838.66	12.19	138.60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1117	6.7	67	329.75	12867.85	12.19	131.41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1133	6.8	68	329.75	12867.85	12.07	130.96
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1150	6.9	69	328.86	12882.46	12.07	128.71
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1167	7	70	329.30	12867.85	12.19	136.80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1183	7.1	71	329.75	12853.25	12.19	124.22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1200	7.2	72	328.86	12824.06	12.19	143.09
0.12507.575331.5312780.3112.31124.220.12677.676332.4212794.8912.19135.450.12837.777331.5312809.4712.07134.100.13007.878332.4212838.6612.31126.470.13177.979331.5312867.8512.31137.250.1333880333.3212867.8512.31125.120.13508.181333.3212867.8512.07143.540.13678.282333.3212882.4611.95126.470.13838.383333.3212911.6812.07136.80	0.1217	7.3	73	331.09	12824.06	12.19	120.18
0.12677.676332.4212794.8912.19135.450.12837.777331.5312809.4712.07134.100.13007.878332.4212838.6612.31126.470.13177.979331.5312867.8512.31137.250.1333880333.3212867.8512.31125.120.13508.181333.3212867.8512.07143.540.13678.282333.3212882.4611.95126.470.13838.383333.3212911.6812.07136.80	0.1233	7.4	74	329.75	12824.06	12.07	141.74
0.12837.777331.5312809.4712.07134.100.13007.878332.4212838.6612.31126.470.13177.979331.5312867.8512.31137.250.1333880333.3212867.8512.31125.120.13508.181333.3212867.8512.07143.540.13678.282333.3212882.4611.95126.470.13838.383333.3212911.6812.07136.80	0.1250	7.5	75	331.53	12780.31	12.31	124.22
0.13007.878332.4212838.6612.31126.470.13177.979331.5312867.8512.31137.250.1333880333.3212867.8512.31125.120.13508.181333.3212867.8512.07143.540.13678.282333.3212882.4611.95126.470.13838.383333.3212911.6812.07136.80	0.1267	7.6	76	332.42	12794.89	12.19	135.45
0.13177.979331.5312867.8512.31137.250.1333880333.3212867.8512.31125.120.13508.181333.3212867.8512.07143.540.13678.282333.3212882.4611.95126.470.13838.383333.3212911.6812.07136.80	0.1283	7.7	77	331.53	12809.47	12.07	134.10
0.1333880333.3212867.8512.31125.120.13508.181333.3212867.8512.07143.540.13678.282333.3212882.4611.95126.470.13838.383333.3212911.6812.07136.80	0.1300	7.8	78	332.42	12838.66	12.31	126.47
0.13508.181333.3212867.8512.07143.540.13678.282333.3212882.4611.95126.470.13838.383333.3212911.6812.07136.80	0.1317	7.9	79	331.53	12867.85	12.31	137.25
0.13678.282333.3212882.4611.95126.470.13838.383333.3212911.6812.07136.80	0.1333	8	80	333.32	12867.85	12.31	125.12
0.1383 8.3 83 333.32 12911.68 12.07 136.80	0.1350	8.1	81	333.32	12867.85	12.07	143.54
	0.1367	8.2	82	333.32	12882.46	11.95	126.47
0 1 4 0 0 8 4 8 4 3 2 3 7 6 1 2 0 2 6 2 0 1 2 4 2 1 2 1 9 6	0.1383	8.3	83	333.32	12911.68	12.07	136.80
0.1400 0.4 04 335.70 12920.30 12.43 151.80	0.1400	8.4	84	333.76	12926.30	12.43	131.86
0.1417 8.5 85 333.76 12882.46 13.28 136.35	0.1417	8.5	85	333.76	12882.46	13.28	136.35
0.1433 8.6 86 333.32 12897.07 11.59 127.37	0.1433	8.6	86	333.32	12897.07	11.59	127.37
0.1450 8.7 87 333.76 12867.85 11.83 143.54	0.1450	8.7	87	333.76	12867.85	11.83	143.54
0.1467 8.8 88 333.32 12867.85 11.71 124.22	0.1467	8.8	88	333.32	12867.85	11.71	124.22
0.1483 8.9 89 333.76 12838.66 12.07 147.13	0.1483	8.9	89	333.76	12838.66	12.07	147.13

Time	Time	10HZ	СО	CO ₂	NO _x	НС
Min	sec	Sample #	PPM	PPM	PPM	PPM
0.1500	9	90	333.32	12809.47	12.19	125.57
0.1517	9.1	91	331.98	12838.66	12.07	143.54
0.1533	9.2	92	332.42	12867.85	12.31	131.41
0.1550	9.3	93	332.42	12911.68	12.31	138.15
0.1567	9.4	94	332.42	12911.68	12.19	136.80
0.1583	9.5	95	332.87	12911.68	12.31	130.06
0.1600	9.6	96	331.53	12955.55	12.19	137.70
0.1617	9.7	97	331.09	12955.55	12.31	128.26
0.1633	9.8	98	330.64	12984.81	12.43	139.05
0.1650	9.9	99	330.64	12970.18	12.19	128.71
0.1667	10	100	330.64	12955.55	12.43	138.15
0.1683	10.1	101	330.19	12926.30	12.19	136.35
0.1700	10.2	102	330.19	12911.68	12.43	130.96
0.1717	10.3	103	330.64	12882.46	12.43	139.05
0.1733	10.4	104	330.19	12838.66	12.31	125.57
0.1750	10.5	105	330.64	12824.06	12.31	138.60
0.1767	10.6	106	331.53	12809.47	12.31	133.66
0.1783	10.7	107	331.09	12809.47	12.43	135.00
0.1800	10.8	108	332.42	12838.66	12.31	135.45
0.1817	10.9	109	331.98	12867.85	12.31	125.12
0.1833	11	110	332.87	12882.46	12.31	146.24
0.1850	11.1	111	332.87	12911.68	12.43	123.77
0.1867	11.2	112	333.76	12926.30	12.31	146.68
0.1883	11.3	113	334.21	12926.30	12.43	125.57
0.1900	11.4	114	335.56	12911.68	12.43	140.39
0.1917	11.5	115	334.21	12897.07	12.43	128.26
0.1933	11.6	116	333.76	12867.85	12.43	135.00
0.1950	11.7	117	335.56	12867.85	12.31	130.96
0.1967	11.8	118	334.21	12853.25	12.43	138.60
0.1983	11.9	119	335.56	12780.31	12.43	133.21
0.2000	12	120	334.66	12765.73	12.43	136.80
0.2017	12.1	121	334.66	12794.89	12.43	126.02
0.2033	12.2	122	335.11	12809.47	12.31	145.79
0.2050	12.3	123	334.66	12838.66	12.31	124.67
0.2067	12.4	124	334.21	12853.25	12.19	148.93
0.2083	12.5	125	334.21	12853.25	12.19	125.57
0.2100	12.6	126	333.76	12897.07	12.31	144.89
0.2117	12.7	127	334.21	12911.68	12.19	123.77
0.2133	12.8	128	333.76	12911.68	12.19	140.84
0.2150	12.9	129	334.21	12911.68	12.31	132.76
0.2167	13	130	335.11	12882.46	12.31	138.15

Gas Turbine Emissions Tests 3/14/00 Data Corresponding To Engine Data Sample of Raw Data Number = 1127.20

Time Min	Time sec	10HZ Sample #	PI	CO PM	CO ₂ PPM		NO _x PPM	HC PPM	Fuel
			co	CO/100	CO ₂	CO ₂ /10000			HC/100
0	0	0	373.98	3.74	13959.77	17.45	13.77	219.47	2.19
0.0017	0.1	1	373.98	3.74	13959.77	17.45	13.65	223.96	2.24
0.0033	0.2	2	374.45	3.74	13929.96	17.41	13.77	216.33	2.16
0.0050	0.3	3	373.98	3.74	13915.06	17.39	13.65	228.01	2.28
0.0067	0.4	4	373.52	3.74	13900.16	17.38	13.77	207.79	2.08
0.0083	0.5	5	373.52	3.74	13900.16	17.38	13.89	232.95	2.33
0.0100	0.6	6	373.98	3.74	13900.16	17.38	13.65	205.09	2.05
0.0117	0.7	7	373.52	3.74	13900.16	17.38	13.65	231.60	2.32
0.0133	0.8	8	373.05	3.73	13929.96	17.41	13.65	213.63	2.14
0.0150	0.9	9	373.05	3.73	13944.86	17.43	13.77	223.96	2.24
0.0167	1	10	373.52	3.74	13959.77	17.45	13.65	219.47	2.19
0.0183	1.1	11	372.58	3.73	13989.59	17.49	13.65	216.77	2.17
0.0200	1.2	12	372.58	3.73	14004.51	17.51	13.65	226.21	2.26
0.0217	1.3	13	372.58	3.73	14019.44	17.52	13.65	222.62	2.23
0.0233	1.4	14	373.52	3.74	14049.30	17.56	13.65	218.57	2.19
0.0250	1.5	15	373.05	3.73	14049.30	17.56	13.65	222.17	2.22
0.0267	1.6	16	372.12	3.72	14019.44	17.52	13.77	212.73	2.13
0.0283	1.7	17	373.05	3.73	14019.44	17.52	13.77	226.66	2.27
0.0300	1.8	18	372.12	3.72	13989.59	17.49	13.65	213.18	2.13
0.0317	1.9	19	372.58	3.73	13959.77	17.45	13.77	228.46	2.28
0.0333	2	20	371.65	3.72	13944.86	17.43	13.89	218.12	2.18
0.0350	2.1	21	372.12	3.72	13959.77	17.45	13.65	220.82	2.21
0.0367	2.2	22	373.05	3.73	13944.86	17.43	13.65	227.56	2.28
0.0383	2.3	23	372.12	3.72	13974.68	17.47	13.77	209.59	2.10
0.0400	2.4	24	371.65	3.72	14004.51	17.51	13.53	232.05	2.32
0.0417	2.5	25	371.65	3.72	14004.51	17.51	13.77	213.63	2.14
0.0433	2.6	26	372.12	3.72	14004.51	17.51	13.65	228.46	2.28
0.0450	2.7	27	372.12	3.72	14019.44	17.52	13.65	216.77	2.17
0.0467	2.8	28	371.65	3.72	14034.37	17.54	13.65	226.66	2.27
0.0483	2.9	29	371.65	3.72	14019.44	17.52	13.53	226.66	2.27
0.0500	3	30	372.58	3.73	14049.30	17.56	13.77	226.66	2.27
0.0517	3.1	31	372.58	3.73	14019.44	17.52	13.53	223.06	2.23
0.0533	3.2	32	371.65	3.72	14019.44	17.52	13.77	224.41	2.24
0.0550	3.3	33	371.65	3.72	13974.68	17.47	13.53	221.27	2.21
0.0567	3.4	34	372.58	3.73	13929.96	17.41	13.77	230.25	2.30
0.0583	3.5	35	372.58	3.73	13929.96	17.41	13.65	215.88	2.16
0.0600	3.6	36	371.65	3.72	13900.16	17.38	13.53	236.54	2.37
0.0617	3.7	37	372.12	3.72	13900.16	17.38	13.65	213.63	2.14
0.0633	3.8	38	372.58	3.73	13929.96	17.41	13.65	236.09	2.36

Time Min	Time sec	10HZ Sample #		CO CO ₂ PPM PPM		NO _x PPM	HC PPM	Fuel	
			co	CO/100	CO ₂	CO ₂ /10000			HC/100
0.0650	3.9	39	372.12	3.72	13974.68	17.47	13.65	211.83	2.12
0.0667	4	40	371.65	3.72	13974.68	17.47	13.65	238.79	2.39
0.0683	4.1	41	372.12	3.72	14004.51	17.51	13.53	214.53	2.15
0.0700	4.2	42	372.58	3.73	14004.51	17.51	13.77	236.54	2.37
0.0717	4.3	43	372.12	3.72	14019.44	17.52	13.53	220.37	2.20
0.0733	4.4	44	371.65	3.72	14034.37	17.54	13.65	228.91	2.29
0.0750	4.5	45	372.12	3.72	14049.30	17.56	13.77	222.62	2.23
0.0767	4.6	46	372.58	3.73	14034.37	17.54	13.77	226.21	2.26
0.0783	4.7	47	373.05	3.73	14019.44	17.52	13.65	224.41	2.24
0.0800	4.8	48	372.12	3.72	13989.59	17.49	13.53	228.91	2.29
0.0817	4.9	49	372.12	3.72	13944.86	17.43	13.77	222.17	2.22
0.0833	5	50	373.98	3.74	13929.96	17.41	13.77	226.66	2.27
0.0850	5.1	51	373.52	3.74	13915.06	17.39	13.77	219.47	2.19
0.0867	5.2	52	372.58	3.73	13900.16	17.38	13.77	231.15	2.31
0.0883	5.3	53	373.98	3.74	13915.06	17.39	13.77	213.63	2.14
0.0900	5.4	54	374.45	3.74	13944.86	17.43	13.89	236.09	2.36
0.0917	5.5	55	374.92	3.75	13989.59	17.49	13.65	212.73	2.13
0.0933	5.6	56	373.52	3.74	14004.51	17.51	13.77	236.09	2.36
0.0950	5.7	57	374.45	3.74	14019.44	17.52	13.77	212.28	2.12
0.0967	5.8	58	375.38	3.75	14004.51	17.51	13.65	240.14	2.40
0.0983	5.9	59	375.38	3.75	14049.30	17.56	13.65	213.18	2.13
0.1000	6	60	375.38	3.75	14034.37	17.54	13.53	235.64	2.36
0.1017	6.1	61	374.45	3.74	14004.51	17.51	13.77	218.57	2.19
0.1033	6.2	62	375.85	3.76	14004.51	17.51	13.53	228.46	2.28
0.1050	6.3	63	374.92	3.75	13989.59	17.49	13.77	223.06	2.23
0.1067	6.4	64	375.38	3.75	13974.68	17.47	13.77	231.15	2.31
0.1083	6.5	65	375.85	3.76	13959.77	17.45	13.65	228.46	2.28
0.1100	6.6	66	376.79	3.77	13929.96	17.41	13.77	230.25	2.30
0.1117	6.7	67	375.85	3.76	13915.06	17.39	13.77	225.76	2.26
0.1133	6.8	68	376.32	3.76	13915.06	17.39	13.77	223.06	2.23
0.1150	6.9	69	376.32	3.76	13944.86	17.43	13.53	226.21	2.26
0.1167	7	70	377.73	3.78	13959.77	17.45	13.65	226.21	2.26
0.1183	7.1	71	376.32	3.76	13989.59	17.49	13.65	224.41	2.24
0.1200	7.2	72	375.85	3.76	14019.44	17.52	13.77	228.91	2.29
0.1217	7.3	73	376.79	3.77	14019.44	17.52	13.77	225.76	2.26
0.1233	7.4	74	377.26	3.77	14034.37	17.54	13.77	225.31	2.25
0.1250	7.5	75	376.32	3.76	14004.51	17.51	13.65	223.96	2.24
0.1267	7.6	76	375.85	3.76	13989.59	17.49	13.53	229.35	2.29
0.1283	7.7	77	376.32	3.76	13989.59	17.49	13.89	219.47	2.19
0.1300	7.8	78	377.26	3.77	13989.59	17.49	13.53	232.50	2.32
0.1317	7.9	79	377.26	3.77	13959.77	17.45	13.53	222.17	2.22
0.1333	8	80	376.32	3.76	13944.86	17.43	13.53	228.91	2.29
0.1350	8.1	81	377.26	3.77	13929.96	17.41	13.65	223.51	2.24
0.1367	8.2	82	376.32	3.76	13915.06	17.39	13.65	231.60	2.32
0.1383	8.3	83	376.79	3.77	13929.96	17.41	13.77	223.96	2.24
0.1400	8.4	84	376.32	3.76	13929.96	17.41	13.65	227.11	2.27

Time Min	Time sec	10HZ Sample #	CO CO ₂ PPM PPM			NO _x PPM	HC PPM	Fuel	
			co	CO/100	CO ₂	CO ₂ /10000			HC/100
0.1417	8.5	85	377.26	3.77	13959.77	17.45	13.77	231.15	2.31
0.1433	8.6	86	376.32	3.76	14004.51	17.51	13.65	220.37	2.20
0.1450	8.7	87	376.32	3.76	14049.30	17.56	13.65	235.20	2.35
0.1467	8.8	88	376.32	3.76	14049.30	17.56	13.53	214.08	2.14
0.1483	8.9	89	376.79	3.77	14079.17	17.60	13.77	238.79	2.39
0.1500	9	90	377.26	3.77	14049.30	17.56	13.53	215.43	2.15
0.1517	9.1	91	375.85	3.76	14049.30	17.56	13.77	240.59	2.41
0.1533	9.2	92	374.92	3.75	14004.51	17.51	13.53	214.53	2.15
0.1550	9.3	93	376.79	3.77	14004.51	17.51	13.77	237.44	2.37
0.1567	9.4	94	377.26	3.77	13974.68	17.47	13.53	214.98	2.15
0.1583	9.5	95	376.79	3.77	13959.77	17.45	13.65	235.64	2.36
0.1600	9.6	96	375.85	3.76	13959.77	17.45	13.53	218.57	2.19
0.1617	9.7	97	376.79	3.77	13944.86	17.43	13.65	236.54	2.37
0.1633	9.8	98	377.26	3.77	13900.16	17.38	13.65	222.17	2.22
0.1650	9.9	99	376.32	3.76	13929.96	17.41	13.53	227.11	2.27
0.1667	10	100	376.32	3.76	13944.86	17.43	13.77	223.96	2.24
0.1683	10.1	101	376.32	3.76	13959.77	17.45	13.77	224.86	2.25
0.1700	10.2	102	377.73	3.78	13974.68	17.47	13.65	225.31	2.25
0.1717	10.3	103	376.32	3.76	14019.44	17.52	13.77	228.01	2.28
0.1733	10.4	104	377.26	3.77	14034.37	17.54	13.53	225.31	2.25
0.1750	10.5	105	376.32	3.76	14049.30	17.56	13.65	230.70	2.31
0.1767	10.6	106	376.79	3.77	14019.44	17.52	13.65	220.82	2.21
0.1783	10.7	107	375.85	3.76	14004.51	17.51	13.65	233.40	2.33
0.1800	10.8	108	376.32	3.76	13974.68	17.47	13.53	223.51	2.24
0.1817	10.9	109	378.20	3.78	13944.86	17.43	13.65	233.40	2.33
0.1833	11	110	377.26	3.77	13944.86	17.43	13.53	223.51	2.24
0.1850	11.1	111	377.26	3.77	13929.96	17.41	13.53	219.47	2.19
0.1867	11.2	112	377.26	3.77	13900.16	17.38	13.53	236.54	2.37
0.1883	11.3	113	377.26	3.77	13900.16	17.38	13.77	212.28	2.12
0.1900	11.4	114	378.20	3.78	13900.16	17.38	13.65	237.89	2.38
0.1917	11.5	115	376.32	3.76	13900.16	17.38	13.65	215.88	2.16
0.1933	11.6	116	377.26	3.77	13929.96	17.41	13.53	229.35	2.29
0.1950	11.7	117	378.20	3.78	13944.86	17.43	13.65	221.27	2.21
0.1967	11.8	118	377.26	3.77	13974.68	17.47	13.65	225.31	2.25
0.1983	11.9	119	377.26	3.77	13989.59	17.49	13.77	230.70	2.31
0.2000	12	120	377.26	3.77	14019.44	17.52	13.77	226.66	2.27
0.2017	12.1	121	378.20	3.78	14034.37	17.54	13.65	222.62	2.23
0.2033	12.2	122	377.73	3.78	14049.30	17.56	13.77	228.91	2.29
0.2050	12.3	123	376.79	3.77	14004.51	17.51	13.89	217.67	2.18
0.2067	12.4	124	376.32	3.76	13974.68	17.47	13.77	233.85	2.34
0.2083	12.5	125	377.73	3.78	13944.86	17.43	13.77	218.12	2.18
0.2100	12.6	126	376.32	3.76	13944.86	17.43	13.89	234.75	2.35
0.2117	12.7	127	376.32	3.76	13915.06	17.39	13.89	216.77	2.17
0.2133	12.8	128	375.38	3.75	13944.86	17.43	13.89	225.76	2.26
0.2150	12.9	129	375.85	3.76	13944.86	17.43	13.89	225.76	2.26
0.2167	13	130	375.85	3.76	13959.77	17.45	13.89	219.02	2.19

APPENDIX 7

Updated July 12, 2000. Data Reduction from GTC85-72 Gas Turbine Test # 1J on JET-A , September 15, 1998

Updated July 12, 2000. Data Reduction from GTC85-72 Gas Turbine Test # 1J on JET-A	A, Septemb								
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch= Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		0.625) I bleed air HP K	ν.ν. T+4	methanol		degree C	Tt4 Jet A	dogroop C
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7		0.00	memanor	,	uegree C	899	481.67
			107	79.68				1305	707.22
Recorded test data running on jet-A fuel is indicated by (A):	pi=	3.141592654		70.75				1262	683.33
1A) Outside air temperature OAT is measured in degrees F, called OATF=	•	80		59.95				1198	647.78
local sealevel barometer reading reported by airport tower in " mercury Hg=		30.13	79	58.83		1146	618.89		
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		9.66	64.7	48.18		1078	581.11		
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		400		0.00				788	420.00
Bleed air nozzle total pressure measured in the manifold Pn in psi =		40.7		11.17				873	467.22
Turbine RPM during test under load with flow control bleed air valve on =		42700		24.58				947	508.33
Compressor outlet pressure in psi gage		40.7	7 51 67	37.98 49.89				1013 1070	545.00 576.67
2A) Turbine engine air inlet flow calculation in units of pound mass per second			82	61.07				1124	606.67
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =		28.8		70.75				1146	618.89
Ambient air absolute pressure in units of PSFA is from local barometer		2036.791444		81.92				1217	658.33
Ambient air absolute temperature in degrees Rankine =		540		93.09				1283	695.00
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		0.00219804	143	106.49				1366	741.11
Venturi throat area calculated in square feet Av=		0.267253542		58.83		1077	580.56		
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		213.7900425		70.37		1119	603.89		
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.04391793		80.43		1183	639.44		
At Tool too block also a structure to a local address			119	88.62		1232	666.67		
3A) Turbine bleed air output power load calculation		0	138	102.77		1309	709.44		
Calculate combined bleed air nozzle throat in square feet defined as An=		7897.591444							
Calculate nozzle flow absolute total pressure inside manifold PSFAn= Calculate nozzle flow absolute total temperature inside manifold TRankine=		860							
Calculate total bleed air nozzle flow rate in lbm/s		000							
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		C							
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		C							
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT									
Turbine type fuel flow meter reading in gallon per minute		0.26							
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.8	0.028935889							
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn		44.5							
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=		439.2827398							
Assume Turbine shaft HP power output =1.1*compressor power input= Turbine shaft power output in BTU/s =		483.2110138 341.6301867							
Turbine shaust gas temperature Tt9 in degrees F is called EGT and =		588							
Turbine inlet temperature= EGT+(BTU/s output power)/(Ibm/s*Cp) degree F=		898.6659468							
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value									
Stoichiometric reaction equation, assuming complete combustion:									
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg=		42800							
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2O+5.574N2			8 =kg fuel per mol						
Then moles product to moles of stoichiometric air ratio is			l = (1+0.965+5.57	(4)/(1.4825*(1+3	3.76))				
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574) Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=		28.842 7.057							
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		14.677							
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		4.04391793							
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C		0.028935889							
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air		8.522000768	this is both mas	s and volume o	or mole ratio)			
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)		28.95551825	5						
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.00715541							
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.105019945		0.171.10.10					
Total exhaust gas mass flow rate is air flow + fuel flow, in units of Ibm/s		4.072853819		1.84744649	TI 1/16 E				
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) = Cale, turb, intertained to Ttu/lin El-((E(A))) HV*ctained Ttu/line(A)) = $(2 + 1)^{-1}$		18400	 air in specific h air out specific 						
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		009.0921048	an out specific	neai Opi=0.27					
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK									
Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and N2	with Coc=3	5*8 314=29							
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6	- mai opo-o.	0 0101 1-20							
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6									
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2									
Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2			Emissions data	a conversion fa	octors				
Sum of product: moles*specific heat = sum(nP*Cpt)=		2196.251448							
Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))			from ppm to gr						
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK=			ppm*(M/Mex).		litiply by				
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)= (Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products			(kg/s(exhaust)/ To get std. cc/s		100/M				
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=			To get gm/Joule			hv			
Tans. mot tomp for (m) /=((10+200/m ty+200/ 0/0*400=		310.30470	gm/s/(lbm/s fuel			·y			
Emission test data collected in ppm (volume parts per million)	test ppm	gm/1000kg		std. cc/s gm		gy			
CO with molecular weight M=28			0.469666024 3		8.36056				
HC with molecular weight M=170.337 (unburned fuel)	54.47	320.4313703	0.591979811	77.847724	1.05379	E-06			
NOx, mainly NO with molecular weight M=30			0.024366334		4.33747				
CO2 with molecular weight M=44	14376.78	21846.55493	40.36034128 2	20547.0828	7.18458	E-05			

Data Reduction from GTC85-72 Gas Turbine Test #2J on Jet-A, September 15, 1998		
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch= Number of bleed air nozzle installed in the bleed air manifold is given by Nn=	0.625 3.5	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =	7	
Recorded test data running on jet-A fuel is indicated by (A): 1A) Outside air temperature OAT is measured in degrees F, called OATF=	pi= 3.141592654 80	
local sealevel barometer reading reported by airport tower in " mercury Hg=	30.13	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=	11.8	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F= Bleed air nozzle total pressure measured in the manifold Pn in psi =	400 36.75	
Turbine RPM during test under load with flow control bleed air valve on =	42700	
Compressor outlet pressure in psi gage	38	
2A) Turbine engine air inlet flow calculation in units of pound mass per second		
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and = Ambient air absolute pressure in units of PSFA is from local barometer	28.8 2036.791444	
Ambient air absolute temperature in degrees Rankine =	540	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=	0.00219804	
Venturi throat area calculated in square feet Av= Venturi throat velocity calculated from measured vacuum Vv in ft/s =	0.267253542 236.2870466	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=	4.469457105	
3A) Turbine bleed air output power load calculation		
Calculate combined bleed air nozzle throat in square feet defined as An=	0.007456851	
Calculate nozzle flow absolute total pressure inside manifold PSFAn= Calculate nozzle flow absolute total temperature inside manifold TRankine=	7328.791444 860	
Calculate total bleed air nozzle flow rate in lbm/s	0.990098544	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=	76.03956815	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=	107.5524302	
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT	0.44	
Turbine type fuel flow meter reading in gallon per minute Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.41 0.8 0.045629671	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn		
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)= Assume Turbine shaft HP power output =1.1*compressor power input=	485.5082117 534.0590329	
Turbine shaft power output in BTU/s =	377.5797363	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =	909	
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=	1305.722875	
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value		
Stoichiometric reaction equation, assuming complete combustion Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg	g= 42800	
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2O+5.574N2	13.93 =kg fuel per mole	
Then moles product to moles of stoichiometric air ratio is Product molecular weight Marad is (1*14) 0 065*18 (5 57*28)/(1*0 065) 5 574)	$1.068346394 = (1+0.965+5.574)/(1.4825^{(1+3.76)})$ 28.842	
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574) Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=	7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=	14.677	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C	3.479358562 0.045629671	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air	4.19534697 this is both mass and volume or mole ratio	
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)	28.94361453	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)	0.013114392 0.192479926	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s	3.524988233 in kg/s = 1.59893466	
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =	18400 air in specific heat Cpc=0.24 BTU/lbmF	
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=	1280.532769 air out specific heat Cpt=0.27 BTU/lbmF	
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK		
Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6	I N2 with Cpc=3.5*8.314=29	
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6		
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2	Ended and the comparison for the second	
Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2 Sum of product: moles*specific heat = sum(nP*Cpt)=	Emissions data conversion factors 1216.623475	
Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))	273832.5886 from ppm to gm/1000 kg use conversion	
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK= Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)=	-30681 ppm*(M/Mex). To get gm/s multiply by -596204 (kg/s(exhaust)/1000)	
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products	715.123953 To get std. cc/s multiply by (22400/M)	
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=	1363.623115 To get gm/Joule fuel at 42800kJ/kg, multipl gm/s/(lbm/s fuel*0.4536*42800000 J/kg)	ly
Emission test data collected in ppm (volume parts per million)	test ppm gm/1000kg gm/s std. cc/s gm/J fuel energ	
CO with molecular weight M=28 HC with molecular weight M=170.337 (unburned fuel)	272.32 263.4418722 0.421226341 336.981073 4.75501E 14.42 84.8636074 0.135691363 17.8439596 1.53175E	
NOx, mainly NO with molecular weight M=30	26.76 27.7366878 0.044349152 33.1140332 5.00635E	E-08
CO2 with molecular weight M=44	26523.86 40321.49609 64.47143773 32821.8228 7.27785E	E-05

Data Reduction from GTC85-72 Gas Turbine Test #3J on Jet-A, September 15, 1998			
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=		0.625	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		3	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
Described toot data municum an int A fuel is indicated by (A).	-:	2 4 4 4 5 0 0 0 5 4	
Recorded test data running on jet-A fuel is indicated by (A):	pi=	3.141592654 80	
1A) Outside air temperature OAT is measured in degrees F, called OATF=			
local sealevel barometer reading reported by airport tower in " mercury Hg=		30.13	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		11.5	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		410	
Bleed air nozzle total pressure measured in the manifold Pn in psi =		37	
Turbine RPM during test under load with flow control bleed air valve on =		42700	
Compressor outlet pressure in psi gage		38.5	
2A) Turbine engine air inlet flow calculation in units of pound mass per second			
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =		28.8	
Ambient air absolute pressure in units of PSFA is from local barometer		2036.791444	
Ambient air absolute temperature in degrees Rankine =		540	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		0.00219804	
Venturi throat area calculated in square feet Av=		0.267253542	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		233.2640601	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.412276195	
3A) Turbine bleed air output power load calculation			
Calculate combined bleed air nozzle throat in square feet defined as An=		0.006391587	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		7364.791444	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		870	
Calculate total bleed air nozzle flow rate in lbm/s		0.847909149	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		67.15440459	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		94.98501356	
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT			
Turbine type fuel flow meter reading in gallon per minute		0.39	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.8	0.043403833	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn			
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=		494.2747873	
Assume Turbine shaft HP power output =1.1*compressor power input=		543.7022661	
Turbine shaft power output in BTU/s =		384.3975021	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		867	
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		1261.618866	
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value			
Stoichiometric reaction equation, assuming complete combustion			
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg=		42800	
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2O+5.574N2		13.93	=kg fuel per mole
Then moles product to moles of stoichiometric air ratio is		1.068346394	= (1+0.965+5.574)/(1.4825*(1+3.76))
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574)		28.842	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=		7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		14.677	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		3.564367046	
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C		0.043403833	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air		4.595218356	this is both mass and volume or mole ratio
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)		28.94547745	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.01217715	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.178724035	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s		3.607770879	in kg/s = 1.63648487
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =		18400	
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		1225.308334	air out specific heat Cpt=0.27 BTU/lbmF
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK			
Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and N	2 with Cpc=3.	5*8.314=29	
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6			
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6			
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2			
Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2			Emissions data conversion factors
Sum of product: moles*specific heat = sum(nP*Cpt)=		1307.161155	
Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))		294908.7203	from ppm to gm/1000 kg use conversion
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK=		-30681	ppm*(M/Mex). To get gm/s multiply by
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)=		-596204	(kg/s(exhaust)/1000)
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products		681.7160357	To get std. cc/s multiply by (22400/M)
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=		1303.488864	To get gm/Joule fuel at 42800kJ/kg, multiply
			gm/s/(lbm/s fuel*0.4536*42800000 J/kg)
Emission test data collected in ppm (volume parts per million)	test ppm	gm/1000kg	gm/s std. cc/s gm/J fuel energy
CO with molecular weight M=28			0.425961872 340.769498 5.05505E-07
HC with molecular weight M=170.337 (unburned fuel)			0.838896312 110.318236 9.95551E-07
NOx, mainly NO with molecular weight M=30			0.044488813 33.218314 5.27966E-08
CO2 with molecular weight M=44	24497.28	37238.29817	60.93991157 31023.955 7.23198E-05

Data Reduction from GTC85-72 Gas Turbine Test #4J on Jet-A, September 15, 1998		PAGE 4	
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=		0.625	
		0.025 2.5	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		2.5	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		1	
Recorded test data running on jet-A fuel is indicated by (A):	pi=	3.141592654	
 Outside air temperature OAT is measured in degrees F, called OATF= 		80	
local sealevel barometer reading reported by airport tower in " mercury Hg=		30.13	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		11.25	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		409	
Bleed air nozzle total pressure measured in the manifold Pn in psi =		38	
Turbine RPM during test under load with flow control bleed air valve on =		42700	
		39	
Compressor outlet pressure in psi gage		39	
2A) Turbine engine air inlet flow calculation in units of pound mass per second			
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =		28.8	
Ambient air absolute pressure in units of PSFA is from local barometer		2036.791444	
Ambient air absolute temperature in degrees Rankine =		540	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		0.00219804	
Venturi throat area calculated in square feet Av=		0.267253542	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		230.7146496	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.364053149	
Volkan made now rate as measured by the intake an ventan in isin/s=		4.004000140	
3A) Turbine bleed air output power load calculation			
		0.005000000	
Calculate combined bleed air nozzle throat in square feet defined as An=		0.005326322	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		7508.791444	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		869	
Calculate total bleed air nozzle flow rate in lbm/s		0.720820953	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		56.91602245	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		80.50356782	
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT			
Turbine type fuel flow meter reading in gallon per minute		0.36	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.9	0.040065077	
	0.0	0.040003077	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn		407 0040004	
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=		487.3912824	
Assume Turbine shaft HP power output =1.1*compressor power input=		536.1304107	
Turbine shaft power output in BTU/s =		379.0442003	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		817	
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		1198.144204	
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value			
Stoichiometric reaction equation, assuming complete combustion			
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg=	=	42800	
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2O+5.574N2		13.93	=kg fuel per mole
Then moles product to moles of stoichiometric air ratio is			= (1+0.965+5.574)/(1.4825*(1+3.76))
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574)		28.842	= (110.00010.014)/(1.4020 (110.10))
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=		7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		14.677	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		3.643232196	
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C		0.040065077	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air			this is both mass and volume or mole ratio
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)		28.94782788	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.010997124	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.161404791	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s		3.683297273	in kg/s = 1.67074364
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =		18400	
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		1143.224299	
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK			
Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and I	N2 with Coc-3	5*8 314-29	
	142 With Op0-0.	0 0.014-20	
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6			
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6			
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2			Fortations data assume to the s
Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2			Emissions data conversion factors
Sum of product: moles*specific heat = sum(nP*Cpt)=		1443.098432	
Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))		326553.3567	
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK=		-30681	
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)=		-596204	(kg/s(exhaust)/1000)
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products		639.4278702	To get std. cc/s multiply by (22400/M)
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=			To get gm/Joule fuel at 42800kJ/kg, multiply
, ,			gm/s/(lbm/s fuel*0.4536*42800000 J/kg)
Emission test data collected in ppm (volume parts per million)	test ppm	gm/1000kg	gm/s std. cc/s gm/J fuel energy
CO with molecular weight M=28			0.450535543 360.428435 5.79224E-07
HC with molecular weight M=170.337 (unburned fuel)			0.286282104 37.6472471 3.68054E-07
NOx, mainly NO with molecular weight M=30			0.040360577 30.1358973 5.18889E-08
CO2 with molecular weight M=44			58.21664077 29637.5626 7.48453E-05
	22027.34	34344.14174	

test ppm gm/1000kg	gm
et temperature Tt4 (in F)=((Tt4-298)+298)*9/5-460 685.754310	
K=(sum of reactants-heat of reaction)/sum of products 338.530172	
ction for methanol in KJ/KmoleK =-393522-1.5*241827-(-30822)= -72544) To get s
	2 (kg/s(e
ctant moles*specific heat*temperature rise=sum nR*Cpc*(Tin-298) 1567003.38	
duct moles*specific heat=sum(nP*Cpt)= 6771.75499	6 from pa
R) composition: 1CU2+2H2U+ex 1.5U2+(1+ex) 5.64N2	LIII5510
er exit specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6 P) composition: 1CO2+2H2O+ex*1.5O2+(1+ex)*5.64N2	Emissio
er exit specific heat for O2 with Cpt=34.0 and for N2 with Cpt=31.6 er exit specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6	
purner inlet specific heat for O2 with Cpc=3*8.314=29 and for N2 with Cpc=29	
s Cpc=3.5R where R= 8.3143 KJ/kmoleK=1.986 cal/gmmoleK see JANEF	
ate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK	
inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))= 1150.16187	
	6 airinsp
e ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A) 0.142371212 ust gas mass flow rate is air flow + fuel flow, in units of Ibm/s 3.5784007	
air ratio F/A by weight=burner fuel flow/burner air flow 0.02278850	
s molecular weight Mex=(air(ex)*28.97+prod*27.537)/(air (ex)+prod) 28.7303046i	
(ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air 6.02389187	
flow rate in lbm/s, assume entering at reference temp.=25 C 0.07972950	
low rate in lbm/s= venturi air flow rate - bleed air flow rate 3.49867126	
tric A/F ratio by weight (using Mair=28.97) =7.14*28.97/32= 6.247	
tric air/fuel ratio in moles= A/F by volume = 1.5(1+3.76)/1= 7.1	
lecular weight Mprod is (1*44+2*18+5.64*28)/(1+2+5.64) 27.53	
	l = (1+2+5
	2 =kg fuel
anol with molecular weight M=32 for (CH3OH)has LHV in kJ.kg 2267)
e inlet temp. calculation from fuel/air ratio and fuel heating value tric reaction equation, assuming complete combustion	
a inlat town calculation from fuel/air ratio and fuel besting value	
et temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F= 1145.76981	6
naust gas temperature Tt9 in degrees F is called EGT and = 82	5
aft power output in BTU/s = 309.917598-	
rbine shaft HP power output =1.1*compressor power input= 438.355867	
pressor power input = HP(bleed air)*(Ibm/s venturi)/(Ibm/s bleed)= 398.505334	3
nbustion chamber pressure Pt3, not measured assume= bleed air Pn	-
te in lbm/s from flow meter reading, at spec grav. = 0.796 0.079729503	
e inlet temperature calculation from exhaust gas temperature EGT e fuel flow meter reading in gallon per minute 0.72	,
e inlet temperature calculation from exhaust das temperature FGT	
ompressor horse power input (1 HP=0.707 BTU/s) or HPbleed= 79.0227076	C
pmpressor power required in BTU/s = flow rate*temp. rise*Cp= 55.8690543	
otal bleed air nozzle flow rate in Ibm/s 0.86538188:	
ozzle flow absolute total temperature inside manifold TRankine= 80	
ozzle flow absolute total pressure inside manifold PSFAn= 6212.79144	
ombined bleed air nozzle throat in square feet defined as An= 0.00745685	
e bleed air output power load calculation	
ss flow rate as measured by the intake air venturi in lbm/s= 4.36405314	Э
pat velocity calculated from measured vacuum Vv in ft/s = 230.714649	
vat area calculated in square feet Av= 0.26725354	
density = venturi throat density is calculated rho (slug/ft^3)= 0.0021980	
absolute pressure in units of PSFA is from local barometer 2036.79144	
e is 1250 ft ASL or local barometer is 1.33" below sealevel and = 28. absolute pressure in units of PSFA is from local barometer 2036.79144	
e engine air inlet flow calculation in units of pound mass per second	D
a angina air inlat flaw anlaulation in units of nound mass har second	
or outlet pressure in psi gage 3	J
M during test under load with flow control bleed air valve on = 38800	
pozzle total pressure measured in the manifold Pn in psi = 2	
ozzle total temperature measured in the manifold Tt3 in degree F= 34	
easured in throat of intake air flow metering venturi in " water H2O= 11.2	5
vel barometer reading reported by airport tower in " mercury Hg= 30.1	3
de air temperature OAT is measured in degrees F, called OATF= 8	0
test data running on methanol is indicated by (M): pi= 3.14159265-	4
	7
bleed air nozzle installed in the bleed air manifold is given by Nn= 3.	
ad setting: manifold equiped with bleed air nozzles, Dia.Dn inch= 0.62	-
ction from GTC85-72 Gas Turbing Test #5M on Methanol Sentember 15, 1998	
ction from GTC85-72 Gas Turbine Test #5M on Methanol, September 15, 1998	

22670 32 =kg fuel per mole 1.21 = (1+2+5.64)/(1.5*(1+3.76)) 27.537 7.14 6.2475 3.498671267 0.079729503 6.023891877 this is both mass and volume or mole ratio 8.73030468 0.022788509 0.142371212 3.57840077 in kg/s = 1.62316259 9746 air in specific heat Cpc=0.24 BTU/lbmF 1150.161879 air out specific heat Cpt=0.27 BTU/lbmF

	1567003.386 -30822	from ppm to g ppm*(M/Mex) (kg/s(exhaust To get std. cc/s). To get gm/ t)/1000)	s multiply by
st ppm	338.5301723		le fuel at 428 el*0.4536*42	300kJ/kg, multiply
317.15	8968 019456	14.55655368	116/5 2/20	9.40422E-06
			11043.2423	9.404226-00
24.67	146.2641568	0.237410508		
24.67 6.64			31.2204358	1.53378E-07

Methanol Emission Test Result Averages	281.51	gm/1000kg 7212.564028	
Turbine inlet temperature Tt4 (in F)=((Tt4-298)+298)*9/5-460		685.6331739	gm/s/(lbn
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products		338.4628744	
Heat of formation Hfo for methanol in KJ/KmoleK = Heat of reaction for methanol in KJ/KmoleK =-393522-1.5*241827-(-30822)=			(kg/s(ex To get sto
Sum of reactant moles*specific heat*temperature rise=sum nR*Cpc*(Tin-298)		1568007.296	
Sum of product moles*specific heat=sum(nP*Cpt)=		6776.067537	
Reactant (nR) composition: 1CU2+2H2O+ex=1.5O2+(1+ex) 5.64N2			LIIIISSI01
Using burner exit specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6 Product (nP) composition: 1CO2+2H2O+ex*1.5O2+(1+ex)*5.64N2			Emissior
Using burner exit specific heat for O2 with Cpt=34.0 and for N2 with Cpt=31.6			
Results in burner inlet specific heat for O2 with Cpc=3*8.314=29 and for N2 with Cpc=29			
Cold O2 has Cpc=3.5R where R= 8.3143 KJ/kmoleK=1.986 cal/gmmoleK see JANEF			
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK			
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		9746 1102.02823	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s Methanol heating value LHV in BTU/lbm at 100% combustion efficiency		3.78140393	in kg/s air in sp
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.130747347	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.020927947	
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*27.537)/(air (ex)+prod)		28.74935158	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air		6.648338744	this is bo
Burner fuel flow rate in Ibm/s, assume entering at reference temp.=25 C		0.077514794	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		3.703889135	
Stoichiometric air/fuel ratio in moles= A/F by Volume = 1.5(1+3.76)/1= Stoichiometric A/F ratio by weight (using Mair=28.97) =7.14*28.97/32=		7.14 6.2475	
Product molecular weight Mprod is (1*44+2*18+5.64*28)/(1+2+5.64) Stoichiometric air/fuel ratio in moles= A/F by volume = 1.5(1+3.76)/1=		27.537 7.14	
Then moles product to moles of stoichiometric air ratio is Product molecular words the Marad is (1*44) 2*18 5 64*28)/(1+2+5 64)			= (1+2+5.
1 mole fuel gives:1CH4O+1.5(O2+3.76N2) produces 1CO2+2H2O+5.64N2			=kg fuel p
100% methanol with molecular weight M=32 for (CH3OH)has LHV in kJ.kg		22670	
Stoichiometric reaction equation, assuming complete combustion			
5M) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value			
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		1078.118147	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		752	
Turbine shaft power output in BTU/s =		332.9597991	
Assume Turbine shaft HP power output =1.1*compressor power input=		470.947382	
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=		428.1339836	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn	0.730	5.577514754	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0 796	0.077514794	
4M) Turbine inlet temperature calculation from exhaust gas temperature EGT Turbine type fuel flow meter reading in gallon per minute		0.7	
(M) Turbing inlet tomporature calculation from subsuct and tomporature FOT			
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		64.76517116	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		45.78897601	
Calculate total bleed air nozzle flow rate in Ibm/s		0.660164014	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		829	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		6716.791444	
Calculate combined bleed air nozzle throat in square feet defined as An=		0.005326322	
3M) Turbine bleed air output power load calculation			
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.364053149	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		230.7146496	
Venturi throat area calculated in square feet Av=		0.267253542	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		0.00219804	
Ambient air absolute pressure in units of PSFA is from local barometer Ambient air absolute temperature in degrees Rankine =		2036.791444 540	
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and = Ambient air absolute pressure in units of PSFA is from local barometer		28.8 2036.791444	
2M) Turbine engine air inlet flow calculation in units of pound mass per second		20.0	
ON) Turking anging air inlat flow calculation in white of neurod more negative i			
Compressor outlet pressure in psi gage		33.5	
Turbine RPM during test under load with flow control bleed air valve on =		40200	
Bleed air nozzle total pressure measured in the manifold Pn in psi =		32.5	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		369	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		11.25	
local sealevel barometer reading reported by airport tower in " mercury Hg=		30.13	
1M) Outside air temperature OAT is measured in degrees F, called OATF=	pi-	80	
Recorded test data running on methanol is indicated by (M):	pi=	3.141592654	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		2.5	
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=		0.625	
Data Reduction from GTC85-72 Gas Turbine Test #6M on Methanol, September 15, 199	В		
	В		

22670 32 =kg fuel per mole 1.21 = (1+2+5.64)/(1.5*(1+3.76)) 27.537 7.14 6.2475 3.703869135 0.077514794 6.648338744 this is both mass and volume or mole ratio 28.74935158 0.020927947 0.130747347 3.78140393 in kg/s = 1.71524482 9746 air in specific heat Cpc=0.24 BTU/lbmF 1102.02823

		from ppm to gm/1000 kg use conversion							
	1568007.296		ppm*(M/Mex). To get gm/s multiply by						
	-30822	(kg/s(exhaus	t)/1000)						
	-725440	To get std. cc/s multiply by (22400/M)							
	338.4628744	To get gm/Joule fuel at 42800kJ/kg, multiply							
	685.6331739	gm/s/(lbm/s fu	el*0.4536*42	800000 J/kg)					
test ppm	gm/1000kg	gm/s	std. cc/s	gm/J fuel energy					
281.51	7212.564028	12.37131311	9897.05048	8.22081E-06					
28.58	169.333609	0.290448596	38.1951576	1.93005E-07					
6.88	7.179292354	0.012314244	9.19463555	8.18288E-09					
19571.51	29953.59521	51.37774911	26155.945	3.41408E-05					

Data Reduction from GTC85-72 Gas Turbine Test # 7J on JET-A at idle, March 14, 20	00	0.625	
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch= Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		0.625	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
Recorded test data running on jet-A fuel is indicated by (A):	pi=	3.141592654	
 Outside air temperature OAT is measured in degrees F, called OATF= 		56	
local sealevel barometer reading reported by airport tower in " mercury Hg=		29.02	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		11	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		322	
Bleed air nozzle total pressure measured in the manifold Pn in psi = Turbine RPM during test under load with flow control bleed air valve on =		43.5 42000	
Compressor outlet pressure in psi gage		44.5	
2A) Turbine engine air inlet flow calculation in units of pound mass per second			
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =		27.69	
Ambient air absolute pressure in units of PSFA is from local barometer		1958.290107	
Ambient air absolute temperature in degrees Rankine =		516	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		0.002211618	
Venturi throat area calculated in square feet Av=		0.267253542	
Venturi throat velocity calculated from measured vacuum Vv in ft/s = Venturi mass flow rate as measured by the intake air venturi in lbm/s=		227.4353617 4.328599208	
venturi mass now rate as measured by the intake all venturi in joh/s=		4.320399200	
3A) Turbine bleed air output power load calculation			
Calculate combined bleed air nozzle throat in square feet defined as An=		0	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		8222.290107	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		782	
Calculate total bleed air nozzle flow rate in lbm/s		0	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		0	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		0	
(A) Turking inlat to measure coloulation from outputs and to measure FOT			
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT Turbine type fuel flow meter reading in gallon per minute		0.25	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.8		
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn	0.0	44.5	
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=		390.8596512	
Assume Turbine shaft HP power output =1.1*compressor power input=		429.9456163	
Turbine shaft power output in BTU/s =		303.9715508	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		530	
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		788.4277906	
FA) Turking inlat town, coloulation from fuel/sin ratio and fuel besting uplus			
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value Stoichiometric reaction equation, assuming complete combustion			
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg=		42800	
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2O+5.574N2			=kg fuel per mole
Then moles product to moles of stoichiometric air ratio is			= (1+0.965+5.574)/(1.4825*(1+3.76))
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574)		28.842	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=		7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		14.677	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		4.328599208	
Burner fuel flow rate in Ibm/s, assume entering at reference temp.=25 C		0.02782297	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)		28.9569816	this is both mass and volume or mole ratio
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.006427708	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.094339464	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s		4.356422178	
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =		18400	air in specific heat Cpc=0.24 BTU/lbmF
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		747.3111935	air out specific heat Cpt=0.27 BTU/lbmF
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK			
Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and N	12 with Cpc=3.	5*8.314=29	
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6 Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6			
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2			
Reactant (nR) composition: 1CH1.93+(1+ex)*1.482502+(1+ex)*5.574N2			Emissions data conversion factors
Sum of product: moles*specific heat = sum(nP*Cpt)=		2440.332827	
Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))			from ppm to gm/1000 kg use conversion
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK=		-30681	
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)=			(kg/s(exhaust)/1000)
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products			To get std. cc/s multiply by (22400/M)
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=		906.926927	To get gm/Joule fuel at 42800kJ/kg, multiply gm/s/(lbm/s fuel*0.4536*42800000 J/kg)
Emission test data collected in ppm (volume parts per million)	test ppm	gm/1000kg	gm/s/(Ibm/s fuel*0.4536*42800000 J/kg) gm/s std. cc/s gm/J fuel energy
CO with molecular weight M=28	380.07		0.726225239 580.980191 1.34447E-06
HC with molecular weight M=170.337 (unburned fuel)			1.628650298 214.174059 3.01514E-06
NOx, mainly NO with molecular weight M=30		16.35874921	
CO2 with molecular weight M=44	14650.06	22260.69861	43.9887677 22394.2817 8.14369E-05

Data Reduction from GTC85-72 Gas Turbine Test # 8J on JET-A with bleed, March 1	4, 2000		
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=	,	0.625	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		0.5	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
3 • • • • • • • • • • • • • • • • • • •			
Recorded test data running on jet-A fuel is indicated by (A):	pi=	3.141592654	
1A) Outside air temperature OAT is measured in degrees F, called OATF=	F.	53	
local sealevel barometer reading reported by airport tower in " mercury Hg=		29.02	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		12	
		322	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=			
Bleed air nozzle total pressure measured in the manifold Pn in psi =		43	
Turbine RPM during test under load with flow control bleed air valve on =		42000	
Compressor outlet pressure in psi gage		44	
2A) Turbine engine air inlet flow calculation in units of pound mass per second			
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =		27.69	
Ambient air absolute pressure in units of PSFA is from local barometer		1958.290107	
Ambient air absolute temperature in degrees Rankine =		513	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		0.002224551	
Venturi throat area calculated in square feet Av=		0.267253542	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		236.8569333	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.534274667	
3A) Turbine bleed air output power load calculation			
Calculate combined bleed air nozzle throat in square feet defined as An=		0.001065264	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		8150.290107	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		782	
Calculate total bleed air nozzle flow rate in lbm/s		0.164955551	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		10.64953038	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		15.06298498	
bleed all compressor horse power input (1 HF=0.707 B10/s) of HFbleed=		15.06296496	
(A) Turking inlat to magneture coloulation from subjust and to magneture FCT			
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT			
Turbine type fuel flow meter reading in gallon per minute		0.3	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.8	0.033387564	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn			
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=		414.0491832	
Assume Turbine shaft HP power output =1.1*compressor power input=		455.4541015	
Turbine shaft power output in BTU/s =		322.0060498	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		602	
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		872.882229	
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value			
Stoichiometric reaction equation, assuming complete combustion			
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg=		42800	
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2O+5.574N2		13.93	=kg fuel per mole
Then moles product to moles of stoichiometric air ratio is		1.068346394	= (1+0.965+5.574)/(1.4825*(1+3.76))
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574)		28.842	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=		7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		14.677	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		4.369319116	
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C		0.033387564	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air			this is both mass and volume or mole ratio
Excess an (ex)=ratio of (burner an now-stolenonnenne an)/stolenonnenne an Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)		28.95454221	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.007641365	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.11215232	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s		4.40270668	
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =		4.40270668	6
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		831.6493851	air out specific heat Cpt=0.27 BTU/lbmF
At the second second strength and the base to be the second second second second second second second second se			
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK			
Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and N	12 with Cpc=3.	.5*8.314=29	
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6			
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6			
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2			
Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2			Emissions data conversion factors
Sum of product: moles*specific heat = sum(nP*Cpt)=		2059.143337	
Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))			from ppm to gm/1000 kg use conversion
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK=		-30681	
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)=			(kg/s(exhaust)/1000)
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products		504.4792267	To get std. cc/s multiply by (22400/M)
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=		984.462608	To get gm/Joule fuel at 42800kJ/kg, multiply
			gm/s/(lbm/s fuel*0.4536*42800000 J/kg)
Emission test data collected in ppm (volume parts per million)	test ppm	gm/1000kg	gm/s std. cc/s gm/J fuel energy
CO with molecular weight M=28			0.798679714 638.943771 1.23217E-06
HC with molecular weight M=170.337 (unburned fuel)			1.778028915 233.817947 2.74307E-06
NOx, mainly NO with molecular weight M=30			0.035341519 26.3883345 5.45235E-08
NOX, mainly NO with molecular weight M=30 CO2 with molecular weight M=44	17.08	17.69670528	

Data Reduction from GTC85-72 Gas Turbine Test # 9J on JET-A with bleed, March 1	14. 2000		
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=	,	0.625	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		1	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
		•	
Recorded test data running on jet-A fuel is indicated by (A):	pi=	3.141592654	
1A) Outside air temperature OAT is measured in degrees F, called OATF=	pi-	53.5	
local sealevel barometer reading reported by airport tower in " mercury Hg=		29.02	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		12.5	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		358	
Bleed air nozzle total pressure measured in the manifold Pn in psi =		42.5	
Turbine RPM during test under load with flow control bleed air valve on =		42000	
Compressor outlet pressure in psi gage		43.5	
2A) Turbine engine air inlet flow calculation in units of pound mass per second			
		07.00	
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =		27.69	
Ambient air absolute pressure in units of PSFA is from local barometer		1958.290107	
Ambient air absolute temperature in degrees Rankine =		513.5	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		0.002222385	
Venturi throat area calculated in square feet Av=		0.267253542	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		241.8588742	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.6255211	
3A) Turbine bleed air output power load calculation			
Calculate combined bleed air nozzle throat in square feet defined as An=		0.002130529	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		8078.290107	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		818	
Calculate total bleed air nozzle flow rate in lbm/s		0.319720169	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		23.36514993	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		33.04830259	
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT			
Turbine type fuel flow meter reading in gallon per minute		0.32	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.9	0.035613402	
	0.0	0.055015402	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn			
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=		478.1231711	
Assume Turbine shaft HP power output =1.1*compressor power input=		525.9354882	
Turbine shaft power output in BTU/s =		371.8363902	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		630	
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		947.217319	
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value			
Stoichiometric reaction equation, assuming complete combustion			
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg=	-	42800	
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2O+5.574N2			=kg fuel per mole
Then moles product to moles of stoichiometric air ratio is			= (1+0.965+5.574)/(1.4825*(1+3.76))
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574)		28.842	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=		7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		14.677	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		4.305800931	
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C		0.035613402	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air		7.237647348	this is both mass and volume or mole ratio
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)		28.95327894	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.008271028	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.121393883	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s		4.341414333	
			5
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =		18400	
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		908.2834151	air out specific heat Cpt=0.27 BTU/lbmF
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK			
Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and I	N2 with Cpc=3	.5*8.314=29	
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6			
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6			
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2			
Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2			Emissions data conversion factors
Sum of product: moles*specific heat = sum(nP*Cpt)=		1905.452	
Sum of reactant: moles specific reat = sum(in "Opt)= Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))			from ppm to gm/1000 kg use conversion
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK=		-30681	
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)=			(kg/s(exhaust)/1000)
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products			To get std. cc/s multiply by (22400/M)
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=		1026.318943	To get gm/Joule fuel at 42800kJ/kg, multiply
			gm/s/(lbm/s fuel*0.4536*42800000 J/kg)
Emission test data collected in ppm (volume parts per million)	test ppm		gm/s std. cc/s gm/J fuel energy
CO with molecular weight M=28	445.22	430.561251	0.847889435 678.311548 1.22633E-06
HC with molecular weight M=170.337 (unburned fuel)	153.43	902.6544443	1.777566293 233.757111 2.57096E-06
NOx, mainly NO with molecular weight M=30			0.038340217 28.6273617 5.54529E-08
CO2 with molecular weight M=44			52.09701278 26522.1156 7.53499E-05
· · · · · · · · · · · · · · · · · · ·			

Data Reduction from GTC85-72 Gas Turbine Test # 10J on JET-A with bleed, March	14, 2000		
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=		0.625	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		1.5	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
Recorded test data running on jet-A fuel is indicated by (A):	pi=	3.141592654	
 Outside air temperature OAT is measured in degrees F, called OATF= 		54	
local sealevel barometer reading reported by airport tower in " mercury Hg=		29.02	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		14	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		376	
Bleed air nozzle total pressure measured in the manifold Pn in psi =		42	
Turbine RPM during test under load with flow control bleed air valve on =		42000	
Compressor outlet pressure in psi gage		43	
2A) Turbine engine air inlet flow calculation in units of pound mass per second			
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =		27.69	
Ambient air absolute pressure in units of PSFA is from local barometer		1958.290107	
Ambient air absolute temperature in degrees Rankine =		514	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		0.002220223	
Venturi throat area calculated in square feet Av=		0.267253542	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		256.0839581	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.892809897	
3A) Turbine bleed air output power load calculation			
Calculate combined bleed air nozzle throat in square feet defined as An=		0.003195793	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		8006.290107	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		836	
Calculate total bleed air nozzle flow rate in lbm/s		0.470161088	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		36.33404889	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		51.39186548	
(A) Turking inlat town and the coloulation from subsurt and town and the ECT			
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT		0.35	
Turbine type fuel flow meter reading in gallon per minute	0.0	0.038952158	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.0	0.036952156	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn		524 0400000	
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=		534.8180323	
Assume Turbine shaft HP power output =1.1*compressor power input=		588.2998355 415.9279837	
Turbine shaft power output in BTU/s = Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		415.9279657 668	
Turbine inlet temperature = EGT+(BTU/s output power)/(Ibm/s*Cp) degree F=		1013.273821	
rubine mier temperature= LGT+(DTO/S output power)/(ibm/S Cp) degree T =		1013.273021	
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value			
Stoichiometric reaction equation, assuming complete combustion			
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg=	_	42800	
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2O+5.574N2			=kg fuel per mole
Then moles product to moles of stoichiometric air ratio is			= (1+0.965+5.574)/(1.4825*(1+3.76))
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574)		28.842	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=		7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		14.677	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		4.422648809	
Burner fuel flow rate in Ibm/s, assume entering at reference temp.=25 C		0.038952158	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air			this is both mass and volume or mole ratio
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)		28.95220403	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.008807427	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.129266611	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s		4.461600967	
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =		18400	5
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		961.8999169	
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK			
Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and I	N2 with Cpc=3	.5*8.314=29	
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6			
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6			
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2			
Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2			Emissions data conversion factors
Sum of product: moles*specific heat = sum(nP*Cpt)=		1791.859123	
Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))			from ppm to gm/1000 kg use conversion
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK=		-30681	ppm*(M/Mex). To get gm/s multiply by
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)=		-596204	(kg/s(exhaust)/1000)
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products		547.5193703	To get std. cc/s multiply by (22400/M)
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=			To get gm/Joule fuel at 42800kJ/kg, multiply
			gm/s/(lbm/s fuel*0.4536*42800000 J/kg)
Emission test data collected in ppm (volume parts per million)	test ppm	gm/1000kg	gm/s std. cc/s gm/J fuel energy
CO with molecular weight M=28			0.913161672 730.529337 1.20753E-06
HC with molecular weight M=170.337 (unburned fuel)	153.88		
NOx, mainly NO with molecular weight M=30			0.043177724 32.239367 5.70968E-08 57 10820224 20110 0848 7 5627E-05
CO2 with molecular weight M=44	18597.2	20203.022/1	57.19820224 29119.0848 7.5637E-05

Data Reduction from GTC85-72 Gas Turbine Test # 11J on JET-A with bleed, March	14, 2000		
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=		0.625	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		2	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
Recorded test data running on jet-A fuel is indicated by (A):	pi=	3.141592654	
1A) Outside air temperature OAT is measured in degrees F, called OATF=		54.5	
local sealevel barometer reading reported by airport tower in " mercury Hg=		29.02	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		14	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		376	
Bleed air nozzle total pressure measured in the manifold Pn in psi =		41	
Turbine RPM during test under load with flow control bleed air valve on =		42000	
Compressor outlet pressure in psi gage		42	
2A) Turbine engine air inlet flow calculation in units of pound mass per second		07.00	
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and = Ambient air absolute pressure in units of PSFA is from local barometer		27.69 1958.290107	
•		514.5	
Ambient air absolute temperature in degrees Rankine = Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		0.002218066	
Venturi throat area calculated in square feet Av=		0.267253542	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		256.2084823	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.89043186	
ventuir mass now rate as measured by the make an ventuir in ibm/s=		4.05043100	
3A) Turbine bleed air output power load calculation			
Calculate combined bleed air nozzle throat in square feet defined as An=		0.004261058	
Calculate combined bleed an hozzle throat in square feet defined as An= Calculate nozzle flow absolute total pressure inside manifold PSFAn=		7862.290107	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		836	
Calculate total bleed air nozzle flow rate in lbm/s		0.61560645	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		47.50019367	
Bleed air compressor horse power required in BTO/s = now rate temp: nee op= Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		67.1855639	
bleed all compressor horse power input (TTF=0.707 BT0/5) of TFbleed=		07.1055059	
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT			
Turbine type fuel flow meter reading in gallon per minute		0.36	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.8	0.040065077	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn	0.0	0.010000011	
Total Compressor power input = HP(bleed air)*(Ibm/s venturi)/(Ibm/s bleed)=		533.7280372	
Assume Turbine shaft HP power output =1.1*compressor power input=		587.100841	
Turbine shaft power output in BTU/s =		415.0802946	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		714	
Turbine inlet temperature= EGT+(BTU/s output power)/(Ibm/s*Cp) degree F=		1070.28585	
		101 0.20000	
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value			
Stoichiometric reaction equation, assuming complete combustion			
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg=	=	42800	
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2O+5.574N2			=kg fuel per mole
Then moles product to moles of stoichiometric air ratio is			= (1+0.965+5.574)/(1.4825*(1+3.76))
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574)		28.842	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=		7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		14.677	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		4.27482541	
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C		0.040065077	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air		6.269676889	this is both mass and volume or mole ratio
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)		28.95107324	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.009372331	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.137557696	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s		4.314890487	in kg/s = 1.95723432
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =		18400	
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		1000.968142	air out specific heat Cpt=0.27 BTU/lbmF
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK			
Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and I	N2 with Cpc=3	.5*8.314=29	
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6			
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6			
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2			
Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2			Emissions data conversion factors
Sum of product: moles*specific heat = sum(nP*Cpt)=		1686.287032	
Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))			from ppm to gm/1000 kg use conversion
Heat of formation Heo for JP-8=jet A in KJ/KmoleK=		-30681	
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)=			(kg/s(exhaust)/1000)
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products			To get std. cc/s multiply by (22400/M)
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=		1099.314625	To get gm/Joule fuel at 42800kJ/kg, multiply
Emission test data collected in ppm (volume parts per million)	tost name	gm/1000kg	gm/s/(lbm/s fuel*0.4536*42800000 J/kg) gm/s std. cc/s gm/J fuel energy
CO with molecular weight M=28	test ppm 480.01		gm/s std. cc/s gm/J fuel energy 0.908628745 726.902996 1.16816E-06
HC with molecular weight M=170.337 (unburned fuel)			1.672067348 219.883575 2.14967E-06
NOx, mainly NO with molecular weight M=30			0.045410209 33.9062896 5.83809E-08
CO2 with molecular weight M=44			59.87433925 30481.4818 7.69765E-05
		2000 1120000	

Data Reduction from QTGS-72 Gas Turbine Test P1 20 or JET-A with beed, March 14, 2000 0.02 Here all robust and regulation manufactory parts in the set of robust of the set of th				
Number of beel all inclusion is meaned with sequent by Nume 2.5 Precondent all in submer with a volum with molecular by (A): pl 3.141920244 Volumination with molecular balance of the submer and equences (C) all contrained on the submer and eque	Data Reduction from GTC85-72 Gas Turbine Test # 12J on JET-A with bleed, March 1	14, 2000		
Engine via all loss is metalened with a worklaw with loss dimetale by (n) pi- 3.14152265 Pair A Distance with a metale with a metale by (n) pi- 3.14152265 Bool distance with a metale with a metale by (n) pi- 3.14152265 Bool distance with a metale with a metale by (n) pi- 3.14152265 Bool distance with a metale with a metale by (n) pi- 3.14152265 Bool distance with a metale with a metale by (n) pi- 3.14152265 Bool distance with a metale with a metale by (n) pi- 3.14152265 Compressor oxele pressure in pit gaps 1568.30107 1568.30107 Compressor oxele pressure in pit gaps 0.02215012 1.021.1011 Arroben ai dosting in pit gaps 0.02215012 1.021.1011 1.021.1011 Compressor oxele pressure in pit gaps 0.02215012 1.021.1011 1.021.1011 Compressor oxele pressure in pit gaps 0.02215012 1.021.1011 1.021.1011 Compressor oxele pressure in pit gaps 0.02215012 1.021.1011 1.021.1011 Compressor oxele pressor pit pit gaps 0.02215012 1.021.1011 1.021.10111 Compressor oxe	Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=		0.625	
Accordent est data running on jet-A fuel is indicated by (A): pin 1.141592854 (A) Outgies ar temperature QA1 is measured in degrees P, called QATE 35.0 (B) Outgies ar temperature QA1 is measured in the maintod T3 in degree F = 375 (B) Outgies ar temperature local with flux control bleed ar volve on n 2000 (C) Traine engine air indef flows are local with flux control bleed ar volve on n 2000 (C) Traine engine air indef flows are local with flux control bleed ar volve on n 2000 (C) Traine engine air indef flows calculation in units of pound measure allow are local with flux control bleed ar volve on n 2000 (C) Traine engine air indef flows calculation in units of pound measure allow are local with flux control bleed ar volve on n 2000 (C) Traine engine air indef flows calculation in units of pound measure allow are local with flux control bleed ar volve in not not not search ware with not not engine flows are local with not not engine and ware local with not not engine in local with the local with local with the local with the local with t	Number of bleed air nozzle installed in the bleed air manifold is given by Nn=			
1A) Outside air temperature QAT is measured in degree F, called QATF= 55 Vacuum measured in thrate ar flow measured in thread the VACE- 14 Vacuum measured in thrate ar flow measured in thread the VACE- 14 Vacuum measured in thrate ar flow measured in thread the measured in thread thread the measured in thread thread the measured in thread	Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
1A) Outside air temperature QAT is measured in degree F, called QATF= 55 Vacuum measured in thrate ar flow measured in thread the VACE- 14 Vacuum measured in thrate ar flow measured in thread the VACE- 14 Vacuum measured in thrate ar flow measured in thread the measured in thread thread the measured in thread thread the measured in thread				
inclassical large l		pi=		
Vaccum measured in throat of hiske aft flow metry in Variable 120- 14 Bleed ai norzet total pressure measured in the manifed Prin pai - 40 Compressor could pressure measured in the manifed Prin pai - 40 Compressor could pressure measured in the manifed Prin pai - 40 Compressor could pressure in local throat toward pressor in manifed Prin pai - 40 Compressor could pressor in manifed Prin toward at value manifed Prin pai - 40 Antherial at about the could be affect toward pressor in manifed Prin toward at value manifed Prin pai - 2,69 Antherial at about the could be affect toward pressor in manifed Prin toward at value manifed Prin paint in the second pressor in paint in the second pressor in manifed Prin paint in the second pressor in paint in the second pressor in manifed Prin paint in the second pressor in manifed Prin paint in the second pressor in manifed Prin paint in the second pressor in paint in				
Beed air nozze total temperature measured in the manifold TS in degree F= 375 Beed air nozze total persoure measured in the manifold TS in degree F= 400 Turbine RPM during test under load with flow catolication to in pai = 40 300 Compressor of the pressure may are greet to the second total bar one f= 375 Beed air nozze total personane may are greet total bar one f= 375 Arrbiert air abouts personane may are greet total bar one f= 375 Arrbiert air abouts personane may are greet total bar one feet total in total bar one feet total bar one fee				
Bield and notize total pressure measured in the manifold Pn in pail a 40 Compressor outlet pressure in pail gap 11 Poil function of the first outlet total with outlet of point mass per second 15 Antonie manifold Pressure in pail gap 155 Antonie manifold Pressure in pair gap 155 Antonie manifold Pressure in pair gap 155 Antonie manifold Pressure in pair gap 155 Venutin mans flow of the index an invention in pairs in pair field filter of the index an invention in pairs in pair field filter of the index an invention in pairs in				
Turbine NPM during ives under load with low control bleed air value on = 4200 Compressor outline pressure in sign gang 270 Phot Turbine regines air intel flow calculation in value of poord mess pre second 770 Phot Turbine regines air intel flow calculation in value of poord mess pre second 780 Photoma in value of pre N is from local barometer is 137 Shows callowel and = 505 Arotheria air absolute in regions of tool flow is calculated in (signtYs)= 0.002210912 Venue in horat velocity calculated in regions of tool in value of pre N is face of tool as a messaue of the index air velocity is tool in value of tool i				
Compressor cutil, pressure in pit gage 41 2N Turbine engines air intel flow calculation in porture in 1.33° below sealewel and = 27.89 Test alticles in 2010 ALS, or cost cost cost cost cost cost cost cost				
2.11 Unbine of a interf. Two calculation in units of pound mass per second 27.69 Attribute is 1250 ft ASL or local barometer is 1.33" below sealewell and = 27.69 Ambeint air absolute improvement in degrees. Reminis = 0.0022151 Attribute is 1250 ft ASL or local barometer is 1.33" below sealewell and = 0.22723342 Venturi mass from a scolulation is provide in the dual of the (skip)H*3p- 0.0022151 Venturi mass from a scolulation is provide iteration (skip)H*3p- 0.022753342 Venturi mass from a scolulation is provide iteration (skip)H*3p- 0.0022151 Calculate contrained bleed air norzes intreat in signame field differ BFAn- 0.755868622 Calculate contrained bleed air norzes intreat in signame field differ BFAn- 0.755868622 Calculate contrained bleed air norzes intreat in signame field differ BFAn- 0.755868622 Calculate contrained bleed air norzes intreat in signame field differ BFAn- 0.755868622 Calculate contrained bleed air norzes intreat in signame field differ BFAn- 0.755868622 Calculate contrained bleed air norzes intreat in signame field differ BFAn- 0.755868622 Calculate contrained bleed air norzes intreat in signame field differ BFAn- 0.755868622 Differ Beed air compressor power input HPBH-ADT TSTUHy or HPBHeed- 82.1082728 Differ Beed air compressor power inpu				
Test attuck is 1250 1A.SL or local barometer is 1.33" below sealewal and = 27.68 Ambient ari absolute persure in uniques Rankine = 155 Ambient ari absolute persure in uniques Rankine = 155 Ambient ari absolute temperature in degrees Rankine = 0.02215912 Venuit into at velocit power local calculated in (sug1M-3)= 0.02215912 Venuit into at velocit power local calculated in (sug1M-3)= 0.02215912 Venuit into at velocit power local calculated in (sug1M-3)= 0.002215912 Venuit into at velocit power local calculated in the masure feet defined as An= 0.0053383224 Calculate accorbined bleed at incize funct in square feet defined as An= 0.005338522 Calculate accorbined bleed at incize funct in square feet defined as An= 0.005338522 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538522 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538522 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538522 Calculate corbined bleed at incize funct in square feet defined as An= 0.005385228 Calculate corbined bleed at incize funct in square feet defined as An= 0.005385228 Calculate corbined bleed at incize funct in square feet defined as An= 0.005385228 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538528 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538528 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538528 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538528 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538528 Calculate corbined bleed at incize funct in square feet defined as An= 0.005385328 Calculate corbined bleed at incize funct in square feet defined at Ph 1.0053878 Turbine state funct in the feet defined as the square feet defined at Ph 1.0053878 Turbine state funct in the feet defined at Ph 1.0053878 Turbine state funct in the feet defined at Ph 1.0053878 Turbine state funct in the	Compressor outlet pressure in psi gage		41	
Test attuck is 1250 1A.SL or local barometer is 1.33" below sealewal and = 27.68 Ambient ari absolute persure in uniques Rankine = 155 Ambient ari absolute persure in uniques Rankine = 155 Ambient ari absolute temperature in degrees Rankine = 0.02215912 Venuit into at velocit power local calculated in (sug1M-3)= 0.02215912 Venuit into at velocit power local calculated in (sug1M-3)= 0.02215912 Venuit into at velocit power local calculated in (sug1M-3)= 0.002215912 Venuit into at velocit power local calculated in the masure feet defined as An= 0.0053383224 Calculate accorbined bleed at incize funct in square feet defined as An= 0.005338522 Calculate accorbined bleed at incize funct in square feet defined as An= 0.005338522 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538522 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538522 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538522 Calculate corbined bleed at incize funct in square feet defined as An= 0.005385228 Calculate corbined bleed at incize funct in square feet defined as An= 0.005385228 Calculate corbined bleed at incize funct in square feet defined as An= 0.005385228 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538528 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538528 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538528 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538528 Calculate corbined bleed at incize funct in square feet defined as An= 0.00538528 Calculate corbined bleed at incize funct in square feet defined as An= 0.005385328 Calculate corbined bleed at incize funct in square feet defined at Ph 1.0053878 Turbine state funct in the feet defined as the square feet defined at Ph 1.0053878 Turbine state funct in the feet defined at Ph 1.0053878 Turbine state funct in the feet defined at Ph 1.0053878 Turbine state funct in the				
Ambien air absolute prossure in units of PSFA is from local barometer 195 Ambien air absolute emportation in degrees Rankine at idensity is acloulated from (skip/%). 0.002215912 Ventur throat read calculated norm measured vacuum Vvin INs = 2.253.32846 Ventur throat ventur throat one calculated norm measured vacuum Vvin INs = 2.253.32846 Ventur throat ventur throat one calculated norm measured vacuum Vvin INs = 2.253.32846 Calculate combined beled air occipter towat in square feet defined as Anno 10.053.2683.22 2.271.230.017 Calculate combined beled air occipter towat in square feet defined as Anno 10.053.2683.22 2.210.2272.25 Calculate combined beled air occipter towat in square feet defined as Anno 10.053.2683.22 2.210.2272.25 Calculate combined beled air occipter towat in throm ferm throm feet Gerpane 10.053.2683.22 2.210.2272.25 Calculate oncobe towat towat in throm ferm throm feet Gerpane 10.053.2693.27 2.210.227.25 Calculate oncobe towat towat towat the throm form throm feet Gerpane 10.053.2693.27 2.210.227.25 Calculate combines towat towat towat the throm feet Gerpane 10.053.2693.27 2.210.227.25 Calculate combines towat towat towat towat throm feet Gerpane 10.053.2693.27 2.210.227.25 Calculate combines towat towa				
Ambient at index leads the temperature in degrees. Rankine =				
Ambient air density = venturi throat density is calculated fron (kg/PT3)= 0.002215912 Venturi throat velocity calculated from measure venturi in bm3= 286.332946 Venturi throat velocity calculated from measure venturi in bm3= 286.332946 Venturi throat velocity calculated from measure venturi in bm3= 286.332946 Venturi throat velocity calculated from measure venturi in bm3= 286.332946 Venturi throat velocity calculated from measure venturi in bm3= 286.332946 Venturi throat velocity calculated from throat in bm3= 286.332946 Venturi throat velocity calculated from throat weld in brain set throat in bm3= 286.332946 Venturi throat velocity calculated from throat weld in brain set throat in bm3= 286.332946 Venturi throat velocity calculated from throat set throat in bm3= 286.332946 Venturi throat velocity calculated from throat set throat in bm3= 286.332946 Venturi throat velocity calculated from throat set throat in bm3= 287.288.298.298 Venturi throat velocity calculated from throat set throat set throat in bm3= 287.288.298 Venturi throat velocity calculated from throat set throat in bm3= 287.288.298.298.298 Venturi throat velocity calculated from throat set throat set throat in bm3= 287.288.298.298 Venturi throat velocity calculated from throat set throat set throat set throat velocity calculated from throat velocity calculated from throat set throat velocity calculated from				
Ventur throat area actualized in square feat Ave 0.28723542 Ventur mass flow rate as measured by the instea eir ventur in bm/se 4.888057288 3A) Turbine bleed air cozite throat in square feet defined as Ane 0.005326322 Calculate nozite flow absolute total pressure inside manifold PSAta Calculate nozite flow absolute total pressure pressure PSA to 700 RTU(s) or HPbiedea 0.30 S00506077 Turbine intel temperature calculation from struke gas unerparture EGT Turbine intel temperature actualition from flow enum/(tims bleed)= 530 S779802 Turbine intel temperature SGT+(BTU's output power) (bm/s*Cp) degree F= 1124 568799 54) Turbine intel temperature EGT+(BTU's output power) (bm/s*Cp) degree F= 1124 568799 54) Turbine intel temperature EGT+(BTU's output power) (bm/s*Cp) degree F= 1124 568799 54) Turbine intel temperature EGT+(BTU's output power) (bm/s*Cp) degree F= 1124 568799 54) Turbine intel temperature EGT+(BTU's output power) (bm/s*Cp) degree F= 1124 568799 54) Turbine intel temperature EGT+(BTU's output power) (bm/s*Cp) degree F= 1124 568799 54) Turbine intel temperature EGT+(BTU's output power) (bm/s*Cp) degree F= 1124 568799 54) Turbine intel temperature intel flow total books in total calculation from flow flow flow flow flow flow flow flow				
Venturi threat velocity calculated from measured velocum V:n If b = 285.33246 Venturi mass from verta is measured by the indixa of venturi in bm/se 4.8805728 A) Turbine bled ai rouzie throat in square feet defined as Ane 0.00532832 Calculate combined biel af a nozzie throat in square feet defined as Ane 0.00532852 Calculate combined biel af nozzie throat in square feet defined as Ane 0.00532852 Calculate combined biel af nozzie throat in square feet defined as Ane 0.75588652 Calculate combined biel af nozzie throat in square feet defined as Ane 0.75588652 Calculate combined biel af nozzie throat reacting in galon per nunel 0.36 Calculate combined biel af nozzie throat reacting in galon per nunel 0.38 Calculate combined biel af Power coupt al -11 'compressor power inpute 584.0779062 Turbine tent temperature calculation from turbine combined biel/per Stagger per complete 778 Turbine intel temperature calculation from turbine combined stagger per complete Compl				
Venturi mass. flow rate as measured by the intake air venturi in bm/s= 4.888057288 Calculate concluster invalue framework in the intake air venturi in bm/s= 0.005326322 Calculate concluster invalue framework in the interventure inside manifold PSPAn= 7.718.200107 Calculate concluster invalue inside manifold PSPAn= 9.80056481 Calculate concluster invalue invalue inside manifold PSPAn= 9.80056481 Beed air compressor hores power input (1 HP-0.707 BTU/s) or HPbleed= 82.80056471 Ventor instree ins				
A) Turbine bleed air nozzie throat in square feet defined as An= Calculate combined bleed air nozzie throat in square feet defined as An= Calculate nozzie throat bleed air nozzie throat in square feet defined as An= Calculate nozzie throat bleed air nozzie throat in persuer inside PSAn= Calculate nozzie throat bleed air nozzie throat in terms Calculate nozzie throat bleed air nozzie throat in terms Bleed air nozzie noze throat the interms Bleed air nozzie noze throat the interms Turbine interms throat throat term throat Fuel flow rater in throat term throat Fuel flow rater in throat Fuel flow rate in thro				
Calculate combined bleed in rouzie throat in square leet defined as An- 0.00523632 Calculate nozzie flow absolute total temperature inside manifold PSAhan 718.290107 Calculate nozzie flow absolute total temperature inside manifold PSAhan 0.75886652 Bleed air compressor power required in BTUs = flow rate temp, riser Cpa 58.00564971 Eaclast test tab flow mater in ding ingaling per minute 0.36 Fund tow rate in bm/s from flow meter reading ingaling per minute 0.38 Fund tow rate in bm/s from flow meter reading, at spec grav. * 0.8 0.400065077 Turbins tops has that PP power output = 1/10000000000000000000000000000000000	Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.888057288	
Calculate combined bleed in rouzie throat in square leet defined as An- 0.00523632 Calculate nozzie flow absolute total temperature inside manifold PSAhan 718.290107 Calculate nozzie flow absolute total temperature inside manifold PSAhan 0.75886652 Bleed air compressor power required in BTUs = flow rate temp, riser Cpa 58.00564971 Eaclast test tab flow mater in ding ingaling per minute 0.36 Fund tow rate in bm/s from flow meter reading ingaling per minute 0.38 Fund tow rate in bm/s from flow meter reading, at spec grav. * 0.8 0.400065077 Turbins tops has that PP power output = 1/10000000000000000000000000000000000				
Calculate nozze flow absolute total pressure inside manifold PSFAne 7718.2007 Calculate nozze flow absolute total preparature inside manifold TRInkine 835 Calculate total beed air nozze flow rate in bm/s 0.7558652 Bled air compressor hover required in BTUs = flow rate temp, rise "Cpe 83.00504871 Turbine type fuel flow meter reading in galon per minute 0.8 0.40006077 Turbine type fuel flow meter reading in galon per minute 0.8 0.04006077 Turbine type fuel flow meter reading in galon per minute 0.8 0.04006077 Turbine type fuel flow meter reading in galon per minute 0.8 0.04006077 Turbine type fuel flow meter reading in galon per minute 0.8 0.04006077 Turbine combustion chamter person Power inputs \$44,779062 122,458079 Turbine instet temp-catculation from fuel/server puts \$44,079062 122,458079 Stochometric reaction equation, assuming complete combustion 124,56879 124,56879 Stochometric reaction equation, assuming complete combustion 1333 =kp fuel per mole 1104,56874,074,14825(14,376) Turbine eintel temp-catculation from fuel/server P1, PC,728,9713,38- 146,77 13060 Stochometric air atio is			0.00500000	
Calculate nozze flow absolute total impenature inside manifold TRankines 8.3 Calculate nozze flow absolute total importance inside manifold TRankines 0.75556652 Bled air compressor power required in BTUs = flow rate import import 1HP-0.707 BTU/s) of HPbleed 82.10827258 All Turbine insite temperature calculation from exhaust gas temperature EGT 0.8 0.40065077 Turbine soft Bind flow meet reading, as geo grav. 0.8 0.40005077 Turbine soft HP power output a 11/compressor power input 4 54.0779662 11/24.56879 Turbine soft HP power output a 11/compressor power input 4 54.0779662 11/24.56879 Stochometric reading and power input 5 64.079062 11/24.56879 Stochometric reading and power input 6 1.663.43344 11/24.56879 Stochometric reading on galanic power input 6 1.663.43344 11/24.56879 Stochometric reading on galanic power input 6 1.683.43344 11.683.43344 11.683.43344 Stochometric reading and power input 6 1.683.43344 11.683.43344 11.683.43344 11.683.43344 11.683.43344 11.683.43344 11.683.43344 11.683.43344 11.683.43344 11.683.43344 11.683.433445 11.683.43344 11.				
Calculate total belod air nozzle flow rate in hom/s 0.7556662 Bieled air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed= 82.0564871 Bieled air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed= 82.10827258 4A) Turbine inlet temperature calculation from exhaust gas temperature EGT 0.8 Turbine type left flow meter reading, at spec grav. = 0.8 0.40055077 Turbine type left flow meter reading, at spec grav. = 0.8 0.430797 Turbine type left flow meter reading, at spec grav. = 0.8 0.4307976 Sausme Turbine instalt HP power output = 11.700000000000000000000000000000000000				
Biled air compressor power required in BTU/s = flow rate temp, rise*Cp= 58.050471 Biled air compressor horse power input (1 HP=0.707 BTU/s) or HFDieded 62.10827258 A1 Turbine inlet temperature calculation from exhaust gas temperature EGT 0.36 Fuel flow rate in borks from flow meter reading, in galon per minute 0.40005077 Turbine instret temperature 14 P[bele air] (1 MBW seturit)(1 MBW seturi				
Bied air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed 82.10827258 4A) Turbine inlet temperature calculation from exhaust gas temperature EGT 0.36 Fuel flow rate in bm/s from flow meter reading, at spec grav. = 0.8 0.40005077 Turbine type left flow meter reading, at spec grav. = 0.80 0.40005077 Turbine combustion chamber pressure P13, on the messured assume= bleed air P 530.9779147 584.0779062 Susmer Turbine shaft P2 power output in ISTU/s = 124.568799 124.568799 Turbine instatut gas temperature T9 in degrees F is called EGT and = 753 Turbine instatut gas temperature. EGT 4(BTU/s output power)(Mm/s*Cp) degree F= 1124.568799 Stolchometric reaction equation assuming complete combustion 1.088240344 14.09554.574) Avaiton kerosine has formula CH193 and LHV=18400BTU/lime-10222ca/grav on KJ/kg= 1.088240344 14.09554.574) Tome bud gives CH1393-144.855.0728)(17.09.655.574) 2.8.842 13.83 = kg fuel per mole 1.0882405043 Tome bud gives CH1839-144.865.5728)(17.09.655.574) 2.8.842 1.061.5000000000000000000000000000000000				
A) Turbine inlet temperature calculation from exhaust gas temperature EGT 0.36 Turbine type fuel flow meter reading, in gallon per minute 0.8 Use If low rate in lom/s from flow meter reading, is spec grav. 0.8 Turbine combustion chamber pressure P18, not measured assume bled air Pn 530.9779147 Total Compressor power input. 540.077062 Turbine shaft PP power output In P1V/s = 540.0770062 Turbine shaft PP power output In degrees F is called EGT and = 758 Turbine inlet temp-catculation from turbi/air ratio and fuel heating value 530.977914 Stoichiometric reaction equation, assuming complete combustion 13.93 = kg fuel per mole Time mole spot outcut to moles of stoichiometric air ratio is 1.068346394 Product molecular weight Mprod is (1*44-0.965*18+55.728)(1*0.965+5.574) 2.8.442 Stoichiometric AF ratio by weight (using Main-28.37) =7.05728.9713.93 = 1.4.677 Burner rule flow rate in lbm/s, assume entering at reference temp25 C 0.404005677 Stockametric ai/stochiometric ai/stochi				
Turbine type fuel flow meter reading in galon per minute 0.36 Fuel flow rate in blow's form flow meter reading, at spec grav. = 0.8 0.400065077 Turbine combustion chamber pressure P13, not measured assume: bleed air Pn 530.9799147 Assume Turbine shaft HP power output 1=1.1*compressor power input = 540.779062 Turbine shaft HP power output 1=1.1*compressor power input = 758 Turbine intel temp. calculation from fuel/air ratio and fuel heating value 506/inometric reaction equation, assuming complete combustion Stochiometric reaction equation, assuming complete combustion 1.08234304 42800 1 mole fuel gives: 10CH 19.341.4425(024.376N2) produces 10C22-0.965H2O45.574N2 1.333.=kg fuel per mole 1 mole fuel gives: 10CH 19.341.4425(024.376N2) produces 10C22-0.965H2O45.574N2 1.383.=kg fuel per mole 1 mole fuel gives: 10CH 19.341.4425(024.376N2) produces 10C22-0.965H2O45.574N2 1.828.442 Stochiometric aritifue tabio moles – AF B yo undim a = 1.425E(14.376)1 7.67 Stochiometric aritifue tabio moles – AF B yo undim a = 1.425E(14.376)1 7.67 Stochiometric aritifue tabio moles – AF B yo undim = 1.4825E(14.376)1 7.67 Stochiometric aritifue tabio moles aritifue tabio throw tabio tabination aritifor 1.30 6.027115459 Burner fuel flow rate in blom/s, assume entening at reference temp.=25 C <td< td=""><td>Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=</td><td></td><td>82.10827258</td><td></td></td<>	Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		82.10827258	
Turbine type fuel flow meter reading in galon per minute 0.36 Fuel flow rate in blow's form flow meter reading, at spec grav. = 0.8 0.400065077 Turbine combustion chamber pressure P13, not measured assume: bleed air Pn 530.9799147 Assume Turbine shaft HP power output 1=1.1*compressor power input = 540.779062 Turbine shaft HP power output 1=1.1*compressor power input = 758 Turbine intel temp. calculation from fuel/air ratio and fuel heating value 506/inometric reaction equation, assuming complete combustion Stochiometric reaction equation, assuming complete combustion 1.08234304 42800 1 mole fuel gives: 10CH 19.341.4425(024.376N2) produces 10C22-0.965H2O45.574N2 1.333.=kg fuel per mole 1 mole fuel gives: 10CH 19.341.4425(024.376N2) produces 10C22-0.965H2O45.574N2 1.383.=kg fuel per mole 1 mole fuel gives: 10CH 19.341.4425(024.376N2) produces 10C22-0.965H2O45.574N2 1.828.442 Stochiometric aritifue tabio moles – AF B yo undim a = 1.425E(14.376)1 7.67 Stochiometric aritifue tabio moles – AF B yo undim a = 1.425E(14.376)1 7.67 Stochiometric aritifue tabio moles – AF B yo undim = 1.4825E(14.376)1 7.67 Stochiometric aritifue tabio moles aritifue tabio throw tabio tabination aritifor 1.30 6.027115459 Burner fuel flow rate in blom/s, assume entening at reference temp.=25 C <td< td=""><td></td><td></td><td></td><td></td></td<>				
Fuel flow rate in bm/s from flow meter reading, at spec grav. = 0.8 0.400060077 Turbine combustion chamber pressure P3, and measured assume bled at P1 530.9799147 Assume Turbine shaft HP power output 1-1 Turbine shaft HP power AP power output 1-1 Turbine shaft HP power			0.26	
Turbine combustion chamber pressure P13, nor measured assumes bleed air Pn 530, 3799147 Total Compressor power input = 11/1 compressor power input= 534, 0779062 Turbine shaft HP power output = 1,1 compressor power input= 758 Turbine shaft BP power output = 1,1 compressor power input= 758 Turbine shaft temperature T61 in degrees F is called EGT and = 758 Solchiometric reaction equation, assuming complete combustion 758 Aviation kerosine has formula CH1.33 and LHV=18400BTU/tim=10222aaligm or in KJ/Kg= 42800 Time level gives: CH1.93-1, 4425(02+3-78/102, produces 1CO-20, 365H2AC-5574N2 13.33 = kg fuel per mole Time level gives: CH1.93-1, 4425(02+3-78/102, produces 1CO-20, 365H2AC-5574N2 13.83 Time level gives: CH1.93-1, 4425(02+3-78/102, produces 1CO-20, 365H2AC-5574N2 13.83 Stochiometric airfuel ratio in moles AF by volume = 1.4825(1+3.76/1) 28.842 Stochiometric airfuel ratio in moles AF by volume = 1.4825(1+3.76/1) 28.950(271545 Burner fuel flow rate in Ibm/s susume extering at reference temp=25 C 0.400065057 Exthaust gas meals flow rate is airflow + fuel flow, in units of Ibm/s 4.172255845 in kg/s = 1.8253525 Actual fuel/air ratio FA by weight-burner air flow 0.142305061 in systeich heat 2.621		0.0		
Total Compressor power input530 3799147Assume Turbine shaft HP power output in BTU/s =540 377962Turbine instant HP power output in BTU/s =412.9430797Turbine intel temperature EGT+(BTU/s output power/(lbm/s*Cp) degree F=1124.5687995A) Turbine intel temperature EGT+(BTU/s output power/(lbm/s*Cp) degree F=1124.5687995A) Turbine intel temperature ID in degrees F is called EGT and =758Stochiometric reaction equation, assuming complete combustion13.93 =kg fuel per mole1 mole fuel gives: 1CH1.93 at L4XP-18400BTUIDm=10222cal/gm or in KJ/Kg=428001 mole fuel gives: 1CH1.93 at L4XP-18400BTUIDm=10222cal/gm or in KJ/Kg=13.09 =kg fuel per mole1 mole fuel gives: 1CH1.93 at L4XP-18400BTUIDm=10222cal/gm or in KJ/Kg=10.0684.05494 = (14-0.965+574)/(1.4825*(1+3.76))Product molecular weight Mprod is (144+0.965*18+5.5728)/(11.965+5.574)28.842Stochiometric ai/fuel ratio in moles= x/F by volume = 1.4825(14.3.76)17.057Stochiometric ai/fuel ratio in moles= x/F by volume = 1.482.5728.97(13.93 =14.677Burner air flow rate in lbm/s, assume entering at reference temp.=25 C0.040065077Excess air (e.g.) and the temperature if fow stochiometric air for the volume or mole ratioExclass are low weight Mex-(air(x)*28.97+prof*28.84)/(air (k4)+prod)20.9694622Actual fuel/air ratio F/A by weight-burner fuel flow hource air for0.142305901Total exhaust gas mass flow rate is air flow + the flow, in units of flom's1.17225345Burner air flow vation intel *28.272+T33/(Cpt*(14-FIA)) =1022.408153Calual fuel/air veight Max-(air(x)*28.97+prof*28.44)/(air		0.6	0.040065077	
Assume Turbine shaft HP power output = 1,1*compressor power input= Turbine shaft HP power output = 1,1*compressor power input= Turbine exhaust gas temperature TB1 in degrees F is called EGT and = Turbine inlet temperature EGT + (BTU/s output power)/(Ibm/s*Cp) degree F= 1124.568799 Turbine inlet temperature EGT + (BTU/s output power)/(Ibm/s*Cp) degree F= 1124.568799 Stolchiometric reaction equation, assuming complete combustion Aviation kerosine has formula CH1.93 and LH2 B400BTU/bm = 10222cal/gm or in KJ/kg= 13.93 = kg fuel per mole 1124.568799 Them noles product to moles of stoichiometric air ratio is 11065446394 = (1-0.9654.5.574)(1.4825(2+3.761)) Product moles of stoichiometric air ratio is 11065446394 = (1-0.9654.5.574)(1.4825(2+3.761)) Product moles of stoichiometric air ratio is 11065446394 = (1-0.9654.5.574)(1.4825(2+3.761)) Product moles of stoichiometric air ratio is 11065446394 = (1-0.9654.5.574)(1.4825(2+3.761)) Burner fuel flow is (1*44-0.9654.5.734)(1.9654.5.574) 22.842 Stoichiometric air/fuel ratio in moles. AF by volume = 1.4825(1+3.761)1= Toria air flow rate in blm/s = venturi air flow rate - bleed air flow rate Exhaust gas molecular weight Mexi-air(x2)? = 2.97+rof23.84()(air (ex)+prod) 22.95042622 Actual fuel/air ratio F/A by weight=burner fuel flow/tumer air flow Consection velocitar weight Mexi-air(x2)? = 2.97+rof23.84()(air (ex)+prod) 24.9 Abating value LHV in BTU/bm (at comb. 24.97+rof23.84()(air (ex)+prod) 24.9 Abating value LHV in BTU/bm (at comb. 44.97) 24.0			500 07004 47	
Turbine shaft power output in BTU/s = 12.9430787 Turbine shaft power output in BTU/s = 758 Turbine shaft power output in BTU/s = 758 Turbine shaft power output in BTU/s = 124.568799 Shaft temp: calculation from fuel/air ratio and fuel heating value 50 Shaft wersaine has formula CH samuling complete combustion 42800 Aviation kersaine has formula CH samuling complete combustion 1.938 ± 6408 ± 61(-0.9545.574)(1.4825*(1+3.76)) Product molecular weight Mord is (1*44+0.965*18+5.57*28)(1*0.965+5.574) 28.842 Stoichiometric air/teal ratio in moles AF by output = 1.4825*(1+3.76)1 7.057 Stoichiometric air/teal ratio in moles AF by output = 1.4825*(1+3.76)1 7.057 Stoichiometric air/teal ratio in moles AF by output = 1.4825*(1+3.76)1 7.057 Stoichiometric air/teal ratio in moles AF by output = 1.4825*(1+3.76)1 7.057 Stoichiometric air/teal ratio in wate in thom's, assume entering at reference temp. = 25 C 0.40065077 Excess air (ex)-ratio of (burner air flow visiobiometric air flow visiobiometr				
Turbine exhaust gas temperature T6i nd egrees F is called EGT and = 758 Turbine inlet temperature EGT+(BTU/s output power/)(lbm/sCp) degree F = 1124.568799 SA) Turbine inlet temperature EGT+(BTU/s output power/)(lbm/sCp) degree F = 1124.568799 Subchinemetric reaction equation, assuming complete combustion 42800 Aviation kerosine has formula CH1.93 and LHV=18400BTU/Ibm=10222cal/gm or in KJ/kg = 42800 The noles gives: CH1.93-1442ES(20-43.7642) 13.93 =kg fuel per mole Them noles product to moles of stoichiometric air ratio is 1.068346394 = (140.965+5.574)/(1.4825'(14.3.76)) Product molegith (using Maine 28.97 =.075728)(1'10.965+5.574) 2.8.42 Stoichiometric AF ratio by weight (using Maine 28.97 =.075728)(713.93a) 14.677 Burner ratio film bm/s, assume entering at reference temp. 25 C 0.400065077 Excess ail (ex)-ratio of, (burner air flow-stoichiometric air/stoichiometric air flow 0.00969544 Extrast gas molecular weight MiexeL ellow burner air flow 0.00969544 Equivalence ratio at turbine inlet = (Stoichiometric AF)*(actual F/A) 0.142205801 Otal extrast gas molecular weight MiexeL ellow burner air flow 0.009695844 Equivalence ratio at turbine inlet T4 using average Cp in KJ/KmoleK 0.142205801 Cold dual molecule gas has specific heat -3.5R which on mole basis is sme f				
Turbine inlet temperature= EGT+(BTU/s output power)/(bm/s*Cp) degree F= 1124.568799 5A) Turbine inlet temp, calculation from fuel/air ratio and fuel heating value Solicitiometric reaction equation, assuming complete combustion Station kerosine has formula CH1.93 and LHV=18400BTU/blm=10222cal/gm or in KJ/Kg= 42800 1 mole fuel gives::CH1.93+1.4825(02+3.78N2) produces 1CO2+0.965H2O+5.574N2 13.93 = kg fuel per mole Them moles product to moles of stoichiometric air ratio is 1.068346394 = (1+0.965+5.574)/(1.4825*(1+3.76)) Product molecular weight Mprod is (1*44+0.965*18+5.57*28)(1*0.965+5.574) 28.842 Stoichiometric air/fuel ratio in moles A/E by outome a 1.482(1+3.76)) 28.5742 Burner ratie flow rate in lbm/s, assume entering at reference temp.=25 C 0.040065077 Excluses air (sk)=ratio of: (burner air flow-stoichiometric air/istoichiometric air/istoichiometric air/istoichiometric air/istoichiometric air/istoichiometric air/istoichiometric air/istoichiometric air/istoichiometric air/istoichiometric A/F ratio BA/(air exit)=28.7420(air exit)=20.440(air exit)=20.440(a				
A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value Stoichiometric reaction equation, assuming complete combustion Aviation kerosine has formula CH1.93 and LHV=18400BTU/Ibm=10222cal/gm or in KJ/kg= 42800 1 mole keil gives: ICH1.93+1.4825(02-3.76N2) produces ICO2+0.965H20+5.574N2 1.383 =kg fuel per mole 1 mole keil gives: ICH1.93+1.4825(02-3.76N2) produces ICO2+0.965H20+5.574N2 1.088346394 = (1+0.965+5.574)(1.4825'(1+3.76)) Product molecular weight Morod Is (1*44-0695*18-5.5728) (1/10.965+5.574) 2.8.842 Stoichiometric AF ratio by weight (using Matrix-28.97) = 7.057'28.97/13.93= 1.4.677 Burner fuel flow rate in Ibm/s = venturi air flow rate - bleed air flow rate 4.132190768 Burner fuel flow rate in Ibm/s assume enteming a treference temp.=25 C 0.040065077 Excass air (ex)=ratio r16 bw rate is air flow stoichiometric air/Stoichiometric air/Stoichio				
Sticicitometric reaction equation, assuming complete combustion Aviation kerosine has formula CH1.93 and LHV=18400BTU/Ibm=10222ca/lgm or in KJ/kg= 1 mole fuel gives: TCH1.93+1.4825(02+3.76N2) produces 1CO2+0.966H2O+5.574N2 Them moles product to moles of stoichiometric air ratio is Product molecular weight Mords (1*14+0.965*18-5.5729)(1*0.965+5.574) Stoichiometric A/F ratio by weight (using Mari-28.97) = 7.057*28.97/13.93 = Burner air flow rate in Ibm/s= venturi air flow rate - bleed air flow rate 4.132190768 Burner fuel flow rate in Ibm/s= venturi air flow rate - bleed air flow rate 4.132190768 Burner fuel flow rate in Ibm/s= venturi air flow rate - bleed air flow rate 4.132190768 Burner fuel flow rate in Ibm/s, assume entering at reference temp-25 C 0.040066077 Excess air (ex)-ratio f.// Kp weight-burner fuel flow-burner air flow rate - bleed air flow r	rubine mier temperature= EGT+(BTO/S output power)/(bm/s Cp) degree T =		1124.300799	
Sticicitometric reaction equation, assuming complete combustion Aviation kerosine has formula CH1.93 and LHV=18400BTU/Ibm=10222ca/lgm or in KJ/kg= 1 mole fuel gives: TCH1.93+1.4825(02+3.76N2) produces 1CO2+0.966H2O+5.574N2 Them moles product to moles of stoichiometric air ratio is Product molecular weight Mords (1*14+0.965*18-5.5729)(1*0.965+5.574) Stoichiometric A/F ratio by weight (using Mari-28.97) = 7.057*28.97/13.93 = Burner air flow rate in Ibm/s= venturi air flow rate - bleed air flow rate 4.132190768 Burner fuel flow rate in Ibm/s= venturi air flow rate - bleed air flow rate 4.132190768 Burner fuel flow rate in Ibm/s= venturi air flow rate - bleed air flow rate 4.132190768 Burner fuel flow rate in Ibm/s, assume entering at reference temp-25 C 0.040066077 Excess air (ex)-ratio f.// Kp weight-burner fuel flow-burner air flow rate - bleed air flow r	5A) Turbine inlet temp, calculation from fuel/air ratio and fuel heating value			
Aviation kerosine has formula CH1.93 and LHV-19400BTU/Ibm=10222ca/gm or in KJ/kg= 42800 1 mole fuel gives:1CH1.93+1.4825(02+3.76N2) produces 1C02+0.965H2O+5.57AN2 1.3.93 =kg fuel per mole Then moles product to moles of stoichiometric air ratio is 1.0683446394 = (14.0.965+5.574)/(1.4825'(1+3.76)) Product molecular weight Mprod is (1*44+0.965*18+5.5728)/(10.965+5.574) 28.842 Stoichiometric Air/Ler ratio by weight (using Mair-28.97) =7.057/28.97/13.93= 14.677 Burner ratie flow rate in Ibm/s, assume entering at reference temp25 C 0.400065077 Excess air (ex)=ratio 0: (burner air flow-stoichiometric air)/stoichiometric air 6.027115459 this is both mass and volume or mole ratio Exhaust gas mass flow rate is air flow + fuel flow, in units of flow/s 4.132190768 1.8252352 Jet A heating value LHV in BTU/Ibm (at comb. efficiency eta=1.0) = 1800 air in specific heat Cpc=0.24 BTU/IbmF Cold dual molecule gas has specific heat = 3.5R which on mole basis is same for O2 and N2 with Cpc=3.5*8.314=29 using burner average specific heat for O2 with CpL=31.6 Using burner average specific heat = 3.5R which on mole basis is same for O2 and N2 with Cpc=3.5*8.314=29 Using burner average specific heat = 3.5R which on mole basis is same for O2 and N2 with Cpc=3.5*8.314=29 Using burner average specific heat = 3.5R which on mole basis is same for O2 and N2 with Cpc=3.5*8.314=29 Sude an everage specific heat at for Q2 with CpL=31.6 Using burner average specific heat = 3.5R which on mole basis is same fo				
1 mole fuel gives: 1CH1 33-1 4825(02+3.76N2) produces 1C02+0.965H20+5.574N2 13.93 =kg fuel per mole Then moles product to moles of stoichiometric air ratio is 1.068346394 = (1+0.965+5.574)(1.4825*(1+3.76)) Product molecular weight Mprod is (1*4+0.965*18-57*29)((1*0.965+5.574) 28.842 Stoichiometric AFF ratio by weight (using Mair-28.97) = 7.057*28.97(1.39.3= 14.677 Burner air flow rate in Ibm/s, assume entering at reference temp.=25 C 0.400065077 Actual fuel/air ratio FA by weight-Lismer air flow-stoichiometric air/stoichiometric air 6.027115459 this is both mass and volume or mole ratio Excess air (ex)=ratio of: (burner air flow-stoichiometric AFF) (actual FA) 0.440056077 28.95042622 Actual fuel/air ratio FA by weight-Burner air flow 0.009695844 4.12205901 Equivalence ratio at turbine inlet =(5toichiometric AFF) (actual FA) 0.142205901 air in specific heat Cpc=0.24 BTU/lbmF Cold dual molecule gas has specific heat =3.5R which on mole basis is same for 02 and N2 with Cpc=3.5*8.314=29 using burner average specific heat =3.5R which on mole basis is same for 02 and N2 with Cpc=3.5*8.314=29 Using burner average specific heat for CO2 with Cpt=31.0 Emissions data conversion factors Using burner average specific heat for CO2 with Cpt=31.0 133.37001 Using burner average specific heat for CO2 with Cpt=51.74N2 Emissions data conversion facto			42800	
Then moles product to moles of stoichiometric air ratio is1.068346344 = (1+0.965+5.574)/(1.4825*(1+3.76))Product molecular weight Mprod is (1*44-0.965*18+5.57*28)/(1.0.965+5.574)28.842Stoichiometric air/luel ratio in moles = A/F by volume = 1.4825(1+3.76)/1 =7.057Stoichiometric air/luel ratio in moles = A/F by volume = 1.4825(1+3.76)/1 =7.057Stoichiometric air/luel ratio in moles = A/F by volume = 1.4825(1+3.76)/1 =7.057Stoichiometric air/luel ratio in moles = A/F by volume = 1.4825(1+3.76)/1 =7.057Stoichiometric air/luel ratio in moles = A/F by volume = 1.4825(1+3.76)/1 =7.057Stoichiometric air/luel ratio in moles = A/F by volume = 1.4825(1+3.76)/1 =7.057Excess air (ex)=ratio at turbins's eventuri air flow rate in bm/s, assume entering at reference temp.=25 C0.040065077Excess air (ex)=ratio at turbine intel = (Stoichiometric A/F) refactural F/A)0.14230501Equivalence ratio at turbine intel tai (Stoichiometric A/F) (actural F/A)0.14230501Total exhaust gas mass flow rate is air flow + fuel flow, in units of Ibm/s4.17225845Jet A heating value LHV in BTU/Ibm (at comb. efficiency eta=1.0) =18400Calc. turb. intel temp.T44 (in F)=((F/A)*(LHV*taCCpc*T13)/(Cpt*(1+F/A))=1022.408153Using burner average specific heat for O2 with Cpt=31.61022.408153Using burner average specific heat for O2 with Cpt=31.61031.667001Sum of roduct: moles "specific heat = sum(nP*Cpt)=1631.367001Sum of roduct: moles "specific heat = sum(nP*Cpt)=1631.367001Sum of roduct: moles "specific heat = sum(nP*Cpt)=1631.367001Sum of roduc			13.93	=ka fuel per mole
Product molecular weight Mprod is (1*44+0.965*18+5.5728) (1*0.965+5.574) 28.842 Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1 = 7.057 Burner air flow rate in binx's assume entering at reference temp.=25 C 0.040065077 Excess air (ex)=ratio of: (burner air flow-stoichiometric air/stoichiometric air/stoi				
Stoichiometric air/fuel ratio in moless A/F by volume = 1.4825(1+3.76)/1 7.057 Stoichiometric A/F ratio by weight (using Mair=28.97) = 7.057*28.97/13.93= 14.677 Burner air flow rate in Ibm/s, assume entering at reference temp.=25 C 0.040065077 Excess air (sc)+ratio f/k by weight Mex-(air(ex)*28.97+prod*28.84)/(air (ex)+prod) 28.95042622 Actual fuel/air ratio f/A by weight.burner fuel flow/tourner air flow 0.009695844 Equivalence ratio at turbine inlet = (Stoichiometric A/F) (actual F/A) 0.142305901 Total exhaust gas mass flow rate is air flow + fuel flow, in units of Ibm/s 4.172255845 in kg/s = 1.89253525 Jet A heating value LHV in BTU/Ibm (at comb. efficiency eta=1.0) = 1022.408153 air out specific heat Cpc=0.24 BTU/IbmF Calc. turb. Inlet temp.T4(in F)=(F(A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))= 1022.408153 air out specific heat Cpt=0.27 BTU/IbmF Cold dual molecule gas has specific heat = 3.5R which on mole basis is same for O2 and N2 with Cpc=3.5*8.314=29 Using burner average specific heat tor CO2 with Cpt=51.9 and for H2O with Cpt=41.6 -506204 K(M)/EV Vising burner average specific heat tor CO2 with Cpt=51.9 and for H2O with Cpt=41.6 -506204 K(M)/EV -506204 K(M)/EV -506204 K(M)/EV -506204 K(M)/EV -506204 K(K)/EV -506204 K(K)/EV -506204 <td></td> <td></td> <td></td> <td></td>				
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93= 14.677 Burner air flow rate in Ibm/s= venturi air flow rate - bleed air flow rate 4.132190768 Burner rule flow rate in Ibm/s, assume entering at reference temp.=25 C 0.040065077 Excess air (ex)-ratio of: (burner air flow-stoichiometric air/stoichiometric A/F (actual F/A) 0.009695844 Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A) 0.142305901 in kg/s = 1.89253525 Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) = 18400 air in specific heat Cpt=0.27 BTU/lbmF Calc. turb. inlet temp.Tt4(in F)=((fr/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))= 1022.408153 air out specific heat Cpt=0.27 BTU/lbmF 6A) Alternate calculation of turbine inlet T4 using average Cp in KJ/KmoleK Emissions data conversion factors Cold dual molecule gas has specific heat for O2 with Cpt=31.6 Burner fuel flow rate in Morkey (kg/s chaust)/1000 kg use conversion Product (nP) composition: 1CH1:39:(1+ex)?1.482502+(1+ex)*5:574N2 Emissions data conversion factors Sum of product: moles*specific heat for eactant: mole*specific heat for eactant: mole*specific heat for eactant: mole*spece. Hear temperature rise=sum(nR*Cpc*(Tin-298))			7.057	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate 4.132190768 Burner fuel flow rate in lbm/s, assume entring at reference temp.=25 C 0.040065077 Excess air (ex)-ratio of: (burner air flow-stoichiometric air/stoichiometric air/stoichiometri				
Burner fuel flow rate in Ibm/s, assume entering at reference temp.=25 C 0.040066077 Excess air (ex)=ratio of: (burner air flow-stoichiometric air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air (air)/stoichiometric air)/stoichiometric air)/stoichiometric air (air)/stoichiometric air) 6.027115459 Exhaust gas molecular weight Mex=(air(ex)=28.97+prod=28.84)/(air (ex)+prod) 28.95042622 Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow 0.009695844 Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A) 0.142305901 Total exhaust gas mass flow rate is air flow + fuel flow, in units of Ibm/s 4.172255845 in kg/s = 1.89253525 Jet A heating value LHV in BTU/bm (at comb. efficiency eta=1.0) = 18400 air in specific heat Cpc=0.24 BTU/lbmF Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and N2 with Cpc=3.5*8.314=29 using burner average specific heat in CO2 with Cpt=31.6 Using burner average specific heat for O2 with Cpt=51.9 and for H2O with Cpt=31.6 Emissions data conversion factors Sum of product: moles "spec: heat" temperature rise=sum(nP*Cpt]= 1631.367001 Sum of product: moles "spec: heat" temperature rise=sum(nR*Cpc*(Tin-298)) 350407.0733 from ppm to gm/1000 kg use conversion Heat of reactant: moles" spec: heat" temperature rise=sum(nR*Cpc*(Tin-298)) 5042256377 To get sm/Joule (real at 2800kJ/kg, mul			4.132190768	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air6.027115459this is both mass and volume or mole ratioExhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)28.95042622Actual fuel/air ratio F/A by weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)28.95042622Actual fuel/air ratio F/A by weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)28.95042622Jota exhaust gas mass flow rate is air flow brown ratio flow, in units of lbm/s4.172255845Jot A heating value LHV in STU/blm (at comb. efficiency eta=1.0) =18400 air in specific heat Cpc=0.24 BTU/lbmFCalc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=1022.408153GA) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK1022.408153Cold dual molecule gas has specific heat a=3.5R which on mole basis is same for O2 and N2 with Cpc=3.5*8.314=291022.408153Using burner average specific heat for CO2 with Cpt=31.61022.408153Using burner average specific heat for CO2 with Cpt=31.61031.637001Sum of product: moles*specific heat = sum(nP*Cpt)350407.0733Sum of product: moles*specific heat = sum(nP*Cpt)350407.0733Sum of product: moles*specific heat = sum(nP*Cpt)350407.0733Sum of ractant: moles*specific heat of reaction/sum of products580.2563572To get gm/sultiply by+3068119Heat of reaction for JP-A=jet A in KJ/KmoleK580.2563572To get std. cc/s multiply by (22400/M)Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=1202.861433Emission test data collected in ppm (volu			0.040065077	
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)28.95042622Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow0.009695844Equivalence ratio at turbine inlet (Sloichiometric A/F)*(actual F/A)0.142305901Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s4.172255845Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =18400Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=1022.4081536A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleKair in specific heat Cpt=0.24 BTU/lbmFGA) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleKair in specific heat Cpt=0.27 BTU/lbmFGA) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleKair out specific heat Cpt=0.27 BTU/lbmFGA) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleKmolecule gas has specific heat for CO2 with Cpt=31.6Using burner average specific heat for CO2 with Cpt=31.9 and for H2O with Cpt=41.6Froduct (nP) composition: 1CC11.93+(1+ex)*1.482502+(1+ex)*5.574N2Reactant (nR) composition: 1CC11.93+(1+ex)*1.482502+(1+ex)*5.574N2Emissions data conversion factorsSum of product: moles*specific heat = sum(nP*Cpt)=1631.367001Sum of practant: moles*speci. heat* temperature rise=sum(nR*Cpc*(Tin-298))350407.0733Heat of reaction for Jet A in KJ/KmoleK=-358224Heat of reaction for Jet A in KJ/KmoleK=580.2563572To get std. cc/s multiply by (22400/M)Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=1120.861443Tu				this is both mass and volume or mole ratio
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow 0.009695844 Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A) 0.142305901 Total exhaust gas mass flow rate is air flow + fuel flow, in units of Ibm/s 4.172255845 Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) = 18400 Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))= 1022.408153 6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK air out specific heat Cpt=0.27 BTU/lbmF 6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK air out specific heat Cpt=0.27 BTU/lbmF Cold dual molecule gas has specific heat =3.5R which on mole basis is same for 02 and N2 with Cpt=3.5*8.314=29 Using burner average specific heat for CO2 with Cpt=31.6 Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6 Froduct (nP) composition: 1CD1+03+(1+ex)*1.482502+(1+ex)*5.574N2 Reactant (nR) composition: 1CH1.93+(1+ex)*1.482502+(1+ex)*5.574N2 Emissions data conversion factors Sum of praduct: moles*specific heat = sum(nP*Cpt)= 1631.367001 Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298)) 350407.0733 from ppm to gm/1000 kg use conversion Heat of reaction for Jet Ain KJ/KmoleK= -30681 pm*(M/Mex). To get gm/3 out gm/s gm/s std. c/s multiply by </td <td></td> <td></td> <td></td> <td></td>				
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)0.142305901Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s4.17225845Jet A heating value LHV in BTU/bm (at comb. efficiency eta=1.0) =18400Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=1022.4081536A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleKair out specific heat Cpt=0.27 BTU/lbmFCold dual molecule gas has specific heat = 5.5R which on mole basis is same for O2 and N2 with Cpc=3.5*8.314=29air out specific heat Cpt=0.27 BTU/lbmFUsing burner average specific heat = for O2 with Cpt=34.0, for N2 with Cpt=41.6Emissions data conversion factorsProduct (nP) composition: 1CO2+0.956H2O+ex*1.482502+(1+ex)*5.574N2Emissions data conversion factorsSum of product: moles*specific heat = sum(nP*Cpt)=1631.367001Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))350407.0733Heat of reaction for JP-8-jet A in KJ/KmoleK=-30621Fuel to freaction for JP-8-jet A in KJ/KmoleK=-596204(kg/s(exhaust)/1000)(kg/s(exhaust)/1000)(Ti-4-298) in K=(sum of reactants-heat of reaction)/sum of products580.2563572Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=1120.86143Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=1120.86143Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=487.33Emission test data collected in ppm (volume parts per million)test ppmCo with molecular weight M=170.337 (unburned fuel)131.57NOx, mainly NO with molecular w				
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s4.172255845in kg/s = 1.89253525Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =18400air in specific heat Cpc=0.24 BTU/lbmFCalc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=1022.408153air out specific heat Cpt=0.27 BTU/lbmF6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleKair out specific heat Cpt=0.27 BTU/lbmFCold dual molecule gas has specific heat 1 for O2 with Cpt=3.6, for N2 with Cpt=31.6using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2Emissions data conversion factorsSum of product: moles*specific heat = sum(nP*Cpt)=1631.367001Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))350407.0733Heat of reaction for JP-8=jet A in KJ/KmoleK=-30681Heat of reaction for Jet A in KJ/KmoleK=580.2563572Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=1120.86143Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=120.86143Emission test data collected in ppm (volume parts per million)test ppmCO with molecular weight M=170.337 (unburned fuel)131.57NOx, mainly NO with molecular weight M=3025.1220.6070450.04926402730.75250.04926402730.7525138355E-08				
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) = 18400 air in specific heat Cpc=0.24 BTU/lbmF Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))= 1022.408153 air out specific heat Cpt=0.27 BTU/lbmF 6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK air in specific heat Cpt=0.27 BTU/lbmF Cold dual molecule gas has specific heat is 3.5R which on mole basis is same for 02 and N2 with Cpc=3.5*8.314=29 bit in Specific heat Cpt=0.27 BTU/lbmF Using burner average specific heat for O2 with Cpt=31.6 bit in Cpt=31.6 bit in Cpt=31.6 Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6 Froduct (nP) composition: 1CD14.94(1+ex)*1.482502+(1+ex)*5.574N2 Emissions data conversion factors Sum of product: moles*specific heat = sum(nP*Cpt)= 1631.367001 from ppm to gm/1000 kg use conversion Sum of reactant: moles*specific heat = sum(nP*Cpt)= 596204 (kg/s(exhaust/1000) Tt4-298) in K=(sum of reactants-heat of reaction/sum of products 580.2563572 To get gm/Joule fuel at 42800kJ/kg, multiply Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460= 1120.861443 To get gm/Joule fuel at 42800kJ/kg, multiply Emission test data collected in ppm (volume parts per million) test ppm gm/s std. c./s gm/J fuel energy CO with molecular weight M=170			4.172255845	in kg/s = 1.89253525
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))= 1022.408153 air out specific heat Cpt=0.27 BTU/lbmF 6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK Cold dual molecule gas has specific heat = 3.5R which on mole basis is same for O2 and N2 with Cpc=3.5*8.314=29 Using burner average specific heat = 3.5R which on mole basis is same for O2 and N2 with Cpc=3.5*8.314=29 Using burner average specific heat for CO2 with Cpt=31.0, for N2 with Cpt=31.6 Emissions data conversion factors Product (nP) composition: 1CO2+0.956H20+ex+1.4825O2+(1+ex)*5.574N2 Emissions data conversion factors Sum of product: moles*specific heat = sum(nP*Cpt)= 1631.367001 Sum of reactant: moles specific heat of reaction/sum of products -30681 ppm*(M/Mex). To get gn/s multiply by Heat of formation Hfo for JP-8=jet A in KJ/KmoleK= -30681 ppm*(M/Mex). To get gn/s multiply by Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460= 1120.861443 To get gm/Joule fuel at 42800kJ/kg, multiply Emission test data collected in ppm (volume parts per million) test ppm gm/1000kg gm/s std. c/s gm/J fuel energy Co with molecular weight M=170.337 (unburned fuel) 131.57 T74.1246682 1.466525223 1.4682-66 6.33355E-68				3
Cold dual molecule gas has specific heat = 3.5R which on mole basis is same for O2 and N2 with Cpc=3.5*8.314=29 Using burner average specific heat for C2 with Cpt=34.0, for N2 with Cpt=31.6 Using burner average specific heat for C2 with Cpt=51.9 and for H2O with Cpt=40.6 Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2 Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2 Sum of product: moles*specific heat = sum(nP*Cpt)= Sum of reactant: moles*specific heat = sum(nP*Cpt)= Turb. inlet temp Ti4 (in F)=((Tt4-298) (in K)+298)*9/5-460= Emission test data collected in ppm (volume parts per million) Emission test data collected in ppm (volume parts per million) Co with molecular weight M=170.337 (unburned fuel) NOx, mainly NO with molecular weight M=30 NOx, mainly NO with molecular weight M=30	o			
Cold dual molecule gas has specific heat = 3.5R which on mole basis is same for O2 and N2 with Cpc=3.5*8.314=29 Using burner average specific heat for C2 with Cpt=34.0, for N2 with Cpt=31.6 Using burner average specific heat for C2 with Cpt=51.9 and for H2O with Cpt=40.6 Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2 Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2 Sum of product: moles*specific heat = sum(nP*Cpt)= Sum of reactant: moles*specific heat = sum(nP*Cpt)= Turb. inlet temp Ti4 (in F)=((Tt4-298) (in K)+298)*9/5-460= Emission test data collected in ppm (volume parts per million) Emission test data collected in ppm (volume parts per million) Co with molecular weight M=170.337 (unburned fuel) NOx, mainly NO with molecular weight M=30 NOx, mainly NO with molecular weight M=30				
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6 Using burner average specific heat for C02 with Cpt=51.9 and for H2O with Cpt=40.6 Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2 Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2 Sum of product: moles*spec.incleat = sum(nP*Cpt)= Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298)) Heat of formation Hfo JD*-8=jet A in KJ/KmoleK= Heat of reaction for Jet A in KJ/KmoleK=.393522+0.965*(-241827)-(-30681)= Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460= Emission test data collected in ppm (volume parts per million) Co with molecular weight M=170.337 (unburned fuel) NOx, mainly NO with molecular weight M=30	6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK			
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6 Product (nP) composition: 1CH1.93+(1+ex)*1.482502+(1+ex)*5.574N2 Reactant (nR) composition: 1CH1.93+(1+ex)*1.482502+(1+ex)*5.574N2 Emissions data conversion factors Sum of product: moles*specific heat = sum(nP*Cpt)= 1631.367001 Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298)) 350407.0733 from ppm to gm/1000 kg use conversion Heat of formation Hfo for JP-8=jet A in KJ/KmoleK= -30681 ppm*(M/Mex). To get gm/s multiply by Heat of reaction for Jet A in KJ/KmoleK= -596204 (kg/s(exhaust)/1000) (Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products 580.2563572 To get gm/Joule fuel at 42800kJ/kg, multiply gm/s/(Um/s fuel*0-4536*42800000 J/kg) Emission test data collected in ppm (volume parts per million) test ppm gm/1000kg gm/s std. cc/s gm/J fuel energy CO with molecular weight M=28 487.33 471.312301 0.89201966 713.608774 1.1468E-06 HC with molecular weight M=170.337 (unburned fuel) 131.57 774.124682 1.465058223 192.661044 1.88353E-06 NOx, mainly NO with molecular weight M=30 25.12 26.0307045 0.049264027 3.8335E-06	Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and N	2 with Cpc=3.	5*8.314=29	
Product (nP) composition: 1C02+0.956H2O+ex*1.482502+(1+ex)*5.574N2 Emissions data conversion factors Sum of product: moles*specific heat = sum(nP*Cpt)= 1631.367001 Sum of reactant: moles*specific heat = sum(nP*Cpt)= 350407.0733 Heat of formation Hfo for JP-8=jet A in KJ/KmoleK= -30681 ppm*(M/Mex). To get gm/s multiply by Heat of reactant: moles*specific heat = sum(nP*Cpt)= -30681 Turb. infet temp rature rise=sum(nR*Cpc*(Tin-298)) -30681 If t4_298) in K=(sum of reactants-heat of reaction)/sum of products 580.2563572 To get gm/s multiply by (22400/M) Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460= 580.2563572 To get std. cc/s multiply by (22400/M) Emission test data collected in ppm (volume parts per million) test ppm gm/1000kg gm/s std. cc/s gm/J fuel energy gm/s/(lbm/s fuel*0.4536*42800000 J/kg) CO with molecular weight M=170.337 (unburned fuel) 131.57 774.124682 1.465058223 192.661044 1.88353E-06 NOx, mainly NO with molecular weight M=30 25.12 26.03070485 0.049264027 36.7838065 6.33355E-08				
Reactant (nR) composition: 1CH1.93+(1+ex)*1.482502+(1+ex)*5.574N2 Emissions data conversion factors Sum of product: moles*specific heat = sum(nP*Cpt)= 1631.36700733 from ppm to gm/1000 kg use conversion Sum of reactant: moles*specific heat = sum(nP*Cpt)= 350407.0733 from ppm to gm/1000 kg use conversion Heat of formation Hfo for JP-8=jet A in KJ/KmoleK= -30681 ppm*(M/Mex). To get gm/s multiply by Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)= -596204 (kg/s(exhaust)/1000) (T4-298) in K=(sum of reactants-heat of reaction)/sum of products 580.2563572 To get gm/s multiply by (22400/M) Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460= 1120.861443 To get gm/soule fuel at 42800KJ/kg, multiply gm/s/(lbm/s fuel*0.4536*42800000 J/kg) Emission test data collected in ppm (volume parts per million) test ppm gm/1000kg gm/s std. cc/s gm/J fuel energy gm/s/(lbm/s fuel*0.4536*42800000 J/kg) CO with molecular weight M=170.337 (unburned fuel) 131.57 774.124682 1.465058223 132.661044 1.88353:e-06 NOx, mainly NO with molecular weight M=30 25.12 26.0307045 0.049264027 36.7838065 6.33355E-08				
Sum of product: moles*specific heat = sum(nP*Cpt)= 1631.367001 Sum of reactant: moles*spec. heat * temperature rise=sum(nR*Cpc*(Tin-298)) 350407.0733 Heat of formation Hfo for JP-8=jet A in KJ/KmoleK= -30631 Heat of foreaction for Jet A in KJ/KmoleK= -596204 (kg/s(exhaust)/1000) (kg/s(exhaust)/1000) (Ti4-298) in K=(sum of reactants-heat of reaction)/sum of products 580.2563572 Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460= 1120.861443 Emission test data collected in ppm (volume parts per million) test ppm CO with molecular weight M=28 487.33 HC with molecular weight M=170.337 (unburned fuel) 131.57 NOx, mainly NO with molecular weight M=30 25.12 26.0070485 0.049264027 36.007045 0.049264027				
Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298)) 350407.0733 from ppm to gm/1000 kg use conversion Heat of formation Hfo for JP-8-jet A in KJ/KmoleK= -30681 ppm*(M/Mex). To get gm/s multiply by Heat of reaction for Jot A in KJ/KmoleK= -30681 ppm*(M/Mex). To get gm/s multiply by (Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products 580.2563572 To get gm/s multiply by (22400/M) Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460= 1120.861443 To get gm/s multiply by (22400/M) Emission test data collected in ppm (volume parts per million) test ppm gm/s std. cc/s gm/J fuel energy CO with molecular weight M=28 487.33 471.3312301 0.892010968 713.608774 1.1468E-06 HC with molecular weight M=170.337 (unburned fuel) 131.57 774.124682 1.465558223 126.661044 1.88353E-06 NOx, mainly NO with molecular weight M=30 25.12 26.03070485 0.049264027 6.733355E-08				Emissions data conversion factors
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK= -30681 ppm*(M/Mex). To get gm/s multiply by Heat of reaction for Jet A in KJ/KmoleK=.393522+0.965*(-241827)-(-30681)= -596204 (kg/s(exhaust)/1000) (Tt4-298) in K=(sum of reaction)/sum of products 580.2563572 To get gm/s multiply by (22400/M) Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460= 580.2563572 To get gm/s multiply by (22400/M) Emission test data collected in ppm (volume parts per million) test ppm gm/1000kg gm/s std. cc/s gm/J fuel energy CO with molecular weight M=170.337 (unburned fuel) 131.57 774.124682 1.465058223 132.66174 1.88353E-06 NOx, mainly NO with molecular weight M=30 25.12 26.03070485 0.049264027 36.7838065 6.33355E-08				
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)= -596204 (kg/s(exhaust)/1000) (T4-298) in K=(sum of reaction)/sum of products 580.2563572 To get std. cc/s multiply by (22400/M) Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460= 1120.861443 To get std. cc/s multiply by (22400/M) Emission test data collected in ppm (volume parts per million) test ppm gm/s std. cc/s gm/J fuel energy CO with molecular weight M=28 487.33 471.3312301 0.892010968 713.608774 1.1468E-06 NOx, mainly NO with molecular weight M=30 25.12 26.0070485 0.049264027 36.7838065 6.33355E-08				
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products 580.2563572 To get std. cc/s multiply by (22400/M) Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460= 1120.861443 To get gm/Joule fuel at 42800kJ/kg, multiply gm/s/(lbm/s fuel*0.4536*42800000 J/kg) Emission test data collected in ppm (volume parts per million) test ppm gm/1000kg gm/s std. cc/s gm/J fuel energy CO with molecular weight M=28 487.33 471.3312301 0.892010968 713.608774 1.1468E-06 HC with molecular weight M=170.337 (unburned fuel) 131.57 774.1246682 1.465058223 192.661044 1.88353E-06 NOx, mainly NO with molecular weight M=30 25.12 26.03070485 0.049264027 36.7838065 6.33355E-08				
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)'9/5-460= 1120.861443 To get gm/Joule fuel at 42800kJ/kg, multiply gm/s/(lbm/s fuel*0.4536*42800000 J/kg) Emission test data collected in ppm (volume parts per million) test ppm gm/1000kg gm/s std. cc/s gm/J fuel energy 487.33 471.331201 0.892010968 713.608774 1.1468E-06 HC with molecular weight M=170.337 (unburned fuel) 131.57 774.1246682 1.465058223 192.661044 1.88358-06 NOx, mainly NO with molecular weight M=30 25.12 26.03070485 0.049264027 36.7838065 6.33355E-08				
gm/s/(lbm/s fuel*0.4536*42800000 J/kg) Emission test data collected in ppm (volume parts per million) test ppm gm/1000kg gm/s std. cc/s gm/J fuel energy CO with molecular weight M=28 487.33 471.331201 0.892010968 713.608774 1.1468E-06 HC with molecular weight M=170.337 (unburned fuel) 131.57 774.1246682 1.465058223 192.661044 1.88353E-06 NOx, mainly NO with molecular weight M=30 25.12 26.03070485 0.049264027 36.7838065 6.33355E-08				
Emission test data collected in ppm (volume parts per million) test ppm gm/1000kg gm/s std. cc/s gm/J fuel energy CO with molecular weight M=28 487.33 471.3312301 0.892010968 713.608774 1.1468E-06 HC with molecular weight M=170.337 (unburned fuel) 131.57 774.1246682 1.465058223 192.661044 1.88353E-06 NOx, mainly NO with molecular weight M=30 25.12 2.6.03070485 0.049264027 36.7838065 6.33355E-08	Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=		1120.861443	
CO with molecular weight M=28 487.33 471.3312301 0.892010968 713.608774 1.1468E-06 HC with molecular weight M=170.337 (unburned fuel) 131.57 774.1246682 1.465058223 192.661044 1.88353E-06 NOx, mainly NO with molecular weight M=30 25.12 26.03070485 0.049264027 36.7838065 6.33355E-08	Emission tost data collected in nnm (volume parts nor million)	toot nor	am/1000kc	
HC with molecular weight M=170.337 (unburned fuel) 131.57 774.1246682 1.465058223 192.661044 1.88353E-06 NOx, mainly NO with molecular weight M=30 25.12 26.03070485 0.049264027 36.7838065 6.33355E-08				
NOx, mainly NO with molecular weight M=30 25.12 26.03070485 0.049264027 36.7838065 6.33355E-08				
	-			

Methanol Emission Test Result Averages	377.73	9754.226671	17.5689
		gm/1000kg	gm/
Turbine inlet temperature Tt4 (in F)=((Tt4-298)+298)*9/5-460		663.6302326	gm/s/(lbr
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products		326.2390181	
Heat of reaction for methanol in KJ/KmoleK =-393522-1.5*241827-(-30822)=			To get st
Heat of formation Hfo for methanol in KJ/KmoleK =			(kg/s(e)
Sum of reactant moles*specific heat*temperature rise=sum nR*Cpc*(Tin-298)		1485068.882	ppm*(N
Sum of product moles*specific heat=sum(nP*Cpt)=		6775.73423	from pp
Reactant (nR) composition: 1CH3OH+(1+ex)*1.5O2+(1+ex)*5.64N2			
Product (nP) composition: 1CO2+2H2O+ex*1.5O2+(1+ex)*5.64N2			Emissio
Using burner exit specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6			
Using burner exit specific heat for O2 with Cpt=34.0 and for N2 with Cpt=31.6			
Results in burner inlet specific heat for O2 with Cpc=3*8.314=29 and for N2 with Cpc=29			
Cold O2 has Cpc=3.5R where R= 8.3143 KJ/kmoleK=1.986 cal/gmmoleK see JANEF			
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK			
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		1112.565	air out s
Methanol heating value LHV in BTU/lbm at 100% combustion efficiency			air in sp
Total exhaust gas mass flow rate is air flow + fuel flow, in units of Ibm/s		3.970821565	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.131643766	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.021071431	
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*27.537)/(air (ex)+prod)		28.74787949	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air		6.596257928	this is be
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C		0.081944211	44-14-1-1
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		3.888877354	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.14*28.97/32=		6.2475	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.5(1+3.76)/1=		7.14	
Product molecular weight Mprod is (1*44+2*18+5.64*28)/(1+2+5.64)		27.537	
Then moles product to moles of stoichiometric air ratio is			= (1+2+5
1 mole fuel gives:1CH4O+1.5(O2+3.76N2) produces 1CO2+2H2O+5.64N2			=kg fuel
100% methanol with molecular weight M=32 for (CH3OH)has LHV in kJ.kg		22670	
Stoichiometric reaction equation, assuming complete combustion			
5M) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value			
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		1077.201145	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		714	
Turbine shaft power output in BTU/s =		389.3958735	
Assume Turbine shaft HP power output =1.1*compressor power input=		550.7720983	
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=		500.7019075	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn			
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.796	0.081944211	
Turbine type fuel flow meter reading in gallon per minute		0.74	
4M) Turbine inlet temperature calculation from exhaust gas temperature EGT			
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		78.92098043	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		55.79713316	
Calculate total bleed air nozzle flow rate in lbm/s		0.727662143	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		835	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		7430.290107	
Calculate combined bleed air nozzle throat in square feet defined as An=		0.005326322	
3M) Turbine bleed air output power load calculation			
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.616539497	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		242.3294172	
Venturi throat area calculated in square feet Av=		0.267253542	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		0.002213763	
Ambient air absolute temperature in degrees Rankine =		515.5	
Ambient air absolute pressure in units of PSFA is from local barometer		1958.290107	
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =		27.69	
2M) Turbine engine air inlet flow calculation in units of pound mass per second			
1.0.0			
Compressor outlet pressure in psi gage		39	
Turbine RPM during test under load with flow control bleed air valve on =		42000	
Bleed air nozzle total pressure measured in the manifold Pn in psi =		38	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		375	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		12.5	
local sealevel barometer reading reported by airport tower in " mercury Hg=		29.02	
1M) Outside air temperature OAT is measured in degrees F, called OATF=	pi=	55.5	
Recorded test data running on methanol is indicated by (M):	pi=	3.141592654	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		(
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		2.5 7	
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=		0.625	
Data Reduction from GTC85-72 Gas Turbine Test # 13M on Methanol, March 14, 2000		0.005	

HC with molecular weight M=170.337 (unburned fuel) NOx, mainly NO with molecular weight M=30 CO2 with molecular weight M=44

22670 32 =kg fuel per mole 1.21 = (1+2+5.64)/(1.5*(1+3.76)) 27.537 7.14 6.2475 3.888877354 0.081944211 6.596257928 this is both mass and volume or mole ratio 28.74787949 0.021071431 0.131643766 3.970821565 in kg/s = 1.80116466 9746 air in specific heat Cpc=0.24 BTU/lbmF air out specific heat Cpt=0.27 BTU/lbmF

	6775.73423 1485068.882	from ppm to g ppm*(M/Mex)				
	-30822	(kg/s(exhaust)/1000)				
	-725440	To get std. cc/	s multiply by	(22400/M)		
	326.2390181	To get gm/Joule fuel at 42800kJ/kg, multiply				
	663.6302326	gm/s/(lbm/s fuel*0.4536*42800000 J/kg)				
test ppm	gm/1000kg	gm/s	std. cc/s	gm/J fuel energy		
377.73	9754.226671	17.56896838	14055.1747	1.10436E-05		
98.32	582.5658844	1.049297084	137.986783	6.59574E-07		
7.52	7.847535332	0.014134703	10.5539118	8.88488E-09		
20665.05	31628.84415	56.96875638	29002.276	3.58098E-05		

Data Reduction from GTC85-72 Gas Turbine Test # 14J on JET-A with bleed, March	14, 2000		
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=	,	0.625	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		3	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
Recorded test data running on jet-A fuel is indicated by (A):	pi=	3.141592654	
 Outside air temperature OAT is measured in degrees F, called OATF= 		51	
local sealevel barometer reading reported by airport tower in " mercury Hg=		29.02	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		13.5	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		348	
Bleed air nozzle total pressure measured in the manifold Pn in psi =		41	
Turbine RPM during test under load with flow control bleed air valve on =		42000	
Compressor outlet pressure in psi gage		42	
24) Turking anning signals flaw aslaulation in units of nound more non-second			
2A) Turbine engine air inlet flow calculation in units of pound mass per second		07.00	
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and = Ambient air absolute pressure in units of PSFA is from local barometer		27.69 1958.290107	
Ambient air absolute temperature in degrees Rankine =		511	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		0.002233258	
Venturi throat area calculated in square feet Av=		0.267253542	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		250.7345206	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.81872695	
· · · · · · · · · · · · · · · · · · ·			
3A) Turbine bleed air output power load calculation			
Calculate combined bleed air nozzle throat in square feet defined as An=		0.006391587	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		7862.290107	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		808	
Calculate total bleed air nozzle flow rate in lbm/s		0.939273087	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		66.95138566	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		94.69785808	
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT			
Turbine type fuel flow meter reading in gallon per minute		0.4	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.8	0.044516752	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn			
Total Compressor power input = HP(bleed air)*(Ibm/s venturi)/(Ibm/s bleed)=		485.8258232	
Assume Turbine shaft HP power output =1.1*compressor power input=		534.4084056	
Turbine shaft power output in BTU/s =		377.8267427	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		790	
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		1146.617937	
EA) Turking inlat terms calculation from fuel/air ratio and fuel booting value			
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value Stoichiometric reaction equation, assuming complete combustion			
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg=	_	42800	
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2O+5.574N2	-		=kg fuel per mole
Then moles product to moles of stoichiometric air ratio is			= (1+0.965+5.574)/(1.4825*(1+3.76))
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574)		28.842	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=		7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		14.677	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		3.879453863	
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C		0.044516752	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air		4.937584824	this is both mass and volume or mole ratio
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)		28.94687535	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.011475005	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.168418647	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s		3.923970615	5
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =		18400	
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		1120.450858	air out specific heat Cpt=0.27 BTU/lbmF
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK		5*0 044 00	
Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and I	N2 With Cpc=3.	5"8.314=29	
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6			
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6 Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2			
Reactant (nR) composition: 1CH1.93+(1+ex)*1.482502+(1+ex)*5.574N2			Emissions data conversion factors
Sum of product: moles*specific heat = sum(nP*Cpt)=		1384.678743	
Sum of reactant: moles specific reat = sum(in "Opt)= Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))			from ppm to gm/1000 kg use conversion
Heat of formation Ho for JP-8=jet A in KJ/KmoleK=		-30681	
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)=		-596204	
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products			To get std. cc/s multiply by (22400/M)
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=			To get gm/Joule fuel at 42800kJ/kg, multiply
, ,			gm/s/(lbm/s fuel*0.4536*42800000 J/kg)
Emission test data collected in ppm (volume parts per million)	test ppm		gm/s std. cc/s gm/J fuel energy
CO with molecular weight M=28			0.811260656 649.008525 9.38686E-07
HC with molecular weight M=170.337 (unburned fuel)			1.922264564 252.785515 2.2242E-06
NOx, mainly NO with molecular weight M=30			0.046873029 34.9985285 5.42354E-08
CO2 with molecular weight M=44	23691.34	36011.45019	64.0972509 32631.3277 7.4165E-05

Methanol Emission Test Result Averages	test ppm 384.31	gm/1000kg 10446.65574	gm/s 18.98960
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK Cold O2 has Cpc=3.5R where R= 8.3143 KJ/kmoleK=1.986 cal/gmmoleK see JANEF Results in burner inlet specific heat for O2 with Cpc=3*8.314=29 and for N2 with Cpc=29 Using burner exit specific heat for CO2 with Cpt=31.0 and for H20 with Cpt=31.6 Using burner exit specific heat for CO2 with Cpt=51.9 and for H20 with Cpt=40.6 Product (nP) composition: 1CO2+2H2O+ex*1.5O2+(1+ex)*5.64N2 Reactant (nR) composition: 1CH3OH+(1+ex)*1.5O2+(1+ex)*5.64N2 Sum of product moles*specific heat=sum(nP*Cpt)= Sum of reactant moles*specific heat=sum(nP*Cpt)= Heat of formation Hfo for methanol in KJ/KmoleK = Heat of reaction for methanol in KJ/KmoleK =: Heat of reactant of methanol in KJ/KmoleK =: Heat of reactant of methanol in KJ/KmoleK =: Heat of reactant for methanol in KJ/KmoleK =: H			ppm*(M/ (kg/s(ex) To get sto To get gm
5M) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value Stoichiometric reaction equation, assuming complete combustion 100% methanol with molecular weight M=32 for (CH3OH)has LHV in kJ.kg 1 mole fuel gives:1CH4O+1.5(O2+3.76N2) produces 1CO2+2H2O+5.64N2 Then moles product to moles of stoichiometric air ratio is Product molecular weight Mprod is (1*44+2*18+5.64*28)/(1+2+5.64) Stoichiometric air/fuel ratio in moles= A/F by volume = 1.5(1+3.76)/1= Stoichiometric A/F ratio by weight (using Mair=28.97) =7.14*28.97/32= Burner air flow rate in Ibm/s= venturi air flow rate - bleed air flow rate Burner fuel flow rate in Ibm/s, assume entering at reference temp.=25 C Excess air (ex)=ratio of: (burner air flow:stoichiometric air/Stoichiometric air Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*27.537)/(air (ex)+prod) Actual fuel/air ratio at turbine intel =(Stoichiometric A/F)*(actual F/A) Total exhaust gas mass flow rate is air flow + fuel flow, in units of Ibm/s Methanol heating value LHV in BTU/Ibm at 100% combustion efficiency Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=			=kg fuel p = (1+2+5.4 this is bo in kg/s air in spe
4M) Turbine inlet temperature calculation from exhaust gas temperature EGT Turbine type fuel flow meter reading in gallon per minute Fuel flow rate in Ibm/s from flow meter reading, at spec grav. = Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn Total Compressor power input = HP(bleed air)*(Ibm/s venturi)/(Ibm/s bleed)= Assume Turbine shaft HP power output =1.1*compressor power input= Turbine shaft power output in BTU/s = Turbine exhaust gas temperature Tt9 in degrees F is called EGT and = Turbine inlet temperature= EGT+(BTU/s output power)/(Ibm/s*Cp) degree F=	0.796	0.78 0.086373628 507.0909266 557.8000193 394.3646136 755 1119.475757	
3M) Turbine bleed air output power load calculation Calculate combined bleed air nozzle throat in square feet defined as An= Calculate nozzle flow absolute total pressure inside manifold PSFAn= Calculate nozzle flow absolute total temperature inside manifold TRankine= Calculate total bleed air nozzle flow rate in Ibm/s Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp= Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		0.006391587 7574.290107 821 0.897674423 66.78697708 94.46531412	
2M) Turbine engine air inlet flow calculation in units of pound mass per second Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and = Ambient air absolute pressure in units of PSFA is from local barometer Ambient air absolute temperature in degrees Rankine = Ambient air density = venturi throat density is calculated rho (slug/ft^3)= Venturi throat area calculated in square feet Av= Venturi throat velocity calculated from measured vacuum Vv in ft/s = Venturi mass flow rate as measured by the intake air venturi in lbm/s=		27.69 1958.290107 511 0.002233258 0.267253542 250.7345206 4.81872695	
Recorded test data running on methanol is indicated by (M): 1M) Outside air temperature OAT is measured in degrees F, called OATF= local sealevel barometer reading reported by airport tower in "mercury Hg= Vacuum measured in throat of intake air flow metering venturi in "water H2O= Bleed air nozzle total temperature measured in the manifold Pri and the gree F= Bleed air nozzle total pressure measured in the manifold Pri in psi = Turbine RPM during test under load with flow control bleed air valve on = Compressor outlet pressure in psi gage	pi=	3.141592654 51 29.02 13.5 361 39 42000 40	
Data Reduction from GTC85-72 Gas Turbine Test # 15M on Methanol, March 14, 2000 Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch= Number of bleed air nozzle installed in the bleed air manifold is given by Nn= Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		0.625 3 7	

22670 32 =kg fuel per mole 1.21 = (1+2+5.64)/(1.5*(1+3.76)) 27.537 7.14 6.2475 3.921052527 0.086373628 6.266331937 this is both mass and volume or mole ratio 28.73807745 0.022028174 0.037621018 4.007426155 in kg/s = 1.8177685 9746 air in specific heat Cpc=0.24 BTU/lbmF **1133.969137** air out specific heat Cpt=0.27 BTU/lbmF

	6773.514881	from ppm to g	gm/1000 kg ι	ise conversion
	1469365.226	ppm*(M/Mex)). To get gm/	s multiply by
	-30822	(kg/s(exhaust	t)/1000)	
	-725440	To get std. cc/s	s multiply by	(22400/M)
				800kJ/kg, multiply
	659.6495354	gm/s/(lbm/s fue	el*0.4536*42	800000 J/kg)
est ppm	gm/1000kg	gm/s		gm/J fuel energy
384.31	10446.65574	18.98960177	15191.6814	1.13245E-05
147.58	874.7396031	1.5900741	209.101134	9.48242E-07
12.31	12.85054648	0.023359319	17.4416246	1.39304E-08
22219.1	34018.99107	61.83865051	31481.4948	3.68775E-05

Data Reduction from GTC85-72 Gas Turbine Test # 16J on JET-A with bleed, March	14, 2000		
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=		0.625	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		3.5	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
Recorded test data running on jet-A fuel is indicated by (A):	pi=	3.141592654	
 Outside air temperature OAT is measured in degrees F, called OATF= 		51.5	
local sealevel barometer reading reported by airport tower in " mercury Hg=		29.02	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		14	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		361	
Bleed air nozzle total pressure measured in the manifold Pn in psi =		39	
Turbine RPM during test under load with flow control bleed air valve on =		42000	
Compressor outlet pressure in psi gage		40	
2A) Turbine engine air inlet flow calculation in units of pound mass per second			
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =		27.69	
Ambient air absolute pressure in units of PSFA is from local barometer		1958.290107	
Ambient air absolute temperature in degrees Rankine =		511.5 0.002231075	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=			
Venturi throat area calculated in square feet Av=		0.267253542	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		255.4604267	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.904752336	
24) Turking blood air autout newer land astrulation			
3A) Turbine bleed air output power load calculation		0.00745005	
Calculate combined bleed air nozzle throat in square feet defined as An=		0.007456851	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		7574.290107	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		821	
Calculate total bleed air nozzle flow rate in lbm/s		1.047286827	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		77.79246551	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		110.0317758	
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT			
Turbine type fuel flow meter reading in gallon per minute		0.42	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.8	0.04674259	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn			
Total Compressor power input = HP(bleed air)*(Ibm/s venturi)/(Ibm/s bleed)=		515.3111789	
Assume Turbine shaft HP power output =1.1*compressor power input=		566.8422968	
Turbine shaft power output in BTU/s =		400.7575038	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		837	
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		1217.176213	
FA) Turking in let to my coloulation from fuel/signation and fuel besting uplus			
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value			
Stoichiometric reaction equation, assuming complete combustion		40000	
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg	=	42800	
1 mole fuel gives:1CH1.93+1.4825(02+3.76N2) produces 1CO2+0.965H2O+5.574N2			=kg fuel per mole
Then moles product to moles of stoichiometric air ratio is			= (1+0.965+5.574)/(1.4825*(1+3.76))
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574)		28.842	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=		7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		14.677	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		3.857465509	
Burner fuel flow rate in Ibm/s, assume entering at reference temp.=25 C		0.04674259	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air			this is both mass and volume or mole ratio
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)		28.94559626	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.012117436	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.177847601	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of Ibm/s		3.904208098	5
Jet A heating value LHV in BTU/Ibm (at comb. efficiency eta=1.0) =		18400 1176.516004	
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		1176.516004	air out specific heat Cpt=0.27 BTU/lbmF
6A) Alternate coloulation of turbing inlat Ttd using overage Cn in K I/KmeleK			
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and	NO with Coo 2	E*0 214 20	
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6	ivz with opt=3.	5 0.514=25	
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6			
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2			Emissions data conversion factors
Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2 Sum of product: moles*specific heat = sum(nP*Cpt)=		1313.404208	
Sum of product: moles*specific heat = sum(nP*Cpt)= Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))			from ppm to gm/1000 kg use conversion
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK=			
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)=		-30681 -596204	
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products			To get std. cc/s multiply by (22400/M)
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=			To get gm/Joule fuel at 42800kJ/kg, multiply
1.4.5. million (amp 1.4 (m 1)=((1.4-230)(m 1.)+230) 3/3-400=		.214.019013	gm/s/(lbm/s fuel*0.4536*42800000 J/kg)
Emission test data collected in ppm (volume parts per million)	test ppm	gm/1000kg	gm/s std. cc/s gm/J fuel energy
CO with molecular weight M=28			0.775689572 620.551658 8.54788E-07
HC with molecular weight M=170.337 (unburned fuel)			1.121359248 147.463247 1.23571E-06
NOx, mainly NO with molecular weight M=30			0.052659327 39.3189644 5.80291E-08
CO2 with molecular weight M=44	25620.92	38946.18268	68.97169523 35112.863 7.60049E-05

Data Reduction from GTC85-72 Gas Turbine Test # 17M on Methanol, March 14, 2000			
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=		0.625	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		3.5	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
Recorded test data running on methanol is indicated by (M):	pi=	3.141592654	
1M) Outside air temperature OAT is measured in degrees F, called OATF=	pi-	51.5	
local sealevel barometer reading reported by airport tower in " mercury Hg=		29.02	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		13	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		361	
Bleed air nozzle total pressure measured in the manifold Pn in psi =		38	
Turbine RPM during test under load with flow control bleed air valve on =		42000	
Compressor outlet pressure in psi gage		39	
2M) Turbine engine air inlet flow calculation in units of pound mass per second			
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =		27.69	
Ambient air absolute pressure in units of PSFA is from local barometer		1958.290107	
Ambient air absolute temperature in degrees Rankine = Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		511.5 0.002231075	
Venturi throat area calculated in square feet Av=		0.267253542	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		246.1678268	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.726337612	
······································			
3M) Turbine bleed air output power load calculation			
Calculate combined bleed air nozzle throat in square feet defined as An=		0.007456851	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		7430.290107	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		821	
Calculate total bleed air nozzle flow rate in lbm/s		1.027376142	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		76.31349984	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		107.9398866	
4M) Turbine inlet temperature calculation from exhaust gas temperature EGT			
Turbine type fuel flow meter reading in gallon per minute		0.84	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.796	0.093017753	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn			
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=		496.566277	
Assume Turbine shaft HP power output =1.1*compressor power input=		546.2229047	
Turbine shaft power output in BTU/s =		386.1795936	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		806	
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		1183.189512	
5M) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value			
Stoichiometric reaction equation, assuming complete combustion			
100% methanol with molecular weight M=32 for (CH3OH)has LHV in kJ.kg		22670	
1 mole fuel gives:1CH4O+1.5(O2+3.76N2) produces 1CO2+2H2O+5.64N2		32	=kg fuel p
Then moles product to moles of stoichiometric air ratio is		1.21	= (1+2+5.0
Product molecular weight Mprod is (1*44+2*18+5.64*28)/(1+2+5.64)		27.537	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.5(1+3.76)/1=		7.14	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.14*28.97/32=		6.2475	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		3.69896147	
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C		0.093017753	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*27.537)/(air (ex)+prod)		5.365136143 28.70628987	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.025146992	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.157105831	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of Ibm/s		3.791979223	
Methanol heating value LHV in BTU/lbm at 100% combustion efficiency			air in spe
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		1244.559161	
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK			
Cold O2 has Cpc=3.5R where R= 8.3143 KJ/kmoleK=1.986 cal/gmmoleK see JANEF			
Results in burner inlet specific heat for O2 with Cpc=3*8.314=29 and for N2 with Cpc=29 Using burner exit specific heat for O2 with Cpt=34.0 and for N2 with Cpt=31.6			
Using burner exit specific heat for O2 with Cpt=34.0 and for N2 with Cpt=31.6 Using burner exit specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6			
Product (nP) composition: 1CO2+2H2O+ex*1.5O2+(1+ex)*5.64N2			Emission
Reactant (nR) composition: 1CH3OH+(1+ex)*1.5O2+(1+ex)*5.64N2			L111331011
Sum of product moles*specific heat=sum(nP*Cpt)=		6766.317634	from ppr
Sum of reactant moles specific heat*temperature rise=sum nR*Cpc*(Tin-298)		1469483.268	
Heat of formation Hfo for methanol in KJ/KmoleK =			(kg/s(exh
Heat of reaction for methanol in KJ/KmoleK =-393522-1.5*241827-(-30822)=			To get std
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products		324.3896291	
Turbine inlet temperature Tt4 (in F)=((Tt4-298)+298)*9/5-460		660.3013325	
		gm/1000kg	gm/s
Methanol Emission Test Result Averages	389.05	12351.89715	21.24577

32 =kg fuel per mole 1.21 = (1+2+5.64)/(1.5*(1+3.76)) 27.537 7.14 6.2475 3.69896147 0.093017753 5.365136143 this is both mass and volume or mole ratio 28.70628987 0.025146992 0.157105831 3.791979223 in kg/s = 1.72004178 9746 air in specific heat Cpc=0.24 BTU/lbmF 1244.559161 air out specific heat Cpt=0.27 BTU/lbmF

	6766.317634	from ppm to	gm/1000 kg i	use conversion		
	1469483.268	ppm*(M/Mex). To get gm/	s multiply by		
	-30822	(kg/s(exhaust)/1000)				
	-725440	To get std. cc/s multiply by (22400/M)				
	324.3896291	To get gm/Jou	le fuel at 428	300kJ/kg, multiply		
	660.3013325	gm/s/(lbm/s fu	el*0.4536*42	800000 J/kg)		
test ppm	gm/1000kg	gm/s	std. cc/s	gm/J fuel energy		
389.05	12351.89715	21.24577911	16996.6233	1.17649E-05		
77.04	457.1389246	0.786298048	103.401353	4.35416E-07		
8.8	9.196590754	0.01581852	11.8111618	8.75958E-09		
23020.77	35285.43342	60.69241956	30897.959	3.36087E-05		
77.04 8.8	457.1389246 9.196590754	0.786298048 0.01581852	103.401353 11.8111618	4.35416E-07 8.75958E-09		

Data Reduction from GTC85-72 Gas Turbine Test # 18J on JET-A with bleed, March	14 2000		
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=	14, 2000	0.625	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		4	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
Engine inter all now is interered with a venturi with throat diameter DV inter =		'	
Recorded test data running on jet-A fuel is indicated by (A):	pi=	3.141592654	
1A) Outside air temperature OAT is measured in degrees F, called OATF=	pi=	52 States	
local sealevel barometer reading reported by airport tower in " mercury Hg=		29.02	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		29.02	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		363	
Bleed air nozzle total pressure measured in the manifold Pn in psi =		38.5	
Turbine RPM during test under load with flow control bleed air valve on =		42000	
Compressor outlet pressure in psi gage		39.5	
2A) Turbine engine air inlet flow calculation in units of pound mass per second			
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =		27.69	
Ambient air absolute pressure in units of PSFA is from local barometer		1958.290107	
Ambient air absolute temperature in degrees Rankine =		512	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		0.002228896	
Venturi throat area calculated in square feet Av=		0.267253542	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		260.1092387	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.989130966	
3A) Turbine bleed air output power load calculation			
Calculate combined bleed air nozzle throat in square feet defined as An=		0.008522115	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		7502.290107	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		823	
Calculate total bleed air nozzle flow rate in lbm/s		1.184080332	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		88.37975601	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		125.006727	
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT			
Turbine type fuel flow meter reading in gallon per minute		0.43	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.8	0.047855508	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn			
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=		526.7167402	
Assume Turbine shaft HP power output =1.1*compressor power input=		579.3884142	
Turbine shaft power output in BTU/s =		409.6276089	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		889	
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		1282.764923	
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value			
Stoichiometric reaction equation, assuming complete combustion			
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg=	-	42800	
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2O+5.574N2		13.93	=kg fuel per mole
Then moles product to moles of stoichiometric air ratio is		1.068346394	= (1+0.965+5.574)/(1.4825*(1+3.76))
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574)		28.842	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=		7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		14.677	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		3.805050634	
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C		0.047855508	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air		4.417403846	this is both mass and volume or mole ratio
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)		28.94468258	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.012576839	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.184590263	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s		3.852906143	in kg/s = 1.74767823
Jet A heating value LHV in BTU/Ibm (at comb. efficiency eta=1.0) =		18400	
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		1209.913246	
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK			
Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and N	V2 with Cpc=3	5*8 314=29	
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6	12 mai opo-o.	0 0.01 1-20	
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6			
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2			
Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2			Emissions data conversion factors
Sum of product: moles*specific heat = sum(nP*Cpt)=		1266.900927	
Sum of reactant: moles specific fleat = sum(fir Cpt)= Sum of reactant: moles*spec, heat* temperature rise=sum(nR*Cpc*(Tin-298))			from ppm to gm/1000 kg use conversion
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK=		-30681	
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)=		-596204	
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products			To get std. cc/s multiply by (22400/M)
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=			To get gm/Joule fuel at 42800kJ/kg, multiply
1 and tamp itt (in 1)-((11+20)(in 11)+20) 3/3-400=		.507.005047	gm/s/(lbm/s fuel*0.4536*42800000 J/kg)
Emission test data collected in ppm (volume parts per million)	test ppm	gm/1000kg	gm/s std. cc/s gm/J fuel energy
CO with molecular weight M=28			0.648140023 518.512019 6.97622E-07
HC with molecular weight M=170.337 (unburned fuel)			1.668936891 219.471908 1.79635E-06
NOx, mainly NO with molecular weight M=30			0.059142152 44.1594736 6.36573E-08
CO2 with molecular weight M=44			73.15983371 37245.0063 7.87452E-05

Methanol Emission Test Result Averages		gm/1000kg	gm/s
Heat of formation Hfo for methanol in KJ/KmoleK = Heat of reaction for methanol in KJ/KmoleK =-393522-1.5*241827-(-30822)= (Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products		-30822 -725440 324.6529961	(kg/s(exh To get std To get gm
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK Cold O2 has Cpc=3.5R where R= 8.3143 KJ/kmoleK=1.986 cal/gmmoleK see JANEF Results in burner inlet specific heat for O2 with Cpc=3*8.314=29 and for N2 with Cpc=29 Using burner exit specific heat for O2 with Cpt=34.0 and for N2 with Cpt=31.6 Using burner exit specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6 Product (nP) composition: 1CO2+2H2O+ex*1.5O2+(1+ex)*5.64N2 Reactant (nR) composition: 1CH3OH+(1+ex)*1.5O2+(1+ex)*5.64N2 Sum of product moles*specific heat=sum(nP*Cpt)=		6765.43633	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s Methanol heating value LHV in BTU/lbm at 100% combustion efficiency Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		3.780882144	in kg/s air in spe
Burner air flow rate in Ibm/s= venturi air flow rate - bleed air flow rate Burner air flow rate in Ibm/s= venturi air flow rate - bleed air flow rate Burner fuel flow rate in Ibm/s, assume entering at reference temp.=25 C Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*27.537)/(air (ex)+prod) Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		3.686757037 0.094125108 5.269497994 28.70239748 0.025530597 0.159502404	this is bot
5M) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value Stoichiometric reaction equation, assuming complete combustion 100% methanol with molecular weight M=32 for (CH3OH)has LHV in kJ.kg 1 mole fuel gives:1CH4O+1.5(O2+3.76N2) produces 1CO2+2H2O+5.64N2 Then moles product to moles of stoichiometric air ratio is Product molecular weight Mprod is (1*44+2*18+5.64*28)/(1+2+5.64) Stoichiometric Air/fuel ratio in moles= A/F by volume = 1.5(1+3.76)/1= Stoichiometric Air/fuel ratio in uses (1*44-2*18+3.64*28, 97)/27 - 14/28, 97)/28, 97)/27 - 14/28		1.21 27.537 7.14	2 =kg fuel p = (1+2+5.6
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)= Assume Turbine shaft HP power output =1.1*compressor power input= Turbine shaft power output in BTU/s = Turbine exhaust gas temperature Tt9 in degrees F is called EGT and = Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		508.2296576 559.0526233 395.2502047 845 1232.182036	
4M) Turbine inlet temperature calculation from exhaust gas temperature EGT Turbine type fuel flow meter reading in gallon per minute Fuel flow rate in Ibm/s from flow meter reading, at spec grav. = Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn	0.796		
SM) Turbine bleed air output power load calculation Calculate combined bleed air nozzle throat in square feet defined as An= Calculate nozzle flow absolute total pressure inside manifold PSFAn= Calculate nozzle flow absolute total temperature inside manifold TRankine= Calculate total bleed air nozzle flow rate in Ibm/s Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp= Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		0.008522115 7142.290107 823 1.127261826 84.13882268 119.0082358	
2M) Turbine engine air inlet flow calculation in units of pound mass per second Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and = Ambient air absolute pressure in units of PSFA is from local barometer Ambient air absolute temperature in degrees Rankine = Ambient air density = venturi throat density is calculated rho (slug/ft^3)= Venturi throat area calculated in square feet Av= Venturi throat velocity calculated from measured vacuum Vv in ft/s = Venturi mass flow rate as measured by the intake air venturi in lbm/s=		27.69 1958.290107 512 0.002228896 0.267253542 250.9797378 4.814018862	
Recorded test data running on methanol is indicated by (M): 1M) Outside air temperature OAT is measured in degrees F, called OATF= local sealevel barometer reading reported by airport tower in "mercury Hg= Vacuum measured in throat of intake air flow metering venturi in " water H2O= Bleed air nozzle total temperature measured in the manifold TG in degree F= Bleed air nozzle total pressure measured in the manifold Pn in psi = Turbine RPM during test under load with flow control bleed air valve on = Compressor outlet pressure in psi gage	pi=	3.141592654 52 29.02 13.5 363 36 42000 37	
Data Reduction from GTC85-72 Gas Turbine Test # 19M on Methanol, March 14, 2000 Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch= Number of bleed air nozzle installed in the bleed air manifold is given by Nn= Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		0.625 4 7	
	Biede air load setting: manifold equiped with bleed air marzides, Dia. Dn inche Engine inlet air flow is metered with a venturi with throat diameter Dv inch = Recorded test data running on methanol is indicated by (M): M) Outside air temperature OAT is measured in degrees F, called OATF= local sealevel barometer reading reported by airpot tower in "mercury Hg- Vacuum measured in throat of intake air flow metering venturi in "water H2O= Bied air nozzie total pressure measured in the manifold Tb in degree F Bied air nozzie total pressure measured in the manifold Ph in psi = Tuthine RPM during test under load with flow control bied air valve on = Compressor outlet pressure in psi gage 201 Turbine engine air intel flow calculation in units of pound mass per second Fest altitudie it 250 ft ASL to local barometer is 1.33" below sealevel and = Ambient air absolute pressure in units of PSFA is from local barometer Ambient air density = ventuli throat density is calculated tho (slug/ftv3)= Ventur throat area calculated from measured vacuum Vvin ft/s = Ventur throat veloticy calculated from measured vacuum Vvin ft/s = Ventur throat veloticy calculated from measured vacuum Vvin ft/s = Calculate nozzle flow absolute total prepareutrue inside manifold PSFAn= Calculate nozzle flow absolute total prepareutrue inside manifold PSFAn= Calculate nozzle flow absolute total prepareutrue inside manifold PSFAn= Calculate nozzle flow absolute total temperature inside manifold PSFAn= Calculate nozzle flow absolute total temperature (HTP=). The PSFA Bied air compressor hover equired in TTVs = Turbine combustion chamber pressure PC3, not measured assume bleed air Pn Calculate rozzle flow absolute total temperature (HTP) = Atter the type fuel flow meter reading in galion per minute Fuel flow rate in blm/s are thereading in galion per minute Fuel flow rate in blm/s far the power output = 1.1° compressor power input= Turbine shaft upperature TB in degrees F. called EGT and = Turbine schaust gas means flow	Bieled air lada setting: manifold equiped with bieled air nozzies, Dia,Dn inche Number of bieled air nozzie installed in the bieled air manifold is given by Ma- Engine inlet air flow is metered with a venturi with throat diameter Dv inch = Recorded test diar running on methanol is indicated by (M): Pieled air nozzie total temperature OAT Is measured in the manifold Pi in piele Turbine RPM during test under load with flow control bleed air valve on = Compressor outlet pressure in pie areasured in the manifold Pi in piele Turbine RPM during test under load with flow control bleed air valve on = Compressor outlet pressure in not measured in the manifold Pi in piele Turbine RPM during test under load with flow control bleed air valve on = Compressor outlet pressure in units of PSA is from local barometer Ambient air absolute temperature in degrees Rankine = Ambient air absolute pressure in units of PSA is from local barometer Ambient air absolute pressure in units of PSA is from local barometer Ambient air absolute pressure in units of PSA is from local barometer Ambient air dasolute pressure in units of PSA is from local barometer Ambient air absolute pressure in units of PSA is from local barometer Ambient air absolute pressure in units of PSA is from local barometer Calculate nozie flow absolute total pressure inside manifold PSA is a Calculate nozie flow absolute total pressure inside manifold PSA is a Calculate nozie flow absolute total pressure inside manifold PSA is a Calculate nozie flow absolute total pressure pressore PRA. Calculate compressor power input (1 HP=0.707 BTU/s) or HPbleed= HUrbine intel temperature calculation from exhaust gas temperature EST Turbine exhaut power output in STU's = Turbine with the power output in STU's = Turbine with the power output in STU's = Turbine with the cower terressore PSA is Calculated Card at = Turbine with the power output in STU's = Turbine with the power output in STU's = Turbine intet temperature. EST +{BTU's output power/(tbm	Bleed at in cad setting: manifold equiped with bleed at mackets, Dia Dn inch- 0.022 Engine inlet at flow is metered with a venturi with throat diameter Dv inch = 7 Recorded test data running on methanol is indicated by (W): pi= 3.141592064 IV) Outside at temperature On its indicated by (W): pi= 3.33 Bleed at incize in teading reported by aiport tower in "mercury Hg- 2.80 Vacuum measured in the manifold TS in degree F 3.33 Bleed at incize it oal pressure measured in the manifold TS in degree F= 3.33 Turbine RPM during test under load with flow control bleed at valve on = 2.768 Compressor outside pressure in pig age 37 20) Turbine engine at intel flow calculation in units of pound mass per second 7.86 Tarbine RPM during test under load with flow control bleed at valve on = 0.26723542 Venturi throat are acclulated in degrees Rainflow = 0.26723542 Venturi throat valve objet temperature in degrees Rainflow = 0.26723542 Venturi throat valve objet temperature on degrees Rainflow = 0.26723542 Venturi throat valve objet testate inside manifold TSRaine 0.000222806 Calculate nozzie flow about total temperature inside manifold TSRaine 0.268 Calculate nozzie flow about total temperature inside manifold TSRaine 1.332062261 Calculate nozzie flow about total temperature inside manifold TSRaine

32 =kg fuel per mole 1.21 = (1+2+5.64)/(1.5*(1+3.76)) 27.537 7.14 6.2475 3.686757037 0.94125108 3.269497994 this is both mass and volume or mole ratio 8.70239748 0.025530597 1.159502404 3.780882144 in kg/s = 1.71500814 9746 air in specific heat Cpc=0.24 BTU/lbmF **1259.91514** air out specific heat Cpt=0.27 BTU/lbmF

	6765.43633	from ppm to gm/1000 kg use conversion			
	1470979.174	ppm*(M/Mex). To get gm/s multiply by			
	-30822	(kg/s(exhaust)/1000)			
	-725440	To get std. cc/s multiply by (22400/M)			
	324.6529961	To get gm/Joule fuel at 42800kJ/kg, multiply			
	660.775393	gm/s/(lbm/s fuel*0.4536*42800000 J/kg)			
		gm/s std. cc/s gm/J fuel energy			
test ppm	gm/1000kg	gm/s	std. cc/s	gm/J fuel energy	
test ppm 353.66		gm/s 19.60613005			
••		19.60613005	15684.904	1.07293E-05	
353.66	11432.09154	19.60613005 1.436606702	15684.904 188.919554	1.07293E-05 7.86168E-07	
353.66 141.15	11432.09154 837.66757	19.60613005 1.436606702 0.016670638	15684.904 188.919554 12.4474095	1.07293E-05 7.86168E-07 9.12284E-09	

Data Reduction from GTC85-72 Gas Turbine Test # 20J on JET-A with bleed, March 1	14. 2000		
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=	,	0.625	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		4.5	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
- 9			
Recorded test data running on jet-A fuel is indicated by (A):	pi=	3.141592654	
1A) Outside air temperature OAT is measured in degrees F, called OATF=	pi-	52.5	
local sealevel barometer reading reported by airport tower in " mercury Hg=		29.02	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		16	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		383	
Bleed air nozzle total pressure measured in the manifold Ph in psi =		303	
Turbine RPM during test under load with flow control bleed air valve on =		42000	
		42000	
Compressor outlet pressure in psi gage		50	
24) Turbing anging air inlet flow calculation in units of nound many nor accord			
2A) Turbine engine air inlet flow calculation in units of pound mass per second		07.00	
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =		27.69 1958.290107	
Ambient air absolute pressure in units of PSFA is from local barometer			
Ambient air absolute temperature in degrees Rankine = Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		512.5 0.002226721	
, , , , , , , , , , , , , , , , , , , ,			
Venturi throat area calculated in square feet Av=		0.267253542	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		273.3655119	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		5.238282791	
3A) Turbine bleed air output power load calculation			
Calculate combined bleed air nozzle throat in square feet defined as An=		0.00958738	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		7286.290107	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		843	
Calculate total bleed air nozzle flow rate in lbm/s		1.278298929	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		101.3946711	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		143.4153764	
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT			
Turbine type fuel flow meter reading in gallon per minute		0.45	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.8	0.050081346	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn			
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=		587.6953196	
Assume Turbine shaft HP power output =1.1*compressor power input=		646.4648516	
Turbine shaft power output in BTU/s =		457.0506501	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		944	
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		1366.132833	
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value			
Stoichiometric reaction equation, assuming complete combustion			
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg=		42800	
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2O+5.574N2		13.93	=kg fuel per mole
Then moles product to moles of stoichiometric air ratio is		1.068346394	= (1+0.965+5.574)/(1.4825*(1+3.76))
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574)		28.842	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=		7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		14.677	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		3.959983862	
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C		0.050081346	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air		4.387411255	this is both mass and volume or mole ratio
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)		28.9445434	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.012646856	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.185617907	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s		4.010065208	in kg/s = 1.81896558
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =		18400	
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=			air out specific heat Cpt=0.27 BTU/lbmF
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK			
Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and N	2 with Cpc=3	5*8.314=29	
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6			
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6			
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2			
Reactant (nR) composition: 1CH1.93+(1+ex)*1.4825O2+(1+ex)*5.574N2			Emissions data conversion factors
Sum of product: moles*specific heat = sum(nP*Cpt)=		1260.110094	
Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))			from ppm to gm/1000 kg use conversion
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK=		-30681	
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)=			(kg/s(exhaust)/1000)
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products			To get std. cc/s multiply by (22400/M)
Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=			To get gm/Joule fuel at 42800kJ/kg, multiply
			gm/s/(lbm/s fuel*0.4536*42800000 J/kg)
Emission test data collected in ppm (volume parts per million)	test ppm	gm/1000kg	gm/s std. cc/s gm/J fuel energy
CO with molecular weight M=28			0.625522877 500.418301 6.43355E-07
HC with molecular weight M=170.337 (unburned fuel)		498.3958575	
NOx, mainly NO with molecular weight M=30			0.070415722 52.5770727 7.24231E-08
CO2 with molecular weight M=44	29534.15		81.66480519 41574.8099 8.39928E-05
-			

Methanol Emission Test Result Averages		om gm/1000kg 37.8 11423.21203	gm/s 19.9935
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK Cold O2 has Cpc=3.5R where R= 8.3143 KJ/kmoleK=1.986 cal/gmmoleK see JANEF Results in burner inlet specific heat for O2 with Cpt=3*0.314=29 and for N2 with Cpt=29 Using burner exit specific heat for O2 with Cpt=34.0 and for N2 with Cpt=31.6 Using burner exit specific heat for C02 with Cpt=51.9 and for N2 with Cpt=40.6 Product (nP) composition: 1CO2+2H2O+ex*1.5O2+(1+ex)*5.64N2 Reactant (nR) composition: 1CH3OH+(1+ex)*1.5O2+(1+ex)*5.64N2 Sum of product moles*specific heat=sum(nP*Cpt)= Sum of reactant moles*specific heat=temperature rise=sum nR*Cpc*(Tin-298) Heat of formation Hfo for methanol in KJ/KmoleK = Heat of reaction for methanol in KJ/KmoleK =:393522-1.5*241827-(-30822)= (Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products Turbine inlet temperature Tt4 (in F)=((Tt4-298)+298)*9/5-480		-725440 324.937868 661.2881624	ppm*(M (kg/s(ex To get sto To get gn gm/s/(lbn
5M) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value Stoichiometric reaction equation, assuming complete combustion 100% methanol with molecular weight M=32 for (CH3OH)has LHV in kJ.kg 1 mole fuel gives:1CH4O+1.5(O2+3.76N2) produces 1CO2+2H2O+5.64N2 Then moles product to moles of stoichiometric air ratio is Product molecular weight Mprod is (1*44+2*18+5.64*28)/(1+2+5.64) Stoichiometric air/fuel ratio in moles= A/F by volume = 1.5(1+3.76)/1= Stoichiometric A/F ratio by weight (using Mair=28.97) =7.14*28.97/32= Burner fuel flow rate in Ibm/s, assume entering at reference temp.=25 C Excess air (ex)=ratio of: (burner air flow-stoichiometric air/stoichiometric air Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*27.537)/(air (ex)+prod) Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A) Total exhaust gas mass flow rate is air flow + fuel flow, in units of Ibm/s Methanol heating value LHV in BTU/Ibm at 100% combustion efficiency Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*tet+Cpc*Tt3)/(Cpt*(1+F/A))=			this is bo in kg/s air in sp
4M) Turbine inlet temperature calculation from exhaust gas temperature EGT Turbine type fuel flow meter reading in gallon per minute Fuel flow rate in lbm/s from flow meter reading, at spec grav. = Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)= Assume Turbine shaft HP power output =1.1*compressor power input= Turbine exhaust gas temperature Tt9 in degrees F is called EGT and = Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=	0.	0.9 .796 0.099661879 559.4692762 615.4162039 435.0992561 892 1309.634523	
3M) Turbine bleed air output power load calculation Calculate combined bleed air nozzle throat in square feet defined as An= Calculate nozzle flow absolute total pressure inside manifold PSFAn= Calculate nozzle flow absolute total temperature inside manifold TRankine= Calculate total bleed air nozzle flow rate in Ibm/s Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp= Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		0.00958738 6998.290107 843 1.227772518 97.38691613 137.7466989	
2M) Turbine engine air inlet flow calculation in units of pound mass per second Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and = Ambient air absolute pressure in units of PSFA is from local barometer Ambient air absolute temperature in degrees Rankine = Ambient air density = venturi throat density is calculated rho (slug/ft^3)= Venturi throat area calculated in square feet Av= Venturi throat velocity calculated from measured vacuum Vv in ft/s = Venturi mass flow rate as measured by the intake air venturi in lbm/s=		27.69 1958.290107 512.5 0.002226721 0.267253542 260.2362142 4.98669665	
Recorded test data running on methanol is indicated by (M): 1M) Outside air temperature OAT is measured in degrees F, called OATF= local sealevel barometer reading reported by airport tower in "mercury Hg= Vacuum measured in throat of intake air flow metering venturi in " water H2O= Bleed air nozzle total temperature measured in the manifold Pt 13 in degree F= Bleed air nozzle total pressure measured in the manifold Pt in psi = Turbine RPM during test under load with flow control bleed air valve on = Compressor outlet pressure in psi gage	pi=	3.141592654 52.5 29.02 14.5 383 35 42000 36	
Data Reduction from GTC85-72 Gas Turbine Test # 21M on Methanol, March 14, 2000 Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch= Number of bleed air nozzle installed in the bleed air manifold is given by Nn= Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		0.625 4.5 7	

22670 32 =kg fuel per mole 1.21 = (1+2+5.64)/(1.5*(1+3.76)) 27.537 7.14 6.2475 3.758924132 0.099661879 5.037098009 this is both mass and volume or mole ratio 28.69244232 0.026513405 0.165642499 3.858586011 in kg/s = 1.75025461 9746 air in specific heat Cpc=0.24 BTU/lbmF **1312.582233** air out specific heat Cpt=0.27 BTU/lbmF

	6763.182314 1472174.042			use conversion 's multiply by
	-30822	(kg/s(exhaus	t)/1000)	
	-725440	To get std. cc/	s multiply by	(22400/M)
	324.937868	To get gm/Jou	le fuel at 428	300kJ/kg, multiply
	661.2881624	gm/s/(lbm/s fu	el*0.4536*42	800000 J/kg)
test ppm	gm/1000kg	gm/s	std. cc/s	gm/J fuel energy
337.8	11423.21203	19.99352957	15994.8237	1.03334E-05
69.12	410.3412776	0.718201715	94.4464116	3.71194E-07
10.44	10.91576647	0.019105371	14.2653434	9.87437E-09
27670.11	42432.2484	74.26723857	37808.776	3.83841E-05

Data Reduction from GTC85-72 Gas Turbine Test # 1J on JET-A , September 15, 1998	3		
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=		0.625	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=		0	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =		7	
Recorded test data running on jet-A fuel is indicated by (A):	pi=	3.141592654	
 Outside air temperature OAT is measured in degrees F, called OATF= 		80	
local sealevel barometer reading reported by airport tower in " mercury Hg=		30.13	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=		9.66	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=		400	
Bleed air nozzle total pressure measured in the manifold Pn in psi =		40.7	
Turbine RPM during test under load with flow control bleed air valve on =		42700	
Compressor outlet pressure in psi gage		40.7	
2A) Turbine engine air inlet flow calculation in units of pound mass per second			
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =		28.8	
Ambient air absolute pressure in units of PSFA is from local barometer		2036.791444	
Ambient air absolute temperature in degrees Rankine =		540	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=		0.00219804	
Venturi throat area calculated in square feet Av=		0.267253542	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =		213.7900425	
Venturi mass flow rate as measured by the intake air venturi in lbm/s=		4.04391793	
3A) Turbine bleed air output power load calculation			
Calculate combined bleed air nozzle throat in square feet defined as An=		0	
Calculate nozzle flow absolute total pressure inside manifold PSFAn=		7897.591444	
Calculate nozzle flow absolute total temperature inside manifold TRankine=		860	
Calculate total bleed air nozzle flow rate in lbm/s		0	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=		0	
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=		0	
4A) Turbine inlet temperature calculation from exhaust gas temperature EGT			
Turbine type fuel flow meter reading in gallon per minute		0.26	
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	0.8	0.028935889	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn		44.5	
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=		439.2827398	
Assume Turbine shaft HP power output =1.1*compressor power input=		483.2110138	
Turbine shaft power output in BTU/s =		341.6301867	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =		588	
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=		898.6659468	
5A) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value			
Stoichiometric reaction equation, assuming complete combustion			
Aviation kerosine has formula CH1.93 and LHV=18400BTU/lbm=10222cal/gm or in KJ/kg=		42800	
1 mole fuel gives:1CH1.93+1.4825(O2+3.76N2) produces 1CO2+0.965H2O+5.574N2			=kg fuel per mole
Then moles product to moles of stoichiometric air ratio is			= (1+0.965+5.574)/(1.4825*(1+3.76))
Product molecular weight Mprod is (1*44+0.965*18+5.57*28)/(1*0.965+5.574)		28.842	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.4825(1+3.76)/1=		7.057	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.057*28.97/13.93=		14.677	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate		4.04391793	
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C		0.028935889	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air			this is both mass and volume or mole ratio
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*28.84)/(air (ex)+prod)		28.95551825	
Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow		0.00715541	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)		0.105019945	
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s		4.072853819	6
Jet A heating value LHV in BTU/lbm (at comb. efficiency eta=1.0) =		18400	
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=		869.3927348	air out specific heat Cpt=0.27 BTU/lbmF
6A) Alternate calculation of turbing inlet Tt4 using average Cn in K I/KmoleK			
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK Cold dual molecule gas has specific heat =3.5R which on mole basis is same for O2 and N	12 with Coc-2	5*9 214-20	
Using burner average specific heat for O2 with Cpt=34.0, for N2 with Cpt=31.6	2 with opt=0.	.5 0.514-23	
Using burner average specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6			
Product (nP) composition: 1CO2+0.956H2O+ex*1.4825O2+(1+ex)*5.574N2			
Reactant (nR) composition: 1CH1.93+(1+ex)*1.482502+(1+ex)*5.574N2			Emissions data conversion factors
Sum of product: moles*specific heat = sum(nP*Cpt)=		2196.251448	
Sum of reactant: moles specific field = sum(nP Cpt)= Sum of reactant: moles*spec. heat* temperature rise=sum(nR*Cpc*(Tin-298))			from ppm to gm/1000 kg use conversion
Heat of formation Hfo for JP-8=jet A in KJ/KmoleK=		-30681	
Heat of reaction for Jet A in KJ/KmoleK=-393522+0.965*(-241827)-(-30681)=			(kg/s(exhaust)/1000)
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products			To get std. cc/s multiply by (22400/M)
(114-298) In K=(sum of reactants-neat of reaction)/sum of products Turb. inlet temp Tt4 (in F)=((Tt4-298)(in K)+298)*9/5-460=			To get gm/Joule fuel at 42800kJ/kg, multiply
·····································		310.30470	gm/s/(lbm/s fuel*0.4536*42800000 J/kg)
Emission test data collected in ppm (volume parts per million)	test ppm	gm/1000kg	gm/s std. cc/s gm/J fuel energy
CO with molecular weight M=28			9.708002511 7766.40201 1.72813E-05
HC with molecular weight M=170.337 (unburned fuel)			0.591979811 77.847724 1.05379E-06
NOx, mainly NO with molecular weight M=30			0.024366334 18.193529 4.33747E-08
CO2 with molecular weight M=44	14376.78	21846.55493	40.36034128 20547.0828 7.18458E-05

Methanol Emission Test Result Averages			gm/1000kg 8968.019456	gm/ 14.556
Turbine inlet temperature Tt4 (in F)=((Tt4-298)+298)*9/5-460	40.04 ···		685.7543102	. .
(Tt4-298) in K=(sum of reactants-heat of reaction)/sum of products			338.5301723	
Heat of reaction for methanol in KJ/KmoleK =-393522-1.5*241827-(-30822)=			-725440	
Heat of formation Hfo for methanol in KJ/KmoleK =				_(kg/s(e:
Sum of reactant moles*specific heat*temperature rise=sum nR*Cpc*(Tin-298)			1567003.386	
Sum of product moles*specific heat=sum(nP*Cpt)=			6771.754996	from pp
Reactant (nR) composition: 1CH3OH+(1+ex)*1.5O2+(1+ex)*5.64N2				
Product (nP) composition: 1CO2+2H2O+ex*1.5O2+(1+ex)*5.64N2				Emissio
Using burner exit specific heat for CO2 with Cpt=51.9 and for H2O with Cpt=40.6				
Results in burner inlet specific heat for O2 with Cpc=3*8.314=29 and for N2 with Cpc=29 Using burner exit specific heat for O2 with Cpt=34.0 and for N2 with Cpt=31.6				
Cold O2 has Cpc=3.5R where R= 8.3143 KJ/kmoleK=1.986 cal/gmmoleK see JANEF				
6A) Alternate calculation of turbine inlet Tt4 using average Cp in KJ/KmoleK				
Calc. turb. inlet temp.Tt4(in F)=((F/A)*LHV*eta+Cpc*Tt3)/(Cpt*(1+F/A))=			1150.161879	
Methanol heating value LHV in BTU/lbm at 100% combustion efficiency				air in s
Total exhaust gas mass flow rate is air flow + fuel flow, in units of lbm/s			3.57840077	
Equivalence ratio at turbine inlet =(Stoichiometric A/F)*(actual F/A)			0.142371212	
Exhaust gas molecular weight Mex=(air(ex)*28.97+prod*27.537)/(air (ex)+prod) Actual fuel/air ratio F/A by weight=burner fuel flow/burner air flow			28.73030468 0.022788509	
Excess air (ex)=ratio of: (burner air flow-stoichiometric air)/stoichiometric air Exbaust and molecular weight $Max = (air(ax)^{3/2}, 0.7)$ and $Max = (air(ax)^{3/2}, 0.7)$			6.023891877	
Burner fuel flow rate in lbm/s, assume entering at reference temp.=25 C			0.079729503	
Burner air flow rate in lbm/s= venturi air flow rate - bleed air flow rate			3.498671267	
Stoichiometric A/F ratio by weight (using Mair=28.97) =7.14*28.97/32=			6.2475	
Stoichiometric air/fuel ratio in moles= A/F by volume = 1.5(1+3.76)/1=			7.14	
Product molecular weight Mprod is (1*44+2*18+5.64*28)/(1+2+5.64)			27.537	
Then moles product to moles of stoichiometric air ratio is				= (1+2+5
1 mole fuel gives:1CH4O+1.5(O2+3.76N2) produces 1CO2+2H2O+5.64N2			32	=kg fuel
100% methanol with molecular weight M=32 for (CH3OH)has LHV in kJ.kg			22670	
Stoichiometric reaction equation, assuming complete combustion				
5M) Turbine inlet temp. calculation from fuel/air ratio and fuel heating value				
Turbine inlet temperature= EGT+(BTU/s output power)/(lbm/s*Cp) degree F=			1145.769816	
Turbine exhaust gas temperature Tt9 in degrees F is called EGT and =			825	
Turbine shaft power output in BTU/s =			309.9175984	
Assume Turbine shaft HP power output =1.1*compressor power input=			438.3558677	
Total Compressor power input = HP(bleed air)*(lbm/s venturi)/(lbm/s bleed)=			398.5053343	
Turbine combustion chamber pressure Pt3, not measured assume= bleed air Pn				
Fuel flow rate in lbm/s from flow meter reading, at spec grav. =	(0.796	0.079729503	
Turbine type fuel flow meter reading in gallon per minute			0.72	
4M) Turbine inlet temperature calculation from exhaust gas temperature EGT				
Bleed air compressor horse power input (1 HP=0.707 BTU/s) or HPbleed=			79.02270766	
Bleed air compressor power required in BTU/s = flow rate*temp. rise*Cp=			55.86905432	
Calculate total bleed air nozzle flow rate in lbm/s			0.865381882	
Calculate nozzle flow absolute total temperature inside manifold TRankine=			809	
Calculate combined bleed an hozzle throat in square reet defined as An= Calculate nozzle flow absolute total pressure inside manifold PSFAn=			6212.791444	
Calculate combined bleed air nozzle throat in square feet defined as An=			0.007456851	
3M) Turbine bleed air output power load calculation				
Venturi mass flow rate as measured by the intake air venturi in lbm/s=			4.364053149	
Venturi throat velocity calculated from measured vacuum Vv in ft/s =			230.7146496	
Venturi throat area calculated in square feet Av=			0.267253542	
Ambient air density = venturi throat density is calculated rho (slug/ft^3)=			0.00219804	
Ambient air absolute temperature in degrees Rankine =			540	
Ambient air absolute pressure in units of PSFA is from local barometer			2036.791444	
Test altitude is 1250 ft ASL or local barometer is 1.33" below sealevel and =			28.8	
2M) Turbine engine air inlet flow calculation in units of pound mass per second				
Compressor outlet pressure in psi gage			50	
Compressor outlet pressure in psi gage			38800	
Bleed air nozzle total pressure measured in the manifold Pn in psi = Turbine RPM during test under load with flow control bleed air valve on =			29 38800	
Bleed air nozzle total temperature measured in the manifold Tt3 in degree F=			349	
Vacuum measured in throat of intake air flow metering venturi in " water H2O=			11.25	
local sealevel barometer reading reported by airport tower in " mercury Hg=			30.13	
1M) Outside air temperature OAT is measured in degrees F, called OATF=			80	
Recorded test data running on methanol is indicated by (M):	pi=		3.141592654	
Engine inlet air flow is metered with a venturi with throat diameter Dv inch =			7	
Number of bleed air nozzle installed in the bleed air manifold is given by Nn=			3.5	
Bleed air load setting: manifold equiped with bleed air nozzles, Dia.Dn inch=			0.625	
Data Reduction from GTC85-72 Gas Turbine Test #5M on Methanol, September 15, 199	8			

22670 32 =kg fuel per mole 1.21 = (1+2+5.64)/(1.5*(1+3.76)) 27.537 7.14 6.2475 3.498671267 0.079729503 6.023891877 this is both mass and volume or mole ratio 28.73030468 0.022788509 0.142371212 3.57840077 in kg/s = 1.62316259 9746 air in specific heat Cpc=0.24 BTU/lbmF 1150.161879 air out specific heat Cpt=0.27 BTU/lbmF

	6771.754996 1567003.386 -30822 -725440	ppm*(M/Mex)). To get gm/ i)/1000)	
st ppm	338.5301723		le fuel at 428 el*0.4536*42	300kJ/kg, multiply
317.15		14.55655368		
24.67	146.2641568	0.237410508	31.2204358	1.53378E-07
6.64	6.93344544	0.011254109	8.40306824	7.27068E-09
22741	34827.47611	56.5306563	28779.2432	3.65215E-05