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Abstract

Effects of Turbidity on the Foraging Abilities of Brook Trout (Salvelinus fontinalis)

and Smallmouth Bass (Micropterus dolomieu)

John A. Sweka

Sedimentation is the major pollutant of waters in North America.  Most research
on the effects of increased sedimentation has focussed on its effects on stream habitat and
its ramification on the reproductive potential of fish.  Although relatively large sediment
loads may be necessary to alter stream habitat, only small loads are needed to raise mean
stream turbidity levels.  Turbidity may be an important, yet relatively unexamined factor
in stream fish production.  With this, I sought to determine the influence of elevated
turbidity on the foraging abilities of two predatory species representing both cold and
warmwater stream habitas, brook trout (Salvelinus fontinalis) and smallmouth bass
(Micropterus dolomieu).

This research was conducted in an artificial stream at West Virginia University
and consisted of determination of effects of turbidity on reactive distance and foraging
success of both species and determination of the effects of turbidity on brook trout mean
daily consumption and specific growth rates. During reactive distance and foraging
success experiments, three fish were tested at a time creating a situation of competition.
In trials the fish first recognizing a potential prey item was at an advantage over the other
fish by striking at that prey item at the moment of recognition.  Thus, a measure of
maximum reactive distance was established. Increasing turbidity resulted in an
exponential decrease in reactive distance for both species, but the rate of decrease was
found to be greater for brook trout than for smallmouth bass.  Also, brook trout reactive
distance was found to be lower for dark colored prey items than it was for light colored
prey items.  Decreased reactive distance resulted in a lower portion of prey being
recognized, but had little influence on foraging success after recognition.

When conducting growth and consumption experiments with brook trout, a single
fish was tested at a time.  Turbidity had no effect on mean daily consumption despite the
previously found decrease in reactive distance.  Brook trout were found to become more
active in turbid water, which increased their chance of encountering prey.  Although
consumption did not decrease with increasing activity, specific growth rates decreased
due to an increase in the activity necessary to locate each prey item.
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John A. Sweka Introduction 1

Introduction

Sedimentation is considered the major pollutant of streams in the United States.

Naturally occurring inputs of sediment are considered to be small and nondestructive to

stream habitat and biota.  However, excessive sediment loading resulting from

anthropogenic activities and can overwhelm a stream’s natural processing capabilities

and damage its biological components (Waters 1995).

Sources of excessive sediment input may include agriculture, mining, road

construction, and timber harvest (Waters 1995).  The major contributors of sediment to

Appalachian streams are timber harvest and its associated road construction, which will

be the focus of my discussion here.  Burns (1972) suggested that increased flow due to

logging operations was beneficial to fish populations by providing more living area and

increasing the fish rearing capacity of the stream, especially during low flow periods of

the summer.  However, increased stream flow may be accompanied by increased

sediment loads due to the erosion of streambanks and runoff from surrounding slopes and

road surfaces (Hartman et al. 1996).  Both logging and associated roads accelerate the

delivery of sediment to the stream bed, but the greatest contribution to sediment delivery

is from roads (Eaglin and Hubert 1993; Grayson et al. 1993; Davies and Nelson 1993).

Grayson et al. (1993) found than a road of 4-m width and 100-m length produced more

sediment than a logging operation of 30.5-ha.  Even if logging roads do not cross runoff

producing areas, mean stream turbidity values can still increase 20%.  Grayson et al.

(1993) considered this to be an unavoidable impact of logging even under strict

enforcement of operation codes.
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Increased sediment loading can be detrimental to stream fish production through

habitat degradation and reduction of the reproductive potential of fish. Loss of

microhabitats and increased competition for available niches increases the territorial

competition between individual fish .  This could force fish to live in poorer habitat with

less cover and increase their vulnerability to predation (Alexander and Hansen 1986).  In

addition to competition for optimum foraging habitat, the prey base for many stream

fishes can be reduced through reduction in macroinvertebrate production due to the filling

of interstitial spaces by fine sediment (Hartman et al. 1996), or change benthic habitat

from cobble and gravel to gravel and sand.  This filling of interstitial spaces also reduces

the permeability of streambed substrate.  Substrate with less permeability results in

reduced salmonid egg survival (Allexander and Hansen 1986) and emergence

(Harshbarger and Porter 1982).

Suspended sediments exert forces on organisms by reducing light and visual

clarity (Barret et al. 1992).  Turbidity is a measure of the light absorbing properties of a

sample of water (Duchrow and Everhart 1971) and is directly related to the amount of

suspended sediment.  Turbidity rarely reaches lethal levels in natural systems, suggesting

that its effects on fish production are the product of behavioral responses (Gradall and

Swenson 1982).  Large sediment loads may be required to alter steam substrate, but small

loads can significantly increase mean stream turbidity (Barret et al. 1992).  Turbidity may

thus be an important, yet relatively unexamined factor in stream-fish production.

Effects of turbidity on fish behavior include avoidance and redistribuation,

changes in activity, and decreased foraging ability (Sigler et al. 1984, Gradall and

Swenson 1982; Barret et al. 1992).  In laboratory experiments, Sigler et al. (1984) found



John A. Sweka Introduction 3

steelhead (Oncorhynchus mykiss) and coho salmon (O. kisutch) showed a net emigration

from sections of raceway channels with elevated turbidity to those of clear water.  Bisson

and Bilby (1982) found similar results.  Coho salmon acclimated to clear water showed

significant avoidance of water of greater than 70 nephelometric turbidity units (NTU).

These authors believed that the fish were avoiding turbid waters in an effort to maintain

view of potential prey. Larimore (1975) found that turbidity caused young smallmouth

bass (Micropterus dolomieu) to be displaced downstream due to the loss of visual

orientation.  Such avoidance behavior among fish species could leave long stream

reaches devoid of fish (Waters 1995).  Larval shad (Dorosoma spp.) were found to be

distributed nearer the surface of the water under trubid conditions where light intensities

would be expected to be greatest (Mathews 1984).  Zooplankton migrate downward

during the day, and migration of fish larvae near the surface where light intensities are

suitable for predation may result in larval fish occupying a zone in which optimal prey

concentrations are not available. Vertical segregation of larval fish and their prey during

turbid episodes could increase the possibility of nutritional stress (Mathews 1984).

Using a turbidity gradient chamber, Gradall and Swenson (1982) studied the

influence of turbidity on behavior and distribution of brook trout (Salvelinus fontinalis)

and creek chubs (Semotilus atromaculatus).  They found that creek chubs concentrated in

turbid water while brook trout showed no preference.  Both species were more active in

turbid water and used overhead cover less.  This would suggest that similar responses in

natural stream systems should promote increased activity during periods of high

invertebrate drift (Gradall and Swenson 1982). The question then arises as to whether

increased activity can compensate for decreased visual acuity under turbid conditions and
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what this would mean for the accuracy of predictions from bioenergetics models for

stream fishes.

Several studies have shown either decreased consumption rates or decreased

growth rates of fish under turbid conditions.  Gardner (1981) found feeding rates of

bluegill (Lepomis macrochirus) on Daphnia pulex to decrease linearly with increasing

turbidity from 0 to approximately 200 NTU’s.  Similar results were found by Benfield

and Minello (1996) with gulf killifish (Fundulus grandis) preying on grass shrimp

(Palaemonetes pugio) in 100 NTU’s water compared to clear water.  An exception to this

trend is walleye (Stitzostedion vitreum).  Vandenbyllaardt et al. (1991) found feeding

rates for juvenile walleye (<85 mm) to increase in waters greater than 7 NTU and remain

higher than in clear water up to 160 NTU.  Walleye possess unique visual adaptations for

feeding under turbid conditions which other species may not (Vinyard and Yuan 1996).

Reduced growth rates of fish under turbid conditions have been demonstrated for

steelhead and coho salmon (Sigler et al. 1984) which was attributed to a decrease in

visual acuity and reduced prey consumption.  Contrary to these findings, Swenson and

Matson (1976) found normal ranges of turbidity seen in nature to have no influence on

the growth rates of larval lake herring (Coregonus artedii).  They did find, however, that

the fish tended to congregate closer to the water surface where light intensities would be

greatest.  A problem with the above studies is that they either showed decreased feeding

rates or decreased growth rates.  None of them were designed to show both in the same

experiment.

The reactive distance of a fish is the distance between a fish’s holding position or

focal point and the point at which potential prey is recognized (Barret et al. 1992).
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Researchers agree that as turbidity increases, a fish’s reactive distance decreases. Vinyard

and O’Brien (1976) and Miner and Stien (1996) both showed bluegill reactive distance to

decrease as a curvilinear function with the greatest decrease in reactive distance at low

turbidity levels.  Barret et al. (1992) found rainbow trout reactive distance to decrease as

a linear function with increasing turbidity.  Decreases in reactive distance under turbid

conditions would be expected to decrease encounter rates between predators and prey

(Gerritsen and Strickler 1977) which would thus be expected to result in decreased prey

consumption and reduced growth rates.

More attention has been given to how turbidity affects coldwater species,

particularly salmonids, than to how it effects warmwater species (Waters 1995).  This

may be due to the perception that warmwater streams are generally more turbid than

coldwater streams and that their species have evolved mechanisms to deal with

chronically turbid conditions (Waters 1995).  According to the river continuum concept,

species assemblages shift from cold to warmwater species as stream temperature

increases with increasing stream order.  Also, large rivers may be permanently turbid

(Vannote et al. 1980).  A comparison of the foraging abilities of predatory species

representing various habitats is needed to determine which species and habitats would be

most affected by increased turbidity.

The objective of this research is to determine how turbidity influences the

foraging abilities of predatory fish found in Appalachian streams.  Brook trout and

smallmouth bass are economically important gamefish and represent cold and warmwater

stream habitats respectively.  Both are predatory species which feed primarily by sight

and their habitats are susceptible to increased sedimentation due to land-use activities
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such as timber harvest, road construction, and agriculture.  The specific questions to be

addressed in this study were: (1) how does turbidity influence the reactive distance and

foraging success of both species? (2) what effect does turbidity have on the mean daily

consumption and specific growth rates of brook trout?; (3) what implications does

turbidity have for bioenergetics modeling of stream fishes?; and (4) how do predatory

species adapted to different habitats compare in their responses to increasing turbidity?
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Chapter 1:

Influence of Turbidity on Brook Trout (Salvelinus fontinalis)

Reactive Distance and Foraging Success

Abstract
Past research has focussed on the effects of sediment action on stream morphology and

brook trout (Salvelinus fontinalis) habitat.  However, there is little information on the

effects of suspended sediment, on brook trout foraging behavior. The objectives of this

study were to determine (1) the effects of turbidity on brook trout reactive distance, (2)

how turbidity affects foraging success of brook trout, (3) if prey color influences reactive

distance, and (4) how turbidity affects encounter rate between predator and prey.  I used

videographic techniques to study brook trout foraging behavior in an artificial stream.

Larval and adult houseflies (Musca domestica) were used as prey, which allowed a

comparison of reactive distance between light and dark colored prey.  Three brook trout

were tested during each sampling period, creating a competitive situation under which a

measure of maximum reactive distance could be made. Treatment turbidity levels ranged

from 0-43 NTU.  Maximum brook trout reactive distance decreased exponentially with

increasing turbidity. With decreasing reactive distance, the proportion of prey recognized

also decreased significantly.  However, turbidity had no influence on the proportion of

recognized prey that were attacked, the proportion of attacked prey items that were

captured, or the proportion of captured prey that were ingested.  Furthermore, brook trout

reactive distances for dark colored prey were significantly lower than for light colored

prey.  In natural streams, invertebrate drift densities typically increase with turbidity as
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flows increase, but this increase may not be enough to compensate for decreased ability

to detect prey.

Introduction

Increased fine sediment loading can have negative impacts on fish production due

to reduced availability and permeability of spawning gravel (Davies and Nelson 1993,

Hartman et al. 1996), reduction of invertebrate density (Hartman et al. 1996), and altered

stream geomorphology (Alexander and Hansen 1986). Whereas bed sediments affect

fishes by altering substrate composition, suspended sediments exert forces on organisms

by reducing light penetration and visual clarity (Barret et al. 1992), increasing

physiological stress, reducing tolerance to disease (Redding et al. 1987), and causing

respiratory impairment (Berg and Northcote 1985).  Turbidity seldom reaches lethal

levels in natural systems, suggesting that its effects on community structure are the

products of behavioral responses (Gradall and Swenson 1982).  Relatively large sediment

loads may be required to significantly alter stream morphometry, but small inputs can

significantly raise the amount of suspended sediment and markedly increase turbidity

(Duchrow and Everhart 1971).  Consequently, Barret et al. (1992) suggested that

turbidity may have more influence on fish production than any other sediment related

effect.

Responses to turbidity vary among species.  Steelhead (Oncorhynchus mykiss)

and coho salmon (Onocorhynchus kisutch) avoid turbid water (Sigler et al. 1984 and

Bisson and Bilby 1982).  Avoidance of turbidity, in an effort to maintain view of

potential prey, can result in the absence of salmonids from long stream reaches (Waters
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1995).  Elevated turbidity levels can reduce the feeding rates and growth rates of fishes

(Gardner 1981; Sigler et al. 1984; Berg and Northcote 1985; Mcleay et al. 1987; Redding

et al. 1987; Reynolds et al. 1989), but others have reached different conclusions

(Swenson and Matson 1976; Breitburg 1988).  Reduced visual acuity has been attributed

to reduced consumption and growth of bluegill (Lepomis macrochirus), coho salmon,

steelheads, and arctic grayling (Thymallus articus)  (Gardner 1981; Berg and Northcote

1985; Sigler et al. 1984; and McLeay et al. 1987).

Reduced growth under turbid conditions may result from reduced reactive

distance and reduced prey encounter rate.  The reactive distance of a fish is the distance

from a fish’s holding position or focal point to the position of a prey item or predator

when it is recognized (Barret et al. 1992, Miner and Stein 1996). As turbidity increases, a

fish’s reactive distance will decrease due to inhibited visual clarity (Sigler et al. 1984,

Barret et al. 1992, Gardner 1981, Miner and Stein 1996).  Reactive distance of juvenile

bluegills was reduced to less than 3 cm at turbidities greater than 60 NTU (Gardner 1981)

and bluegill reactive distance, in detecting largemouth bass, decreased with increasing

turbidity as a negative power function (Miner and Stein 1996). Further, Barret et al.

(1992) found a linear relationship between the reactive distance of rainbow trout and

increasing turbidity with a 55% reduction in reactive distance at 30 NTU’s.  Mobile prey

could escape these limited fields of vision thereby reducing consumption and growth

rates.  Turbidity could also alter the feeding selectivity of fish, causing fish to only

capture slow moving and slow reacting prey types (Gardner 1981).

Relative to other fishes, there has been considerable research on effects of

turbidity on salmonid foraging (Sigler et al. 1984, Barret et al. 1992, Bison and Bilby
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1982), yet studies with brook trout are lacking. Brook trout are an important component

of fish communities in Appalachian streams. Their habitat is easily influenced by land-

use practices such as timber harvest and road construction. Turbidity may be an

important, yet relatively unexamined, aspect affecting brook trout production.

Consequently, I conducted an experiments to determine foraging behavioral responses of

brook trout to turbidity.  I addressed the following questions:  (1) how turbidity affects

the reactive distance of brook trout, (2) how turbidity affects the foraging success of

brook trout, (3) if prey color has an influence on reactive distance, and (4) how turbidity

effects the encounter rate between predator and prey?

Materials and Methods

Experiments to determine the effects of turbidity on brook trout reactive distance

and foraging success were conducted in an artificial stream at West Virginia University.

All feeding trials were videotaped and later analyzed to determine reactive distance.

Foraging success was determined by observing the brook trout on a computer monitor

while trials were being videotaped.

Artificial Stream Design. - The artificial stream used to measure reactive distance was

a 1.2 x 2.4 m galvanized steel tank (Fig. 1).  The tank had two removable 1.8 m baffles

which separated the tank into one large longitudinal and two smaller sections.  The

largest section was used to observe the fish.  Fish were contained by fences of 1 cm2-

square galvanized wire fencing material positioned upstream and downstream of the

viewing portion of the tank. The artificial stream was surrounded by a curtain to

minimize outside disturbance.  Current (0.06 m⋅s-1) within the artificial stream was

created with the use of three powerhead pumps placed in front of the viewing area.
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Water temperatures were maintained at 12.0 ± 0.5°C  (mean ± 95% C.I.) within

the artificial stream.  Water was chilled in a head tank with a 16 amp Frigid Units

chiller and a 6 amp submersible pump was used to deliver chilled water to the artificial

stream.

Fish.- Brook trout were obtained from Bowden Fish Hatchery, Bowden, WV. Mean total

length of the fish was 136 ± 2.5 (± 95% C.I.) mm and mean weights were 25.3 ± 5.2 g  (±

95% C.I.). I chose hatchery-raised fish because wild fish were difficult to acclimate to a

laboratory environment.  Fish were treated in accordance to the guidelines of the West

Virginia University Animal Care and Use Committee (protocol  #9801-12).

My experimental protocol for reactive distance measurement differed slightly

from others reported in the literature.  Here, three brook trout were tested at a time.  Other

studies have measured reactive distance using only a single fish (Vinyard and O’Brien

1976; Barret et al. 1992). Single fish may not react to a prey item when it is first seen, but

may wait until the prey drifts closer to react. This could give an underestimate of

maximum reactive distance.  By testing three fish at once, a competitive situation was

established.  The fish first recognizing a potential prey item was at an advantage over the

other two by striking at that prey item before it was recognized by the other fish.  The

result would be a measure of maximum reactive distance.

To begin each experiment, brook trout were anesthetized with MS-222, weighed,

measured, and placed into the viewing portion of the artificial stream. Each set of three

fish was given twelve hours to acclimate to the artificial stream before testing began.
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Videotaping of Foraging Behavior. -  Recording of reactive distance and foraging

behavior was done with a Sharp E550 view cam.  The camera was mounted on the ceiling

of the lab, 2 m above the viewing area of the artificial stream.  The camera was connected

to a computer and the image of the tank and fish could be viewed on the monitor using

Media Studio Pro software while videotaping foraging trials.

Treatments. -Treatment turbidity levels were created using soil obtained from the banks

of Roaring Creek, a native brook trout stream in Preston County, WV.  The soil was

suspended by agitation in a bucket, creating a turbid solution.  This solution was added to

the head tank until a desired turbidity treatment level was reached in the artificial stream.

A LaMotte 2020 turbidimeter was used to measure turbidity in NTU's.

Water depth was either 15 or 25 cm within the artificial stream.  In the first five

reactive distance trials, the depth was 25 cm and turbidity treatment levels were

approximately 0, 10, 15, 20, and 25 NTU’s.  In 25 cm of water depth, it was not possible

to accurately view the fish at turbidities above 25 NTU’s.  Water depth was then lowered

to 15 cm which enabled continued testing of fish up to approximately 40 NTU’s. Two

additional sets of three fish were tested at turbidity levels of approximately 0, 10, 15, 20,

25, 30, 35, and 40 NTU’s. Analysis of covariance (ANCOVA) was used to detect

differences in maximum reactive distance between depths.

Feeding trials were conducted with live prey.  Housefly larvae (Musca domestica)

were used as prey items.  Larvae were 10.3 ± 0.2 mm (± SE) in length. These larvae were

small enough so that a fish could consume several without becoming satiated, yet large

enough to be seen with the video-camera.  Since the larvae normally sank quickly, air

was injected into each before a feeding trial began.  Thus, the view of both predator and
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prey could be maintained.   Larval prey were used in the first five reactive distance trials

at 25 cm of water depth and two additional sets of trials in 15 cm of water depth.

In addition to the standard reactive distance experiments, the effect of prey color

was examined. Two more sets of trials (three fish in each) were run using frozen adult

flies (11.7 ± 0.2 mm length) to see if prey color had any effect on reactive distance.

Adult flies were black while larvae were white.  These trials were conducted at 15 cm

water depth and ANCOVA was used to detect differences in reactive distances between

adult and larval prey.

Feeding Trials. - A feeding trial lasted approximately 20 minutes during which time 25-

30 housefly larvae were sequentially placed in the viewing area by rinsing them down a

delivery tube. After each prey item was released, the monitor was observed and the fate

of the prey item was recorded. A prey recognition was defined as any action a fish took in

reacting or orientating to a prey item.  An attack was considered a pursuit of a prey item.

If the fish struck and took the prey item into its mouth, it was considered a capture.  If

after capturing, a fish did not reject the prey item, it was considered an ingestion.  The

next prey item was not offered until the previous one was either consumed or passed

through the back of the viewing area.  The proportion of prey items recognized,

proportion of recognized prey attacked, proportion of attacked prey captured, and

proportion of captured prey ingested was recorded.  Unconsumed prey was captured in a

net at the rear of the viewing area.

With the light color of the artificial stream, there was not sufficient contrast to

allow observation of the light colored prey at low turbidities. To remedy this problem, a
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black plastic mat (0.8 x 0.6 m) was placed on the tank bottom in the front portion of the

viewing area.

At the end of a feeding trial, turbid water was added to the head tank until the next

highest turbidity treatment was reached. Fish were again allowed to acclimate to this

treatment for twelve hours, and were then tested again.  Two trials, each at a different

treatment level, were conducted per day until the final treatment level was reached.  At

this time, the fish were removed, anesthetized, and marked by clipping adipose fins to

avoid re-testing the same individuals in subsequent trials.  The artificial stream and head

tank were then prepared for the next set of fish to be tested. It was not believed that

testing the fish at sequential turbidity levels influenced the results in any way.  In a

similar study with rainbow trout, Barret et al. (1992) found that sequential application of

treatment levels resulted in no difference in reactive distance compared to randomized

treatments and this also simplified experimental logistics.  One reactive distance trial at

0.57 NTU was eliminated from the data set because the brook trout seemed lethargic and

did not react readily to prey.  This was the first trial in a sequence for this group of fish

and they may not have been acclimated to the testing environment.  In the following trial

at 17.6 NTU, they did not show any signs of stress or lethargy.

Reactive Distance Estimation. -  Feeding video was reviewed and frame capture software

(Multimedia Studio Pro) was used to capture a particular video image at the instant a

fish first recognized a prey item.  The moment a fish made an indication of recognition of

a prey item the image was captured and imported to MS Paint.  At this time marker was

placed on both the fish and prey item.  This documented which fish first recognized the
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prey item and eliminated any confusion about the location of the prey item in the image.

The image was saved for later reactive distance measurement.

Interactive Data Language (IDL 5.0 from Research Systems  1997) software

was used to measure reactive distance. A 20 cm long piece of bright yellow poster board

was placed on one of the cross supports of the artificial stream as a reference target (Fig.

1).  The IDL program would import a saved image of a predator-prey encounter and

would identify the reference target.  By enumerating the number of pixels along the 20cm

length of the reference target, the distance between fish and prey could be estimated.

In testing this method on known lengths within the viewing area, it was found that

all estimates from the IDL program were 20% lower than actual values because the

reference target was closer to the camera lens than objects in the viewing area.  Estimates

were corrected by the equation  Y = 1.25(X)-.52 (R2=0.98) where: Y was the actual

length, and X was the estimated length. Further testing of this method showed that mean

differences between estimated and actual lengths were 0.52 ± 0.3 (± 95% C.I.) cm.

Statistical Analysis. - Data were analyzed with windows based SAS.  I used linear and

nonlinear regression to model changes in reactive distance and foraging success with

increasing turbidity.  Analysis of covariance was used to compare water depths and prey

types.

Results

25 cm Water Depth. -  Brook trout showed a significant reduction in maximum reactive

distance with increasing turbidity (F=102.75, p<0.01).  A simple linear model described

the data well (R2=0.83), but residual analysis showed that at intermediate turbidities the
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observed values for reactive distance consistently fell below predicted values.  An

exponential model, Rmax = A*e(-B*NTU), was then used to describe the data and increased

the fit of the model (Table 1). Brook trout in clear water (NTU<5.0) had a mean

maximum reactive distance of 80.73 ±12.86 (± 95% C.I.) cm and this decreased to an

average maximum of 18.59 ± 2.34 (± 95% C.I.) in the highest turbidities, approximately

25 NTU’s.  Variation among fish in maximum reactive distance was greatest at low and

intermediate turbidity levels and decreased as turbidity increased (>20 NTU).

25 vs. 15 cm Water Depth. - Reduction of depth in the artificial stream from 25 cm to 15

cm permitted observation of the brook trout at higher turbidities.  Comparison of the data

obtained from both depths at treatment levels less than 26 NTU’s showed no difference in

maximum reactive distance between depths (ANCOVA: F=0.44, p = 0.51).   The data

from both depths was then pooled to create a model describing reactive distance ranging

from 0 to 40 NTU’s (Fig. 2).  Reactive distance appeared to asymptote near 10 cm at

turbidity levels greater than 25 NTU’s.

Prey Color. - Brook trout reactive distance was significantly lower for dark colored, adult

prey than for the light colored, larval prey (ANCOVA: F=8.77, p<0.01).  Model

intercepts were significantly different, while slopes were equal (Table 1 and Fig. 3).

Foraging Success. -  Increased turbidity and reduced reactive distance resulted in a

decreased proportion of prey recognized by brook trout (ANOVA: F=112.28, p<0.01).

Furthermore, prey recognition rate was significantly higher in shallower water than in
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deeper water (ANCOVA: F=9.42 p<0.01).  Fewer adult prey were recognized than larval

prey at both depths (ANCOVA: F=20.66, p<0.01).  In clear water (NTU<5.0), nearly all

larval prey items were recognized.  At elevated turbidities the proportion of prey items

recognized decreased in a linear fashion for both depths and prey types (Fig. 4 and Table

2).

Although the proportion of prey recognized decreased, the proportion of

recognized prey items that were attacked did not differ with depth, turbidity, or prey type

(ANCOVA: depth F=2.10, p=0.15; turbidity F=1.48, p=0.23; prey type F=2.31,

p=0.13)(Fig. 5). The proportion of attacked prey items that were captured also did not

differ significantly with depth (ANCOVA: F=3.37, p=0.07), turbidity  (ANCOVA:

F=0.08, p=0.77), or prey type (ANCOVA: F=2.48, p=0.12). In fact, all larval prey that

were attacked in 15 cm of water depth were captured (Fig. 5).  Turbidity decreased the

proportion of adult prey items captured which were ingested (ANCOVA: F=8.20,

p=0.01), but had no influence on proportion of larval prey captured which were ingested

in either 25 or 15 cm  (Fig. 5).

Encounter Rates. - For comparison of the possible influence of turbidity on foraging of

brook trout, encounter rates were modeled with the Gerritsen and Strickler (1977) model

using observed reactive distances for adult prey. The encounter rate model is given by the

equation:

E = ((πR2NH)/3)*((v2+3u2)/u)

where: E is the encounter rate in numbers per second, R is the predator’s reactive

distance, NH is the prey density, v is the predator’s swimming speed, and u is the prey’s
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swimming speed.  Brook trout are drift feeders and capture drifting prey by ambush, so v

was set to 0, and u was set to 0.06 m/s which was the velocity of prey drifting in the

artificial stream.  The prey density, NH, was set to that found within the viewing area of

the tank while feeding, 1.38 prey/m3.

The reactive distance, R, is the highest order variable in the model and thus any

changes in R produce the greatest relative change in encounter rate.  Encounter rates then

follow a similar function to that of reactive distance (Fig. 6),  E = ae(-b*NTU) where: E is

the encounter rate in numbers per second, a = 0.18, and b = -0.12.   As a means of

evaluating trade-offs between increased drift rate and reduced reactive distance at

elevated turbidity, the Gerritsen and Strickler (1977) model was solved for prey density

(NH) (Fig. 7).  Density must increase exponentially to maintain a constant encounter rate

between brook trout and prey.  For example, prey density must increase by a factor of 4,

from 1 prey item/m3 at 0 NTU to 4 prey items/m3 at 10 NTU and by a factor of 14 to 14

prey items/m3 at 20 NTU to maintain the same encounter rate as seen in clear water.

Discussion

Reactive Distance. - As expected, reactive distance of brook trout decreased as turbidity

increased.  Visual observation of the brook trout during feeding trials showed that the fish

with the longest reactive distances at elevated turbidity levels tended to hold nearer the

surface.  The result was a decrease in reactive distance corresponding to a nonlinear

model.  Under turbid conditions, the brook trout held nearer the surface where light

intensities would be greatest in an effort to compensate for a decrease in visual acuity.

Others have found similar results with different species.  Gradall and Swenson (1982)
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found brook trout to be less associated with substrate in turbid water and to increase

activity in turbid waters.  Mathews (1984) also noted that larval shad tend to emigrate

toward the surface under turbid conditions. This is most likely in an effort to maintain

visual acuity by movement to the surface where light intensities would be greatest.

The curvilinear relationship between reactive distance and turbidity found in this

study indicates that turbidity has its greatest effect at the lower treatment levels (0-15

NTU).  Miner and Stein (1996) also showed a nonlinear reduction in reactive distance for

bluegill (Lepomis macrochirus) with the majority of reduction in reactive distance

occurring from 0-5 NTU.  Barret et al. (1992), however, described the decrease in

reactive distance of rainbow trout with increasing turbidity as a linear function.

Rainbow trout have been believed to suppress brook trout abundance in

Appalachian streams (Larson and Moore 1985) possibly due to competition. To further

observe how reactive distance compares between brook trout and rainbow trout, I also

analyzed my data using linear regression of the mean reactive distances found during

each feeding trial as Barret et al. (1992) did for rainbow trout (Fig. 8).  Only means for

turbidity levels less than 35 NTU’s were used because Barret et al. (1992) did not have

data for rainbow trout greater than this level.  The equation of the linear model describing

brook trout reactive distance was Y = 51.46 – 1.66X and the equation describing rainbow

trout reactive distance was Y = 52.81 – 1.09X  (Barret et al. 1992) where: Y = reactive

distance and X = turbidity.  The slope for the brook trout model was significantly greater

from that given for rainbow trout (t = 4.08, p<0.01), but the intercepts were equivalent (t

= 0.52, p > 0.1).  However, a linear model does not appropriately describe how turbidity

influences mean brook trout reactive distance.  Residual analysis shows that in
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intermediate turbidity ranges, observed means consistently fall below those predicted by

the linear model.  Therefore, the reactive distance of these two salmonid species differs in

response to increasing turbidity.  This greater visual acuity of rainbow trout than brook

trout may be one mechanism responsible for the perceived competitive advantage of

rainbow trout.

Prey color had a significant influence on brook trout reactive distance.  Although

the rate of decrease in reactive distance with larval prey and adult prey was equal, adult

prey were recognized at significantly lower distances than were larval prey. Salmonids

are known to select for larger available prey (Wilzbach et al. 1986; Young et al. 1997)

and the reactive distance of rainbow trout increases with prey size (Ware 1972).  In this

experiment, adult and larval prey were of similar size.  Wilzbach et al. (1986) believed

trout to select for surface drift due to increased contrast between prey and background.

All prey items offered to brook trout in this experiment floated on the surface where the

fish could see a contrast between a prey item and the outside environment. A greater

contrast between larval prey and the outside environment may be responsible for the

perceived difference in reactive distance between prey types.  Thus, differences in prey

recognition due to color, as well as size, could alter the taxon selectivity of brook trout

under turbid conditions in nature.

I feel that my methods for measuring reactive distance were more accurate than

any other means reported in the literature.  Others have estimated reactive distance

through visual observation with the use of some type of reference device of known

lengths (Nicieza and Metcalfe 1997; Miner and Stein 1996), or through a wire grid placed

above the fish (Barret et al 1992).  The use of computer software in my study to measure
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reactive distance would be expected to reduce bias due to observer error and yield more

precise measurements.

Foraging Success. -  As turbidity increased and reactive distance decreased, the

proportion of prey items that were recognized also decreased.  Although maximum

reactive distance measurements were not different between depths, fish in 15 cm of water

recognized a significantly greater proportion of prey items than did fish in 25 cm of

water. Maximum reactive distance measures were similar between depths since the fish

with greatest distances held closer to the surface where light intensities would be greatest.

I suggest that the difference between depths in the proportion of larval prey recognized is

due to greater light intensity near the bottom of the artificial stream when the water was

at 15 cm depth, permitting fish holding closer to the bottom to recognize prey which

those in 25 cm of depth may not have seen.  Also, a lower proportion of adult prey items

were recognized at all treatment levels due to the reduced reactive distance with adult

prey as compared to larval prey. The proportion of prey items recognized for both depths

and prey types decreased at nearly the same rate.  Barret et al. (1992) also noted a

decrease in foraging strikes at elevated turbidities for rainbow trout.

Once a prey item was recognized, turbidity, depth, and prey type had no effect on

the proportion of recognized prey items that were attacked, or the proportion of attacked

prey items that were captured. Turbidity, however, had a significant influence on the

proportion of adult prey captured that was ultimately ingested.  Brook trout often rejected

captured prey one or more times before ingesting it.  After rejecting it, the trout would

often swim toward the bottom and then return to capture it again.  Perhaps fish would
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lose sight of the darker colored, adult prey, or perhaps adult prey was not as palatable as

larval prey.

It appears that reduced prey consumption by brook trout as a function of turbidity

was governed primarily by a turbidity induced decrease in prey recognition.  Several

studies have found that other species show reduced consumption and slower growth rates

in turbid water than in clear water (Redding et. al. 1987; Sigler et. al. 1984; Birtwell et.

al. 1984).  In a study of coho salmon, Redding et al. (1987) used an index of intestinal

fullness (0-3, with 3 representing a full intestine) to compare consumption across

different turbidity levels.  They found that after seven days exposure to suspended

sediment mean indices were 2.8 for fish in clear water, 2.3 for fish in 0.3-0.6 mg⋅L-1

suspended sediment, and 0.8 for fish in 2-3 mg⋅L-1 suspended sediment.  When compared

to fish reared in clear water, Sigler et al. (1984) found approximately a 75% decrease in

growth rate for coho salmon and a 62% decrease in growth rates for steelhead reared in

turbid water of 49 NTU compared to those reared in clear water.

 Encounter rates between predator and prey are strongly dependent on the reactive

distance of the predator (Gerritsen and Strickler 1977).  Slight changes in reactive

distance result in pronounced effects on encounter rates.  In turbid waters, the Gerritsen

and Stickler (1977) model would predict that encounter rates should decrease as turbidity

increases.  In theory, prey consumption should decrease in a similar manner to reactive

distance.  For a brook trout to compensate for reduced encounter rates with prey, prey

density must increase significantly or the fish must begin to actively search for prey.

Active searching would reduce the net energy gain from each prey item consumed and

could also make the fish more vulnerable to predation.
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In natural streams, invertebrate drift has been found to increase with turbidity

independent of flow. This is a result of decreased light reaching the streambed causing

night-active diel drift photoperodicity (Waters 1995), whereby under conditions of

decreased light penetration, invertebrate drift densities increase.  Birtwell et al. (1984)

found as turbidity increased, so did invertebrate drift, yet arctic grayling had less in their

stomachs. The potential drift energy which could be gained by fish under turbid

conditions may be damped by their inability to detect prey.  Field studies should be

conducted relating turbidity to invertebrate drift densities and brook trout stomach

contents.

Conclusions.- Increased sediment loading in streams due to timber harvest, road

construction, and other land-use practices may not be sufficient to cause deleterious

effects on stream habitat or invertebrate densities, but could significantly increase mean

turbidity levels. Turbidity effects on fish energy acquisition may be seen long before

effects of sediment deposition on prey production or spawning potential.  High gradient

streams may have enough flow to prevent deposition of sediment which could deplete

available spawning gravel.  However, in streams with increased mean turbidity levels,

avoidance of turbid waters may lead to significant emigration and absence of fish in long

stream reaches (Waters 1995). The fish which stay may show slower growth rates and

decreased recruitment due to decreased forage efficiency.  This may affect production

and population dynamics of brook trout as well as other stream-dwelling fishes.  Such

sublethal impacts of sedimentation upon brook trout and other fish populations may be
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partly responsible for perceived declines in production of streams throughout North

America.
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Table 1.  Reactive Distance Parameters. Brook trout showed a negative exponential

decrease in reactive distance described by the model Y = Ae^(-B*Turbidity in NTU’s)

where:  Y = maximum reactive distance, A = intercept, B = exponential coefficient, and

NTU = turbidity.

Depth Prey type Parameter Description Value±95% C.I. N R2

25 Larvae A: Intercept 87.42±9.33 23 0.88

B: Coefficient e^(-B*NTU) 0.07±0.01

15 Larvae A: Intercept 84.28±9.14 16 0.95

B: Coefficient e^(-B*NTU) 0.06±0.01

Pooled Depths Larvae A: Intercept 85.44±6.3 39 0.90

B: Coefficient e^(-B*NTU) 0.06±0.01

15 Adult A: Intercept 65.99±9.22 18 0.90

B: Coefficient e^(-B*NTU) 0.06±0.01
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Table 2.  Foraging Success Parameters. Linear models of foraging success, Y =

A+B(NTU) where: Y = proportion, A = intercept, and B = slope.  All larval prey items

which were attacked in 15 cm depth were captured.

Proportion of: Depth Prey type

A: Intercept

±95% C.I.

B: Slope

±95% C.I. N P value R^2

Prey Recognized 25 Larvae 0.935 ±0.115 -0.021±0.009 25 0.0001 0.64

15 Larvae 1.053±0.123 -0.019±0.001 16 0.0001 0.84

15 Adult 0.729±0.149 -0.014±0.006 16 0.0002 0.59

Recognized Prey 25 Larvae 0.982±0.042 -0.001±0.003 25 0.4540 0.02

Attacked 15 Larvae 1.007±0.037 -0.001±0.003 16 0.2030 0.11

15 Adult 0.974±0.074 -0.001±0.005 16 0.6440 0.01

Attacked Prey 25 Larvae 0.978±0.068 -0.002±0.004 25 0.2760 0.05

Captured 15 Larvae 1 0 16 * *

15 Adult 0.943±0.063 0.001±0.003 16 0.4730 0.03

Captured Prey 25 Larvae 0.981±0.091 -0.004±0.006 25 0.1160 0.10

Ingested 15 Larvae 0.987±0.037 -0.001±0.001 16 0.8340 0.01

15 Adult 1.057±0.139 -0.007±0.005 16 0.0110 0.34
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Figure 1. Overhead view of artificial stream design.  See Methods: Artificial

Stream Design for description.
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Figure 2.  Model describing brook trout maximum reactive distance from 0 to 43

NTU. Data from both depths and all turbidity levels was pooled.
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Figure 3.  Effect of prey type on maximum reactive distance of brook trout. Maximum

reactive distances for dark colored, adult prey were significantly lower than those for

light colored, larval prey.  Model intercepts were different (F=8.7708, p<0.01), while

slopes were the same.
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Figure 4.  Proportion of prey recognized (Y) in a given turbidity (X).  Each data

point represents the proportion of offered prey recognized by at least one of the

three brook trout during a trial.  ANCOVA showed that depth (F=9.42, p<0.01),

prey type (F=20.66, p<0.01) , and turbidity (F=112.28, p<0.01)  were all

significant factors with the greatest proportion of prey recognized being larval

prey in 15 cm water depth.
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Figure 5. Effects of turbidity on the proportion of captured prey ingested. The

proportion of adult prey captured which were ingested (F=8.20, p=0.01) decreased

significantly with increasing turbidity, but this was not evident with larval prey at

either depth.
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Figure 6. Encounter rates between brook trout and prey with increasing turbidity.

Encounter rates were calculated using the Gerritsen and Strickler model (1977). The

model predicts that as turbidity increases the encounter rate between predator and

prey approaches 0.
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Figure 7. Relationship between brook trout reactive distance and prey density necessary

to maintain constant encounter rates between predator and prey.  Density data represent

that needed to maintain a mean encounter rate of 0.16±0.05 prey·s-1 calculated for brook

trout in clear water (<5 NTU).
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Figure 8.  Comparison of mean brook trout and mean rainbow trout reactive distance

(Barret et al. 1992).  Dashed lines represent 95% confidence intervals for the brook

trout model.
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Chapter 2:

Effects of turbidity on prey consumption and growth in brook

trout and implications for bioenergetics modeling

Abstract

Brook trout (Salvelinus fontinalis) were held in an artificial stream to observe the

influence of turbidity on mean daily consumption and specific growth rates. Treatment

turbidity levels ranged from clear (<3.0 NTU’s) to very turbid water (>40 NTU’s).

Observed mean daily specific consumption rates were standardized to the mean weight of

all brook trout tested.  Turbidity had no significant effect on mean daily consumption, but

specific growth rates decreased significantly as turbidity increased.  Brook trout in turbid

water became more active and switched foraging strategies from drift feeding to active

searching.  This switch was energetically costly and resulted in lower specific growth

rates in turbid water as compared to clear water.  Bioenergetics simulations were run to

compare observed growth to that predicted by the model.  Observed growth values fell

below those predicted by the model and the difference increased as turbidity increased.

Abiotic factors, such as turbidity, which bring about changes in the activity rates of fish,

can have implications for the accuracy of predicted growth by bioenergetics models.
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Introduction

Salmonids are visual predators and turbidity is believed influence their foraging

efficiency.  Steelhead (Oncorhychus mykiss) and coho salmon (Oncorhynchus kisutch)

have shown decreased growth rates when reared in turbid water (Sigler et al. 1984). Also,

coho salmon actively avoid turbid waters (Bisson and Bilby 1982). Reactive distance of

rainbow trout (O. mykiss) has been found to decrease linearly and the reactive distance of

brook trout (Salvelinus fontinalis) has been found to decrease exponentially as turbidity

increases in artificial stream channels (Barret et al. 1992; Sweka 1999).

Although decreased growth rates in turbid waters have been attributed to an

inability to detect prey and subsequent decrease in consumption, few studies have

quantified daily consumption in salmonids under turbid conditions. Brook trout have

been shown to become more active in turbid waters (Gradall and Swenson 1982), which

could be a mechanism promoting increased feeding activity during periods of high

invertebrate drift in natural streams. However, in another drift feeder, arctic grayling

(Thymallus articus), a decrease in stomach contents was found in fish in turbid waters

despite increased invertebrate drift (Birtwell et al. 1984).

Activity represents a significant portion of a fish’s energy budget.  Changes in

activity confound predictions of bioenergetics models because the activity component of

the model is assumed to be constant (Boisclair and Legget 1989).  Kerr (1982)

hypothesized that the energy allocated to activity was positively related to the quantity of

food consumed for actively foraging fish.  This was also confirmed by Boisclair (1992)

who found a positive logarithmic relationship between activity rates and feeding rates.

These findings were based on observations of fish in still water.  Brook trout typically
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utilize a drift feeding strategy in streams, whereby they hold in a single position or focal

point, leave the focal point to intercept prey, and then return to the original focal point

(Grant 1990; Fausch 1984).  Under a drift feeding strategy, the current velocity at the

focal point governs activity and the energy required maintaining position.  However,

Gradall and Swenson (1982) found that brook trout become more active under turbid

conditions.  Abiotic factors, such as turbidity, which alter the activity of fish could have

profound effects on the accuracy of predictions from bioenergetics models.

Brook trout are the top predators in Appalachian headwater stream communities,

and are often the only fish species present in such streams. Land-use practices such as

timber harvest, mining, and road construction may result in increased sediment loads in

headwater streams.  Although much research has focussed on the effects of deposited

sediment as a limiting factor for brook trout spawning potential, turbidity may be an

important yet relatively unexamined factor also contributing to perceived decline of

brook trout production in Appalachian streams.  In this study, I sought to answer the

following questions in flowing water: (1) how does turbidity influence brook trout mean

daily consumption in streams; (2) how are specific growth rates influenced by turbidity;

and (3) if brook trout become more active in turbid waters (Gradall and Swenson 1982),

what effect will this have on their energy budget; and (4) what are the implications for

bioenergetics modeling of stream-dwelling salmonids.

Materials and Methods

All experiments were conducted in an artificial stream.  Brook trout were tested at

sequential treatment levels of turbidity ranging from clear water (<5.0 NTU’s) to >40
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NTU’s (nephelometric turbidity units).  Each trial lasted at least five days with five to six

trials at different turbidity levels conducted on each fish.  A subsample of the brook trout

tested were videotaped while foraging to quantify changes in activity with increasing

turbidity.

Artificial Stream Design.- Consumption and growth experiments were conducted in a 1.2

x 2.4-m steel tank (Fig. 1).  A 1.8-m removable baffle was installed, separating the tank

into two 0.6-m wide sections with fences (1 cm2-mesh) at each end.  One fish was placed

in each of the sections. The artificial stream was surrounded by a curtain to minimize

outside disturbance.  Current (0.06 m⋅s-1) was created with three powerhead pumps

placed in front of each section.  Drift nets were placed downstream of the fencing to

catch uneaten prey.

Water temperatures were maintained at 12.0±0.5°C within the artificial stream.

Water was chilled in a head tank with a 16 amp Fridgid Units chiller and a 6 amp

submersible pump was used to deliver chilled water to the artificial stream.

Fish.- Brook trout were obtained from Bowden Fish Hatchery, Bowden, West Virginia.

Mean total length at the beginning of testing in clear water was 132.0 ± 28.6 mm (mean ±

SE; range 77 – 179 mm) and mean weight was 31.1 ± 18.6 g (4.6 – 71.2 g).  A wide

range of fish sizes were used to determine the effect of size on consumption and to

estimate allometric consumption parameters.  These allometric consumption parameters

were later used for standardization of specific consumption rates to the overall mean

body weight of brook trout across trials. Brook trout energy density was estimated from

percent dry weight mass of a separate sample of 15 fish using lake trout (Salvelinus
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namaycush) energy constant regression parameters as in Hartman and Brant (1995a).

Mean energy density was 6481.3 ± 156.3 J⋅g-1 (mean ± SE) wet weight.

Prey.- Trials were conducted using live housefly larvae (Musca domestica) as prey.

Larvae were 10.3 ± 0.2 mm in length and had an energy density of 8426.4 ± 90.4 J⋅g-1

wet weight as calculated from Cummins and Wuycheck (1971).  Air was injected into the

larvae with a syringe before being offered to the brook trout, making the larvae float and

ensuring that any unconsumed prey entered the drift net for retrieval.  To be sure that the

larvae would float, they were dropped in an container of water and only those which

floated were offered to the brook trout.

Experimental Procedure.-  Unlike other growth experiments in turbid water, which

measured growth in groups of salmonids (e.g. Sigler et al. 1984), I observed daily

consumption and growth in individual brook trout.  I felt that mean consumption

determined by measuring consumption in groups of fish would be biased due to possible

competitive dominance by a few individuals.  Before beginning experimentation, each

brook trout was anesthetized with tricane methanesulfonate (MS-222), weighed on an

analytical balance to the nearest 0.01g, total length measured to the nearest mm, and

placed into one of the sections of the artificial stream.  Individuals were allowed to

acclimate to the testing environment for twelve hours before testing began.

Turbidity treatment levels were created by mixing sediment collected from the

banks of a local stream in a bucket and adding the solution to the head tank until a desired

treatment level was reached.  Fish were initially held at given treatment for a duration of

seven days and fed four times daily.  A pilot study in clear water showed that trials could
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be shortened to a duration of five days and two feedings per day with no difference in

mean daily consumption.  This simplified experimental logistics and shortened

experimental time.  During each feeding period, three turbidity measurements were taken

with a Lamotte 2020 turbidimeter and the median recorded. For a given feeding period,

turbidity was maintained within 4 NTU’s of the desired treatment level through periodic

agitation of the head tank and addition of more turbid water.

Prey items were offered to the brook trout in an amount greater than the

maximum consumption predicted for lake trout (Salvelinus namaycush) of similar sizes at

experimental temperatures.  Consumption parameters from Stewart et al. (1983) were

used in Fish Bioenergetics 3.0 (Hansen et al. 1997) to determine maximum

consumption, and brook trout were offered an amount greater than the value predicted by

the model each day. This amount averaged 5% greater than the amount necessary for

maximum consumption, which ensured that the fish were offered more prey than they

could consume during each day of testing. Larvae were blotted dry and were offered to

the fish by rinsing them down a delivery tube at the front of each section of the artificial

stream. Once a prey item was offered, another was not offered until the previous one was

consumed or drifted though the back of the section into the drift net.  After all prey were

offered, uneaten prey were collected from the drift nets, blotted dry, and weighed once

more to calculate the amount consumed by each fish. Brook trout never consumed all the

prey items that were offered.

To standardize the rate of gastric evacuation, fish were given 12 hours before re-

weighing and measuring to determine growth over the trial duration.  Fish were then

placed back into their respective sections of the artificial stream and tested at the next
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highest treatment turbidity level.  The weights and lengths at the end of the previous trial

were used as the starting weights and lengths at the beginning of the next trial (i.e., the

end weight of trial n equaled the start weight of trial n+1).

A total of ten fish were tested.  While testing the first three fish, treatment

turbidity levels ranged from clear water to approximately 25 NTU with mean treatment

levels of turbidity at 0.8, 6.1, 10.1, 14.8, 20.3, and 25.6 NTU. I initially felt that this

would be high enough to show a difference in mean daily consumption as Sigler et al.

(1984) found that this level was enough to cause a reduction in coho salmon growth.

However, I did not observe a significant change up to 25 NTU’s (See results), so I then

tested fish at turbidity levels ranging from clear water to >40 NTU’s with five treatment

levels run on each fish to see if turbidity would have an effect at these higher levels.

Movement Experiment. - Visual observation of the brook trout feeding showed that

as treatment turbidity increased, the fish began to move more often and to actively search

for prey.  To quantify movement, the last four fish tested were videotaped during feeding

experiments.  Each fish was videotaped during three randomly chosen feeding periods

throughout each treatment using a Sharp E550 View Cam mounted above each section.

Turbidity levels for each trial were approximately 0.6 (clear water), 10, 20, 30, and 40

NTU’s.  In review of the video, frame capture software (Multimedia Studio Pro) was

used to capture a particular frame at the instant a fish first recognized a prey item.  A

computer-generated grid (32 quadrants, each 18 x 18 cm) was then transposed onto the

section of the tank and the location of the fish when recognizing a prey item was

recorded.



John A. Sweka Chapter 2 49

Statistical Analysis.- Nonlinear regression was used to determine the effect of body size

on mean daily consumption for brook trout in clear water (the control).  The allometric

consumption model was used to describe the relationship between consumption and body

size (Kitchell et al. 1977).

C = CA(WCB)

Where: C = consumption in g⋅g-1⋅d-1, CA = the intercept of the allometric mass function,

and CB = the slope of the allometric mass function.  Because individual fish were tested

over several weeks, and grew as testing continued, CA and CB parameters found in clear

water were used to standardize observed daily consumption values to the overall mean

weight of all fish used in all experiments as in Hartman and Brandt (1995b).

Analysis of variance and regression analysis was used to determine the influence

of turbidity on mean daily consumption, specific growth rates, and number of quadrants

used to forage within sections of the artificial stream.  Significance was set at an alpha

level of 0.05.

Simulations were run using Fish Bioenergetics 3.0 software to compare

observed growth rates to those predicted by the model for lake trout.  All lake trout

respiration, egestion, and excretion parameters were used in the simulations (Stewart et

al. 1983).  I used lake trout parameters because of the close systematic relationship

between brook trout and lake trout (both are in the same genus) and the similar

temperature requirements for each species.  Consumption parameters of CA and CB

determined for brook trout in clear water (this study) replaced those of the lake trout.  I

assumed that 10% of the prey wet weight was indigestible.  The model was fit to

observed total consumption from the laboratory experiments and differences between
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observed and predicted values for growth at the end of a trial were analyzed using linear

regression on mean trial turbidity.

Results

Experiments in clear water showed a weak relationship between mean daily

consumption and weight of the brook trout. Larger fish had lower specific consumption

rates than smaller fish. Allometric parameters of CA and CB for the equation C =

CA(WCB) were 0.130 and –0.201 respectively (Fig. 2).

The experimental allometric consumption parameters were then used to

standardize brook trout consumption to the overall mean weight of fish tested (37.44

±6.02 g). Brook trout did not show a significant difference in adjusted mean daily

consumption with increasing turbidity (Fig. 3; F=1.36, p=0.25).  Because of the relatively

poor association between mean daily consumption in clear water and mean fish weight (r2

= 0.12), and the large difference between lower and upper 95% confidence intervals for

the CB parameter (Lower 95% C.I. = -0.344; Upper 95% C.I. = -0.058), I also

standardized mean daily consumption rates using lake trout CA and CB parameters

(Stewart et al. 1983; CA = 0.0589 and CB = -0.307).  Again, turbidity showed no

significant influence on mean daily consumption (F = 0.236, p = 0.63).

Specific growth rates decreased significantly with increasing turbidity (Fig. 4; F =

23.758, p < 0.01).  Mean specific growth rates in clear water were 0.046 ± 0.001 (mean ±

SE) g⋅g-1⋅d-1 while those at the highest treatment levels (≥ 38 NTU’s) were 0.020 ± 0.003

g⋅g-1⋅d-1.  Brook trout specific growth rates thus showed a 57% decrease from clear water

to the highest treatment levels.
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The movement study showed that the number of quadrants within each section of

the artificial stream used to forage increased significantly (F = 17.31, p<0.01) with

increasing turbidity (Fig.5) despite much variation between fish at intermediate treatment

levels (10-20 NTU's).  In clear water, 75% of the fish used three or fewer quadrates to

forage, while one of the fish tended to move more frequently and forage from various

locations in clear as well as turbid water.

Bioenergetics simulations gave predicted trial end weights for each fish based on

the total amount of prey consumed.  Observed values consistently fell below those

predicted by the model and the difference increased as turbidity increased (Fig.6; F =

29.72. p < 0.01).  Mean observed growth in clear water was 26% lower than that

predicted by the bioenergetics model, while mean observed growth in the highest

treatment level (NTU>40) was 56% lower than that predicted by the bioenergetics model.

Discussion

The results I obtained were contrary to what was expected.  Turbidity had no

significant influence on brook trout mean daily consumption.  Reactive distance has a

strong influence on encounter rates between predator and prey and turbidity has been

shown to decrease the reactive distance of fish (Barret et al. 1992; Miner and Stein 1996).

According to the Gerritsen and Strickler (1977) model, decreased reactive distance leads

to decreased encounter rates.  For drift feeding fishes like brook trout, decreased reactive

distance under turbid conditions would be expected to decrease the volume of water

searched per unit time.  This should eventually result in decreased consumption rates.
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One means by which a predator could compensate for a decrease in reactive

distance is to increase swimming activity.  Gradall and Swenson (1982) found that in

water of 7.1 FTU’s (formazin turbidity units) brook trout activity increased and

association with cover and substrate decreased. (Benfield and Minello (1996) give a

conversion of FTU to NTU where FTU = 1.25⋅NTU. Therefore, 7.1 FTU’s = 8.8 NTU’s).

Increasing the time spent moving increases the chance of encountering potential prey by

increasing the total volume of water searched.  For brook trout in this study, a switch in

foraging strategy was observed.  In clear water, typical drift feeding behavior (Grant

1990) was observed where a fish would recognize a prey item, strike at that prey item,

and return to the original holding position.  As the water became more turbid, fish tended

to utilize more of the available area of the tank to forage.  The number of locations used

to forage increased significantly as turbidity increased.  By using more locations as

holding positions, the brook trout increased their chance of recognizing potential prey,

thus compensating for decreased reactive distance with increasing turbidity.  Although

foraging locations were quantified for only four brook trout, I feel that their behavior is

representative of all tested fish based on observation while conducting feeding trials.

The transition from a typical drift feeding strategy to an active searching strategy

took place between 10 and 20 NTU where the greatest variation in the number of

quadrants used to forage occurred.  At these levels of turbidity, the fish were faced with a

choice of holding in a single location which may decrease the number of prey recognized,

or utilizing more of the tank and increasing the chance of prey detection.  At higher

turbidity levels (30-40 NTU’s), lower variation in the data and a higher mean number of

quads used suggests that active searching for prey was the primary foraging strategy.
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Although active searching for prey may compensate for decreased visual acuity in

turbid waters, this strategy is energetically taxing.  Net return per unit effort in foraging

would be expected to decrease when switching from a typical drift feeding strategy to an

actively searching strategy as the activity required to capture each prey item increases

(Boisclair and Sirois 1993, Boisclair and Legget 1989).  This can be seen in the decrease

in brook trout specific growth rates with increasing turbidity. Reduced growth rates seen

in fishes under turbid conditions may not only be a result of decreased visual acuity, but

also a result of the increased amount of energy required to locate prey.

The brook trout grew over treatment levels, and it may be argued that this growth

could account for the decrease in specific growth rate.  However, regression of specific

growth rate on body weight for brook trout tested in clear water showed no correlation

between fish size and specific growth rate (F = 1.36, p = 0.28).  Therefore, I believe that

the reduction in specific growth rates under turbid conditions is due to the treatment

effect rather than possible allometric changes in growth rates.

The bioenergetics model simulations illustrated the influence of turbidity on the

energetic return per unit effort.  In clear water, trial end weights were slightly below

those predicted by the bioenergetics model.  The 0.06-m⋅s-1 current velocity in the

artificial stream not taken into account by the bioenergetics model can explain the

difference.  As turbidity increased, the difference between trial end weights predicted by

the model and those observed increased significantly, thus indicating a more energetically

costly situation as the brook trout switched from a drift feeding strategy to an active

searching strategy.
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The comparison of observed growth to that predicted by the bioenergetics model

points out simplification in the assumptions of the bioenergetics model.  The model

assumes constant rates of activity, which is seldom the case.  Activity plays a significant

role in a fish’s energy budget (Boisclair and Sirois 1993).  Changes in abiotic factors,

such as turbidity, can influence fish behavior, leading to changes in activity independent

of temperature fluctuations.  These changes in activity can strongly influence the

accuracy of predicted growth by bioenergetics models. With the difference between

observed and predicted growth over the relatively short duration of the experiments in

this study, caution should be warranted when using bioenergetics models to predict

growth in natural populations of stream-dwelling fish over longer time periods, especially

where turbidity is elevated or variable, or where other abiotic conditions are common.

Decreased growth rates in turbid water in other salmonids have been attributed to

decreased visual acuity and thus decreased consumption (Sigler et al. 1984).  In another

set of experiments (Sweka 1999, see Ch1.), I found that the reactive distance of brook

trout decreased exponentially with increasing turbidity.  The decrease in reactive distance

was expected to translate into a decrease in mean daily consumption.  Although visual

acuity may result in decreased consumption rates in salmonids, growth rates may not only

be governed by consumption, but also by activity.  In this study, turbidity did not directly

influence brook trout growth rates through reduced mean daily consumption, but caused

behavioral changes in activity, which were energetically costly.

Increased sediment loading to streams may not be sufficient to alter habitat and

substrate, but may markedly change mean or stormflow turbidity levels (Barret et al.

1992).  Thus, although spawning habitat and invertebrate biomass may be unaffected,
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turbidity can decrease growth rates in fish through decreased visual acuity and

subsequent changes in feeding behavior in an effort to compensate for the decreased

ability to detect prey under turbid conditions.  Factors such as turbidity, and its influence

on activity, complicate application of bioenergetics models describing stream-dwelling

fish in the field, and an overestimation of potential growth may result.  The results found

here suggest that turbidity can decrease brook trout growth through allocation of energy

for changes in activity rather than for growth.
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Figure 1.  Overhead view of artificial stream design.  See Methods: Artificial Stream

Design for description
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Figure 2.  Regression of mean daily consumption (C) on mean weight (W) of brook trout

tested in clear water.  The 95% C.I. on CA was ±0.052 and the 95% C.I. on CB was

±0.143.



John A. Sweka Chapter 2 61

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50

Mean turbidity (NTU)

S
ta

nd
ar

di
ze

d 
 m

ea
n 

da
ily

 c
on

su
m

pt
io

n

(g
⋅ g

-1
⋅ d

-1
)

Figure 3. Regression of standardized mean daily consumption values on mean turbidity

level for each trial.  Turbidity did not have a significant influence on mean daily

consumption (F=1.36, p=0.25).
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Figure 4. Regression of specific growth rate (Y) standardized on mean trial turbidity (X).

Specific growth rates decreased significantly with increasing turbidity (F=23.76, p<0.01).
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Figure 5. Regression of the number of quadrants used to forage (Y) on turbidity (X).

Each point represents the number of quadrants used by brook trout to forage during one

taping session.  The number of quadrants used to forage within the artificial stream

increased significantly as turbidity increased (F=17.31, p<0.01).
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Figure 6.  Regression of the difference (Y) in observed trial end weights and those predicted

from the bioenergetics model on turbidity (X).  As turbidity increased, the difference between

observed growth and that predicted by the model increased significantly with observed values

being lower than those predicted by the model (F=29.72, p<0.01).
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Chapter 3:

Comparison of the Foraging Abilities of Cold and Warmwater

Predatory Fish Under Turbid Conditions

Abstract

Turbidity has been shown to impair the feeding abilities of fish and most research has

been focused on coldwater species, particularly salmonids.  In this study I compared the

effects of turbidity on a cold and a warmwater predatory species. Brook trout (Salvelinus

fontinalis) and smallmouth bass (Micropterus dolomieu) were held in an artificial stream

to determine how turbidity influenced reactive distance, foraging success, and encounter

rates with prey.  Because the species were of different size, absolute measures of reactive

distance were standardized to mean total lengths.  Both species showed a significant

decrease in reactive distance, in terms of body lengths, with increasing turbidity and the

reactive distance of brook trout decreased at a faster rate than that of the smallmouth

bass.  With the decrease in reactive distance, the proportion of prey which were

recognized by each species also decreased.  However, after recognition, turbidity had no

influence on the success of foraging attempts.  Encounter rates between predator and prey

are strongly influenced by reactive distance, and I predict that encounter rates would

decrease more rapidly for brook trout than for smallmouth bass with increasing turbidity.

This study showed that the foraging abilities of species adapted to cold and warmwater

habitats differ in response to increasing turbidity and that turbidity would have a greater
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influence on species adapted to clear water conditions than on those adapted to more

turbid conditions.

Introduction

Increased sediment loading can have negative impacts on fish production through

reduction of available spawning gravel (Davies and Nelson 1993; Hartman et al. 1996)

and reduction of invertebrate density.  Although relatively large sediment loads may be

required to significantly alter stream substrate, small inputs can raise the amount of

suspended sediment and markedly increase turbidity (Duchrow and Everhart 1971).

Turbidity seldom reaches levels that would be lethal to fish in natural systems, suggesting

that its effects result from behavioral responses (Gradall and Swenson 1982).

Effects of turbidity on fish behavior may include avoidance and redistribution,

changes in activity, and decreased foraging success.  Steelhead (Onchorynchus mykiss)

and coho salmon (O. kisutch) avoid turbid water (Sigler et al. 1984; Bisson and Bilby

1982).  Larimore (1975) found that turbidity caused young smallmouth bass (Micropterus

dolomieu) to be displaced downstream due to the loss of visual orientation.  Such

avoidance behavior could leave long stream reaches devoid of fish (Waters 1995).

Elevated turbidity has been shown to decrease consumption and growth rates of bluegill

(Lepomis machrochirus), coho salmon, steelhead, and arctic grayling (Thymallus

arcticus) (Gardner 1981; Berg and Northcote 1985; Sigler et al. 1984; and McLeay et al.

1987).  Reduced consumption and growth in fishes under turbid conditions has been

attributed to decreased reactive distance with subsequent reduction in predator-prey

encounters (Barret et al. 1992; Gardner 1981; Vinyard and O’Brien 1976).  However,
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Gradall and Swenson (1982) found brook trout (Salvelinus fontinalis) activity increased

under turbid conditions and they hypothesized that this may be a mechanism to promote

increased feeding when invertebrate drift would be expected to be high.

More attention has been given to how turbidity effects coldwater species,

particularly salmonids, than to how it effects warmwater species (Waters 1995).  This

may be due to the perception that warmwater streams are generally more turbid than

coldwater streams and that their species have evolved mechanisms to deal with

chronically turbid conditions (Waters 1995).  According to the river continuum concept,

species assemblages shift from cold to warmwater species as stream temperature

increases with increasing stream order.  Also, large rivers may be permanently turbid due

to increased suspension of fine particulate organic matter and sediment (Vannote et al.

1980).

In the Appalachians, brook trout and smallmouth bass are top predators in cold

and warmwater habitats, respectively.  Although information exists in the literature on the

effects of turbidity on the foraging ability of other cold and warmwater species, direct

comparison under the same experimental conditions is lacking.  Thus, the objective of

this study was to compare the effects of turbidity on the reactive distance, foraging

success, and encounter rates with prey of predatory species representing cold and

warmwater habitats.
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Methods and Materials

Brook trout and smallmouth bass were held in an artificial stream to determine

how turbidity effects reactive distance and foraging success.  The fish were tested at

sequentially increasing turbidity levels and all feeding trials were videotaped.  The video

was analyzed to determine reactive distance and foraging success.

Artificial Stream Design.-  The artificial stream used to measure reactive distance was a

1.2 x 2.4 m galvanized steel tank (Fig. 1)  The tank had a 1.8 m removable baffle

installed in the center which separated the tank into two longitudinal sections.  Fish were

contained in each section by fences of 1 cm2  mesh galvanized wire fencing material

positioned at the upstream and downstream end of each section.  This created a viewing

area of 1.0 x 0.6 m.  The artificial stream was surrounded by a curtain to minimize

outside disturbance.  Current (0.06 m⋅s-1) within the artificial stream was created with

three powerhead pumps placed in the front of each section.

Water temperatures were maintained at 12.2 ± 0.1 C° (mean ± SE) while testing

brook trout and 23.6 ± 0.1 C° while testing smallmouth bass. These temperatures were

within optimum ranges for each species (Coutant and DeAngelis 1983; Piper et al. 1982).

Water was chilled in a head tank with a 16 amp Firdgid Units chiller and a 6 amp

submersible pump was used to deliver chilled water to the artificial stream.

Fish.- Brook trout were obtained from Bowden State Fish hatchery, Bowden, WV and

smallmouth bass were obtained from both a private fish hatchery and from Aarons Creek,

Monongalia Co., WV.  I used hatchery raised brook trout because wild brook trout were
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difficult to acclimate to a laboratory environment. No differences were found in the

results obtained from hatchery and wild smallmouth bass.  Brook trout were 136 ± 2 mm

(mean ± SE; range: 113 – 151 mm) and smallmouth bass were 99 ± 2 mm (range: 87 –

115).

My experimental protocol for reactive distance measurement differed from others

reported in the literature.  Here, three similar sized fish of a species were tested at a time.

Other studies have measured reactive distance using only a single fish (Vinyard and

O’Brien 1976; Barret et al. 1992). A single fish may not react to a prey item when it is

first seen, but may wait until the prey drifts closer to react.  This could give an

underestimate of maximum reactive distance.  By testing three fish at once, a competitive

situation was established.  The fish first recognizing a potential prey item was at a

competitive advantage over the other two by striking at that prey item before it was

recognized by the other fish.  The result would be a measure of maximum reactive

distance.

To begin each experiment, three fish were anesthetized with MS-222, weighed,

measured, and placed into one of the viewing portions of the artificial stream.  Each set of

three fish was given at least twelve hours to acclimate to the artificial stream before

testing began.

Videotaping of Foraging Behavior.- Recording of reactive distance and foraging behavior

was done with a Sharp E550 view cam.  The camera was mounted on the ceiling of the

lab, 2 m above the viewing area of the artificial stream.  The camera was connected to a
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computer and the image of the tank and fish could be viewed on the monitor using Media

Studio Pro software while videotaping foraging trials.

Feeding Trials. - Treatment turbidity levels were created using soil obtained from the

banks of Roaring Creek, a native brook trout stream in Preston County, WV.  The soil

was suspended by agitation in a bucket, creating a turbid solution.  This solution was

added to the head tank until a desired turbidity treatment level was reached in the

artificial stream.  Turbidity was maintained within ± 3 NTU’s of a target treatment level.

A LaMotte 2020 turbidimeter was used to measure turbidity in NTU's.

Brook trout were tested in 15 and 25 cm of water depth while smallmouth bass

were tested in only 15 cm water depth.  In the first five reactive distance trials for brook

trout, the water depth was 25 cm and treatment turbidity levels were approximately 0, 10,

15, 20, and 25 NTU’s.  At this depth it was not possible to accurately view the fish at

turbidity levels above 25 NTU’s.  The water depth was then decreased to 15 cm which

enabled continued testing of fish up to approximately 40 NTU’s.  There was no

difference in maximum brook trout reactive distance between 15 and 25 cm of water

depth for treatments levels up to 25 NTU’s (ANCOVA:  F = 0.44, p = 0.51) and the data

from both depths was pooled for further analysis.

Feeding trials were conducted with live prey.  Housefly larvae (Musca domestica)

were used as prey items.  Larvae were 10.3 ± 0.2 (mean ± SE) mm in length. These

larvae were small enough so that a fish could consume several without becoming satiated,

yet large enough to be seen with the videocamera.  Since the larvae normally sank
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quickly, air was injected into each before a feeding trial began.  Thus, view of both

predator and prey could be maintained.

With the light color of the artificial stream, there was not sufficient contrast to

allow observation of the light colored prey at low turbidities. To remedy this problem, a

black plastic mat (0.8 x 0.6 m) was placed on the tank bottom in the front portion of the

viewing area.

A feeding trial lasted approximately 20 minutes during which time housefly

larvae were sequentially placed in the viewing area by rinsing them down a delivery tube.

Brook trout were offered 25-30 prey items and smallmouth bass were offered 10-15 prey.

Fewer prey were offered to the smallmouth bass because of their smaller size compared

to brook trout, and I did not want to satiate them which could affect later trials.  After

each prey item was released, the monitor was observed and the fate of the prey item was

recorded. A prey recognition was defined as any action a fish took in reacting or

orientating to a prey item.  An attack was considered a pursuit of a prey item. If the fish

struck and took the prey item into its mouth, it was considered a capture.  If after

capturing, a fish did not reject the prey item, it was considered an ingestion.  The next

prey item was not offered until the previous one was either consumed or passed through

the back of the viewing area.  The proportion of prey items recognized, proportion of

recognized prey attacked, proportion of attacked prey captured, and proportion of

captured prey ingested was recorded.  Unconsumed prey was captured in a net at the rear

of the viewing area.

At the end of a feeding trial, turbid water was added to the head tank until the next

highest turbidity treatment was reached. Fish were again allowed to acclimate to this
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treatment for twelve hours, and were then tested again.  Two trials, each at a different

treatment level, were conducted per day until the final test level was reached.  At this

time, the fish were removed, anesthetized, and marked by fin clipping to avoid re-testing

the same individuals in subsequent trials.  The artificial stream and head tank were then

prepared for the next set of fish to be tested. I assumed that testing the fish at sequential

turbidity levels influenced the results in any way.  In a similar study with rainbow trout,

Barret et al. (1992) found that sequential application of treatment levels resulted in no

difference in reactive distance compared to randomized treatments and this also

simplified experimental logistics.  One reactive distance trial with brook trout at 0.57

NTU was eliminated from the data set because the brook trout seemed lethargic and did

not react readily to prey.  This was the first trial in a sequence for this group of fish and

they may not have been acclimated to the testing environment.  In the following trial at

17.6 NTU’s, they did not show any signs of stress and lethargy.

Reactive Distance Estimation. -  Feeding video was reviewed and frame capture software

(Multimedia Studio Pro) was used to capture a particular video image at the instant a

fish first recognized a prey item.  The moment a fish made an indication of recognition of

a prey item the image was captured and imported to MS Paint.  At this time marker was

placed on the fish and one on the prey item.  This documented which fish first recognized

the prey item and eliminated any confusion about the location of the prey item in the

image.  The image was saved for later reactive distance measurement.

Interactive Data Language (IDL 5.0 from Research Systems  1997) software

was used to measure reactive distance. A 20 cm long piece of bright yellow poster board
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was placed on one of the cross supports of the artificial stream as a reference target (Fig.

1).  The IDL program would import a saved image of a predator-prey encounter and

would identify the reference target. The distance between fish and prey could be

estimated by enumerating the number of pixels along the 20cm length of the reference

target.

In testing my method on known lengths within the viewing area, I found that all

estimates from the IDL program were 20% lower than actual values because the

reference target was closer to the camera lens than objects in the viewing area.  Estimates

were corrected by the equation  Y = 1.25(X)-.52 (R2=0.98) where: Y was the actual

length, and X was the estimated length (cm). Further testing of this method showed that

mean differences between estimated and actual lengths were 0.52 ± 0.3 (± 95% C.I.) cm.

Statistical Analysis.- In the analysis, I only used the maximum reactive distance recorded

during each feeding trial because I wanted to establish an upper bound on reactive

distance for each species. Data were analyzed with windows based SAS.  I used linear

and nonlinear regression to model changes in reactive distance and foraging success with

increasing turbidity.  Analysis of covariance was used to determine differences between

species. Because the brook trout were significantly larger than the smallmouth bass tested

(Paired t-test: t = 12.2, p<0.01), I also compared reactive distances standardized to terms

of body length by dividing the maximum reactive distance by the mean total length of

each group of three fish in a given trial. In all statistical tests, alpha was set at 0.05.
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Results

Reactive Distance.- Absolute maximum reactive distance decreased exponentially with

increasing turbidity for both species (ANOVA: F = 286.77, p < 0.01) and species were

not significantly different (ANCOVA: F = 0.92, p = 0.34) (Figure 2). This decrease was

described by the negative exponential model, R = ae(-b⋅NTU) where: R is the reactive

distance, a is the model intercept, and b is the slope and NTU is the turbidity.  However,

when reactive distance was standardized to terms of body lengths, The rate of decrease

was greater for brook trout than for smallmouth bass (ANCOVA: F = 15.37, p < 0.01)

(Figure 3).  Intercepts of the models were similar between species, with overlap of 95%

confidence intervals on the parameter estimate, but slopes were different with no overlap

of 95% confidence intervals (Table 1).

Foraging Success.-  Increasing turbidity had a significant influence on the proportion of

prey that were recognized, but had no influence on foraging success after recognition.

The proportion of prey items which were recognized decreased significantly for both

species (ANOVA: F = 73.44, p<0.01), but no difference was found between species

(ANCOVA: F = 1.66, p = 0.20) (Figure 4).  Once recognized, turbidity had no influence

on the proportion of recognized prey attacked (ANOVA: F = 0.01, p = 0.94) and there

was no difference between species (ANCOVA: F = 1.49, p = 0.23).  During one trial with

smallmouth bass at a turbidity treatment level of 0.62 NTU, only 66% of the prey items

that were attacked were captured.  This resulted in an increase in the proportion of

attacked prey captured with increasing turbidity (ANOVA: F = 4.55, p = 0.04).  This data

point was determined to be an outlier with the maximum normed residual test (MNR test)
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(MNR14 = 0.695, p <0.01) and was dropped from the data set.  Further analysis showed

that turbidity had no influence on the proportion of attacked prey which were captured

(ANOVA: F = 2.59, p = 0.11) and there were no differences between species (ANCOVA:

F = 0.26, p = 0.61).  Finally, turbidity had no influence on the proportion of captured prey

which were ingested (ANOVA: F = 3.023, p = 0.09), also with no difference between

species (ANCOVA: F = 0.37, p = 0.55).

Predator-Prey Encounter Rates. – The Gerritsen and Strickler (1977) encounter rate

model was used to determine encounter rates with prey for both brook trout and

smallmouth bass. The encounter rate model is given by the equation:

E = ((πR2NH)/3)*((v2+3u2)/u)

where: E is the encounter rate in numbers per second, R is the predator’s reactive

distance, NH is the prey density, v is the predator’s swimming speed, and u is the prey’s

swimming speed.  Brook trout and smallmouth bass in this study used a drift feeding

strategy whereby they captured prey by ambush so v was set to 0.  Further, u was set to

0.06 m/s which was the velocity of prey drifting in the artificial stream.  The prey

density, NH, was set to that found within the viewing area of the tank during the

experiments, 1.38 prey/m3.

Reactive distance of both species was standardized to the overall mean total

length of all fish of both species tested (117.3 mm).  This was accomplished by

multiplying maximum reactive distance in terms of body length found during each

feeding trial by the overall mean length.  The standardized reactive distances were then

converted to meters for use in the model.
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The reactive distance, R, is the highest order variable in the model and thus any

change in R produce the greatest relative change in encounter rate.  Encounter rates then

follow a similar function to that of reactive distance (Fig. 5),  E = Ae(-B*NTU) where: E is

the encounter rate in numbers per second, A is the intercept of the model, and B is the

slope or rate of decrease.   Like reactive distance, encounter rates also differed between

species (ANCOVA:  F = 5.60, p = 0.02).  Model intercepts were similar between species,

but slopes were different with a higher rate of decrease for brook trout.

As a means of evaluating trade-offs between increased drift rate and reduced

reactive distance at elevated turbidity, the Gerritsen and Strickler (1977) model was

solved for prey density (NH) (Fig. 6).  Density must increase exponentially to maintain a

constant encounter rate between fish and prey and this increase would have to be greater

for fish like brook trout whose reactive distance decreases more rapidly than fish like

smallmouth bass.  In this analysis, prey density would have to increase by a factor of 125

for brook trout and by a factor of 30 for smallmouth bass in order to maintain the same

encounter rates at the highest treatment turbidity levels as in clear water.

Discussion

Reactive Distance. –To make species comparisons, I standardized absolute reactive

distance measurements into terms of body lengths due to the difference in size between

the brook trout and smallmouth bass tested.  Visual resolution in fish increases with fish

size as the eye and its components change during postembryonic development (Walton et

al. 1992).  Visual resolution in bluegill (Lepomis macrochirus) has been shown to
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increase rapidly at small sizes (27-50 mm: standard length) and the rate change

diminishes in larger fish (> 50 mm) (Breck and Gitter 1983; Li et al. 1985).

Reactive distance decreased significantly for both species with increasing

turbidity.  After standardization of reactive distances to body lengths, brook trout and

smallmouth bass showed similar reactive distances in clear water.  However, with

increased turbidity, the reactive distance decreased at a significantly greater rate for

brook trout than smallmouth bass.  Both species showed a curvilinear relationship

between reactive distance and increasing turbidity.  Others have also shown reactive

distance to decease in a similar manner.  Bluegill reactive distance decreases as a

curvilinear function with the greatest reduction at low turbidity levels (Vinyard and

O’Brien 1976; Miner and Stein 1996). Barret et al. (1992), however, found rainbow trout

reactive distance to decrease linearly with increasing turbidity.

Differences in reactive distance, in terms of body length, between species may be

accounted for by differences in eye size and morphology.  To further explore the

relationship of reactive distance with eye size, I measured the eye diameter and total

length of a sample of 30 brook trout and 30 small mouth bass of varying lengths

encompassing the size range of each species tested.  An eye diameter:body length (E:B)

ratio was then established for each fish.  Regression of E:B ratios on total length showed

no change in E:B ratios with increasing fish size for either species (brook trout: F = 0.40,

p=0.53; smallmouth bass: F=2.45, p = 0.13).  Smallmouth bass did, however, have

significantly higher mean E:B ratios (0.066 ± 0.001, SE) than did brook trout (0.047 ±

0.001, SE) (paired t-test: t = 18.05, p < 0.01).  Huber and Rylander (1992) suggest that

resolving power in fish eyes depends on the number of retinal receptors per visual angle,
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which is a function of eye size.  Thus, differences in reactive distance, in terms of body

length, between fish species may be a function of the eye size compared to body length.

Predatory fish feeding under low light conditions possess visual adaptations to

such conditions.  Walleye (Stitzostedion vitreum), which are efficient predators under low

light conditions, possess such visual adaptations. These adaptations include a large eye

size, arrangement of retinal rods into macroreceptors, and a tapetum lucidium which

reflects light back to photoreceptors (Vanderbyllaardt 1991).  Trout do not have such

adaptations (Vinyard and Yuan 1996).  Warmwater streams, of higher stream order are

typically more turbid than cold water streams of lower stream order (Waters 1995).

Smallmouth bass, which inhabit these warmwater streams, may have evolved some of the

same visual adaptations as walleye for feeding under low light conditions.  Histological

studies of the eye are needed to determine the exact mechanism by which warmwater

predatory fish may have greater visual acuity under low light conditions compared to

coldwater predatory fish.

Foraging Success. – With the decrease in reactive distance with increasing turbidity, the

proportion of prey which were recognized also decreased for both species.  Barret et al.

(1992) also noted that rainbow trout attacked fewer prey at elevated turbidities.  No

differences were found between species even though turbidity had less of an influence on

smallmouth bass reactive distance in terms of body lengths. If the smallmouth bass had

been equal to the brook trout in size, I would expect absolute reactive distance values to

be greater than those of brook trout since reactive distance increases with fish size (Li et

al. 1985). This would be expected to result in a greater proportion of prey being
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recognized in turbid water.  Absolute measures of reactive distance (in cm) were not

significantly different between species (ANCOVA: F = 0.92, p = 0.34) with much

overlap in reactive distance models at turbidities greater than 10 NTU’s.  This accounts

for the lack of difference between species in the proportion of prey recognized. After

recognition, turbidity had no influence on the foraging success of either species.

Reduced prey consumption by brook trout and smallmouth bass as a result of

increasing turbidity was governed by a reduction in the ability to recognize potential

prey.  Other studies have found reduced consumption and slower growth rates in turbid

water than in clear water (Benfield and Minello 1996; Easton et al. 1996; Vinyard and

Yuan 1996; Sigler et al. 1984).  The consumption rate of gulf killifish (Fundulus grandis)

on grass shrimp (Palaemonetes pugio) decreased 60% when feeding in turbid water of

100 NTU’s compared to clear water (Benfield and Minello 1996). In a field study

comparing annual variation in juvenile smallmouth bass diets, Easton et al. (1996)

attributed reduced stomach fullness of juvenile smallmouth bass during one year to

increased frequency of flooding and the resulting turbid conditions.  Vinyard and Yaun

(1996) found Lahonton cutthroat trout (Oncorhynchus clarki henshawi) predation of

Daphinia magna to decrease linearly with an 80% reduction at 25 NTU’s compared to

clear water.  The growth rates of steelhead (O. mykiss)  decreased 75% and the growth

rates of coho salmon (O. kisutch) to decreased 62% when reared in turbid water of 49

NTU compared to those reared in clear water (Sigler et al. 1984).  An exception to this

general trend was found by Vandenbyllaardt et al. (1991) where juvenile walleye (< 85

mm fork length) consumed more fathead minnows (Pimephales promelas) at turbidity
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levels ranging from 7 to 121 NTU’s than in clear water.  Walleye are well adapted to

feeding under low light conditions compared to other fishes as discussed earlier.

Encounter Rates.-  Calculated encounter rates with prey decreased for both species as

reactive distance decreased.  Under natural conditions of turbidity, invertebrate drift is

know to increase through night-active diel drift photoperiodicity (Waters 1995), whereby

under conditions of decreased light penetration, invertebrate drift densities increase.  This

raises the question as to how much of an increase would be necessary to maintain the

same encounter rates in turbid water as in clear water.  The calculated necessary prey

density under turbid conditions would have to be much higher for brook trout than for

smallmouth bass (Figure 6).  This also point outs the importance of reactive distance in

encounter rates with prey.  Slight changes in reactive distance result in pronounced

effects on encounter rates (Gerritsen and Strickeler 1977).  Thus, turbidity would be

expected to have a greater influence on potential prey consumption by brook trout than

by smallmouth bass.

Conclusions. – Turbidity had significantly different effects on the foraging abilities of

brook trout and smallmouth bass.  Within a watershed, brook trout are restricted to the

headwaters where water temperature are cool enough for their existence.  As stream order

increases, water temperature increases as the river continuum concept suggests (Vannote

et al. 1980).  Cold water species, like brook trout, are replaced by warmwater species,

such as smallmouth bass, as top predators.  Mean turbidity levels also increase with the

increase of suspended fine particulate organic material and increases in primary
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production (Vannote et al. 1980).  Here, I have shown how turbidity has a greater

influence on a species adapted to clear water conditions, brook trout, than on one which

is adapted to more turbid water conditions, smallmouth bass.  Although increased

sediment loading will have negative impacts on the foraging abilities of predatory fish in

all habitats along the river continuum, the effects would likely be greater for fish

inhabiting headwater reaches.
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Table 1: Model parameters for brook trout and smallmouth bass for reactive distance

standardized to body length.  The fitted model was R = a⋅e(-b⋅NTU) where: R is the reactive

distance in body lengths, a is the model intercept, b is the model slope, and NTU is

turbidity.  Intercepts were similar between species, but slopes were significantly different

with no overlap of 95% confidence intervals.

Lower Upper
Species Parameter Value  95% C.I. 95% C.I. r2

Brook trout a (Intercept) 6.348 5.818 6.878 0.89
b (slope) 0.064 0.055 0.072

Smallmouth bass a (Intercept) 6.560 6.034 7.085 0.86
b (slope) 0.046 0.041 0.052
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Figure 1. Artificial Stream Design. See Methods and Material – Artificial

Stream Design for description.
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Figure 2. Absolute measures of reactive distance for brook trout and smallmouth bass.  Both

species showed a significant reduction in reactive distance with increasing turbidity (ANOVA:

F= 286.77, p < 0.01), but there were no significant differences between species (ANCOVA: F =

0.92, p < 0.34).

0

20

40

60

80

100

120

0 10 20 30 40

Turbidity (NTU)

R
ea

ct
iv

e 
D

is
ta

nc
e 

(c
m

)

Brook Trout

Smallmouth Bass



John A. Sweka Chapter 3 89

Figure 3. Reactive distance standardized to total body length.  In terms of body

length, reactive distance decreased at a greater rate for brook trout than for

smallmouth bass (ANCOVA: F = 15.37, p < 0.01).  Intercepts of the models were

similar between species, but slopes were different.

0

1

2

3

4

5

6

7

8

0 10 20 30 40

Turbidity (NTU)

R
ea

ct
iv

e 
D

is
ta

nc
e 

(b
od

y 
le

ng
th

s)

Brook trout

Smallmouth bass



John A. Sweka Chapter 3 90

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

Turbidity (NTU)

P
ro

po
rt

io
n 

of
 p

re
y 

re
co

gn
iz

ed

Brook trout

Smallmouth bass

Figure 4. Proportion of prey recognized.  The proportion of prey recognized by both

species decreased with increasing turbidity (ANOVA: F = 73.45, p <0.01), but there

were no differences between species.
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Figure 5. Encounter Rates.  Turbidity had a significant influence on encounter rates for both

species (ANOVA: F = 169.87, p < 0.01), and species were different with a faster rate of

decrease for brook trout (ANCOVA: F = 5.60, p = 0.02).
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Figure 6. Relationship between reactive distance and the prey density.  When reactive

distance is standardized to the overall mean total length of all fish tested, brook trout

showed a 92% reduction in reactive distance, while smallmouth bass showed an 84%

reduction in reactive distance from clear water to the highest treatment level (≈ 40 NTU).

Because of the difference between species in reactive distance, prey densities would have

to increase by a factor of 125 for brook trout and by a factor of 30 for smallmouth  bass in

order to maintain the same encounter rates with prey in turbid water as in clear water.
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Summary and Conclusions

Brook trout reactive distance decreased exponentially with increasing turbidity

and this decrease may alter the taxon selectivity of fish in the field. Here, I have shown

that brook trout recognize light colored prey (larval houseflies) at longer distances than

dark colored prey (adult houseflies).  (Smallmouth bass would not feed readily on adult

prey for unknown reasons, therefore my results on the effect of prey color are restricted

to brook trout.) In an experiment with various sized Daphnia pulex and turbidity levels,

Vinyard and O’Brien (1976) found that bluegill (Lepomis macrochirus) recognized large

individuals at greater distances than small individuals at a given level of turbidity.

However, the rate of reactive distance decrease with increasing turbidity was greater for

larger prey.  In another study with bluegill, Miner and Stein (1993) found that under low-

light conditions, bluegill consumed proportionately more large zooplankton. Thus, as

turbidity increases, fish may be forced to become more opportunistic foragers by

decreasing selectivity and capturing prey which are more readily seen.

The exponential decrease in reactive distance for brook trout was expected to

result in decreased daily consumption values through decreased encounter rates with

prey.  Also, during reactive distance experiments, fewer prey were captured at elevated

treatment levels.  It was then expected that consumption during the growth and

consumption experiments should also decrease and result in a decrease in specific growth

rate for brook trout.

Specific growth rates did decrease with elevated turbidity, but not by the expected

mechanism, decreased consumption. During consumption and growth experiments, brook

trout mean daily consumption was not affected by turbidity, but in order to maintain the
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same consumption rates in clear as well as turbid water the brook trout switched foraging

strategies.  The fish typically fed from a single focal point in clear water, but began to

actively search for prey in more turbid water.  Gradall and Swenson (1982) noted that

brook trout became more active in turbid water, which was also the case in these

experiments.  By increasing the time spent moving, the brook trout increased the chance

of encountering each prey item offered.  Thus, although turbidity reduced reactive

distance, specific growth rates did not decrease due to decreased prey consumption, but

rather due to the increased activity associated with capturing each prey item.

Three fish were tested at a time during reactive distance and foraging success

experiment, while only one fish was tested at a time during growth and consumption

experiments which may explain why fewer prey were recognized and consumed with

increasing turbidity during reactive distance and foraging success experiments.  While

reviewing the reactive distance video, many aggressive interactions between the three

brook trout were observed and it appeared that each fish established and defended a

territory within the artificial stream.  With the decrease in reactive distance at elevated

turbidity levels, prey items may have drifted between established territories of the brook

trout and went unseen by any one of the three fish.  However, when conducting

consumption and growth experiments with only one fish at a time, there was no need for

the fish to establish a territory, and the single fish could move about the tank without

competitive interactions with other fish.  Thus, the observed switch in brook trout

foraging strategies with elevated turbidity may not only be a function of turbidity, but

also a function of predator density.
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Marchand and Boisclair (1998) also suggest that consumption rates may be

dependent on the density of fish.  They conducted enclosure experiments where brook

trout were held in 8 m3 enclosures at densities of four and eight brook trout per enclosure

(thus, 1 fish·m-3 and 0.5 fish·m-3).   The fish fed on zooplankton within the enclosures.

Zooplankton densities did not differ between experimental groups, but they found that

total energy consumption by fish in the four fish enclosures was 15% higher than that of

fish in the eight fish enclosures.  The density of brook trout in my reactive distance and

foraging success experiments was 3 fish·0.108 m-3 (approximately 27 fish·m-3) which

would suggest more competitive interactions than those found in Marchand and

Boisclair’s (1998) study.

Changes in activity can have profound influences on the energy budget of fish.

An assumed constant rate of activity, an over-simplification in bioenergetics models, is

rarely the case.  The work of Boisclair (Boisclair and Legget 1989; Boisclar 1992; and

Boisclair and Sirois 1993) addresses the importance of activity in consumption and

growth rates of fish and how the Kitchell (1977) bioenergetics model can give biased

estimates of prey consumption for actively foraging fish.  Boisclair and Legget (1989)

point out that the Kitchell (1977) model is a valuable tool when activity costs would be

negligible for ambush type predators. However, in the experiments here, the model failed

to account for changes in brook trout activity when the fish abandoned a typical drift

feeding strategy (an ambush strategy) due to increasing turbidity.  As turbidity increased,

predicted growth of the brook trout based on total prey consumption less accurate.

Consumption rates of fish have been found to increase with an increase in activity (Kerr

1982; Boisclair and Legget 1989) which may help to negate the effects of turbidity.
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Typically in nature, turbid episodes are accompanied by increased flow and are

short lived in small streams.  During such conditions, salmonids seek refuge in areas of

lower flow close to the streambed (Pert and Erman 1994) or in areas of more habitat

complexity such as those with large woody debris (Harvey 1998).  Although more

complex habitats may provide refuge, foraging efficiency is decreased in such habitats

(Wilzbach et al. 1986).  Decreased foraging efficiency within refuge areas coupled with a

decrease in visual acuity could result in decreased or even no prey consumption by fish.

Upon return of favorable conditions for efficient foraging, compensatory growth

(Hayward et al. 1997) could act as a mechanism diminishing the effects of the period of

reduced prey consumption during a turbid episode.  The results of this study do not

account for increased flow, which is commonly seen during turbid events in the field, and

further experimentation that combines increased turbidity with increased flow is needed

to determine the additive effects of both.

This research has also shown that the effects of turbidity differ between species

adapted to different habitats.  The rate of decrease for smallmouth bass reactive distance

was less than that of brook trout.  These results suggest that elevated turbidity may have a

greater effect on the foraging abilities of predatory fish found in cold, headwater streams

than on those found in warmwater streams of higher order and typically higher natural

turbidity (Vannote et al.1980).  The observed difference between species may be a

function of eye size and its light gathering abilities (Huber and Rylander 1992).

Smallmouth bass had a larger eye diameter for a given body length than did brook trout.

Aside from the effects of sediment on the reproductive potential of stream-

dwelling fish, sediment can effect fish production through decreased encounter rates with
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prey.  Encounter rates with potential prey are governed by the density of the prey and the

reactive distance of the predator (Gerritesen and Strickler 1977).  Streams with

chronically high turbidity levels will most likely have high bed loads of sediment. The

highest production of benthic invertebrates, which are most available to fish as food,

occurs in heterogeneous substrate of pebble and cobble riffles (Waters 1995).  Increased

bed loads of sediment fill the interstitial spaces of such substrate reducing benthic

production and the density of prey in the drift. The combined effects of decreased prey

abundance in streams with turbidity problems and decreased ability to detect prey during

turbid episodes can either decrease the amount of prey consumed, or increase the activity

required in capturing a prey item thus decreasing the energetic profit per prey item.
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