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Abstract

Comparative Analysis of the Promoters of the CyI-CyIIa-CyIIb Actin Gene Cluster

in the Sea Urchin Strongylocentrotus purpuratus

Ruth Lynn Dukes

Three of the eight actin genes in the sea urchin Strongylocentrotus purpuratus

were used for a comparative analysis.  The cytoplasmic actin genes CyI, CyIIb and CyIIa

are linked in the genome and encode very similar proteins.  However, their spatial and

temporal expression patterns are differentially regulated.  The region of CyIIa upstream of

the ATG and putative transcription start site was subcloned and sequenced. Sites of

protein-DNA interaction were identified using DNaseI footprinting.  Comparisons of this

data with that previously obtained for CyI and CyIIb showed that while CyI and CyIIb

share an identical CArG (or serum response element) and extensive sequence homology in

the upstream region, homology with CyIIa is essentially limited to consensus protein

binding sites, including the serum response element (SRE) and an octamer motif.  Along

with several other sites, the SRE and octamer were found to bind protein, though binding

to CyIIa was altered in comparison to CyIIb.  These data indicate that the CyIIa upstream

sequences have diverged extensively since its proposed duplication from CyI.  These

changes in sequence are likely the cause of an altered set of transcription factor binding

sites, which results in a pattern of expression that is markedly different from that of

CyI/CyIIb.
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Introduction

The actin proteins are well characterized molecules, functioning as

structural elements in eukaryotic cells.  In the sea urchin Strongylocentrotus

purpuratus, the actins are encoded by members of a multigene family, which are

differentially expressed in both embryonic and adult tissues (Shott et al., 1984;

Durica et al., 1988).  Study of actin gene structure and function thus lends itself

as a useful tool for understanding regulation of eukaryotic gene expression during

development.  In addition, it will serve here as a model in an investigation of the

evolutionary processes regarding the origin of such multigene families.

The genome of S. purpuratus contains eight nonallelic actin genes.  Of the

eight genes, two are suspected pseudogenes (Lee et al., 1984; Scheller et al.,

1981; Shott et al., 1984).  Five of the genes encode cytoskeletal actins (CyI,

CyIIa, CyIIb, CyIIIa and CyIIIb) and one, a muscle-specific actin (M).

Hybridizations with probes of the 3' untranslated regions of the genes show no

cross reaction between subgroups and at higher stringency, no cross reaction at

all, even within those subgroups.  The subgroups are designated by roman
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numerals, which signify differences in the 3' trailer region and by small letters

within the subgroups to indicate some homology (Lee et al., 1984).

The functional actin genes are separated into three linkage groups, shown

in figure 1.  CyI, CyIIa, and CyIIb are found within a thirty kilobase stretch of

DNA and are separated from each other by approximately 7-8 kilobases.  CyIIIa

and CyIIIb comprise the second linkage group and are located about six

kilobases apart.  M actin is in a third chromosomal location.  By southern blot

analyses, these genes seem to account for all the actin coding genes and actin-

like sequences in the S. purpuratus genome (Lee et al., 1984; Shott et al., 1984;

Scheller et al., 1981).

Expression patterns of the actin genes have been described in the adult animal

and in the embryo (Cox et al., 1986; Shott et al., 1984; Crain et al., 1981).  The

M gene is expressed specifically in muscle and myogenic cells.  An M actin

specific probe hybridizes to transcripts in muscle containing tissues of the adult

and pluteus larva; no hybridization is evident in the coelomocytes, a non-muscle

adult cell type (Shott et al., 1984).  During embryogenesis,
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FIGURE 1:  ORGANIZATION AND EXPRESSION OF THE ACTIN

GENE FAMILY IN Strongylocentrotus purpuratus.  Actin genes are named

M (muscle) or Cy (cytoskeletal/nonmuscle cell types). Roman numerals

designate the three nonhomologous 3' nontranslated trailer sequences found in the

cytoskeletal actin genes.  The letters a,b, and c designate different though

homologous trailer sequence variants.  Linkage data are from analyses of cloned

genes (J.J. Lee et al., 1984; Akhurst et al., 1986).  Expression patterns in adult

tissues were determined by RNA gel blot hybridizations, as reported by Shott et

al. (1984).  No expression of CyIIIa or CyIIIb has been detected in the adult

animal.  Expression of actin genes in embryonic cell types summarized from the

in situ hybridization study of Cox et al. (1986).  Not shown are probable

unlinked pseudogenes CyIIc and CyIIIc.  [Adapted from E.H. Davidson, C.N.

Flytzanis, J.J. Lee, J.J. Robinson, S.J. Rose, and H.M. Sucov (1985). Cold

Spring Harbor Symposium on Quantitative Biology, 50, 321.
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transcripts of M appear only in those cells which are myogenic; these cells

differentiate after gastrulation (Cox et al., 1986).

CyI and CyIIb show similar patterns of expression in the embryo.

Transcripts of each of these genes appear at very low levels in the maternal

mRNA store and both CyI and CyIIb are activated in all regions of the early

embryo between 10-14 hours of development.  After 18 hours, CyI and CyIIb

transcripts disappear from the aboral ectoderm, and ultimately remain present

only in the gut, oral ectoderm, and some mesenchyme cells (Cox et al., 1986).  In

the adult animal, expression of CyIIb is not significantly detectable in most

tissues except the intestine by DNA dot blot analysis, whereas the CyI message

appears in relative abundance in most adult tissues (Shott et al., 1984).

CyIIa is activated later during embryonic development than are CyI and

CyIIb.  The CyIIa transcripts are found in mesenchymal cells and in some

regions of the gut and its precursors (Lee et al., 1985; Cox et al., 1986; Shott et

al., 1986).  CyIIIa and CyIIIb mRNAs are confined to the aboral ectoderm  of the

embryo and pluteus larva (Angerer and Davidson, 1984; Cox et al., 1986).

Neither CyIIIa nor CyIIIb is expressed after metamorphosis (Shott et al., 1984).
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Each of the sea urchin actin genes is regulated differently, with distinct

levels and timing of expression within particular cell types.  Current models of

eukaryotic gene regulation indicate that the basis for these distinct patterns of

expression lies in the number and nature of the protein binding sites in the

regulatory region of each gene.  These sites are ultimately a consequence of the

evolutionary history of the gene family members.  Hence a comparative analysis

of the promoter sequences, and the  sites of protein binding within the regulatory

DNA of each gene, may provide important information regarding the evolution of

differential gene expression.

In this research project, the promoter regions of the linked actin genes

CyI, CyIIa and CyIIb were compared.  These genes are linked in the genome in

the same 5'-3' orientation (Scheller et al., 1981).  The proteins encoded by each

gene are strikingly similar.  CyIIb differs from CyI by only one amino acid, and

from CyIIa by three residues.  CyIIa and CyI are distinguished by four amino

acid residues (Durica et al., 1988; Shott et al., 1984).

At the nucleotide level CyI is more closely related to CyIIb  than to CyIIa

within the 5' flanking regions, within the intron following codon 121 and within

silent sites (those sites at which nucleotide changes do not replace amino acids)
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in the coding region.  However, in the 100 nucleotides flanking the 3' splice

junction and within the 3' flanking region, CyIIa and CyIIb show greater

sequence similarity.  All three genes are conserved in intron sequences within

codon 204 (Durica et al., 1988; Shott et al., 1984).  Hence, CyIIa and CyIIb have

been included in the same subgroup.  Sequence analysis of intron sequences of

the three genes has indicated a single origin for the cluster which may have arisen

through duplication events.  Subsequent divergence of the upstream regions, by

addition of new sequences or by base changes occurring at an estimated rate of

1% per 1.4 million years (the mutation rate of noncoding DNA) (Schuler et al.,

1983), has resulted in differential expression of the genes of this linkage group.

The protein products retain a remarkable amount of identity to each other.

By in situ hybridizations of embryos with probes to the 3' untranslated

region of mRNA, no significant differences between CyI and CyIIb transcripts

have been found in terms of tissue distribution, although CyI messages do appear

in relatively greater abundance.  CyIIa transcripts show a distinct pattern of

distribution by comparison (Cox et al., 1986).  Titrations of embryonic messages

using RNA probes transcribed from actin gene specific clones have shown that

CyI and CyIIb transcripts begin to accumulate earlier during development than

those of CyIIa, with an apparent increase in abundance as early as 10-12 hours
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post-fertilization.  CyI and CyIIb are represented in the maternal store of mRNA,

whereas CyIIa messages are not appreciably detectable until approximately 20

hours of development (Lee et al., 1986).  This data suggests a correlation

between expression and evolution of the CyI-CyIIa-CyIIb linkage group

members.  A duplication event may have yielded (essentially) two CyI actin

genes, with subsequent divergence of the upstream regulatory elements into what

is now CyIIa.  It appears, then, that another duplication (of CyIIa) gave rise to a

presumptive CyIIb.  That CyIIb shares greater sequence similarity with CyI may

be accounted for by a gene conversion of CyIIb with CyI (Durica et al., 1988).

Comparative analysis of 5' cis-acting control regions of these three genes should

offer a better basis for understanding of this evolutionary process.
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Materials and Methods

Restriction Mapping

The plasmid pCyIIa-CAT.1 (Zeller, et al.) was provided by Dr.

Roberta Franks of the National Institutes of Health. This plasmid was

restriction mapped by digestion with the enzymes Pst I, Sma I, Acc I, Kpn I,

Eco RI, Bgl II and Sal I (fig. 2).  A typical restriction enzyme digestion

contained about 1 µg of pCyIIa-CAT.1 DNA, 2µl of 10X universal buffer

(0.33 M Tris-acetate, pH 7.9, 0.66 M potassium acetate, 0.10 M magnesium

acetate, 5 mM dithiothreitol, 40 mM spermidine), 0.5 µl of the appropriate

enzyme (10 - 50 units) and double distilled water (ddH2O) to a final volume

of 20 µl in a sterile, 1.5 ml microcentrifuge tube.  The digestion was

incubated in a 37°C water bath for 45 minutes.  The resulting DNA

fragments, along with HindIII - digested λ DNA, were electrophoresed on a

0.8% agarose gel containing 2 µl of a 20 mg/ml stock of ethidium bromide

(EtBr) per 100 ml of gel solution.  The distance each fragment traveled on the

gel was measured from the bottom of the wells.  Distances in millimeters

were plotted against the known sizes in kilobases of λ DNA Hind III
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FIGURE 2:  SUBCLONING OF pCyIIa-CAT.1. The strategy for subcloning

the plasmid pCyIIa-CAT.1 is shown. A) On the original plasmid, restriction

enzymes used are abbreviated as follows: RI = Eco RI; K = Kpn I; P = Pst I; Bg

= Bgl II. B) Each of the fragments generated by digestion with Eco RI, Kpn I,

and Bgl II and subcloned into pUC18 are designated by the letters W, X, Y and

Z for reference in the text. C) The plasmid containing fragment X was digested

with  Pst I,  thereby  generating  fragments designated  XI and XII,  which  were

subcloned in a second round into pUC18.
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fragments on semi-log graph paper to generate a standard curve for

determining the size of each restriction fragment of pCyIIa-CAT.1.

Subcloning

Various subclones from pCyIIa-CAT.1 were generated using

conventional cloning methods (Maniatis, Sambrook and Fritsch, 1989).

Approximately 20 µg of pCyIIa-CAT.1 plasmid DNA was digested with 15

units each of the restriction enzymes Eco RI, Kpn I, and Bgl II in the

presence of 6.5 µl of 10X U buffer and 46.5 µl ddH 2O for a total volume of

65 µl.  The digestion mixes were incubated at 37°C for 45 minutes.  After

addition of another 15 units of each enzyme, the samples were incubated for

an additional 45 minutes.

The cloning vector was prepared by digesting pUC18 DNA with the

appropriate enzymes to accommodate a particular fragment from

pCyIIa-CAT.1.  pUC18 was digested with the following combinations of

enzymes: Eco RI and Kpn I, Kpn I and Bam HI, Bam HI and Eco RI, and

Bam HI alone.  A typical digestion contained 3 µg of pUC18, 2 µl of 10X U

buffer, 0.5 µl of each enzyme and ddH2O to a total volume of 20 µl.



14

The digested pUC18 and restriction digested pCyIIa-CAT.1 DNA

were electrophoresed on a 0.8% low-melting (65°C) preparative agarose gel

containing EtBr.  The bands were visualized under ultraviolet light and cut

from the gel.  The gel pieces were placed into sterile, 1.5 ml microcentrifuge

tubes and incubated in a 65°C water bath until the agarose melted.  One

volume of ddH2O was added and mixed by vortexing.  The solution was

made 50 mM Tris using 1 M Tris, pH 8.0.  To remove agarose from the

DNA, the sample was subjected to a standard phenol, phenol/sevag (24:1

chloroform : isoamyl alcohol), sevag extraction.  The DNA was reprecipitated

by addition of 1/15 volume 3 M NaOAc, pH 6.0, and 2 volumes cold 95%

ethanol with incubation at -80°C for 30 minutes.  The DNA was recovered by

centrifugation in a cold microcentrifuge at full speed for 15 minutes.  The

pellet was washed with 70% ethanol, centrifuged for 5 minutes, then washed

with 95% ethanol and centrifuged for another 5 minutes.  The DNA pellet

was dried under vacuum and resuspended in 20 µl of 10 mM Tris, pH 8.0, 1

mM EDTA (TE).

The gel-isolated fragments of pCyIIa-CAT.1 were ligated into the

appropriately digested pUC18 molecules in a reaction which consisted of
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~0.75 µg of the isolated pCyIIa-CAT.1 fragment, 1 µl ligase buffer (300 mM

Tris-HCl, pH 7.8, 100 mM MgCl2, 100 mM DTT, 10 mM ATP), 1 µl of 1

mg/ml bovine serum albumin, 0.15 µg pUC18 DNA, 1 µl ligase (400 units)

and ddH2O to 10 µl total volume.  The ligation mixtures were incubated at

16°C, overnight (~16 hours).

The ligation mixtures were used to transform competent DH5α cells.

A 300µl frozen aliquot of competent DH5α cells was thawed on ice, mixed

with 5 µl of the ligation mixture, and incubated on ice for 90 minutes.  The

cells were then  heat shocked in a 42°C water bath for 90 seconds.  After a 5

minute incubation on ice, 1ml of LB broth (1 % bactotryptone, 0.5 %

bactoyeast extract, 1 % NaCl) was added and the cells were grown in a 37°C

shaker for 1 hour.  The 1 ml culture was spread with an ethanol flame -

sterilized, bent glass rod onto solid LB agar (1.5% bactoagar) containing the

antibiotic ampicillin (AMP) and 5-bromo-3-indolyl b-D-galactoside (X-gal)

for selection.   The  150 mm plates were incubated overnight (~16 hours) in a

37°C incubator.
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Those colonies which did not utilize X-gal appeared as white colonies

on the plate.  A sterile toothpick was used to transfer cells from individual

white colonies to a second, numbered LB-Amp plate (“Master Plate”).  The

same toothpick was then swirled in a sterile 1.5 ml microcentrifuge tube

containing 1 ml of LB broth and 10µl of 10 mg/ml ampicillin.  The cells were

grown overnight in a 37°C shaking incubator  and analyzed using a standard

mini-prep protocol.

Mini - Prep Analysis

Bacterial cells were pelleted by centrifugation in a room temperature

microcentrifuge for 3 minutes.  The supernatant was removed and the

bacterial pellet resuspended in 20 µl lysis buffer (8% sucrose, 0.5% Triton

X-100, 50 mM EDTA,  pH 8.0, 10 mM Tris, pH 8.0, and 0.15 mg lysozyme).

The cells were lysed by boiling for 40 seconds and the chromosomal DNA

was pelleted by centrifugation in a refrigerated microcentrifuge for 15

minutes.  The pellet was removed using a pasteur pipet and a 5 µl aliquot of

the supernatant, plus 2 µl of 5X sample buffer (0.25% bromophenol blue,

0.25% xylene cyanol FF, 15% Ficoll) and 5 µl ddH2O, was electrophoresed

alongside λ Hind III marker DNA and supercoiled pUC18 on a 0.8% agarose
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gel containing EtBr.  DNA was visualized under ultraviolet light and samples

containing plasmid DNA migrating at a slower rate than pUC18 were

selected.  Plasmid DNA in these samples was precipitated by addition of 1/15

volume of 3 M NaOAc (pH 6.0) and 2 volumes of isopropanol, and an

incubation at -80°C for 30 minutes. The DNA was recovered by

centrifugation in a refrigerated microcentrifuge for 15 minutes.  The pellet

was washed with 70% ethanol, centrifuged for 5 minutes, washed with 95%

ethanol, and centrifuged another 5 minutes.  The DNA pellet was dried under

vacuum and resuspended in 20 µl TE.  The desired recombinants were

identified in a restriction enzyme digestion, using the appropriate enzymes to

release the inserted DNA fragments.

Large Scale Plasmid Preparation

Cells from positive colonies on the Master Plate were transferred with

a sterile toothpick into a flask containing 200 ml of LB broth and 60 µg of

ampicillin per milliliter of culture media.  Each recombinant clone was grown

in the 200 ml preparations in a 37°C shaking incubator overnight.  The cells

were pelleted by centrifugation at 5500 rpm at 4°C for 5 minutes and

resuspended in 20 ml of a buffer containing 500 mM sucrose, 10 mM EDTA,
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25 mM Tris, pH 8.0, and 80 mg lysozyme.  After a 10 minute incubation at

room temperature, the cells were lysed by addition of 40 ml of 0.2 M NaOH,

1 % SDS with a 5 minute incubation on ice. Thirty milliliters of cold 3 M

KOAc was mixed into the solution by swirling and the preparation incubated

for 10 minutes on ice.  Cellular debris was removed from the samples by

centrifugation at 5500 rpm, at 4°C for 5 minutes.  The supernatant was

filtered through sterile gauze into a fresh centrifuge bottle and 0.6 volume of

isopropanol was added.  After a 10 minute incubation at room temperature,

the now crude preparation of plasmid DNA was centrifuged again at 5500

rpm, 4°C for 5 minutes.  The pellet was washed with 70 % ethanol to remove

residual salt and subsequently resuspended in 8 ml TE.  Cesium chloride (8.8

g) was dissolved into the sample and its density at this point was adjusted

with TE or additional CsCl to 1.5 - 1.6 g/ml.  The sample was transferred to a

11 ml capacity crimp-top ultracentrifuge tube and 100 µl of 20 mg/ml EtBr

was added.  Samples were centrifuged in a Ti-1270 (Sorvall) rotor at 50,000

rpm, 20°C for 20 hours.  The band of plasmid DNA was visualized under

ultraviolet light, removed with a 3 cc syringe and transferred to a 15 ml falcon

tube.  To remove EtBr from the DNA, 3 volumes of H2O - saturated

n-butanol was added and mixed by inversion.  The phases were allowed to

separate and the top/organic phase was removed.  This process was generally
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repeated twice more or until the pink color of the EtBr was no longer

apparent.  The plasmid DNA was precipitated by addition of 2 volumes of TE

and 2 volumes of cold 95% ethanol and incubation at -20°C overnight.  The

DNA was pelleted by centrifugation in a 15 ml Corex tube at 10,000 rpm,

4°C for 20 minutes. The pellet was washed with 70% ethanol and 95%

ethanol before being taken up in 250 µl TE.  The plasmid DNA was

quantified by reading the optical density of a diluted sample (10 µl DNA in

990 µl TE) with a Milton Roy spectrophotometer at 260 nm.

Sequencing

DNA sequencing was conducted using the Sanger - dideoxy method,

specifically the Sequenase® version 2.0 protocol supplied by United States

Biochemical.  Approximately 3.5 µg of plasmid DNA was denatured by

addition of  2 µl of 2M NaOH, 2 mM EDTA during a 30 minute incubation at

37°C.  The DNA was precipitated with 3 µl of 3 M NaOAc, pH 4.6 and 75 µl

of cold 95% ethanol.  After ~30 minutes at -20°C, the DNA was recovered by

centrifugation in a refrigerated microcentrifuge for 15 minutes at full speed.

The pellet was washed with 70% ethanol, then drained and lyophilized under

vacuum.  The DNA was resuspended in 7 µl of ddH2O.  Two microliters of
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5X sequenase buffer (200 mM Tris-HCl, pH 7.5, 100 mM MgCl2, 250 mM

NaCl) and 1 µl (0.5 pmole) of forward pUC primer (5'

GTTTTCCCAGTCACGAC 3'), pUC reverse primer (5'

CAGGAAACAGCTATGAC 3') or custom synthesized primer was added.

The  samples were heated at 65°C for 2 minutes, then cooled slowly to ~35°C

for annealing of primers to the templates.  Each annealing mixture was spun

briefly and placed on ice.  In the labeling reaction, 1 µl dithiothreitol, 2 µl of

1:5 dilution of a 5X labeling mix (7.5 mM each dGTP, dCTP, dTTP), 0.5 µl

[32P]-dATP (10 mCi/ml, 800 Ci/mmol) and 2 µl of 1:8 diluted Sequenase

enzyme (T7 DNA polymerase) were added to each annealing mixture.  The

components of the labeling reaction were mixed and the samples were

incubated for 3 minutes at room temperature.  To each of four termination

tubes (containing a mixture of deoxynucleotides and either ddATP, ddCTP,

ddGTP, or ddTTP), 3.5 µl of the labeling reaction was added and the

termination reactions incubated at 37°C for 4 minutes before 4 µl of stop

solution  (95% formamide, 20 mM EDTA, 0.05% bromophenol blue, 0.05%

xylene cyanol) was added.  The reactions (A, C, G, T) were heated at 75°C

for 2 minutes immediately prior to loading onto a 6% 40:2

acrylamide:bis-acrylamide - urea gel which had been prerun for one hour at

1700 volts in 1X TBE buffer (0.089 M Tris, 0.089 M boric acid, 2 mM



21

EDTA). Samples were loaded 3 times, with approximately 3 hours between

each successive loading.  After electrophoresis, the gel was exposed to X-ray

film at -80°C overnight.  Gaps in nucleotide sequence data were closed using

custom synthesized oligonucleotide primers (Midland Reagent Company).  A

primer made to the end of the sequence obtained for the BglII - EcoRI

fragment (5' GTCCATCAAT-TTAACCGGG 3') generated data for a

complete sequence of that region.  Similarly, a primer made to the end of the

sequence obtained for the Pst I - Pst I fragment (5'

ATCGATTGCTGCCCTACC 3') made possible a complete sequence of that

region.  Finally, a primer made to the beginning of the sequence obtained for

the Bgl II - Bgl II fragment (5' GATCATGCTCGAACCATCG 3') generated

data which confirmed the orientation of this fragment within the subclone.

Addition of Mn buffer (0.15 M sodium isocitrate, 0.1 M MnCl2) to the

labeling reaction yielded sequence close to the primer for confirmation of

cloning sites within each of the subclones as necessary.  For obtaining

sequence much farther from the primer than usual, 1.5 µl of sequence

extending mixture (50 mM NaCl and 180 mM each dATP, dCTP, dGTP,

dTTP) plus 1.0 µl of the appropriate termination mixture was used instead of

2.5 µl of termination mixture alone.
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DNase I Footprinting

1. Preparation of end - labeled probes

A 912 base pair fragment of pCyIIa-CAT.1 was isolated from a Pst I

digestion of 100 µg of the plasmid using the low melting agarose gel as

described previously for subcloning.  One sample of the fragment was then

digested with Cla I, another sample with Dde I.  Approximately 3 µg of DNA

was digested in the presence of 4 µl 10X Cla I buffer (10 mM Tris, pH 7.5,

10 mM MgCl2, 50 mM NaCl, 1 mM DTT) or 10X Dde I buffer (6 mM Tris,

pH 7.9, 6 mM MgCl2, 150 mM NaCl, 1 mM DTT), 12 units of either Cla I or

Dde I, and ddH2O to a final volume of  40 µl.  Each digestion incubated at

37°C for 45 minutes.  The DNA was then precipitated by addition of 1/15

volume 3M NaOAc, pH 6.0, and 2 volumes cold 95% EtOH.  After

incubating at -80°C for 15 minutes, the samples were centrifuged for 15

minutes at full speed in a refrigerated microcentrifuge.  The pellets were

washed with 70% EtOH and vacuum dried.  Each DNA pellet was

resuspended in 5 µl of TE.

The resulting fragments of the Cla I digestion were subsequently end -

labeled with [α-32P]dCTP, and those of the  Dde I digestion were end -

labeled with [α-32P]dATP.  Each reaction contained 5 µl of the DNA, 1 µl

10X Klenow buffer (100 mM Tris, pH 7.5, 600 mM NaCl, 70 mM MgCl2), 2
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µl [α-32P] dCTP or dATP (20 µCi, 3000 Ci/mole), 0.5 µl each 10 mM dGTP,

dTTP, and either dATP or dCTP, and 0.75 µl (5000 units/ml) Klenow.  The

samples incubated at 30°C for 20 minutes,  then 0.5 µl of cold nucleotide was

added : dCTP to the Cla I - digested DNA, dATP to the Dde I - digested

DNA.  The samples were incubated 15 minutes longer at 30°C.  The Klenow

enzyme was inactivated by heating the samples at 75°C for 10 minutes.

One microliter of each of the labeling reactions was transferred into

100 µl of TE for calculation of counts incorporated by trichloroacetic acid

(TCA) precipitation.  Ten microliters of this volume was spotted directly onto

a glass microfiber filter.  To the remaining 90 µl, 5 µl of 5 mg/ml herring

sperm DNA and 1 ml cold 10% TCA were added.  The sample incubated on

ice 5 minutes and was passed through a glass microfiber filter which was then

washed with cold 10% TCA and cold 95% EtOH.  Both filters were placed in

scintillation vials with 5 ml of  cocktail and counted.  The number of counts

incorporated was determined by dividing TCA soluble counts (second filter)

by total counts (first filter).

To complete preparation of necessary probes, the Cla I and Dde I -

digested end - labeling reactions were subjected to a secondary digestion.  To
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the Cla I -  digested reaction, 3 µl 10X Ava II buffer (50 mM potassium

acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, 1 mM DTT), 0.75

µl Ava II (4000 units/ml) and ddH2O to a final volume of 30 ml were added.

To the Dde I - digested  reaction, 3 µl 10X Cla I buffer, 0.75 µl Cla I and

ddH2O to 30 µl were added.  Both samples incubated 45 minutes at 37°C.

The fragments of the secondary digestions were separated on a nondenaturing

5% polyacrylamide gel.  The top plate of the gel apparatus was removed to

expose the gel and a piece of X-ray film, wrapped with aluminum foil to be

light proof, was laid over the gel.  After 15 minutes of exposure at room

temperature, the film was developed and used to determine the location of

desired bands in the gel.  These bands were removed from the gel and

transferred to a small culture tube containing 1 ml TE.  The DNA was eluted

from the gel pieces in a 37°C shaker overnight.  The liquid containing the

DNA was separated from the gel piece and vacuum dried to a volume of 150

µl. The samples were passed through a spin column of Sephadex G-50 and 1

µl in 5 ml cocktail was counted for an estimate of the counts per microliter of

probe.

2. Maxam - Gilbert sequencing

For the G reaction, 50,000 cpm of each probe was dried down to a 1 x

104 cpm/µl concentration (5 µl) and 200 µl dimethyl sulfate (DMSO) buffer
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 (50 mM sodium cacodylate, pH 7.0, 1 mM EDTA, pH 8.0) was added.

After a 5 minute incubation on ice, 1 µl of 10% DMSO (1:9 dimethyl

sulfate:ethanol) was added.  The reactions were incubated at 20°C for 3.5

minutes and 50 µl DMSO stop solution (1.5 M NaOAc, pH 7.0, 1 M

β-mercaptoethanol, 250 µg/ml yeast tRNA) and 750 µl 95% EtOH was

added.  For the A+G reaction, 100,000 cpm of probe was dried down to a 10

µl volume to which 10 µl ddH 2O was added.  The samples were chilled on

ice for 5 minutes and 50 µl formic acid was added.  After a 5 minute

incubation at 20°C, 180 µl hydrazine (HZ) stop solution (0.3 M NaOAc, pH

7.0, 0.1 M EDTA, pH 8.0, 100 µg/ml yeast tRNA) and 750 µl 95% EtOH

were added.  After a 15 minute incubation at -80°C, both the G and the A+G

reactions were centrifuged for 10 minutes at full speed in a refrigerated

microcentrifuge.  To the pellets, 250 µl 0.3 M NaOAc and 750 µl cold 95%

EtOH were added.  The samples were again incubated at -80°C for 15

minutes and centrifuged for 10 minutes.  The pellets were washed with cold

70% EtOH and vacuum dried.  Twenty-five microliters of piperidine was

added to each of the samples and they were heated at 90°C for 30 minutes.

The reactions were dried under vacuum after which 10 µl ddH2O was added.

This step was repeated and the samples were dried under vacuum once more.

The pellets were resuspended in 10 µl of sequencing stop buffer.
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3. Footprinting

DNase I was used to digest unprotected regions of the end - labeled

probes after incubation with nuclear extract from 24-hour sea urchin embryos.

A typical reaction contained 4 µl 5X DNase I buffer (25 mM HEPES, pH 7.8,

12.5 mM KCl, 5 mM MgCl2, 435 mM NaCl, 1 mM DTT), 2µl 1mg/ml poly

[d(I-C)], 0.5 - 4 µl 15 mg/ml nuclear extract (or none for controls), 1-2 µl

DNase I (0.05-1 µg), diluted in 10 mM HEPES, 2.5 mM CaCl2) and ddH2O

to a final volume of 20 µl.  The extract and poly [d(I-C)] incubated on ice 15

minutes in the presence of 5X DNase I buffer for nonspecific binding before

addition of the probe.  After an incubation of 15 minutes on ice with the

probe, an appropriate dilution of DNase I was added.  The samples were

digested for 1-2 minutes and stopped by addition of 30 µl of DNase I stop

buffer (0.6 M NaCl, 0.4% SDS, 20 mM EDTA, 3.3 mg/ml yeast tRNA, 100

µg/ml proteinase K).  After a 30 minute incubation at 65°C, the samples were

extracted with phenol, phenol/sevag, and sevag.  Two volumes of cold 95%

EtOH was added and the samples incubated at -80°C for 30 minutes before

centrifugation for 15 minutes at full speed in a refrigerated microcentrifuge.

The pellets were washed with 70% EtOH, vacuum dried and resuspended in 3

µl sequencing stop buffer.  Samples were heated at 90°C for 4 minutes and
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electrophoresed on an 8% polyacrylamide-urea gel alongside appropriate

Maxam - Gilbert sequencing reactions serving as markers for each probe.

The gel was exposed to X-ray film with an intensifying screen for 24 - 72

hours.

Computer Analysis of the Data

Sequencing

The base sequence of each of the subcloned fragments of pCyIIa-

CAT.1 was determined directly from autoradiographs of the gels and the data

was entered into the MacVector® sequence analysis program.  Ultimately,

the sequences of each of the fragments were integrated to yield one

continuous sequence of the portion of upstream sequence of CyIIa contained

on pCyIIa-CAT.1.  The application "Restriction Enzyme," which was used to

verify orientation and identity of the fragments of the upstream region for

later integration, was also used to generate a complete restriction map of this

region.

The sequences of previously characterized actin genes CyI, CyIIb,

CyIIIa and CyIIIb were entered into MacVector and the application "Pustell
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DNA Matrix" was used to compare their promoter regions to the portion of

CyIIa upstream region that is contained on pCyIIa-CAT.1.  Base sequence of

the CyIIa 5' leader was also compared to pCyIIa-CAT.1 sequence.

Footprinting

The base sequence obtained for pCyIIa-CAT.1 was scanned by a

program containing a database of all consensus binding sequences for known

transcription factors/DNA binding proteins.  Base sequence of regions along

the DNA which were found to be resistant to/protected from DNase I

digestion in footprinting studies were compared to data obtained from this

search of the pCyIIa-CAT.1 sequence.
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Results

Subcloning the CyIIa actin upstream region

The plasmid pCyIIa-CAT.1, contains approximately 4.3 kb of

sequence 5' of the CyIIa start of translation plus 37 nucleotides of actin

coding region ending at the junction with the CAT reporter gene coding

region.  The CyIIa actin coding sequence was originally obtained by isolation

of the λ recombinant λSpG2-8 from a Strongylocentrotus purpuratus

genomic library (Scheller et al., 1981).  To create pCyIIa-CAT.1, an Eco RI

fragment of λSpG2-8 was first subcloned into pBluescript.  Sequences 3' of

the Bam HI site were deleted by digestion with Bam HI (which also cut

within the pBluescript polylinker).  The approximately 1.6 kb pUC CAT Bgl

II - Bam HI fragment was inserted into the Bam HI site to yield pCyIIa-

CAT.1.

Subclones of the CyIIa upstream region were generated as shown in

fig. 2.  The plasmid pCyIIa-CAT.1 was restriction digested with Eco RI, Kpn

I, and Bgl II and resulting fragments W (~1.6 kb), X (~1.8 kb), Y (~0.5 kb)

and Z (~1.0 kb) were gel purified.  These fragments were subsequently
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cloned into the plasmid vector pUC18.  The subclone pUCX was restriction

mapped further to reveal suitable cloning sites.  Plasmid pX was restriction

digested with Pst I, generating fragments XI (~1.0 kb) and XII (0.8 kb),

which were subcloned into pUC18.  Subclones were verified by restriction

analysis and agarose gel electrophoresis.

Sequence Analysis

The strategy for sequencing pCyIIa-CAT.1 is shown in figure 3.  In the

first round, plasmids containing the fragments W, X, Y, and Z were

sequenced using pUC forward or pUC reverse primers provided in the

Sequenase® kit, which primed on regions flanking the multiple cloning site

on either side of the insert.  A complete sequence was obtained for fragments

Y and Z by using these primers and by varying the sequencing reactions to

clarify sequences further away from the priming site and to facilitate detection

of overlap between forward and reverse-primed reactions.  Also, the

sequencing reactions were modified to clarify sequences very close to the

priming site for verification of the identity and orientation of each fragment.

A complete sequence was also obtained for fragment XII using a primer made

to the end of the data obtained in the first round of sequencing.  Since
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FIGURE 3:  STRATEGY FOR SEQUENCING pCyIIa-CAT.1.  The

restriction map of pCyIIa-CAT.1 is shown for reference.  Primers used are

indicated with arrows.  A primer made to the end of sequence obtained for the

Pst I - Bgl II fragment generated complete data for that portion of pCyIIa-CAT.1.

Another primer made to the "beginning" of sequence obtained for the Bgl II - Bgl

II fragment verified its orientation on the original plasmid.
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fragment Y utilized the same restriction site (Bgl II) in subcloning, another

primer was made to the end of fragment Y sequence.  When pCyIIa-CAT.1

was used as a template for sequencing with this primer, the resulting

sequence data matched sequence already obtained for fragment XII and the

correct orientation of the sequence data for fragment Y was determined.  The

MacVector® sequence analysis program application "Pustell DNA Matrix"

was utilized to compare forward and reverse sequence data.

Computer Analysis

"Pustell DNA Matrix" yielded important information on the sequence

when used to compare forward and reverse sequencing reaction data for

detection of overlap.  The data was ultimately compiled then into one

continuous sequence of approximately 1.72 kb, shown in fig. 4.

The CyIIa upstream sequences were identified by comparing the

sequence of the CyIIa 5' leader, isolated from a coelomocyte cDNA library

(Smith, 1992), to the 1.72 kb genomic sequence using the Pustell DNA

Matrix application.  Homology was found in two locations along the

sequence.  The  first 47 bp of the  leader  matched  an  area  roughly  halfway
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FIGURE 4:  SEQUENCE OF THE CYIIa UPSTREAM REGION.  The

sequence data obtained for the upstream region of CyIIa as it is represented on

pCyIIa-CAT.1 is shown.  Restriction enzyme sites used in subcloning are

included, as well as homologies to the 5' leader sequence, distinguished by

underlining.  The start of translation (ATG) is shown in bold italics.  The

BamHI/BglII site, at which CAT reporter gene sequence was cloned in, is also

indicated.   
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between the first Bgl II and the second Pst I sites.  The last 25 bp of the

leader matched the area on the sequence, which was just 5' of the ATG,

shown in fig. 4.

This data indicates that an intron of 562 bp is located within the CyIIa

5' leader sequence.  The end of the cDNA homology is presumed to represent

or be near the actual start of transcription, approximately 633 bp from the

ATG.

In light of the observed amino acid sequence homologies among CyI,

CyIIb and CyIIa (Durica et al., 1988; Schott et al., 1984), the MacVector

software package was also used for comparative analyses of DNA sequence

obtained for pCyIIa-CAT.1 with CyI and CyIIb upstream sequence.  Only

limited similarities were found between CyIIa and CyI/CyIIb (see figs. 5

through 7), though CyI and CyIIb show significant homologies to each other.

Notably, when CyIIa was examined for protein binding sequences, a serum

response element (SRE) and some homology to the protein binding site D of

CyI were found along a region in which CyI and CyIIb share extensive

homology and SRE sites which are identical to each other.  The CyIIa SRE,
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FIGURE 5:  SEQUENCE COMPARISON OF CYIIA WITH CYIIB AND

CYI. The sequence of CyIIa is shown.  Homologous regions of CyI appear

beneath the appropriate locations on CyIIa in bold type.  Homologous region of

CyIIb appears beneath an appropriate location in italics.  Mismatched bases of

the CyI and CyIIb sequences are in lower case letters.  The start of translation

(ATG) is shown in bold italics.   
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FIGURE 6:  SEQUENCE COMPARISON OF CYI WITH CYIIA AND

CYIIB. The sequence of CyI is shown.  Homologous regions of CyIIa appear

beneath the appropriate locations on CyI in bold type.  Homologous regions of

CyIIb appear beneath appropriate locations on CyI in italics.  Mismatched bases

of CyIIa and CyIIb sequences are in lower case letters. (SRE is underlined.)
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FIGURE 7:  SEQUENCE COMPARISON OF CYIIB WITH CYI AND

CYIIA. The sequence of CyIIb is shown.  Homologous regions of CyI appear

beneath the appropriate locations on CyIIb in bold type.  Homologous region of

CyIIa  appears  beneath an appropriate  location in italics.  Mismatched  bases of

the CyI and CyIIa sequences are in lower case letters.
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although consensus, differs at three nucleotides from that of CyI/CyIIb.

Footprinting

A 912 bp PstI-PstI fragment of pCyIIa-CAT.1 was gel purified and

used for generating footprinting data.  The purified fragment was digested

with ClaI and end-labeled using 32P-dCTP. Following labeling the fragment

was digested with AvaII.  Four footprinting probes were thus generated

(fig.8). These probes encompassed 774 bp of sequence including 73 bp

downstream of the splice junction and 910 bp of sequence 5’ of the start of

transcription (minus the 138 bp AvaII-AvaII fragment that was excluded from

the footprints).  Each of the probes was allowed to bind proteins present in a

crude nuclear extract from S. purpuratus embryos (prepared at 24 hours post-

fertilization). After footprinting, as described in the Materials and Methods,

certain regions along the DNA probes were found to be protected from

digestion with DNase I by bound protein.  Also identified were sites of

enhanced Dnase I sensitivity, which are marked with arrows and appear in

the footprint as bands with increased intensity in comparison to the control

(fig. 9).  Analysis of the protected sequences with an online computerized

database of DNA-binding protein recognition sites (Altschul et al., 1990)
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FIGURE 8:  MAP OF FOOTPRINTING CONSTRUCTS:  The 912 base

pair region of pCyIIa-CAT.1 chosen for footprinting studies is shown.  A

restriction map of this region as well as the sizes, locations, and designations of

the restriction fragments used for footprinting appear below the map of the

original plasmid. An asterisk indicates the radiolabeled end of each probe.  C =

Cla I; A = Ava II; D = Dde I.
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FIGURE 9:  DNase I  FOOTPRINT ANALYSIS OF CyIIa ACTIN

UPSTREAM REGION USING CLA 1 PROBE. CyIIa DNA was subjected

to digestion by DNase I without the addition of nuclear protein extract prepared

from 24 hour S. purpuratus embryos as controls, or with the indicated amount of

protein mixture. All were incubated with poly [d(I-C)] prior to addition of nuclear

extract for nonspecific binding.  The amount of DNAse I, time of digestion and

amount of nuclear protein extract used for each assay is indicated above each

lane.  The boxed regions indicate sites of protein binding. Arrows at left indicate

regions of hypersensitivity.
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revealed some homologies to well-characterized transcription factors (Table

1).

Cla 2, a 180 bp PstI-ClaI fragment, represents the beginning of the

larger (912 bp) PstI-PstI restriction fragment for which continuous sequence

had been obtained.  Two protected regions, one of which contains a TATA

box, were detected with Cla 2 (fig. 10).  Cla 4, 145 bp in length, is a Cla I -

Ava II fragment immediately adjacent to Cla 2.  It was found to contain an

octamer consensus sequence and an additional protected region (fig. 11).  The

290 bp Cla 1 sequence, delineated by an Ava II site and a Cla I site, covers

the ligation junction and may include the start of transcription.  Among the

four regions of protein binding along this probe (fig. 9) is the consensus

sequence for the serum response element (SRE).  The last of the four probes,

Cla 3, is a 159 bp Cla I - Pst I fragment representing the 3’ boundary of

continuous sequence data obtained.  Also showing four protected areas, it

includes a CCAAT box (fig. 12).
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FIGURE 10:  DNaseI  FOOTPRINT ANALYSIS OF CyIIa ACTIN

UPSTREAM REGION USING CLA 2  PROBE.  CyIIa DNA was subjected

to digestion by DNase I without the addition of nuclear protein extract prepared

from 24 hour S. purpuratus embryos as controls, or with the indicated amount of

protein mixture. All were incubated with poly [d(I-C)] prior to addition of nuclear

extract for nonspecific binding.   The amount of DNase I, time of digestion and

amount of nuclear protein extract used for each assay is indicated above each

lane.  The boxed regions indicate sites of protein binding.
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FIGURE 11: DNase I FOOTPRINT ANALYSIS OF CyIIa ACTIN

UPSTREAM REGION USING  CLA 4  PROBE. CyIIa DNA was

subjected to digestion by DNase I without the addition of nuclear protein extract

prepared from 24 hour S. purpuratus embryos as controls, or with the indicated

amount of protein mixture. All were incubated with poly [d(I-C)] prior to

addition of nuclear extract for nonspecific binding.  The amount of DNase I, time

of digestion and amount of nuclear protein extract used for each assay is

indicated above each lane.  The boxed regions indicate sites of protein binding.
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FIGURE 12: DNaseI  FOOTPRINT ANALYSIS OF CyIIa ACTIN

UPSTREAM REGION USING CLA 3  PROBE.  CyIIa DNA was subjected

to digestion by DNase I without the addition of nuclear protein extract prepared

from 24 hour S. purpuratus embryos as controls, or with the indicated amount of

protein mixture. All were incubated with poly [d(I-C)] prior to addition of nuclear

extract for nonspecific binding.  The amount of DNase I, time of digestion and

amount of nuclear protein extract used for each assay is indicated above each

lane.  The boxed regions indicate sites of protein binding.
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Discussion

That the protein products of CyI, CyIIa, and CyIIb show remarkable

amino acid sequence homology to one another (Durica et al., 1988; Schott et

al., 1984) lends support to the genes having arisen from a common

progenitor.  That their patterns of expression vary more widely is at least an

indication that their regulatory regions have evolved separately.  The precise

mechanism by which they reached their present forms was explored in this

study.  By sequence comparisons of introns and 3’ and 5’ flanking

untranslated regions (Lee et al., 1984; Akhurst et al., 1987; Durica et al.,

1988; Fang and Brandhorst, 1994), the CyI-CyIIa-CyIIb genes are more

closely related to one another than to the unlinked CyIIIa-CyIIIb genes.  The

finding that the 3’ untranslated regions of CyIIa and CyIIb are homologous,

while the 5’ untranslated regions of CyIIb are nearly identical to the same

region on CyI leads to the additional conclusion that the original gene cluster

arose from two gene duplications (CyI to CyII and CyII to CyIIa and CyIIb’)

followed by a gene conversion between the 5’ regions of CyI and

CyIIb’(giving rise to CyIIb) (Durica et al., 1988).
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Analysis in this study of promoter sequences reveal that CyIIa shows

only limited homology to CyI and CyIIb (figs. 5, 6, 7), while Lee et al. (1984)

found intron sequences to be similar enough to cross hybridize. This is

perhaps an indicator of some selection pressure on the production/function of

product, though not on the timing and degree of expression.

Like all the S. purpuratus cytoplasmic actin genes (Akhurst et al.,

1987; Katula et al., 1987; Flytzanis, 1989), the 5’ leader sequence of CyIIa

was found to have an intron within it.  Like both CyI and CyIIb, CyIIa

promoter sequences were found to contain the consensus binding site for the

serum response element (SRE) as well as an octomer motif, TATA box and

CCAAT box (table 1).  The CyIIa octomer sequence is the same as that found

in both CyI and CyIIb.  It should be noted here that though the SRE found in

CyIIa is the consensus, it differs in the A/T region by 3 bp from those of CyI

and CyIIb, which are identical to each other.

Footprinting analysis of the CyIIa promoter sequence obtained in this

project was used to determine if features apparent in the DNA sequence data

actually bound protein.  Twelve areas on the four probes generated were

protected from digestion by DNase I  by protein present in a nuclear extract
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TABLE 1:  Sequences and Features of Protected Regions.  For

each of those regions which were shown to be protected from DNaseI

digestion in footprinting studies, the probe used, location of the

protected region, its length in base pairs, and its sequence is given

along with a listing of putative protein binding sites and other notable

features (underlined unless otherwise noted).
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from 24-hour S. purpuratus embryos (figs. 9 through 12).  Though there was

binding of protein to the SRE, it was not complete (fig. 9), as it is in both CyI

and CyIIb.  The octamer site also showed evidence of protein binding with

additional protection of the areas flanking the octamer consensus (fig. 11).   A

large protected region was found to be centered around the putative start of

transcription (fig. 12).  The location and size of this footprint suggests that

this may represent binding of the transcription initiation complex.

Though some sequence similarities were found between CyIIa and

CyI/CyIIb, including the SRE, TATA box and some smaller regions within

site D (Ganster et al., 1992), CyI and CyIIb share a much more similar set of

protein binding sites within the promoter region.  Site D is conserved in CyI

and CyIIb and when deleted from a CyI-CAT reporter construct, cat

expression was decreased by 10-20%, indicating that a positive regulatory

sequence is contained within this region (H. Paul, R.J. Winfrey, K.S. Katula,

unpublished).  The finding by Collura and Katula (1992) was that at least 198

bp of upstream sequence, including the SRE and site D is required for correct

spatial expression of CyI. That the area on CyIIa believed to be homologous

to site D in CyI/CyIIb does not bind protein accentuates just one of the

divergences within what would become CyIIa following gene duplication.



60

Over evolutionary time, protein binding to site D has been eliminated, while

binding to the SRE has been modified. It is likely that these changes alone

contributed significantly to the altered pattern of expression for CyIIa

compared to CyI/CyIIb.

When more of the upstream region of CyIIa is analyzed, a more

complete picture of the types of transcription factors that bind, at what levels,

in what combinations and at what times can be assembled.  The specific

points at which these differ from CyI and CyIIb will more effectively retrace

the genetic modifications that over time produce a perpetuated change.
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