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ABSTRACT

Designing Neural Networks for the Prediction of the Drilling Parameters for Kuwait Oil
and Gas Fields.

Abdulrahman F. Al-Rashidi

In this study a new methodology was developed to predict the drilling parameters
using the Artificial Neural Network.  Three models were developed to predict bit type,
rate of penetration (ROP), and cost-per-foot (cost/ ft), respectively.

The prediction of bit type and other drilling parameters from the current available
data is an important criterion in selecting the most cost efficient bit.  History of bit runs
plays an important factor in bit selection and bit design.  Based on field data, the selection
of bit type can be accomplished by the use of a neural network as an alternative bit
selection method.

Three drilling parameters were modeled with data from different fields located in
Kuwait.  Results show that the drilling parameters of the new well can be predicted with
the neural network models developed from the previous wells, a cost efficient alternative.
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1. INTRODUCTION

Optimization of the drilling parameters and bit selection planning are considered as

unique challenges to drilling engineers.  Correct drilling parameters have becoming increasingly

important given the high cost of drilling a well.  Numerous efforts have been made in an effort

to predict the bit capable of achieving the highest rate of penetration.  Bit selection programs

that give the highest rate of penetration have been prepared by engineers and technicians from

rock bit manufactures as a service to oil companies to reduce the drilling cost.

Achieving the optimal rate of penetration with the least possible bit wear is the aim of

every drilling engineer when selecting a drilling bit.  There are several factors that can effect the

rate of penetration, which are ranked as follows:

1. Formation properties.

2. Bit type.

3. Bit weight.

4. Bit rotational speed.

5. Bit hydraulics.

Obviously, formation properties can not be changed before drilling and thus selection of

the correct bit type plays a major importance in achieving high rates of penetration.

Unfortunately, there are no foolproof methods of selecting the optimum drilling bit for a

formation to be drilled.  Bit selection, like the selection of the correct weight on bit (WOB),

rotation-per-minute (RPM), and hydraulics, is dependent upon a degree of trial and error.  The

aim of any bit selection tool is to reduce the trial and error factor to a minimum.  There are
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many proposed methods for bit selection and often more than one is used before reaching a

decision.  Bit selection methods include:

1. Cost analysis. The cost per interval drilled is the most commonly used method for

comparing the performance of various bits.  The basic equation used is as follows:

( )
ftFootage

hrtRigHourlyhrtimeTriphrtimeRotatingCostBit
ftfootperCost

,

/$,cos*,,$,
)/($,

++=

2. Dull bit evaluation.

3. Offset well bit record analysis.

4. Offset well logs analysis.

5. International Association of Drilling Contractor (IADC) Bit Coding.

6. Manufacturer’s product guides.

7. Geophysical data analysis.

8. General geological consideration.

Differences in formation and drilling techniques require a large variety of bit types to

minimize costs.  Because the efficiency of any drilling operation depends largely upon the right

choice of the most suitable bit for a given set of conditions, there is a need for further research

on methods and guidelines that could simplify the task.  Thus, the artificial neural network was

used as the new methodology to predict the drilling parameters of bit type, rate of penetration,

and cost per foot for drilling optimization

Artificial Neural Network (ANN), also referred to as Neural Network (NN), is a data

processing system consisting of a large number of interconnected processing elements

configured in a manner that was inspired by the structure of the cerebral cortex portion of the

brain.  Neural network offers a new form of information processing that is fundamentally
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different from a traditional processing system.  The system uses a knowledge base of various

drilling parameters, to produce a “correlation” description of the most suitable bit, ROP, and

cost-per-foot for a particular set of drilling parameters.

The “correlation” is derived from various drilling parameters, which may include some

or all of the following data from a field or a region:

bit type, bit size, total flow area, depth in, depth out, drilled interval, drilling hours, ROP,

minimum WOB, maximum WOB, minimum RPM, maximum RPM, mud flow rate, mud

weight, circulating pressure, the bit inner row dull grading, the bit outer row dull grading, cost

of bit in dollars (Cost $), cost-per-foot, and well name.

Compared to conventional bit selection methods, this approach makes a more effective

use of past experience leading to a higher and more uniform level of bit selection expertise in

drilling operations.
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2. OBJECTIVE

The objective of this study was to test the hypotheses of three drilling models using data

gathered from the field and then develop a practical method that can be applied in the field for

bit selection, ROP, and cost-per-foot to minimize drilling costs.  This study will be implemented

by using Artificial Neural Networks as a new methodology to predict these parameters.

Data on most recent wells drilled in Kuwait were used in this study to analyze and

compare the effectiveness of different bit types and drilling parameters for optimum penetration

of the various formation and depth intervals common to Kuwait and the Middle East area.  This

study was initiated in an attempt to improve penetration rates and reduce per well drilling cost.

Based on the research done for this study, an optimum bit selection, ROP, and cost per foot can

now be incorporated into drilling plans for subsequent wells to be drilled in the area.
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3. PREVIOUS WORK

Achieving the highest rate of penetration with the least possible bit wear is the aim of

every drilling engineer when selecting a drilling bit.  Correct bit selection has become

increasingly important given the rises in expenses involved in drilling a well. This has meant

that oil companies engage in a perpetual struggle to predict the ideal bits for optimum rates of

penetration.  Due to the demands of oil companies for top-notch bit selection programs,

engineers and technicians are hired away from rock bit manufactures for their expertise in

processes that reduce drilling costs.  The current criteria for bit selections are based upon the

cost-per-foot, and the analysis of offset wells bit records.

Cost per foot analysis

The cost per interval drilled is the most commonly used method for comparing the

performance of various bits.  The basic equation used is as follows:

( )
ftFootage

hrtRigHourlyhrtimeTriphrtimeRotatingCostBit
ftfootperCost

,

/$,cos*,,$,
)/($,

++=

However, the cost per foot is not an ideal measure for bit selection.  Cost per foot

Equation shows that cost per foot is controlled by five variables.  For a given bit cost (B) and

hole section (F), cost-per-foot will be highly sensitive to changes in rig cost-per-hour (R), trip

time (T), and rotating time (t).  The trip time may not be always easy to determine, unless a

straight running in and pulling out of the hole is made.  If the bit is pulled out for some other

reason, such as to case a shoe for a wiper trip, care must be taken not to add this time to either

the trip time or the rotating time.  Rig cost-per-hour will greatly influence the value of cost-per-
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foot.  For a given hole section and penetration rate in a field drilled by various rigs, having a

variety of cost-per-hour, the same bit will produce different values of cost-per-foot.

The two major sources of uncertainty in this decision are pointed out as:

1. Inaccuracies in the measurement and prediction of footage, trip time, and rotating time..

2. Lack of precise knowledge of formation changes affecting present and future penetration

rates.

Bit record analysis

This is based upon a comparison of offset well data, which is usually stored in a

database program.  Database tracks records of data history, and then a bit program can be

selected based on best performance achieved for the next well to be drilled.  Preparation of a

reliable bit program requires the collection of data from every possible source.  Several authors

have suggested that the following data be collected before a well program can be initiated:

1. Specifications for the proposed well should include the hole sizes, casing programs, mud

programs, and anticipated hole programs.

2. Offset well data should include bit records, mud reports, electric logs, mud logs, and drilling

curves.

3. Effects of altering drilling variables such as mud hydraulics, drilling parameters, and bit

types.

4. Seismic data given the estimated geological formation tops and interval thicknesses, well

location, drilling contractor, spud date, etc.

5. Geological information, formation description, and formation type (hard, soft, abrasive, etc).
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The bit record not only indicates the bit types but also the drilling parameters used,

penetration rate, effect of drilling fluids on rate of penetration, and the effect of changes in

hydraulic conditions on the drilling rate.  It becomes apparent from the bit record that the

drilling fluid properties along with the hydraulic operation parameters have a direct effect on

overall bit performance.  Electric logs can be useful for bit selection because they are capable of

determining formation tops and geological base on sand and shale content of the formations.

Bit selection is affected significantly in areas where electric log interpretation is most critical

For example, in Kuwait bit optimization is dependent on offset-well bit data.  A bit

database was developed into which all offset-well bit data were loaded.  Bit records for a single

well as well as the best performing bits in a field can be extracted from the database.  The bit

database was used to set benchmarks for different fields and compare bit performance when

evaluating trial runs.  (Alsaleh, 1999)

Artificial Neural Network

In recent years there have been many studies describing models and methods to predict

and interpret the drilling parameters to optimize drilling operation and reduce drilling costs.

Relatively few of these models have proven to be practical in the field, or have been able to

establish validity over a wide number of environments.  One of the new methods to predict the

drilling parameters is using an artificial neural network.

Artificial neural networks have been used since the 1980s.  They are very helpful in

solving petroleum engineering problems.  Examples of petroleum engineering projects that

benefit from the help of neural networks include reservoir characterization, zone identification,

well testing, and drilling optimization. (Altmis, 1996)
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Altmis (1996) has used neural networks to predict the drilling parameters.  She used a

set of data generated by an advanced, full size drilling rig simulator.   The parameters used to

train the neural network were RPM, time, bit type, WOB, rotary torque, ROP, formation

abrasiveness, formation drillability, bit bearing wear, tooth wear, and SPM.  Some of Altmis’s

data was obtained from fields in the United State, but only RPM, time, bit type, WOB, rotary

torque, ROP, and SPM parameters were included for prediction.  It is important to note that

Altmis used only three bits in her study.

In another area of petroleum, White, et.al (1998) used several artificial neural networks

to design and develop zone identification in a complex reservoir. In this study, several ANNs

were successfully designed and developed for zone identification in heterogeneous formations

from geological well logs.  Reservoir characterization plays a critical role in appraising the

economic success of reservoir management and development methods.  Nearly all reservoirs

show some degree of heterogeneity, which invariable impact the production.  As a result, the

production performance of a complex reservoir can not be realistically predicted without

accurate reservoir description.  The difficulty stems from the fact that sufficient data to

accurately predict the distribution of the formation attributes are not usually available.  One of

the key issues in the description and characterization of heterogeneous formations is the

distribution of various zones and their properties.
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4. LITERATURE

The choice of bit to use depends on several factors. One is the type of formation to be

drilled.  The driller must determine whether the formation is hard, soft, medium-hard, or

medium soft.  Another item is the cost of the bit.  Achieving the most wear possible from a bit

cuts down bit costs and minimizes the number of trips needed for bit changes, although

continuing to use a bit that is drilling very slowly is a false economy.

Formations vary significantly in hardness and abrasiveness, and will impact the

performance of the bit.  If there were no differences in rock formations, the driller could select

only one bit, set the bit weight, rotary speed, and pump pressure, and then drill ahead at the

maximum rate.  Sometimes such a situation does exist, but usually the formations consist of

alternating layers of soft material, hard rocks, and abrasive sections.  Changing the bit every

time there is a change in the formation is not always practical.  Instead, one must choose a bit

that represents a compromise, one that performs reasonably well under all conditions it must

meet.  Choosing such a bit is easier for a well to be drilled in a field where formations are

known than for a wildcat where the formations are being met for the first time.  The two types

of bits used in rotary drilling are roller cone, and drag bits.
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4.1 ROLLER CONE BITS

The designer of roller cone bits, also known as rock bits, need to use heavy-duty

bearings, a high-strength cone shell, and full-length cutting teeth.  Each feature competes with

the others for the limited space available to build the cutting structure on the roller cones.  In

addition, the designer must balance the toughness of steel against the brittleness of hard-

surfacing materials in determining the matter of long life and effective cutting.  As a result, bit

designers have developed several types of bits, each of which emphasizes a particular quality

needed to drill a particular type of formation. (Leecraft, J., 1990)

4.1.1 Types

Rock bits may be classified in general as (1) Steel tooth (Milled tooth) bits and (2)

Tungsten carbide insert bits.

4.1.1.1 Steel Tooth Bits

Steel tooth bits are formed by milling directly on the cone shell as it is manufactured.

Steel-tooth bit can be designed for soft, medium, and hard formations.  Cones offset and teeth

sizes have their impact in bit design.  For example, bits designed for the softest formations with

the least amount of abrasive characteristics have the most cones offset and widely spaced, long,

and sharp teeth.  Where bits designed for hard formation have the least cones offset (or none)

and more closely spaced, shorter, and stronger teeth.
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4.1.1.2 Tungsten Carbide Insert Bits

Tungsten carbide insert bits that are inserted into pre-drilled holes in the steel cone shell.

Carbide insert bits were used to reduce trip time, because the same bit could be used on

different formations; however, slow bit speeds reduce the rate of penetration and faster speeds

could cause insert breakage.

Similar to steel tooth, tungsten carbide insert bits are available for soft, medium, and

hard formation.  For the hardest formations, a hemispherical-shaped end is used on the inserts,

chisel-shaped inserts for medium formations, and larger-diameter, sharper crested, and more

widely spaced inserts for very soft formations.  New developments in cone materials have made

the cones more wear resistant, cutting down on cone failure.  The most prominent innovation in

carbide insert bits has been the development of sealed bearings, since bearing failure was one of

the more common failures of this type of bit.

The advantages of the carbide insert bit include great drillability, good insert burial into

the formation, up to 80% of the insert-per-revolution in soft formations, and the ability to drill

different types of formations with the same bit.  Their disadvantages include the erosion around

the base of inserts that can result in their loss, and the possibility that (with complete insert

burial) an area of the cone shell can come into contact with the formation and transmit shock

loads from the drill string directly to the bearing.
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4.1.2 Factors that affect the Roller Bits performance

The formation, bit weight, rotary speed, and bottom-hole cleaning velocity factors all

affect the performance of a roller cone bit.  Another factor that effects the bit performance is the

experience of the driller.  The parameters that the driller applies to the bit have their great

impact on the bit.  The driller can improve the bit performance by paying attention to the

variables of formation, bit design, and rig operating practices

4.1.2.1 Formation Factor

Most rock bits will make fair progress in the majority of the formations it encounters.

However, to obtain maximum footage and penetration rates and thus lower drilling costs, a type

of rock bit designed for the specific formation being drilled should be selected.  Roller bits are

available for soft, medium-soft, medium-hard, and hard formations.  International Association

of Drilling Contractor (IADC) has developed a standard classification code that is used to

classify bits made by different manufactures according to the hardness of the rock that they are

designed to drill.  IADC code includes a description of the practical design feature of the bit.

Steel tooth bit may be used on soft formations if the bit has deep and widely spaced

teeth with sufficient scraping action on bottom.  The scraping is obtained by the offset of the

roller cones.  In soft formation, the teeth should be widely spaced to prevent the bit from balling

up, which occurs when the formation material packs so tightly between the teeth that the mud

stream can not keep them clean.

For medium-soft formations offsets of lesser degrees can be employed to give a

twisting-scraping action to the teeth on the bottom of the hole.  Since depth of penetration is not

as great as that in softer rocks, slightly shorter teeth are used.  Also an increase in the number

and strength of the teeth is needed for the bit to have a longer life.
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Medium-hard formations such as hard limestone, dolomite, and hard shale are too hard

and perhaps too abrasive.  Therefore, bit cones for this type of formation are given a slight

offset, and teeth are closely spaced.  For formations that are abrasive but of relatively low

strength, hard-facing material is applied to teeth and gauge surfaces because they may be

subjected to more severe wear than those used for soft formations.  Where for formations that

have high compressive strength and require heavy weight for effective crushing and chipping,

maximum performance can be obtained without hard facing material.

Similar to steel tooth bit, tungsten carbide insert bits can also be used to drill hard,

medium-hard, medium, and soft formations.  For the hardest formations, a hemispherical shaped

end is used on the inserts. The inserts are closely spaced, thus the exposed hemispherical shaped

ends of the inserts produce a chipping and crushing action on the rock, thereby drilling hole as

the bit is rotated under load.

For medium-hard formations the bits have greater projection of inserts above the steel

cones, deeper ventilation grooves, and conical-shaped ends on the inserts.  They drill faster in

medium-hard formations than bits with inserts that have rounded ends. The use of chisel-shaped

inserts for medium formations has led to the successful application of this type of bit for drilling

shale and other softer plastic formations.  As with steel tooth bits, it is necessary to produce a

design for scraping and gouging action, an offset design, rather than to rely on the crushing type

of action used by the hard-formation type of bits. Tungsten carbide inserts have been

successfully applied in the very soft formations by using larger-diameter, sharper-crested, more

widely spaced inserts, maximum scraping and gouging action, a thicker and more abrasive-

resistant carbonized case on the cone metal for retaining the inserts, and long-life journal

bearings.  (Leecraft, J., 1990)
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4.1.2.2 Weight on Bit and Rotary Speed Factors

Field experience with steel-tooth bits has proven that drilling rate in brittle rocks

increase more than proportionally to increases in drilling weights.  Sometimes increasing the

weight on bit would increase the rate of penetration.  This is true for short-term improvement in

drilling rates, but it is not for overall performance.

Achieving maximum rock bit performance depends on tooth form and structure as well

as on bearing life.  Soft formations restrict the use of heavy weight because of the tendency of

the steel-tooth bit to ball up.  It is possible to increase rotary speed in order to offset the reduced

weight, and good cleaning by high fluid velocity allows fast penetration rates in such

formations.  Precaution must be taken when increasing the fluid velocity, to prevent hole

washout.  In harder formations, rotary speed is limited by abrasive properties of the formation,

where in this case it is necessary to use heavier weights to exceed the strength of the formation.

Excessive rotary speeds with heavier weight in such formation would result in tooth and bearing

wear.  The experience of the driller is critical in this case, and the parameters applied to the bit

will effect the overall bit performance.

The procedures for determining the best weight and rotary speed to use with steel tooth

bits also apply to tungsten carbide insert bits.  The principal difference is that under normal

conditions the cutting structure (i.e., the teeth) of a tungsten carbide insert bit wears very little.

Therefore, weight and rotary speed may remain constant.

4.1.2.3 Hydraulics Effects

Drill bit hydraulics is generally associated with the use of jet bits.  The purpose of the jet

nozzles is to improve the cleaning action of the drilling fluid at the bottom of the hole.  The

removing action of the cuttings plays an important factor in drilling operation.  When cuttings
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are not removed from underneath the bit, several drilling problems will occur such as wasteful

bit wear and drilling time and therefore higher drilling costs.

Watercourses were the first to be integrated into a roller cone bit and are still in limited

use today.  These courses direct drilling fluid onto the cutters to keep them clean, and the fluid

then goes on to clean the hole. The velocity of the stream of drilling fluid in this type of

passageway is relatively low, and the disadvantages of the system include balling and cone

erosion.  Such conventional watercourses have been almost completely replaced by jet

watercourses, or nozzles.  These nozzles direct the stream of drilling fluid past the cones and

completely flush out cuttings in the hole.  The stream of drilling fluid can be controlled by

changing the nozzle size and can improve the rate of penetration in soft formations by washing

away or eroding the formation even before the bit touches the bottom of the hole.  (Leecraft, J.,

1990)

Under steady state drilling conditions the rate of cuttings removal from under the bit

must equal the rate at which new chips are formed.  This implies that penetration rate can be

controlled by the cutting generation process, removal process, or a combination of the two

processes.

Parameters such as jet impact force, hydraulic horsepower, jet velocity, and jet Reynolds

Number have been used in attempts to quantify the effect of bit hydraulics on penetration rate.

All of these parameters refer to properties of the fluid at the time it exits the jet nozzle.  The two

parameters most commonly used to quantify the effect of hydraulics on penetration rate are jet

impact force and hydraulic horsepower per square inch of bit area (HSI).  Maximum

horsepower is obtained with slightly smaller nozzles than are required for maximum impact

force.
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The effect of hydraulics on penetration rate is greatest at high weight-on-bit and is

greater for soft rocks than for harder rocks.  The increased ROP due to increased hydraulics

tends to reach a plateau and level out at some point depending on the bit type, rpm, WOB, and

rock strength. A given change in hydraulics will affect the penetration rate of short tooth bits

more than long tooth bits if all else is constant.  (Azar, J., 1995)

4.1.3 Classification

A standard system to classify roller cone bits has been developed by IADC.  Bits are

classified according to type (milled tooth or insert bits), kinds of formation for which they are

designed (expressed by series and type), mechanical features, and manufacturer.  The system of

classification permits comparison of the bit types offered by various bit manufacturers.

(Gabolde, G., J., Nguyen., 1999)



17

4.2 DRAG BITS.

Unlike rolling cutter bits, drag bits do not have any rolling parts that require strong and

clean bearing surface.  There are three general types of drag bits that are in common usage,

which are Drag Bits with blade (steel) cutter elements, diamond bits, and polycrystalline

diamond compact (PDC).

4.2.1 Types

4.2.1.1 Diamond Bits

Diamond bit is more expensive than roller bits, it may cost three or four times as much

as a carbide insert bit, and several times as much as a steel-tooth bit.  Sometimes diamond bit

can offer an economic advantage over roller bit.  The most important factor in its advantage is

the fact that it makes more hole than any other bit over the entire period of its life.  Diamond

bits have two valuable characteristics, a basic design and no parts that move.

Diamond bits, in which industrial grade diamonds are set into bit heads that is

manufactured by a powdered metallurgy technique.  The size, shape, quantity, quality, and

exposure of the diamonds are tailored to provide the best performance for a particular

formation.  Each bit is designed and manufactured for a particular job rather than being mass

produced as roller cone bits are.  The cuttings are removed by mud that flows through a series

of water courses.  The design of these water courses is aimed at forcing fluid around each

individual diamond.  The matrix diamond bit cuts rock by grinding and thus a primary function

of the fluid is to conduct heat away from the diamonds.

4.2.1.2 Polycrystalline Diamond Compact Bits (PDC)

The PDC bits are made up of a layer of synthetic polycrystalline diamond that is

bounded to a cemented tungsten carbide substrate in a high pressure, high temperature process.
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The cutters are generally much larger than natural diamonds and are designed to cut the rock by

shearing, similar to metal machining (conventional drag bits).  PDC bits have proven to be very

successful in homogeneous and soft to moderate strength formations. In formations where they

are successful, they can drill two to three times faster than a roller cone bit and may have an

equally long life.

The diamond on PDC cutter is many times harder than the hardest rock that is drilled in

normal oil and gas well drilling.  When the bits were first being developed, it seemed almost

impossible that the cutters could sometimes be worn out in only a few feet of drilling.  This

accelerated wear is often attributed to the cutters becoming overly hot.  The PDC material

generally contains small amounts of various metals located in the voids between diamond

grains.  Because of the differential thermal expansion of the diamond grains and binder metals,

heating the cutters will cause high stresses that makes individual diamond crystals easier to

break away from the cutter.  Additionally, at higher temperature the diamond partially converts

back into graphite, especially in an oxidizing atmosphere.

4.2.1.3 Drag Bits with Blades Cutter Elements

Although the grandfather of all rotary drag bits, “the fishtail,” has been relegated to the

museum of petroleum antiquities, not all drag bits have met the same fate.  There are a few

areas left where drag bits are still necessary.

The original type of fishtail bit had two blades and an eye for the drilling mud near the

threaded shank of the bit.  This bit ruled the oil fields from the early time until the 1920’s.  A

modified fishtail drag bit that has actual jet bit was produced in 1947, with three or four blades

of hard metal welded to the body of the bit.  Bits of this type are occasionally used today for

drilling soft, shallow formations prior to setting surface casing.  They are commonly available
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in sizes up to 24 inches.  Various sizes of bit bodies can be obtained for the complete range of

blade sizes.  Blades are expendable and designed to be completely worn out and thrown away.

4.2.2 Factors Effecting Diamond Bits Performance

4.2.2.1 Formation Factor

Diamond bits have three main cutting actions: compressive, abrasive, and plowing.

Compressive action is the cutting action used most frequently.  Diamonds in the bit create

stresses in the formation that cause it to crack.  The cracked pieces of formation are then pushed

behind the diamond.  Abrasive action accounts for about 15% of modern drilling applications.

The bit drills this way when the formation is so hard and abrasive that the only way to get

through it is to wear it away.  Plowing action is a third type of action exercised by the diamond

bit.  When the bit can overcome the compressive strength of the rock so that the formation

ruptures, the diamond can then scoop the formation in front of it.

4.2.2.2 Weight on Bit, Rotary Speed, and Circulation Rate Factors

Sufficient weight must be applied to cause the cutting points of the diamonds to

penetrate the formation.  The degree of penetration depends on the hardness and characteristics

of the formation, the size and shape of the diamond point, and the applied unit weight.   The

weight causes penetration, and the rotation gives movement to the diamond, which removes the

formation.  The mechanical factors of weight and rotary speed are directly related to the drilling

rate.

4.2.2.3 Hydraulics Factors

Hydraulics factors affect the drilling rate in relation to the efficiency with which these

mechanical factors are applied.  In regard to hydraulics, the jet principle, applied to the diamond

bit, is the only efficient means of keeping the diamonds clean and cool so that new formations
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may be cut with each turn of the bit, thus increasing the effectiveness of the mechanical factors.

The jet action, to be effective on a diamond bit, requires sufficient fluid velocity across the face

of the diamond bit to clean and cool the diamond points satisfactorily.  The ideal fluid velocity

is always known, and usually other factors that may dictate a necessary change in this ideal

velocity are also known.  Therefore, for optimal performance, a diamond bit must not only be

designed to meet hole conditions, but also have watercourses that give proper fluid distribution

at the ideal velocity, based on the fluid available to the bit.  The available fluid may be limited

by the capacity of the mud pumps on the rig or by the fluid capacity of the diamond bit in use.

(Leecraft, J., 1990)
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5. APPROACH

In this study a new methodology was developed to predict the drilling parameters using

artificial neural networks.  Three models were developed to predict the bit type, rate of

penetration (ROP), and cost-per-foot, respectively.

The prediction of bit type and other drilling parameters from the current available data is

an important criterion for reduction of drilling costs.  History of bit runs is a very important

factor in bit selection and bit design.  The prediction of drilling parameters is complex because

of the numerous variables that can affect the prediction.  Mathematical models become more

complex when too many variables are included, which lead to difficulties in evaluating drilling

parameters.  Based on field data, neural network applicability for bit type prediction was applied

as an alternate method of bit selection.

 5.1 Artificial Neural Networks

Unlike mathematical models that require precise knowledge of all parameters and their

interrelation, neural networks can provide an estimation of the drilling parameters under various

conditions without a precise knowledge of all contributing variables and their relationships.

Neural network technology mimics the human brain’s problem solving process.  The networks,

much like the brain, can apply knowledge gained from previous experiences to new problems.

A neural network does so by building a system of neurons that are capable of making new

decisions, classification, and forecasting.

The main interest in neural networks is rooted in the recognition that the human brain

processes information in a different manner than conventional digital computers.  Computers
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are extremely fast and precise at executing sequences of instructions that have been formulated

for them.  A human information processing is composed of neurons switching at speeds about a

million times slower than a computer does.  Yet, despite slower processing speeds, the human

brain is more efficient than computers at such computationally complex tasks as speech and

other forms of pattern recognition. Artificial neural networks, are physical cellular systems that

can acquire, store, and use experiential knowledge.  The knowledge is in the form of stable

states or mapping embedded in networks that can be recalled in response to the presentation of

cues.

Neural networks can help engineers and researchers by addressing some fundamental

petroleum engineering problems as well as specific ones that conventional computing has been

unable to solve.  Petroleum engineers may benefit from neural networks on occasions when

engineering data for design and interpretations are less than adequate.

Neural networks have shown great potential for generating accurate analysis and results

from large amount of historical data that otherwise would not seem useful or relevant in the

analysis.  Neural networks have proved to be valuable pattern-recognition tools.  They are

capable of finding highly complex pattern within large amounts of data.
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5.2 Data Acquisition

There are several reasons for the apparent lack of commercial success.  Many models

have been derived using data from laboratory drilling tests.  Since representative rock samples

are hard to find, the experiments tend to cover a wide range of weight on bit and rotary speed,

but in a narrow range of rocks.  This tends to result in models, which attempt to simultaneously

describe a wide range of effects (such as individual crater formation at low weights, through

crater indexing, through to poor bit cleaning at the upper end of weight on bit).  This leads to

fairly complex models sometimes requiring four or more empirically derived parameters.

Clearly this is impractical in field operations.

Laboratory data tends to be somewhat more ideal because data gathered in the field

often contains a significant percentage of noise from the rather crude manner in which rig

measurements of weight or rate of penetration are made.  Therefore, laboratory data is often not

practical because of the altered factors that can not be controlled in the field.  Unlike laboratory

experiments, the driller tends to drill a wider range of formations with a fairly narrow

commercial range of weight on bit, rotary speed, and pump stroke, than would be seen in a

laboratory experiment

The data for this study, recently gathered, was collected from different wells that drilled

from different fields in Kuwait.  A total of 13,234 set of data with 14 columns of variables was

collected to feed the neural network.  The gathered data consist of three different data; namely

these data sets are Kuwait-1, Kuwait-2, and Kuwait-3.

Five different sets of data are used in this study where three are the main sets and two

are subsets.  The five sets are Kuwait-1, Kuwait-2, and Kuwait-3, Kuwait-4, and Kuwait-5. The
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main sets are Kuwait-1, Kuwait-2, and Kuwait-3.  Where Kuwait-4 and Kuwait-5 are subsets

created for further analysis for one specific region and one specific field, respectively.  All of

the three main sets were screened and improper data was eliminated prior to the study by the

network.  For example, Kuwait-1 consists of 3,526 set of data, only 1,893 set of data was used

in this study.  Similarly Kuwait-2, which consist of 6,700 set of data, only 4,466 set of data

were used.  Also Kuwait-3, which consist of 3008, only 2392 set of data were used.  The data

excluded were consisted of conditions such as reaming and coring operations, and drilled

intervals less than 100 feet.  Also precautions were taken to make the data identifiable by

networks, because the networks are sensitive to certain types of data input and manners of

identifying variables.  The data sets, number of sets, and the drilling parameters for each set are

listed as follow:

[A] Data set Kuwait-1 and Kuwait-2.

DATA SET NUMBER OF SETS

Kuwait-1 1,893

Kuwait-2 4,466

Both sets have the following drilling parameters:

Bit type, bit size, total flow area (tfa), depth in, depth out, drilled interval,
drilling hours, ROP, minimum WOB, maximum WOB, minimum RPM,
maximum RPM, flow rate, mud weight, circulating pressure, the bit inner
row dull grading, the bit outer row dull grading, bit cost ($), cost per foot,
and the well name.
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[B] Data set Kuwait 3, Kuwait 4, and Kuwait 5.

DATA SET NUMBER OF SETS

Kuwait-3 2,392

Kuwait-4 450

Kuwait-5 367

* Data set Kuwait-4 consisted of a combination of two different fields in one region where the

formation tops are the same.

* Data set Kuwait-5 consisted of only one specific field.

All of the three sets (Kuwait-3, Kuwait-4, and Kuwait-5) have the following drilling

parameters:

Bit type, bit size, total flow area, depth in, depth out, drilled interval,
drilling hours, ROP, WOB, RPM, flow rate, circulating pressure, the bit
inner row dull grading, the bit outer row dull grading, bit cost ($), cost per
foot, and the well name.
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5.3 Procedure

5.3.1 Data Preparation

It is important to have reliable input data so that the output produced by the neural

network can compute a good correlation.  In optimizing the process, three major things have to

be worked with to achieve a good R square value.  In order for a good correlation, the input data

must be prepared in advance.  Two procedures were mainly involved in preparing the input

data, which are identification of the input data, and conversion of non-numeric data to numeric.

5.3.1.1 Input Data Selection

Based on this study and every study using neural networks, the input variables play a

critical role in achieving a good R square value.  Identifying the most important inputs, which

have great contributions and effects on the output is the main key to produce a good prediction.

In this study most existing data were used and tested, in order to identify which variable to

include.

5.3.1.2 Non-numeric Data Conversion

Neural networks accept only numeric input, a special way of coding the input data has to

be designed.   For example, if assigned 1 to Alaska, 2 to Alabama, and 50 to Washington, the

system will read that Alaska is similar to Alabama, but Alaska is totally different than

Washington, which is not true.  In this study all the data were numeric except bit types and

different approaches were used to convert non-numeric coding of bits.



27

Bit type coding

Neural networks accept only numerical values, but the bit types from the gathered data

were in letters.  Due to the limitation of assigning a number to a variable, different ways of

coding bit types were done prior to neural network application.  For each different coding,

several runs were done to compare and choose the best code that can represent the bit types.

The different ways of coding the bit types, were as follow:

1. Coding bit types based on IADC bit coding, such as "111" for tooth bit with open bearing

designed for soft formation, "415" for insert bit with sealed bearing and gauge protection

designed for soft formation, and "M333" or  "S316" for PDC bits where a number "1" was

given to M and "2" to S.

2. Coding bit types based on IADC bit coding, such as "111" for tooth bit with open bearing

designed for soft formation, "415" for insert bit with sealed bearing and gauge protection

designed for soft formation, and coding "M333" or "S316" PDC bits to its similar IADC

code.  PDC were coded based on Security DBS “PDC Roller bit comparison chart”.

3. Coding bit types based on IADC bit coding, such as "111" for tooth bit with open bearing

designed for soft formation, "415" for insert bit with sealed bearing and gauge protection

designed for soft formation, and excluding PDC bits.

4.  Coding bit types based on IADC bit coding and include a manufacture company code, such

as "111.1", where the first three codes describe the IADC code, and the last decimal digit

describe the manufacture company.  For example "111.1", "111.2", and "111.3" refer to

three different companies.
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5. Coding bit types based on IADC bit coding and having an extra digit value "1111", "3415",

"5333", and "7316" such that the first digit numbers are "1" for tooth, "3" for insert, "5" for

M, and "7" for S.  (V1).

6. Coding bit types same as code 5, but divided each by 1000, so that “1111” when divided by

(1000.00) will equal  “1.111”.  (V2).

7. Coding bit type based on four digits used in step 5 with one code in one column.  For

example, the code "3415" will be as follows: "3" in column A, "4" in column B, "1" in

column C, and "5" in column D.

8. Coding bit types based on one digit in one column similar to step 6 , but readjust “column

B" to read same value for same formation type bits.   For example both "115" tooth bit and

"417" insert bit are designed for soft formations.  Same digit, (number”1”), was assigned for

both of them so that the network will identify them as having the same design in respond to

formation type.

9. Assigning a number to each bit type starting with number “1” for a specific tooth bit

designed for a soft formation (bit code).
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5.3.2 Network Preparation

The most important step in the process is to prepare the neural network for parameters to

be studied.  There are two major steps in using the network, namely preparation and training.

5.3.2.1 Preparation

The data file must be in a suitable format prior to selecting the inputs and the output.

Most common formats are spreadsheet files or text files.  The data is checked for proper input

without missing parameters and the minimum and maximum values are determined.  The

maximum and minimum values determine the range of applicability of the neural network.

A portion of the data is set aside and the remaining are used in the training step.  The

data set aside is called test set and the most commonly used methods to select are by random,

every Nth pattern, or after the Nth pattern.  The amount of data set aside for testing generally

constitutes 10 to 20 % of the total available data.  The remaining data is termed as the training

set and used in the development of the neural network.

Several architectures are available in designing the neural network.  In this study we

have used standard "Backpropagation" and "Ward" nets.  Among all models used in this study,

the most successful model was the Ward nets, which consisted of three different architecture

designs.  The designs are:

1.1 Two hidden slabs with different activation functions.

1.2 Three hidden slabs with different activation functions.

1.3 Two hidden slabs with different activation functions and a jump connection.

Both the second and third architecture designs were found to be the best to use for the

prediction of the three different parameters.  Several models with different architecture design

were used in this study to check their effective on the output.



30

Based on the most effective models, number of runs were done to predict three different

parameters, namely, bit type, ROP, and cost per foot.  In general, the neural network

architecture using the Ward nets with two hidden slabs and jump connection (1.3) design was

found to be more effective in predicting the bit type than other architecture designs.  At the

same time, Ward nets with three hidden slabs (1.2) was found to be more effective in predicting

both ROP and cost per foot than the network used for bit type prediction.  In some runs both

architectures yielded similar correlations.

In this study, the learning rates of 0.1 and 0.05 and momentum values of 0.1 and 0.5

were used in most of the runs.  Learning rate establishes the speed of processing, momentum

determines the capacity to over come punctual errors or scatter.  Different learning rates and

momentum have been used in this study.  In most of the runs, the default values of both learning

rate (0.1) and momentum (0.1) were used.  In some cases both learning rate and momentum

were adjusted to 0.05 and 0.5, respectively.  In this study, readjusting both learning rate and

momentum found to have an impact in some of the result.  In general, the R square values were

improved.

Different numbers of input neurons were chosen in this study and the contribution

factors for each input neuron on the output value was determined.  For example Kuwait-1

(NN3) Run (3.C), a total of 13 input neurons were chosen to train them with the network to

predict the cost per foot.  The number of hidden neurons used in the design are based on the

following formula yielding the default number of neurons:

{ } { }[ ] [ ]PatternsofNumberInputsofNumberOutputsofNumberNeuronsofNumber ++=
2

1
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5.3.2.2 Training

The training of the neural network can be accomplished by using the total pattern file or

the training set selected using one of the criteria.  All runs conducted in this study used the

training set for neural network until the minimum error was observed for the test set.  All results

were evaluated based on the linear correlation coefficient, R, and the coefficient of multiple

determination, R2.  The outputs from the neural network are plotted against the field-measured

parameters.

The neural networks were developed to predict three drilling parameters, which are bit

type, ROP, and cost per foot.  Different sets of files from several drilling operations were used

to predict outputs.  The data gathered were in three main sets, which are Kuwait-1, Kuwait-2,

and Kuwait-3 sets.   Both Kuwait-1 and Kuwait-2 sets contained the same drilling parameters,

where Kuwait-3 set had less number of drilling parameters than both of Kuwait-1, and Kuwait-2

sets.  For each set, eight extra coding parameters were added to the data set to represent

different coding of the bit type.  Eight different runs were then performed to predict the bit type,

where each run used separate bit coding.  This was done to choose the code that best represents

the bit type among all of the eight codes.

In this study, the data gathered consisted of various drilling parameters and several runs

were conducted to choose the most important parameters based on contributing factors to the

output values.  Among several runs with different files, five sets were then chosen to estimate

the three-predictions.  The final sets that were trained for the three-predictions are Kuwait-1,

Kuwait-2, and Kuwait-3, which are the main sets.  And two more subsets created for further

analysis, which are Kuwait-4 and Kuwait-5.
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In summary, three different neural network models were developed for five different

data sets representing unique drilling conditions.  All of the runs are listed in Table-1 with the

input and the output drilling parameters.

.
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DATA SET RUN INPUT OUTPUT

Kuwait-1 1.A

Bit size, total flow area (tfa), depth out, drilled interval, ROP, minimum WOB,

maximum WOB, minimum RPM, maximum RPM, flow rate (q). Bit type

Kuwait-1 1.B

Bit type , bit size, tfa, depth out, drilled interval, hrs, minimum WOB, maximum

WOB, RPM min, RPM maximum, and q. ROP

Kuwait-1 1.C

Bit type, bit size, tfa, depth out, drilled interval, hrs, min WOB, maximum

WOB, minimum RPM, maximum RPM, bit cost $, and q. Cost per ft

Kuwait-2 2.A

Bit size, tfa, depth out, drilled interval, ROP, min WOB, maximum WOB,

minimum RPM, maximum RPM, and q Bit Type

Kuwait-2 2.B

Bit type , bit size, tfa, depth out, drilled interval, hrs, minimum WOB, maximum

WOB, minimum RPM, maximum RPM, and q. ROP

Kuwait-2 2.C

Bit type, size, tfa, depth out, drilled interval, hrs, minimum WOB, maximum

WOB, min RPM, maximum RPM, bit cost $, and q Cost per ft

Kuwait-3 3.A Bit size, tfa, depth out, drilled interval, ROP, WOB, RPM, and flow rate (q). Bit Type

Kuwait-3 3.B Bit type, bit size, tfa, depth out, drilled interval, hr, ROP, WOB, RPM, and q. ROP

Kuwait-3 3.C Bit type, bit size, tfa, depth out, drilled interval, hr, WOB, RPM, q, and bit cost Cost per ft

Kuwait-4 4 Bit size, tfa, depth out, drilled interval, ROP, WOB, RPM, and flow rate (q). Bit type

Kuwait-4 4.A Bit size, tfa, depth out, drilled interval, ROP, WOB, RPM, and flow rate (q). Bit type

Kuwait-4 4.B Bit type, bit size, tfa, depth out, drilled interval, hr, ROP, WOB, RPM, and q ROP

Kuwait-4 4.C Bit type, bit size, tfa, depth out, drilled interval, hr, WOB, RPM, q, and bit cost Cost per ft

Kuwait-5 5.A Bit size, tfa, depth out, drilled interval, ROP, WOB, RPM, and flow rate (q). Bit Type

Kuwait-5 5.B Bit type, bit size, tfa, depth out, drilled interval, hr, ROP, WOB, RPM, and q. ROP

Kuwait-5 5.C Bit type, bit size, tfa, depth out, drilled interval, hr, WOB, RPM, q, and bit cost Cost per ft

Table 1.  List of runs with input and output parameters.
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6. RESULTS AND DISCUSSION

Three different drilling parameters namely bit type (NN1), rate of penetration (NN2),

and cost per foot (NN3) were estimated using the neural networks.  Five different sets of data

are used in this study, which are identified as Kuwait-1, Kuwait-2, Kuwait-3, Kuwait-4, and

Kuwait-5.  Both Kuwait-4 and Kuwait-5 are subsets created for further analysis of the three-

parameter predictions.  An artificial neural network was developed for each of the five data sets.

The input and output parameters are listed in Table 1.

In this study most of the drilling parameters were used as inputs and runs were

conducted to determine the contribution factor for each input parameter.  The most important

parameters, which have more contribution to the output value, found to be the following:

Bit type, size, total flow area, depth out, interval drilled, rotating
hours, ROP, minimum WOB, maximum WOB, minimum RPM,
maximum RPM, and flow rate.   (Bit cost $ when predicting $/ft)

Different types of architectural designs as well as different learning rates and

momentums were used in this study to understand their effect and contribution to the final

results.  Among all models studied the most successful model for this study was the Ward nets.

Ward nets model is based on different architecture designs with two or three hidden slabs.  In

general, the architecture design with two hidden slabs with different activation functions and a

jump connection was found to be more effective in predicting the bit type.  And the architecture

design with three hidden slabs with different activation functions was found to be more

effective in predicting both ROP and cost per foot.  Additional models with different

architecture designs other than Ward nets, were used to determine their efficiency in the

prediction of the output.
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The range of the minimum and maximum values have an impact on the results, a good

result can be achieved when the range of the minimum and maximum values are tight around.

Each set contained different range of minimum and maximum values and the ranges are listed

in Table 2, Table 3, Table 4, Table 5, and Table 6 for Kuwait-1, Kuwait-2, Kuwait-3, Kuwait-4,

and Kuwait-5, respectively.

An artificial neural network was developed for each of the five sets used in this study.

The results are shown in Kuwait-1, Kuwait-2, Kuwait-3, Kuwait-4, and Kuwait-5 sections.
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6.1 Kuwait-1 Data Set.

The result of the three drilling parameters for this data set are listed in Figure 3 for bit

type prediction, Figure 4 for rate of penetration prediction, and Figure 5 for cost per foot

prediction.  The ranges of values for Kuwait-1 data set are listed in Table 2.

DRILLING PARAMETERS MINIMUM MAXIMUM

Bit type 1 277

Bit size, (inch) 4.5 28

Total flow area, (square inch) 0.1534 1.491

Depth in, (feet) 0 16204

Depth out, (feet) 127 16463

Drilled interval, (feet) 100 5105

Rotating hours 1.5 175

Rate of penetration, (ft/hr) 1 188

Minimum WOB, (1000 lbs) 5 85

Maximum WOB, (1000 lbs) 5 95

Minimum RPM, (rev/min) 25 180

Maximum RPM, (rev/min) 30 180

Flow rate, (gallons/min) 73 1200

Bit cost in dollars, ($) 752.4 85595.4

Cost per foot, ($/ft) 7.498 862.9

Table 2. The range of values for Kuwait-1 data set.
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Figure 3 shows the comparison of neural network predicted bit type with the selected bit

type.  The runs conducted with the final design for this model has produced linear correlation

coefficient (R) values ranging between 0.960 and 0.975.  Initially, 0.1 was used for the learning

rate and momentum in the network and the correlation coefficient, R, for the output was 0.960.

When both learning rate and momentum for this run were adjusted to 0.05 and 0.5, respectively,

the correlation coefficient value for the output improved from R=0.960 to R=0.975.  The

architecture design used for this prediction was the Ward nets with two hidden slabs with

different activation functions and a jump connection (1.3).  Other architecture designs were also

used, however the correlation coefficient values were not as good as in architecture (1.3).  For

example, when the Standard Backpropagation (category 1) was used to predict the bit type, a

correlation coefficient value of R= 0.940 was obtained.  Also when the Jorda-Elman nets

(category 2) was used, the correlation coefficient was 0.930.  The same inputs, output, learning

rate and momentum with architecture (1.3) produced a correlation coefficient value of 0.975.

Thus architecture (1.3) was used to predict the bit type in all neural networks.  Also the bit type

prediction for Kuwait-1 has produced the best linear correlation coefficient value when

compared to the rest of the results from other data sets.

The comparison of neural network predicted rate of penetration values with the field

measured values are shown in Figure 4.  The final design for this model has produced a linear

correlation coefficient (R) value equal to 0.990.  The learning rate and the momentum used in

this run were 0.05 and 0.5, respectively.  The neural network architecture design used for this

prediction was the Ward nets with three hidden slabs with different activation functions (1.2).

Other architectural designs were also used, however, the correlation coefficient values were not

as good as the values obtained by architecture (1.2).  For example, the ROP prediction with the
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Standard Backpropagation architecture (category 1) yielded a correlation coefficient value of

0.862.  Also when the Jorda-Elman nets architecture (category 2) was used to predict ROP a

correlation coefficient value of 0.970 was obtained.  With the same inputs, output, learning rate,

and momentum, the network architecture (1.2) had a correlation coefficient value of 0.990 for

ROP prediction.  Thus architecture (1.2) was used to predict the bit type for all data sets.

Figure 5 compares the neural network predicted cost per foot values with the field

measured values.  The final design for this model has a linear correlation coefficient value of

0.989.  The learning rate and the momentum used in this run were 0.05 and 0.5, respectively.

The architecture design used for this prediction was the Ward nets with three hidden slabs with

different activation functions.  The neural network architecture used to predict the rate of

penetration was also used for the cost per foot predictions.
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6.2 Kuwait-2 Data Set.

The result of the three drilling parameters for this data set are listed in Figure 6 for bit

type prediction, Figure 7 for rate of penetration prediction, and Figure 8 for cost per foot

prediction.  The ranges of values for Kuwait-2 data set are listed in Table 3.

DRILLING PARAMETERS MINIMUM MAXIMUM

Bit type 1 489

Bit size, (inch) 4.125 36

Total flow area, (square inch) 0.049 7.517

Depth out, (feet) 104 20774

Drilled interval, (feet) 100 8672

Rotating hours 0.5 390.5

Rate of penetration, (ft/hr) 1 448

Minimum WOB, (1000 lbs) 1 80

Maximum WOB, (1000 lbs) 2 100

Minimum RPM, (rev/min) 15 259

Maximum RPM, (rev/min) 15 259

Flow rate, (gallons/min) 23 1900

Cost per foot, ($/ft) 2.31 832.9

Table 3. The range of values for Kuwait-2 data set.
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Figure 6 shows the comparison of neural network predicted bit type with the selected bit

type.  The final design for this model has a linear correlation coefficient value of 0.868.  The

architecture design used for this prediction was the Ward nets with two hidden slabs with

different activation functions and a jump connection.  The learning rate and the momentum used

for this run were 0.05 and 0.5, respectively.

The comparison of neural network predicted rate of penetration values with the field

measured values are shown in Figure 7.  The final design for this model has a linear correlation

coefficient value of 0.960.  The learning rate and the momentum used for this run were 0.05 and

0.5, respectively.  The architecture design used for this prediction was the Ward nets with three

hidden slabs with different activation functions.

The neural network predicted cost per foot values are compared with the field measured

values in Figure 8.  The final design for this model has a linear correlation coefficient value of

0.947.  The learning rate and the momentum used for this run were 0.05 and 0.5, respectively.

The architecture design used for this prediction was the Ward nets with three hidden slabs with

different activation functions.
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6.3 Kuwait-3 Data Set.

The result of the three drilling parameters for this data set are listed in Figure 9 for bit

type prediction, Figure 10 for rate of penetration prediction, and Figure 11 for cost per foot

prediction.  The ranges of values for Kuwait-3 data set are listed in Table 4.

DRILLING PARAMETERS MINIMUM MAXIMUM

Bit type 1 405

Bit size, (inch) 6.125 28

Total flow area, (square inch) 0.173 2.506

Depth out, (feet) 104 17892

Drilled interval, (feet) 100 5833

Rotating hours 0.5 420

Rate of penetration, (ft/hr) 2.32 448

WOB, (1000 lbs) 2 83

RPM, (rev/min) 11 315

Flow rate, (gallons/min) 10 1297

Cost per foot, ($/ft) 2.31 568.67

Table 4. The range of values for Kuwait-3 data set.
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The comparison of neural network predicted bit type with the selected bit type is given

in Figure 9.  In this set, bit type code number 6, V2, was used as the output value that represent

the bit type.  The final design for this model has a linear correlation coefficient value of 0.879.

The learning rate and the momentum used for this run were 0.05 and 0.5, respectively.  The

architecture design used for this prediction was the Ward nets with two hidden slabs with

different activation functions and a jump connection.

Figure 10 shows the comparison of neural network predicted rate of penetration values

with the field measured values.  The final design for this model has a linear correlation

coefficient value of 0.973.  The learning rate and the momentum used for this run were 0.05 and

0.5, respectively.  The architecture design used for this prediction was the Ward nets with three

hidden slabs with different activation functions.

The comparison of neural network predicted cost per foot values with the field measured

values are shown in Figure 11.  The final design for this model has produced a linear correlation

coefficient value of 0.990.  The learning rate and the momentum used for this run were 0.05 and

0.5, respectively.  The architecture design used for this prediction was the Ward nets with three

hidden slabs with different activation functions.
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6.4 Kuwait-4 Data Set.

The result of the three drilling parameters for this data set are listed in Figure 12 and

Figure 13 for bit type prediction, Figure 14 for rate of penetration prediction, and Figure 15 for

cost per foot prediction.  The ranges of values for Kuwait-4 data set are listed in Table 5.

DRILLING PARAMETERS MINIMUM MAXIMUM

Bit type 1 106

Bit size, (inch) 6.125 26

Total flow area, ( square inch) 0.314 2.356

Depth out, (feet) 950 10660

Drilled interval, (feet) 105 4806

Rotating hours 1 156.5

Rate of penetration, (ft/hr) 3.28 275.56

WOB, (1000 lbs) 4 65

RPM, (rev/min) 40 180

Flow rate, (gallons/min) 96 1053

Cost per foot, ($/ft) 6.47 313.22

Table 5. The range of values for Kuwait-4 data set.
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Figure 12 and Figure 13 show the comparison of neural network predicted bit type with

the selected bit type for different bit type code.  In this subset, both of the bit type coding

number 6 (V2) and number 9 (bit code) were used to estimate as the output value separately.

The final design for this model has a linear correlation coefficient value of 0.947 for V2 code,

and a linear correlation coefficient value of 0.936 for bit coding number 9.  The learning rate

and the momentum used for the runs were 0.05 and 0.5, respectively.  The architecture design

used for this prediction was the Ward nets with two hidden slabs with different activation

functions and a jump connection.

The comparison of neural network predicted rate of penetration values with the field

measured values are shown in Figure 14.  The final design for this model has a linear correlation

coefficient value of 0.983.  The learning rate and the momentum used for this run were 0.05 and

0.5, respectively.  The architecture design used for this prediction was the Ward nets with three

hidden slabs with different activation functions.

Figure 15 shows the comparison of neural network predicted cost per foot values with

the field measured values.  The final design for this model has produced a linear correlation

coefficient value of 0.963.  The learning rate and the momentum were 0.05 and 0.5,

respectively.  The architecture design used for this prediction was the Ward nets with three

hidden slabs with different activation functions.
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6.5 Kuwait-5 Data Set.

The result of the three drilling parameters for this data set are listed in Figure 16 for bit

type prediction, Figure 17 for rate of penetration prediction, and Figure 18 for cost per foot

prediction.  The range of values for Kuwait-5 data set are listed in Table 6.

DRILLING PARAMETERS MINIMUM MAXIMUM

Bit type 1 129

Bit size, (inch) 6.125 28

Total flow area, (square inch) 0.24 1.335

Depth out, (feet) 340 14000

Drilled interval, (feet) 100 5550

Rotating hours 1.5 140

Rate of penetration, (ft/hr) 2.45 114

WOB, (1000 lbs) 5 70

RPM, (rev/min) 33 190

Flow rate (gallons/min) 130 1200

Cost per foot, ($/ft) 10.22 438.17

Table 6. The range of values for Kuwait-5 data set.
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Figure 16 shows the comparison of neural network predicted bit type with the selected

bit type.  The final design for this model has a linear correlation coefficient value of 0.903.  The

learning rate and the momentum used for this run were 0.05 and 0.5, respectively.  The

architecture design used for this prediction was the Ward nets with two hidden slabs with

different activation functions and a jump connection.

The comparison of neural network predicted rate of penetration values with the field

measured values are given in Figure 17.  The final design for this model has a linear correlation

coefficient value of 0.989.  The learning rate and the momentum used for this run were 0.05 and

0.5, respectively.  The architecture design used for this prediction was the Ward nets with three

hidden slabs with different activation functions.

Figure 18 shows the comparison of neural network predicted cost per foot values with

the field measured values.  The final design for this model has produced a linear correlation

coefficient value of 0.975.  The learning rate and the momentum were 0.05 and 0.5,

respectively.  The architecture design used for this prediction was the Ward nets with three

hidden slabs with different activation functions.
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6.6 SUMMARY

In summary a comparison for the results estimated are shown in for bit type prediction,

rate of penetration prediction, and cost per foot prediction in Table 7, Table 8, and Table 9,

respectively.  The results show good predictions of the bit type, the ROP, and the cost-per-foot

for the data sets used in this study.

Kuwait-1 data set was found to produce a better correlation coefficient for the bit type

prediction than the rest of the sets.  One of the main factors that altered the bit type prediction is

the large number of the bits that have been used in this study.  As the number of bits increased,

the system had fewer amounts of data that contribute to each bit type, which lead to less

improvement in the linear correlation coefficient, R.  When reducing the number of data by

using only information from a region or field such as Kuwait-4 and Kuwait-5, the output value

did show improvement.

Based on the preliminary runs, the bit types coded in the data sets were found to be

ineffective in describing all bit types.  Therefore, nine different bit codes were developed in this

study.  The main reason for that was to overcome and reduce the factors that alter the bit type

prediction.  Among all of the nine different codes, both of code (6) and (9) were found to be the

most effective.  Code 6, which is called (V2), was created to limit the data and to make a

variation between the different type of bits.  One problem with this type of coding is that one

code will have several bit type, it does not correspond to a specific bit type.  For example,

Kuwait-3 and Kuwait-4 were used to predict the bit type using this specific type of code.  Code

9, which is called bit code, yielded the best correlation among all data sets including code 6.

The advantage of this type of coding is the assignment of a number for each bit.
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Kuwait-4 was specifically created to predict all of the three drilling parameters for one

region.  This subset consists of two different fields located in one area.  Run with Kuwait-4 data

set has produced better correlation when the bit was the predicted output value. For example,

the bit type prediction for Kuwait-3 data set has produced a linear correlation coefficient value

of 0.879, where the same prediction for Kuwait-4 data set has produced 0.947.  The (V2) code

was used in Kuwait-3 and Kuwait-4 data sets to predict the bit type.

Another subset, Kuwait-5 was created to analyse only one field data.  The purpose of

this specific set is to test the neural networks for predicting three different drilling parameters

with data obtained from only one field with same characteristics.  Even though fewer data were

used compared to other data sets, the one field data have been found to give good results in

predicting all of the three-parameters.  In this set code (bit code) was used to predict the bit

type.

Other than the bit type, the rest of the predictions, ROP and cost-per-foot found to

produce good results for all of the sets.
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NAME OF

DATA SET

NUMBER

OF DATA

CORRELATION

COEFFICIENT

INPUT PARAMETERS

Kuwait-1 1893 0.975 Bit size, total flow area, depth out, drilled interval, ROP,

minimum WOB, maximum WOB, minimum RPM,

maximum RPM, and flow rate (q).

Kuwait-2 4466 0.868 Bit size, total flow area, depth out, drilled interval, ROP,

minimum WOB, maximum WOB, minimum RPM,

maximum RPM, and flow rate (q).

Kuwait-3 2392 0.879 Bit size, total flow area, depth out, drilled interval, ROP,

WOB, RPM, and flow rate.

Kuwait-4

For (V2 code)

450 0.947 Bit size, total flow area, depth out, drilled interval, ROP,

WOB, RPM, and flow rate.

Kuwait-4-A

For (bit code)

450 0.936 Bit size, total flow area, depth out, drilled interval, ROP,

WOB, RPM, and flow rate.

Kuwait-5 367 0.903 Bit size, total flow area, depth out, drilled interval, ROP,

WOB, RPM, and flow rate.

Table 7. Comparison of results for bit type predictions.
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NUMBER OF

DATA SET

NUMBER

OF DATA

CORRELATION

COEFFICIENT

INPUT PARAMETERS

Kuwait-1 1893 0.990 Bit type, bit size, total flow area, depth out, drilled

interval, rotating hours, minimum WOB, maximum

WOB, minimum RPM, maximum RPM, and flow rate.

Kuwait-2 4466 0.960 Bit type, bit size, total flow area, depth out, drilled

interval, rotating hours, minimum WOB, maximum

WOB, minimum RPM, maximum RPM, and flow rate.

Kuwait-3 2392 0.973 Bit type, bit size, total flow area, depth out, drilled

interval, rotating hours, ROP, WOB, RPM, and flow

rate.

Kuwait-4 450 0.983 Bit size, total flow area, depth out, drilled interval,

ROP, WOB, RPM, and flow rate.

Kuwait-5 367 0.989 Bit type, bit size, total flow area, depth out, drilled

interval, rotating hours, ROP, WOB, RPM, and flow

rate.

Table 8. Comparison of results for ROP predictions.
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NUMBER OF

DATA SET

NUMBER

OF DATA

CORRELATION

COEFFICIENT

INPUT PARAMETERS

Kuwait-1 1893 0.989 Bit type, bit size, total flow area, depth out, drilled

interval, rotating hours, minimum WOB, maximum

WOB, minimum RPM, maximum RPM, bit cost $, and

flow rate.

Kuwait-2 4466 0.947 Bit type, bit size, total flow area, depth out, drilled

interval, rotating hours, minimum WOB, maximum

WOB, minimum RPM, maximum RPM, bit cost $, and

flow rate.

Kuwait-3 2392 0.990 Bit type, bit size, total flow area, depth out, drilled

interval, rotating hours, WOB, RPM, flow rate, and bit

cost $.

Kuwait-4 450 0.963 Bit size, total flow area, depth out, drilled interval,

ROP, WOB, RPM, and flow rate.

Kuwait-5 367 0.975 Bit type, bit size, total flow area, depth out, drilled

interval, rotating hours, WOB, RPM, flow rate, and bit

cost $.

Table 9. Comparison of results for cost per foot predictions.
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7. CONCLUSIONS

In this study artificial neural networks are used successfully to predict the drilling

parameters.  Three models were developed to predict the bit type, the rate of penetration (ROP),

and the cost per foot, respectively. The three drilling models were tested with data from fields

located in Kuwait.  Five different sets of data used in this study, which are Kuwait-1, Kuwait-2,

Kuwait-3, Kuwait-4, and Kuwait-5 sets.

The neural network models developed had correlation coefficient (R) values ranging

between [0.868] and [0.975] for bit type prediction, between [0.960] and [0.990] for rate of

penetration prediction, and between [0.947] and [0.990] for cost per foot prediction.  In general,

the highest correlation coefficient values were obtained by Kuwait-1 data set.

Neural network architecture with two hidden slabs having different activation functions

and a jump connection was found as the most effective design for bit type prediction.  At the

same time, Ward nets with three hidden slabs having different activation functions and a jump

connection was found to be the most effective design for rate of penetration and cost per foot

predictions.

The most important contributing factors for bit type prediction were bit size, total flow

area, and minimum WOB for Kuwait-1; bit size and depth out for Kuwait-2; depth out for

Kuwait-3; bit size and total flow area for Kuwait-4; and bit size, total flow area, depth out, and

hours for Kuwait-5 data set.  For the rate of penetration prediction the most important

contributing factors were drilling hours and drilled interval for Kuwait-1; drilling hours and

minimum WOB for Kuwait-2; drilling hours for Kuwait-3; drilled interval and drilling hours for

Kuwait-4; and drilling hours, bit size, and drilled interval for Kuwait-5.  For the cost per foot

prediction the most important contributing factors were drilled interval for Kuwait-1; bit code
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and bit cost for Kuwait-2; drilled interval, RPM, and bit cost for Kuwait-3; drilled interval and

bit cost for Kuwait-4, and drilled hours and bit size for Kuwait-5.

Results show that the bit type, ROP, and cost-per-foot can be estimated effectively for

the new well to be drilled.  This can be predicted with models developed by neural networks.

Prediction of drilling parameters with the new developed method would decrease the percentage

of trial and error resulting in cost savings.
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APPENDIX [A]

Kuwait

Kuwait contains 96.5 billion barrels of proven oil reserves (including its share of the

Neutral Zone), or roughly 9% of the world's total oil reserves.  Along with Saudi Arabia and the

United Arab Emirates, Kuwait remains one of the few oil producing countries with significant

excess oil production capacity.

Kuwait contains an estimated 94 billion barrels of proven oil reserves, more than 9% of

the world total.  The Neutral Zone area, which Kuwait shares with Saudi Arabia, holds an

additional 5 billion barrels of reserves, half of which belong to Kuwait.  Most of Kuwait's oil

reserves are located in the 70-billion barrel Greater Burgan area, which comprises the Burgan,

Magwa and Ahmadi structures.  Greater Burgan is widely considered the world's second largest

oil field, surpassed only by Saudi Arabia's Ghawar field.

Kuwait's Raudhatain, Sabriya, and Minagish fields have large proven reserves as well,

with 6 billion, 3.8 billion, and 2 billion barrels of oil, respectively.  All of these fields have been

producing since the 1950s.  They generally contain medium to light crude oil with gravities in

the 30o-36o API range. The South Magwa field, discovered in 1984, is estimated to hold at least

25 billion barrels of light crude oil with a 35o-40o API gravity.  The Neutral Zone encompasses

a 6,200 square-mile area partitioned equally between Kuwait and Saudi Arabia under a 1992

agreement.  The Neutral Zone contains an estimated 5 billion barrels of oil and 1 trillion cubic

feet (Tcf) of natural gas.

Another Kuwaiti field, Ratqa, has been the subject of controversy.  Once thought to be

an independent reservoir, Ratqa is actually a southern extension of Iraq's supergiant Rumaila

field.  During the weeks preceding Iraq's August 1990 invasion of Kuwait, Iraq had accused
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Kuwait of stealing billions of dollars worth of Rumaila oil, and had refused to negotiate a

sharing or joint development arrangement for Ratqa and southern Rumaila. In its 1994

recognition of Kuwait's border, Iraq acknowledged a 1,919-foot extension of Ratqa further to

the north.

Geological Background

The Cretaceous and Tertiary sequence primary consist of normally pressured sands,

shales, and limestones.  The shale intervals are highly reactive and require inhibited muds to

prevent hydration and soulghing.  The Jurassic sequence is made up of formations that include

fractured oolitic limestone, salts, anhydrites, and shale. (Alsaleh, 1999)

Current Oil Production

The bulk of Kuwait's oil production occurs at the onshore Greater Burgan field, whose

Burgan, Magwa, and Ahmadi structures produce roughly 1.6 million barrels per day (bbl/d)

combined.  Most of Kuwait's other producing fields are relatively small and include the

250,000-bbl/d Raudhatain, 160,000-bbl/d Sabriya, 60,000-bbl/d Minagish, and 60,000-bbl/d

Umm Gudair fields.

Construction of new gathering centers is a major focus of Kuwait's upstream capacity

expansion program.  Prior to the Iraqi invasion in 1990, Kuwait had 26 gathering centers (GCs),

with a total capacity of 4 million bbl/d. All 26 GCs were either damaged or destroyed during the

war.  By 1993, 18 GCs had been restored.  In January 1996, KPC awarded China Petroleum

Engineering Construction Corporation (CPECC) a $390-million contract to build two new GCs,

a significant step in Kuwait's efforts to increase its oil production.  CPECC is constructing the

GCs, designated GC-27 and GC-28, at the Minagish and Umm Gudair fields.  The work was to

have been completed in 1998, but construction delays have pushed the anticipated completion
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date back to late 1999.  When completed, these GCs are expected to boost capacity at the two

western fields to more than 500,000 bbl/d.  (US Energy Information Administration., 1999)

Energy Overview

PROVEN OIL RESERVES (1/1/99):   96.5 BILLION BARRELS (INCLUDING 2.5
                                                               BILLION IN THE NEUTRAL ZONE, ALSO
                                                               KNOWN AS THE DIVIDED ZONE OR
                                                               PARTITIONED ZONE)

OPEC Crude Oil Production Quota
(since April 1, 1999):                             1.836 million bbl/d

Oil Production Capacity (1999):           2.4 million bbl/d (includes Neutral Zone)

Oil Production (1999):                          2.0 million bbl/d (includes Neutral Zone)

Oil Consumption (1999):                      146,000 bbl/d

Crude Oil Refining Capacity (1999):   886,000 bbl/d

Major Crude Oil Customers:                Asia (around 60%); Europe, South Africa, US

Natural Gas Reserves (1/1/99):            52.7 trillion cubic feet (Tcf) (includes Neutral Zone)

Natural Gas Production (1997):            0.33 Tcf

Natural Gas Consumption (1997):        0.33 Tcf

Electric Generation Capacity (1/1/97): 7.0 gigawatts

Electricity Production (1997):              25 billion kilowatthours

Table 10.  Kuwait Energy Overview.



59

Figure 1. Kuwait Map.
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Figure 2. Kuwait oil production history.[1980-1998].
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APPENDIX [B]
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Figure 3. Comparison of neural network predicted bit type with the selected bit type.
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Figure 6. Comparison of neural network predicted bit type with the selected bit type.
Kuwait-2 NN1 Run 2.A.
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Figure 7. Comparison of neural network predicted ROP with the measured ROP.
Kuwait-2 NN2 Run 2.B.
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Figure 8. Comparison of neural netwo rk predicted cost-per-foot with the measured
cost per foot.  Kuwait-2 NN3 Run 2.C.
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Figure 9. Comparison of neural network predicted bit type with the selected bit type.
Kuwait-3 NN1 Run (3.A).
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Figure 11. Comparison of neural network predicted cost per foot with the measured
cost per foot.  Kuwait-3 NN3 Run 3.C.

Figure 12. Comparison of neural network predicted bit type with the selected bit type.
Using bit type code number 6, (V2 code).  Kuwait-4 NN1 Run 4.
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Figure 13. Comparison of neural network predicted bit type with the selected bit type.
Using bit type code number 9, (bit code).  Kuwait-4 NN1 Run 4.A.
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Figure 14. Comparison of neural network predicted ROP with the measured ROP.
Kuwait-4 NN2 Run 4.B.
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Figure 15. Comparison of neural network predicted cost per foot with the measured
cost per foot.  Kuwait-4 NN3 Run 4.C.
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Figure 16. Comparison of neural network predicted bit type with the selected bit type.
Kuwait-5 NN1 Run 5.A.
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Figure 17. Comparison of neural network predicted ROP with the measured ROP.
Kuwait-5 Run 5.B.
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Figure 18. Comparison of neural network predicted cost per foot with the measured
cost per foot.  Kuwait-5 NN3 Run 5.C.
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Figure 19. Contribution of input parameters for the bit type prediction.
Kuwait-1 NN1 Run 1.A
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Figure 20. Contribution of input parameters for the ROP prediction.
Kuwait-1 NN2 Run 1.B.
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Figure 21. Contribution of input parameters for the cost per foot prediction.
Kuwait-1 NN3 Run 1.C.
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Figure 22. Contribution of input parameters for the bit type prediction. Kuwait-2 NN1
Run 2.A.
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Figure 23. Contribution of input parameters for the ROP prediction.
Kuwait-2 NN2 Run 2.B.
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Figure 24. Contribution of input parameters for the cost per foot prediction.
Kuwait-2 NN3 Run 2.C.
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Figure 25. Contribution of input parameters for the bit type prediction.  Kuwait-3 NN1
Run 3.A.
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Figure 26. Contribution of input parameters for the ROP prediction.
Kuwait-3 NN2 Run 3.B.
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Figure 27. Contribution of input parameters for the cost per foot prediction.
Kuwait-3 NN3 Run 3.C.
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Figure 28. Contribution of input parameters for the bit type prediction.  Using bit type
code number 6, V2 code.  Kuwait-4 NN1 Run 4.
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Figure 29. Contribution of input parameters for the bit type prediction.  Using bit type
code number 9, bit code.  Kuwait-4 NN1 Run 4.A.
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Figure 30. Contribution of input parameters for the ROP prediction.
Kuwait-4 NN2 Run 4.B.
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Figure 31. Contribution of input parameters for the cost per foot prediction.
Kuwait-4 NN3 Run 4.C.
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Figure 32. Contribution of input parameters for the bit type prediction.
Kuwait-5 NN1 Run 5.A.
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Figure 33. Contribution of input parameters for the ROP prediction.
Kuwait-5 NN2 Run 5.B.
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Figure 34. Contribution of input parameters for the cost per foot prediction.
Kuwait-5 NN3 Run 5.C.
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