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Abstract
People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has
a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of
perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven
and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that
encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP
was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and
elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regres-
sion models and found that the LPP was specifically associated with response latency and confidence rating,
suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of
stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to
differences in eye movements either. Together, our findings argue for a common neural signature that encodes
decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an
essential first step toward a complete neural understanding of human perceptual decision making.

Key words: ambiguity; decision; late positive potential; stimulus-driven; task-driven

Introduction
Assessing decision ambiguity is critical for decision-

making. Although many studies have focused on value-
based decisions in the face of risk (uncertainty with known

probabilities) and ambiguity (uncertainty with unknown
probabilities due to missing information) and revealed
a distributed network of brain areas in value-based
decision-making under risk and ambiguity (Hsu et al.,

Received July 5, 2017; accepted November 9, 2017; First published November
14, 2017.
The authors declare no competing financial interests.

Author Contributions: S.S., R.Y., and S.W. designed experiments. S.S.
performed research. S.S. and S.W. analyzed data. S.S., R.Y., and S.W. wrote
the paper.

Significance Statement

Humans have a dedicated neural system to make decisions in ambiguous situations. Neuroimaging and
electrophysiological studies have revealed brain regions and neural signatures in coding perceptual
ambiguity, but it remains unknown whether there exists a common neural substrate that encodes various
forms of perceptual ambiguity. Here, we revealed a common neural signature, the LPP, that encoded
decisions under perceptual ambiguity. Using task instructions with different levels of ambiguity, we further
showed that this neural signature was modulated by task ambiguity. Our findings highlight a common neural
substrate underlying perceptual decision-making under ambiguity.
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2005; Krain et al., 2006), we often encounter perceptual
decisions when the mapping of stimulus category to
choice was ambiguous. In the perceptual domain, inter-
preting ambiguous stimuli engages brain areas including
bilateral inferior frontal regions (Sterzer and Kleinschmidt,
2007). In particular, one highly salient stimulus category
encountered in everyday life that features pronounced
ambiguity are facial expressions of emotions, which are
frequently confused with one another (Young et al., 1997).
Ambiguous emotional faces relative to unambiguous
emotional faces activate cingulate cortices (Simmons
et al., 2006), and single neurons in the human amygdala
signal levels of emotion ambiguity (Wang et al., 2017).
However, it remains unknown whether various forms of
perceptual ambiguity share the same neural substrate
and whether the coding of perceptual ambiguity is further
modulated by top-down signals.

Previous literature has focused on a scalp-evoked late
positive potential (LPP, beginning �400 ms after stimulus
onset) that is associated with evaluation of ambiguous
information. The LPP is sensitive to stimulus uncertainty
(Sutton et al., 1965) and differentiates ambiguous facial
expressions (Calvo et al., 2013) and racially ambiguous
faces (Willadsen-Jensen and Ito, 2006). Earlier notions
that the LPP might be specialized in processing affective
pictures (Cuthbert et al., 2000; Schupp et al., 2000, Leite
et al., 2012) have been supplemented by accounts that
the LPP has diverse functions in social and economic
evaluation: the LPP is not only involved in evaluating
socially relevant concepts (Cunningham et al., 2005) and
modulated by social comparisons (Wu et al., 2012), it is
also associated with evaluation of good versus bad be-
havior in moral judgments (Yoder and Decety, 2014) and
encodes positive versus negative outcomes in economic
decision-making (Hajcak et al., 2005). In addition, a recent
line of research showed that the LPP plays a key role in
forming decisions: the LPP is not only associated with
accumulating sensory information, but also plays an im-
portant role in determining choices (O’Connell et al., 2012;
Kelly and O’Connell, 2013; Murphy et al., 2015). In a
recent study, we have shown that the LPP differentiates
levels of ambiguity and is specifically associated with
behavioral decisions about choices that are ambiguous,
rather than mere passive perception of ambiguous stimuli

(Sun et al., 2017). It is worth noting that in the field of
perceptual and cognitive neuroscience, different terms
have been used to describe this event-related potential
(ERP) component [e.g., P300, centro-parietal positive po-
tential (CPP), and late positive deflection (LPD)], and the
manipulation of attentional locus and stimulus-reward as-
sociation drives this component (Hillyard et al., 1998;
Mangun and Buck, 1998; Cravo et al., 2013; Itthipuripat
et al., 2015), consistent with its role in coding stimulus
ambiguity and task uncertainty.

Given the LPP’s diverse roles in coding faces, emotion,
uncertainty, decisions, and combinations of these per-
ceptual attributes, in this study, we propose that the LPP
is a general neural signature of perceptual ambiguity,
rather than a specific signature of emotional or affective
responses. To test this hypothesis, we employed a range
of experiments and investigated how stimulus-driven and
task-driven factors modulate the LPP. Importantly, to in-
vestigate whether the LPP is a common neural substrate
for various forms of perceptual ambiguity, we used either
the same task or the same stimuli so that our results were
comparable across experiments. First, using faces along
two different morph dimensions as well as morphed ani-
mals, we showed that the LPP encoded perceptual am-
biguity generally regardless of facial emotions or even
faces. Second, using task instructions with different levels
of ambiguity, we found that the LPP was modulated by
task instructions and had the maximal response when the
dimension of stimulus ambiguity was task relevant. Third,
to specify the functional role of the LPP, we constructed
regression models, which revealed that the LPP was spe-
cifically associated with response latency and confidence
rating. Finally, we showed that our findings were further
supported by direct behavioral ratings of task ambiguity
and difficulty but could not be attributed to any differ-
ences in eye movements. Together, our findings show
that the LPP encodes decisions under perceptual ambi-
guity in a general fashion, but is subject to whether the
task dimension was relevant.

Materials and Methods
Subjects

In experiment 1 (face judgment task with fear-happy
morphed emotions), 16 subjects (9 female, mean age �
SD, 20.1 � 1.50 years) participated in the electroenceph-
alogram (EEG) experiment, and 24 subjects (16 female,
22.3 � 3.39 years) participated in the eye tracking exper-
iment. Eleven subjects (9 female, 20.6 � 2.80 years)
participated in experiment 2 (face judgment task with
anger-disgust morphed emotions) and experiment 3 (an-
imal judgment task with cat-dog morphs). In addition, 16
subjects (11 female, 19.63 � 0.96 years) participated in
experiments 4–6 (face judgment task with fear-happy
morphed emotions but different task instructions). All sub-
jects provided written informed consent according to pro-
tocols approved by the institutional review board.

Stimuli
The stimuli of experiment 1 (face judgment task with

fear-happy morphed faces) were described in detail in a
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previous study (Wang et al., 2017). Briefly, stimuli were
morphed expression continua between four exemplars
(two female) of fearful and happy expressions as well as
unambiguous anchor faces with clear fearful and happy
expressions for each exemplar. We created 5 levels of
fear-happy morphs, ranging from 30% fear/70% happy to
70% fear/30% happy in steps of 10% (Fig. 1B). Low-level
image properties were equalized (Wang et al., 2017).

In experiment 2 (face judgment task with anger-disgust
morphed emotions), anger-disgust morphs were created
by FaceGen modeler (http://facegen.com/). Similar to
fear-happy morphs, we also selected 4 identities [2 males
and 2 females from 3D human face models; two Asian (1
male and 1 female) and two white], with 2 anchors and 5
morph levels for each identity. The morphs ranged from
30% anger/70% disgust to 70% anger/30% disgust in
steps of 10%.

In experiment 3 (animal judgment task with cat-dog
morphs), cat-dog morphed stimuli were used and de-
scribed in detail in a previous study (Freedman et al.,
2001). In brief, there were two cat identities and two dog
identities. Each cat identity was morphed with another
dog identity to create 4 morph lines. Similarly, each morph
line had 2 anchors and 5 morph levels (20% cat/80% dog,
40% cat/60% dog, 50% cat/50% dog, 60% cat/40%
dog, and 80% cat/20% dog). Experiments 4–6 (face judg-
ment task using instructions with levels of ambiguity) used

the identical stimuli as experiment 1, but with different
task instructions (see below).

In experiment 1, there were 252 trials in 3 blocks for eye
tracking subjects and 252 trials in 2 blocks for EEG sub-
jects. In experiments 2 and 3, there were 252 trials in 2
blocks. In experiments 4–6, there were 280 trials in 2
blocks for each experiment. All trials were pooled for
analysis.

Task
In experiment 1, in each trial, a face was presented for

1 s followed by a question prompt asking subjects to
make the best guess of the facial emotion. After stimulus
offset, subjects had 2 s to respond, otherwise the trial was
aborted and discarded. Subjects were instructed to
respond as quickly as possible, but only after stimulus
offset. No feedback message was displayed, and the
order of faces was completely randomized for each sub-
ject. An intertrial interval (ITI) was jittered randomly with a
uniform distribution of 1–2 s. In each block, there were
equal numbers of trials for each morph level and each
identity.

Experiments 2 and 3 had the same task structure as
experiment 1. In experiment 2 (Fig. 2A), subjects were
asked to make the best guess of the facial emotion (anger
or disgust), and in experiment 3 (Fig. 2E), subjects were
asked to make the best guess of the animal category (cat
or dog).

Fearful  ?  Happy

+

A B

C D E F

Fig. 1. Experiment 1. A, Task. A face was presented for 1 s followed by a question asking subjects to identify the facial emotion (fearful
or happy). Faces are not shown to scale. B, Sample stimuli of one female identity ranging from 0% fear/100% happy to 100% fear/0%
happy. Three ambiguity levels (anchor, intermediate, and high) are grouped as shown above the stimuli. C, Group average of
psychometric curves showing the proportion of trials judged as fearful as a function of morph levels ranging from 0% fearful (100%
happy; on the left) to 100% fearful (0% happy; on the right). Shaded area denotes �SEM across subjects. D, The reaction time (RT;
relative to stimulus onset) for the fear/happy decision. Subjects judged facial emotions faster for anchor faces but slower for more
ambiguous faces. Error bars denote one SEM across subjects. E, ERP at the electrode Pz differentiated ambiguity levels. Gray shaded
area denotes the LPP interval. F, Mean LPP amplitude showed a parametric modulation by stimulus ambiguity. LPP amplitudes were
averaged across the entire interval (shaded area in E). Error bars denote one SEM across subjects. Paired t test between adjacent
levels of ambiguity: �, p � 0.05; ��, p � 0.01; and ���, p � 0.001.
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Fig. 2. Experiments 2 and 3. A–D, Experiment 2: face judgment task with anger-disgust morphed emotions. E–H, Experiment 3:
animal judgment task with cat-dog morphs. A, E, Task. A face (A) or an animal (E) was presented for 1 s followed by a question asking
subjects to identify the facial emotion (angry or disgusted; A) or animal category (cat or dog; E). Faces and animals are not shown
to scale. B, F, Group average of psychometric curves showing the proportion of trials judged as angry (B) or dog (F) as a function of
morph levels. Shaded area denotes �SEM across subjects. C, G, RT. Subjects judged unambiguous faces (C) or animals (G) faster
than ambiguous faces or animals. Error bars denote one SEM across subjects. Paired t test between adjacent levels of ambiguity: �,
p � 0.05; ��, p � 0.01; n.s., not significant. D, H, ERP at the electrode Pz differentiated ambiguity levels. Both experiments showed
a larger LPP for anchors and a smaller LPP for high ambiguity, consistent with the face judgment task with fear-happy morphed
emotions. Gray shaded area denotes the LPP interval (400–700 ms after stimulus onset). The top magenta bars illustrate the points
with significant difference across three ambiguity levels (one-way repeated-measure ANOVA, p � 0.05, corrected by false discovery
rate for Q � 0.05). I, J, Comparison between experiments 2 and 3 on all LPP (average across all conditions). K, L, Comparison
between experiments 2 and 3 on the difference in LPP (anchor minus high). I, K, ERP. Shaded areas denote �SEM across subjects.
Gray shaded area denotes the LPP interval. The top magenta bars illustrate the points with significant difference between the two
tasks (paired t test, p � 0.05, corrected by false discovery rate for Q � 0.05). There was no significant difference in the LPP between
the two tasks for both all LPP (I) and the difference in LPP (K), although the animal task had more negative ERP �200 ms for all LPP
(I). J, L, Mean LPP amplitude. LPP amplitudes were averaged across the entire interval (400–700 ms after stimulus onset). Error bars
denote one SEM across subjects. There was no significant difference between the two tasks for both all LPP (J; paired t test, p �
0.45) and the difference in LPP (L; p � 0.41).
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Experiments 4–6 also had a similar task structure as
experiment 1. However, notably, experiments 4–6 were
speeded tasks—a question prompt was presented for
500 ms, followed by the stimulus. Subjects were in-
structed to respond as quickly as possible, and the stim-
ulus stayed on the screen until subjects responded.
Subjects had 2 s to respond, otherwise the trial was
aborted and discarded. No feedback message was dis-
played, and the order of stimuli was completely random-
ized for each subject. In experiment 4 (Fig. 3A), subjects
were asked to judge the gender of the face. In experiment
5 (Fig. 3F), subjects were asked to make the best guess of
the facial emotion (identical to experiment 1). In experi-
ment 6 (Fig. 3K), subjects were asked to guess the wealth
(poor versus rich) of the face model.

Eye-tracking subjects in experiment 1 and subjects in
experiments 4–6 also performed a confidence rating.
After emotion judgment and a 500-ms blank screen (1 s of
fixation for experiments 4–6), subjects were asked to
indicate their confidence of judgment, by pushing the

button 1 for “very sure,” 2 for “sure,” or 3 for “unsure.” As
with the emotion judgment, subjects had 2 s to respond
before the trial was aborted, and no feedback message
was displayed.

Behavioral data analysis
We fitted a logistic function to obtain smooth psycho-

metric curves:

P�x� �
Pinf

1 � e���x�xhalf�
,

where P is the percentage of trials judging faces as fearful
in experiment 1, judging faces as angry in experiment 2,
and judging animals as dog in experiment 3; x is the
stimulus level; Pinf is the value when x approaches infinity
(the curve’s maximum value); xhalf is the symmetric inflec-
tion point (the curve’s midpoint); and � is the steepness of
the curve. Pinf, xhalf, and � were fitted from the observed
data (P and x). We derived these parameters for each
subject.

Female  ?   Male

+ Confidence?

        1              2            3
Very Sure   Sure   Unsure +

Poor    ?    Rich

+ Confidence?

        1              2            3
Very Sure   Sure   Unsure +

Fearful  ?  Happy

+ Confidence?

        1              2            3
Very Sure   Sure   Unsure +

A B C D E

F G H I J

K L M N O

P Q R S T U

Fig. 3. Experiments 4–6. A–E, Experiment 4: gender judgment task. F–J, Experiment 5: emotion judgment task. K–O, Experiment 6:
wealth judgment task. A, F, K, Task. A question prompt was presented for 500 ms, followed by the stimulus. Subjects were instructed
to respond as quickly as possible, and the stimulus stayed on the screen until subjects responded. B, G, L, Confidence ratings (CR).
Confidence ratings systematically varied as a function of stimulus ambiguity for the emotion judgment task but not for the gender
judgment task nor wealth judgment task. C, H, M, RT. RT can be considered as an implicit measure of confidence, and had a similar
pattern as confidence ratings. D, I, N, ERP at the electrode Pz. Gray shaded area denotes the LPP interval. E, J, O, Mean LPP
amplitude. Error bars denote one SEM across subjects. Paired t test between adjacent levels of ambiguity: �, p � 0.1; �, p � 0.05;
��, p � 0.01; ���, p � 0.001; n.s.: not significant. P, Mean confidence rating for each experiment. Q, Difference in confidence rating
between anchor and high-ambiguity stimuli for each experiment. R, Mean RT for each experiment. S, Difference in RT between anchor
and high-ambiguity stimuli for each experiment. T, Mean LPP averaged across all conditions for each experiment. U, Difference in LPP
between anchor and high-ambiguity stimuli for each experiment. Error bars denote one SEM across subjects. Paired t test between
subjects: �, p � 0.1; �, p � 0.05; ��, p � 0.01; ���, p � 0.001; n.s., not significant.
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Eye tracking and apparatus
Twenty-four subjects participated in the eye-tracking

experiment. The stimuli were presented using Matlab with
the Psychophysics Toolbox (Brainard, 1997). Fourteen
healthy subjects were recorded with a head-supported
noninvasive infrared EyeLink 1000 System (SR Research).
One of the eyes was tracked at 1000 Hz. Subjects were
seated at a distance of 60 cm in front of a computer
screen in a dimly lit, sound-attenuated room. The exper-
iment was administered on a 20-inch (40 � 30-cm screen
size) Lenovo CRT display (1024 � 768 screen resolution).
The eye tracker was calibrated with the built-in 9-point
grid method at the beginning of each block. Fixation
extraction was conducted using software supplied with
the EyeLink eye tracking system. Saccade detection re-
quired a deflection of �0.1°, with a minimum velocity of
30°/s and a minimum acceleration of 8000°/s2. Fixations
were defined as the complement of a saccade, i.e., peri-
ods without saccades, and the fixation locations were
determined using the EyeLink event parser.

Ten healthy subjects were recorded using a remote
noninvasive infrared Tobii T120 system which recorded
binocular gaze at 120 Hz. The Tobii visualization software
(Tobii Studio 2.2) was used to record eye movements and
perform gaze analysis. Fixations were detected by Tobii
Fixation Filter implemented in Tobii Studio. The Tobii
Fixation Filter is a classification algorithm proposed by
(Olsson, 2007) and detects quick changes in the gaze
point using a sliding window averaging method. Velocity
threshold was set to 35 pixels/sample, and distance
threshold was set to 35 pixels in our study.

To quantitatively compare the fixation properties within
certain parts of the face, we defined three regions of
interest (ROIs): eyes, mouth, and center (Fig. 5A). Each
ROI is a rectangle, and the eye and mouth ROI have the
same size. To compute fixation density maps, fixation
locations were smoothed with a 40-pixel 2D Gaussian
kernel with a standard deviation of 10 pixels. The fixation
density map indicates the probability of fixating a given
location (in arbitrary units), which was calculated based
on the number and duration of fixations and which
ensured an equal contribution from each subject and
statistical independence between subjects. The average
fixation density within the ROIs was calculated for each
subject and for each morph level during the entire 1-s
stimulus period. Statistical comparisons were then per-
formed to compare whether the mean fixation density, the
total fixation duration, the mean fixation duration, the
percentage of the number of fixations, and the latency of
the first fixation falling into an ROI differed between am-
biguity levels, for each ROI (Fig. 5B–F).

EEG data recording
Subjects were seated comfortably �1.1 m in front of a

computer screen in a dimly lit and electromagnetically
shielded room. Experiments were administered on a 19-
inch (37.7 � 30.1-cm screen size) IBM LCD display (1280
� 1024 screen resolution). Stimuli were presented using
E-prime. EEGs were recorded using a digital AC amplifier
from 32 scalp sites with tin electrodes mounted in an

elastic cap (NeuroScan4.5) according to the International
10-20 system. EEGs were recorded from the following
sites: frontal, FP1, FP2, F7, F3, Fz, F4, F8; frontal-central,
FC3, FCz, FC4; central, C3, Cz, C4; central-parietal, CP3,
CPz, CP4; parietal, P7, P3, Pz, P4, P8, frontal-temporal-
parietal, FT7, TP7, T7, T8, TP8, FT8; and occipital, O1, Oz,
O2. The vertical electro-oculograms (VEOGs) were re-
corded from left supra-orbital and infra-orbital electrodes.
The horizontal electro-oculograms (HEOGs) were mea-
sured from electrodes placed lateral to the outer canthi of
the left and right eyes. The ground electrode was placed
on the forehead. One reference electrode was placed at
the left mastoid and the other at the right mastoid, and all
recordings were referenced to the right mastoid. All im-
pedance was maintained at less than 5 	
. EEGs and
electro-oculograms (EOGs) were amplified using a 0.05-
to 70-Hz bandpass filter and were continuously sampled
at 500 Hz/channel.

EEG data preprocessing
EEG data were processed using EEGLAB (Delorme and

Makeig, 2004), an open-source toolbox running in the
Matlab environment, and in-house Matlab functions. The
continuous EEG data were re-referenced to the average
of the left and right external mastoid signals to avoid
biasing the data toward one hemisphere (Nunez and Srini-
vasan, 2006; Luck, 2014). The data were filtered using a
digital zero-phase shift bandpass filter of 0.5-30 Hz with a
slope of 24 dB/octave. Then the continuous EEG data
were epoched into 1-s segments (–200 to 800 ms relative
to stimulus onset), and the prestimulus interval (–200 to 0
ms) was used as the baseline. We did not extend the
epoch beyond 800 ms, as previous studies have sug-
gested the termination of LPP effects at 800 ms (Schupp
et al., 2000; Hu et al., 2014). The data were then baseline
corrected by subtracting the average activity during the
baseline period. Trials that had blinks in any part of the
segment were excluded using a blink detection tool from
ERPlab (http://erpinfo.org/erplab), in which vertical ocular
artifacts exceeding a normalized cross-variance threshold
of 0.7 were detected during the whole epoch (Lopez-
Calderon and Luck, 2014; Luck, 2014). We rejected these
trials because blinks might not only alter the sensory input
of that trial, but also contaminate the EEG signals, espe-
cially the signals from the frontal channels. Epochs with
saccadic eye movements were detected and discarded
using a step-like artifact-detection function, in which
horizontal ocular artifacts exceeding 70 �V in amplitude
were detected during the entire epoch with 200-ms
moving window and 50-ms increment steps. This func-
tion is suitable to detect saccadic eye movements that
typically consist of sudden, step-like changes in volt-
age (Lopez-Calderon and Luck, 2014). Remaining arti-
facts were further detected using a moving-window
peak-to-peak artifact-detection method on specific
midline electrodes. Epochs were excluded if the peak-
to-peak voltage (the difference between the largest and
smallest values) exceeded a threshold of 100 �V. Bad
channels were interpolated using the average voltage
from their surrounding electrodes.
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EEG stimulus-locked ERP analysis
Within each subject, mean wave form of each morph

level was computed, time-locked to the onset of the
stimulus. Single-subject mean waveforms were subse-
quently averaged to obtain group-level mean waveforms.
Here, we measured the LPP (entire wave form) based on
the time window of 400 to 700 ms after stimulus onset at
the parietal-central (Pz) electrode (Sabatinelli et al., 2007).
Importantly, the scalp topography of the difference wave
form between high ambiguity and anchor showed the
most pronounced difference at Pz in this time window
(Sun et al., 2017).

Regression models
We constructed regression models to understand to

what extent behavioral measurements could be explained
by the LPP. We employed linear mixed models (LMM) for
reaction times (RTs) and confidence rating. We used
single-trial mean LPP amplitude (400–700 ms after stim-
ulus onset) and stimulus ambiguity level as fixed effects,
together with by-subject random intercept. Statistical sig-
nificance of the model was computed by likelihood ratio
tests of the full model with the fixed effect of LPP ampli-
tude against a null model without the fixed effect of the
LPP.

The formula for RT is
RT � 1 � LPP � ambiguity level � (1 � 1 | subID).
The formula for confidence rating is
confidence rating � 1 � LPP � ambiguity level � (1 �

1 | subID).
Because behavioral choice was binary, we employed a

logistic regression model for behavioral choice. The for-
mula for behavioral choice is

logit (choice) � 1 � LPP � RT � confidence rating �
subID; distribution � binomial.

Note that for behavioral choice, the contribution of RT
and confidence rating was accounted to control for task
difficulty.

Results
What are the neural substrates underlying ambiguity

processing? To answer this question, we conducted a
series of EEG experiments with a variety of ambiguous
stimuli. We not only analyzed the judgment choice behav-
ior (i.e., the parametric relationship between stimulus level
and behavioral response) to investigate the judgment sen-
sitivity and specificity, but also used both explicit (confi-
dence ratings) and implicit (RT) behavioral measures to
index response to stimulus ambiguity and judgment diffi-
culty. In particular, previous findings argue that a late
positive potential (LPP) originating from the parietal-
central (Pz) electrode is involved in affective valence
(pleasant, unpleasant, and neutral) and arousal process-
ing (Cuthbert et al., 2000; Schupp et al., 2000; Codispoti
et al., 2007; Pastor et al., 2008; Leite et al., 2012). We here
examined whether and how the LPP was modulated by
stimulus ambiguity. In a later section, we directly linked
stimulus ambiguity, behavioral indices of ambiguity (RT
and confidence ratings), and the neural response (the
LPP) through a regression model, which revealed a spe-
cific functional role of the LPP.

Experiment 1: The LPP encodes perceptual
ambiguity of fear-happy morphed faces

In this experiment, we asked subjects to judge emo-
tional faces as fearful or happy (Fig. 1A). Faces were either
unambiguously happy, unambiguously fearful (“anchors”),
or graded ambiguous morphs between the two emotions
(Fig. 1B). Because emotion ambiguity was symmetric be-
tween emotion intensity levels, we grouped the seven
emotion levels into three ambiguity levels (Fig. 1B): an-
chor, intermediate ambiguity (30%/70% morph), and high
ambiguity (40% to 60% morph). For each subject, we
quantified behavior as the proportion of trials identified as
fearful as a function of morph level (Fig. 1B). We found a
monotonically increasing relationship between the likeli-
hood of identifying a face as fearful and the fearfulness in
the morphed face for both subject groups (Fig. 1C), show-
ing that subjects could well track the gradual change in
the emotions. There was also a systematic relationship
between RT and ambiguity: the more ambiguous the
stimulus, the longer the RT (Fig. 1D; one-way repeated-
measure ANOVA of ambiguity levels, F(2,30) � 15.6, p �
2.27 � 10�5, �p

2 � 0.51).
Confirming our previous finding (Sun et al., 2017), we

found that the LPP component showed a parametric re-
lationship with the degree of ambiguity shown in the
stimuli, suggesting that LPP amplitude can index the level
of perceptual ambiguity (Fig. 1E). Consistent with prior
literature on the LPP (Pastor et al., 2008; Leite et al.,
2012), we focused on the electrode Pz during the time
interval of 400–700 ms after stimulus onset. Our results
were confirmed by the mean LPP amplitude (Fig. 1F;
one-way repeated-measure ANOVA of ambiguity levels,
F(2,30) � 11.3, p � 2.20 � 10�4, �p

2 � 0.43), and post
hoc t tests revealed a significant difference between an-
chor (5.36 � 2.94 �v, mean � SD) and intermediate
ambiguity (4.38 � 2.95 �v; paired two-tailed t test, t(15) �
3.03, p � 0.008, Cohen’s d � 0.78), and a significant
difference between intermediate and high ambiguity (3.44
� 2.33 �v; t(15) � 2.79, p � 0.014, d � 0.72). Interest-
ingly, the difference between anchor versus intermediate
ambiguous faces (0.99 � 1.30 �v) was not different from
that between intermediate versus most ambiguous faces
(0.93 � 1.35 �v; paired t test: t(15) � 0.12, p � 0.91, d �
0.03), indicating a similar transition between ambiguity
levels.

Experiments 2 and 3: The LPP encodes general
perceptual ambiguity

Does the LPP only encode ambiguity about faces or
even only along the fear-happy dimension? To answer
this question, we asked 11 healthy subjects to judge facial
emotions along the anger-disgust dimension (experiment
2; Fig. 2A), and animal categories of cat-dog morphs
(experiment 3; Fig. 2E). Similar to fear-happy morphs, in
both experiments, subjects could well track the gradual
change of morph levels (Fig. 2B, F), and RT was faster for
less ambiguous stimuli for both emotion judgment of
anger versus disgust (Fig. 2C; one-way repeated-measure
ANOVA of ambiguity levels, F(2,20) � 4.78, p � 0.019, �p

2
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� 0.30) and animal judgment of cat versus dog (Fig. 2G;
F(2,20) � 8.48, p � 0.009, �p

2 � 0.37).
In both experiments, we not only found a clear LPP

component in the interval of 400–700 ms after stimulus
onset at the electrode Pz as the fear-happy morph task,
but importantly, the LPP also differentiated the ambiguity
levels (emotion task, 508–730 ms; animal task, 474–692
ms), still with anchor faces showing the most positive
potential (Fig. 2D, H). This observation was confirmed by
the mean LPP amplitude (Fig. 2D; emotion task: anchor,
6.03 � 3.70 �V; intermediate, 4.09 � 2.87 �V; high, 3.30
� 1.94 �V; one-way repeated-measure ANOVA of ambi-
guity levels, F(2,20) � 10.3, p � 8.41 � 10�4, �p

2 � 0.51;
Fig. 2H; animal task: anchor, 4.84 � 2.89 �V; intermedi-
ate, 4.22 � 2.59 �V; high, 2.85 � 2.40 �V; F(2,20) � 12.8,
p � 2.62 � 10�4, �p

2 � 0.56). Our results were further
corroborated using the peak amplitude of the LPP.

We next compared experiments 2 and 3 to explore the
possible difference in coding ambiguity. Both the mean
LPP across all conditions (Fig. 2I, J) and the difference in
LPP between anchor and high ambiguity (Fig. 2K, L) were
remarkably similar (two-tailed paired t test; mean, t(10) �
0.79, p � 0.45, d � 0.25; difference, t(10) � 0.87, p �
0.41, d � 0.28), suggesting that the LPP could be elicited
by different forms of perceptual ambiguity similarly, thus
encoding perceptual ambiguity in a general fashion. To-
gether, our results showed that the LPP encoded percep-
tual ambiguity in general regardless of facial emotions or
even faces.

Experiments 4–6: The LPP’s coding of ambiguity
was modulated by task instructions

We have shown above that the LPP encodes general
stimulus-driven perceptual ambiguity. How does the LPP
encode ambiguity in task instructions? To answer this
question, we next employed identical stimuli but asked
different questions when judging the stimulus. Using fear-
happy morphed emotions as in experiment 1, task in-
structions thus had three levels of ambiguity: the gender
judgment task (experiment 4; Fig. 3A) had no ambiguity
because all four face models had clear genders, whereas
the wealth judgment task (experiment 6; Fig. 3K) had the
highest ambiguity because whether the face model is
poor or rich could not be told without any priors. The
emotion judgment task (experiment 5; Fig. 3F) had an
intermediate ambiguity, and it was a direct replication of
experiment 1. Note that only the task instruction of the
emotion judgment task was relevant to the dimension of
ambiguity in stimulus. Sixteen subjects participated in all
three experiments, and the order of experiments was
counterbalanced across subjects.

Behaviorally, after judging the stimulus, we asked sub-
jects to report their confidence in their decisions. In the
emotion judgment task, subjects reported significantly
higher levels of confidence for anchor faces compared to
ambiguous faces (Fig. 3G; one-way repeated-measure
ANOVA of ambiguity levels: F(2,30) � 27.8, p � 1.48 �
10�7, �p

2 � 0.65). However, in both gender judgment task
(Fig. 3B; F(2,30) � 4.62, p � 0.018, �p

2 � 0.24) and wealth
judgment task (Fig. 3L; F(2,30) � 4.95, p � 0.014, �p

2 �

0.25), although subjects still reported different levels of
confidence for different ambiguity levels, confidence did
not decrease systematically as a function of increasing
stimulus ambiguity, and the difference in confidence be-
tween ambiguity levels was much smaller. In addition to
the explicit confidence ratings, RT can be considered as
an implicit measure of confidence. In the emotion judg-
ment task, RT was faster for anchor faces compared to
ambiguous faces (Fig. 3H; F(2,30) � 20.8, p � 2.15 �
10�6, �p

2 � 0.58), replicating the results in experiment 1
(Fig. 1D). Similarly, RT mirrored confidence ratings in both
gender judgment task (Fig. 3C; F(2,30) � 0.28, p � 0.76,
�p

2 � 0.018) and wealth judgment task (Fig. 3M; F(2,30) �
3.42, p � 0.046, �p

2 � 0.19). Together, our results show
that stimulus-driven ambiguity modulates behavior to a
much weaker extent when it is not task relevant.

We further compared across experiments. Although the
mean confidence rating averaged cross all stimuli was
similar across experiments (Fig. 3P; one-way repeated-
measure ANOVA of experiments: F(2,30) � 1.07, p �
0.36, �p

2 � 0.067), the mean RT was significantly longer in
the wealth judgment task (Fig. 3R; F(2,30) � 3.70, p �
0.037, �p

2 � 0.20), whose task instruction had the highest
level of ambiguity, thus confirming the manipulation task
ambiguity. Furthermore, the difference in confidence rat-
ings between the high-ambiguity faces and anchor faces
was significantly greater in the emotion judgment task
compared with the gender and wealth judgment tasks
(Fig. 3Q; F(2,30) � 17.4, p � 9.62 � 10�6, �p

2 � 0.54), and
the difference in RT was also significantly greater in the
emotion judgment task compared with the gender and
wealth judgment tasks (Fig. 3S; F(2,30) � 18.2, p � 6.67
� 10�6, �p

2 � 0.55). However, the difference in both
confidence and RT was similar between the gender judg-
ment task and wealth judgment task (Fig. 3Q, S; both p �
0.05), suggesting that task-driven ambiguity did not sim-
ply add or multiply to the stimulus-driven ambiguity.
Furthermore, when subtracting the RT in the emotion
judgment task from the RT in the gender judgment task at
each ambiguity level, we still observed that the RT in-
creased as a function of increasing stimulus ambiguity
(anchor, 4.96 � 175.8 ms; intermediate, 65.3 � 146.4 ms;
high, 123.6 � 177.8 ms; one-way repeated-measure
ANOVA of ambiguity levels, F(2,30) � 17.8, p � 0.001, �p

2

� 0.51), suggesting that behavioral response was modu-
lated by stimulus ambiguity more strongly when the task
instruction was relevant. Together, both explicit confi-
dence ratings and implicit confidence measures by RT
suggested that stimulus-driven ambiguity modulated be-
havior maximally if it matched the task instruction.

Neurally, we first showed that experiment 5 replicated
the findings in experiment 1 (Fig. 3I), although experiment
5 was a speeded task. We also observed LPP effects in
both gender judgment task (Fig. 3D) and wealth judgment
task (Fig. 3N). However, the LPP in the gender judgment
task had a lower amplitude (Fig. 3D), although the gender
judgment task had a lower ambiguity in task instruction
compared to the emotion judgment task, a result opposite
to LPP’s coding of stimulus-driven ambiguity. Further-
more, although the LPP could also differentiate levels of
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stimulus ambiguity in the gender judgment task (Fig. 3E;
F(2,30) � 8.48, p � 0.0012, �p

2 � 0.36), the coding of
stimulus ambiguity was relatively weaker compared with
the emotion judgment task (Fig. 3J; F(2,30) � 48.0, p �
4.48 � 10�10, �p

2 � 0.76) and the wealth judgment task
(Fig. 3O; F(2,30) � 33.3, p � 2.41 � 10�8, �p

2 � 0.69; also
see below), suggesting that the LPP encoded stimulus
ambiguity more strongly when the task involved ambiguity
in judgment.

We further confirmed our findings by comparing across
experiments: the overall LPP averaged cross all stimuli
varied across experiments even with the identical stimuli
(Fig. 3T; one-way repeated-measure ANOVA of experi-
ments: F(2,30) � 9.83, p � 5.21 � 10�4, �p

2 � 0.40), with
the emotion and wealth judgment tasks featuring a larger
mean LPP. Similarly, the difference in LPP between the
anchor faces and high-ambiguity faces was significantly
greater in the emotion and wealth judgment tasks com-
pared with the gender judgment task (Fig. 3U; F(2,30) �
6.05, p � 0.0062, �p

2 � 0.29). Although there were levels
of ambiguity in top-down instructions, the LPP had the
maximal response to stimulus ambiguity when the dimen-
sion of stimulus ambiguity matched the task instruction,
instead of when task instruction had the highest or lowest
ambiguity. It is worth noting that in contrast to the coding
of stimulus ambiguity where the LPP amplitude was larg-
est for anchors (Fig. 3I, J), the most ambiguous wealth
judgment task elicited both a greater overall LPP (Fig. 3T;
paired t test: t(15) � �2.56, p � 0.022, d � �0.66) and a
greater difference in LPP (Fig. 3U; paired t test: t(15) �
�1.95, p � 0.071, d � �0.50) compared with the least
ambiguous gender judgment task. This indicated that the
LPP was modulated by task instruction differently com-
pared to stimulus.

Finally, it is worth noting that in these three experiments
we varied task ambiguity but kept the stimuli identical,
and there might be an interaction between task ambiguity
and stimulus ambiguity. The stimulus ambiguity might
explain some of the LPP effects. For example, in the
gender judgment task, although the ambiguity in task was
minimal, some stimuli were still ambiguous in emotions,
which might drive the LPP’s response (Fig. 3D, E). There-
fore, our data indicated that even if subjects were not
judging emotions, the emotion ambiguity might still be
encoded to some extent. It is also notable that behavioral
choice was not correlated with ambiguity levels for any of
the tasks (gender, r � 0.046, p � 0.63; emotion, r � 0.023,
p � 0.81; wealth, r � �0.033, p � 0.73), ruling out the
possibility that the LPP could be simply explained by
behavioral choices.

Taken together, our neural data suggested that the
LPP was modulated by task instructions and encoded
stimulus ambiguity more strongly when the task in-
struction involved ambiguity. This result has shown
context dependency of the LPP and is consistent with
our previous finding that the LPP is generated only
when decisions are made on a dimension that is am-
biguous (Sun et al., 2017).

Regression models revealed a trial-by-trial coupling
between the LPP and behavioral measurements

We have shown that the LPP encodes general stimulus-
driven perceptual ambiguity and is modulated by task-
driven ambiguity. What is the specific functional role of
the LPP when it encodes perceptual ambiguity? Is it
associated with perceptual representation of the stimulus
or with making judgments about the stimulus? We next
conducted regression analyses (see Methods) to answer
these questions.

First, we analyzed the relationship between the LPP
and RT, accounting for the contribution from stimulus
ambiguity. In the emotion judgment task (experiment 5),
we found that in the full model, LPP amplitude could
predict RT with a significant regression coefficient (slope;
� � �4.72, p � 0.001), and similarly for ambiguity level (�
� 66.28, p � 0.001) and intercept (� � 855.5, p � 0.001).
Importantly, the full model with the fixed effect of LPP
significantly outperformed the null model (	2(5) � 57.69, p
� 0.001). These results suggested that the variance of RT
could be well explained by the variance of LPP amplitude,
even when the contribution of stimulus ambiguity was
regressed out. Notably, similar results were found for the
anger-disgust judgment (experiment 2; 	2(5) � 5.06, p �
0.024) and cat-dog judgment (experiment 3; 	2(5) � 5.46,
p � 0.019) tasks, confirming the generality of the LPP in
coding perceptual ambiguity. We also found that the RT
could be explained by the LPP in the gender judgment
(experiment 4; 	2(5) � 40.1, p � 0.001) and wealth judg-
ment (experiment 6; 	2(5) � 32.2, p � 0.001) tasks.

Second, we built a regression model to explain the
variance in confidence rating. In the emotion judgment
task, we found that the LPP amplitude could well predict
confidence rating (	2(5) � 25.6, p � 0.001), even when the
contribution of stimulus ambiguity was regressed out.
Similar results were also found for the gender judgment
(	2(5) � 7.65, p � 0.005) and wealth judgment (	2(5) �
5.63, p � 0.017) tasks.

Finally, we built a logistic regression model to predict
behavioral choice (e.g., judgments of fear or happy in
experiment 1). We found that the LPP amplitude could not
predict behavioral choice for the emotion judgment task
(� � 0.0009, p � 0.82). Consistent with the generality of
the LPP in coding stimulus-driven ambiguity, we found
that the LPP could not predict behavioral choice for the
anger-disgust judgment task (� � 0.0074, p � 0.23) or
cat-dog judgment task (� � 0.0071, p � 0.26) either.
However, the LPP could predict behavioral choice for the
wealth judgment task (� � 0.014, p � 0.001), but not
gender judgment task (� � �0.0017, p � 0.68).

Altogether, we found that independent of stimulus
ambiguity, the LPP was strongly coupled with response
latency and confidence, two variables directly associ-
ated with perceptual ambiguity, but not behavioral
choice, which was not directly related to perceptual
ambiguity. Our results have therefore revealed a func-
tional role of the LPP: it encodes decisions under per-
ceptual ambiguity.
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Direct behavioral ratings of stimulus ambiguity and
judgment difficulty confirmed our results

The levels of subjective ambiguity in stimulus and task
in the above results were inferred from behavioral judg-
ments, RTs, and confidence ratings. To further confirm
our results, we next directly acquired subjective ratings
for stimulus-driven ambiguity under each task instruction
(see Fig. 4 legend for each rating question). Twenty-one
subjects (16 female, 19.7 � 1.59 years) rated the ambi-
guity of stimulus from the emotion judgment task (exper-
iments 1 and 5) on a 1–10 scale. Indeed, anchor faces
were rated the least ambiguous, whereas faces of high
ambiguity were rated the most ambiguous (Fig. 4B; an-
chor, 3.05 � 1.31; intermediate, 4.14 � 1.34; high, 4.59 �
1.30; one-way repeated-measure ANOVA of ambiguity
levels, F(2,40) � 40.8, p � 0.001, �p

2 � 0.67). Further-
more, the same subjects also rated the ambiguity in judg-
ing each stimulus for the gender judgment task (Fig. 4A;
F(2,40) � 4.68, p � 0.015, �p

2 � 0.19) and wealth judg-
ment task (Fig. 4C; F(2,40) � 6.30, p � 0.01, �p

2 � 0.24).
Overall, the gender judgment task was rated the least
ambiguous, whereas the wealth judgment task was rated
the most ambiguous (Fig. 4D; gender, 2.57 � 0.91; emo-
tion, 3.93 � 1.23; wealth, 5.45 � 1.88; p � 1.63 � 10�7).
Notably, compared with the emotion judgment task (Fig.
4B), the difference between ambiguity levels (Fig. 4E) was
smaller in the gender judgment task (Fig. 4A) and the

wealth judgment task (Fig. 4C), suggesting that subjects
were less sensitive to stimulus ambiguity in these two
tasks.

In addition, we asked the same subjects to rate the
difficulty in judging the stimulus on a 1–10 scale, which
mirrored the ambiguity ratings (Fig. 4F–J): faces of high
ambiguity were rated the most difficult to judge (Fig. 4G;
anchor, 3.32 � 1.58; intermediate, 4.28 � 1.40; high, 4.77
� 1.59; one-way repeated-measure ANOVA of ambiguity
levels, F(2,40) � 18.5, p � 0.001, �p

2 � 0.48), and the
wealth judgment task was rated the most difficult to per-
form (Fig. 4I; gender, 2.43 � 1.02; emotion, 4.13 � 1.39;
wealth, 5.45 � 1.74; p � 0.001). Again, the difference in
rating between ambiguity levels (Fig. 4J) was smaller in
the gender judgment (Fig. 4F; F(2,40) � 1.39, p � 0.26,
�p

2 � 0.065) and wealth judgment (Fig. 4H; F(2,40) �
8.11, p � 0.003, �p

2 � 0.30) tasks.
Finally, we found that the ratings between stimulus

ambiguity and judgment difficulty were highly correlated
(gender, r � 0.75, p � 0.001; emotion, r � 0.86, p �
0.001; wealth, r � 0.92, p � 0.001), confirming that the
more ambiguous stimuli were more difficult to judge (see
Discussion).

In conclusion, direct behavioral ratings confirmed that
our stimuli showed the anticipated subjective ambiguity,
supporting the above behavioral and neurophysiological
results.
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Fig. 4. Direct behavioral ratings of stimulus ambiguity and judgment difficulty. A–E, Ratings of stimulus ambiguity. Twenty-one raters
rated the ambiguity of stimulus on a 1–10 scale. A, Gender judgment task. For each stimulus, raters were asked, “how ambiguous
is it to judge the gender of this face model?” We first averaged across stimuli for each ambiguity level within each subject and then
averaged across subjects. Error bars denote one SEM across raters. B, Emotion judgment task. Raters were asked, “how ambiguous
is it to judge the emotion of this face model?” C, Wealth judgment task. Raters were asked, “how ambiguous is it to judge the wealth
of this face model?” D, Mean ratings across tasks. E, Difference in ratings between anchor and high-ambiguity stimuli. F–J, Ratings
of judgment difficulty. The same raters rated the judgment difficulty on a 1–10 scale. F, Gender judgment task. Raters were asked,
“how difficult is it to judge the gender of this face model?” G, Emotion judgment task. Raters were asked, “how difficult is it to judge
the emotion of this face model?” H, Wealth judgment task. Raters were asked, “how difficult is it to judge the wealth of this face
model?” I, Mean ratings across tasks. J, Difference in ratings between anchor and high ambiguity stimuli. Paired t test between
adjacent levels of ambiguity: �, p � 0.1; �, p � 0.05; ��, p � 0.01; ���, p � 0.001; n.s., not significant.
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Eye movement analysis did not reveal difference
across ambiguity levels

Could perceptual ambiguity lead to different fixation
patterns on faces? To answer this question, we con-
ducted an eye-tracking study with 24 subjects in experi-
ment 1. We found indistinguishable fixation densities
across ambiguity levels (Fig. 5A), in which subjects were
equally likely to fixate the eye (Fig. 5B; one-way repeated-
measure ANOVA of ambiguity levels, p � 0.91), mouth (p
� 0.62), and center ROIs (p � 0.95), suggesting that
subjects viewed faces similarly regardless of the ambigu-
ity in faces. Furthermore, in each ROI, we found remark-
ably similar total fixation duration (Fig. 5C), percentage of
the number of fixations (Fig. 5D), mean fixation duration
(Fig. 5E), as well as latency to first fixate onto an ROI (Fig.
5F), across ambiguity levels (all p � 0.05). In conclusion,
our eye tracking results showed that perceptual ambiguity
did not bias eye movements, an important issue to con-
sider, since it is well known that EEG data are prominently
contaminated by potentials arising from the extraocular
muscles. The similar strategy in viewing faces with differ-
ent levels of ambiguity was expected, because our faces
were presented briefly and preceded by a central fixation
cross; however, these results argued that our behavioral
and neurophysiological findings could not be attributed to
differences in eye movements.

Discussion
In this study, we investigated how the LPP was modu-

lated by different types of perceptual stimuli and levels of
ambiguity in task instructions. We found that the LPP
encoded perceptual ambiguity of not only faces with
different types morphed emotions, but also morphed an-
imals, suggesting that the LPP encodes general percep-

tual ambiguity. On the other hand, using levels of
ambiguity in task instructions, we found that the LPP was
modulated by task instructions and had the maximal
response when the dimension of stimulus ambiguity
matched the task instruction. We further elucidated the
relationship between stimulus ambiguity, behavioral re-
sponse, and the LPP, and we found that the LPP was
specifically associated with response latency and con-
fidence rating. Finally, direct behavioral ratings of stim-
ulus and task ambiguity confirmed our results, and we
showed that our neurophysiological findings could not
be explained by differences in eye movements. Taken
together, our findings show that the LPP encodes de-
cisions under perceptual ambiguity in a general fashion,
but is subject to whether the task involves ambiguity in
judgment.

A large literature shows that the LPP is modulated by
emotional intensity and arousal and thus reflects an en-
hanced perception of emotional stimuli (Cuthbert et al.,
2000; Schupp et al., 2000; Sabatinelli et al., 2007; Leite
et al., 2012). However, recent studies show that the LPP
encodes decisions by integrating sensory evidence and
determining actions through a boundary-crossing crite-
rion, similarly across multiple different tasks (O’Connell
et al., 2012; Kelly and O’Connell, 2013; Murphy et al.,
2015). Our previous findings have provided further spec-
ificity and mechanistic insight: the LPP not only differen-
tiates levels of ambiguity, but is specifically associated
with behavioral responses to ambiguous stimuli (not mere
perception of ambiguous stimuli) and emerges only in the
context of ambiguous stimuli (not when unambiguous
stimuli are present alone; Sun et al., 2017). This prior
study also suggested that the LPP originates from multi-

Fig. 5. Eye movement comparisons across ambiguity levels in experiment 1. A, Fixation density maps to quantify eye movements for
each ambiguity level. Each map shows the probability of fixating a given location within a 1-s period after stimulus onset. The scale
bar (color bar) is common for all plots (arbitrary units). The ROIs (eye, mouth, center) used for analysis are shown in red (not shown
to subjects). B, Percentage of fixation density in each ROI. C, Total fixation duration in each ROI. D, Percentage of the number of
fixations in each ROI. E, Average fixation duration in each ROI. F, Latency of the first fixation onto each ROI. Error bars denote one
SEM across subjects.
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ple loci in cingulate cortex using source modeling and
functional MRI–guided ERP source prediction.

In the present study, we further established the gener-
ality of the LPP: the LPP encodes perceptual ambiguity of
not only faces, but also animals. Our findings are consis-
tent with several studies showing that the LPP can differ-
entiate racially ambiguous faces (Willadsen-Jensen and
Ito, 2006), ambiguous smiles (Calvo et al., 2013), and
inconsistency of traits (Cacioppo et al., 1994). In particu-
lar, consistent with the present study, the LPP exhibits the
same decision-predictive dynamics regardless of sensory
modality (e.g., visual and auditory) and stimulus features
(O’Connell et al., 2012), and it processes both real and
fictive feedback in an instrumental learning task (Fischer
and Ullsperger, 2013). Importantly, our results extended
to affective stimuli beyond the simple sensory stimuli and
suggested a general neural signature for perceptual am-
biguity. A limitation of the present study is that all our
perceptual decisions are still relatively simple; future stud-
ies will be needed to investigate whether our results can
be extended to more complex decisions. Although our
current results only speak to the ambiguity in the percep-
tual domain, it is an important future direction to investi-
gate whether the same neural signature can encode
ambiguity in economic decision-making, moral judgment,
as well as other more complex settings.

It is worth noting that the terminology “ambiguity” in the
perceptual domain refers to the categorical ambiguity
(i.e., the uncertainty) of a stimulus belonging to one of two
categories, with no missing information of a stimulus [see
Sterzer and Kleinschmidt (2007) for a classic example of
perceptual ambiguity that shares the same meaning of
ambiguity as ours], whereas the term “ambiguity” in eco-
nomic decision-making refers to the situation where the
probability distribution itself is unknown (under risk, the
probabilities of different outcomes can be estimated;
whereas under ambiguity, even these probabilities are not
known). Although it has been argued that individuals’
preferences for risk and ambiguity in economic decision-
making are associated with different neural substrates,
i.e., decision-making under ambiguity does not represent
a special, more complex case of risky decision-making
(Huettel et al., 2006; Krain et al., 2006), the LPP elicited in
risky conditions (probabilities available) is found to be
significantly greater than that in ambiguous conditions
(probabilities unknown; Wang et al., 2015).

Judging perceptually ambiguous stimuli involves multi-
ple processes, including but not limited to stimulus rep-
resentation, decision-making, and motor output, and it is
naturally associated with task difficulty, attention, conflict
detection, and mental effort to resolve conflicts. To further
dissociate these cognitive processes and provide a more
specific functional role of the LPP, we conducted single-
trial correlation analyses and regression analyses. We
found that the LPP was strongly coupled with response
latency and confidence and could well predict response
latency and confidence. Notably, this was the case even
when stimulus ambiguity was regressed out, suggesting
that the LPP was associated with decisions but not stim-
ulus representation. This is in line with previous reports

(O’Connell et al., 2012; Sun et al., 2017), but we here
extended the findings using a variety of perceptually am-
biguous stimuli. Therefore, our present results have pro-
vided not only a further link between stimulus ambiguity,
behavioral response, and the LPP, but also a more spe-
cific functional role of the LPP: this general ambiguity
signature reflects decisions and responses when encod-
ing various perceptual ambiguity. This ambiguity signa-
ture may thus index the difficulty in forming judgment and
the mental effort to resolve conflict, but not merely rep-
resentation of stimulus ambiguity or conflict detection.
Moreover, this ambiguity signature may play an important
role in generating the RT and confidence rating as we
observed, consistent the origin of the LPP from the cin-
gulate cortex (Yoder and Decety, 2014; Sun et al., 2017),
which plays a critical role in cognitive control, detecting
performance errors, and conflict monitoring (Cole et al.,
2009; Alexander and Brown, 2010; Shackman et al., 2011;
Sheth et al., 2012; Shenhav et al., 2013). Finally, ambiguity
and confidence are two closely related variables that
signal meta-information about decisions: ambiguity is
based on the objective discriminability of the stimulus
whereas confidence is based on the subjective judgment
of the discriminability. Therefore, it is likely that the LPP is
a general ambiguity signal that provides the underlying
information necessary to judge the confidence in deci-
sions, consistent with the idea that confidence judgment
is a direct consequence of assessment of uncertainty
(Kepecs and Mainen, 2012).

It is worth noting that task difficulty, attention, and RT
are all intercorrelated to some extent, and examining
unease/anxiety caused by ambiguity in decisions will be a
clear future direction. However, our data argued against a
simple role of attention because the stimulus should be
equally attended when asking for a judgment of it; in
particular, we observed similar results for a variety of
stimuli across experiments. It has been shown that a
larger LPP is associated with a shorter RT and thus an
easier task, suggesting that the LPP reflects task difficulty
(Kelly and O’Connell, 2013). When stimulus ambiguity was
task relevant, we observed a similar coupling between the
LPP and RT, which in turn indicated that the LPP reflected
decision conflicts and mental effort to resolve such con-
flicts. Notably, however, our experiments using identical
stimuli but task instructions with different levels of ambi-
guity showed that although RT became longer with in-
creasing task difficulty (Fig. 3R; also see direct ratings of
task difficulty in Fig. 4E–H), the LPP did not decrease as a
function of increasing task difficulty (Fig. 3T, U), suggest-
ing that the LPP does not play a simple role in encoding
task difficulty associated with ambiguity and attention
thereof.

One important aspect of the present study is to inves-
tigate context dependence of the LPP in coding percep-
tual ambiguity. We showed that the LPP was modulated
by task instructions and responded more strongly when
the task was ambiguous in nature, demonstrating the
dependence of the LPP on the context (e.g., task to
perform) and the interaction between stimulus ambiguity
and task ambiguity. This is consistent with our previous
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finding that the LPP is generated only when the decisions
involve choices about perceptual categories that are am-
biguous, but not for choices involving the same stimuli
but on a dimension that is unambiguous (e.g., judging
whether the stimulus in experiments 2 and 3 is a face or
animal; Sun et al., 2017). Furthermore, as shown above,
using task instructions with different levels of ambiguity
revealed a dissociation between the LPP’s role in coding
stimulus-driven and task-driven ambiguity and task diffi-
culty, and the coupling between the LPP and RT was also
dependent on task instructions.

Uncertainty is critical in how stimulus information guides
choice, and optimal decision-making requires continuous
processing of ambiguity and uncertainty. Primate electro-
physiology and human functional neuroimaging have re-
vealed a distributed neural network encoding ambiguity
and uncertainty, including the amygdala (Brand et al.,
2007; Herry et al., 2007; Belova et al., 2008; Bermudez
and Schultz, 2010; Wang et al., 2017), dopamine neurons
of the ventral midbrain (Fiorillo et al., 2003), and the medial
prefrontal cortex (Jenkins and Mitchell, 2010; Levy et al.,
2010). In particular, prior studies have suggested that the
LPP arises from brain regions including the dACC, vACC,
PCC, and insula (Liu et al., 2012; Peng et al., 2012; Yoder
and Decety, 2014; Sun et al., 2017; also see Weinberg
et al., 2013). Human neuroimaging studies further sup-
ported these regions in ambiguity coding: ambiguous
emotional faces relative to unambiguous emotional faces
activate regions including the dACC, dlPFC, and IPL (Sim-
mons et al., 2006); contrast between ambiguous and
clear facial expressions induces activation in the dACC,
dmPFC and IFG (Nomura et al., 2003); the vACC inte-
grates confidence in judgment (De Martino et al., 2013;
Lebreton et al., 2015); and intolerance of emotion ambi-
guity correlates with insula activation (Simmons et al.,
2008). Together, these findings suggest that our brain has
specific neural systems that process ambiguity and un-
certainty. Our present results further reveal a common
neural signature that encodes the general perceptual am-
biguity and uncertainty and represent an important first
step toward a neural explanation for complex human
perceptual decision-making.
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