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 Particulate metal matrix composites (MMC) exhibit higher stiffness, strength and wear 

resistance compared to metal alloys. They exhibit superior compressive and buckling 

strength because of their higher plastic modulus. MMC’s can operate at very higher 

temperatures than fiber-reinforced polymer composites. Their isotropic behavior and 

forming ability by conventional methods makes them a better choice for low-cost 

applications. They have good thermal conductivity, high electrical conductivity and low 

thermal expansion. 

 

The main objective of this study is to predict numerically the stress distributions around 

the hole in a bolted joint made of particulate metal matrix composite and to investigate 

the associated load transfer efficiencies both for a single and double lap bolted joints. A 

three dimensional Finite Element parametric model has been developed to study the 

effects of various design parameters on the structural performance of such joints. 

 

Single lap bolted joints experience bending when tension load is applied to the joint 

because of the unsymmetrical configuration of the joint. This effect is reduced in double 

lap bolted joints due to their symmetry. This research quantifies the relationship between 

the stress around the hole in bolted joints and the washer diameter, bolt diameter, 

tightening pressure, and the clearance between the hole and the bolt. It has also been 

observed that variations in Young’s Modulus have no insignificant effect on the stress 

concentration around the hole.  
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CHAPTER ONE 

 
INTRODUCTION 

 
 

 
1.1 Background 
 
 
Structural joints are essential, critical elements, whose function is to transfer loads across 

different sections or components of a structural assembly. Optimal design of such joints 

improves the performance and structural integrity and minimizes the weight of the 

structures, leading directly to increases in their load-carrying capability. Mechanically 

fastened joints are frequently used in many structures, and their design is of great 

importance for weight savings and failure prevention. 

 

Composite materials offer the potential for reducing the number of individual parts and 

joints in a structure because they are suitable for net-shape manufacturing and thus allow 

large one-piece components to replace multipart assemblies. The long term strength of 

mechanically fastened joints is dependent on the fastening, clamping forces, the material 

properties of the adherands, including possible viscoelastic behavior when they are made 

of polymer matrix composite. The load applied to a composite is transferred from the 

matrix to the fibers by means of shear stress acting on the fiber surface. Therefore, it is 

important to achieve large overall contact surface between the matrix and the 

reinforcement as compared with the cross-sectional area of the fibers. The matrix in the 

fiber reinforced composite binds the fibers to create an engineering material and increases 
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the toughness of the system. It governs, usually, the material properties transverse to fiber 

direction.  

 

Minimum weight design for given loading scenarios of a structural part made of 

composite materials requires special design criteria that account for the anisotropic 

behavior of composites. Similarly, in joining techniques, the anisotropic nature of these 

materials must be taken into consideration properly in order to achieve structural 

efficiency and safety. This observation is particularly important given the fact that 

structural failures usually originate at joints. In general joints may be designed by using 

either adhesive bonding or mechanical fastening, but maximum joint efficiency in terms 

of the load transfer capability throughout the joint, is obtained when bonding is used as 

the joining technique.  Bolted joints are preferred however, over other techniques, since 

they permit disassembly and manufacturing requirements. Since the joints are critical 

elements in any structure, careful design and analysis are required during development of 

joining concept to maintain an acceptable level of structural efficiency and integrity. The 

anisotropic and non-homogeneous nature of composite materials makes the analysis of 

bolted joints a challenging technical problem whose solution is both more difficult and 

more critical, than in the case of conventional metallic joints. Moreover, some 

composites exhibit brittle elastic behavior, which may result in premature catastrophic 

joint failures unless considerable care is taken during design.  

 

The inhomogeneous nature of fiber composites leads to non-uniform stress levels within 

the material. High local stresses are generated at the interfaces between different 
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constituents, at the edges of loaded holes, around voids and local defects, thus possibly 

leading to structural failure, usually in the form fiber-matrix debonding and 

delaminations. High stress concentrations arise at locations of discontinuities and lead, 

consequently to the initiation of fatigue damage and ultimate failure. Both polymeric and 

metallic composite materials undergo fatigue failure that usually is caused by the 

initiation and incremental growth of cracks under respective cycles of mechanical or 

thermal loading. Structural joints between members made of fiber reinforced composites 

may exhibit multiple failure modes, like shear-out, delamination, or bending, which are 

not yet fully understood. Particulate reinforced composites, where the reinforcing 

elements are particles, whiskers or chopped fibers are extensively used today for 

lightweight, high-performance components in the aerospace, and more recently the 

automotive industries. Particulate metal matrix composites in particular have high 

stiffness, good strength, and low density and may be modeled as isotropic materials for 

the purpose of design and analysis. Structural joints made of MMC materials with 

ceramic reinforcing particles may exhibit different failure modes than those experienced 

by fiber reinforced composite materials, or metal alloys. The main concern associated 

with particulate MMC’s is their high brittleness and non-homogeneous micro-structure, 

that may cause high stress concentrations and catastrophic crack propagations, when they 

are subjected to hole drilling and fastening in bolted joints.  

 
 
1.2 Research objectives 
 

The main objective of this study is to predict numerically the stress distribution around 

the holes drilled in particulate composite materials and investigate the load transfer 
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efficiencies through single and double lap bolted joints between structural components 

made of metal matrix composite or conventional metal alloys such as aluminum and 

steel.  

 

1.3 Research Methodology 
 

A detailed three-dimensional finite element model (FEM) has been developed for single 

and double lap joints. Its main feature is an accurate, 3D modeling of the contact 

interfaces between the connected parts as well as between the hole and the bolt surfaces.  

 

 The results of the model are validated versus predictions of a closed form solution for a 

simple problem of determining the stress concentrations around a circular hole. 

Subsequently, a parametric study has been conducted to investigate the effects of 

Young’s Modulus, as well as the size of the bolt and the washer on the stress fields 

developed around the hole. 

 

1.4 Thesis Organization. 
 

A major intention of this work is to advance the current body of knowledge concerning 

the influence of design and fabrication parameters on the stress fields development 

around the holes in bolted joints. To attain this goal, each of the following chapters 

represents one building block that establishes a foundation for subsequent chapters. 
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A general literature review is provided in Chapter 2. It presents various analytical and 

finite element analysis methods, as they are applied to model and understand the 3D 

stress fields around holes in loaded bolted joints. Chapter 3 provides a brief description of 

the finite element model developed in this study to evaluate the various configurations of 

bolted joints. Chapter 4 details the stress distributions around the holes in single lap 

joints. Chapter 5 presents the stress distributions around the holes in double lap bolted 

joints. Finally, Chapter 6 presents and discusses the results obtained for predictions and 

tradeoffs of main structural performance characteristics in bolted joints.  
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CHAPTER TWO 
 

  LITERATURE REVIEW 
 
 

2.1 Research Survey 
 
Extensive research has been conducted to study the bolted joints. This chapter is intended 

to review the past analyses of the fundamental joint configurations like bolted joints. 

Many finite element analyses and experimental work conducted on bolted joints are 

available in literature review. 

 

Winter (1956) tested bolted connections covering variables such as bolt diameter, sheet 

thickness, mechanical properties of sheet and bolt steels, edge distance etc. All the tests 

were made on Baldwin Southwark hydraulic testing machine of four load ranges. A 

connection slip was attached to the upper half of the connection and the other to the lower 

half. It measures autographically by means of special adapter arms. Four types of failures 

were observed. 

i) Type I Longitudinal Shearing 
 

This failure suggests that the applied force is restricted along the two failure 

planes by the two shear forces whose magnitude is related to end-distance e. A better 

correlation was obtained with the yield stress σy than with the tensile strength σt. It 

was observed that the test results group around a straight line. 

    e
t

P

y

f 40.1=
σ

 

     Normal shear stress in the sheet at failure in the two failure planes is  
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                              y
f

s te
P

στ 70.0
2

==  

   These two equations are valid only when e/d does not exceed 3.5. 

 

ii) Type II Oblique Shearing-tearing 

                 When edge distances exceed e = 3.5d, the appearance of the failure tended to 

change from Type I to Type II and some of the specimens tended to fail at loads below 

the above mentioned equations upto about e/d = 3.5, as e/d increases, the bearing stress 

ratio also increases.  

                           
d
e

y

b 4.1=
σ
σ

 

For ratios e/d exceeding 3.5, the bearing stress  

                        σb = 4.9 σy 

 

iii) Type III Transverse Tearing 

                  For this type of failure, yield stress σy is considered. The failure stress follows 

the equation  

                ttnet s
d σσσ ≤






 += 0.310.0  

It is observed that failure load is reached when maximum localized stress becomes equal 

to σt, effective stress concentration factor k can be written as  

                       

s
d

k
net

t

0.310.0

1

+
==

σ
σ  

iv) Type IV Bolt shear 
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            Failure occurs in the threaded length through the root areas, hence τb is failure 

load divided by the root area. 

                     τb = 0.10 σtb 

In black-bolt, hand tight connections, slip into bearing at or below design loads 

cannot be prevented with oversize holes. In many of these connections, at ultimate 

load deformation can be very large. 

 

Cope et al (2000) developed a methodology to efficiently depict mechanical fasteners in 

lap joints using finite elements. For highly refined fastener models and for idealized 

spring element representations of fasteners, the fastener materials are determined based 

on an empirical force-displacement relationship. A simple lap joint with three rows of 

mechanical fasteners were modeled using different combinations of explicit and spring 

element representations of fasteners. The main objective of this study was to determine 

the appropriate level of model refinement that is necessary for accurate SIF solutions for 

cracks emanating from fastener holes. FRANC 2D/L (Fracture Analysis Code 2-

Dimensional / Layered) is used in this study. The combinations of explicit and spring 

element representations of fasteners may be used to develop efficient lap joint model with 

the essential features of the deformation and the load transfer within the joint being 

retained. 

 

Lehnoff et al. (1998) performed axisymmetric finite element analysis on bolted joints            

to determine the effects of threads on the bolt and member stiffness. The member 

stiffness decreases for different bolt diameters as the magnitude of external load 



 9

increases. The research in this paper includes both the thread geometry of the bolt and 

friction. The purpose of this analysis was to determine how the bolt stiffness change as 

the external load increases. The bolt stiffness decreases as the thickness of the top 

member increases from 12mm to 20mm. The relationship between member stiffness and 

external load for steel, aluminum, cast iron and aluminum/cast iron members’ material 

combination was that the member stiffness decreases as the magnitude of external load 

increases for all. When the thread geometry was included, there were significant 

differences in bolt and member stiffness. Increase in member stiffness was observed due 

to the decrease in the initial member deflection when the bolt preload was applied.  

 

Mouritz (1993) examined the plastic deformation and failure behavior of mild steel bolts 

subjected to tensile loads exerted at strain rates ranging from about 10-5 and 102 s-1. Three 

experimental techniques were used to generate different strain rates. The tests include 

tensile testing, impact testing and underwater explosion shock testing. The results for 

deformation and failure behavior of threads tested under the three techniques showed 

similar trend. A relatively large difference in the load bearing capacities was found in the 

measurements of the breaking strength of the shank and the threads. When loaded in 

tension, the threads were significantly weaker than the shank, stating that when bolts 

were used in structures, their ultimate strength is determined by the failure loads of the 

threads. As the strain rate increases, the relative strength of thread as compared to shank 

decreases. About 30% elongation of bolt shanks was observed before failing when loaded 

using these test techniques. This suggests that the strain rates do not influence the plastic 

deformation behavior of the shank. The failure strength of the threads has to be 



 10

considered when designing the load bearing capacity of bolted joints, which was 

significantly weaker than the shank 

 

Menzemer et al (1999) considered shear failure of aluminum connecting elements. An 

experimental and analytical program was employed to study the block shear failure of 

aluminum connecting elements. A study was conducted on extrinsic parameters such as 

specimen geometry to include variation in joint length, fastener gage spacing and 

specimen orientation. Gage for this specimen refers to the distance between the fastener 

lines. Four different specimen configurations or types were examined. During the early 

stages of testing, the load-displacement curve showed a progressive increase in slope. 

Such behavior is due to the removal of slack from the load train coupled with a gradual 

slip into bearing. A linear load-displacement region was revealed by majority of test 

records upon the removal of the initial load, followed by strain hardening into plastic 

domain. Majority of test specimens exhibited gradual decrease in load once the ultimate 

load has been reached. Yielding occurs in a gradual manner similar to stress-strain curve 

in a uniaxial tension test. It can be concluded that larger gage spacing results in enhanced 

deformation in the specimen. Increased gage spacing provides greater tensile ligament 

area and sufficient shear along the bolt line. Block shear failure is the potential limit for 

connection plates having mechanical fasteners. The average shear stress is dependent on 

the length of the connection. Total joint capacity increases with an increase in connection 

length. When tensile stresses between the upper most rows of bolt reach a point, the 

failure or rupture of the ligament between the fastener holes is reached. Samples from the 

deformed and failed surfaces were examined in JEOL scanning electronic microscope. 
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The surface reveals clear evidence of elongated dimples and localized shearing. A large 

number of voids of varying size were found distributed randomly through the fracture 

surface. The presence of numerous voids, of varying size, and shallow dimples on the 

fracture surfaces suggests the existence of locally ductile mechanisms. For a bolted joint, 

the efficiency of the joint loaded in shear decreases with an increase in the connection 

length. The effective stress varies between ultimate strength and yield strength in shear 

and is expressed as  

                 

                         ( )yuyeff CI σσσσ −+= **6.0*6.0  

 

where  σeff  is the effective stress in shear, σy is the material yield strength, σu  is the 

material ultimate strength, and CI is the connection length factor.  

The connection length factor becomes equal to zero and/or the effective stress equals the 

yield strength in shear at some joint length. For joints longer than the critical length, the 

average shear stress would fall below the yield stress. The shear stress would approach 

the ultimate tensile strength for very short joints. 

 

Shankar et al. (2002) investigated the effect of oily film corrosion-prevention compounds 

on the fatigue behavior of aluminum alloy 7075-T6 mechanically fastened joints. Double 

lap joints with a single bolt fastener were tested under constant-amplitude fatigue loading 

with and without treatment with lubricative corrosion prevention compound. The final 

fracture occurred in the middle plate for all the specimens or in the vicinity of the reduced 

section at the fastener hole. Bearing mode failure initiates at the bore of the hole and 
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spreads diametrically across the fastener hole while fretting mode failure initiates from 

flaws created by fretting damage on the surface of the middle plate. Increasing the 

clamping force shifts the fracture line away from the centerline of the fastener hole 

towards the loaded end of the middle plate. For each load case and surface condition, 

higher lives were recorded for specimens that failed in fretting mode than those failed in 

the bearing mode. This is due to the fact that the bearing failure occurs at the edge of the 

fastener hole, where the stress concentrations are high, while fretting mode failures occur 

away from the edge of the hole, wherein stress concentrations are much lower. Increasing 

clamping force reduces the bearing stresses and the stress intensities at the two locations 

become comparable, shifting the failure from one mode to another. At certain levels of 

friction load transfer ratio, all failure occurs in bearing mode, while at higher values of 

friction force, the failure occurs in fretting mode. The transition between bearing and 

failure modes occurs at the same load transfer ratio for both the specimens.  The 

application of CPC has no effect on the fatigue life for joints that fail in bearing mode as 

long as the maximum friction force is maintained. At higher values of friction force, the 

application of CPC increases the fatigue life for specimens that fail in fretting mode. 

 

Failure usually initiates at the first root of the bolt thread in a bolted joint. In this paper, 

Fukuoka et al  (1998) analyzed the mechanical behaviors of bolted joints in various 

clamping configurations using FEM as multi-body elastic contact problem, and the 

effects of nominal diameter, friction and pitch error upon stress concentrations were 

evaluated for through bolts, studs and tap bolts. The stress concentration at the thread root 

becomes remarkable with increase of µ. On the contrary, under the bolt head subjected to 
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pure tension, it is observed that as µ increases, the stress concentration factor decreases. 

This opposing phenomenon on the stress concentrations occurring under the bolt head 

and at thread root may be explained due to difference in the sliding directions of these 

two regions, i.e., the bolt thread slides relatively inwards, while the bolt head expands 

outwards. In the tap bolt head, the stress concentration under the bolt head increase with 

smaller radial coefficient of friction and larger circumferential coefficient. Mechanical 

behavior of studs is not sensitive to friction on the contact surface compared with through 

bolts. Due to imperfect geometry induced by low accuracy in machining, high stress 

concentration factor is likely to occur at the thread roots located in the rear of the bolt 

hole. Recessed internal threads are effective for reducing high stress concentrations. In 

the loosening process, the magnitude of the bottoming torque should be more than half 

the tightening torque in order to restrict the rotation of a bottoming stud. 

 

Gerbert et al (1993) investigated external loaded bolted joints of different designs. The 

predicted mounting stiffness of the bolt and abutment was substantially higher than the 

bolt load. A load application factor was introduced in VDI 2230 and a new fraction was 

determined which was much lower than the existing ones. The application factor was 

independent of the location of the external load in practical design but it was influenced 

by the layout of the bolt joint. 

 

Jung et al (2000) investigated the fatigue life prediction of SUS304 stainless steel with 

bolted joints using fatigue modulus concept. A modified fatigue life prediction equation 

as an exponential function of fatigue modulus, fatigue cycle and load transfer level was 
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derived to consider the relaxation of stress concentration due to fasteners. The main 

objective of this study was to characterize the fatigue behavior of mechanically fastened 

joints, identifying the relaxation of stress concentration and the effect of clamping force 

on the fatigue strength. Fatigue tests were conducted for plate-type specimens with bolted 

holes and finite element model was used to observe the stress concentration near bolts. 

The extension of fatigue life is obtained due to relaxation of stress concentration due to 

fasteners. The gradient of the stress distribution was affected nonlinearly by the clamping 

force. The predicted life was close to the test data, this shows that the constants of fatigue 

modulus degradation model contain geometry data representing notch effects. 

 

Pratt et al (2002) developed nonlinear Finite element models to predict the load-

elongation behavior of single- and dual-bolted conical-head bolted lap joints. This 

research shows that the test specimen results of conical-head bolts, the dual-fastener, and 

the axisymmetric underestimate those of the single-fastener joints upto 17% in thick 

panels. This underestimation of joint strength results in overly conservative joint designs 

with corresponding excess weight and cost. The load elongation trace was used to 

determine the joints stiffness and joint yield strength. “The joint yield strength is defined 

as the load at which a line, offset from the origin by 4% of the fastener hole size and 

having slope equal to the joint stiffness, intersects the load-elongation trace”[14]. The 

area under the load-elongation trace, or deformation energy, provides a direct measure of 

resistance to joint elongation. A nonlinear finite-element code NIKE3D was used to 

develop the models. A bilinear elastic-plastic material model was used. The effective 

coefficient of friction µ for subsurface shear is given by  
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P
A

0τµ =  

 
where P = normal force and A = contact area. 

The fastener-to-panel friction coefficient and the residual fastener clamp are useful in 

predicting the slip resistance of experimental test specimens. The dual-fastener results 

were halved to enable a comparison with single-fastener specimen results. The dual 

fastener results underestimate the yield strength of the single-fastener joint by up to 10% 

in thick panels. The slip resistance of the single-fastener lap joint was up to 17% higher 

than the thicker panels than that predicted with the dual-fastener test results. The 

experimental data was substantiated with finite-element analyses.  The model load-

elongation predictions were in excellent agreement with experimental test data. 

 

Lehnhoff et al (1996) performed axisymmetric finite element modeling of bolted joints to 

show the effects of the magnitude as well as the radial location of the externally applied 

load on the member separation radius and the stress on the surface between the two 

members. Separation of the members at a certain radial distance is a phenomenon that 

can be detrimental to maintaining a sealed joint. The member separation is caused by the 

compression of the connected members in the near vicinity of the bolt. Thus, controlling 

this tendency for the members to separate by proper spacing of bolts in joint group can 

help to prevent leakage. The separation radius is the point where the two members 

separate due to loading. The separation radius is a function of bolt size, external load 

magnitude and location, and connected material thickness ratio. Larger bolts have larger 

separation radii. This is due to the larger contact area between the bolt head and the 

member.  The separation was found to be nonlinearly related to changes in the magnitude 
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as well as position of the external load. A 27 percent decrease for 24mm bolts to 39-

percent decrease for 8mm bolts in the separation radius resulted with changes in the load 

magnitude. The external load varied from zero to the maximum that could be sustained 

before the joint separation for steel members. The change in separation radius for the 

aluminum members, cast iron members, and a combination of the two materials was on 

the order of 2-10 percent. Changes in the stress on the surface between the members 

occurred with changes in magnitude as well as radial position of the external load. The 

stress was found to be higher near the bolt for larger external loads and also when the 

radial location of the external load was increased. 

 

A three dimensional finite element model of composite joints was developed by Ireman 

(1998) to determine non-uniform stress distributions through the thickness of composite 

laminate in the vicinity of the bolt hole. The objective of the study was to develop a 

three-dimensional FE model of an isolated region of the joint. The model was validated 

against experimental strain and deformation measurements. A number of joint 

configurations including variations of many significant joint parameters like laminate 

layup, bolt diameter, bolt type, bolt pre-tension and lateral support condition were 

studied. The FE models were created with IDEAS [12] and the analysis was carried out 

with ABAQUS [7]. The specimens used were quasi-isotropic ( ± 45/0/90)4]s32, zero-

dominated [( ± 45/90/02/90/02)2]s32  and quasi-isotropic [( ± 45/0/90)8]s64.The aluminum 

plates were made from AA7475-T76 and the bolt material was Titanium Ti6A114VSTA. 

The fitting between bolt and hole was ISO f7/H10 for all specimen configurations. For 

the quasi-isotropic specimens with countersunk bolts, without lateral support and no pre-
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tension of the bolt, there was good agreement between measured and computed strains. 

The measured and calculated relative displacement between parts is of the same 

magnitude. For protruding head bolts, with same conditions there was good agreement 

between measured and computed strains in the 45◦ direction, while for other directions the 

calculated strains are slightly smaller than the measured ones. There was good agreement 

between the measured and calculated displacements. For zero-dominated laminates with 

countersunk bolts, there was good agreement between the measured and calculated 

strains is very good for the case without lateral support and somewhat less good for the 

case with lateral support. The computed and measured relative displacement curves are in 

good agreement for the case with lateral support, with the calculated displacement larger 

than the measured ones. For the case with lateral support, the experimental curves differ 

considerably between the two sides of the specimen and the computed curves fall 

between the experimental curves. The secondary bending measure was higher in 

experiments than in tests. This indicates that the FE models were too stiff in bending, 

which could be due to use of linear elements. The limitation of the model is that same 

friction coefficient had to be used in the ABAQUS [7] version. The friction coefficient is 

very uncertain as it is assumed on the basis of friction coefficient measurements at 

fracture surfaces. Friction coefficient measurements for a material combinations used in 

composite bolted joints are therefore proposed as an important subject for future research. 

 

2.2 Summary of Pertinent Publications 
 

Mechanically fastened joints typically display three failure modes: net tension, shear out 

and bearing. Combinations of these failures are also a possibility. There are number of 
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parameters that affect the strength of mechanically fastened joints. Some are geometric 

parameters while others are physical parameters. The two parameters that have the most 

influence on the failure mode of bolted joints are the width of the joint and the distance 

from the bolt to the edge of the laminate. Clearance between the fastener and the hole 

also affects the strength of the joint.  Friction between the washer and the laminate should 

have an effect on the joint strength.  Hence all these parameters have to study to design a 

joint. A better method to predict bearing failures for composite laminates from the 

constituent lamina properties must be developed.  
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CHAPTER 3 
 

FINITE ELEMENT MODEL 
 
 

 
3.1 Introduction 
 
 
This chapter contains a complete description of the three-dimensional finite element 

model developed in order to predict the stress distribution fields around holes drilled 

through composite materials connected through either single or double lap bolted joints. 

The model results were verified theoretically by comparisons with a closed form solution.  

 
 
3.2 Modeling of the Structural joint 

 

General layouts of single and double lap joints, along with the geometric parameters of 

their elements, (adherends, bolt, and washer) are shown in Figures 3.1.1 and 3.1.2, 

respectively. The main dimensions selected for these elements are illustrated in Table 3.1. 

The joint is assumed to be assembled from prismatic connected plates made of metal 

alloys or composite materials, fastening bolts and washers that can spread the contact 

stresses between the plates and the bolt heads or nuts. For detailed modeling of the 

contact surfaces between the adherands of the joint, as well as between the hole and the 

bolt, each adherand plate was meshed by using 8-node solid brick elements as shown in 

Figures 3.2.1 and 3.2.2. The mesh used to model the interface between the hole and the 

bolt is very fine in order to simulate accurately the cylindrical surface of such hole and 

also capture the high stress concentrations expected to be generated around the hole as 

the joint is loaded. A coarser mesh was used to model the regions away from the hole, 

since they are expected to be subjected mainly to a uniform stress field. 
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 The contact surface between the connected plates is modeled chosen as a sliding 

interface with a friction coefficient equal to 0.05. Such a sliding  interface is placed 

between the upper plate and the middle plate, between the middle plate and the lower 

plate, between washers and the bolt and between washers and the plates. One role of such 

interfaces is to prevent the penetration of the elements of each plate across the contact 

surface when a load is applied. 

 
3.3 Boundary and Loading Conditions 
 
In the case of single lap joint, the left end of the upper plate is assumed to be fixed, 

whereas the uniaxial tension stress of 120MPa is applied at the right boundary of the 

bottom plate, as shown in Figure 3.3.1 

 

In the case of the double lap joint, the left ends of the upper and lower plates are fixed, 

whereas the uniaxial tension stress of 30MPa is applied at the right edge surface of the 

middle plate, as shown in Figure 3.3.2 

 

Both the single and double lap joint configurations are symmetric about the longitudinal 

centerline, as shown in Figures 3.3.1 and 3.3.2, respectively. Consequently, only one half 

of the joint is simulated in the finite element model as shown in Figure 3.2, which 

reduces the number of required elements and decreases the execution time for stress 

analysis of such joints. 
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3.4 Material model 
 
The material behavior of the plates, the washers and the bolt of the joint is simulated by a 

linear elastic plastic model. This model assumes an equivalent isotropic homogeneous 

material, which can be used in conjunction with beam, shell, or solid elements [6].  The 

parametric studies conducted by using this model assume that the jointed plates are made 

of metal matrix composite materials or conventional metal alloys.  Both the bolt and the 

washers were assumed to be made of steel.  To investigate the effects of the elastic 

properties of the jointed plated materials on the stress fields developed around the holes 

of the bolted joints, the parametric studies were expanded over a broad range of 

traditional metallic materials such as aluminum and steel as well as equivalent models of 

various particulate metal and polymer matrix composites. 

 

In the linear elastic plastic material model, the stress-strain curve is represented by a 

bilinear relation as shown in Figure 3.4.  The material behave is assumed to as a linear 

elastic material until the applied effective stress reaches the initial yielding stress, σo. In 

this elastic zone, the stress-strain relation is described by Hook’s Law as: 

σ = E ε 

where σ is the applied uniaxial stress and ε is the induced uniaxial strain.  When the 

applied stress increases beyond the initial yield stress of the material its behavior enters 

the work-hardening zone, results it in both elastic and plastic deformations [2]. At each 

stage of the plastic deformation, a new yield surface, called subsequent yield surface, is 

created.  The subsequent yield stress, σy is given as a function of the effective plastic 

strain, p
effε , and the plastic hardening modulus, Ep according to the following relation:  
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The plastic hardening modulus associated with the plastic component of the deformation 

is defined in terms of the elastic modulus, E, and the tangent modulus, Et as follows;  

   

For such material model, the yielding surface is given by the Von Mises yield condition: 

                         

where the second stress invariant, J2 is defined in terms of the components of the 

deviatoric stress tensor, S, in accordance with the following equation; 

                                                    ijij SSJ
2
1

2 =  

The effective plastic strain is defined as: 

 

where 

 

The material properties for all the materials used in this simulation are listed in Table 3.2.  
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3.5 Results of the Finite Element Model  
 
The elastic deformations predicted for the single and double lap joints under the applied 

load as depicted in Figure 3.5 and 3.6, respectively. As one can expect, bending is 

observed in the single lap joint. In the double lap joint no bending is observed since the 

configuration is symmetric in regard with geometry, boundary and loading conditions. In 

a single lap joint, the bending is due to the asymmetric loading conditions about y-axis 

although the joint is symmetric about the x-axis. 

  

The triaxial state of stress that is developed around the holes in bolted joints requires the 

use of a failure criterion that replaces the actual stresses by an equivalent uniaxial stress.  

For metallic materials, the strain energy density yield criterion (Von Mises yield 

criterion) has been widely used for failure analysis.  This theory is based on the 

assumption that the actual strain energy at failure of a solid body is equal to that 

corresponding to the equivalent uniaxial state [1]. Material failure occurs, according to 

this criterion, when the effective stress, σe, exceeds the yield strength of the material. The 

effective stress or Von Mises equivalent stress can be expressed as follows in terms of the 

cartesian components of the 3D stress tensor: 

 

       ( )xzyzxyyxyxyxe τττσσσσσσσ 333)()()(
2
1 222 +++−+−+−=                        

 
The predicted distributions of Von Mises Stresses around the holes of single or double 

lap joint configuration are shown in Figures 3.7 and 3.8, respectively. A symmetric stress 
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distribution is observed in a double lap joint, but the stress distribution around the hole of 

a single lap joint is asymmetric because of the associated bending deformation. 

  

3.6 Model Validation  
 

The finite element model developed in this study was validated by comparing its results 

with those obtained by using a closed form solution.    

 

The classical problem of a circular hole in a flat plate has been chosen for the above 

validation study since the stress concentration around a hole such as shown in Figure 3.9 

can be calculated through a closed-form solution. The edges of the plate are assumed to 

be subjected to a uniform axial stress with a value σ0, as shown in Figure 3.9. The plate 

has a uniform thickness of t = 3mm. 

 

One end of the plate is fixed and at the other end a uniform stress, σ0, is applied. The 

same finite element mesh used to model the connected plates in a bolted joint is used to 

model the plate under consideration for this problem. The three-dimensional stress fields 

generated around the hole by this finite element model are compared with those obtained 

by using the classical closed form solution (Timoshenko, 1959). 
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3.6.1 Closed Form Solution for a Plate with a Circular Hole 
 

Assuming an infinite plate in the y-direction, as shown in Figure 3.10, and elastic 

material behavior under the applied uniaxial load, σ0, the following closed form solution 

is available in classical literature [1]: 
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These equations predict the polar components of the stress field at any point defined by 

the polar coordinates r, θ.  

 

The Cartesian stress components along the x-axis and along y-axis can easily be obtained 

from the equations (3.1) at any points around the boundary of the circular hole, by using 

two-dimensional stress transformation equations. 

 

The stress distribution along the y axis can be obtained by setting θ = 90° and r = x in the 

equation (3.1): 
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The distribution of the stress ratios σxx/σ0 and σyy/σ0  along the y-axis, as calculated from 

the equation (3.2) is plotted in Figure 3.11 together with the corresponding results 

obtained from the finite element analysis. 

 

Similarly, the stress distribution along the x-axis can be obtained by setting θ = 0° and  

r = x in the equation (3.1). 
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The distributions of the σxx/σ0 and σyy/σ0, stress ratio, as calculated from the equation 

(3.3), are plotted in Figure 3.12, along those obtained from finite element analysis. 

Similar comparisons between the finite element and closed form solutions are illustrated 

in Figure 3.14 for the distribution around the hole of radial and shear stress ratios in polar 
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coordinates.  A good agreement was noticed in all these graphs between finite element 

values and the closed form solutions.  The small differences observed between these two 

approaches especially at the free edges, can be attributed to both numerical inaccuracies 

in the finite element results, and the simplifying assumptions included in the closed-form 

solution, such as that of an infinitely extended  plate in the y-direction.  
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Table 3.1 Dimensions of Lap Joint Elements used in this study 

 
 
Table 3.2 Material Properties used in Parametric Studies         
 

rb (mm) rw (mm) e (mm) l (mm) w (mm) 

3 4.5 16 246 20 

3 4.5 16 230 20 

   Material                       Material Model                         Property                              value 
 
 
                                                                                            Density (Kg/m3)                      2700  
   Aluminum                   Linear Elastic plastic              Young’s Modulus (GPa)       70               
               Poisson’s Ratio                       0.35 

                           Yield Strength (MPa)             103 
                                                                                           
  Density (Kg/m3)                     8030     
   Steel                            Linear Elastic plastic              Young’s Modulus (GPa)        193.1          
               Poisson’s Ratio                        0.29 
  Yield Strength (MPa)              275 
                                                                                        
 
                                                                                       Density (Kg/m3)                       2800 
  Metal Matrix                                                                Tensile Strength                       225 
  Composite                       Linear Elastic plastic             Young’s Modulus (GPa)          127            
  (Lanxide Reinforced                                                    Yield Strength (MPa)               177.6 
Aluminum –30% silicon Strain to failure                          0.62 
carbide reinforcement)                                                   
     
                                                                                             
  Density (Kg/m3)                     8030  
   Metal Matrix Young’s Modulus (GPa)        193.1           
   Composite                    Linear Elastic plastic             Poisson’s Ratio                       0.29 
    (Lanxide Reinforced            Yield Strength (MPa)             275               
   Aluminum –30% silicon  
   carbide reinforcement)          
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Fig. 3.1.1 Schematic of a Single Lap Bolted Joint 
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Fig. 3.1.2 Schematic of a Double Lap Bolted Joint 
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Figure 3.2.2 Finite Element Mesh for the Bolt and the Washer of   
                                           a Bolted Joint 

Figure 3.2.1 Finite Element Model of the Double Lap Bolted Joint 
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Figure 3.5 Deformed Configuration Predicted for single 
lap joint
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CHAPTER FOUR 

 
 

RESULTS FOR SINGLE LAP JOINT 
 

 

4.1 Introduction 
 

This chapter presents a detailed description of the stress fields calculated through the 

finite element model for a single lap joint configuration. A parametric study has been 

conducted to examine the effects of certain design parameters such the tightening 

pressure, the Young’s Modulus, the diameters’ of the washer and the bolt on the stress 

distributions around the hole. 

 

4.2 Stress Distribution Around the Hole 
 

In single lap joints, the axial load applied on the joint is transferred from one member to 

the other through two main types of mechanisms mainly the friction at the interface 

between the jointed plates and the transverse shear force transmitted to the bolt through 

the contact between the bolt and the plates. The eccentricity of the loading in a single lap 

joint, as shown in Figure 3.3.1, causes bending of the joint as shown in Figure 4.1. The 

possible failure modes of single lap joints are more complex and difficult to predict then 

in double lap joints, because of the bending effects associated with the fact that the load 

path through the joint is not a straight line.  
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Figure 4.2 shows the fringes describing the distribution of axial stresses in the x-

direction, as developed around the hole in the lower plate, as the lower plate is subjected 

to an axial tensile load applied along its right edge. A uniform stress distribution is 

observed away from the hole that is equal in magnitude as one might expect to the 

applied tensile stress at right edge boundary of the joint.  A very low compressive stress 

at the contact side between the bolt surface and the hole indicates that the joint is 

transferring most of the applied load through friction at the interfaces between the 

connected plates.  

 

Figure 4.3 illustrates that the maximum principal stress distribution around the hole of the 

lower plate is similar to the distribution of the (σxx) stress components, which is expected 

for a uniaxial loading case as assumed here. Figure 4.4 illustrates the predicted 

distribution of shear stresses (τxy) around the hole in the lower plate.  One may notice that 

this stress distribution is not symmetric, most likely this can be because of the bending 

effects associated with the axial loading of single lap joints. Figure 4.5 depicts the 

predicted distribution of normal stresses in the transverse Z, direction (σzz) which turn out 

to be almost equal as required by equilibrium conditions, to the applied tightening 

pressure on the washer.  

 

Figure 4.6 shows the distribution of the effective stress developed in the lower plate of 

the joint where the axial load is applied. It can be noticed that the area around the hole is 

subjected to high concentration of stresses indicating a high probability that potential 

failure will be initiated in that region. 
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4.3 Effect of tightening pressures 
 

The effect of tightening pressure is investigated by applying various levels of pressure on 

the washer surfaces, and examining the associated changes in the distribution of stresses 

developed in the connected plates around the hole for each case. Three different levels of 

tightening pressure 30MPa, 60MPa and 120MPa are applied on the washer surface in the  

z-direction while an axial load of 120MPa is applied on the right edge of the lower plate 

in the x-direction.  The distribution of normal stresses in the x-direction (σxx) developed 

around the hole for different cases of tightening pressures are plotted in Figure 4.7. It can 

be noticed that increasing the tightening pressure on the bolt results in a decrease in the 

(σxx) stress levels. This is attributed to the increase in the amount of the load transferred 

through friction as the tightening pressure increases. Since frictional forces are likely to 

increase with the increase of the bolt tightening pressure, the shear stresses in the plane of 

the plate (xy-plane) will also increase as can be seen in Figure 4.8. 

 

Figure 4.9 displays the variations around the hole of the normal stresses in the z-direction 

(σzz). The plots validate that indeed this is a uniform distribution, where the magnitude of 

the σzz-stresses is equal to the applied tightening pressure. Figure 4.10 illustrates for the 

distribution of effective stresses developed around the hole for different tightening 

pressures. It can be seen that increasing tightening pressures results in an increase of 

equivalent stresses.  The relationship between the bolt tightening pressure and the 

average value of effective stress is nonlinear as indicated by the curve shown in Figure 

4.11. 
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4.4 Effect of Young’s Modulus 
 

This effect is studied by changing the Young’s Modulus of the jointed plates. Three 

different materials have been chosen for this study, namely aluminum, whose Young’s 

modulus is E=70GPa, steel or aluminum reinforced with 55% silicon carbide for which 

E=199GPa and aluminum reinforced with 30% silicon carbide for which the equivalent 

Young’s modulus is E=127GPa. The curves plotted in Figure 4.12 indicate that the 

effective stress around the hole is not affected significantly by changing the Young’s 

Modulus. Therefore, the choice of a material of the connected plates has an insignificant 

effect on the stresses developed around the hole. The normal stress components in the x-

direction (σxx), appears, however, to display a higher sensitivity to the material properties 

of the plates than the effective stresses, as indicated by the plots in Figure 4.13. 

 

A variation in the Young’s Modulus of the connected plates has an effect however, on the 

strains developed around the hole. This effect is illustrated in figure 4.14 for the normal 

strain component in the x-direction, (εxx). One could expect, the strains around the hole 

are reduced when stiffer materials are used for the connected plates. Similar trends are 

observed in figures 4.15 and 4.16 for the normal strain component in the y-direction and 

the normal strain component in the z-direction, respectively.  
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4.5 Effect of bolt diameter 
 

The effect of the bolt diameter on the stress fields in the connected plates is studied by 

running the finite element model for various values of the bolt diameter value keeping 

other parameters constant. Bolt diameters of 5mm, 6mm and 6.5mm are used. 

 

Larger bolt diameters lead to higher stresses in the connected plates, as illustrated in 

Figure 4.7, 4.18 and 4.19 for the effective stress, the maximum principal stresses and the 

σxx stress component, respectively.  

 

4.6 Effect of Washer Diameter 
 

Three different values of the washer diameters namely 8mm, 12mm and 18mm have been 

used to investigate the effect of this parameter on the associated fields of stress. Figures 

4.20, 4.21 and 4.22 show that larger washers lead to higher average values of the 

effective stress, the maximum principal stress and the σxx-stress components respectively. 

A larger washer diameter transfers high axial stresses to the back of the hole due to 

friction, hence high stresses are found at the back of the hole. 
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Figure 4.1 Predicted Deformation of a Single Lap Joint Under Axial 
Loading 
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Figure 4.2 Predicted Distribution of Normal Stresses in the x-Direction 
(σσσσxx) in the Lower Plate of a Single Lap Joint 
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Figure 4.4 Predicted Distribution of Shear Stress (ττττxy) in the  
Lower Plate of Single Lap Joint 
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Figure 4.3 Distribution of Maximum Principal Stress in the 
Lower Plate of Single Lap Joint 
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Figure 4.5 Predicted Distribution of Normal Stresses in the 
Lower Plate Z-Direction (σσσσzz) 
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Figure 4.6 Von Mises Stress Distribution Around the Hole for the 
Lower Plate 
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Figure 4.7 Predicted Distributions of (σσσσxx) Stress Components Around the 
Hole in the Lower Plate for Different Levels of Bolt Tightening Pressure 
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Figure 4.8 Predicted Variations of Shear Stress Around the Hole in the  
Lower Plate in the XY-Plane (ττττxy) for Different Levels of Bolt Tightening Pressure

Pressure 120Mpa 
Pressure 60MPa 
Pressure 30MPa 
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Figure 4.9 Distributions Around the Hole in the Lower Plate of the Normal 
Compressive Stresses in the Transverse, z-Direction 
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Figure 4.10 Variation of Von Mises Stress Around the Hole in the Lower 
Plate for Various Levels of Bolt Tightening Pressure 

Pressure 120Mpa 
Pressure 60MPa 
Pressure 30MPa 
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Figure 4.12 Distribution of Von Mises Stress Around the Hole in the Lower 
Plate for Various Material Systems Used in the Plates 

Aluminum E=70GPa 
Steel, E=192GPa 
Metal Matrix, reinforced aluminum with 30% SiC  
Reinforced aluminum with 55% silicon carbide 
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Figure 4.11 Average Effective Stress in the Connected Plates for  
Various Loads of Bolt Tightening Pressures
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Figure 4.14 Variation Around the Hole of the Normal Strain Component in the  
x-direction (εεεεxx) in the Middle Plate for Various Material Systems 
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Figure 4.13 Variations Around the Hole of σσσσxx–Stresses in the Lower Plate 
for Various Material Systems Used in the Plates 

Aluminum E=70GPa 
Steel, E=192GPa 
Metal Matrix, reinforced aluminum with 30% SiC 
Reinforced aluminum with 55% silicon carbide 
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Figure 4.16 Variation Around The Hole of the Normal strain Component in 
the z-Direction (εεεεzz) for the lower plate for Various Material Systems 
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Figure 4.15 Variation Around The Hole of the Normal Strain Component 
in the y-Direction (εεεεyy) in the Lower Plate for Various Material Systems 
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Figure 4.17 Variations of Von Mises Stress Around the Hole in the 
Lower Plate for Various Values of the Bolt Diameter 
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Figure 4.18 Variations of Maximum Principal Stresses Around the 
Hole in the Lower Plate for Various Values of the Bolt Diameter 

Bolt radius 3.25mm 
Bolt radius 3mm 
Bolt radius 2.5mm 
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Figure 4.20 Variations of Von Mises Stress Around The Hole in 
the Lower Plate for Various Values of the Washer Radius 

Washer radius 4mm 
Washer radius 6mm 
Washer radius 7mm 
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Figure 4.19 Variation of σσσσxx Stress Around the Hole in the 
Lower Plate for Various Values of the Bolt Diameter 

Bolt radius 3.25mm 
Bolt radius 3mm 
Bolt radius 2.5mm 
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Figure 4.21 Variations of Maximum Principal Stresses Around The 
Hole in the Lower Plate for Various Radii of the washer 
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Figure 4.22 Variations of the σσσσxx Stress Around The Hole in the 
Lower Plate for Various Radii of the Washer 

Washer radius 4mm 
Washer radius 6mm 
Washer radius 7mm 
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CHAPTER FIVE 
 
 

STRESS DISTRIBUTION FOR A DOUBLE LAP JOINT 
 
 
 
5.1 Introduction 
 
This chapter presents a detailed description of the stress field calculate through the finite 

element model for a double lap bolted joint configuration.  A parametric study has been 

conducted to investigate the effect of certain design parameters such as the tightening 

pressure of the bolt, magnitude of the load applied, the Young’s modulus, the diameters 

of the washer and the bolt, and clearance between the hole and bolt on the stress 

distributions around the hole. 

 

5.2 Stress Distribution around the Hole 
 

In double lab joints, the axial load applied on the joint is transferred from one member to 

the other through mechanisms, namely the friction at the interfaces between the jointed 

plates and the transverse shear forces transmitted to the bolt through the contact between 

the bolt and the plate.  As the load is applied at the plate edges, it is transferred to the 

other two plates through the first mechanism until the magnitude of the applied load 

overcomes the frictional forces at the interfaces between the jointed plates.  Then, the 

plates slide over each other with the amount of the clearance between the bolt and the 

hole and a contact occurs between them.  At this time, the bolt transfers the amount of 

load that excess the frictional forces by shear to the other plates.   The amount of load 
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that is transferred by friction at the interface is a function of the bolt tightening pressure, 

the friction coefficient between the plates, and the overlapped area between the plates. 

 

Figure 5.1 illustrates by fringes describing the distribution of axial stresses in the x-

direction, as developed around the hole in the middle plate, as the plate is subjected to an 

axial tensile load applied along its right edge.  A uniform stress field is observed away 

from the hole that is equal in magnitude as one might expect to the applied tensile stress 

at the joint edge.  Figure 5.1 indicates a formation of a zone of very low compressive 

stresses at the contact side between the bolt surface and the hole, which indicates that the 

joint is transferring most of the applied load through the friction at the interfaces between 

the connected plates.  Figure 5.2 illustrates the predicted distribution of shear stresses 

(τxy) in the middle plate.  A zone of the high shear stresses in the vicinity of the hole due 

to the friction forces at the interfaces between the plates is observed in this area.  Figure 

5.3 depicts the predicted distributions of normal stresses in the transverse z, direction 

(σzz) which turn out to be almost equal as required by equilibrium conditions, to the 

applied tightening pressure on the washer. 

 

Figures 5.4 illustrate the distribution of the effective stresses developed in the middle 

plate of the joint, where the axial load is applied.  It can be noticed that the area around 

the hole is subjected to high concentration of stresses indicating a high probability that 

potential failure will be indicated in that region. 
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5.3      Effect of tightening pressure 
 

The effect of tightening pressure is investigated by applying pressures of various levels 

on the washer surfaces, and examining the associated changes in the distribution of the 

stresses developed in the connected plates around the hole for each case.  Four different 

levels of tightening pressure 0MPa, 10MPa, 20MPa and 30 MPa are applied on the 

washer surface in the z-direction while an axial load of 30MPa is applied on the right 

edge of the middle plate in the x-direction. The distribution of normal stresses in the x-

direction (σxx) developed around the hole for different cases of tightening pressures are 

plotted in Figure 5.5.  It can be noticed that increasing the tightening pressure on the bolt 

results in a decrease in the σxx stress values.  This is attributed to the increase in the 

amount of load transferred through friction as the tightening pressure increases, which 

can be observed from the distribution of the shear stresses around the hole shown in 

Figure 5.6.  Since the frictional force are likely to increase with the increase of the bolt 

tightening pressure, the shear stresses in the plane of the plate (xy plane) will also 

increase.  

 

 Figure 5.7 displays the variations around the hole of the normal stresses in the z-

direction (σzz). The plots validate that, indeed this is a uniform distribution, where the 

magnitude of the σzz-stresses is equal to the applied tightening pressure. Figure 5.8 

illustrates the distribution of effective stresses developed around the hole for different 

tightening pressures.  It can be seen that increasing the tightening pressure results in an 

increase of equivalent stresses.  
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5.4  Effect of Young’s Modulus 
 

This effect is studied by changing the Young’s Modulus of the jointed plates. Three 

different materials have been chosen for this study, namely aluminum, whose Young’s 

modulus is E=70GPa, steel or aluminum reinforced with 55% silicon carbide for which 

E=199GPa and aluminum reinforced with 30% silicon carbide for which the equivalent 

Young’s modulus is E=127GPa. The curves plotted in Figure 5.8 indicate that the 

effective stress around the bolt is not affected significantly by changing Young’s 

modulus. Therefore, the choice of a material for connected plates has an insignificant 

effect on the stresses developed around the hole.  

 

The normal stress components in the x-direction (σxx), appears, however, to display a 

higher sensitivity to the material properties of the plates than the effective stresses, as 

indicated by the plots in Figure 5.9. 

 

A variation in the Young’s Modulus of the connected plates has an effect however, on the 

strains developed around the hole. This effect is illustrated in figure 5.10 for the normal 

strain component in the x-direction, (εxx). One could expect, the strains around the hole 

are reduced when stiffer materials are used for the connected plates. 

 

5.5 Effect of Load applied on the joint 
 

The effect of the load applied on the stress fields in the connected plates is studied by 

running the finite element model for various values of the load applied. Loads of 30MPa 
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and 120MPa are applied to the joint. Figure 5.11 illustrates the distribution of the 

effective stresses developed around the hole for different loads applied to the joint. It can 

be seen that increase in the applied load results in an increase of effective stresses. The 

relationship between the load applied and the effective pressure is nonlinear. 

 

Figure 5.12 depicts the effect of maximum principal stress around the hole. Increase in 

the load applied increases these stresses. The distribution of normal stresses in the x-

direction (σxx) developed around the hole for various loads are plotted in Figure 5.13 .It 

can be observed that increasing the applied load increases the (σxx) stress levels. 

 

The effect of compressive load is observed by applying a compressive load to the joint. 

Figure 5.14 illustrates the predicted distribution of shear stresses (τxy) around the hole in 

the middle plate. It is observed that the shear stress is positive on one side of the hole and 

negative on the other side when tensile load is applied whereas it is opposite for the 

compressive load.  

 

Figure 5.15 displays the normal stresses in the x-direction (σxx) developed around the 

hole for the tensile and compressive load applied, respectively. The shear stress 

distribution around the hole is as shown in Figure 5.16. 

 

5.6   Effect of clearance between the hole and the bolt 
  

The effect of clearance is observed by running the finite element model for various values 

of clearances between the bolt and the hole. A clearance of 0.15mm and 0.02mm are 
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used. The stress distribution of bolted joints is dependent on the magnitude of hole 

clearance. The effect of clearance has a significant effect on the stress distribution around 

the loaded hole. This clearance would decrease the load carrying capacity of the bolted 

joint.  

 

Lower clearance between the bolt and the hole leads to higher stresses in the connected 

plates, as illustrated in Figures 5.17 and 5.18 for the effective stress and the maximum 

principal stress, respectively.  

 

Figures 5.19 and Figure 5.20 shows the distribution of the normal stresses in the x-

direction (σxx) for both the clearances. It can be clearly seen that high longitudinal 

stresses are obtained around the hole for a clearance of 0.02mm than for a clearance 

0.15mm.  

 

5.7    Effect of washer diameter 
 

The effect of the washer diameter on the stress fields in the connected plates is 

investigated by running the finite element model for various values of the washer 

diameter. Four different washer diameters, 8mm, 12mm, 14mm, and 18mm are used. 

Figures 5.21 and 5.22 show that larger washer lead to lower average values of the 

effective stress and the σxx-stress component. Larger washer diameter bears higher 

stresses and thus the stresses in the plates reduce.  
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5.8    Effect of bolt diameter 
 
The effect of the bolt diameter on the stress fields in the connected plates is studied by 

running the finite element model for various values of the bolt diameter value keeping 

other parameters constant. Bolt diameters of 5mm, 6mm and 6.5mm are used. 

 

Larger bolt diameters lead to lower stresses in the connected plates, as illustrated in 

Figures 5.23 and 5.24 for the effective stress, and the σxx stress component, respectively. 
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Figure 5.1 Predicted Distribution of Normal Stresses in the x-
Direction (σσσσxx) in the Middle Plate of a Double Lap Joint 
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Figure 10. Stress Distribution Around The Bolt In Z -Direction

-2.045E+01
-1.857E+01
-1.668E+01
-1.480E+01
-1.232E+01
-1.106E+01
-9.147E+00
-7.263E+00
-5.373E+00
-3.495E+00
-1.610E+00
2.741E-01
2.158E+00

 

-2.045E+01
-1.857E+01
-1.668E+01
-1.480E+01
-1.232E+01
-1.106E+01
-9.147E+00
-7.263E+00
-5.373E+00
-3.495E+00
-1.610E+00
2.741E-01
2.158E+00

-2.045E+01
-1.857E+01
-1.668E+01
-1.480E+01
-1.232E+01
-1.106E+01
-9.147E+00
-7.263E+00
-5.373E+00
-3.495E+00
-1.610E+00
2.741E-01
2.158E+00
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Figure 5.5 Predicted Distributions of (σσσσxx) Stress Components Around the 
Hole in the Middle Plate for Different Levels of Bolt Tightening Pressure 
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Figure 5.6 Predicted Variation of Shear Stress Around the Hole in the XY-Plane 
(ττττxy) in the Middle Plate for Different Levels of Bolt Tightening Pressure 

Pressure 30N/mm2 
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Pressure 0N/mm2 
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Figure 5.7 Distribution Around the Hole of the Normal Compressive 
Stresses in the Transverse, z-Direction for the Middle Plate 

Pressure 30N/mm2 
Pressure 20N/mm2 
Pressure 10N/mm2 
Pressure 0N/mm2 

0 20 40 60 80 100 120 140 160 180 

20 

25 

30 

35 

40 

Theta in degrees 

Ef
fe

ct
iv

e 
St

re
ss

 in
 M

Pa
 

Figure 5.8 Variations of Von Mises Stress Around the Hole in the 
Middle Plate for Various Material Systems Used in the Plates 

Aluminum E=70GPa 
Steel, E=192GPa 
E=10GPa 
Metal Matrix, reinforced aluminum with 30% SiC 
Reinforced aluminum with 55% silicon carbide 
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Figure 5.10 Variations Around the Hole of the Normal Strain Component 
in the x-Direction,εεεεxx, for Various Material Systems in the Middle Plate 
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Figure 5.9 Variations Around the Hole of σσσσxx-stresses in the Middle Plate 

for Various Material Systems Used in the Plates 
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Figure 5.11 Variations of Von Mises Stress Around the Hole in the 
Middle Plate for Different Values of the Load Applied 

Load 120MPa
Load 30MPa

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Theta in degrees

M
ax

im
um

 P
rin

ci
pa

l S
tre

ss
 in

 M
Pa

Figure 5.12 Variations of Maximum Principal Stress Around the Hole 
in the Middle Plate for Different Values of the Load Applied 
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Figure 5.14.1 Predicted Distribution of Shear Stress (ττττxy) in the  
Middle Plate for a Tensile Load 
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Figure 5.16 Predicted Variations of Shear Stress Around the Hole in 
the XY-Plane (ττττxy) for Different Loads in the Middle Plate 
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Figure 5.15 Predicted Distribution of (σσσσxx) Stress Components 
Around the Hole in the Middle Plate for Different Loads 
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Figure 5.17 Variations of Von Mises Stress Around the Hole in the 
Middle Plate for Various Values of Clearances
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Figure 5.18 Distribution of Maximum Principal Stress Around the Hole 
in the Middle Plate for Various Values of Clearances 

Clearance 0.020mm 
Clearance 0.15mm 
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Figure 5.19 Predicted Distribution of Normal Stresses in x-direction (σσσσxx) for a 
 Clearance of 0.02mm in the Lower Plate 
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Figure 5.20 Predicted Distribution of Normal Stresses in x-direction (σσσσxx) for a 
 Clearance of 0.15mm in the Lower Plate 
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Figure 5.21 Variations of Maximum Principal Stresses Around the 
Hole in the Middle Plate for Various Radii of the Washer 
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Figure 5.22 Variations of the Stress Around the Hole in the 
Middle Plate for Various Radii of the Washer 

Washer radius 4mm 
Washer radius 6mm 
Washer radius 7mm 
Washer radius 9mm 
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Figure 5.23 Variations of Von Mises Stress Around the Hole in 
the Middle Plate for Various Values of the Bolt Diameter 

Bolt radius 3.25mm 
Bolt radius 3.0mm 
Bolt radius 2.5mm 
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Figure 5.24 Variations of Maximum Principal Stresses Around the 
Hole in the Middle Plate for Various Values of the Bolt Diameter 

Bolt radius 3.25mm 
Bolt radius 3.0mm 
Bolt radius 2.5mm 
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CHAPTER SIX 
 
 

CONCLUSIONS 

 
The behavior of bolted joints in composite structures is of high concern due to its 

complexity and dependency on many material and geometric variables. Reliable and 

effective design of structural joints requires extensive knowledge of the multiple 

parameters that affect their behavior, as well as accurate calculations of stress 

distributions. A three-dimensional finite element model has been developed to study the 

effects of various parameters on the stress fields around the hole in single and double lap 

bolted joints. The results obtained from the finite element analysis have been validated by 

using a simplified closed-form model, which consists of an infinite, elastic plate with a 

circular hole subjected to uniform uniaxial loading. The stresses predicted by the closed -

form model along the x and y axes are compared with the corresponding values from the 

finite element analysis and good agreement was obtained. 

 

The primary conclusions of the investigation described in this thesis are summarized 
below: 
 

a) An increase in the bolt tightening pressure increases the average effective stress 

around the hole, both for single and double- lap joints. 

b) The Young’s Modulus of the connected plates has an insignificant effect on the 

stress distributions around the hole. The strain levels around the hole however 

increase as the Young’s Modulus decreases.  
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c) In single lap joints, the effective stress around the hole increases when the bolt 

diameter or the washer diameter increases. This effect is, most likely, due to the 

bending associated with the asymmetric loading of the joint. 

d) When the clearance between the hole and the bolt increases, the level of stresses 

around the hole decreases. 

e) In double lap joints, an increase in the washer or bolt diameter results in a 

decrease of the effective stress around the hole. 

 

6.1    Future Work 
 

In single lap bolted joints, it is important to study the complex modes of failure 

associated with the bending effects caused by the loading eccentricity.  Critical problems 

of mechanical joint failures such as shear-out, delamination, or bending have to be 

investigated further, in the context of the specific characteristics of composite materials. 

The complex damage mechanisms, such as fiber micro buckling and inter-laminar 

cracking involved in bearing failures requires further investigations.  
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