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ABSTRACT 

Comparison of classification methods for perspiration-based liveness 

algorithm 

Sujan T.V. Parthasaradhi 

In the modern world there is a need for security. Biometric technologies provide a 
means for providing this security. Of the many different available biometric technologies, 
fingerprint recognition is the most popular. As with all security measures, biometric 
devices may be subject to attacks on the system. Fingerprint scanners may be susceptible 
to spoofing using artificial materials, or in the worst case, dismembered fingers. Liveness, 
i.e. to determine whether the introduced biometric is coming from a live source, has been 
suggested as a means to circumvent attacks that use spoof fingers. It has been shown that 
water based casting materials and cadaver fingers were able to be scanned and verified 
for most fingerprint scanner technologies. In our laboratory an anti-spoofing method 
based on liveness detection has been developed for use in fingerprint scanners. This 
method quantifies a specific temporal perspiration pattern present in fingerprints acquired 
from live claimants. For this thesis, perspiration detection algorithm is optimized for 
different fingerprint scanner technologies, using a larger, more diverse data set, and a 
shorter time window.  Several classification methods are tested in order to separate live 
and spoof fingerprint images. Each method had a different performance with respect to 
each scanner and time window. All the classifiers achieved approximately 90% 
classification rate for all scanners, using the reduced time window and the more 
comprehensive training and test sets. Based on the classification results, it is believed that 
this perspiration-based method has a potential to reduce the susceptibility of the 
fingerprint scanners to spoof attacks. 
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1 Introduction and Background 

 
 
1.1 Introduction 

Biometrics can play a vital role in enhancing security systems and is under 

consideration for dramatically increased use in order to minimize security threats in 

military organizations, government centers, and public places like airports. Biometrics 

systems use physiological or behavioral characteristics to automatically determine or 

verify the identity of a person. Biometrics is the only unit, which evolves extensively 

around several processes like programming, integrating technologies, digital identity 

management, data mining, etc. Examples of biometric technologies include fingerprint, 

face, iris, hand geometry, voice, and keystroke recognition. Biometrics has several 

applications like 

• Controlling access in hospitals, hotels, and private sectors. 

• Network security 

• In telecommunications for call centers, telephone banking. 

• For secure use of handheld devices like PDA’S and cell phones. 

• Time and attendance 

• ATM and credit cards 

• Internet banking and shopping 

• Electoral polling method 

• Protecting automobiles from illegal access  
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1.2 Background 
 

No security system is infallible. As with all security measures, a biometric system 

is subject to various threats like attacks at the sensor level, replay attacks on the data 

communication stream and attacks on the database [1]. This research will focus on 

countermeasures to attacks at the sensor level of fingerprint biometric systems or 

spoofing, the process of defeating a biometric system through an introduction of a fake 

biometric sample or, worst case, a dismembered finger. The potential solution is liveness 

detection. Liveness detection, i.e. to determine whether the introduced biometric is 

coming from a live source, has been suggested as a means to circumvent attacks that use 

spoof fingers.  

                        Liveness detection plays a vital role in the security of the input mechanism 

of biometric devices. Liveness detection in the biometric devices depends upon two 

things that are: (1) determining one or more qualities of a biometric sample and (2) 

checking their consistency with the qualities associated with samples during enrollment. 

The term “liveness” refers to distinguishing between a living person and an artificial 

representation of person in a biometric system. The lack of liveness detection in a 

biometric system makes it susceptible to spoofing. “Spoofing” is the process of defeating 

a biometric system through fake biometric samples. Therefore a biometric system may 

need “liveness” test for detection of spoof attacks.  Any biometric system should be 

designed by keeping the liveness detection in perspective. In order to avoid the 

processing of non-live data, liveness detection may be performed at acquisition stage or 

identification/verification stage.  
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Our laboratory has demonstrated vulnerability to spoofing using dental materials 

for casts and Play-Doh for molds [2], [3].  Furthermore, we have tested fingerprint 

scanners with cadaver fingers.  In our testing, ten attempts were performed for all 

available security levels for optical, capacitive AC, capacitive DC, and electro-optical 

technologies [2]. Results showed that the spoofing rate for cadaver fingers was typically 

90% when verified against an enrolled cadaver finger, whereas for Play-Doh and water-

based clay, results varied from 45-90% and 10-90%, respectively, when verified against 

an enrolled live finger. This research demonstrated that water-based casting materials and 

cadaver fingers are able to be scanned and verified for most fingerprint scanner 

technologies. Example images from live, cadaver and spoof fingers, obtained using 

commercially available fingerprint sensor technologies, are shown in Fig. 1.  

 

 

 

 

 

 

 

 

Figure 1.1: Images captured with commercial fingerprint sensors from live, cadaver and  

spoof fingers. 
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Initially, an anti-spoofing method developed in our lab was based on a time-series 

of fingerprint images captured from a DC capacitance-based Si CMOS fingerprint 

scanner [3].  The method uses the physiological process of perspiration to determine the 

vitality of a fingerprint.  The initial algorithm extracted the grey levels along the ridges to 

form signals, calculated a set of features, and used a neural network to perform 

classification. The training and test sets were formed from 18 live, 18 spoof, and 18 

cadaver fingerprints.  Results gave 100% precision for distinguishing between 

fingerprints collected from live and spoof/cadaver fingers. While these initial results were 

encouraging, they also raised a number of issues, which, if adequately addressed would 

aid in the assessment of the viability of the approach.  These include the performance of 

the techniques across a more diverse population, the contraction of the time series data to 

achieve user transparency of the technique, and the applicability of the approach to other 

fingerprint sensor technologies. 

 

           As per definition, biometric technologies can be categorized into two types: One is 

physiological biometrics and another is behavioral biometrics. Examples of physiological 

biometrics are fingerprint, face, iris, retina, hand geometry, etc. Examples of behavioral 

biometrics are speech, handwritten signature and keystroke analysis. This chapter will 

describe spoof attacks in various biometric technologies and discuss how “liveness 

detection” in biometric devices provides a possible solution to spoof attacks.   
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1.3 Liveness Detection for Physiological Biometric Techniques 

 

Fingerprint Recognition: 

 

  In fingerprint scanning different types of fingerprint sensors like optical, 

capacitive and ultrasound are used. Capacitive scanners are most popularly used. Previous 

work has shown that it is possible to spoof a variety of fingerprint technologies through 

relatively simple techniques.  These include utilization of latent fingerprints on the scanner 

with pressure and/or background materials (e.g., a bag of water), molds created from casts 

of live fingers, and molds from casts made from latent fingerprints lifted from a surface and 

reproduced with photographing etching techniques [2] - [7]. Casts have been made from 

wax, silicon and plastic, and molds from silicon or gelatin (gummy finger) [4], [5]. 

 

In order to avoid spoof attacks of fingerprint biometric systems, various liveness 

countermeasures have been considered including thermal sensing of finger temperature 

[8], laser detection of the 3-D finger surface and pulse [9], pulse oximetry [8], [10], ECG 

[8], and impedance and electrical conductivity of the skin (dielectric response) [11].  

Other techniques that can make spoofing more difficult include challenge response, use 

of passwords, tokens, smart cards, and multiple biometrics.  Summaries of liveness and 

anti-spoofing methods are given in [2], [12], [13].  Most methods require additional 

hardware, which is costly and, unless integrated properly, may be spoofed with an 

unauthorized live person.  In addition, most previously developed methods are not 
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available commercially and/or have not been tested rigorously in order to determine their 

effectiveness. 

 

 

In our research, we have developed a method for detecting the perspiration pattern 

in the finger that identifies the liveness of a fingerprint by looking at a series of 

fingerprints captured at different time instants. The perspiration pattern is an efficient and 

important countermeasure as it is absent in spoof and cadaver fingers. Perspiration is a 

main characteristic of live skin, which regulates human body temperature. Sweating is 

defined as “active secretion of a watery fluid onto the body surface from either ecrine or 

apocrine sweat glands”. Our method maps two-dimensional images into one-dimensional 

signals, which represent the gray level values along the ridge. Variations in gray levels 

correspond to variation in moisture. This method calculates a static measure, which 

quantifies the static variability in gray level along the ridges, and several dynamic 

measures, which measure the difference in the local maximums and minimums in the 

ridge signal. Details about the perspiration algorithm and its features are explained at the 

end of this chapter. 

 

Iris Recognition: 

 

There are many companies, which are developing various iris scan cameras based 

on the algorithms developed by John Daugman [14]. Iris consists of trabecular meshwork 

of connective tissues, colageneous stromal fibres, ciliary processes, contraction furrows, 

and rings colorations. 256 features of such type are used to form a 512 byte template. It is 
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very difficult to spoof an iris scan camera because of the unique feature of iris, i.e., the 

structure of human iris is unchanged from the eighth month of gestation until a few 

minutes after death [15]. Also, a detached eyeball cannot be used as it changes very 

quickly to the state where it would not match. Some iris scan cameras that do not include 

a liveness countermeasure. Such cameras can be spoofed with the help of an ‘artificial’ 

eye. The artificial eye is made by printing digital iris images on a paper that had a small 

hole in the middle and behind where the hidden pupils of actual human beings were 

placed [16]. In order to prevent this some cameras are provided with a liveness counter 

measure that looks for the “hippus movement” i.e. the constant shifting and pulse that 

takes place in the eye. This liveness test ensures that the reading is fresh. Also drooping 

lid of eye has been considered as one of the counter measures. Occurrence of these 

natural activities in the eye makes iris recognition as one of the better biometrics to 

ensure liveness. 

 

Facial Scanning:  

 

Different facial recognition cameras use various technologies like local feature 

analysis, Eigenface evaluation and “learning” systems using neural networks. Some facial 

recognition cameras were easily spoofed with the help of high quality video clip of a 

registered person. To avoid such attacks, facial recognition cameras are provided with 

visual processing techniques that check “liveness”. These techniques detect liveness in 

the following ways: 

• It looks for reliable cues in input that indicate whether the source is two rather 

than three-dimensional.  
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• A “challenge response” mechanism is incorporated into software for physical 

access control. It asks the user to present a particular expression. If the requested 

change is detected then access is allowed otherwise not. 

 

• It tries to determine whether the head is moving against the background or not. 

[15] 

 

• It also observes for a degree of three-dimensionality. [15] 

 

• It also looks for the edge boundaries of a picture. [17] 

 

 

Hand Geometry:  

           

               This method measures distinct characteristics of the hands, which include 

external contour, internal lines, and geometry of hand, length and size of fingers, palms 

and fingerprints. This technology can be spoofed by making a good cast of the hand. 

In order to avoid this, it may be provided with a temperature sensor and also a sensor that 

could measure the flow of blood in the blood vessel pattern. These have not been 

implemented in any commercial system, to date. 
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1.4 Liveness Detection in Behavioral Biometric Techniques 

 

Speech Recognition: This method uses vocal characteristics such as mouth, nasal 

cavities, vocal tract that make the production of speech. High quality recordings may also 

pose a threat to any voice authentication system. Liveness tests can eliminate the threats 

to all these attacks. Liveness tests are performed in the following ways: 

 

• Some applications are installed, which verify callers by asking them to repeat 

randomly generated digits or phrases, or rotating challenge questions, ensuring 

that there is a live person on line. [17] 

 

• A lip tracking system is provided, which locates the lips in the video sequence 

and then perform feature extraction, such that lip dynamics helps speech 

recognition in addition to providing liveness testing. [18] 

 

DNA pattern, sweat gland identification [19], odor detection and ear recognition are other 

new biometric techniques. Among these, sweat gland recognition is believed to the best 

as it identifies the location of the sweat glands [19] on the ridge of the fingerprint and 

automatically checks for liveness as a part of the process. 

 

 

 

The objective of our research is adding the vitality detection to fingerprint scanners. In 

this thesis fingerprint scanners of different technologies were studied including optical, 
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capacitive AC, capacitive DC, electro-optical etc. The following section details previous 

work in the development of this perspiration detection. 

 

 
1.5 Perspiration Detection Algorithm 

The basis for our original method and details of the algorithm are discussed in 

detail in [4]. In brief, when in contact with the fingerprint sensor surface, live fingers, as 

opposed to cadaver or spoof, demonstrate a distinctive spatial moisture pattern, which 

evolves in time due to the physiological perspiration process.  Optical, electro-optical, 

and solid-state fingerprint sensors are sensitive to the skin’s moisture changes on the 

contacting ridges of the fingertip skin. These sensors can capture the time dependent, 

spatial pattern (Fig. 2).  
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Live: 

               

 
Spoof:  

      

  Cadaver: 

                 

Fig 1.2 Example fingerprint images from live (top), spoof (middle), and cadaver (bottom) 

fingers captured at 0, 2 and 5 seconds (left to right) after placement on the scanner. 

0 sec 2 sec 5 sec 

0 sec 2 sec 5 sec 

0 sec 2 sec 5 sec 
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To quantify the perspiration phenomenon, the algorithm maps a 2-dimensional 

fingerprint image to a "signal" which represents the gray level values along the ridges 

(Fig. 3). Variations in gray levels in the signal correspond to variations in moisture both 

statically (on one image) and dynamically (difference between consecutive images). The 

static feature measures variability in gray level along the ridges due to the presence of 

perspiration around the pores. The dynamic features quantify the temporal change of the 

ridge signal due to propagation of this moisture between pores in the initial image relative 

to image captures two (or five) seconds later.  

The basic steps performed in the algorithm are described as follows. More 

information about the initial algorithm and its calculation of seven measures is available 

in [4]. First, two fingerprint images are captured within a 2 (or 5) second interval 

(referred to as first and last capture). The results are enhanced by having the subjects 

wipe their fingers immediately before capture. The captured images are binarized and 

thinned to locate the ridges. Ridges that are not long enough to cover at least 2 pores are 

discarded. Using the thinned ridge locations as a mask, the gray levels of the original 

image underneath these ridge paths are recorded. The resulting signals for the first and 

the last capture are representative of the moisture level along the ridges for a given image 

in the time series.  Fig. 3 illustrates these steps by showing a portion of the ridge signals 

derived from the first and last captures from a live source along the mentioned mask. 
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Fig 1. 3 Ridge mask superimposed over the original grayscale fingerprint image (left) and 

resulting ridge signal for two image captures, 0 (solid) and 5 (dashed) seconds (right) 

 

Prior work established and obtained test results from one static and four dynamic 

measures [4]. The static measure (SM) uses the Fourier transform of the ridge signal from 

the first image capture and quantifies the existence of active pores through the 

corresponding spatial frequencies. The four dynamic measures quantify the specific 

ongoing temporal changes of the ridge signal intensity due to active perspiration. The 

first dynamic measure (DM1) is the total swing ratio of the first to last fingerprint signal. 

The second dynamic measure (DM2) is the growth ratio of the minimum to maximum of 

the first and last fingerprint signal. The third dynamic measure (DM3) is the mean of the 

differences of the first and last fingerprint signals, and the fourth dynamic measure (DM4) 

describes the percentage change between the standard deviations of the first and last 

fingerprint signals. 
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To increase the robustness of the classification, two additional measures were 

introduced later and are explained here. In the case that the fingerprint signal swings 

beyond a device’s dynamic range (i.e. the device enters cut-off or saturation due to 

extreme dryness/moisture), the information about the minimums and maximums and their 

rate of change, utilized in the second dynamic measure, will be lost. These two measures 

address this by taking advantage of the upper and lower cut off region lengths of the 

fingerprint signals and converting them into perspiration rates. The fifth dynamic 

measure (DM5) indicates how fast the low cut-off region of the ridge signal is 

disappearing, thus extracting further perspiration rate information from the low-cutoff 

region. The sixth dynamic measure (DM6) indicates how fast the high cut-off region of 

the ridge signal is appearing, thus extracting further perspiration rate information from 

the wet-saturation region. 

 

 

1.6 Thesis Overview: 

  This research presented in the thesis has two phases;   (i) spoofing fingerprint 

scanners and (ii) evaluation of a newly developed liveness method. This dissertation 

discusses the research in three parts.  

• Chapter 2: Scanners and Spoofing describes the scanners technology and their 

results of spoofing for different security levels. 

• Chapter 3: Data Collection details the methods used for collection of a larger, 

more diverse dataset which includes 33 live, 33 spoof (based on the 33 live 

individuals), and 14 cadaver fingers for each scanner. 
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• Chapter 4-5: Classification describes the classification techniques tested in order 

to separate live and spoof fingerprints and presents their performance with respect 

to each scanner and time window.  
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2 Scanners and Spoofing 

2.1 Scanners 
 

Many technologies including capacitive AC, capacitive DC, optical prism based, and 

optical non-prism based, thermal, pressure and ultrasonic, etc have been used to develop 

reliable fingerprint scanners.  

Scanners of interest were classified according to their basic capturing technology:  

1. Optical 

i. With prism 

ii. Without prism 

2. Capacitive 

i. DC 

ii. AC 

3. Other, Proprietary 

i. Tactile sense 

Other technologies like ultrasound were not considered relevant for this study. Since 

they are not likely to be sensitive to perspiration. 

 

Capacitive and optical fingerprint scanners are the most popular. Four types of 

fingerprint scanner technologies in this study:  capacitive DC (Precise Biometrics, 

100sc), electro-optical (Ethentica, Ethenticator USB 2500), optical (Secugen, EyeD 

hamster model no HFDUO1A) and capacitive AC (Authentec, AES 4000).  These 

systems were selected based on considerations of technology diversity, availability 

and flexibility of the software developer kit (SDK), availability of raw image through 
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SDK, reasonability of price and ability to readily access and construct a time series of 

sensor raw images. 

 

2.2 Basic Principle of Optical Scanner 

Optical scanners consists of charge coupled device (CCD) and an array of light 

emitting diodes. LED’s are used to illuminate the finger. When a finger is placed on 

the scanner, the CCD takes picture of the finger like camera and generates an 

electrical signal with the help of reflected light. This signal consists of light and dark 

pixels representing ridges and valleys in the finger respectively. This electrical signal 

is converted into a digital template with the help of analogue to digital converter. The 

image generated from optical scanner is inverted. [20] 

 

2.2 Basic Principle of Capacitive Scanner 

Capacitive scanners consist of 2 dimensional array of capacitors with a thin 

dielectric layer using the CMOS process. This dielectric layer protects the surface of 

sensor from moisture, chemicals, dirt, etc. Capacitors present in sensor act as a 

bottom plate and the finger acts as an upper capacitor plate. As the distance between 

the finger and sensor changes, the measured capacitance also changes with the ridges 

and valleys in fingerprint. This variation in capacitance generated through the change 

in voltage creates an analogue signal. This signal is converted into digital form with 

the help of analogue to digital Converter [20]. The dielectric constant plays very 

important role in capacitive sensor and is of great importance for the developed 

vitality detection algorithm. In brief, if moist skin is in touch with sensor then it will 
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measure higher capacitance because of high dielectric constant of perspiration and if 

the skin is dry then it will have lower capacitance. 
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 2.4 Scanner Details 

Precise Biometrics 100SC: 

This device is a DC capacitive based and it has a resolution of 500 dpi. A fingerprint 

data is captured with the help of a solid state capacitive sensing. The finger acts one 

plate of capacitor and surface of sensor acts as another plate, which consists of a 

silicon chip having an array of capacitors. These sensing plates form an 8-bit raster 

scanned image of a finger. This scanned image is converted into a template using 

“Precise Biomatch” minutia based algorithm [21]. It also has a provision of smart 

card. So it is possible to store the template at smart card to be used for verification 

purpose. The acquiring time is about 1 sec. This technology scans live and cadaver 

finger, and water based materials such as clay, play- doh, and wet rubber. It does not 

scan Polymer clay, dry rubber. Lastly, DC capacitive verifies live, cadaver fingers, 

clay, and play-doh made molds. 

The following are the observations made for Precise Biometrics 100SC device: 

• Perspiration is distinctly detectable.  

• First capture is patchy. 

• Perspiration progresses from pores 
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              LIVE IMAGE                                CADAVER IMAGE 

 

                          

 

 

      CLAY IMAGE                                       PLAYDOH IMAGE 

Figure 2.1 Images from different materials for Precise 
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Device: Authentec AES-4000. 

This device is AC capacitive based, and it has a resolution of 250-1000 dpi. It uses 

CMOS AC based technology called TruePrint, which scans the inner layer of the skin. 

It has a RF signal generator on a chip. The sensor is surrounded by a conductive 

surface, which sends a RF signal into the inner layer of skin. There are some 

variations in the signal as it follows through ridges and valleys. The sensor consists of 

array of antennas that receive this signal and uses it to generate a digital template. The 

software performs dynamic optimization by changing parameters of signal till an 

acceptable image is obtained. It uses cores, deltas, scars, ridge pattern and sweat 

glands of finger for creating templates [22]. The image obtained from the scanner is 

not raw; in other words it has been processed and hence, the images were not useful 

for processing by perspiration detection algorithm that requires a constant gray level 

over time. For this reason, the scanner was not used for data collection from cadavers 

but it was used for live data collection where it may be used in the future. In addition, 

the perspiration algorithm was not optimized for this device since the small 

perspiration changes in the grey level were masked by changes performed by the 

scanner. The acquiring time is 0.075 sec. AC capacitive device scans live and cadaver 

fingers, and water based materials such as clay, play-doh and does not scan wet 

rubber, dry rubber, and polymer clay. This technology verifies live, cadaver fingers, 

clay, and play-doh made molds. 

Following are the observations made for the Authentec AES4000 device:  

• Perspiration is not detectable 

• Output images are processed 
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• Changes contrast, brightness, etc 

                                 

 

        

         LIVE IMAGE                                        CADAVER IMAGE 

 

                                                       

                                                                                     

 

    CLAY IMAGE                                                  PLAYDOH IMAGE 

Figure 2.2 Images from different materials for Authentec 
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Device:  Secugen EyeD Hamster 

This device is optical based with a prism and has a resolution of 500 dpi. It uses 

Surface Enhanced Irregular reflection (SEIR) technology [23] along with the CMOS 

sensor to capture fingerprint images. A minutia based algorithm processes the 

fingerprint image and converts that into a digital template. The image acquisition time 

is about 1 sec. This optical device scans all i.e. live, cadaver, play-doh, clay, wet 

rubber, dry rubber, polymer, and clay and verifies live, cadaver fingers, clay and play-

doh made molds. 

 

The following are the observations made for Secugen EyeD Hamster device:  

• Perspiration is distinctly detectable 

• First capture is patchy 

• Progression from pores alongside ridges 
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         LIVE IMAGE                                           CADAVER IMAGE 

                                                                  

                             

 

             CLAY IMAGE                                       PLAYDOH IMAGE 

Figure 2.3 Images from different materials for Secugen 
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Device:  Ethentica Ethenticator 2500. 

This device is tactile sense based and has a resolution of 403 dpi. It is an electro 

optical (combination of glass camera and tactile sense polymer) fingerprint scanner. 

The Tactile sense polymer consists of several layers including a black coat layer for 

protecting the sensor from sunlight, a conductive layer for supplying current, and a 

light emitting layer for illuminating fingerprint image. After the image is illuminated, 

the glass camera detects the illumination and image is translated into digital template 

with the help of ASIC [24].  The image acquisition time is 0.6 sec. The electro-optical 

device scans live and cadaver fingers, water-based materials such as clay, play-doh, 

and wet rubber and does not scan non water-based materials such as polymer clay and 

dry rubber. The device verifies live, cadaver fingers, clay and play-doh made molds. 

The following are the observations made for Ethentica Ethenticator 2500 device:  

• Perspiration is not distinctly detectable. 

• First capture is partially patchy. 

• Some progression from pores alongside ridges. 
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               LIVE IMAGE                                          CADAVER IMAGE 

                                                         

                            

        CLAY IMAGE                                                     PLAYDOH IMAGE 

 

Figure 2.4 Images from different materials for Ethentica 
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2.5 Spoofing 
 

The process of defeating a biometric system through fake biometric sample is 

called spoofing.  

As we know there are various fingerprint spoofing techniques like gummy fingers, 

breathing on the fingerprint scanner to reactivate the latent fingerprint, using a bag of 

water on top of the latent fingerprint, dusting the latent fingerprint using graphite powder, 

stretching adhesive film over it and applying pressure, using halogen light along with 

latent fingerprint and graphite powder for intense backlighting for optical spoofing, and 

using wax casts and silicon molds.  

Our laboratory has developed a spoofing technique for testing the liveness 

detection algorithms. This method uses a mold made from dental impression materials 

and using playdoh and paper clay for function of casts. A detailed procedure is explained 

as follows. 
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2.6 Procedure for Creating Spoof Fingers 
 
The apparatus required is as follows: polyvinylsiloxane dental impression materials of 

type 3, polyvinylsiloxane dental impression materials of type 0, film-can, spiral nozzles,  

Extrude gun. 

                                     

The procedure is as follows:  

 

1. Take polyvinylsiloxane dental impression materials of type 3 (precision- 20 

micron) and 0 (lower precision, higher consistency and strength).           

 

                                              

 

 

2. Type 0 mix is put in a film-can to make outer supportive shell. 

3.   Push finger in paste and hold it that position for 5-6 minutes. 
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3. Take finger out of the paste and put type 3 rubber on subject’s hand. 

4. Put back finger in can and fill it up with more type 3 rubber to complete the mold. 

5. Hold the finger in still position. 

6. Remove the finger after 5-7 minutes. 

7.  Take out the mold. 

 

                                                  

 

8. Cast is made ready by cutting the back and sides of the mold properly. 

 

                                              



 30

9. Then use any water-based material to make the spoof of finger. 

10. Press material firmly into the mold and remove it gently. 

11. Spoof finger is prepared. 
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Device Summary Table 
 
 
Device/ 
Material 

Pers- 
-piration 
Seen?  

Cadaver 
 

Clay Play-doh Wet 
rubber 

Polymer 
clay 

Dry 
rubber 

Capture (C) 
/Verify (V) 

 C        V C      V  C       V  C       V C       V C       V 

Ethenticator 
(tactile 
sense) 

     Y Y        Y Y      Y Y       Y Y      N N      N  N      N 

Secugen 
(prism 
optical) 

     Y Y        Y Y      Y Y      Y Y     N Y       N Y      N 

Authentec 
(CMOS 
AC) 

     N Y        Y Y      Y Y      Y N     N N       N N      N 

Precise 
(Capacitive 
DC) 

     Y Y        Y Y      Y Y      Y Y     N N      N N      N 

 
C- capture                 V-verify              Blue- water based                Grey- Non water based 
 
 

Table 2.1 summarizes the types of materials that can be scanned by various fingerprint 

scanners. Playdoh and paper clay were chosen as the best for spoofing because these 

materials are moisture based and easily scanned by all scanners. As mentioned earlier in 

this chapter each scanner has different security levels and can be adjusted according to 

the application, we attempted to spoof the fingerprint scanner at all possible security 

levels. Using a single cast, preliminary spoofing tests were done at all security levels both 

with playdoh and paper based clay. Then, using 10 different casts each scanner was 

spoofed at the default security level. Spoofing in our laboratory included playdoh fingers, 

paper based clay and cadaver fingers.  

Play-doh spoofing included kneading of play-doh, pressing it firmly into the mold 

and removing it gently. After the spoof finger is prepared it is used to verify against an 

enrolled finger. Ten live subjects were enrolled, casts were created from each of the ten 

Table 2.1 
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subjects, and verification with a spoof finger was attempted six times per person. For 

cadaver spoofing a cadaver finger is enrolled and then verified against the same enrolled 

finger.  Fourteen cadaver fingers (from 4 subjects, of male age 41, female ages 55, 65, 

and 66) collected in collaboration with the Musculoskeletal Research Center (MSRC) at 

the West Virginia University Health Science Center were used for spoofing research. A 

detailed description of data collection of spoof fingers is given in Data Collection chapter. 

Protocols for these data collection are shown in the appendix section. 

Each scanner was tested with cadaver fingers with 10 attempts each finger. The 

results section in this chapter consists of following three graphs for each scanner.  

(i) Comparison of verification rate of live vs. playdoh vs. water based clay. Each 

experiment included 10 attempts per security level using a cast from the 

individual. 

(ii) Spoofing results of 10 different casts at default security level. Each cast was 

attempted for six times. Each bar in the graph denotes how many times out of 

six, what percentage of casts was verified. 

(iii) Cadaver Results  
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2.7 Spoofing Results of Different Scanners 
 
Figure 2.71: Spoofing Results for Capacitive AC Fingerprint Scanner 
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Play-Doh Results for Capacitive AC 
(10 subjects, 6 attempts default security level)
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Figure 2.71(i) 

Figure 2.71(ii) 
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Cadaver Results for Capacitive AC 
(5 subjects, 6 attempts default security level)
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Figure 2.72:  Spoofing Results for Capacitive DC Fingerprint Scanner:  

 
 

        

 Verification Rate for Capacitive DC 
(1 subject, 10 attempts all security levels)

0%

20%

40%

60%

80%

100%

1 2 3 4

Security Levels

A
cc

ep
ta

n
ce Live

Playdoh

Paper Clay

 

 

 

Figure 2.71(iii) 

Figure 2.72(i) 
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Play-Doh Results of Capacitive DC
 (10 subjects, 6 attempts default security level)
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Cadaver Results for Capacitive DC
(8 subjects, 6 attempts default security level)
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Figure 2.72(ii) 

Figure 2.72(iii) 
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Figure 2.73:  Spoofing Results of Electro-Optical Fingerprint Scanner: 
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Play-Doh Results of Electro-Optical 
(10 subjects,6 attempts default security level)
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Figure 2.73(i) 

Figure 2.73(ii) 
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Cadaver Results for Electro-Optical
(13 subjects, 6 attempts default security level)
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Figure 2.74:  Spoofing Results for Optical Fingerprint Scanner: 
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Figure 2.74(i) 
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Play-Doh Results for Optical
(10 subjects, 6 attempts default security level)
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Cadaver Results for Optical
(14 subjects, 6 attempts default security level)
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2.8 Spoofing Results Summary 
 

The results present the success rate of verification for live and spoof fingerprints 

for each device. Figures 2-71(i), 2.72(i), 2.73(i), 2.74(i) shows spoofing success of 

Playdoh and paper based clay fingers of a single cast at different security levels for 

different scanners. For capacitive AC spoofing success ranges from 80-90% for playdoh 

Figure 2.74(ii) 

Figure 2.74(iii) 
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fingers and from 40-60% for paper based clay, respectively for security levels from 1-3. 

For capacitive DC spoofing success ranges from 10-50% for playdoh fingers and 0% for 

paper based clay, respectively for security levels from 1-4. Since the spoofing success 

was 0% at 4th security level for playdoh, it was not done for remaining 5,6,and 7th 

security levels. For optical spoofing success ranges from 10-70% for playdoh fingers for 

security levels from 1-5. Spoofing the capacitive DC and optical scanners was very 

difficult using paper based clay. Spoofing success of paper based clay ranged from 10-

20% and 30-40% for capacitive DC and optical device respectively.  For electro-optical 

spoofing success is 30% for playdoh fingers and 20% for paper-based clay, for the only 

one security level available. 

 

Figures 2-71(ii), 2.72(ii), 2.73(ii), 2.74(ii) shows the spoofing rate of playdoh at 

default security levels for different scanners. Spoofing included 10 different casts with 

six attempts per cast. Spoofing success was determined by the ratio of the sum of the 

number of successful attempts for all casts to the sum of total number of attempts made 

for all casts. Denominator was constant as 60 (10 x 6) for all scanners. For capacitive AC 

spoofing success is 0.77 (46/60), for capacitive DC spoofing success is 0.13 (8/60), for 

Optical spoofing success is 0.63 (38/60) and for electro-optical spoofing success is 0.3 

(18/60). Over all, at least 3 of 10 subject casts were successful in spoofing all fingerprint 

scanners at least once. The spoofing success may vary as it is highly related to the quality 

of the cast and material used. 
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Initially five fingers of one cadaver subject were tested on different fingerprint 

scanners at all security levels. Approximately 90-100% success was achieved for all 

scanners. Figures 2-71(iii), 2.72(iii), 2.73(iii), 2.74(iii) show spoofing rate of cadaver at 

default security levels for different scanners. Cadaver spoofing included fourteen cadaver 

fingers (from 4 subjects, of male age 41, female ages 55, 65, and 66) collected in 

collaboration with the Musculoskeletal Research Center (MSRC) at the West Virginia 

University Health Science Center. Only the fingers that were able to enroll were 

considered for study. Six cadaver fingers were excluded from capacitive DC because of 

failure to enrollment. One cadaver finger was excluded from the electro-optical device 

because of technical difficulties with the scanner. Spoofing success was determined by 

the ratio of the sum of the number of successful attempts for all cadaver fingers to the 

sum of total number of attempts made for all cadaver fingers. For capacitive AC, cadaver 

study was discontinued because the images obtained from the device were not raw, so the 

images were not useful for processing by perspiration detection algorithm. Also, during 

the cadaver study of optical scanner only five attempts were made for one of the cadaver 

subjects. Hence the total number of attempts for optical is 83. The spoofing success is 

0.86 (71/83) for optical, spoofing success is 0.90 (43/48) for capacitive DC and the 

spoofing success is 0.40 (34/84) for electro-optical.  

 

Conclusion:  

For all technologies at default security level, at least 3 of 10 subject’s casts were 

of sufficient quality to spoof fingerprint devices at least once. Results showed that the 

successful spoofing rate for playdoh varied from 13-77% when verified against an 
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enrolled live finger, depending on the device technology (optical, electro-optical, 

capacitive AC, and capacitive DC).  Whereas for a single cast at all security levels of 

scanners play-doh and water-based clay results varied from 45-90% and 10-90%, 

respectively, when verified against an enrolled live finger. Spoofing success rate for 

cadaver fingers varied from 40-90% when verified against an enrolled cadaver finger. 

Therefore, water-based casting materials and cadaver fingers are able to be scanned and 

verified successfully for most fingerprint scanner technologies 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 



 42

3. Data Collection Procedure 

 
 
3.1 Data Collection 

In order to check the robustness of the perspiration detection algorithm, a large, 

more diverse dataset was collected. In collection of the dataset, several age groups (11 

people between ages 20-30 years, 9 people between 30-40, 7 people between 40-50, and 

6 people greater than 50), ethnicities (Asian-Indian, Caucasian, Middle Eastern), and 

approximately equal numbers of men and women were chosen.  The dataset presents a 

diverse set of fingers and hence there may be some potential problems (dry finger, 

saturated finger, ridge variations, etc.). For each device, fingerprint images were collected 

from live, spoof, and cadaver fingers. Protocols for data collection from the subjects were 

followed that were approved by the West Virginia University Institutional Review Board 

(IRB) (HS#14517 and HS#15322).  Our data set consists of 73-75 fingerprints from live, 

cadaver and spoof. As shown in the following chart, the data collection procedure is 

divided into three steps: live collection, spoof collection and cadaver collection. For each 

subject and device, fingerprint images for 20 seconds were collected using customized 

programs developed using manufacturer-provided SDK functions.  The images utilized 

are the first image and images from approximately two seconds and five seconds after the 

start of the time-series collection.  Spoof fingerprint images were generated using finger 

casts created from thirty subjects who participated in the fingerprint study. 

 

 

 

 

 



 43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Data Collection chart 
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3.11 Live Collection 

In this particular step fingerprints are collected from different groups of people of 

different age, sex and ethnicity. A protocol was developed to follow this procedure. The 

procedure is as follows: 

1. Take the fingerprint scanner and wipe it. 

2. Ask the subject to clean and dry the finger.  

3. Enroll subject’s finger. 

      4. If its enrolled in first attempt go to the verification stage; else attempt to enroll for 

5 times. It is still not enrolled, go to the next fingerprint scanner. 

      5. During the enrollment save the enrolled image and template. (performed by the 

developed software) 

      6. After enrollment, ask the subject to verify his finger for six times. During 

verification, the default match score is used and the verified image and template are 

saved.  

      7. Wipe the fingerprint scanner with a tissue paper or cloth. 

      8. Ask the subject to clean and wipe his/her finger before taking a 20 sec capture. 

      9. During the capture make sure that capture and placement of finger both take place 

simultaneously. 

     10. Repeat the above procedure for three different scanners. 

     11. After that go to the next subject. 
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3.12 Spoof Collection 
 

A protocol was developed to collect spoof data. Creation of the cast was described in 

section 2.6  

1. Take the fingerprint scanner and wipe it. 

2. Take the playdoh and finger cast. 

      3.  Squeeze the playdoh in the finger cast and remove it properly 

4.Playdoh finger is gently placed on the fingerprint scanner. 

      5. Scan the playdoh finger and take 20 sec capture of it. 

      6. If the capture is not good, knead the playdoh and repeat steps 3,4 and 5.  

      7. If capture is good, follow the above procedure for another scanner. 

      8. After capture for all scanners are complete, go to next playdoh finger and repeat 

the same procedure. 

     9. Verification was only done for a small set of spoof fingers. 

 

3.13 Cadaver Collection   

Protocol for cadaver collection is similar to live collection except that instead of a live 

finger, a cadaver finger was used. Flow charts for protocols of live, spoof and cadaver 

data collection are present in the appendix section.  
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3.2 Data Collection Summary  
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Figure 3.2 Failure to Enroll Rate 

 

Figure 3.2 presents failure to enrollment rate for live and cadaver subjects. One live 

subject and 6 cadaver subjects were unable to enroll for capacitive DC device. Only one 

live subject was unable to enroll for electro-optical device. Cadaver study was 

discontinued for capacitive AC, as it was not producing raw images, therefore only 5 

cadaver subjects were performed. Live collection was continued with a view to utilize the 

collected information in future. Two live subjects were unable to enroll for capacitive AC. 

For optical device all live and cadaver subjects were able to enroll. Thirty-three 

volunteers were solicited and represented a wide range of ages (20-60 years), ethnicities, 

and both sexes (17 men and 16 women). Two live subjects were excluded in two devices 

and three in another device due to following reasons: (i) inability to enroll and (ii) a 

technical error.  Three subjects in the spoof category were excluded because a spoof cast 

was not created due to subject time constraints or quality of spoof cast.   
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Table 3.1 summarizes the number of subjects used for each device and category.  

 Live Spoof Cadaver 

Capacitive 

DC 
31 30 8 

Electro-

Optical
 

30 30 13 

Optical
 

30 30 14 
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4. Classification-I 

 
4.1 Classification 
 

Classification is an integral part in the various research areas like biometrics, 

medicine and computer science. Different methods of data collection create large and 

complicated data sets such that it is difficult to extract valuable information using simple 

calculations. Hence the aim of the classification is to interpret the data, predict the data 

and then classify it [25].  Basically classification comes into picture, when there is a 

scenario of more or less scattered objects over a large range of variation, falling into 

several groups. There are many classification procedures like artificial neural networks, 

cluster analysis, classification trees, discriminant analysis, etc. Three classification 

methods were used in this research:  neural networks, discriminant analysis, and One R. 

Classification was performed separately for each time window (2 and 5 seconds). 

Classification of images is divided into live and spoofs where spoof fingerprint images 

include images from Play-Doh spoofs and cadavers. With approximately 75 images for 

each scanner, 50% of the data was used as a training set and the remaining 50% as the 

test set for classification. 

 

4.2 Introduction of Discriminant Analysis 
 

This chapter deals with discriminant analysis and stepwise discriminant analysis 

in detail and describes briefly statistical analysis. Discriminant analysis is a classification 

technique used for classifying observations in any of the two groups on the basis of 

measurements on independent variables. It is also used for interpreting the relation 

between variables, predicting the important variables, and solving critical research 
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problems. Discriminant analysis has several applications in various areas like pattern 

recognition, psychology, meteorology, remote sensing, etc. 

A linear discriminant function is presented in the following way: 

L1 = Constant + X1w1 + X2w2 + X3w3 + X4w4 +X5w5................Xnwn. 

Where X1, X2, X3, X4, X5, ……Xn   are the variables and w1, w2, w3, w4, w5, …… wn  

are their coefficients respectively.  

Depending on the number of groups, discriminant analysis is used to generate 

multiple functions. Number of functions generated is one less than the number of groups. 

There is no limitation on the number of discriminating variables as long as the overall 

number of cases in a group exceeds the number of discriminating variables by two. 

Another condition for discriminant analysis is that the number of cases in a group should 

exceed the number of discriminating variables by greater than two [26].  

As mentioned in the previous chapter that seven measures are generated from the 

perspiration-based algorithm. More information about the perspiration based algorithm 

and the seven measures generated from the algorithm can be found in ref [4]. One static 

and six dynamic measures are used as features for classification of images. These 

measures were obtained from two different time windows of two and five seconds. 

 Discriminant functions are used for the classification of two or multiple groups. 

Since fingerprint images are to be classified into two groups live and spoof, this case is a 

two-group problem. Discriminant analysis was performed with R [27] and SAS [28]. 

There are certain assumptions required for better performance of discriminant analysis. 
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Assumptions are as follows: 

 

•  Variables must have a joint multivariate normal distribution. 

 

• In the two groups, variance-covariance matrixes of variables are equal. 

 

• Two perfectly correlated variables should not be used at the same time. 

 

Discriminant analysis uses pooled sample variance-covariance matrix of variables 

for generating a linear combination of variables called discriminant function [29]. 

Mathematical part of deriving discriminant function for each scanner for each time 

window is explained later in chapter. In our case as seven measures (1 static measure, 6 

dynamic measures) are present, so first stepwise discriminant analysis was performed 

using stepwise selection to determine the variables that have meaningful contribution. 

The Normal quantile plots using R, a statistics software tool, verified normality of the 

individual variables.   

 

4.3 Stepwise Discriminant Analysis 
 

Stepwise discrimination process is a variable selection method that repeats the 

process of adding and removing the variable at each step. Stepwise discrimination can 

perform analysis using backward elimination, forward selection, or stepwise selection of 

the variables. In this research all methods of stepwise selection were performed and same 

subset of variables was obtained for each scanner and time window except for Ethentica 5 
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sec. For Ethentica 5 sec window an extra variable was selected by forward selection 

when compared to stepwise selection, but there was not a major change in its 

classification rate. In stepwise selection there is a chance of excluding some important 

variables in the process, as it does not consider the relationship between the variables that 

are not selected. Hence, stepwise selection may not build the best model. A procedure for 

performing discriminant analysis of data having several variables includes stepwise 

discrimination. It consists of the following two steps: 

1) Perform stepwise discrimination process for the entire data to determine the 

important variables or the best subset of variables. 

2) Perform the discriminant analysis and generate linear discriminant function using 

those important variables. 

  

Forward selection starts with zero variables in the process. At each step, based on 

the value of F test a variable having significant contribution is entered. The forward 

selection process stops if the unselected variables do not meet the entry criterion. 

Backward elimination starts with all the independent variables in the model. At 

each step, based on the value of F test a variable having least contribution to the 

discrimination model is dropped.  The backward elimination process stops if all the 

remaining variables satisfy the criteria to stay in the model. 

 

Stepwise selection procedure is the combination of forward selection and 

backward elimination. It starts similar to forward selection with none of the variables in 

the model. The model is examined at each step. The variable having the least contribution 
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as measured by F test is removed and the variable, which is not present in the model but 

having significant contribution, as measured by F test is entered. Basically it uses ‘F to 

enter and F to remove’ process. The stepwise selection process stops, if all the variables 

in the model satisfy the criterion to stay and none of the other meets the criterion to enter. 

 For any selection process, only one variable can be entered into the model at each step. 

This selection process does not take into consideration the relationship between the 

variables that were not chosen. Stepwise selection process picks up a subset of powerful 

variables from the total set of variables to construct a good discrimination model for the 

best classification rate. There are many selection criteria for stepwise selection like 

 

• Using significant F values from covariance analysis in which selected variables 

act as covariates and the variables taken under consideration act as dependent 

variable. It is also called F test. 

 

• Using the squared partial correlation of variables for selecting the variable.  

       

      Both criteria may choose different number of variables but they make decision in the 

same order. The tolerance test is also required in selection process [28]. 

 

 

Initially univariate F values are computed for each variable assuming each 

variable as the only predictor. At step 1 the variable with the largest F value is entered. 

After a variable is entered, the wilks’ lamda, partial F values and tolerance levels for 
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all variables are computed. From this step partial F values are used for selecting 

important predictors. Partial F values are covariance –controlled and are derived from 

an analysis of covariance. The selected variables in model act as covariates and the 

variable under consideration acts as a dependent variable. Univariate F values neglect 

the correlation among the variables. Hence partial F values are used for selecting 

important predictors. 

At the second step, F value of the already selected variable is computed and tested 

for removal before the entry of new variable. If it satisfies the criteria to stay then it is 

used as a covariate in the covariance analysis for selecting the variable. 

Then among the variables not in the model, the variable with the largest partial F 

value is selected.  

In the next step, each of the two variables in the model is tested for the removal 

and then the next variable with largest F value is selected and so on. Similarly, 

consecutive steps add variables based on their partial F values. This process continues 

until all variables in the model satisfy the criteria to stay and the variables not in the 

model fail to satisfy the entry criteria.  Normally liberal significance levels (α-values) 

in the range of 0.10 to 0.25 are used for higher chance of retaining important 

variables in the discrimination model. In this case default value of α equal to 0.15 

was used [28]. 
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For this particular criterion, if the sample size is larger, a larger number of            

variables is    selected. This particular F value condition is applied only to the variables      

that are in the discriminant function at a given step not for all the variables. At the end of 

stepwise procedure a summary is computed which consists of the variables entered or 

removed and their respective F ratios. 

    The table summarizes the list of variables selected by stepwise procedure for each 

scanner for each time window. 

 

Scanners 2 Sec Time Window 5 Sec Time Window 

Electro-Optical SM, DM2, DM6 SM, DM2, DM4, DM5 

Capacitive DC SM, DM2, DM4 SM, DM2, DM6 

Optical SM, DM2 SM, DM3, DM6 

 

Using the above stepwise selected variables, discriminant analysis was also performed.  
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4.4 Mathematical Description of Discriminant Analysis  
 

Discriminant analysis uses sample pooled variance covariance matrix of both the 

groups to generate coefficients for the discriminant function. A pooled sample variance 

covariance matrix is calculated using matrices of two groups in its deviation form [29]. 

Xld= X1-⎯X1,  

Xsd= X2-⎯X2  

Where Xld and Xsd are the live and spoof vectors in its deviation form, 

X1 is the vector containing seven variables of all live subjects. 

X2 is the vector containing seven variables of all spoof (spoof + cadaver) subjects. 

Matrix in deviation form is calculated by subtracting the mean vector of all the 

variables from the vector containing the original values of variables. A covariance matrix 

for each group is obtained by multiplying the transpose of the vector in deviation form 

with the matrix in the deviation form i.e. x1′ *x1. Similarly a covariance matrix for 

another group is calculated i.e. x2′ *x2. Then a pooled variance covariance matrix is 

calculated using the following formula: 

 

 

 

 

 

 

 

 

S= (1/ (n1+n2-2)) (XLd'* XLd + Xsd'* Xsd) 
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Matrix containing the coefficients of the discriminant function is calculated by 

multiplying pooled sample variance covariance matrix with the difference of the mean 

matrices of the two groups. The formula [29] used for generating coefficient matrix is 

                                   
  where         
   ∧  

  b′ is a co-efficient matrix   
                                                                                                                                                        
⎯X1 is a mean vector of seven variables of live group 
                  
⎯X2

 is a mean vector of seven variables of spoof group 
 
 
4.5 Discriminant Functions 
 
Following are the discriminant functions obtained for each scanner for each time window 
using all seven variables. 
 
Ethentica 2sec 

DFEs2s = -3.6952 + 0.87092SM−0.1049DM1−0.01444DM2 −2.37793DM3 +7.8126DM4 

+ 0.02042 DM5 − 0.2475DM6  

Ethentica 5sec 

DFEs5s = -6.3216 + 1.12536SM + 0.48089DM1−0.0468DM2−2.43311DM3 

+9.9654DM4 + 1.02976 DM5 − 0.03711DM6  

Precise 2sec 

DFp2s = -3.94646 + 0.34497SM + 0.04036DM1 − 0.03188DM2 + 2.21613DM3 − 

10.02131DM4 + 0.00482 DM5 − 0.10794DM6  
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Precise 5sec 

DFp5s = 0.56809 + 0.34208SM + 0.27985DM1 − 0.02082DM2 − 2.6852DM3 

+5.28757DM4 − 0.00357 DM5 − 0.50822DM6  

Secugen 2sec 

DFs2s = -10.30355 + 0.52716SM + 2.12812DM1 − 0.03003DM2 + 1.36177DM3 

+2.57626DM4 − 0.01733 DM5 + 0.26927DM6  

Secugen 5sec 

DFs5s = -13.72569 + 0.61328SM + 2.54566DM1 − 0.0823DM2 + 2.48303DM3 

+0.79854DM4 − 0.02073 DM5 + 0.67942DM6  

 

Following are the discriminant functions obtained for each scanner for each time window 

using important variables obtained from stepwise selection process. 

 

Ethentica 2sec 

DFEs2s = -5.01574 + 0.73007SM − 0.05042DM2 − 0.12587DM6  

Ethentica 5sec 

DFEs5s = -7.99049 + 0.84978SM − 0.07184DM2 + 5.17942DM4 + 0.77126 DM5  

Precise 2sec 

DFps2s = -2.12902 + 0.35855SM − 0.01646DM2 − 9.23935DM4  

Precise 5sec 

DFps5s = -1.75715 + 0.34309SM − 0.02616DM2 − 0.36642DM6  

Secugen 2sec 

DFss2s = -5.9192 + 0.49833SM − 0.0171574DM2  
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Secugen 5sec 
 
DFss5s = -7.17108 + 0.58774SM − 1.04406DM3 + 0.49991DM6  
 
4.6 Classification Rule 
 

  Discriminant function obeys a classification rule for assigning observations or 

individuals (measures in our case) in one of the two groups (live or spoof).  

If ‘x’ is any vector consisting of seven measures obtained from a pair of fingerprint 

images. If ⎯x1 is a mean matrix of seven variables of live group and ⎯x2 is a mean matrix 

of seven variables of spoof group, then the classification rule [29] is as follows:  

 x will be classified into live if  

     
                   

and it will be classified into spoof if                                            
 

     
 
                        ∧  

  Where    b′ is a co-efficient matrix   
                    

Discriminant analysis was performed for all seven variables and also for the variables 

obtained from stepwise selection process.  
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4.7 Discriminant Analysis Results 
 

Figs 4.11 and 4.12 present the classification rate for live and spoof fingerprints for 

each device and time window using discriminant analysis. The figures compare 

discriminant analysis using all variables and variables selected by stepwise analysis.  The 

following table summarizes the classification results achieved from two sets of variables. 

Labels: 

P2S-precise 2 sec              P5S-precise 5 sec 

E2S-Ethentica 2 sec          E5S- Ethentica 5 sec 

S2S-Secugen 5 sec          S5S- Secugen 5 sec 
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Figure 4.11 
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Comparison of discriminant and  stepwise 
discriminant analysis (spoof)
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Figures 4.11 and 4.12 Comparison of discriminant and stepwise discriminant results for 
live and spoof 

 
Table 4.1 Live Classification Table 
 
Scanners Discriminant analysis 

results using all variables 
Discriminant analysis 
results using important 
variables 

P2S 86.6% 80% 

P5S 93.3% 100% 

E2S 66.6% 66.6% 

E5S 93.3% 93.3% 

S2S 73.3% 73.3% 

S5S 80% 73.3% 

 

 

 

 

 

Figure 4.12 
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Table 4.12 Spoof Classification Rate 
 
Scanners Discriminant analysis 

results using all variables 
Discriminant analysis 
results using important 
variables 

P2S 94.7% 94.7% 

P5S 89.4% 89.4% 

E2S 95.2% 95.2% 

E5S 100% 100% 

S2S 95.4% 100% 

S5S 95.4% 100% 

 

      

               

For capacitive DC device when variables chosen by stepwise were used for 

discriminant analysis, the classification rate for live fingers decreased slightly from 

86.667% to 80% for 2 sec window and increased from 93.33% to 100% for 5 sec window. 

For the electro-optical device, classification rate for live fingers remained same for 2 sec 

and 5 sec window for both sets of variables. For optical device when variables selected 

by stepwise were used for discriminant analysis, classification rate for live fingers 

remained same for 2 sec window but for 5 sec window decreased slightly from 80% to 

73.33%.  

During the application of stepwise variables the classification rate for spoof 

fingerprints remained same for each device and time window except for optical device.  

For the optical device, classification rate for spoof fingers increased from 95.45% to 

100% for both 2 sec and 5 sec time windows. Over all about 90% accuracy was achieved. 

It is expected that with more images, improved classification results can be accomplished 
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4.8 Statistical Analysis  
 
 

Additionally, statistical analysis was also performed for understanding the 

importance of existing measures. Following figures (4.3) show the mean of each feature 

for live and spoof (which includes both cadaver and Play-doh fingerprint images) for 

each device.   
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Mean of Features for Optical
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Figure 4.3 Plot of mean of features for capacitive DC, electro-optical and optical. 

 

For some features the mean appears graphically different between groups.  

Further exploratory statistical analysis was performed which showed that the means were 

statistically different (p<0.01) for DM2 and DM5 for capacitive DC, SM, DM2, and 

DM6 for electro-optical, and SM, DM2 and DM5 for optical (as indicated by a *).  The 

statistical analysis showed different features having relevance for difference devices. 
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5. Classification-II 

As mentioned earlier, classification of the images performed using different 

classification methods. Three classification methods were used: neural networks, 

discriminant analysis, and One R.  Discriminant analysis and its results are explained in 

the previous chapter. This chapter briefly explains other two classification methods, its 

results and presents the comparison of the classification results of all the three methods. 

One R and neural network classification was performed using a software tool called 

WEKA (Waikato Environment for Knowledge Analysis)  

 

5.1 WEKA 
 
            WEKA (Waikato Environment for Knowledge Analysis) is a freely available 

software tool on the internet developed at the University of Waikato in New Zealand. 

This system is java based and can be used on different computer platforms [30]. It can be 

used for various purposes like classification, regression, pre-processing, visualization, 

clustering etc. It provides different classification techniques for large data sets. WEKA 

concentrates mainly on classifiers and filter algorithms. An input data should be in ARFF 

format or CSV format and saved in data folder of Weka. The data must have a proper 

declaration of variables and class. Once the file is in required format, it can be fed to 

Weka for processing. Weka can also be used for implementing our own programs. 
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5.2 Neural Network 
 

Neural Networks are used for regression, pattern recognition and classification. 

They have many applications like image recognition, industrial robotics, aeronautics, 

data mining and medical imaging. Neural networks consist of interconnected 

processing elements called neurons. These neurons respond in parallel to the given set 

of inputs. It is an adaptable system in which, given the set of inputs and related 

desired outputs, then the network determines the input-output relationship and builds 

a model with minimum error.  Output is determined by the organizations and weights 

of these connections. Training algorithms use the gradient of the performance 

function for arrangement of weights. This gradient is determined by back propagation, 

a technique to perform backward calculations through the network. For neural 

network classification, a back propagation algorithm (with momentum 0.2) was used 

to train the data set with the hidden layer of 4 nodes derived from (attributes + 

groups)/2) (where there are seven attributes and two groups). Other default 

specifications include momentum of 0.2, a learning rate of 0.3, nominal to binary 

filter, and validation threshold of 20 and are shown in the following figure. 
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Neural Network Results (2 sec)
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Fig 5.1: Neural Network results for all scanners for 2 sec time window 

 

 

Neural Network Results (5 sec)
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Fig 5.2: Neural Network results for all scanners for 5 sec time window 

 
 

Figs. 5.1 and 5.2 present the neural network classification rate for live and spoof 

fingerprints for each device and time window. For the electro-optical device from 2 sec to 

5 sec window, classification rate of live increased from 62.5% to 87.5%, classification 
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rate of spoof increased from 81% to 100%. For the capacitive DC device, there is no 

change in classification rates of live and spoof with respect to both time windows.  The 

classification rate of live and spoof remained 86.7% and 95% for both time windows 

respectively. For optical device, from 2sec to 5 sec window, classification rate of live 

increased from 87.5%-100% and classification rate of spoof decreased little bit from 

86.40% to 81.80%. 

 

5.3 One R 
 

One R is the most simple classification tree method. It uses ‘one-rule’ to form a 

single level decision tree [31]. The rule tests each variable and different threshold. It 

enumerates how frequently each class appears for each value of the variable. Then it 

determines the most frequent class, creates the rule, and assigns a class for that particular 

value of variable. Likewise, it forms different rules for different variable values and 

computes the error rate for each rule on the training data. Finally it selects the rule with 

the smallest error rate to classify the groups. For One R, a minimum bucket size has to be 

specified. A bucket is ‘a minimum number of instances in an interval’. In order to avoid 

the trouble of overfitting the minimal size of bucket, One R classifier with minimum 

bucket size of 6 (default) was used in our case. One R chose the static measure to form a 

rule for all scanners. 
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The following table shows the threshold values of static measure used for live and 

spoof classification of different scanners and different time windows. 

 

Scanners             2 sec            5 sec 

Ethentica SM < 7.27 spoof 

SM ≥ 7.27 live  

SM < 7.72 spoof 

SM ≥ 7.72 live  

Precise SM < 6.28 spoof 

SM ≥ 6.28 live 

SM < 7.75 spoof 

SM ≥ 7.75 live  

Secugen SM < 11.98 spoof 

SM ≥ 11.98 live 

SM < 9.35 spoof 

SM ≥ 9.35 live 

 
Table 5.1 
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One R Results (2 sec)
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Fig 5.3: One R results for all scanners for 2 sec time window 

 

One R Results (5 sec)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Scanners

C
la

ss
if

ic
at

io
n

 R
at

e

Live (5 sec)

Spoof (5 sec)

Electro-optical Capacitive DC Optical

 

Fig 5.4: One R results for all scanners for 5 sec time window 

 
 

Figs. 5.3 and 5.4 present One R classification rate for live and spoof fingerprints 

for each device and time window. For the electro-optical device, from 2 sec to 5 sec 

window, the classification rate of live remained the same 81.3%, and the classification 

rate of spoof decreased from 100% to 95.20%. For the capacitive DC device, 
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classification rate of live remained same 93.30% for both time windows but classification 

rate of spoof increased from 80% to 90%. For the optical device from 2 sec to 5 sec 

window, the classification rate of live increased from 93.80% to 100%, and the 

classification rate of spoof increased from 86.40 to 90.90%. 

 
 
5.4 Classification Summary  
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Figure 5.5: Classification results for capacitive DC using all three classification methods 
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Classification Results for Electro-optical
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Figure 5.6 Classification results for electro-optical using all three classification methods 

 
 

Classification Results for Optical
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Figure 5.7 Classification results for optical using all three classification methods 
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Figures 5.5, 5.6 and 5.7 present the comparison of the classification results of the 

three methods for each device and time window. The capacitive DC device demonstrates 

between 86.67% to 93.3% classification for live fingers and 80 to 95% for spoof fingers, 

depending on the method and time window. There is little difference in the results for two 

seconds as compared to five seconds. For the electro-optical device, 62.5 to 93.3% 

classification is achieved for live and 81 to 100% for spoof.  There is a modest 

improvement in live classification from two to five seconds (62.5-81.3% to 81.3-93.3%), 

with a smaller increase in spoof classification (81-100% to 95.2-100%). For optical, 

classification ranged from 73.3-100% for live and 85.7-95.4% for spoof with a small 

change for live classification from two to five seconds (73.3. -93.8. % to 80. -100%). 
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6. Conclusion 

 
 
 
6.1 Discussion and Future Work 
 
 

Increasing security at the sensor would definitely force hackers to find another 

weak point. Any material or data used to spoof biometric device may have non-live 

characteristics, but so long as it can replace the feature set which is responsible for 

liveness, the system is vulnerable. Although liveness detection in biometric devices is not 

entirely foolproof but it will make devices more secure, reliable and effective. For 

fingerprint recognition, several liveness methods including temperature, pulse, pulse 

oximetry, and electrocardiogram have been suggested [2], [7]-[12].  The difficulty with 

these measurements is that they require hardware in addition to the fingerprint scanner to 

capture these liveness features.  This is expensive, bulky, and the liveness technique may 

be spoofed with a live finger presented in combination with a spoof.  Furthermore, 

proposed liveness methods have not been rigorously tested and evaluated with relation to 

impact on statistical measurements like false reject and false accept ratios, user 

acceptance, universality, and collectability. 

The research presented here suggests a new method, which detects the 

perspiration process through a time-series of fingerprint images measured directly from 

the scanner itself. The classifiers achieved approximately 90% classification rate for all 

scanners, with reduced time window and more comprehensive training and test sets.  

Using image processing and pattern recognition, fingerprint images captured from live 

fingers can be separated from those captured from spoof or dismembered fingers.  This 
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method relies solely on the underlying fingerprint scanner with the addition of software-

based image processing and pattern recognition to make the liveness decision.  This 

method is more difficult to spoof, since the spoof would have to replicate perspiration 

emanating from the pores and spreading across the ridges. Through this thesis and other 

published work, this method is being evaluated in terms of statistical performance and 

other biometric characteristics for its appropriateness to be used widely in combination 

with fingerprint authentication.  

 

The initial version of the algorithm was performed for a DC capacitance scanner 

with a five second window for eighteen subjects (ages 20-45) [4].  This study expands 

this research to consider (1) a variety of technologies, (2) a large, more diverse dataset, 

and (3) a shorter time window. First, results demonstrate that using standard classification 

tools, algorithms can be created to separate live and spoof/cadaver fingerprint images for 

optical and electro-optical technologies, in addition to DC capacitance.  Second, in 

collection of the dataset, a variety of age groups (11 people between ages 20-30 years, 9 

people between 30-40, 7 people between 40-50, and 6 people greater than 50), ethnicities 

(Asian-Indian, Caucasian), and approximately equal numbers of men and women were 

chosen.  While in this small dataset, it is impossible to consider these groups separately, 

the dataset presents a diverse set of fingers and therefore begins to consider potential 

problems (dry finger, saturated finger, ridge variations, etc.).  Even with this diversity, we 

were able to achieve approximately 90% classification considering standard pattern 

recognition algorithms and a common set of features.  Third, the original algorithm 

utilized a five-second-time window to show feasibility of the concept.  The latest results 
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demonstrate that a shorter time window of two seconds achieves similar classification 

results. It is also noted that the emergence from the data of device dependent feature sets 

are potential avenue for further improvement in this vitality based countermeasure to 

fingerprint system spoofing. 

The classification performed here used a standard set of seven features and 

standard classification routines: neural networks, One R (selection of the best single 

measure and threshold), and discriminant analysis.  Training was performed with images  

from 15 live subjects and 23 spoof samples.  Training was separate for each device and 

time window.  A device-independent algorithm was not developed due to the large 

differences in the measurements across devices, which is shown by the statistical analysis 

of different features having relevance for difference devices. Between the statistical 

analysis and classification results, a device-specific approach would most likely be the 

most successful for classification. That is, different measures have varying effectiveness 

for different technologies.  

 

The future direction of this research will be   (i) to further explore the features and 

determine the correlation between existing features (ii) to attempt to develop new 

additional features using multi resolution analysis, image processing and wavelet based 

methods for improving the classification rate (iii) to develop new spoof techniques using 

base materials like wax, moldable silica, wheat floor and to apply them for verifying the 

robustness of algorithm to variety of spoof cases (iv) to apply different classification 

techniques like decision trees, regression analysis for analyzing the importance of 



 78

existing and newly extracted features and determining the best subset of features for 

classification. 

While this study begins to address some of the limitations of the original work, 

more data is needed for further verify that this phenomenon is applicable across the 

population. Potentially, subjects having dry and overly moist fingers may receive a false 

rejection.  Environmental testing will be necessary to demonstrate applicability to a wide 

variety of settings. While reasonable classification is achieved for a variety of devices 

using a common set of features, it is necessary to consider each device separately to expand 

and fine-tune the features and algorithms for each device.  This could potentially improve 

classification performance. Also, features are averaged across the entire fingerprint image.  

Targeting areas of the image that are changing due to perspiration may improve the 

separation of live and spoof measurement.  Lastly, in this method the fingerprint image is 

converted to a ridge signal. While effective in pinpointing the parts of the image which are 

most effected by perspiration, image processing techniques may provide enhanced features, 

particularly considering the entire area around the pores, and therefore improving 

classification. 
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6.2 Conclusion 
 

This research describes spoofing results of different scanners, data collection 

procedure, design and implementation of data collection protocols, a unique method to 

determine liveness through measurement of perspiration process in the finger and 

application of different classification techniques and their results. The perspiration based 

liveness method is totally software based and no additional hardware is required. Results 

are presented which improve upon past reports by decreasing the time needed to make the 

decision and demonstrating its applicability to a variety of fingerprint sensor technologies. 

A diverse subject population was tested and ~90% classification rate for all scanners was 

achieved. Application of this liveness method can increase the difficulty of spoof attacks 

for fingerprint scanners. 
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Appendix 

Protocols: Following are the protocols designed for live collection, Spoof Collection and 

Cadaver Collection respectively.    

1.1 Protocol for Live Scanning 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                        

Get 
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Get finger 

Clean and Dry 
the finger 
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Is image 
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? 

Count=1 

Is 
Count < 5? 

Count =Count +1 
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No 

   Start Scan 

   Start 

4 

 Save 
Enrolled Template 

Login failure 

2 3 
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1.2 Protocol for Spoof Capture 
 
 
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                        

  Get Scanner 

Get Playdoh 
& finger Cast 

Place the playdoh 
finger gently on 
the fingerprint 

2 
   Squeeze the 
playdoh inside the 
finger cast and 
remove it 

   Start 

3 

1 
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1.3 Protocol for Cadaver Capture 
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                        

Get scanner 

Get Cadaver 
finger 

Clean and Dry 
the finger 

Enrollment 

Is image 
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Count =Count +1 

Yes 

Yes 

3 

No 

   Start Scan 

   Start 

4 

 Save 
Enrolled Template 

2 

Login failure 



 85

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

     Is image   
verified? 

Is 
another 
scanner 
available

Verification 

2 

Save 
verified 
template 

Yes 

Count=1 

Yes / No 

No 

       Stop 

4 
Yes 

No 

3 

Clean, dry or wet the 
cadaver finger 
depending on the 
finger condition 

 Scan cadaver finger 

Capture for 
20 Secs 

5 

Count = Count +1 

Is 
Count = 6 

5 



 86

References: 
 
1. N. K. Ratha, “Enhancing security and privacy in biometrics-based authentication systems,” IBM Systems Journal, 

vol.40, no. 3, pp. 614-634, 2001. 

2. S. A. C.  Schuckers, “Spoofing and anti-spoofing measures,” Information Security Technical Report, Vol. 7, No. 4, 

pages 56 – 62, 2002.  

3. R. Derakhshani, S. A. C. Schuckers, L. Hornak, and L. O’Gorman, “Determination of vitality from a non-invasive 

biomedical measurement for use in fingerprint scanners.” Pattern Recognition Journal, Vol. 36, No.2, 2003. 

 4. T. van der Putte, and J. Keuning, “Biometrical fingerprint recognition:  don’t get your fingers burned,” in             

Proceedings of the Fourth Working Conference on Smart Card Research and Advanced Applications, Kluwer 

Academic Publishers, pp. 289-303, 2000. 

  5.  T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino, “Impact of artificial ‘gummy’ fingers on fingerprint 

systems”, Proceedings of SPIE, vol. 4677, January, 2002. 

  6. L. Thalheim, and J. Krissler, “Body check: biometric access protection devices and their programs put to the test”, 

c’t magazine, November 2002. 

 7. D. Willis, and M. Lee, “Biometrics under our thumb”, Network Computing, June 1, 1998. 

 8. D. Osten, H. M. Carim, M. R. Arneson, B. L. Blan, “Biometric, personal authentication system”, Minnesota Mining 

and Manufacturing Company, U.S. Patent #5,719,950, February 17, 1998. 

9.  Kurt Seifried, “Biometrics - What You Need to Know,” Security Portal 10 January 2001 
(http://www.securityportal.com/closet/closet20010110.html). 
 
10.    P. D.  Lapsley, J. A. Less, D. F. Pare, Jr., N. Hoffman, “Anti-fraud biometric sensor that accurately detects blood 

flow”, SmartTouch, LLC, U.S. Patent #5,737,439, April 7, 1998. 

11. P. Kallo, I. Kiss, A. Podmaniczky, and J. Talosi, “Detector for recognizing the living character of a finger in a 

fingerprint recognizing apparatus”, Dermo Corporation, Ltd. U.S. Patent #6,175,64, January 16,2001. 

12. V. Valencia and C. Horn, “Biometric Liveness Testing,” in Biometrics, J. D. Woodward, Jr., N. M. Orlans, R. T. 

Higgins, Ed., Osborne McGraw Hill, New York, to be published. 

13. Liveness Detection in Biometric Systems, International Biometric Group white paper, Available at 

http://www.ibgweb.com/reports/public/reports/liveness.html. 

14. http://www.cl.cam.ac.uk/~jgd1000/ 

15. http://developer.novell.com/research/appnotes/2001/july/01/a010701.pdf 

16. http://www.heise.de/ct/english/02/11/114/ 

17. http://www.rofin.com.au/pr_bssfaq.html#voice 



 87

18. http://users.ece.gatech.edu/~xzhang/Publications/spie01_mmsv.pdf 

19. http://www.biometritech.com/enews/112202a.htm 

20. http://computer.howstuffworks.com/fingerprint-scanner.htm 

21.http://www.precisebiometrics.com/data/content/DOCUMENTS/26082002_165017_6061769WhitePape

r%20-BioMatch.pdf 

22. www.authentec.com 

23. www.secugen.com 

24. http://www.securityfirstcorp.com/tactwhtpr.pdf 

25. “Classification” by A.D. Gordon 

26. “Discriminant Analysis” by William R. Klecka 

27. R software, http://cran.r-project.org/mirrors.html 

28. SAS Insititue Inc., SAS Campus Drive, North Carolina 27513. 

29. W. R. Dhillon and M. Goldstein, Multivariate Analysis Methods and Applications, Wiley-Interscience, 1984. 

30. WEKA software, The University of Waikato, http://www.cs.waikato.ac.nz/ml/weka 

31. I. H. Witten and E. Frank, Data Mining Practical Machine Learning Tools and Techniques with Java 

Implementations, Morgan Kaufmann, 1999. 

 

 

 

 

 

 

 


	Comparison of classification methods for perspiration-based liveness algorithm
	Recommended Citation

	Microsoft Word - latest version of thesis.doc

		www.wvu.edu/~thesis
	2003-11-19T11:07:51-0500
	West Virginia University Libraries
	John H. Hagen
	I am approving this document




