
Graduate Theses, Dissertations, and Problem Reports

2003

Architecture-level risk assessment tool based on UML Architecture-level risk assessment tool based on UML

specification specification

Tianjian Wang
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Wang, Tianjian, "Architecture-level risk assessment tool based on UML specification" (2003). Graduate
Theses, Dissertations, and Problem Reports. 1404.
https://researchrepository.wvu.edu/etd/1404

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1404&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1404?utm_source=researchrepository.wvu.edu%2Fetd%2F1404&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Architecture-level Risk Assessment Tool Based on
UML Specification

Tianjian Wang

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Hany Ammar , Ph.D., Chair
 K. Goseva-Popstojanova, Ph.D.

 Gamal Fahmy, Ph.D.

Lane Department of Computer Science & Electrical
Engineering

Morgantown, West Virginia University

2003

Keywords: Risk Assessment, Dynamic Matrix, Software Engineering

Copyright 2003 Tianjian Wang

ABSTRACT

 Architecture-level Risk Assessment Tool Based on UML Specification

 Tianjian Wang

Most faults in software systems are likely to be found in only a few of components

[1]. The early identification of these components allows the project management to

focus on remedial actions, such as redesigning the critical components that are

likely to cause field failures or optimally allocating resources on implementation

and testing [2]. This thesis presents a prototype tool called Architecture-level
Risk Assessment Tool (ARAT) to demonstrate the process of risk assessment.

The final result of this process is to distinguish those potentially high risk

components in the software system. ARAT is built on the risk assessment

methodology [3]. By manipulating the data acquired from domain expert and

measures obtained from Unified Modeling Language (UML) artifacts [4], ARAT can

be used in the design phase of the software development process to improve the

quality of the software product. A paper which demonstrates this tool is also

published [19].

 iii

Dedication

I am honored to dedicate this paper to all the members of my family, who have

encouraged me, and supported me throughout my life. I want to specifically

express my love and appreciation to my lovely and beautiful sister, the one who

shares my burden and dream, stress and joy.

 iv

Acknowledgements

First, I would like to express my deepest gratitude and appreciation to my research

advisor, Dr. Hany Ammar, for this opportunity he gave me to conduct research under

his supervision, for his ever presence guidance during this research effort and the

freedom he give me to learn and explore.

I would like to thank Dr. Katerina Goseva-Popstojanova for her support and review

and for serving as a member of my graduate committee.

I would like to thank my research colleagues, especially Ahmad Hassan, for the

expertise he provided through out this research effort.

I would also like to thank Dr. Gamal Fahmy for taking time to be a member of my

graduate committee and review this document.

This work is funded in part by grants to West Virginia University Research Corp.

from the National Science Foundation Information Technology Research (ITR)

Program grant number CCR-0082574 and from the NASA Office of Safety and

Mission Assurance (OSMA) Software Assurance Research Program (SARP)

managed through the NASA Independent Verification and Validation (IV&V) Facility,

Fairmont, West Virginia.

 v

TABLE OF CONTENTS

Abstract..ii

Dedication………………………………………………………………………..iii

Acknowledgements ..iv

Table of contents...v

List of Figures ..vii

1. Introduction.. 1

1.1 What is ARAT………………………………………………………..1

1.2 Problems and Solutions…………………………………………….1

1.3 Objective and related work…………………………………………2

1.4 Preview of the chapters…………………………………………….3

2. Background ... 4

2.1 Basics of Metrics... 4

2.1.1 Connector and component…………………………………….4

2.1.2 Dynamic Specifications Metrics using UML………………….4

2.2 Basics of risk assessment...…5

2.2.1 Risk defined in methodology……………………….…….……5

2.2.2 Performing risk assessment……………………………………6

2.3 Methodology………………………………………………………...6

 2.3.1 Overview of the methodology………………………………….6

 2.3.2 Risk analysis process………………….……………………….7

3. System Overview…..……………………………………………………..….9

 3.1 ARAT Overview………………………………………………………..9

 3.2 Overall system requirement………………………………………….11

 3.3 User interface requirement ………………………………..…………13

 3.4 Hardware and software requirement…………………………..……13

4 Design ………………………………………………………… …………..14

 4.1 Structure of ARAT……………………………………………………..14

 4.2 Database Design……………………………………………………... 19

 vi

 4.3 Calculation Module Design……………………………………………..20

 4.4 GUI module Design……………………………………………………...21

 4.4.1 Presentation Component Design……………………………....21.

 4.4.2 Interactive Component Design…………………………………24

 4.5 Extensibility and Compatibility………………………………………….25

5 Implementation………………………………………………………………..27

 5.1 Development environment………………………………………………27

 5.2 Instruction of Rose RT extensibility interface………………………….29

 5.3 Database implementation……………………………………………….33

 5.3.1 JDBC-ODBC Bridge and SQL Command Handler…………...33

 5.4 Integrating EspressChart Package………………………………... ….34

 5.5 GUI ……………………………………………………………………….35

6. Testing………………………………………………………………….……..36

 6.1 Functionality testing and integration testing…………….………….....36

 6.2 User interface testing……………………………………………….…...37

7. Analysis and Conclusion ………………………………………………….....39

 7.1 Analysis and conclusion………………………………………………...39

 7.2 Future Work……………………………………………………………...39

References ……………………………………………………………………... 40

Appendix A Rose Real Time Script for model conversion…………………..42

Appendix B ARAT overall control flow chart…...………………………….….45

Appendix C ARAT Sequence diagram…….…...……………………….…….46

 vii

Lists of Figures

Figure 1: The Risk Analysis Process…………………………………………. 8

 Figure 2: Overall Process Flow chart of ARAT………………………………10

 Figure 3: Complexity Calculation Module Control Flow Chart………….….11

 Figure 4: The console GUI of ARAT system…………………………………12

 Figure 5: Use Case Diagram of ARAT……………………………………….15

 Figure 6: Component diagram for ARAT……………………………………...17

 Figure 7: Class diagram of ARAT……………………………………………...18

 Figure 8: ER diagram for ARAT database…………………………………….20

 Figure 9: Maximized Tabular Frame…………………………………………..22

 Figure 10: Maximized 3D Chart Frame………………………………………..23

 Figure 11: GUI component Overview………………………………………….24

 Figure 12: Severity Weight Option Frame …………………………………... 25

 Figure 13: Eclipse IDE platform ……………………………………………….28

 Figure 14 Information captured from use case diagram …………………....30

 Figure 15 Example use case diagram of target software system……….….30

 Figure 16 Rational rose script module for use case diagram……………..…31

 Figure 17 Textual data presentation of sequence diagram…….……………32

 Figure 18 Sequence Diagram Example…………..…………………………...32

 Figure 19 Rational rose script module to capture sequence diagram………33

 1

C H A P T E R 1 : I N T R O D U C T I O N

1.1 What is ARAT

This tool (ARAT) is an implementation of the methodology presented in publication

[3]. It uses quantitative metrics to systematically evaluate the quality of the

software architecture. It also integrates the real time failure probability estimation,

and the severity metrics calculation into the risk assessment model.

1.2 Problems and Solutions

Problems exist in current software engineering quality assurance applications.

Many quality assurance methods or tools are applied in the late phase of the

software life cycle. Due to some important product quality characteristics, like

performance, reliability, maintainability, which can not be added in the late phase

of the software lifecycle, any corrections made in the earlier phases on defect

would be cost-effective. Otherwise, the failure would be expected when the

requirement must be satisfied. Hence, early warnings and corrective activities of

poor quality software product would be strongly desired for effective quality

assurance. In addition, software architecture describes both the static structure

and the dynamic behavior of the software. It is the key in software design and

software quality analysis. As a solution to the problems, our Architecture-level
Risk Assessment Tool (ARAT) is created to track the quality of software product.

Because the risk analysis is based on measurements and calculations of the high-

level design diagrams, ARAT can be used as early as in the design phase of the

software development process. It measures dynamic metrics proposed in [2] and

further analyzes the quality of the architecture to produce architectural-level

software risk assessment [3].

1.3 Related work and Objectives

 2

Some current tools in the market doing the risk assessment are based on the

source code of the software, [8] they first obtain the static metrics from source

code, and then go on carrying out risk analysis on these metrics. But source code

metrics are affected by the programming style of the programmer, as well as the

programming language itself with its structures affecting the metrics results. When

calculating the metrics from architectural descriptions like UML, we achieve

independence of languages and human factors [9].

What is more, it is strongly desired by the project management to acquire the

result of the risk assessment for the target system as early as possible. It would be

impossible or resource wasteful to correct the error if we have to wait to get the

result after part or full implementation is finished during the lifecycle of the software

development. ARAT that examines UML at design phase has obvious advantages

over those tools built on source code.

On the other hand, some tools [10] do get description from intermediate file by

using certain CASE tools; they can be used in design phase as well, but they only

produce static metrics to describe the model with limited capability, which is not

enough to accurately represent the dynamic behavior of the architecture. They

even require the output of result in a specific chosen format which is not

convenient for popular use, some tools require extra information saved in a file

which is not directly acquired from the model to describe the target software

system model, then measurement and analysis based on the information would

not be precise. As a result, it is not suggested to be adopted widely. Under this

circumstance, we simply access the result of a CASE tool to carry on the risk

analysis. The result is in general textual format and obtained directly from UML

model diagrams of the target software system by running a very simple script. All

further steps of analysis are based on this result. Thus, we not only achieve the

accuracy and performance of the analysis, but also have the very straightforward

 3

way to do the analysis. The simple, effective and practicable method with high

performance is the contribution of this tool.

 In summary, the main objectives of this tool are listed below:

1. It can carry on the risk assessment as early as the design phase in the

lifecycle of the software development.

2. It can be compatible with popular design/modeling tools.

3. It is able to precisely compute the scenarios/use cases/system risk factors.

4. It is able to determine the distribution of the scenario/use case/system risk

factors over different severity classes.

5. It is able to identify critical components based on the risk estimation.

6. It has user interface with less training and learning.

7. It contains high flexibility and extensibility to wrap more functional modules

which will be developed in the future like performance analysis module,

reliability analysis module, hazard analysis module etc.

8. The tool is portable and scalable.

9. Popular adoption and usage is feasible.

1.4 Preview of the chapters

 The rest of this document is organized as follows: Chapter 2: describes the

background to produce ARAT including a brief introduction on metrics, risk

assessment as well as the methodology used by ARAT. Chapter 3: gives an

overview of the whole system. Chapter 4: describes the design issue of the main

ARAT components. Chapter 5: describes the implementation of various

components in ARAT. Chapter 6: discuss the module verification and integration

testing. Chapter 7: brings up a brief summary about this tool and discusses some

future work on ARAT.

 4

C H A P T E R 2 : B A C K G R O U N D

The fundamental knowledge of metrics is necessary to understand risk

assessment process. This chapter provides a brief introduction about metrics, risk

assessment, and how to perform risk assessment based on the proposed

methodology [3]. The benefit of adopting this methodology is also included.

2.1 The basic of metrics

Software metrics is any type of measurement which is related to a software

system, process or related documentation [12]. Specifically, dynamic metrics are

collected by measurements made of a program in execution while static metrics

are collected by measurements made of the system representations such as the

design, program or documentation. Dynamic metrics are fairly closely related to

software quality attributes like the efficiency and the reliability of a program

whereas static metrics help to assess the complexity, maintainability and other

attributes of a program.

 2.1.1 Connector and Component

 A component can be as simple as an object, a class, or a procedure, and as

elaborate as a package of classes or procedures. Connectors can be as simple as

procedure calls; they can also be as elaborate as client-server protocols, links

between distributed databases, or middleware. [3]

2.1.2 Dynamic Specifications Metrics

In order to estimate the fault proneness of software components and connectors, a

dynamic metric for components is computed based on the dynamic complexity of

 5

state chart [13]. The normalized dynamic complexity x
iDOC of a component is

calculated based on the following formula:

∑
∈

=

xSk

x
k

x
ix

i
doc

docDOC .

Similarly, a dynamic metric for dynamic coupling between components is also

computed for connectors [13]. The normalized dynamic coupling x
ijEOC of a

connector is based on the following formula:

x

x
x

ijx
ij MT

jiSjiMT
EOC

≠∈
=

,,
.

The detail explanation of both formulas can be found in the methodology

publication [3].

2.2 The basics of risk assessment

Before introducing the process of methodology used by ARAT, a quick review of

some key terms in the field is necessary for the completeness of this thesis.

2.2.1 Risk defined in methodology

According to the NASA-STD-8719.13A standard [6], risk is a function of the

anticipated frequency of occurrence of an undesired event, the potential severity of

resulting consequences, and the uncertainties associated with the frequency and

severity. This standard defines several types of risk, for example availability risk,

acceptance risk, performance risk, cost risk, schedule risk, etc. Reliability-based

risk is the only concern in our methodology, which takes into account the

probability that the software product will fail in the operational environment and the

adversity of that failure [3].

 6

In the methodology [3] used by ARAT, risk is defined as a combination of two

factors [11]: probability of malfunctioning (failure) and the consequence of

malfunctioning (severity).

2.2.2 Performing risk assessment

Risk assessment is a useful means for identifying potentially troublesome software

components that require careful development and allocation of more testing effort

[1]. Risk assessment can be performed at various phases throughout the

development process, for example, it could be based on an architecture model, an

abstract design or implementation details etc. We believe that risk assessment

being carried on at the architectural level is more beneficial than doing assessment

at later development phases. Several reasons are shortly explained in section 1.2

and section 1.3.

2.3 Methodology

The complete introduction, calculation, and conclusion of the methodology from

which ARAT is derived can be found in [3]. I only give an overview of the process

of the methodology in this thesis.

2.3.1 Overview of the methodology

The methodology [3] uses dynamic complexity and dynamic coupling metrics that

we obtained from the UML specifications. Severity analysis is performed using the

Failure Mode and Effect Analysis (FMEA) technique. We combine severity and

complexity (coupling) metrics to obtain heuristic risk factors for the components

(connectors). Then, a Markov model is developed to estimate the scenario’s risk

factors from the risk factors of components and connectors. Further, use case and

overall system risk factors are estimated using the scenario’s risk factors.

 7

 2.3.2 Risk analysis process

The use cases and scenarios of a UML model drive the risk analysis process, the

process iterates on the use cases and the scenarios that realize each use cases

and determines the component/connector risk factors for each scenario, as well as

the scenarios and use cases risk factors. For each scenario, the

component/connector risk factors are estimated as a product of the dynamic

complexity/coupling of the component/connector behavioral specification

measured from the UML sequence diagrams and the severity level assigned by

the domain expert using hazard analysis and Failure Mode and Effect Analysis.

Furthermore, a Markov model is automatically constructed for each scenario

based on the sequence diagram, thus, a scenario risk factor is determined. The

methods for estimation of the use cases and overall system risk factors are given

as well. The final result of the above process would be a list of critical use cases, a

list of critical scenarios in each use case or a list of critical components/connectors

for each scenario and each use case.

An assumption is made for this process that the UML architectural model consists

of a use case diagram defining several independent use cases, and that each use

case consists of one or more independent scenarios modeled by using sequence

diagrams. The detail risk analysis process from the methodology is shown in

Figure 1. The most inner rectangle contains actions conducted at the bottom level

of the process, which calculates the dynamic complexity and dynamic coupling for

components and connectors. After the domain expert specifies severity for each

component and connector, the risk factor for every components and connectors

are calculated. At this stage, feedback could be made immediately after identifying

the critical components. However, it would be more practical to wait until the whole

process is complete with the identification of critical component/connector in the

system scope. Any modifications based on the feedback would change the risk

 8

factor of each component/connector and further affect the rank of scenarios and

use cases. The process is repeated until the specifications or requirements are

satisfied and no further action is needed.

 System

Rank use cases based on risk factors
 Determine critical use case list
Determine critical component/connector list in the system scope
Calculate overall system risk factor

For each use case

Rank the scenarios based on risk factors
Determine critical scenarios list
Calculate use case risk factor

For each scenario

Calculate transition probability
Generate critical component/connector list
Construct Markov model
Calculate scenario's risk factor

For each component
Measure dynamic complexity
Assign severity based on FMEA and hazard analysis
Calculate component's risk factor

For each connector
Measure dynamic coupling
Assign severity based on FEMA and hazard analysis
Calculate connector's risk factor

Figure 2: The Risk Analysis Process

 9

C H A P T E R 3 . S Y S T E M O V E R V I E W

 This chapter briefly explains how to build the ARAT system as well as how to

reach the objectives and requirements of the system.

3.1 ARAT overview

Building the model of a software system will be conducted by a model tool and is

not expected by ARAT. But it does intend to be compatible with the most popular

model tool in the market if it’s not feasible to be compatible with all of them. In

order to satisfy the objectives of ARAT, the model information of the target

software system must be converted to a suitable format for analysis at the

beginning of the risk assessment process. Based on our observation and

conclusion, Rational Rose RealTime [18] is the most popular model tool currently

in the market, it would be a good candidate to work as the front end of ARAT.

Meanwhile, we can take advantage of the extensibility interface embedded in it to

transform the visual model diagram into textual format data directly. This can save

a lot of hassle on the transformation comparing to other tools in the market.

Due to the fact that all the data obtained from the design diagram must be

imported into the tool and preprocessed, classified, and saved before doing any of

the analysis, we must have a database to serve as a repository. Any commercial

database software like MS Access, SQL server or Oracle would be sufficient. MS

Access is chosen to be the repository of ARAT for the quick development process

and convenience. But we prefer to choose Oracle 9i in production environment for

the reason of system robustness and performance. The Figure 2 is the process

flow chart for this project.

The current version of ARAT is built on Window XP system. This tool is composed

by using Java programming language and J2SDK1.4.2 compiler [15]. Any platform

 10

with Java Virtual Machine 1.2 or higher can run this tool. If an appropriate JVM is

not available, a binary version can be converted from Java source code. In

addition, we integrate commercial package EspressChart 5.0 [14] into the ARAT

GUI for intuitive data display.

Build UML model of
the target software

system

Import model data into ARAT

Preprocess model data

 Save data into the database

 Scenario Risk Analysis

Usercase Risk Analysis

 System Risk Analysis

Is the architecture quality
of the target software

satisfied the specification
requirement?

Flowchart Key

Start/End

Action

Decision

Flow Direction

 Identify critical components

ARAT

No

Using Rose Real Time
extensibility interface to
convert visual model into
text file

 Figure 2: Overall Process Flow chart of ARAT

 11

3.2 Overall system requirements

The system is required to compute the scenario, use case and the overall system

risk factors based on our methodology and eventually needs to identify all the

critical components in the system. Based on this requirement, ARAT divides all the

functions into different calculation modules. Each module is an independent

calculation unit. For example, for the complexity calculation module, it first

retrieves needed data which has been previously saved in the database. Then,

based on the methodology presented in the last chapter, it goes through all the

components of every scenario one by one to determine the complexity for every

component. Finally, it passes the results to the display module of ARAT and

presents it to the user in multiple formats. Meanwhile, it also sends all of its results

back to the database for further process which will be carried out by other

modules. The Figure 3 is the control flow chart of this module. The overall control

flow chart is attached in this thesis as Appendix B.

Database Connection Module

ARAT DATABASE

Send data to database

Display Module
Data

Retrieve data from database

import data

Data Preprocessing Module

Complexity Calculation Module

 Figure 3: Complexity Calculation Module control Flow Chart

 12

Since all the functions of the system requirement follow the same pattern except

some of the modules which need more user interactions, this structure make

ARAT system highly componentized. Different modules independently carry out

different functions to satisfy their own specific requirements. New modules can be

easily added for additional functions in the future with little modification. It even can

be simply hooked up by adding new menus or buttons on the display module

console GUI after the completion of the development of new module. Figure 4 is

one of the examples of console GUI from the ARAT system with many different

menu items for different functions or calculation modules.

 Figure 4: The console GUI of ARAT system

However, based on our methodology to estimate the risk factor heuristically, this

system must exactly follow the same way defined in the methodology to carry on

 13

the calculation. That means the ARAT has to calculate the coupling and

complexity at different levels before it can move to the next stage for the

calculation of risk factors. This makes the module which calculates the risk

distribution depend on the completion of those two modules. Since no user

interaction is required for coupling and complexity modules, we may make the risk

distribution estimation module integrate with them at the background to take off

this limitation in case users want to get the results quickly and directly instead of

complete, systematically calculation results in detail, this will be discussed in the

next chapter.

3.3 User interface requirements

The user interface must follow the system requirements to carry on the calculation.

In addition, it must be easy and convenient for user interaction such as obtaining

user input, displaying calculation results clearly and precisely, and for good

exception handling. The user interface also adds in some system administration

functions like target software system administration, user action log etc. Thus,

ARAT becomes more powerful to handle multiple tasks simultaneously and keep

all the records of user activities.

3.4 Hardware and software requirements

There is no special requirement for the hardware. Any desktop with common or

average configuration in the market could be used to run ARAT, For instance,

1.0-2.0 GHZ PIII CPU with 256 Mb Memory, 20 GB hard disk etc. The ARAT

system must be combined with a modeling tool to use, we choose Rational Rose

Real Time [7] for the build-in interface to obtain the model data and high

performance for the transforming process.

 14

C H A P T E R 4 . D E S I G N

This chapter describes the overall architectural design of ARAT and the design of

its main components in detail.

4.1 Structure of ARAT

After the user finishes building the UML visual model, the model normally contains

use case diagrams and sequence diagrams. Since the diagram is not easily

quantified and analyzed to transform the model from diagram information into

other format becomes necessary. A textual format is chosen to act as the transient

carrier to temporarily save and express the model information. Other formats may

also be options, for example XML format with more compatibility and transforming

flexibility could be considered as a future development option and will be

discussed in the final chapter. ARAT begins with opening the textual data file to

import the model data. Some model data which are redundant and need to be

filtered out before saving them into ARAT database. A preprocessing module to

filter unnecessary data and save the results must be created. As a result, the rest

of the calculation modules can systematically retrieve the clean and useful data

from the database to do various calculations based on the process control flow.

Meanwhile, the module saves the new results generated from the current module

back to the database after completing the calculation of new tasks such that it can

be used by the next module or simply for the quick access of the next operation

when the user requests the same action on the same module data.

The Figure 5 is the use case diagram of the ARAT system. There are mainly 6 use

cases determined for ARAT so far. They include most of the actions that would be

taken by users. The first use case is for the analyst to collect model information

from the UML model. After retrieving useful model information from the depository,

the analyst can estimate the dynamic metrics and component/connector risk

 15

factor. Within the procedure of process, the assistance from a domain expert to

provide probability data and different weight configuration options for some

calculation module is critical to obtain the results. Finally, the high risk

components of the target software system can be identified and presented to the

analyst on the GUI.

 Figure 5: Use Case Diagram of ARAT

Before moving forward to the implementation directly, more detailed design works

have been done as well. More design diagrams are created including a component

diagram (Figure 6) and a class diagram (Figure 7) based on the UML specification.

From the component diagram, we can see that the Quadbase commercial 3D

chart package is used by one of the internal Frame which makes up the consol

 16

GUI of ARAT. Even some dynamic libraries from j2sdk are also placed into the

diagram like AWTEventMulticastor class. Inside the ARAT package, we have two

more special packages. One is for image icons used by the menu Bar of ARAT

console GUI. The other one is used to keep instructional html files which will be

used by one of the internal frames as well.

The class diagram gives more detail on the implementations of ARAT. Especially

for the ModuleCalculation class, most of the implementations of the methodology

will be carried out in this class. Hence, most of the efforts and testing will be

allocated into this class. InternalFrameSet class is inherited by 4 internalFrame.

Each one has its unique property and functions. LogFrame and ModelFrame are

created for the purpose of ARAT system management and monitoring. But the

TableFrame class and ChartFrame are mainly for the data presentation. This will

be discussed in detail at section 4.4.

 17

Quadbase package

ARAT

MyInternalFrameSet.java

ARAT.java

ImagesIcons

Package Name

New24.gif Open.gif

Save.gif ImportModel
Copier.java

FileCreator.java

MyModelTree

Messenger.java

J2sdk

ActionListener

Java.awt.event

AWTEventMulticaster

Quadbase.ChartA
PI.swing

3DColumnChart

ModuleCalculation.java

Intruction Pages

WVUheader.html

ModelImportInstruction.html

ProbabilityInputInstruction.html

SeverityInputInstruction

 Figure 6: Component diagram for ARAT

 18

SeverityWeightFrame

JTextField
JRadioButton

actionPerformed()
getOptions()

ARAT

InternalFrameSet
ARATMenubar
MenuItem
calculator:ModuleCalculation

ActionPerformed()

FileCreator

f:File

writeToFile(File f)
getFile():File

Copier

Copy(originalFile, echoFile)

InternalFrameSet

TableFrame:JInternalFrame
ChartFraem:JInternalFrame
LogFrame:JInternalFrame
ModelFrame:JInternalFrame

createInternalFrames()

TableFrame

scp:JScrollPane
dt:DynamicTable

createDynamicTable()
addTable()

ChartFrame

epane:'EditorPane
jsp:JSCrollPane

createDynamicChart()
deleteChart()
addChart()
showHTMLFile(fileName)

LogFrame

log:JTextArea
jsp:JScrollPane

append(String infor)

ModelFrame

dtree:DynamicTree
jsp:JScrollpane

addTree()

ModueCalculation

datbaseConnector:Messenger

doDataPreprocessing()
calculateComplexity()
calculateCoupling()
calculateComponentRisk()
calculateConnectorRisk()
calculateScenarioRisk()
calculateUsecaseRisk()
calculateSystemRisk()
getDataFromeDatabase(String
command)
saveDataToDatabase()

Messenger

URL:String =
"jdbc:odbc:twang"

Query()
Update()
executeCommand()
getScenario()
getUsecase()

DynamicTree
rootNode:DefaultMutableTreeNode
treeModel:DefaultTreeModel
tree:JTree
toolkit:Toolkit

removeCurrentNode()
getLastChoosedNbode()
addObject()

DynamicTable

table:JTable

readData()
displayData()
getUserInput()
addColumn()
deleteColumn()
clearTable()

DynamicChart

dbinfo:DBInfo
chart:QbChart

createChart()
retrieveData(tableName)
getColumnNumber(a,b,c,d)

1

1

1

1

1

1
11

1

1

1

1

1

1

*

0..1 0..1 1 1

1
1

*
1

1

1

 Figure 7: Class diagram of ARAT

 19

4.2 Database Design

Since the development on this project is unfinished, some new modules with new

functionalities will be added into ARAT in the next phase of our research.

Simultaneously, more extensive data will be imported into the ARAT database as

well. The attributes of these data might be totally different from the data used

currently; even the method used to analyze these data is still unknown. In order to

prevent a large amount of modifications on the database design during the

process of adding new modules, ARAT tries to keep maximum flexibility during the

design. Thus, it might be able to tolerate minor additions of the functionalities.

Otherwise, it simply creates a new cluster of tables while keeping the current

tables untouched.

 The connection between the database and ARAT use JDBC-ODBC Bridge. All

the SQL commands used to create tables and manipulate data are integrated into

each calculation module. All the connections between database and the ARAT

application are built by Messenger class in which all the parameters are set up.

The ER diagram for the ARAT database is show in Figure 8. We can see that a

table named Raw_data is created to keep all the newly imported data

distinguished by model, use case, and scenario. Two tables named Component

and Connector respectively are used to save data after filtering useless data from

Raw_data table. Both tables have reserved space to contain more calculation

results from another calculation module. For examples, the attributes risk_factor is

used to hold the component/connector risk calculation result for each component

and connector. But it will not be filled up when the calculation process is at

Complexity/Coupling calculation phase. The severity attribute is used to hold the

severity entered form ARAT GUI by users only when the process comes to the

Component/Connector risk factor calculation phase.

 20

Model

Model_ID

Model_Name

Weight_Option

Model_ID

Create_Time

Catostrophic Crtitical

Major

Minor

Raw_Data

Usecase_ID

Scenario_ID

Sender

ReceiverMessage

Model_ID

Use_case_Info

Usecase_ID

Usecase_name

Model_ID

contains

Scenario_Info

Usecase_ID

Scenario_ID

Model_ID

Scenario_Name

risk_factor

risk_factor

has
has

probability

probability

Component

Complexity

Risk_factor

derive

Connector

Transition_probability

severity

couplingRisk_factor

derive

Record_ID

Record_ID

Record_ID

Severity

has

 Figure 8: ER diagram for ARAT database

4.3 Calculation Module Design

Two most primitive calculation modules are for complexity and coupling. Both

modules retrieve data from the Component and Connector tables when user

actions are captured from the console GUI. After the calculations are finished,

each module sends the result back to database and simultaneously sends data to

the GUI module for presentation, how the GUI module presents these data will be

discussed in detail in the next section.

ARAT also includes other calculation modules. Like transition probability module,

scenario risk factor module, use case risk factor module, scenario risk distribution

module, markov calculation module, overall system risk module etc, all the

 21

modules have the same pattern to retrieve data and save data. The procedure is

summarized as follows:

Step 1: retrieve existing data from tables. If data does not exist, give warning

instructions to the user.

Step 2: carry out the calculations based on methodology.

Step 3: save results to the table for other calculation modules.

Step 4: send data to the GUI module for presentation.

4.4 GUI Module Design

4.4.1 Presentation Component Design

This module acts as the interface between ARAT and users. It gets

parameter/commands provided by the user and presents the information/results

back to the user. For example, the GUI component receives user commands to

calculate dynamic complexity and sends this command to the database to request

data needed to do the calculation, then passes those data to the dynamic

complexity calculation module. After finishing the calculation, the GUI module

receives the result back from the calculation module and displays it to the user.

The interface design normally requires data to be presented clearly and precisely,

in addition, the critical component of the target software system must be

distinguishable. So a presentation component is necessary, for data display, one

way is to keep numerical data in a table, the other way is to use graphical

presentation. ARAT integrates them together for maximum readability and clarity.

Both tabular format and 3D charts are used to build up the presentation

component. The tabular Frame displays the results data directly in order to keep

data precision. Figure 6 is a tabular Frame embedded in ARAT GUI. It’s

expandable and up to the maximum size of the GUI frame for best visibility and

clarity of data as well as ease and convenience of user input.

 22

Figure 9: Maximized Tabular Frame

Simultaneously, a graphical component can display all the calculation results/data

in 3D chart format. This can let the user very easily identify the most critical

components. For example, the bar column in the chart below, Figure 7 maximized

3D chart frame, indicates the risk factor of every component under each scenario

and use case. Whenever the user points the mouse arrow to the column, the chart

automatically displays a small yellow popup menu to show the name of the

component, scenario, use case as well as the value of the column. On the other

hand, it can help a user quickly and easily find the column which represents critical

component/connector/scenario/use case etc with highest values.

 23

 Figure 10: Maximized 3D Chart Frame

Both Figure 9 and Figure 10 are single frames in maximized expanding status for

maximum visualization and clarity. They are integrated together with other GUI

components. When the user needs the system overview of comprehensive

information, Figure 11 is an example; it provides maximum information of target

system and the status of ARAT to the user. The left upper frame provides

information for target software systems management, for instance, ARAT can

analyze many different software systems simultaneously. This is especially useful

when the user wants to compare multiple solutions of UML models for the same

target system. The left lower frame is a log window; it records every user action

applied to the ARAT system, in case some accidental actions happen, the user

can follow the log to reverse the user action, and erase the error made by the

accident.

 24

 Figure 11: GUI component Overview

 4.4.2 Interactive Component Design

In the ARAT system, a lot of information needs to be entered through user

interactions. Such as the severity estimation for every connector/component, it

needs to be entered by the user manually the first time the user applies the target

system to ARAT. Based on Shneiderman’s (1998) classification, there are five

primary styles for user interaction, ARAT chooses two of them: Form fill-in and

Menu selection. Some advantages are obvious in terms of the objectives of ARAT,

Such as simple data entry and error avoidance.

 25

Following Figure 12 is an example of Form fill-in design, Three user options

regarding the severity weight configuration are shown on the frame, the user could

either choose the default severity scale option or input data to define their own

severity weight scale from the text field .

 Figure 12: Severity Weight Option Frame

There are some other user interaction GUI components, including table input and

dialog input. These components will be explained in detail in Chapter 5.

4.5 Extensibility and Compatibility

Based on the progress of our software engineering research, ARAT must have

extendibility to integrate more functional modules. Obviously, an interface to

hookup these modules must be reserved. This can be easily done by adding more

 26

menu items on the consol GUI, at the same time, adding separate calculation

functions into ModuleCalculation class. In addition, adding extra cluster of tables

for new modules is feasible.

 27

C H A P T E R 5 I M P L E M E N T A T I O N

This chapter describes the implementation process of ARAT system including

most of the modules. It also talks about how to make use of the Rose RT

extensibility interface, how to create the database, and how to integrate the

commercial package EspressChart[14] into ARAT GUI module.

The Incremental Development Process [16] is adopted for ARAT implementation.

This process can ensure the low risk of overall project failure[12]. We first design

each calculation module as an increment. Implementation and verification of each

increment are conducted independently, such that, the overall failure is not likely to

happen even if one of the modules fails to meet the requirements. By using this

software development process, the risk of ARAT system failure is significantly

reduced.

 5.1 Development Environment

The development environment is the open source software Eclipse 2.1.1 from IBM

Corp. under the terms and conditions of the Common Public License 1.0. Using

Eclipse IDE has some obvious advantages, such as automatic syntax check,

automatic brace generation, parentheses and quote check, etc. All class member

popup, multiple perspective and views make management and development more

convenient and easy. Many plug-in interfaces make Eclipse become more

powerful than any other Java IDE, for example, the UML plug-in from Omondo

company can easily import diagrams even the whole package of the model from

many model tools directly, it also can provide an interface for a user to directly

create diagrams in Eclipse, afterwards, the frame of the source can be generated

based on the diagrams or packages provided by user. Figure 13 is a screenshot

of the Eclipse IDE platform.

 28

 Figure 13: Eclipse IDE platform

 J2sdk1.4.2 [15] is the newest version of Java compiler and JVM from Sun Corp.

Since ARAT need a lot of GUI components to express the analysis of data, using

the newest version JVM and compiler can make full use of the highly object

oriented java classes such that user defined GUI components can be created by

simple and efficient source code. Meanwhile, significantly using Swing classes in

javax package makes the ARAT GUI module much easier to be controlled than

using AWT classes. In addition, the new Java HotSpot Server VM [15] replaces

the classic JVM obtaining significant performance enhancement, the GUI repaint

can be 4 times faster than before, this is achieved by using an adaptive compiler

which could analyze the source code and detect performance bottlenecks, or "hot

spots". JVM compiler compiles those performance-critical portions of the code for

 29

a boost in performance, while avoiding unnecessary compilation of seldom-used

code (most of the program), then the adaptive compiler decides on the fly, how

best to optimize compiled code. Finally, it provides rapid memory allocation for

objects, is a fast, efficient, state-of-the-art garbage collector. All these advantages

make the ARAT GUI module gain very high computation speed; the high

performance even surprised the personnel while I was doing the demo at the

NASA annual meeting.

5.2 Instruction of Rose Real Time Extensibility Interface

Rational Rose is a well established UML modeling tool in software engineering.

Rose RT is specifically useful for real time system design. Especially, Rose RT

can extend and customize its capabilities to meet the specific software

development needs. It has the following main capabilities.

1 Customize Rational Rose Real Time menus

2 Automate manual Rational Rose Real Time functions with Rational Rose

Real Time Scripts (for example, diagram and class creation, model updates,

document generation, etc.)

3 Execute Rational Rose Real Time functions from within another application

by using the Rational Rose Real Time Automation object.

4 Access Rational Rose Real Time classes, properties and methods right

within your software development environment by including the Rational

Rose Real Time Extensibility Type Library in your environment.

In order to satisfy the requirement of ARAT and simplify the conversion process

of transforming visual data into quantitative data, we take advantage of the

second feature. We compose a rose real time script at the beginning of the risk

 30

assessment process. The script automatically goes through all the diagrams of

the target software UML model. Specifically, it acquires the relationship

information between different use cases from use case diagrams, meanwhile,

detail information between components and connectors are acquired from

sequence diagrams as well.

The following data (Figure 14) which describe the relationship between different

use cases is captured from use case diagram of the UML model displayed in

Figure 15.

 Figure 14 Information captured from use case diagram

Mode_setting

Single_MT

<<extend>><<extend>>

Single_LT

<<uses>><<uses>>

Dual_LT_Failed

<<uses>><<uses>>

Dual

<<uses>><<uses>>

Dual_MT_Failed

<<uses>><<uses>>

MT_Pump_Retry

LT_Pump_Retry

Retry_Both_Pumps

PPA_LT PPA_MT SFCA_LT

SFCA_MT

Operator

Failure_Recovery

<<uses>><<uses>>

<<uses>><<uses>>

<<uses>><<uses>>

<<uses>><<uses>>

<<uses>><<uses>> <<uses>><<uses>>

<<uses>><<uses>>

<<uses>><<uses>>

 Figure 15 Example use case diagram of target software system

 31

The part of rose script being used to capture the information from use case

diagram is as follow:
Set assocs = RoseApp.CurrentModel.GetAllCategories.GetFirst("UseCase

View").Associations

 Dim anAssoc As Association

 For i% = 1 To assocs.Count

 Set anAssoc = assocs.GetAt(i)

 If anAssoc.stereotype = "uses" Or anAssoc.stereotype = "extend" Then

 If anAssoc.Role1.Class Is Nothing Then

 r1Name$ = anAssoc.Role1.UseCase.name

 Else

 r1Name$ = anAssoc.Role1.Class.name

 End If

 If anAssoc.Role2.Class Is Nothing Then

 r2Name$ = anAssoc.Role2.UseCase.name

 Else

 r2Name$ = anAssoc.Role2.Class.name

 End If

 If anAssoc.Role1.navigable = TRUE Then

 If anAssoc.stereotype = "extend" Then

 Print #1, r1Name$ & " " & anAssoc.stereotype & "s " & r2Name$

 Else

 Print #1, r2Name$ & " " & anAssoc.stereotype & "s " & r1Name$

 End If

 Else

 If anAssoc.stereotype = "extend" Then

 Print #1,r2Name$ & " " & anAssoc.stereotype & "s " & r1Name$

 Else

 Print #1,r1Name$ & " " & anAssoc.stereotype & "s " & r2Name$

 End If

 Figure 16 rational rose script module for use case diagram

 32

The same way is used to scan the sequence diagram of the UML model and

convert it to textual data (Figure 17). The following is the partial results after going

through one of the sequence diagram (Figure 18 is a part of sequence diagram) in

a scenario by running the Rose RT script.

 Figure 17: textual data presentation of sequence diagram

 Figure 18 Sequence Diagram Example

The part of rose script module used to convert the sequence diagram into textual

data is as follows:

 33

For j%=1 To ScenarioDiagrams.Count

 set theScenario = ScenarioDiagrams.GetAt(j)

 Set theMessages = theScenario.GetMessages ()

 temp$ = left$ (theScenario.Name , 14)

 If StrComp(temp$, "Collaboration1") Then

 Print

#1,"ScenarioName_MessagesOfScenario(";theScenario.Name;",";theMessages.c

ount;")"

 Else

 End If

 For k%=1 To theMessages.count

 Set theMessage = theMessages.GetAt(k)

 Set theObject2=theMessage.GetReceiverObject ()

 Set theObject3=theMessage.GetSenderObject ()

 Print #1,

"Message_Receiver_Sender(";theMessage.Name;",";theObject2.Name;",";theObj

ect3.Name;")"

Next k

message_counter=message_counter+theMessages.count

Next j

 Figure 19: rational rose script module to capture sequence diagram

5.3 Database Implementation

 This section will explain ARAT how to set up the connection between ARAT

computational component and database, how to create tables from java source

code for each module dynamically.

5.3.1 JDBC-ODBC Bridge and SQL Command Handler

In ARAT, a class called Messenger is created to handle all the communication

between database and ARAT, inside the class, the connection is actually built on

 34

top of JDBC-ODBC bridge which is the standard connection between java

application and MS Access database. The special focus of this connection module

is a SQL command handler, which consists of two methods, one is called query(),

it can handle all the query SQL command passed from calculation modules,and

the other one is called update() which is created in the same way to handle all the

update SQL commands. Both query() and update() methods are wrapped up in

one method to handle any SQL command from ARAT computational module

called executeCommand(). The following is the specification of this method.

public LinkedList executeCommand(String cmd) {

//input: any SQL command

//output: the result of the execution of the SQL command

//function: pass all kinds of SQL command to database, return the result.

}

5.4 Integrating EspressChart Package

In order to express the data in graphical format for easy identification of critical

components, ARAT embedded a commercial package called EspressChart from

Quadbase System Inc. this package provides a pure java library with a set of

functions to generate different type of advanced two or three-dimensional charts to

express the analysis results. The data used to populate charts can be either read

from data file (including Excel spreadsheets) or directly come from JDBC bridge

which is connected with database.

The configuration for integrating this package into ARAT is quite simple, the user

only needs to add the absolute path of the location of this package into the system

variable, then the package can be directly imported into the source code. The

software API is also included in the package for convenient reference.

 35

5.5 GUI

From the discussion of the graphical presentation of data in section 4.4, GUI

module design, both tabular format and 3D charts are chosen to express data.

Each of them are placed inside an internal frame, please refer to Figure 9 and

Figure 10 for detail, However, the console GUI (Figure 11) not only consists of

tables and charts, it also includes a Toolbar to hold some image icons which are

some shortcuts for receiving commands from users. A Text Field to indicate the

current working directory is embedded into the Toolbar. In addition, another two

internal Frames are created to be responsible for software model administration

and user action log. Multiple window configurations on the GUI have some

advantages which allow different information to be displayed simultaneously on the

screen. The user can switch from frame to frame (or window to window) without

losing sight of information in another frames. On the other hand, the disadvantage

for this configuration is obvious that the context or data in each frame might not be

clear enough to be read even though scrollbars are provided due to each frame

only occupying part of the screen, so the capability of expanding each frame to full

screen size become necessary, however, user preference at any moment is the

only consideration.

.

 36

C H A P T E R 6 T E S T I N G

6.1 Functionality testing and integration testing

Upon finished implementation of each single calculation module of ARAT and the

completion of the whole ARAT system, extensive testing is carried on to decide if

it’s satisfied our project objectives. The testing include functionality testing on

individual calculation module(or called validation testing) and integration testing

when each calculation module is integrated into ARAT system . User interface is

tested at the final stage.

Since the development process of ARAT use an incremental model, each

calculation module is designed as increment and is implemented separately,

before a new module is integrated to the ARAT system, the module must pass the

functionality testing or increment verification testing. The functionality is tested on

multiple case studies include the Pacemaker model which is an example of a

critical real-time application: A cardiac pacemaker is an implanted device that

assists cardiac functions when the underlying pathologies make the intrinsic

heartbeats low. An error in the software operation of the device can cause loss of a

patient’s life. We first build the UML model in Rational Rose Real Time, then based

on our methodology, a simulation of calculation method is implemented by using

Matlab[17] build-in functions. Finally the calculation result of each simulation is

compared with the the result from ARAT calculation module. For example, the

Markov chain calculation is embedded into each scenario risk calculation, it’s

implemented as a single calculation module with different data input from various

scenarios among many different use cases. The mathematic calculation is

complicated and errors are likely to occur during the programming process, it’s

even impossible to do the calculation manually, fortunately, the Matlab has some

built-in functions that can easily complete the task. If a very simple simulation of

the calculation is built, it only take several lines of code to implement it in the

 37

Matlab environment. Since the result is more likely to be correct comparing to the

result from ARAT implementation, most of the verification testing of the ARAT

module is conducted in this way. Only when the result from ARAT module

implementation is verified by our testing model Pacemaker and several other case

study models provided by our research group, this module is ready to integrate into

the ARAT system.

 For the integration testing, a top-down approach is used to determine the

compatibility of each computational module and the system integrity. The main

functions of the ARAT tool is tested by applying the same case study used on

module verification. Even if a couple of case studies might not be enough, it still is

expected to expose some latent defects before applying massive testing.

Furthermore, in each module, each function is tested. Some problems can be

easily detected and fixed, but some are not. For example, after integrating the

scenario risk distribution into the system, the size of the 3D chart located inside

one of the Internal Frame objects does not expand and shrink accordingly while

the user might want to change the size of the Frame based on his personal

preference. This problem does not occur when only testing the GUI component

independently, so a further action is taken to specifically test this risk distribution

module, and finally some modification has to be made to the GUI module.

6.2 User interface testing

Dealing with massive data is a big hassle and error-prone; working on a friendly

user interface can reduce the accidents caused by user actions. The user interface

testing is carried out by different people including common CSEE students in our

department and most of the research group members of this project. Each person

is introduced briefly to this tool, and the process of risk assessment. All of them

can quickly understand how to use the ARAT tool, how to convert the UML model

into textual data, and import the data into the ARAT tool, however, some minor

 38

modifications are made to the GUI module to make the data presentation more

clear. For instance, the labels of some 3D charts previously have been overlooked,

although the legend and title are clearly provided for each chart or even if the user

knows what process he is focusing on, but it might still cause some confusion

when multiple charts with plenty of data are presented simultaneously.

ARAT is expected to be applied on more case study models in the future. In the

current phase of our research, the testing result is satisfied and the objectives of

the project are met.

 39

C H A P T E R 7 A N A L Y S I S A N D C O N C L U S I O N

7.1 Analysis and conclusion

This project explores the risk assessment tool ARAT. It is entirely based on the

methodology proposed by our research group. ARAT estimates the distribution of

the scenario/use case/system risk factors on different severity classes which allow

us make a list of critical scenarios in each use case, as well as a list of critical use

cases in the system. Finally, we identify a list of critical components and

connectors that have high risk levels in high severity classes. The results could

guide the allocation of development and testing effort based on critical use

cases, scenarios, components, and connectors. The results from this stage of

work are satisfied and have shown the feasibility of implementing complex risk

assessment processing algorithms in ARAT.

7.2 Future work

This work could extend to other software engineering analyses where all the

analyses need to be conducted at the early phase during the lifecycle of the

software system.

For the future implementation, ARAT can integrate new calculation models for

hazard analysis to allow automatic and precise estimation of the severity level for

each architectural element. ARAT is also planned to integrate new models to

calculate all the static metrics in the target software system even though the

results maybe not as sensitive and complete as dynamic metrics for early risk

assessment.

 40

R E F E R E N C E

[1] N. Fenton, N. Ohlsson, “Quantitative Analysis of Faults and Failures in a

Complex Software System”, IEEE Trans. Software Engineering, Vol. 26, No. 8, pp.

797 -814, 2000.

[2] W. Harrison, “Using Software Metrics to Allocate Testing Resources”, Journal of

Management Information Systems, Vol. 4, No. 4, 1988, pp. 93-105.

[3] K. Goseva-Popstojanova , A. Hassan, A. Guedem, W. Abdelmoez, D. Nassar,

H. Ammar, A. Mili, “Architectural-Level Risk Analysis using UML”,IEEE

Transactions on software Engineering, Vol.29, No.10, Oct 2003

[4] J. Rumbaugh, I. Jacobson, G. Booach, The Unified Modeling Language

Reference Manual, Addison-Wesley, 1999.

[5] A. Hassan, W. M. Abdelmoez, R. M. Elnaggar, H. H. Ammar, “An Approach to

Measure the Quality of Software Designs from UML Specifications,” 7th

International Conference Information Systems, Analysis and Synthesis, 2001,

Vol.IV, pp.559-564.

[6] NASA Technical Std. NASA-STD-8719.13A, Software Safety, 1997.

[7] UML Language Resource Center: Unified Modeling anguage,

Standard Software Notation, http://www.rational.com.

[8] M. Stojanovic, K. El-Emam, “ES1: A tool for collecting objectoriented

design metrics”, NRC/ERB-1087, May 2001.

[9] M. Hitz, K. Neuhold, “A Framework for Product Analysis”, OOPSLA 1998

Workshop on Model Engineering, Methods and Tools Interaction with CDIF, 1998.

[10] L. Nenonen, J. Gustafsson, J. Paakki A. Inkeri Verkamo, “Measuring object -

oriented software architectures from UML diagrams”, Proc. 4th International

ECOOP Workshop on Quantitative Approaches in Object-Oriented Software

Engineering, 2000, pp. 87-100.

[11] NASA Safety Manual NPG 8715.3, Jan. 2000.

[12] Ian Sommerville, Software Engineering, 6th edition , Addison-Wesley, 2000

 41

[13] A. Hassan, W. Abdelmoez, R. Elnaggar, and H. Ammar, “An Approach to

Measure the Quality of Software Designs from UML Specifications,” Proc. Fifth

World Multi-Conf. Systems, Cybernetics and Informatics, vol. 4, pp. 559-564, July

2001.

[14]EspressChart 5.0 evaluation copy, Quadbase systems Inc.

[15] Java 2 standard development kit 1.4.2 , http://www.sun.com

[16] Mills, H.D., O’Nell, D. et al., The management of software engineering.IBM

Sys. J.,24(2), 414-77 1980

[17]Matlab version 6.5, The MathWorks, Inc. http://www.mathwork.com

[18]Rational Rose RealTime, vesion 2002.05.00 Rational Software Corporation,

http://www.rational.com

[19] T.Wang, A. Hassan, A. Guedem, W. Abdelmoez, K. Goseva-Popstojanova, H.

Ammar,” Architectural Level Risk Assessment Tool Based on UML Specifications”,

the 25th International Conference on Software Engineering ICSE.2003

 42

APPENDIX A Rose Real Time Script for model conversion

Sub writeModelDocumentation(FileName As String)

Dim temp$

Dim AllUseCases As UseCaseCollection

Dim theUseCase As UseCase

Dim theModel As Model

Dim theScenario As Scenariodiagram

Dim theMessages As MessageCollection

Dim theMessage As Message

Dim totalMessage As Integer

Dim message_counter As Integer

Dim theObjects As ObjectInstanceCollection

Dim theObject As ObjectInstance

Dim theObject2 As ObjectInstance

Dim theObject3 As ObjectInstance

Dim ScenarioDiagrams As ScenarioDiagramCollection

set theModel = RoseApp.CurrentModel

Set Categos =theModel.GetAllCAtegories

Set AllUseCases=theModel.GetallUseCases

Dim assocs As AssociationCollection

Open FileName$ For Output Access Write As #1

 Set assocs = RoseApp.CurrentModel.GetAllCategories.GetFirst("Use Case View").Associations

 Dim anAssoc As Association

 For i% = 1 To assocs.Count

 Set anAssoc = assocs.GetAt(i)

 43

 If anAssoc.stereotype = "uses" Or anAssoc.stereotype = "extend" Then

 If anAssoc.Role1.Class Is Nothing Then

 r1Name$ = anAssoc.Role1.UseCase.name

 Else

 r1Name$ = anAssoc.Role1.Class.name

 End If

 If anAssoc.Role2.Class Is Nothing Then

 r2Name$ = anAssoc.Role2.UseCase.name

 Else

 r2Name$ = anAssoc.Role2.Class.name

 End If

 If anAssoc.Role1.navigable = TRUE Then

 If anAssoc.stereotype = "extend" Then

 Print #1, r1Name$ & " " & anAssoc.stereotype & "s " & r2Name$

 Else

 Print #1, r2Name$ & " " & anAssoc.stereotype & "s " & r1Name$

 End If

 Else

 If anAssoc.stereotype = "extend" Then

 Print #1,r2Name$ & " " & anAssoc.stereotype & "s " & r1Name$

 Else

 Print #1,r1Name$ & " " & anAssoc.stereotype & "s " & r2Name$

 End If

 End If

 End If

 Next i

Print #1, "UseCasesOfModel(";AllUseCases.count;")"

 message_counter=0

 totalMessage = 0

For i%=1 To AllUseCases.count

 Set theUseCase = AllUseCases.GetAt(i)

Set ScenarioDiagrams=theUseCase.ScenarioDiagrams

 44

Print #1,"UseCaseName(";theUseCase.Name;")"

if ScenarioDiagrams.Count > 0 then

 Print #1, "scenariosOfUseCase(";ScenarioDiagrams.Count-1;")"

End If

For j%=1 To ScenarioDiagrams.Count

 Set theScenario = ScenarioDiagrams.GetAt(j)

 Set theMessages = theScenario.GetMessages ()

 temp$ = left$ (theScenario.Name , 14)

 If StrComp(temp$, "Collaboration1") Then

 Print #1,

"ScenarioName_MessagesOfScenario(";theScenario.Name;",";theMessages.count;")"

 Else

End If

For k%=1 To theMessages.count

 Set theMessage = theMessages.GetAt(k)

 Set theObject2=theMessage.GetReceiverObject ()

 Set theObject3=theMessage.GetSenderObject ()

Print #1, "Message_Receiver_Sender(";theMessage.Name;",";theObject2.Name;",";theObject3.Name;")"

Next k

 message_counter=message_counter+theMessages.count

Next j

 totalMessage = totalMessage + message_counter

 Print #1,"MessagesOfUseCase(";message_counter;")"

 message_counter=0

 Next i

 Print #1,"MessagesOfModel(";totalMessage;")"

End Sub

Sub Main

 FileName$=SaveFileName$("writeModelDocumentation","Text files:*.txt")

 If FileName$<> "" Then writeModelDocumentation FileName$

 End Sub

 45

APPENDIX B ARAT overall control flow chart

Database Connection Module

Send data to database
Display Module

Retrieve data from database

import data Data Preprocessing
Module

Complexity
Calculation Module

Dynamic Coupling
Calculation Module

Component Risk Factor
Calculation Module

Connector Risk Factor
Calculation Module

Transition Probability
Calculation Module

Scenario Risk Distribution
Calculation Module

System Risk Distribution
Calculation Module

Use case Risk Distribution
Calculation Module

User Input

Weight Option

Probability

Probability

Probability

Probability

ARAT DATABASE

Severity

Severity

 46

APPENDIX C ARAT Sequence Diagra

Sequence diagram for Retrieve_Model_Infor scenario

G U I D ata_preprocessing_m odule D atabase_Connection_M odule

1: open data file1: open data file

1.1: save data1.1: save data

2: display data2: display data

 47

Sequence diagram for Estimate_Dynamic_Metrics scenario

G U ID ynam ic_Com plexity_M odule D atabase_Connection_m oduleD ynam ic_coupling_m odule

1: retrieve data1: retrieve data

1.1: send data1.1: send data

1.1.1: display result1.1.1: display result

1: retrieve data1: retrieve data

1.1: send data1.1: send data

1.1.1: display result1.1.1: display result

 48

Sequence diagram for Estimate_Component/Connector_Risk scenario

Com ponent_R isk_M odule Connector_R isk_M odule D atabase_Connection_M odule G U I

1: retrieve data1: retrieve data

1.1: send data1.1: send data

1: Severity Input1: Severity Input

1.1.1: display data1.1.1: display data

1: retrieve data1: retrieve data

1.1: send data1.1: send data

2: severity input2: severity input

3: D isplay data3: D isplay data

 49

Sequence diagram for Estimate_Scenario_Risk Scenario

M akov_M oduleTransition_Probability_M oduleSenario_R isk_M odule G U ID atabase_Connection_M odule

1: retrieve data1: retrieve data

1.1: send data1.1: send data

1.1.1: prom pt input1.1.1: prom pt input

1.1.1.1: acquire probability1.1.1.1: acquire probability

1.1.2: calculate risk1.1.2: calculate risk
1.1.2.1: display result1.1.2.1: display result

1: retrieve data1: retrieve data

1.1: send data1.1: send data

1.1.1: display data1.1.1: display data

 50

Sequence diagram for Estimate_Usecase_Risk_Module scenario

M akov_M oduleTransition_Probability_M oduleSenario_R isk_M odule G U ID atabase_Connection_M odule

1: retrieve data1: retrieve data

1.1: send data1.1: send data

1.1.1: prom pt input1.1.1: prom pt input

1.1.1.1: acquire probability1.1.1.1: acquire probability

1.1.2: calculate risk1.1.2: calculate risk
1.1.2.1: display result1.1.2.1: display result

1: retrieve data1: retrieve data

1.1: send data1.1: send data

1.1.1: display result1.1.1: display result

 51

Sequence diagram for Estimate_System_Risk scenario

G U ID atabase_Connection_M oduleSystem _R isk_M odule

1: retrieve data1: retrieve data

1.1: send data1.1: send data

2: request use case probability2: request use case probability

2.1: send use case probability2.1: send use case probability

3: display data3: display data

	Architecture-level risk assessment tool based on UML specification
	Recommended Citation

	Architecture-level Risk Assessment Tool Based on UML Specification

		www.wvu.edu/~thesis
	2003-12-12T17:42:15-0500
	West Virginia University Libraries
	John H. Hagen
	I am approving this document

