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CHAPTER 2. THEORETICAL BACKGROUND 11

2.1.2 Seismic Principles

When a pebble is dropped into the water, one can observe waves propagated away from

the center, creating definite circles, which get larger and larger in diameter. The same

process can be observed in the vertical plane, which shows that wave propagation is a

three-dimensional phenomenon. Seismic wave propagation works out in the same way.

Once the seismic energy is induced to the ground by a vibrating or explosive source, energy

propagates through the layers of the earth. Considering the waves moving away from the

center, the leading wave is called the wave front [15].

Figure 2-2: A seismic section [15].

If the propagating wave strikes a boundary between two media having different velocities,

part of the energy is reflected from the boundary, and the remainder is transmitted into

the next layer. This way, the energy is divided into various components. These relative

portions of the energy transmitted and reflected are determined by the contrast in the

acoustic impedances of the rock layers on each side. Acoustic impedance, Z, is the product

of the density, ρ, and the velocity, v, of the rock, and it is usually higher when the rock is

harder.

If we consider a ray of amplitude A0 which is normally incident on an interface between

two media differing in velocities and densities, a transmitted ray (having amplitude A1)

would travel through the interface in the same direction, and the reflected ray of amplitude
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A2 would return to the source. The reflection coefficient, R is defined as the ratio of the

amplitude A1 of the reflected ray, to the amplitude A0 of the incident ray. In terms of

acoustic impedances, for a normally incident ray, Zeoppritz’s equation states that:

R =
Z2 − Z1

Z2 + Z1
(2.1)

where; Z1 and Z2 are the acoustic impedances of the first and second layers respectively.

This equation can also be written in terms of the velocity and density as;

R =
(ρ2v2 − ρ1v1)
(ρ2v2 + ρ1v1)

(2.2)

Another term is the transmission coefficient, which is the ratio of the amplitude trans-

mitted to the incident amplitude:

T =
A2

A0
(2.3)

Snell’s Law

Snell’s Law describes the relationship between the velocities and the angles which the rays

make before being reflected and after being transmitted through the next layer. After a

portion of the ray is reflected from the boundary, remaining portion is transmitted to the

next layer by changing its direction and is called the refracted ray. Snell’s Law states that;

the ratio of the angle, θ, to the velocity is constant:

sin θ1/V1 = sin θ2/V2 (2.4)

or;

sin θ1/ sin θ2 = V1/V2 (2.5)

Snell’s Law is illustrated in Figure 2-3.
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Figure 2-3: Snell’s Law.

2.1.3 Vertical Seismic Profiling (VSP)

Vertical seismic profiling differs from conventional seismic surveys with the location of signal

receivers. In VSP surveys, the receivers are located in the borehole instead of surface. By

this way, signals moving towards up or down can be both received. This is the theory behind

higher resolution of data (approximately 2 times larger) gathered with VSP comparing to

data gathered with surface seismic. Figure 2-4 is schematic view of how VSP surveys are

conducted. VSP surveys are very similar to velocity surveys in terms of where the sources

and receivers are located. However, they differ from each other with two issues [15]:

1. The distance between geophone recording depths (smaller in VSP, every 15-40 meters)

2. Collection of information (Only first break times are collected in velocity surveys. In

VSP, upgoing and downgoing events are also collected.)

The basic components required for a VSP survey are; 1) a borehole, 2) an energy source,

3) a downhole geophone, and 4) a recording system. For each of these components, the

required conditions must be met to conduct a VSP survey.

Borehole

In a vertical well, interpreting the results of a VSP survey is much easier. If the well is

deviated, then an accurate deviation survey should be conducted before the survey. A



CHAPTER 2. THEORETICAL BACKGROUND 14

survey in a deviated well has some advantages, such as better lateral resolution of the

subsurface beneath the borehole.

Figure 2-4: Schematic view of a typical VSP survey.

In terms of casing and cementing, the important issue is to make sure that seismic

waves are transmitted across the borehole/formation interface to the downhole geophone

with minimum waveform character distortion. A cased hole is ideal for that purpose in the

case that it is cemented as cement is a good transmitter of the seismic energy. In the case of

an uncased hole, it is recommended to determine the recording depths after analyzing the

caliper log. In the order of preference; four common borehole environments can be listed

as;

1. Single casing, cemented.

2. Uncased.

3. Single casing, uncemented, old enough for mud and cuttings in annulus to have solid-

ified.
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4. Recently cased, uncemented.

In terms of data, a well having different types of logs, core samples, and drill cuttings

should be preferred for a VSP survey to a well having less amount of data.

Energy Source

VSP is usually used to be correlated with the surface seismic. Therefore, they should have

the same wavelet and high-frequency content. In general, this correlation happens after the

data processing stage.

The energy source must generate a consistent and repeatable shot wavelet. Its output

level should be carefully selected for optimum response. In all VSP surveys, the downgoing

events are stronger than the upgoing ones. If the output strength us increased, more

downgoing events would be created. The increase in the number and amplitude of the

downgoing events must be greater than the gain of the amplitude of the upgoing events.

The most common surface energy sources for VSP surveys are dynamites, mechanical

impulse sources, vibrators, and air guns.

The Downhole Geophone

The downhole geophone is very different than the geophones designed for surface. They are

carried within a massive housing, which makes the geophone resistant to high pressure, and

high temperature.

The Recording System

Resolution, dynamic gain, and recording format are the important issues that need to meet

the standards for a VSP survey. The responses should be recorded with enough resolution

to be able to capture high-resolution wavelets.

By Gadallah [15], common applications of VSP surveys are listed as;

1. Exploration applications

• Determining reflection coefficients.

• Identification of seismic reflectors.

• Comparison of VSP with synthetic seismogram.
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• Fresnel zone and VSP horizontal resolution.

• Seismic amplitude studies.

• Determining physical properties of the rocks.

• Seismic wave attenuation.

• Thin bed stratigraphy.

2. Reservoir engineering and drilling applications

• Predicting depths of seismic reflectors.

• Predicting rock conditions ahead of the bit.

• Defining reservoir boundaries.

• Locating faults.

• Monitoring secondary recovery processes.

• Seismic tomography and reservoir description.

• Predicting high-pressure zones ahead of the bit.

• Detection of man-made fractures.

2.1.4 Seismic Attributes

According to Chen [16]; seismic attributes are specific measurements of geometric, kine-

matic, dynamic, or statistical features derived from seismic data. Similarly, they can be

defined as all the information obtained from seismic data, either by direct measurements

or by logical or experience-based reasoning. Since their introduction in the early 1970’s,

complex seismic trace attributes have gained considerable popularity, first as a convenient

display form, and later, as they were incorporated with other seismically-derived mea-

surements, they became a valid analytical tool for reservoir characterization. The study

and interpretation of seismic attributes provide us with some qualitative information of

the geometry and the physical parameters of the subsurface [17]. Many different meth-

ods have been used to invent and compute hundreds of seismic attributes. These methods

include complex trace analysis, interval statistics, correlation measures, Fourier analysis,

time-frequency analysis, wavelet transforms, principal components, and various empirical

methods [9]. Detailed explanations of instantaneous attributes are shown in Table 2.1. The

attributes which are used in this study can be defined as;
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Trace amplitude: The instantaneous amplitude is the measure of the strength of the

reflected signal. Indicates changes in physical properties of various lithological entities.

It can sometimes be used to detect gas presence [12]. There are two important features

of instantaneous amplitude:

1. Instantaneous amplitude is not simply the magnitude of the real seismic trace,

which is a popular concept for measuring the amplitude of seismic data.

2. The maximum of the instantaneous amplitude function does not necessarily occur

at the maximum amplitude of the real seismic trace.

Instantaneous phase: Phase angles range from -180 degrees to +180 degrees. Envelope

and phase are combined as polar components of a trace signal [18].

Instantaneous frequency: This attribute describes how long it takes the phase to com-

plete 360 degrees of rotation [18].

Trace envelope: Represents the reflection strength. The envelope is independent of the

phase and it relates directly to the acoustic impedance [18].

Hilbert transform: This amounts to a 90-degree phase rotation. Amplitude and Hilbert

transform are combined as Cartesian components of a trace signal [18].

Paraphase: This attribute is the instantaneous phase with the predictable trend removed.

As such, it assists visualizing the structural picture because phase tracks geologic

boundaries [18].

Average energy: This attribute integrates the envelope between paraphase events. It

highlights stratigraphic detail through energy fluctuations across traces. Values are

in degrees [18].

Signed frequency: This attribute allows removal of the clip against non-positive values

[18].

Barnes [9] made a timeline diagram, which shows the development of seismic attribute

analysis since 1950 which included the introduction of using neural networks in seismic

pattern recognition in early 1990s (Figure 2-5). Key attributes are shown italicized, and

representative papers are shown in diagonals in the figure.
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2.1.5 Synthetic Seismic Modeling

Synthetic seismic modeling is a forward modeling process. A seismic wavelet gathered from

real data can be convolved with a reflection coefficient in order to simulate the seismic

response. Reflection coefficient (R) is defined above with the equation (2.1). As a result of

this process, a synthetic seismic trace can be obtained. During the modeling process, the

tuning thickness can be determined after the vertical resolution has been calculated with

the relationship [24];

V R =
v

4f
(2.6)

where; VR is the vertical resolution in ft/(sec×Hz), v is the interval velocity in ft/sec

and f is the dominant frequency in Hz.

2.2 Artificial Neural Networks

2.2.1 Biological Neural Networks

Artificial Neural Networks (ANN) draw much of their inspiration from the biological ner-

vous system. It is therefore very useful to have some knowledge of the way this system is

organized.

Most living creatures, which have the ability to adapt to a changing environment, need

a controlling unit, which is able to learn. Higher developed animals and humans use very

complex networks of highly specialized neurons to perform this task. The control unit - or

brain - can be divided in different anatomic and functional sub-units, each having certain

tasks like vision, hearing, motor and sensor control. The brain is connected by nerves to the

sensors and actors in the rest of the body. The human brain consists of a very large number

of neurons, about 1011 in average. These can be seen as the basic building bricks for the

central nervous system (CNS). The neurons are interconnected at points called synapses.

The complexity of the brain is due to the massive number of highly interconnected simple

units working in parallel, with an individual neuron receiving input from up to 10,000 others.

The neuron contains all structures of an animal cell. The complexity of the structure

and of the processes in a simple cell is enormous. Even the most sophisticated neuron
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Figure 2-5: Timeline of seismic attribute analysis from 1950 to the present [9].
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Table 2.1: Instantaneous attributes with their descriptions and applicability [16].
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models in artificial neural networks seem comparatively toy-like.

Structurally the neuron can be divided in three major parts: the cell body (soma), the

dendrites, and the axon, see Figure 2-6 for an illustration. The dendrites receive the signals

from other neurons. The signals are electrical impulses, and transmitted with a chemical

process. Chemical transmitters modify the incoming signal, which is similar to what weights

do in artificial neural networks. The received signals are then summed up in the soma. If

sufficient input is received, the cell fires (i.e. transmits the signal to over its axon, to other

cells.). This process occurs as a result of concentrations of different types of ions such as;

potassium, sodium, and chloride.

In many ways, the mechanism of artificial neural networks have received their motivation

from biological neural networks. One of the key features is the ability of being fault tolerant,

which can be explained as being able to recognize many different input signals that we have

not seen before, or being tolerant to damages in the neural system [19].

Figure 2-6: Schematic view of a bi-polar neuron [20].

2.2.2 Introduction to Artificial Neural Networks

Artificial neural networks (ANN) can be broadly defined as information-processing systems,

which mimic the human mind as a mathematical model representation of the biological
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neural networks which is explained above. They have gained an increasing popularity

in different fields of engineering in the past few decades, because of their capability of

extracting complex and non-linear relationships.

The simplest unit of a neural network is the neuron (processing element). Figure 2-7

shows a typical neuron. The basic information processing occurs like the following; outputs

(In) coming from another neuron are multiplied by their corresponding weights (Wn), and

summed. An activation function is then applied to the summation, and the output of that

neuron is now calculated and ready to be transferred to another neuron [20].

The internal state of a neuron after the activation function is applied, is called its

activation. Thus, for the neuron shown in the figure, its activation, y, would be equal to

f(
∑

IkWk); where f(x) can be any activation function. A very common activation function

is the sigmoid function (s-shaped curve) and it is defined as;

f(x) =
1

1 + exp(−x)
(2.7)

The mechanism of artificial neural networks is based on the following assumptions [19]:

1. Information processing occurs in many simple elements that are called neurons (process-

ing elements).

2. Signals are passed between neurons over connection links.

3. Each connection link has an associated weight, which, in a typical neural network,

multiplies the signal being transmitted.

4. Each neuron applies an activation function (usually non-linear) to its net input to

determine its output signal.

A neural network can be characterized by its pattern of connections between the neurons

(i.e. its architecture), its method of determining the weights on the connection links (i.e.

training algorithm), and its activation function.

In addition to petroleum engineering and many other engineering disciplines, artificial

neural networks have been used in many different kinds of applications such as; signal

processing, control, pattern recognition, medicine, speech recognition, speech production,

and business [19].
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Figure 2-7: Schematic diagram of an artificial neuron or a processing element [20].

2.2.3 Generalized Regression Neural Network (GRNN)

GRNN is a modification to probabilistic neural network that has been suggested by au-

thors, who have studied seismic inversion [2; 10]. GRNN has also been successfully used

in geological pattern recognition applications such as; synthetic log generation [5] and total

organic carbon content prediction from logs [25]. Besides, GRNN has been used in the

closest application to this study, which is using cross-well seismic as the intermediate scale

data [14; 26]. Huang et al. [25] described GRNN as an easy-to-implement tool, which has

efficient training capabilities, and the ability to handle incomplete patterns.

Introduced by Specht [21] in 1991, GRNN is a one-pass learning algorithm with a highly

parallel structure. It is a memory-based network, which provides estimates of continuous

variables, and converges to the underlying regression surface. This approach is freed from

the necessity of assuming a specific functional form. Instead, the appropriate form is ex-

pressed as a probability density function (pdf) which can be determined from the observed

data. General regression uses y (a scalar random variable), the X (a particular measured

value of a vector random variable x ), and the non-parametric estimator of the joint pdf f(x,

y). After defining the scalar Euclidian distance function, D2
i ;

D2
i = (X−Xi)T (X−Xi) (2.8)

performing the integrations results with the following:

Ŷ (X) =
∑n

i=1 Y iexp(−D2
i

2σ )∑n
i=1 exp(−D2

i
2σ )

(2.9)

In order to define it in a simpler mathematical form; (2.4) is proposed instead of (2.2),
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since it has given similar results. Instead of the Euclidian distance, it uses the city block

distance, Ci;

Ci =
p∑

i=1

|(Xj −Xi
j)| (2.10)

Ŷ (X) =
∑n

i=1 Y iexp(−Ci
σ )∑n

i=1 exp(−Ci
σ )

(2.11)

The estimate Y (X) is defined as a weighted average of the observed values, Yi, where

each observed value is weighted exponentially according to its Euclidian or city block dis-

tance [21]. σ is the smoothing factor, and optimum smoothing factor is determined after

several runs according to the mean-squared error of the estimate, which must be kept at

minimum. The smoothing factor must be greater than 0 and can usually range from 0.01 to

1 with good results [22]. This process is named as the training of the network. If a number

of iterations passes with no improvement in the mean-squared error, that smoothing factor

is determined as the optimum one for that data set. In the production phase, that smooth-

ing factor is applied to data sets that the network has not seen before. While applying the

network to a new set of data, increasing the smoothing factor would result with decreasing

the range output values.

GRNN is especially useful in approximating continuous functions. It may have multidi-

mensional input, and it will fit multidimensional surfaces through data. It is a three-layer

network. In the hidden layer, there must be one hidden neuron for each training pattern

[22].

2.3 Correlation Statistics

Through out the text, some correlation statistics are included to define the quality of the

correlation models that have been developed. One of the major correlation statistics is the

coefficient of determination, which is known as r-squared. Defining Y , the set of actual

outputs, and Ŷ , the set of predicted outputs, and n, the number of samples; r-squared is

equal to [23]:

r2 = 1− SSE

SST
(2.12)
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where;

SSE =
∑

(Yi − Ŷi) (2.13)

SST = (
∑

Y 2
i )− (

∑
Yi)2

n
(2.14)

Another term used is the correlation coefficient, r, which is basically the square root

of r-squared. These terms can be between 0 and 1, and values closer to 1 indicate better

match. However, in the case of logs or any other geological patterns, r-squared might not

always be representative of the quality of the match, since the trends followed are basically

more important than the values. That is why visual analysis is considered more than the

correlation statistics in those cases.



Chapter 3

Synthetic Model Study

As one of the unique features of this study, a synthetic seismic model has been developed

before dealing with real data. It was aimed to find out the most appropriate methodology

to achieve the goals of this research.

This model has been built in a way that it is a representative model of the Pennsylvanian

stratigraphy of the Buffalo Valley Field in New Mexico. Real data from this field is used in

the real case study which is explained in Chapter 4. The geological structure of this field

is also explained in that chapter. In this chapter, information about how the model has

been built, the description of the model, the output of the model (i.e. available data for

the neural network studies), and the methodology followed are explained.

3.1 Model Development

The model has been developed by using Struct which is a modeling package in the Ge-

ographix Discovery Suite of Landmark Graphics. It is a comparative example of the strati-

graphic section of the Buffalo Valley Field, which includes Atoka and Morrow formations

together with the overlying Pennsylvanian sequence. It is developed by using a forward

modeling process, which has simulated straight rays traveling from the surface and avoiding

diffraction at interfering events. The model has been defined with properties like thickness,

geometry, lateral distribution, density and interval velocity of the rocks which were gathered

from the actual data set [24]:

Horizontal dimension - 4.9 mi, (7.9 km), equivalent to the dimension of the 3D survey.

26
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Vertical dimension - Real depth - approximately 7000 ft; and thickness of the sequence

- 200 ft. This data was measured from well logs.

Geometry of the sand channels and sand/limestone layers - After considering the

well log interpretation and seismic visualization, channels and layers were defined as

having thicknesses between 10 and 80 ft.

Density and interval velocity of shales and sand bodies - The average density and

velocity values were derived from well logs as shown in Table 3.1;

Table 3.1: Layers and corresponding density and velocity ranges in the synthetic model.

Lithology Density, g/cc Velocity, ft/s
Sandstone 2.4 - 2.7 12,500 - 16,000
Shale 1.9 - 2.10 9,000 - 11,000
Limestone 2.5 - 2.7 14,000 - 17,000

Surface Seismic and VSP Derived Models

Two separate models have been obtained by extracting wavelets from actual surface seismic

and VSP for the time window of Atoka and Morrow formations. The synthetic surface

seismic response (Figure 3-1) has been computed by using a wavelet derived from the zone

of interest in line 1034 of the 3D surface seismic data, and the synthetic VSP response

(Figure 3-1) has been computed by using a Butterworth wavelet derived from line 2064 of

the 3D VSP with a larger bandwidth. The properties of the wavelets used for each case are

shown in Table 3.2. Tuning thickness has been determined after the vertical resolution has

been calculated with the equation (2.6).

3.2 Model Description

In the model, the geological complexity increases with depth. The positive amplitudes (blue

in Figure 3-1) are produced at the top of the carbonates, reflecting the interface between

an overlying weak acoustic impedance rock (shales, layers in white) and an underlying high

acoustic impedance (carbonates). Negative amplitude (red) is produced due to the interface
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Table 3.2: Properties of wavelets used to compute seismic responses.

Property 3D Surface Seismic VSP
Bandwidth, Hz 11-95 20-110
Dominant Frequency, Hz 45 65
Dominant Period, sec 0.022 0.0154
Interval Velocity, ft/sec 15000-16000 15000-16000
Tuning Thickness, ft 83-88 57-61

between the strong acoustic impedance carbonate, and the underlying weak impedance shale

[24].

If the thickness of the layer exceeds the resolvable thickness, amplitude becomes very

low (white in Figure 3-1), since there is no reflectivity contrast in those regions. The reflec-

tion character is basically related to lateral stratigraphic changes. For Atoka and Morrow

formations, there is a lateral variation due to a series of lenses and layers of sandstones

and sands with carbonate content that are laterally and vertically stacked, and embedded

in shale. This results with a discontinuous seismic character with faster lateral variations

of the amplitude. Laterally, continuous marine sequences, such as the carbonate and in-

terbedded shales of the Strawn, Canyon and Cisco formations, produce laterally continuous

reflectors. On the other hand, laterally varying formations like Atoka and Morrow, produce

discontinuous seismic reflectors, which brings up more visible amplitude variations. This

character of Atoka and Morrow is mainly caused by lenses of sand channels, which are

pinching out and stacked on top of each other [24].

3.3 Model Output

The model is basically a seismic line of 100 traces, which includes three wells at traces 20,

50 and 80 with the well at trace 50 having a VSP. These wells had well logs of density and

velocity. The available data after developing the model were;

1. Surface seismic responses;

2. Vertical seismic profile responses;

3. Density and velocity distributions.
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Figure 3-1: Computed seismic responses (seismic sections). Top: Surface seismic re-
sponses - lower resolution, bottom: VSP responses - higher resolution.
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Seismic responses have been computed as distributions of the following attributes:

• Trace Amplitude

• Trace Envelope

• Average Energy

• Hilbert Transform

• Instantaneous Phase

• Instantaneous Frequency

• Paraphase

3.4 Methodology

The methodology in this study includes two major steps of correlation as proposed (Figure

1-4); 1) Correlation of surface seismic with VSP; 2) Correlation of VSP with well logs.

The available data which is mentioned above are used to find the best correlation models.

Instead of using all of the data available, the data of interval 0.8-1.124 seconds are used, as

only that interval was geologically rich in terms of information. This interval corresponded

to 6,600-9,000 ft. Next, these two steps of correlation will be explained in details.

3.4.1 Step 1: Correlation of Surface Seismic with VSP

As the first step of the proposed correlation methodology, correlations between surface

seismic attributes and VSP attributes have been looked for. First, the model has been visu-

alized by plotting the cross-sectional distributions of density, velocity and seismic attributes

for both surface seismic and VSP. The density distribution (Figure 3-2) clearly reflects the

arrangement of the rock layers, where in the middle zone, sand channels can be seen. The

model has a uniform distribution laterally.
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Figure 3-2: Cross-sectional density distribution of the synthetic model.

The main aim was to determine the most appropriate data that can be used in training

before starting to train the network. The predictability of a neural network model highly

depends on how and with what data it has been trained. Thus, the data should contain a

lot of information regarding the model, to get the most successful results in the production

phase. For this purpose, an effort has been made to identify special geological features

that can be useful in training the neural network. These include; edges of sand channels,

extreme value points, and unique geological structures. Although the model has a uniform

distribution laterally in most of the regions, those kinds of features can be found mostly in

the middle zone. In order to include those features in the training model, data of traces

32 and 57 have been decided upon to be used in training after several tests (Figure 3-3).

Number of traces that is used has been kept at two, because of the limitation in optimum

number of data rows. Two traces included 326 data rows.

The network structure used in training is shown in Figure 3-4. As shown, data of traces

32 and 57 have been used, to predict a VSP attribute from time and seven available surface

seismic attributes. 70% of the data were selected randomly, specifically for training. Among

the remaining 30%; 20% were used for calibration, and 10% were used for verification.
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At the end, seven separate prediction models have been developed for seven attributes,

which are based on data of t-32 and t-57. After having confidence with the prediction

abilities of these models, they have been applied to the whole seismic line to obtain network-

predicted distributions of available attributes. These distributions were then plotted to be

able to compare with the actual ones.

Figure 3-3: Cross-sectional Envelope distribution which was used to determine special
features that can be useful in the network training. Finally, traces 32 and 57
were decided to be used in training.

3.4.2 Step 2: Correlation of VSP with Well Logs

The second step of the correlation studies is the main goal of this study, which is deriving

logs from VSP data. Since t-50 is the trace which includes all of the data that are dealt with

theoretically (i.e. surface seismic, VSP and well logs), this trace has been used to develop

the model of this part of the correlation. Density log has been selected as the target log,

as it was the only log together with the velocity log which has a very similar structure




