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ARTICLE

A common mechanism of proteasome impairment
by neurodegenerative disease-associated
oligomers
Tiffany A. Thibaudeau1, Raymond T. Anderson1 & David M. Smith 1

Protein accumulation and aggregation with a concomitant loss of proteostasis often con-

tribute to neurodegenerative diseases, and the ubiquitin–proteasome system plays a major

role in protein degradation and proteostasis. Here, we show that three different proteins from

Alzheimer’s, Parkinson’s, and Huntington’s disease that misfold and oligomerize into a shared

three-dimensional structure potently impair the proteasome. This study indicates that the

shared conformation allows these oligomers to bind and inhibit the proteasome with low

nanomolar affinity, impairing ubiquitin-dependent and ubiquitin-independent proteasome

function in brain lysates. Detailed mechanistic analysis demonstrates that these oligomers

inhibit the 20S proteasome through allosteric impairment of the substrate gate in the 20S

core particle, preventing the 19S regulatory particle from injecting substrates into the

degradation chamber. These results provide a novel molecular model for oligomer-driven

impairment of proteasome function that is relevant to a variety of neurodegenerative dis-

eases, irrespective of the specific misfolded protein that is involved.
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The most common neurodegenerative diseases are char-
acterized by an accumulation of aggregation-prone pro-
teins concomitant with a loss of proteostasis, which results

in progressive death of neurons1–3. Culminating evidence from
the past two decades has revealed that soluble, oligomeric forms
of protein aggregates (such as Aβ in Alzheimer’s disease,
α-Synuclein (α-Syn) in Parkinson’s disease, and mutant hun-
tingtin in Huntington’s disease) are likely the most toxic
species4, 5. While different regions of the brain are affected in
these distinct diseases, proteotoxicity is a shared feature found in
these affected regions of the brain. This suggests that a common
mechanism of proteotoxicity could contribute to the development
and progression of these distinct neurodegenerative diseases.

Proteostasis6, 7 is maintained by several systems in the cell
including the ubiquitin–proteasome system (UPS), chaperones,
chaperone-mediated autophagy, and macroautophagy8. The UPS
is the principal route for the degradation of intracellular mis-
folded, damaged, or unneeded proteins9. If the efficiency of
proteostasis systems declines, misfolded proteins accumulate and
aggregate in the cell, which can disrupt normal cellular functions
and even cause cell death10. Maintaining proteostasis is especially
important for neurons due to their complex architecture, long
lifespan, and inability to dilute aggregate load by cell division11.
Most importantly, the UPS is critical for normal functioning of
neuronal synapses, including synaptic protein turnover, plasticity,
and long-term memory formation, which rely on tightly con-
trolled changes in the proteome11–15. Recently, Ramachandran
and Margolis16 identified a mammalian nervous-system-specific
membrane proteasome complex that directly and rapidly mod-
ulates neuronal function by degrading intracellular proteins into
extracellular peptides that stimulate neuronal signaling through
postsynaptic N-methyl-D-aspartate receptors.

Decreased proteasome function has been reported in a broad
array of chronic neurodegenerative diseases17. Impaired protea-
some function has been implicated, as a primary cause or a
secondary consequence, in the pathogenesis of many neurode-
generative diseases, including Alzheimer’s, Parkinson’s, and
Huntington’s diseases2, 17–21. In fact, brain region-specific pro-
teasome inhibition (e.g., forebrain, substantia nigra) closely mir-
rors the neuropathology and clinical hallmarks of
neurodegenerative diseases22–26. A small percentage of neurode-
generative disease is caused by hereditary gene mutations, many
of which affect components of the UPS (e.g., PARK1, PINK)20.
However, the vast majority of neurodegeneration is idiopathic in
origin and the involvement of the UPS is less clear17. What is
clear in these diseases is that proteins that are normally degraded
are not properly degraded after misfolding occurs, leading to their
accumulation. Several groups have provided evidence that
aggregated proteins from neurodegenerative diseases interact with
and impair proteasome function27–37. However, it is not clear
what specific types of aggregates impair the proteasome, and a
mechanistic understanding of how they do so has not been elu-
cidated. Though, one study has been able to show that hetero-
geneous aggregates of the mouse prion protein, PrPsc, reduced
substrate entry by decreasing proteasomal gating36. Despite these
many efforts, an understanding of why and how the proteasome
is so generally impaired in neurodegenerative disease has
remained elusive. Understanding the mechanism of impairment
will provide a basis for drug development to restore proteasome
activity and proteostasis in the brain and is therefore an impor-
tant effort.

Proteins targeted for proteasomal degradation are marked by
the attachment of several ubiquitin proteins. These poly-
ubiquitinated substrates are recognized by the 26S proteasome
and are degraded9. The 26S proteasome is made up of a 20S
proteasome core particle capped on one or both ends by the 19S

regulatory particle. It degrades proteins by a multistep process:
the 19S regulatory particle binds ubiquitinated substrates and
opens a substrate entry gate in the 20S38–40 and unfolds its
substrates by translocating them into the 20S catalytic chamber
were they are degraded41, 42. The 20S is a hollow cylindrical
complex composed of four heteroheptameric rings arranged in a
α7-β7-β7-α7 fashion43. Proteolysis occurs on the interior surface of
β-subunit rings. The substrate gate is formed by the N-termini of
the α-subunits, which prevent unregulated access to the catalytic
sites by folding over the entry pore and blocking substrate
translocation into the catalytic chamber44. Triggering of gate
opening by the 19S requires the C-terminal HbYX motif of the
19S ATPases to bind to intersubunit pockets (between the α-
subunits) on top of the 20S45. The HbYX motif allows the 19S to
bind to the 20S core particle, but binding of the HbYX motif by
itself (as a hepta peptide) is also sufficient to allosterically induce
conformational changes in the α-subunits that cause gate open-
ing45–48. Clearly, regulation of the 20S proteasome gate is an
important aspect of proteasome function and the cell has evolved
many different proteasomal regulators that control 20S gate
opening, many of which contain the HbYX motif (e.g., the 19S
ATPases: Rpt2, Rpt3, Rpt5; Blm10/PA200; Pba1–Pba2; PI31; and
archaeal CDC48/P97), and some that do not (i.e., the 11S family:
PA28αβ and PA26)48.

This study demonstrates that misfolded proteins from three
distinct neurodegenerative diseases adopt a common three-
dimensional (3D) conformation that is capable of impairing
ubiquitin-dependent and ubiquitin-independent proteasome
function. Although these oligomers possess unique primary
sequences, they all impair the proteasome through allosteric
stabilization of the closed gated conformation of the 20S core
particle, therein blocking protein degradation. Moreover, these
toxic oligomers specifically impair HbYX motif dependent gate
opening, yet do not impair gate opening induced by the 11S
family of regulators. These data suggest that proteasome
impairment in various neurodegenerative diseases may share a
common mechanism.

Results
Inhibitory oligomers share structural features. Prior studies
report conflicting observations regarding the impairment of the
proteasome by disease-related aggregated proteins, some
demonstrating proteasome impairment27–30, 32–35, while others
do not49, 50. The major limitation of these studies is that the
conformational state of the aggregates was not accounted for or
considered. Aggregation-prone proteins have the unique property
of conformational polymorphism. During amyloid formation a
variety of aggregate species are formed, ranging from small
dimers up to large insoluble fibrils. Oligomers are metastable
intermediates to fibril formation or an off-pathway product of
aggregation and are recognized as the primary pathogenic effec-
tors51. Since the previous studies used heterogeneous composi-
tions of the aggregated proteins, these seemingly conflicting
results for proteasome impairment are not surprising. In this
study, we purify to homogeneity a specific conformation of a
pathological oligomer, identified its conformational status, and
extensively characterize its mechanism of impairment on human
and mammalian 20S/26S proteasomes. In addition, this study
identifies a specific oligomeric conformation found in Alzhei-
mer’s, Parkinson’s, and Huntington’s disease that substantially
impairs proteasome function in a way that could contribute to the
development and progression of these and other neurodegen-
erative diseases.

To determine if specific types of oligomers are responsible for
proteasome impairment, we began by generating various mixed
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populations of protein aggregates made from either amyloid-β
1–42 (Aβ), α-Syn, or huntingtin exon 1 with a polyQ-expansion
(Htt-53Q) and asked if they could impair purified mammalian
20S proteasome. We found that under specific oligomerization
conditions (different for each protein type) each of the aggregate
preparations could significantly impair the 20S proteasomes

ability to hydrolyze fluorogenic peptide substrates (Fig. 1a). These
results replicate those which have been reported to some extent
previously29–31. Next, we separated the mixed aggregates into
soluble and insoluble fractions and again tested their effect on
proteasome activity. The soluble oligomers, but not equal
amounts of monomers or insoluble fibrils, strongly impaired

Amyloid-β1–42,
α-Synuclein, or
Huntingtin-Q53

Monomers
Mixed

aggregates

Mixed
aggregates

100

80

60

40

20

0

100

Protofibrils (Aβ-PF)

Intermediate
oligomers (Aβ-iO)

80

60

40

20

0
0 1 2 3

Aβ (monomeric μM)

4 5
Buf

fer Aβ
α-S

yn

Htt-
53

Q

am
c 

hy
dr

ol
ys

is
 b

y 
20

S
(%

 o
f c

on
tr

ol
)

am
c 

hy
dr

ol
ys

is
 b

y 
20

S
(%

 o
f c

on
tr

ol
)

Incubate
37 °C

da

Mixed
aggregates

Soluble

Soluble aggregates

Insoluble

Insoluble aggregates

Spin

100

80

60

40

20

0
Aβ

Soluble aggregates

120

80

40

A
β 

pr
ot

ei
n 

ab
so

rb
an

ce
(2

80
 n

m
, m

A
U

)SEC

High Low 0
5 7 9 11

Size exclusion fractions (mL)

Dot blot:

13 15 17 19 21 23

Protofibrils
(Aβ-PF)

Intermediate
oligomers

(Aβ-iO)

Small
oligomers
monomers

100

50

0
MW

α-Syn

IB: α-oligomer (A11)

100

80

60

40

20

0
Buffer Aβ-iO

+ α-oligomer
(A11) antibody

Buffer Aβ-iO

100

80

60

40

20

0

Monomers
am

c 
hy

dr
ol

ys
is

 b
y 

20
S

(%
 o

f c
on

tr
ol

)

am
c hydrolysis by 20S

(%
 of control)

IB: α-oligomer
(A11)

am
c 

hy
dr

ol
ys

is
 b

y 
20

S
(%

 o
f c

on
tr

ol
)

am
c 

hy
dr

ol
ys

is
 b

y 
20

S
(%

 o
f c

on
tr

ol
)

e

Htt-53Q

H
tt-

20
Q

b

c

Fig. 1 A specific conformation of soluble oligomers potently inhibits the mammalian 20S proteasome. a Mammalian 20S proteasomes were incubated with
mixed aggregates of Aβ1–42 (5 μM), α-Syn (1 μM), Htt-53Q (0.1 μM), or an equal volume of oligomer buffer (control). Proteasome activity (linear rate of
LLVY-amc hydrolysis) is represented as a percentage of activity compared to the control. b Crude aggregates from a were separated into soluble and
insoluble aggregates (schematic, left) and were assayed as in a (bar graph, right). For huntingtin monomers, Htt-20Q monomers were used because pure
Htt-53Q monomers could not be obtained due to rapid oligomerization. Dot blots of monomers, soluble aggregates, and insoluble aggregates from b were
probed with the conformation-dependent anti-oligomer “A11” antibody (bottom right). c Soluble Aβ aggregates from b were separated by size exclusion
chromatography (Abs280 nm, solid blue line). Two microliters from each fraction was evaluated for its effect on 20S proteasome chymotrypsin-like activity
(bars) and probed for anti-oligomer A11 reactivity (dot blot, bottom). d Proteasome activity with up to 5 μM of Aβ oligomers (Aβ-iO) or Aβ protofibrils (Aβ-
PF) from c. e Intermediate oligomers from d were pre-incubated with anti-oligomer A11 antibody (Aβ-iO+A11) or an equal volume of antibody buffer (Aβ-
iO) for 30min at 37 °C before to addition to proteasome activity assay. Final concentration of Aβ-iO in the assay was 0.25 μM (the ~IC50 as determined in
d). The concentrations of aggregates are calculated based on the respective monomeric peptide/protein mass (Aβ, 4.5 kDa; α-Syn, 14 kDa; and Htt-53Q,
22 kDa). All controls contained an equal volume of buffer identical to that of the respective aggregates. The data are representative of three or more
independent experiments performed in triplicate. Error bars represent ± standard deviation

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03509-0 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1097 | DOI: 10.1038/s41467-018-03509-0 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


proteasome activity (Fig. 1b) in a concentration-dependent
manner (Supplementary Fig. 1). The eukaryotic proteasome has
three types of active sites, each displaying preference for cleavage
after specific residues (chymotrypsin like, hydrophobic; caspase
like, acidic; trypsin like, basic). Substrate hydrolysis by all three of
the catalytic sites were impaired by the soluble oligomers
(Supplementary Fig. 2).

Aβ, α-Syn, and Htt-53Q monomers are relatively unstruc-
tured and they can enter the 20S proteasome to be degraded.
However, the monomers fail to impair peptide hydrolysis by the
proteasome at equal concentrations as the oligomers (Fig. 1b)

therefore, substrate competition at the active site cannot explain
impairment by the oligomers. Furthermore, oligomers are too
large (Fig. 2g, h) to enter the 13 Å wide substrate-entry channel
of the 20S proteasome. Additionally, since the insoluble
aggregates of these proteins cannot impair the proteasome
(Fig. 1b), this suggests that impairment by the oligomers may be
due to a specific conformation of the soluble oligomers, which is
lost after conversion to larger aggregates or fibrils. This is
consistent with literature that ascribes cellular toxicity to soluble
oligomers in neurodegenerative diseases4, 52, 53. Many species of
oligomeric structures have been described, and antibodies
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developed to recognize specific structural conformations of
disease-related species54–56. Kayed et al.55 generated a poly-
clonal anti-oligomer antibody (A11) that specifically recognizes
some types of protein oligomers independent of the proteins
amino acid sequence. This A11 antibody recognizes some
oligomeric species of Aβ, polyglutamine proteins, α-Syn, and
prion, and has been used to assess the presence of oligomers in
diseased brains compared to aged matched controls55, 57. We
performed a dot blot with A11 on the monomers, oligomers,
and insoluble fibrils for each protein that we tested. All three of
the soluble oligomer preparations contained the A11 epitope
(A11+), while the epitope was absent in the monomeric and
fibril fractions (Fig. 1b bottom).

It is interesting that all three soluble oligomer types that
impaired proteasome activity also showed strong A11 antibody
binding. To correlate proteasome impairment with the presence
of the A11 epitope more specifically, the soluble fraction of the Aβ
aggregates were separated by size exclusion chromatography
(SEC). Three prominent populations of soluble aggregates were
observed, one in the void volume consistent with larger
protofibrils (Aβ protofibrils (Aβ-PF)), a second peak correspond-
ing to intermediate-sized oligomers (Aβ-iO), and a third pool of
small oligomers and monomers (Fig. 1c chromatogram). The
effect of each fraction on 20S proteasome activity was determined.
Only the intermediate-sized oligomers (~56 kDa) impaired the
20S proteasome (Fig. 1c bars) and this impairment correlated
with the fractions that were positive for A11 (Fig. 1c dot blot).
This inhibitory species also impaired the degradation of
fluorogenic substrates specific for each of the 20S’s three different
proteolytic sites as observed in the mixed oligomer populations
(Supplementary Fig. 3A). This suggests that impairment could be
due to impairment of substrate entry rather than impairment of a
specific catalytic active site. The Aβ protofibril peak (Aβ-PF),
lacking the A11 epitope, did not impair degradation of any
fluorogenic substrates, even in the presence of ten times more Aβ-
PF than Aβ intermediate oligomers (Fig. 1d and Supplementary
Fig. 3B).

It is plausible that proteasome impairment is due to the
oligomer size rather than a specific oligomeric structure. To
determine if the impairment is due to the size of the oligomer/
protofibrils and whether the shared A11 reactivity is merely a
coincidence, we generated high-molecular weight (200–400 kDa)
A11+ Aβ oligomers (Aβ-iO) (Supplementary Fig. 4A) and A11+
Aβ-PF (>700 kDa) (Supplementary Fig. 5A). The high MW A11+
Aβ-iO impaired the 20S commensurate with the level of A11
reactivity (Supplementary Fig. 4A & B). The higher molecular
weight A11+ Aβ-PF also impaired substrate hydrolysis by all
three active sites of the proteasome (Supplementary Fig. 5B),
although to a considerably lesser extent than the intermediate Aβ-
iO (Fig. 1d). This is expected based on the proposal that
protofibrils form when the oligomers bind to one another to form
a chain of oligomers58, which sterically blocks surfaces on the
internal oligomers but not the terminal ones, which could still
interact with the proteasome. To further determine if the
structural epitope of the A11 antibody on the intermediate Aβ-
iO is necessary for proteasome impairment we performed a
neutralization assay to block the A11 epitope. A11+ oligomers
were incubated with the A11 antibody prior to testing proteasome
activity. Aβ-iO were used at a concentration of 0.2 μM, the IC50,
as determined in Fig. 1d, so an increase or decrease in proteasome
activity could be readily observed. Indeed, the A11 antibody when
bound to the Aβ-iO completely rescued proteasome activity
(Fig. 1e). As a control, the experiment was repeated with an
antibody raised against the N-terminal residues of Aβ (clone
NAB228), which did not rescue proteasome function (Supple-
mentary Fig. 6). This demonstrates that an available oligomer-

specific A11 epitope site is necessary for impairment of the
proteasome.

Characterization of homogenous and stable oligomers. Above
we described the isolation of a specific proteasomal inhibitory
oligomer from a mixed population of oligomers and aggregates.
In order to determine the mechanism of impairment we sought to
generate homogenous, stable, and reproducible A11+ oligomers,
which could be used for reliable mechanistic analysis. In contrast
to α-Syn and huntingtin aggregates, methods to generate phy-
siological relevant oligomers from synthetic Aβ peptides have
been extensively developed. Barghorn et al.59 characterized a
highly stable Aβ (1–42) oligomer species (~dodecamer) which
can be prepared in vitro and can be found in the brains of
patients with AD. The relevance of dodecameric Aβ-iO to disease
pathology is established57, 60. With some modifications to the
protocol of Barghorn et al.,59 we generated Aβ*56 oligomers, and
purified them by nondenaturing SEC (Fig. 2a chromatogram).
The major peak corresponds to the intermediate-sized Aβ-iO in
Fig. 1d. We tested each fraction for proteasome activity and found
the major peak impaired the 20S (Fig. 2a bar graph). The single
symmetric protein peak demonstrates the homogenous nature of
the oligomer preparations. Consistent with Aβ*56 oligomers
isolated from human brain tissue and cerebrospinal fluid, our
Aβ*56 oligomers are A11+ (Fig. 2a), run at ~56 kDa (Fig. 2b)57,
and significantly impair proteasome activity in a concentration-
dependent manner (Fig. 2c). Representative real-time fluorogenic
substrate hydrolysis data are also shown (Fig. 2d).

Since Aβ*56 can impair 20S peptide substrate degradation, we
asked if it could impair protein degradation as well. The 20S core
particle by itself cannot unfold proteins, so we used β-casein, a
classical unfolded protein substrate. We used FITC-labeled casein
to follow its degradation in real time using anisotropy, which
monitors the tumbling rate of the fluorophore. When FITC-
labeled casein is degraded by the proteasome, the tumbling rate of
the fluorophore increases, causing a decrease in anisotropy
(Fig. 2e 20S+ buffer). Similar to peptide substrates, purified
Aβ*56 oligomers also impaired proteasome degradation of the
FITC-labeled casein protein (Fig. 2e 20S+Aβ*56), demonstrat-
ing that Aβ*56 also impairs the degradation of an unfolded
protein. We confirmed that the relevant morphology of these
oligomers were consistent with those published for synthetic and
human brain derived oligomers via: native gel electrophoresis57, 61

(for MW), transmission electron microscope (TEM)62 (for
spherical shape), atomic force microscopy (AFM)63, 64 (for size),
Thioflavin-T (ThT) staining55 (slight but low staining), and anti-
oligomer immuno-detection57 (Fig. 2g–i).

Oligomers are metastable intermediate structures, which
complicates analysis when consistent homogeneous preparations
are need for in-depth biochemical analysis. To circumvent this
issue, we stabilized the Aβ*56 oligomers by crosslinking, which
maintained the conformation of the A11+ epitope for 4 weeks
when stored at 4 °C (Fig. 2j) and without crosslinking the A11+
epitope was not as stable over this time period. In addition, the
apparent mass of the crosslinked (CL) oligomers was also
assessed via Native-PAGE and we found that it was unchanged
over the 4-week incubation (Fig. 2k). The CL Aβ*56 oligomers
ran slightly faster than the non-crosslinked oligomers as
expected59, likely due to stabilization of the CL structure. In
contrast, the non-crosslinked oligomers partially dissociated into
smaller oligomers and formed larger oligomers after 4 weeks
(Fig. 2k). Most importantly, crosslinking of the oligomers does
not alter their proteasome impairment activity compared to the
non-crosslinked form (Fig. 2l). Together, this demonstrates that
the synthetic Aβ*56 oligomers are homogenous, relevant, stable,
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reproducible, and represent a single oligomeric species that
potently impairs peptide and protein degradation by the 20S
proteasome. These CL Aβ*56 oligomers are therefore ideally
suited for further mechanistic and biochemical analysis to
understand how oligomers impair proteasome function and are
thus used in all of the following experiments using Aβ-iO unless
stated otherwise.

Direct binding of Aβ*56 to 20S proteasome. We next sought to
determine if Aβ*56 and the 20S proteasome could be observed to
directly interact. Non-crosslinked Aβ*56 oligomers were mixed
with purified 20S proteasomes. To stabilize their interaction, we
used a low concentration of glutaraldehyde (1 mM) to induce
crosslinking and analyzed migration. Aβ*56 is clearly seen co-
migrating with the 20S proteasome by Native-PAGE gel
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visualized with both silver stain (Fig. 3a left) and by immuno-
blotting for total Aβ (Fig. 3a right). Notably, the low concentra-
tion of glutaraldehyde treatment did not cause random non-
specific protein crosslinking and did not crosslink the entire
multisubunit proteasome into a single 700 kDa complex as
determined by the absence of protein aggregates in the SDS-
PAGE stacking gel (Supplementary Fig. 7). Minimal crosslinking
conditions are further demonstrated by the discrete banding
pattern of multiple subunits and the persistence of two single
subunit bands (Supplementary Fig. 7).

Toxic oligomers impair proteasome gate. Substrates must pass
through the gated translocation channel before gaining access to
the proteolytic sites44. The A11+ oligomers are too large to enter
the 13 Å translocation channel and directly inhibit β-subunit
active sites; however, they could be impairing 20S proteasome
function by impairing substrate entry through the gate or by
allosterically impairing the active sites. To address this question,
we used the α3ΔN proteasome mutant, which has a constitutively
open gate65. If the oligomers impair proteasome activity by
clogging the catalytic chamber or allosterically impairing the

active sites, then they should be able to impair the proteasome
regardless if its substrate gate is in the opened or closed state.
Alternatively, if the oligomers require a functioning gate for
impairment, then they should not be able to impair a proteasome
with a constitutively open gate, i.e., the α3ΔN 20S proteasome,
which lacks only one of its seven α-subunit N-termini44. We
added the three different A11+ oligomers: Aβ*56, α-Syn, and
Htt-53Q, to the wild-type (WT) or the α3ΔN 20S proteasome and
monitored substrate degradation. All three A11+ oligomers sig-
nificantly impair WT proteasomes but do not impair the α3ΔN
proteasomes (Fig. 3b–d). These results demonstrate that the
A11+ oligomers require a functioning gate in order to impair the
20S proteasome. In addition, most active site proteasome inhi-
bitors only inhibit one or two proteolytic sites, but the A11+
oligomers impair the degradation of substrates specific for each of
the three different catalytic sites (Fig. 3b–d), further supporting a
gating mechanism of impairment, since restricting substrate
access would be expected to impair all types of substrates.
Moreover, a translocation channel clogging mechanism can also
be ruled out since the α3ΔN 20S proteasome could not be
impaired. To further confirm an allosteric mechanism of pro-
teasome impairment, we performed a substrate saturation curve
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on the WT 20S proteasome with and without Aβ*56 oligomers.
We used nonlinear regression and the Michaelis–Menten equa-
tion to analyze the KD and Vmax of the two curves. We found that
the Aβ*56 oligomers caused a decrease in the Vmax and an
increase in the Km (Supplementary Fig. 8), which is consistent
with allosteric inhibition (i.e., mixed inhibition—a form of non-
competitive inhibition). Taken together, these data clearly
demonstrate that all three diseases-related oligomers impair
proteasome function by a similar allosteric mechanism, since all
three A11+ oligomers require a closable gate on the 20S pro-
teasome in order to impair it.

To validate the preparation of the open-gate α3ΔN 20S
proteasomes, they were incubated with either a known gate-
opening peptide (KANLQYYA45 from the C-terminus of Rpt5,
which includes the HbYX motif) or the β-subunit active site
inhibitor, MG132. Treatment with MG132 completely inhibits

WT and open-gate α3ΔN proteasomes (Supplementary Fig. 9A)
as expected for a pure proteasome preparation. The Rpt5 peptide
increases WT 20S proteasome substrate degradation but failed to
stimulate the open-gate α3ΔN 20S proteasome (Supplementary
Fig. 9B) as expected for proteasomes with constitutively open
gates. The preparations of pure α3ΔN 20S were approximately ten
times more active than the WT 20S and thus ten times more WT
20S was used in these experiments to obtain comparable basal
rates (Supplementary Fig. 9).

Toxic oligomers stabilize the closed gate conformation. Binding
of the 19S ATPases C-termini HbYX motif into the 20S inter-
subunit pockets induces a conformational change of the 20S α-
subunits, which stabilizes the open state of the N-terminal gating
residues9, 45. However, recent cryo-EM studies have highlighted
the complexity of this gate-opening mechanism in the 26S
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proteasome when the 19S binds to a substrate (or when it is
switched from an ATP-bound state to an ATPγS bound state)
66, 67. It is less clear how the dynamics of the gate changes when
the 19S associates with the 20S. Nevertheless, functional studies
have shown that 19S binding to the 20S stimulates gate opening
in the 20S proteasome39, 40, in a HbYX motif dependent man-
ner47. In contrast, the 11S family of proteasome activators (e.g.,
PA28α/β and PA26) bind to the 20S α-subunits and facilitate gate
opening by a different mechanism. Although the 11S subunits
also bind to the α-intersubunit pockets, they lack the HbYX motif
and thus do not induce α-subunit conformational changes like
the HbYX motif does. Instead, the 11S internal “activation loop”
is required for gate opening. This “activation loop” directly
contacts the base of the N-terminal gating residues and locally
repositions them into the open conformation68.

We hypothesized that binding of the A11+ oligomers to the
20S may specifically impair one of these distinct gate-opening
mechanisms, which would provide evidence for the mechanism of
oligomer-mediated proteasome impairment. If the oligomers
could impair the PA26–20S complex, then it is expected that they
would bind to the top of the 20S and compete with PA26 for
binding to the 20S. Alternatively, if the oligomers do not compete
with PA26 for binding to the 20S but they do impair the HbYX-
dependent gate opening this indicates that oligomers must
allosterically affect conformational changes that are caused upon
HbYX motif binding. Another possibility is that the oligomers

affect both or neither mechanisms of gate opening. To assure that
both ends of the 20S proteasome were bound by PA26 we used
saturating amounts to stimulate 20S peptide degradation. None of
the A11+ oligomers from Aβ, α-Syn, or Htt-53Q could impair
the PA26–20S–PA26 complex (Fig. 4a–c). Thus, the
PA26–20S–PA26 complex mirrors the results obtained for the
α3ΔN 20S. To evaluate this possibility that the oligomers compete
with PA26 for binding to the 20S, we generated a binding
saturation curve for PA26 to 20S by monitoring 20S proteasome
activation in the presence and absence of A11+ Aβ*56 oligomers.
The apparent affinity of PA26 binding for the 20S did not
decrease in the presence of the A11+ oligomers (Fig. 4d) and the
oligomers did not impair PA26 at any concentration that was
used, indicating that the oligomers do not compete with PA26 for
binding to the 20S. In addition, the Aβ*56 oligomers could not
impair PA26 mediated gate opening even at very high Aβ*56
concentrations (Fig. 4e). The PA28αβ proteasome activator from
humans is a homologue of PA26 and thought to open the 20S
gate in a similar activation loop-dependent manner68. Consistent
with PA26 results, the A11+ Aβ*56 oligomers could not impair
the human PA28αβ-mediated proteasome gate opening (Fig. 4f).
Therefore, the A11+ oligomers bind to the 20S proteasome at a
location separate from the 11S proteasome activators, PA26 and
PA28αβ. Based on this we hypothesized that the oligomers
stabilize the latent closed conformation of the α-subunits, which
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is not affected by the PA26/28 activation loop-dependent gate
opening.

To test this hypothesis, we asked if the A11+ oligomers could
impair peptide and protein degradation by purified human 26S
proteasomes. The A11+ Aβ*56 oligomers significantly impaired
peptide degradation by the purified 26S proteasome compared to
controls (Fig. 5a). To further test this possibility, we determined if
oligomers could impair ubiquitin-dependent (Ub4(lin)-GFP-35)
protein degradation by purified human 26S proteasomes. The
Ub4(lin)-GFP-35 substrate we used to monitor ubiquitin-
dependent degradation is a circularly permuted GFP with a
linear tetra ubiquitin on N-terminus and a 35-residue unstruc-
tured region on the C-terminus that was created in the
Matousheck lab. We found that Aβ*56 also strongly impaired
the degradation of this structured protein (Fig. 5b, c) by the
human 26S proteasome, which requires ATP-dependent unfold-
ing and injection into the 20S core. These data suggest the
oligomers impair the HbYX mechanism of gate opening.
However, it is possible that the oligomer binding to the 20S
could cause the 26S to disassemble into its 20S and 19S
subcomplexes, which could also have the effect of impairing the
ubiquitin-dependent protein degradation that we observed. To
test this possibility, we incubated Aβ*56 oligomers and purified
human 26S proteasome preparations together for 90 min at 37 °C
before running the samples on native-PAGE (Fig. 5d). We
quantified the silver stain band densities for isolated 20S, singly
capped 26S, and doubly capped 26S. The relative ratio of these
three populations of proteasomes did not change with the
incubation with Aβ compared to control.

The prior experiments where done with highly purified
components thus providing good cause and effect confidence
for mechanistic analysis; however, the purified system cannot
assess if the oligomers are able to bind to and impair the
proteasome in an environment that more closely mimics a
complex cellular environment. To address this, we prepared
mouse brain lysates to determine if the toxic oligomers could still
impair protein degradation by the proteasome in such a
heterogeneous environment. We found that the brain lysates
were highly competent to degrade the protein substrates FITC-
casein (Fig. 5e, f) and Ub4 (lin)-GFP-35 proteins (Fig. 5g, h)
similar to the purified 26S proteasome (Fig. 5b-c). We also
assessed the proteasome activity component of this lysate by
adding the proteasome inhibitor MG132, and found that the
majority of the degradation activity, we observed was due to
proteasome activity (Fig. 5e–h). When we assessed the degrada-
tion of these two-specific proteins in brain lysates, in the presence
of the crosslink-stabilized Aβ*56, we observed extensive protea-
some impairment—nearly as much as when MG132 was used
(Fig. 5e–h). Therefore, the A11+ Aβ*56 oligomers retain enough
specificity to bind to and nearly completely impair proteasome
function even in a complex brain lysate. These data demonstrate
that the oligomers do not disrupt the 26S complexes, and thus do
not impair it by this mechanism, but must instead act, as we
expected, on the gate. Impairment of the 26S proteasome also
demonstrates that the oligomers must bind to the 20S even in the
presence of the 19S, as was also observed for the PA26–20S
complexes, demonstrating that the oligomers likely bind to the
outer surface of the 20S proteasome (i.e., not on the gating
surface) thus supporting the hypothesis that these toxic oligomers
act allosterically preventing the 20S gate from opening properly.
Since these results clearly demonstrate that A11+ oligomers are
able to impair the 20S core particle by itself, then it is most likely
that their impairment of the 26S proteasome is via the same
mechanism, acting on the core particle. Importantly, this result
demonstrates that A11+ oligomers can also impair proteasome
function in a complex protein environment.

The 19S requires binding of ATP for it to bind to and induce
gate opening in the 20S69. The 26S proteasome adopts multiple
conformations during the ATP hydrolysis cycle and substrate
degradation66, 70–72. In the presence of hydrolysable ATP, 26S
proteasomes seems to alternate between active (open gate) and
inactive (closed gate) states, with the inactive state predominat-
ing, and in contrast, non-hydrolyzing ATP analogues better
stabilize the active (open gate) form of the proteasome66, 73.
Interestingly, while the Aβ*56 oligomers impaired the 26S in the
presence of ATP, they could not impair the 26S in the presence of
the analog ATPγS (Fig. 6a). This shows that the oligomers are
able to impair the normal physiological (with ATP) state of the
26S but not the synthetically opened state (using ATPγS), in
which the open state is more “strongly” stabilized. We verified the
integrity of the purified 26S proteasomes preparation via Native-
PAGE to confirm that the observed activity came only from the
26S complexes (Supplementary Fig. 10) and not from any free
20S proteasome in the preparation. These results thus further
support the hypothesis that these oligomers oppose the HbYX-
dependent conformational changes that lead to gate opening.

To further test this hypothesis, we asked if the A11+ oligomers
could block HbYX-dependent gate opening directly by the Rpt5
peptide (KANLQYYA), an established gate opening peptide45,
derived from the C-terminus of Rpt5. We added increasing
concentrations of the Rpt5 peptide to the 20S proteasome with
and without the A11+ Aβ*56 oligomers. In the absence of
oligomers, the Rpt5 peptide significantly stimulated proteasome
activity as expected. However, the oligomers impaired Rpt5
activation at all concentrations. Interestingly, the more Rpt5 was
added the less effective the oligomers were to impair the
proteasome (Fig. 6b). These results indicate that the oligomers
impair HbYX-dependent gate opening, but also that HbYX
peptide could overcome impairment by the oligomers at the
higher concentrations (1 mM Rpt5 peptide was the highest
concentration that could be tested due to its solubility). In
contrast, the oligomers could not impair PA26 activation at any
concentration of PA26. We interpret these results to mimic the
ATP/ATPγS experiment (Fig. 6a), whereby the ATP state is a low
HbYX occupancy state and the ATPγS state is a higher occupancy
HbYX state. The rational is that ATP is rapidly hydrolyzed to
ADP, and ADP cannot support HbYX-dependent gate opening.
On the other hand, ATPγS is not hydrolyzed to ADP and thus it
sustains the HbYX bound open-gate state or it could also enhance
gate opening by other mechanisms73. These combined results fit
well with a model, whereby the A11+ oligomers impair
proteasome function by binding to the outer surface of the 20S
barrel, and impair substrate entry by allosterically stabilizing the
closed conformational state of the 20S α-subunits, in a way that
directly counteracts the conformational changes that are required
for HbYX-dependent gate opening.

Discussion
The structural evolution of compartmentalized proteases was
driven by the need to protect proteolytic activity from the cellular
milieu, but still have the capacity to degrade select proteins in a
regulated manner. The substrate-entry gate in the 20S proteasome
thus plays a critical role in proteasome function and in cellular
proteostasis. Here, we elucidate a common mechanism whereby
soluble oligomers possessing a common 3D structure found in
many neurodegenerative diseases potently inhibit 20S and 26S
proteasome gate opening thus drastically impairing its function.
While certain studies show some forms of aggregates do not
impair the proteasome (which we also find Fig. 1b, d), the
aggregates from these studies were not assayed for the presence of
A11+ oligomers. Based on our results we proposed the following
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mechanistic model (Fig. 6c) of how A11+ oligomers impair
proteasome function: (1) A11+ oligomers bind with low nano-
molar affinity (Figs. 1 and 2) to the outer surface of the α-subunits
along the C2 axis (the presumed binding site); (2) by binding to
this site the oligomers stabilize the closed conformation of the α-
subunits and prevent spontaneous gate opening (Fig. 3); (3)
activation loop-dependent gate opening (e.g., PA26) occurs nor-
mally in the presence of oligomers, since its mechanism only
requires contact between the activation loops and the base of the
gating residues (Fig. 4); (4) however, HbYX-dependent gate
opening (e.g., the 19S regulatory particle or HbYX peptide) is
inhibited as oligomer-bound α-subunits are unable to undergo
the conformational changes required to open the gate (Figs. 5 and
6), which are stabilized by the bound oligomer. From a general
mechanistic perspective, in this model one expects to observe
opposing allosteric controls fought between two allosteric mod-
ulators that bind to distinct sites on the 20S proteasome. From
this model, one expects to observe competition between two
allosteric modulators (the HbYX motif and the oligomers) that
bind to distinct sites on the 20S proteasome. In this sense, the
HbYX motif is a positive allosteric modulator that induces gate
opening, whereas the A11+ oligomers are negative allosteric
modulators that induce gate closing. These diametrically opposed
regulators thus fight to control the proteasome gate. Moreover, it
appears that the HbYX mechanism is dominant since binding of
the non-hydrolysable ATP analog, ATPγS, prevents inhibition by
A11+ oligomers (Fig. 6a), though further confirmation is
warranted.

These results demonstrate that oligomer-mediated impair-
ment of proteasome function is not dependent on the sequence
of the misfolded protein but rather the oligomer’s 3D shape.
Specifically, we found a consistent correlation between an oli-
gomer’s ability to impair the proteasome and recognition by the
A11 antibody. While the physiological concentration of A11+
oligomers in neurons is unknown, if we consider that the affinity
constant for the oligomers is low naomolar, and that the cellular
concentration of the 20S is estimated to be low micromolar74

then, with respect to this binding reaction, the 20S is saturating
in the cell. This implies toxic oligomers will bind to the 20S
irrespective of their cellular concentration, which begs the
question: are the physiological levels of A11+ oligomers suffi-
cient to impact protein degradation? Using laser capture
microdissection and isolation of hippocampal pyramidal neu-
rons from sporadic Alzheimer’s Disease cases, Hashimoto
et al.75 determined the intraneuronal concentration of Aβ42 to
be 3 μM, but what proportion of the intracellular Aβ42 is in
oligomeric form is not known. Furthermore, Kisselev et al.76

showed that the amount of proteasome inhibitor, Velcade™ that
is used to treat multiply myeloma only inhibits protein degra-
dation by about 10–25%. This result demonstrates that a rela-
tively small alteration of protein breakdown can have a
substantial impact on cell death. Consistent with this reasoning,
stereotaxic unilateral infusion of lactacystin (a selective protea-
some inhibitor) into the substantia nigra pars compacta of rats
caused neurodegenerative disease like symptoms22. However,
the percentage of proteasomes that must be active in neurons to
maintain normal proteostasis is not known and thus we could
only speculate about what level of intracellular A11 oligomers
would be required to impact neuronal function. Nevertheless, as
protein degradation begins to suffer as oligomers accumulate,
the level of proteasome impairment is expected to increase
exponentially as more proteins accumulate and oligomerize.
Such a model would be expected to exhibit exponential pro-
gression kinetics, which coincides with the exponential dete-
rioration that is observed over decades in most
neurodegenerative diseases. These results build confidence that

such oligomers in neurons could impair proteasome function
enough to contribute to the progression of these neurodegen-
erative diseases.

Future efforts are required to understand which structures
within the A11 epitope facilitate 20S proteasome binding and
impairment and if this phenomenon occurs in human disease
conditions. Elucidation of this mechanism provides a compelling
model to explain why proteasome function has been found to be
impaired in virtually all neurodegenerative diseases. Interestingly,
Choi et al.77 showed that opening of the 20S proteasome gate in
cells leads to enhanced cellular proteasome function, including
ubiquitin-dependent protein degradation, decreased protein
aggregates, and protection from oxidative stress. Our model
provides a mechanistic framework to develop small molecules to
counteract proteasome impairment via A11+ oligomers. Illus-
trating this potential mechanism of proteasome impairment
identifies novel drug targets for developing small molecule acti-
vators of the proteasome gate. Such therapeutic interventions
have the potential to restore proteostasis in patients suffering
from neurodegenerative diseases.

Methods
Proteasome purifications. Mammalian 20S proteasomes were isolated from
bovine liver as described78. Briefly, cleared liver homogenate was passed over DE53
column. Protein was eluted with a stepwise NaCl gradient. Fractions with sig-
nificant proteasome activity were pooled and further separated by a strong anion-
exchange column (ResourceQ, GE Healthcare) eluting with NaCl gradient. Frac-
tions with high suc-LLVY-amc hydrolysis were pooled for further purification
using a hydroxyapatite column (CHT-I, Bio-Rad) and eluted by KPO4 gradient.
Fractions with high proteasome activity were pooled and further purified by SEC
(S-400, GE Healthcare). Eluted fractions were pooled and purity of 20S protea-
somes (>98%) was determined by SDS-PAGE and quantified by densitometry
(ImageJ, NIH). Mammalian 26S proteasomes were isolated from rabbit muscle
using the Ubl affinity purification as described79. Human 26S proteasomes were
affinity purified on a streptavidin column from the HEK293-β4-biotin cell line as
described77. Recombinant PA26 was expressed in BL21-STAR Escherichia coli and
purified by affinity with a Ni-NTA column (Qiagen), as described80. Recombinant
human PA28αβ was expressed in BL21-STAR E. coli and purified by affinity with a
Ni-NTA column (Qiagen), as described81. WT and mutant α3ΔN yeast 20S pro-
teasomes were expressed and purified by anion-exchange chromatography as
described82. Fluorogenic substrate peptides were purchased from BostonBiochem
(suc-LLVY-amc) and EZBiolabs (ac-nLPnLD-amc and ac-RLR-amc). Rpt5 pep-
tides were synthesized by EZBiolabs. Protein concentrations were determined by
Bradford assay (Thermo Scientific).

Proteasome activity assays—peptide substrates. Unless otherwise specified,
bovine 20S (0.5 nM), rabbit muscle 26S (0.4 nM), yeast WT 20S (1.4 nM), or yeast
α3ΔN 20S (0.14 nM) proteasomes were assayed using fluorogenic peptides, as
described45 in 96-well black flat bottom untreated plates (Costar). Briefly, pro-
teasomes were incubated in a reaction buffer containing 50 mM Tris–HCl (pH 7.4),
and 100 μM fluorogenic substrate (suc-LLVY-amc, ac-nLPnLD-amc) or 10 μM
fluorogenic substrate (boc-LRR-amc). 20S proteasomes were treated with Rpt5, or
with PA28αβ or PA26 to induced gate opening as indicated. Rabbit muscle 26S
proteasomes were used in the presence of 1 mM DTT, 10 mM MgCl2, and 100 μM
of fluorogenic substrate (ac-nLPnLD-amc) with either 2 mM ATP (99%, Sigma) or
10 μM ATPγS (95%, Sigma). Fluorescence was measured every 55S for 120 min
(ex/em: 380/460 nm). The rate of increase in fluorescence intensity is directly
proportional to proteasome activity. For all experiments, an equal volume of the
appropriate control buffer (identical to the aggregate/oligomer buffer that is
described below) was used for controls. All molar concentrations of Aβ, α-Syn, and
Htt-53Q are calculated based upon the monomeric protein concentration.

Proteasome activity assays—protein substrates. FITC-casein (0.08 μg, Sigma)
and Ub4(lin)-GFP-35 (0.08 μg, a kind gift from Dr. Andreas Matousheck) degra-
dation assays were carried out in 50 μl reactions using 96-half-well non-binding
surface treated black plates (Corning) at 37 °C. The GFP substrate was generated as
described83. Proteasomes were added to the reactions (1 μg 20S, or 0.9 μg human
26S) in the presence or absence of Aβ*56 oligomers (10 μM) and fluorescence was
measured at every 60 s for 90 min. The data shown are the mean of three reactions,
with a five-point moving average, and error bars represent ± standard deviation.
Degradation rates were determined by calculating the slope of a line fit to the first
30 min of activity.
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Aβ1–42. Synthetic Aβ(1–42) was purchased from Selleckchem, Anaspec, and
EZBiolabs. To remove preexisting aggregates, synthetic Aβ peptide was dissolved in
100% hexafluoroisopropanol (HFIP), and incubated at 37 °C for 2 h with shaking
(500 r.p.m.). The HFIP was removed and the remaining peptide films were stored
at −80 °C until use. Monomeric Aβ was obtained by dissolving synthetic peptide in
100% anhydrous dimethyl sulfoxide (DMSO) (Thermo Scientific) at 5 mM and
diluted with phosphate-buffered saline (PBS) to a final concentration of 50 μM
immediately prior to use. Crude Aβ aggregates were prepared as described84.
Aβ*56 oligomers were generated similar to Barghorn et al.59. Briefly, HFIP-treated
peptide films were resuspended in 100% anhydrous DMSO (5 mM) and bath
sonicated for 20 min before further dilution (400 μM) with 20 mM NaPO4 pH 7.4,
140 mM NaCl, 0.2% SDS. The 100 μM Aβ was incubated at 37 °C for 6 h, diluted to
100 μM with ddH2O, incubated at 37 °C for 18 h, centrifuged for 10 min at 3000×g,
and the supernatant containing Aβ*56 oligomers was removed and dialyzed against
5 mM NaPO4 pH 7.4, 35 mM NaCl. Where indicated, Aβ*56 oligomers were CL
(before dialysis) with 1 mM glutaraldehyde (EM grade, Thermo Scientific) for 2 h
at room temperature. The reaction was quenched by the addition of 1M Tris–HCl
pH 8 (to a final concentration of 10 mM) and incubated for an additional 30 min.
Aβ*56 oligomers were purified by SEC (Superose 12 10/30, GE Healthcare) and
eluted as a single major peak. Each preparation of Aβ*56 was confirmed to be A11
+ by dot blot analysis as described below. To generate Aβ-HMW A11+ oligomers,
the second Aβ incubation at 100 μM was extended to 26 h. To generate Aβ A11+
protofibrils, the second Aβ incubation at 100 μM was extended to 50 h. The Aβ A11
+ protofibrils eluted from the Superose 6 column in a single peak at the void
volume and were confirmed to be >700 kDa by Native-PAGE. All buffers were
filtered with 0.2 μm membranes immediately prior to use. All SEC experiments
were performed on an ÄKTApurifier (GE Healthcare) at 4 °C with 5 mM NaPO4

pH 7.4, 35 mM NaCl at a flow rate of 0.5 mL/min. Aβ concentration was calculated
by UV absorption at 280 nm (molar extinction coefficient 1940M/cm) and con-
firmed with Bradford protein concentration assay (Thermo Scientific).

α-Syn protein. Human WT α-Syn with N-terminal his-tag in pET28a vector was
expressed and purified from BL21-STAR E. coli using a Ni-NTA column (Qiagen)
followed by an anion-exchange chromatography (HiTrapQ, GE Healthcare). Pure
α-Syn monomers were obtained by SEC (Superose 12 10/30, GE Healthcare)
immediately prior to use. The purity of α-Syn monomers (>98%) was determined
by SDS-PAGE and quantified by densitometry (ImageJ, NIH). Crude α-Syn
aggregates/oligomers were generated by incubating monomeric α-Syn (3 mg/mL)
in PBS (20 mM NaPO4 pH 7.4, 140 mM NaCl) at 37 °C for 7 h. After oligomer-
ization, the oligomers were separated from the remaining monomers by SEC
(Superose 12, GE Healthcare) and verified A11+ by dot blot.

Huntingtin protein. GST-tagged huntingtin exon 1 constructs with a 53 poly-
glutamine repeat (GST-Htt-53Q) and a 20 polyglutamine repeat (GST-Htt-20Q).
Protein was expressed and purified from BL21-STAR E. coli as described85. Briefly,
the GST-fusion protein was cleaved with PreScission Protease (GE Healthcare) at 4
°C according to manufacturer protocol. The free Htt-53Q proteins were further
purified by SEC (Superose 12 10/30, GE Healthcare) to obtain a monomeric
population immediately prior to oligomerization. The purity of Htt-53Q mono-
mers (>95%) was analyzed with SDS-PAGE quantified by densitometry (ImageJ,
NIH). Oligomers were generated by incubating monomeric Htt-53Q (1 mg/mL) at
37 °C for 1 h. Due to the rapid formation of Htt-53Q oligomers, monomeric Htt-
20Q (which oligomerized at a much slower rate) was used for the monomer assay
in Fig. 1b.

Crude aggregate fractionation. Insoluble aggregates were removed from crude
aggregate preparations by centrifugation at 10,000×g for 10 min. The supernatant
containing soluble oligomers was transferred to a fresh Eppendorf tube and the
remaining pellet was gently resuspended in PBS. The pellet fraction was centrifuged
twice more before final resuspension at 1 mg/mL in PBS. The fibrillar nature of the
insoluble fraction was confirmed by Thioflavin-T (Sigma) fluorescence in com-
parison to monomer preparation controls as described below.

SDS-PAGE and Native-PAGE. Proteins were separated by SDS-PAGE using
NuPAGE™ 4–12% Bis-Tris protein gels (Invitrogen), or separated by Native-PAGE
using Novex™ 10–20% Tris-glycine or NuPAGE™ 3–8% Tris–acetate protein gels
(Invitrogen), as indicated. Total protein was visualized with Coomassie stain
(Simply Blue Safe Stain, Novex) or silver stain (Pierce Silver Stain kit, Thermo
Scientific) as indicated according to manufacturer instructions. Immunoblots were
performed as described below. Native-PAGE in-gel 26S proteasome activity assay
was performed using NuPAGE™ 3–8% Tris–Acetate gels (Invitrogen). Samples
were mixed with Novex™ Tris-glycine native sample buffer (×2) (Invitrogen) just
before loading. Electrophoresis was carried out in Novex™ Tris-glycine native
running buffer (Invitrogen) (with 0.5 mM DTT, 1 mM ATP, and 5 mM MgCl2) at
4 °C and 150 V for 4 h. Native gels containing 26S proteasomes were incubated
with reaction buffer (50 mM Tris pH 7.5, 10 mM MgCl2, 2 mM ATP, 1 mM DTT,
50 μM suc-LLVY-AMC) for 30 min at 37 °C. Fluorescent bands around protea-
somes were visualized by standard gel-imaging systems for DNA staining by
ethidium bromide.

Immunoblotting. For Native-PAGE western blots, proteins were transferred to
nitrocellulose membrane (GE) using Tris-glycine transfer buffer (Novex). Primary
antibodies were purchased from Invitrogen (anti-oligomer A11, and anti-Aβ N-
terminus clone NAB228) and diluted 1:1000 in TBST +5% nonfat milk prior to
use. AlexaFluor-647 conjugated secondary antibodies (Invitrogen) were diluted
1:3500 in TBST prior to use. Membranes were blocked for 1 h at room temperature
in TBST +10% nonfat milk, briefly washed with TBST, incubated with primary
antibody for 1 h at room temperature, washed with TBST (3 × 5min), incubated
with secondary antibody for 1 h at room temperature, washed (3 × 5 min), and
imaged on a Molecular Dynamics Typhoon 9410 Variable Mode Imager. Dot blots
were performed by spotting protein on 0.1 μM nitrocellulose membranes and
processed the same as Western blots.

Antibody neutralization assays. Anti-oligomer A11 (Invitrogen) and Aβ N-
terminal antibody (clone NAB228, Invitrogen) were buffer exchanged to 50 mM
Tris (pH 7.4) with Zeba spin desalting columns (Thermo Scientific). The antibodies
(0.5 μg) were incubated with Aβ*56 (50 μM) or control buffer for 25 min at 37 °C
before adding to proteasome activity assays.

Crosslinking Aβ*56 and 20S proteasomes. Mammalian 20S proteasomes were
buffer exchanged to 10 mM NaPO4 (pH 7 with Zeba spin desalting columns
(Thermo Scientific) and incubated with Aβ*56 oligomers (or an equal volume of
control buffer) for 45 min at 37 °C. One millimolar glutaraldehyde was added to the
proteins, gently mixed, and incubated for 5 min at 37 °C. Crosslinking reactions
were quenched by the additional 1 M Tris–HCl pH 8 (1 mM). Proteins were
separated by SDS-PAGE and Native-PAGE and visualized with silver stain or
immunoblotting as described above.

Oligomer characterization. For atomic force microcopy imaging, preformed Aβ-
iO were deposited on freshly cleaved mica (Ted Pella Inc., Redding, CA) and
allowed to sit for 30 s. The mica substrate was then washed with 200 μL of ultrapure
water and dried with a gentle stream of nitrogen. Samples were imaged in tapping
mode via ex situ AFM using a Nanoscope V MultiMode scanning probe micro-
scope (Veeco, Santa Barbara, CA). AFM images were analyzed with Matlab
equipped with the image processing toolbox (Mathworks, Natick, MA). For
negative stain electron microscopy, 6 μl of preformed Aβ*56 oligomers were
applied to ultra-thin copper 400 mesh carbon grids (Electron Microscopy Sciences)
and imaged on a JEOL JEM-2100 TEM.

Thioflavin-T florescence measurement. ThT (Sigma) was dissolved (1 mM) in
PBS, filtered through a 0.2 μM syringe, and stored at −20 °C until use. For the
assays, 3 μg of Aβ was incubated at room temperature for 10 min in 100 μM of PBS
with 20 μM ThT and fluorescence was measured (ex/em: 450/490 nm) in a
Synergy2 plate reader (GenTek).

Statistical analysis. The data were analyzed using an unpaired Student’s t-test
(Prism). For all statistical analyses, a value of p < 0.05 was considered significant.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its supplementary information files, and
are available from the corresponding author upon request.
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