
Faculty Scholarship 

2018 

Induced ferromagnetism in multilayered graphene in proximity Induced ferromagnetism in multilayered graphene in proximity 

with CoFe2O4 with CoFe2O4 

Himanshu Verma 

Dereje Seifu 

Shashi P. Karna 

Haiping Hong 

Mohindar S. Seehra 

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications 

 Part of the Astrophysics and Astronomy Commons, Metallurgy Commons, and the Physics Commons 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/faculty_publications
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/288?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages












025119-5 Verma et al. AIP Advances 8, 025119 (2018)

FIG. 5. (a) MFM image of the CFO nanoparticles (b) MFM image of the MLG/CFO nanocomposites.

FIG. 6. Raman Spectra of the MLG-CFO nanocomposite.

Raman spectroscopy is a highly sensitive tool to investigate lattice effects such as local cation
migration, lattice distortion and spin-lattice coupling.25,26 Therefore, Raman spectroscopy here was
used to probe these magnetic samples deposited on Si substrate in order to understand the effect of
CFO on MLG. This characterization was carried out using a Raman Spectrometer (Horiba LabRAM
HR Evolution) which uses a grating with 1800 lines/mm and laser exciton wavelength of 514 nm.
Figure 6 shows Raman spectra of the MLG/CFO nanocomposites. As expected, the Si substrate peak
was observed at 520 cm-1. The three major graphene peaks corresponding to D-band, G-band, and
2D-band are also observed.25,26 All the other observed peaks in Fig. 6 are identified with CFO present
in the CFO.

V. DISCUSSION

The XRD spectra of the CFO nanoparticle and the MLG/CFO nanocomposites show all the
prominent peaks for CFO in both the samples and two carbon peaks in the MLG/CFO nanocomposite.
The positions of these peaks are in good agreement with JCPDS data. The sharpness of CFO peaks
indicates good crystallinity of CFO in the samples. The SEM image in Figure 2(b) is consistent of
the inter-planar distance between two (220) planes of cobalt ferrite.26 The saturation magnetization
for the pristine CoFe2O4 (Ms = 63 emu/g) reported here is consistent with the values reported in
literature.27,28 For the MLG/CFO composite, MS = is 99.4 emu/g(CFO+MLG) is determined which
leads to MS = 18 emu/g(MLG) using Ms = 63 emu/g (CFO) and 2:1 weight ratio of the MLG:
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CFO in the composite. This significant value of MS for MLG in the composite is attributed to
proximity-induced ferromagnetism from the CFO nanoparticles uniformly spread out on MLG in the
MLG/CFO nanocomposite. The MFM image shown in Figure 5(a) show different magnetic domains
indicated by two different colors, yellow and black for pristine CFO nanoparticles. Figure 5(b)
show larger domains compared to pristine CFO because of uniform site distribution of CFO in the
composite.

The G-band observed in the Raman spectra in Figure 6, is the outcome of doubly generated
phonon mode at the Brillouin zone center from the first order Raman scattering. D-band involves
one phonon and one defect whereas 2D-band involves two phonons, both D-bands occur near the
K- point out of second order Raman scattering. Surprisingly, the intensity of 2D-band is relatively
larger compared to the intensity of G-band, indicating the absence of multi-layer graphene in the
nanocomposite sample. The disorder in graphene sheets can be calculated by the ratio (ID/IG) of
intensities of D-band and G-band. The ID/IG ratio for the nanocomposite sample is 0.6 whereas
pristine graphene is 0.99.29 The degree of disorder in the graphene sheets is caused by the additional
defects in sp2 bonds of graphene during the nanocomposite sonication process. However, these defects
are a favorable site for attaching CFO nanoparticles to the graphene sheet. The extended duration of
sonication time will further break sp2 bonds which cause the loss of anisotropic properties in graphene
sheets in the defect free graphene sheets. The duration of sonication time will also cause breaking
of graphene layers which is evident here in the absence of multi-layer graphene. The location of
D-band, G-band, and 2D-band are at 1363 cm-1, 1607 cm-1, and 2883 cm-1 respectively whereas the
original position as predicted in the theory for these bands are 1350 cm-1, 1582 cm-1, and 2700 cm-1.
The shift of these bands is the likely result of additional breaking of carbon-carbon bonds during the
sonication process.

Coated cobalt ferrite has a cubic mixed ferrite structure with O7
h (Fd3m) space group which

gives rise to 39 vibrational modes. Out of these vibrational modes, five modes viz. 1A1g, 1Eg, 3T2g

modes are Raman active,.30,31 The five active Raman modes for the cubic inverse spinel ferrite are
located at 186, 312, 477, 1330, 1580 cm-1. In Figure 6, four peaks are observed which have randomly
shifted from their original location. The observed peaks are located at 279, 486, 711, 990, and
1086 cm-1. The shifting of Raman peaks for CFO nanoparticles can be attributed to the redistribution
of Co2+ ions in the cubic inverse spinel structure.32,33 However, laser exciton energy34 and substrate35

used can also cause peak shift in Raman spectra. In pristine CFO annealed under the same condition,
these shifts were not observed.

VI. CONCLUSIONS

In conclusion, we report here enhanced magnetic property for MLG when uniformly coated with
CFO nanoparticles. Various characterization tools such as SEM, AFM, HR-TEM, Raman, and XRD
were used to explore the surface and morphological properties of MLG/CFO nanocomposites and
VSM and MFM were used to explore the magnetic properties of the pristine CFO and the MLG/CFO
composite. The MLG/CFO composite shows enhanced magnetic behavior, similar to recent reports
of MLG composites with nanoparticles of Fe3O4,21 Fe2O3,22 and Co3O4.23 The results presented
here in MLG/CFO composite represent further proof that MLG acquires ferromagnetic moment due
to proximity effect when coated with such magnetic oxides. In pristine CFO annealed under the
same condition no changes were observed in their magnetic moment. The AFM and SEM images
confirm the uniform distribution of CFO nanoparticles on MLG. The likely mechanism for this
proximity-induced ferromagnetism in MLG was discussed is some detail in our recent paper on the
MLG/Fe3O4 system21 and it may involve defects created in MLG from the sonication process and
possibly charge transfer.36 How this proximity induced ferromagnetism in MLG can be exploited for
device applications needs to be explored in future investigations.
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