
Graduate Theses, Dissertations, and Problem Reports

2003

Designing a scalable dynamic load -balancing algorithm for Designing a scalable dynamic load -balancing algorithm for

pipelined single program multiple data applications on a non-pipelined single program multiple data applications on a non-

dedicated heterogeneous network of workstations dedicated heterogeneous network of workstations

Ashraf Osman
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Osman, Ashraf, "Designing a scalable dynamic load -balancing algorithm for pipelined single program
multiple data applications on a non-dedicated heterogeneous network of workstations" (2003). Graduate
Theses, Dissertations, and Problem Reports. 1927.
https://researchrepository.wvu.edu/etd/1927

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1927?utm_source=researchrepository.wvu.edu%2Fetd%2F1927&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

DESIGNING A SCALABLE DYNAMIC LOAD-BALANCING
ALGORITHM FOR PIPELINED SINGLE PROGRAM MULTIPLE

DATA APPLICATIONS ON A NON-DEDICATED
HETEROGENEOUS NETWORK OF WORKSTATIONS

Ashraf Osman

Dissertation submitted to the College of Engineering and Mineral
Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Computer Engineering

Approved by

Dr. Hany H. Ammar, Chair
Dr. K Subramani, Co-Chair

Dr. Ismail Celik
Dr. James D. Mooney

Dr. Katerina D. Goseva-Popstojanova

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2003

Keywords: Load-balancing algorithms, Distributed Computing, Heterogeneous Network of

Workstations, Simulation and Modeling, SPMD

Copyright 2003 Ashraf Osman

ABSTRACT

DESIGNING A SCALABLE DYNAMIC LOAD-BALANCING
ALGORITHM FOR PIPELINED SINGLE PROGRAM MULTIPLE

DATA APPLICATIONS ON A NON-DEDICATED
HETEROGENEOUS NETWORK OF WORKSTATIONS

Ashraf Osman

Dynamic load balancing strategies have been shown to be the most critical part of an efficient
implementation of various applications on large distributed computing systems. The need for
dynamic load balancing strategies increases when the underlying hardware is a non-dedicated
heterogeneous network of workstations (HNOW). This research focuses on the single
program multiple data (SPMD) programming model as it has been extensively used in parallel
programming for its simplicity and scalability in terms of computational power and memory
size.

This dissertation formally defines and addresses the problem of designing a scalable dynamic
load-balancing algorithm for pipelined SPMD applications on non-dedicated HNOW. During
this process, the HNOW parameters, SPMD application characteristics, and load-balancing
performance parameters are identified.

The dissertation presents a taxonomy that categorizes general load balancing algorithms and a
methodology that facilitates creating new algorithms that can harness the HNOW computing
power and still preserve the scalability of the SPMD application.

The dissertation devises a new algorithm, DLAH (Dynamic Load-balancing Algorithm for
HNOW). DLAH is based on a modified diffusion technique, which incorporates the HNOW
parameters. Analytical performance bound for the worst-case scenario of the diffusion
technique has been derived.

The dissertation develops and utilizes an HNOW simulation model to conduct extensive
simulations. These simulations were used to validate DLAH and compare its performance
to related dynamic algorithms. The simulations results show that DLAH algorithm is
scalable and performs well for both homogeneous and heterogeneous networks. Detailed
sensitivity analysis was conducted to study the effects of key parameters on performance.

iii

DEDICATION

To my wife, (Al-Hamd Lellah) I praise Allah for His blessings. He blessed me with a sincere

and patient wife who was always by my side.

To our baby son, Mostafa, you are too young to read this now, but I am just reminding you

that you attended my PhD defense and I hope one day that I will attend yours (In Shaa Allah).

iv

TABLE OF CONTENTS

Abstract ...ii

Dedication .. iii

Table of Contents...iv

List of figures ...vii

List of Tables ..ix

Acknowledgments ..x

Glossary..xi

Chapter 1 ..1

Introduction ..1
1.1 Motivation.. 1
1.2 Objectives... 2
1.3 Contributions ... 2
1.4 Thesis Organization.. 3

Chapter 2 ..5

Overview of Load-Balancing Algorithms For HNOW ... 5
2.1 Overview of Heterogeneous Network of Workstations... 5
2.2 Cluster Heterogeneity Parameters... 7
2.3 Application Type... 7
2.4 Algorithm Characteristics .. 8
2.5 Load-Balancing Algorithms Classification.. 8

2.5.1 Initiation.. 9
2.5.2 Load-Balancer Location.. 9
2.5.3 Information Exchange... 10
2.5.4 Load Selection.. 10

Chapter 3 ..12

Related Work ..12
3.1 Automatic Heterogeneous Supercomputing (AHS) [DCG93].. 12
3.2 Self-Adjusting Scheduling for Heterogeneous Systems (SASH) [HLA95] 13
3.3 Support for Parallel Loop Execution (SUPPLE) [OP97]... 14
3.4 Data Migration Environnent (DAME) [CCN97] .. 15
3.5 Asymmetric Load Balancing on a Heterogeneous Cluster of PCs [B99] .. 16
3.6 GR Protocol [LL96].. 16
3.7 Compile-time Scheduling Algorithms [CZL97]... 17

v

Chapter 4..20

Problem definition.. 20
4.1 Problem Statement.. 20
4.2 Problem Significance.. 20

4.2.1 Non-Dedicated Heterogeneous Network of Workstations... 20
4.2.2 SPMD applications.. 21
4.2.3 Scalable Dynamic Load-Balancing Algorithm.. 22

4.3 Formal Problem Description.. 22
4.4 Problem Assumptions... 23
4.5 Problem Parameters .. 23

4.5.1 Pipelined SPMD Application... 23
4.5.2 Heterogeneous Network of Workstations Parameters .. 24

4.6 Problem NP-Completeness.. 25
4.6.1 Problem Description.. 25
4.6.2 Problem Statement:.. 26

Chapter 5 ..29

Pipelined Applications: Implementation and Analysis... 29
5.1 Domain Decomposition of Large Eddy Simulations of Ship Wakes ,.. 29

5.1.1 Introduction... 30
5.1.2 Methodology... 32
5.1.3 Computer Resources.. 33
5.1.4 Domain Decomposition Strategy... 34
5.1.5 Simulation Results... 40
5.1.6 Conclusion .. 45

5.2 Distributed Algorithm for Partially Clairvoyant Dispatchers.. 45
5.2.1 Introduction... 46
5.2.2 Problem Statement... 48
5.2.3 Motivation and Related Work.. 50
5.2.4 Computer Resources.. 51
5.2.5 Experiment Design.. 51
5.2.6 Empirical Analysis ... 53
5.2.7 Conclusion .. 56

Chapter 6 ..57

HNOW Modelling.. 57
6.1 HNOW Measurable Parameters.. 57

6.1.1 Cluster Heterogeneity Parameters ... 57
6.1.2 HNOW Performance Parameters... 59

6.2 Theoretical Model of Parallel Computers.. 60
6.2.1 PRAM Model... 60
6.2.2 BSP Model.. 62
6.2.3 LogP Model.. 64

6.3 HNOW Simulation Model... 65
6.3.1 What is OMNeT++? .. 65
6.3.2 Modeling Concepts.. 65
6.3.3 Building and Running Simulations.. 66
6.3.4 Simulation Model.. 67

Chapter 7 ..70

vi

Dynamic Load Balancing Algorithm Outline...70

7.1 Dynamic Load Balancing Algorithm (DLAH) for HNOW Overview .. 70
7.2 Convergence of the Diffusive Policy.. 71
7.3 DLAH Algorithm.. 75
7.4 DLAH Analysis and Bounds... 79

Chapter 8 ..86

Simulations... 86
8.1 Simulation Model Verification and Validation... 86
8.2 DLAH Performance.. 87

8.2.1 Homogenous Network of Workstations... 88
8.2.2 HNOW with Different Processing Power.. 96
8.2.3 HNOW with Different Memory Capacities ...101
8.2.4 HNOW with Different Network Parameters..103
8.2.5 Complete HNOW ..106

8.3 DLAH Influencing Factors ..107
8.3.1 The Effect of the Workload..107
8.3.2 The Effect of the Threshold Level...108
8.3.3 Scalability of the DLAH Algorithm..109

8.4 DLAH Compared to Other Dynamic Load Balancing Algorithms ..110
8.4.1 DLAH Compared to Other Diffusion Algorithms on an HNOW ...110
8.4.2 DLAH Compared to Other Diffusion Algorithms on a Non-Dedicated Homogeneous Network
of Workstations..112

8.5 Summary of Results..113

Chapter 9 ... 116

Conclusions and Future Work ..116
9.1 Conclusions and Contributions..116
9.2 Future Work...118

References ...120

vii

LIST OF FIGURES

Figure 2.1: A simple scheme of an HNOW.. 5
Figure 2.2: HNOW parameters .. 6
Figure 2.3: Dynamic load balancing taxonomy.. 11
Figure 4.1: Data partitioning and distribution.. 21
Figure 5.1: CFD lab’s cluster [SS01].. 33
Figure 5.2: Decomposition strategy: a,b,c – cells of the grid in different computational

domains... 34
Figure 5.3: Wake decomposition .. 35
Figure 5.4: Domain decomposition of the application... 36
Figure 5.5: Load assignment to processing elements ... 38
Figure 5.6: Speedup and granularity .. 39
Figure 5.7: The schematic of the flat plate wake [SS01]... 40
Figure 5.8:The stream-wise velocity contours of one-way decomposition scheme................ 41
Figure 5.9: Execution time versus the simulation time... 42
Figure 5.10: Speedup experienced while increasing the problem size with the number of

processors.. 43
Figure 5.11: Execution time versus number of grid nodes per workstation. 44
Figure 5.12: Single and Parallel implementation performance with respect to the number

of jobs... 53
Figure 5.13: Histogram of the communication time observed in our experiments................ 54
Figure 5.14: Undispatchable jobs for packed nodes... 55
Figure 5.15: Undispatchable jobs while using one processor per node 56
Figure 6.1: PRAM model ... 61
Figure 6.2: BSP model.. 62
Figure 6.3: BSP execution .. 62
Figure 6.4:LogP model... 64
Figure 6.5: Building and running a simulation... 67
Figure 7.1: DLAH algorithm.. 76
Figure 7.2: Workload exchanged between two workstations with a load-balancing

algorithm designed for a homogenous network .. 77
Figure 7.3: DLAH Analysis.. 80
Figure 7.4: Relation between the threshold ratio and the upper bound of the number of

steps required to balance .. 85
Figure 8.1: Loop time vs. memory available .. 87
Figure 8.2:Number of steps obtained from the simulation vs. analytical performance

bounds with iSteps P< .. 89
Figure 8.3: Number of steps obtained from the simulation vs. analytical performance

bounds with iSteps P> for some cases... 90
Figure 8.4: Loop time of a homogeneous network of 5 workstations 91
Figure 8.5: Smoothed loop time of a homogeneous network of 5 workstations................... 92
Figure 8.6: Workload assignment for a homogeneous network of 5 workstations. 93

viii

Figure 8.7: Loop time of a homogeneous network with workstation where WS[0] has

been assigned a workload 4 times its neighbors... 94
Figure 8.8: Workstation WS[0] loop time with different workloads...................................... 95
Figure 8.9 Workstation WS[0] workload distribution with time ... 95
Figure 8.10: Workload distribution of an HNOW of different processing power................. 97
Figure 8.11: Smoothed loop time of an HNOW of different processing power. 97
Figure 8.12: Histogram of the steps required for balance... 98
Figure 8.13: 95% confidence interval vs. number of simulations.. 99
Figure 8.14:Workstation WS[0] with different processing power....................................... 100
Figure 8.15: Number of steps vs. processing power ratio .. 100
Figure 8.16: Loop time of an HNOW of 20 workstations of different memory capacities.. 102
Figure 8.17: Workload distribution of an HNOW with different memory capacities. 102
Figure 8.18: Number of steps vs. memory capacity ratio ... 103
Figure 8.19: Loop time for an HNOW with different network parameters. 104
Figure 8.20: Loop time for workstation WS[0] with different network parameters. 105
Figure 8.21: Number of steps vs. network ratio .. 105
Figure 8.22: Histogram of the number of steps required to reach balance state. 106
Figure 8.23: Average number of steps vs. number of workstations.................................... 107
Figure 8.24: The effect of the workload difference between neighbors.............................. 108
Figure 8.25: The effect of the threshold level .. 109
Figure 8.26: Average number of steps vs. the number of workstations 110
Figure 8.27: Comparison between the average numbers of steps required for balance........ 111
Figure 8.28: Comparison between the average DP exchanged... 111
Figure 8.29:The Algorithms reactions to a step disturbance... 113

ix

LIST OF TABLES

Table 3.1: Summary of different load balancing algorithms for HNOW.............................. 19
Table 6.1: HNOW metrics expressed in datapoints... 68
Table 8.1 Simulation parameters... 88
Table 8.2: Confidence interval for an HNOW of workstations of different processing

power.. 98
Table 8.3: Average number of steps for an HNOW with different memory capacities. 101
Table 8.4: Average number of steps for an HNOW with different network parameters..... 104
Table 8.5: Average number of steps for a complete HNOW. .. 107
Table 8.6: Average number of steps.. 112
Table 8.7: Average number of datapoints exchanged .. 112

x

ACKNOWLEDGMENTS

“Glory be to You, we have no knowledge except what You have taught us.

Verily, it is You, the All-Knower, the All-Wise.” 2:32

I would like to take this opportunity to express my sincere gratitude to all those who provided

time, effort and support to make this work possible. Special thanks to Dr. Ammar for his

guidance and patience and to Dr. Subramani for his invaluable discussions. Also, special

thanks to Dr. Celik for providing an enriching experience that inspired this work .

Finally yet importantly, I would also like to express that I would always be in debt to my

parents and family who have always supported me and included me in their prayers.

xi

GLOSSARY

CFD. Computational Fluid Dynamics.

Confidence Interval. A range of values constructed around a point estimate that makes it
possible to state that an interval contains the population parameter between its upper and
lower confidence limits. The most frequently used confidence interval is the 95% confidence
interval. This can be interpreted, as there is only a 5% chance that the sample is so extreme
that the 95% confidence interval calculated will not cover the population mean.

Discrete Event Simulation. (DES) concerns the modeling of a system as it evolves over time
by representing the changes as separate events.

DLAH. Dynamic Load-balancing Algorithm for HNOW.

DP. Data Points.

HNOW. Heterogeneous Network of Workstation.

NP-Complete. The complexity class of decision problems for which answers can be checked
for correctness, given a certificate, by an algorithm whose run time is polynomial in the size of
the input (that is, it is NP) and no other NP problem is more than a polynomial factor harder.
Informally, a problem is NP-complete if answers can be verified quickly, and a quick algorithm
to solve this problem can be used to solve all other NP problems quickly.

PSPACE. The set of decision problems that can be solved by a Turing machine using a
polynomial amount of memory, and unlimited time.

SPMD. Single Program Multiple Data.

Chapter 1

INTRODUCTION

1.1 Motivation

Due to the recent advances in high-speed network, network based distributed computing has

become a low-cost alternative to dedicated parallel supercomputer systems. These systems are

becoming widely available in academic and industrial environments. To benefit from the

maximum computation power of these systems, it is necessary to use all available resources,

namely old machines in addition to more recent ones. Such a network is called heterogeneous

network of workstations (HNOW). Accordingly, a dynamic load-balancing algorithm is required to

harness the computing power potential of this HNOW.

Dynamic load balancing strategies have been shown to be the most critical part of an efficient

implementation of various algorithms on large distributed computing systems, as load

imbalance can cause poor efficiency. A load-balancing algorithm must deal with different

unbalancing factors, according to the application and to the environment in which it is

executed. Unbalancing factors may be static, as in the case of processor heterogeneity, or

dynamic like the unknown computational cost of each task, dynamic task creation, task

migration, and variation of available computational resources due to external loads.

Each application type requires a different load-balancing strategy. Actually, it is very crucial to

define the application type clearly and understand the underlying hardware architecture before

attempting to design a load-balancing algorithm.

In this research, we focus on the single program multiple data (SPMD) programming model as it

has been extensively used in parallel programming, due to the ease of designing a program that

consists of a single code running on different processors. Moreover, data decomposition is a

natural approach for the design of parallel algorithms for many problems. In addition, the

SPMD model provides attractive scalability in terms of computational power and memory size.

2

1.2 Objectives

The main objective of this research is to design a scalable dynamic load-balancing algorithm

for pipelined SPMD applications on a non-dedicated HNOW. Load balancing for

heterogeneous parallel computing systems is a relatively new topic and has been investigated

less frequently. Thus, we need to identify the HNOW parameters and its measuring units,

study the pipelined SPMD application characteristics, and develop a taxonomy that categorizes

current load-balancing strategies and enables us to design new strategies that suit our

application. Accordingly, we will come up with an optimal solution if possible.

In addition, we need to identify performance parameters that measure the quality of the load-

balancing algorithms; this will allow us to compare the performance of different load-balancing

strategies.

The analysis of load-balancing algorithms involves performing exhaustive tests on a controlled

HNOW environment. This is not applicable in real life so we turn to modeling. Unfortunately,

there is not any theoretical model that captures the complexity of an HNOW, especially, its

dynamic behavior. Therefore, we need to design a general reusable simulation model.

Besides designing a new load-balancing algorithm, we will develop a general framework that

facilitates the design for new load-balancing algorithms in general.

1.3 Contributions

The main contributions for this research are summarized as follows:

- Proving that load-balancing for an HNOW is an NP-Complete problem (section 4.6). This

means that there does not exist any optimal algorithm that can balance the HNOW.

- A general taxonomy for categorizing load-balancing algorithms for HNOW (section 2.5).

A number of classifications have been proposed, but each classification is focused on

certain applications. This taxonomy is more general, it allows us to classify current load-

balancing algorithms and facilitate the design of new algorithms.

- Detailed scalability analysis for pipelined SPMD applications (chapter 5). Before designing

a new load-balancing algorithm, it is imperative to study the underlying hardware

architecture and the application type. The analysis shows that the pipelined SPMD

3

applications are able to adopt the cluster computation potential and to scale up with the

cluster capabilities. In addition, the pipeline paradigm permits the overlapping between

communication and computation, which eliminates the need for synchronization.

However, the pipelined SPMD application shows that the performance of the system is

very sensitive to the slowest workstation in the pipeline and the communication time.

- General reusable simulation model of HNOW (section 6.3). In order to construct a

simulation model, we need to identify the input variables that define the system, output

variables that define the performance measures, and a mathematical/logical relationship

between the inputs and outputs that defines the system behavior. We have defined these

points and discussed the discrete event simulation environment.

- Analytical performance bounds for estimating the performance of diffusive load-balancing

algorithms on a homogeneous network of workstations (chapter 7). The diffusive strategy

relies on neighboring workstations that communicate with each other to eliminate any load

imbalance between them. It has been proved that this strategy drives the whole system to a

global balance. We derived analytical bounds for the number of steps required to reach the

balanced state.

- DLAH: a scalable dynamic load-balancing algorithm for SPMD applications on non-

dedicated HNOW (section 7.3). DLAH algorithm is based on the diffusive strategy while

incorporating the HNOW parameters. Its performance has been studied (chapter 8) and

compared to other related algorithms. DLAH shows better performance.

- A general framework for designing new load-balancing algorithms (section 9.1). During

this whole process we present the necessary steps needed to design new load-balancing

algorithms.

1.4 Thesis Organization

Chapter 2 provides an overview of load-balancing algorithms in general, discussing the

HNOW parameters, application types, and characteristics of load-balancing algorithms. It

concludes by presenting a general taxonomy used to classify any load-balancing algorithm. We

use this taxonomy in chapter 3 to categorize load-balancing algorithms of related work. Then,

we formally define the problem in chapter 4 and prove that it is an NP-complete problem.

4

In chapter 5, we implement two case studies of pipelined SPMD applications. From these

applications, we analyze the scalability of the pipelined SPMD applications and measure the

different cluster parameters that will be used to build our simulation model in chapter 6.

In chapter 6, we discuss the current theoretical models of parallel computers and show that

they are inadequate to capture the complexity of the HNOW, particularly, its dynamic

behavior. Thus, we create a simulation model for the HNOW.

In chapter 7, we propose our algorithm DLAH and derive its analytical performance bounds.

We implement the DLAH algorithm on the HNOW simulation model in chapter 8 and study

its performance for different HNOW settings. Finally, we conclude our research in chapter 9,

summarize our contributions, and provide several pointers for further research.

5

Chapter 2

OVERVIEW OF LOAD-BALANCING ALGORITHMS FOR HNOW

2.1 Overview of Heterogeneous Network of Workstations

Network based distributed computing has attracted a lot of attention lately, due to the recent

advances in high-speed networks. It has become a cheap alternative to dedicated parallel

supercomputer systems. As these systems are widely available in academic and industrial

environments, it is becoming increasingly popular to use these resources. To benefit from the

maximum computation power, it is necessary to use all available resources, namely old

machines in addition to more recent ones. Such a network is called heterogeneous network of

workstations (HNOW). Figure 2.1 illustrates a simple HNOW example.

Network 2

Network 1

Figure 2.1: A simple scheme of an HNOW

The sources of heterogeneity in an HNOW include the processors of different speed; the

memory, with different amount of available memory on different machines; the network, with

varying cost of communication among pairs of processors; and the software level, with the

6

various operating systems and environments. Accordingly, a dynamic load-balancing

algorithm is required to deal with these different parameters to provide the best performance.

A dynamic load-balancing algorithm must deal with different unbalancing factors, according to

the application and the environment in which it is executed. Unbalancing factors maybe static,

as in the case of processor heterogeneity, or dynamic. Examples of dynamic unbalancing

factors include the unknown computation task for each task, dynamic task creation and

migration, and variation of available computational resources due to external loads from other

applications.

For the last ten years, load-balancing problems for homogeneous parallel computing systems

have been thoroughly studied. A large number of results have been gained with the help of

simulations, theoretical investigations, or experimental applications {[Hil85], [PFK93],

[FMD98], [DFM95], [SS94], [VS90], [WLR93], [CLZ99], [ZLP96]}.

Load balancing for heterogeneous parallel computing is a relatively new topic and has been

investigated less frequently. In order to design load-balancing algorithms for HNOW, a

number of parameters need to be well defined. These parameters should cover the

heterogeneity of the network of workstations, the applications considered and the

characteristics of the required load-balancing algorithm. Figure 2.2 summarizes the HNOW

parameters that are discussed in details in the following sections.

HNOW Parameters

Cluster
Heterogeneity

Application
Type

Algorithm
Characteristics

• Phase parallel
• Divide and conquer
• Pipeline
• Process Farm
• Work pool

• Processor
• Memory
• Network Latency
• Network Bandwidth

• Responsiveness
• Simple Implementation
• Scalable
• Least Overheads
• …

Figure 2.2: HNOW parameters

7

2.2 Cluster Heterogeneity Parameters

The sources of heterogeneity in a network of workstations are mainly attributed to processor

speed, available memory, network latency, and network bandwidth.

- Processor parameters:

In a fully detailed processor model, we need to consider the speed of a processor in terms of

the number of floating-point operations per second, and the number of integer operations per

second. Multiple instructions and instruction pipelining would further complicate the model.

- Memory:

The required memory required by the application and the available memory should be

considered in scheduling computations and data. Usually the total amount of memory in the

cluster limits the data size considered by numerical scientific applications like weather

modeling and computational dynamics. The amount of physical memory varies for different

machines.

- Network latency and bandwidth:

This is one of the primary concerns for heterogeneous systems. Slow networks can make

communication extremely expensive, and restrict the scalability of the system.

A detailed description of these parameters and how to measure them are discussed later in

chapter 6.

2.3 Application Type

Parallel applications fall into a number of categories according to the parallel paradigm

employed. Phase parallel, divide and conquer, pipeline, process farm, and work pool are some

examples [WA99]. These programs may have regular or irregular computation and

communication. Other characteristics, such as the communication to computation ratio, could

dictate the decision to parallelize and the parallelization used. Accordingly, there is no load-

balancing algorithm, which will have good performance for all the different application types.

8

2.4 Algorithm Characteristics

Before designing a load-balancing algorithm, it is necessary to define the essential features for

the load-balancing algorithm besides the load balancing itself like scalability, responsiveness,

least overheads, simplest implementation, etc. These characteristics are also used to measure

the performance of the load-balancing algorithm accordingly. The most common parameters

used to measure performance are convergence, extra load exchange, and load-balancing

overheads.

- Convergence:

Convergence is a measure for the responsiveness, which is the number of steps required by the

algorithm to reach a load balance state. The fewer steps it takes to reach the balanced state, the

more responsive the algorithm is.

- Extra load exchange:

Extra load exchange is the total amount of extra load exchanged during execution for the load

balancing. The fewer loads exchanged to reach a balanced state, the better the algorithm in

estimating the load to be exchanged.

- Load-balancing overheads:

Load-balancing overheads are the total amount of overheads added by the load-balancing

algorithm. These overheads are divided into computation overhead, and the communication

overhead, which represents the extra messages produced by the load-balancing algorithm to

exchange status values.

Before attempting to design a new load-balancing algorithm, we need to define a taxonomy

that provides a terminology for describing different load balancing algorithms.

2.5 Load-Balancing Algorithms Classification

A number of classifications have already been proposed, but each classification was focused on

certain applications. For example, [CK98] deals with scheduling of processes in distributed

operating systems and with scheduling of jobs in parallel applications based on functional

decomposition. [PRR03] deals with strategies for load distribution in SPMD applications. We

will use our taxonomy proposed in [OA02], which, incorporates dynamic load balancing

9

algorithms designed for homogeneous and heterogeneous systems, task migration and data

parallel algorithms, central and distributed algorithms. In addition, we have shown how this

taxonomy is used to design load-balancing algorithms for any kind of the application types.

In order to completely define a dynamic load-balancing algorithm, the main four sub-strategies

(initiation, location, exchange, and selection) have to be well defined. A detailed discussion of

these sub-strategies is presented in the following sections.

2.5.1 Initiation

The initiation strategy specifies the mechanism, which invokes the load balancing activities.

This may be a periodic or event-driven initiation. Periodic initiation is a timer-based initiation in

which load information is exchanged every pre-determined time interval. The event-driven is a

usually a load dependent strategy based on the observation of the local load.

The load dependent strategies can be either sender-initiated or receiver-initiated. Sender-initiated

means that over-loaded processors initiate activities while the receiver-initiated means that the

under-loaded processors initiate the activities. Obviously, these initiation methods can be

combined. Conditions like “over-loaded” and “under-loaded” are often defined by two-load

thresholds L and H: if the load of a processor is less than L then it is under-loaded, if it is

between L and H then it is normally loaded, and if it is larger than H, it is over-loaded.

Event-driven strategies are more responsive to load imbalances, while periodic strategies are

easier to implement. However, periodic strategies may result in extra overheads when the loads

are balanced.

2.5.2 Load-Balancer Location

This strategy specifies the location at which the algorithm itself is executed. The load-balancing

algorithm is said to be central if it is executed at a single processor, determining the necessary

load transfers and informing the involved processors. On the other hand, if all the processors

take part in the load balancing decisions, the algorithm is classified as distributed.

Distributed algorithms are further classified as synchronous and asynchronous. A synchronous load-

balancing algorithm must be executed simultaneously at all the participating processors. When

a synchronous algorithm is invoked the processors stop processing the application and turn to

10

load balancing. Usually this algorithm is used in applications in which application processing

must stop at synchronization points for synchronism.

As for asynchronous algorithms, it can be executed at any moment in a given processor, with

no dependency on what is being executed at the other processors.

Although the use of centralizing processor may lead to a bottleneck, it is important to

remember that distributed strategies require load information to be propagated to all the

processors, leading to higher communication costs.

2.5.3 Information Exchange

This specifies the information and load flow through the system. The information used by the

dynamic load-balancing algorithm for decision-making can be local information on the processor

or gathered from the surrounding neighborhood. Contrarily, it can be global information

gathered from all the processors.

Although local information exchange strategies may yield to less communication costs, global

information exchange strategies tend to give more accurate decisions.

The communication policy specifies the connection topology of the processors in the system,

which determines the neighborhood of each processor. This topology does not have to

represent the actual physical topology of the processors. A uniform topology indicates a fixed

set of neighbors to communicate with, while in a randomized topology the processor randomly

chooses another processor to exchange information with it.

In addition, the communication policy specifies the task/load exchange between different

processors. In global strategies, task/load transfers may take place between any two processors,

while local strategies define group of processors, and allow transfers to take place only between

two processors within the same group.

2.5.4 Load Selection

The load exchange policy specifies the processors involved in the load exchange (processor

matching). Apart from that, it specifies the appropriate load items (load matching) to be

exchanged. Local averaging represents one of the common techniques. The overloaded

11

processor sends load-packets to its neighbors until its own load drops to a specific threshold

or the average load.

This taxonomy may be summarized as shown in Figure 2.3.

Dynamic Load Balancing

Initiation Information ExchangeLoad Balancer Location Load Selection

Periodic Event Driven

Sender
Initiated

Receiver
Initiated

Central Distributed Decision
making

Communication

Local Global Task ExchangeTopology

Local GlobalUniform RandomizedSynchronous Asynchronous

Processor
matching

Load
matching

Figure 2.3: Dynamic load balancing taxonomy

12

Chapter 3

RELATED WORK

With the previous taxonomy, it is now possible to review load-balancing algorithms for

HNOW and compare their different characteristics.

3.1 Automatic Heterogeneous Supercomputing (AHS) [DCG93]

AHS uses a quasi-dynamic scheduling strategy for minimizing the response time observed by a

user when submitting an application program for execution. This system maintains an

information file for each program that contains an estimate of the execution time of the

program on each of the available machines. When a program is invoked by a user, AHS

examines the load on each of the networked machines and executes the program on the

machine that it estimates will produce the fastest turn-around time. Once the program is

initiated on a specific processor, however, no further scheduling is performed.

- Heterogeneity parameters:

Work load on every networked machine,

Estimate for the execution time of each program on each of the available machines

- Application type:

 Whole independent programs executed on a single machine (no processor

communication)

- Algorithm strategy:

Initiation: Event driven (user initiated by submitting program)

Load balancer location: Central

Decision making/Communication: Global/ Randomized-Global

Processor/Load matching: it estimates the fastest turn-around time obtained from the

load on every workstation / the whole program is distributed.

13

This algorithm is limited to whole independent programs. It uses a central scheduler, which

would be sufficient for a small number of jobs, but as the number of jobs increase the

scheduler may become a bottleneck. Also, the algorithm requires providing an estimate time

for the execution for each program on each workstation, which is not practical especially if

there exists a lot of heterogeneous workstations.

3.2 Self-Adjusting Scheduling for Heterogeneous Systems (SASH) [HLA95]

It utilizes a maximally overlapped scheduling and execution paradigm to schedule a set of

independent tasks onto a set of heterogeneous processors. Overlapped scheduling and

execution in SASH is accomplished by dedicating a processor to execute the scheduling

algorithm. SASH performs repeated scheduling phases in which it generates partial schedules.

At the end of each scheduling phase, the scheduling processor places the tasks scheduled in

that phase on to the working processors’ local queues. The SASH algorithm is a variation of

the family of branch-and-bound algorithms. It searches through a space of all possible partial

and complete schedules.

The cost function used to estimate the total execution time produced by a given partial

schedule consists of cost of executing a task on a processor and the additional communication

delay required to transfer any data values needed by this task to the processor.

- Heterogeneity parameters:

Cost function: CP(Tn,Pm) + CC(Tn,Pm) where:

CP(Tn, Pm): Cost of executing a task Tn on a processor Pm,

CC(Tn, Pm): Cost of additional communication delay required to transfer any data

values needed by task Tn on processor Pm.

- Application type:

Independent tasks.

- Algorithm strategy:

Initiation: Event driven (depends on the shortest execution time achieved by the

processors)

Load balancer location: Central

14

Decision making/Communication: Global/Random-Global

Processor/Load matching: Using the cost function, the processor that will give the

least cost will be selected.

This algorithm has an advantage of accounting for the non-uniformity in the tasks’

communication and processing costs when scheduled on specific processors (although the

calculation of the processor and the communication costs are not defined). Also, it overlaps

scheduling with execution. On the other hand, it has a central (dedicated processor), which

hinders scalability. Also, this algorithm assumes the computation cost and communication cost

are constant throughout the scheduling which is valid for dedicated systems only.

3.3 Support for Parallel Loop Execution (SUPPLE) [OP97]

This strategy groups iterations into load chunks. Each processor executes its load chunks.

Once a processor load decreases than a certain threshold, it asks other processors for chunk

loads. A round-robin strategy is used by the underloaded processors to find an overloaded

processor. Once an overloaded processor is located, it must choose the most appropriate

number of chunks to migrate. Also, underloaded processors broadcast a termination message

to reduce the number of processor checking.

- Heterogeneity parameters:

Load chunks (overloaded and underloaded).

- Application type:

Parallel loops.

- Algorithm strategy:

Initiation: Receiver initiated

Load balancer location: Distributed, Asynchronous

Decision making/Communication: Local/ Random, Global

Processor/Load matching: Overloaded processors are matched by underloaded

processors in a round robin way. Load transferred is a ratio of the available chuck

loads, depending on the current chunks and the number of processors (chuck/

(2*processors)).

15

The main advantage of this algorithm is that it preserves the adjacency relationships among

the processors that might have to exchange borders (load chunks sent are those without any

other dependency except the sender). On the other hand, this algorithm only applies to parallel

loops and it assumes uniform communication cost.

3.4 Data Migration Environnent (DAME) [CCN97]

DAME aims to extend the Single Program Multiple Data (SPMD) programming paradigm to

better harness heterogeneous NOWs with time-varying workloads. A centralized master

collects information at run-time on the load of the workstations involved and explicit

primitives are furnished to programmers in order to activate load checking and redistribute

arrays in blocks whose sizes depend on the actual capacities of each workstation. Another

drawback is the proposal of a global synchronization.

- Heterogeneity parameters:

Computing power available (using external monitors or the application evolution

itself),

External workload (tasks in queue)

- Application type:

SPMD applications

- Algorithm strategy:

Initiation: Periodic

Load balancer location: Central

Decision making/Communication: Global/ Random, local

Processor/Load matching: neighborhood processors exchange the workload.

This algorithm preserves the adjacency relationships among the processors that might have to

exchange borders as it exchanges workloads only among neighbors. On the other hand, it’s a

central periodic algorithm, which hinders much the scalability. It also assumes uniform

communication cost.

16

3.5 Asymmetric Load Balancing on a Heterogeneous Cluster of PCs [B99]

 Addresses the techniques by which the sizes of tasks are suitable matched to the processors

and memories. A static load balancing strategy is used based on specific measurements and

benchmarks

- Heterogeneity parameters:

Relative computing power (using external benchmark applications),

- Application type:

Data decomposed regular problems.

- Algorithm strategy:

This algorithm implements a static load balancing strategy. It uses the previous

benchmark results to partition the problem among them.

This strategy uses a classic static load-balancing algorithm. The main contribution is reducing

the time taken to obtain the benchmark results. The static load balancing is more suitable for

dedicated systems.

3.6 GR Protocol [LL96]

This protocol proposes an adaptive load-balancing algorithm (GR.batch) for heterogeneous

distributed systems subject to different classes of tasks with different processing requirements.

The key to the algorithm is to transfer a suitable amount of processing workload from queues

of senders to receivers, which is determined dynamically.

- Heterogeneity parameters:

Relative processor speed,

Processing requirement for task,

Task size,

Arrival rate of task.

- Application type:

Tasks eligible for relocation, with a known service (processing) demand.

- Algorithm strategy:

Initiation: Receiver/Sender initiated

17

LB Location: Distributed, Asynchronous

Decision making/Communication: Local/ Random, Global

Processor/Load matching: Polls others until it finds a match. Workload is then

negotiated between the sender and receiver.

The performance of the algorithm has only been evaluated using simulations. The results have

shown the adaptive behavior of the algorithm towards heterogeneous systems. This algorithm

assumes the heterogeneity lies only in the processing power of the different workstations.

Also, the processing requirement (service demand) of each task must be known in advance.

3.7 Compile-time Scheduling Algorithms [CZL97]

Proposes a simple yet comprehensive model for use in compiling for a network of processors,

and develop compiler algorithms for generating optimal and near-optimal schedules of loops

for load balancing, communication optimizations, network contention, and memory

heterogeneity.

- Heterogeneity parameters:

Relative processor speed,

Resident memory size,

Start up time for messages,

Message transfer rate,

Number of iterations.

- Application type:

Independent parallel loops on dedicated NOW for SPMD/ Master-Slave model of

computation.

- Algorithm strategy:

Compiler algorithms for generating optimal and near optimal schedules of loops were

developed with specific cost functions.

This is one of the very few strategies that considered heterogeneity in many aspects. It

incorporated most of the heterogeneous parameters. However, this strategy assumes a

dedicated system. Also, it is application dependent, which means for different applications the

18

relative processor power and resident memory size must be calibrated. This strategy is

classified as a static algorithm.

Table 3.1 summarizes the different algorithms. It is clearly observed that most studies on

heterogeneous network of workstations consider only the relative processing power of the

workstations as the only factor for heterogeneity. In practice, heterogeneous network of

workstations may contain different workstations with different memory size and network

connections. In fact large computational applications like computational fluid dynamics CFD

are limited by the memory size. Thus, it is important to consider all heterogeneous parameters

when considering HNOW.

19

Heterogeneity parameters Load balancer algorithm Algorithm
Processor Memory Network

Application
Pros Cons

AHS
[DCG93]

Yes Yes No Whole
independent

programs

Simple algorithm - Estimating the execution time of
each program on each machine

- Central Scheduler

SASH
[HLA95]

Yes No Yes Independent
tasks

Overlaps scheduling with
execution

- Estimating the execution time of
a task on a certain processor

- Central Scheduler
- Dedicated system

SUPPLE
[OP97]

Yes No No Parallel loops - Distributed with
asynchronous execution

- Preserves adjacency
relationships

- Broadcasting termination
messages

DAME
[CCN97]

Yes No No SPMD
Applications

- Preserves adjacency
relationships

- Periodic
- Central

[B99] Yes No No Data
decomposed

regular
problems

- Suitable for dedicated systems - Static

GR protocol
[LL96]

Yes No No Tasks eligible
for relocation

- Distributed, Asynchronous - Service demand of each task
must be known in advance

Compile-
time

[CZL97]

Yes Yes Yes Independent
parallel loops

- Incorporates all
heterogeneous parameters

- Compile time only which is
suitable for dedicated systems
only

Table 3.1: Summary of different load balancing algorithms for HNOW

20

Chapter 4

PROBLEM DEFINITION

4.1 Problem Statement

The problem considered in this research is defined as follows:

“Designing a scalable dynamic load-balancing algorithm for pipelined SPMD applications on

non-dedicated heterogeneous network of workstations (HNOW)”

4.2 Problem Significance

We will discuss the different aspects of the problem statement and its significance in the

following sections.

4.2.1 Non-Dedicated Heterogeneous Network of Workstations

Network based distributed computing has become a low cost alternative to dedicated parallel

supercomputer systems. As these systems are widely available in academic and industrial

environments, it is becoming increasingly popular to use these resources. To benefit from the

maximum computation power, it is necessary to use all available resources, namely old

machines in addition to more recent ones. Thus, a scalable load-balancing algorithm is required

to harness the computing power potential of this heterogeneous network of workstations.

No load-balancing technique is suitable for all the different application types. Instead one

studies the different attributes and programming model of one’s application and develops a

load-balancing algorithm accordingly. We have chosen the SPMD programming model as it

has been widely used in parallel programming, due to the ease of designing a program that

consists of a single code running on different processors. Moreover, data decomposition is a

natural approach for the design of parallel algorithms for many problems [Mat96]. We will

discuss in details the different SPMD attributes in the following section.

21

4.2.2 SPMD applications

By definition [Qui94], SPMD applications are suitable for implementation on the network of

workstations model. This model provides attractive scalability in terms of computational

power and memory size.

SPMD involves a number of parameters namely the computation time, communication time

and the communication pattern. The computation to communication ratio is called the

granularity ratio, which could dictate the decision to parallelize and the parallelization method

used.

Partitioning

Block

Distribution
Cyclic

Distribution

3D 2D 1D

Figure 4.1: Data partitioning and distribution

SPMD also involves partitioning of data (data domain decomposition) and distributing it to

different workstations. Depending on the problem a suitable partitioning that increases the

granularity ratio is desired [OA201]. Figure 4.1 illustrates a number of possible partitioning and

distribution options.

SPMD applications usually involve running a simulation for a large number of simulation steps

(iterations); we will refer to that as SPMD simulation steps. Another aspect that we should

consider is the regularity of the computations and the communication pattern between

different workstations. For example, although each workstation executes the same program

and has the same domain size, each may have different number of computations like molecular

22

dynamics simulations. Also, each application has its own communication pattern to exchange

different boundary data.

In this study, we are concerned with regular domain computations and uniform

communications applications. In fact, a large number of simulation applications belong to this

class of applications like computational fluid dynamics (CFD). Other examples of SPMD

applications are simulations like ship wake simulations [OA101], Heat transfer simulations,

weather simulations, and image processing applications [MG97].

4.2.3 Scalable Dynamic Load-Balancing Algorithm

SPMD applications are scalable by nature, as the same program is being executed on different

workstations but with different data sets. Thus, in order to take full advantage of the

heterogeneous network of workstations, it is necessary to design a scalable load-balancing

algorithm that does not hinder the SPMD scalability.

From the previous discussions, it becomes imperative to design a scalable dynamic load-

balancing algorithm that can cope to the non-dedicated heterogeneous workstations in the

cluster and ensure that each workstation is assigned a fair workload proportional to its

capabilities.

4.3 Formal Problem Description

We consider an environment of a set of autonomous non-dedicated workstations connected

by a communication network. The system is represented by an undirected graph (),G V E= ,

where V is the set of workstations labeled from 1 through P , and E V V⊆ × is the set of

edges. Each edge (),i j E∈ corresponds to the communication link between processors i and

j . At time t node iv V∈ has a processing power ()iF t ∈¡ , available memory

()
if

M t ∈¡ and a workload of ()iW t ∈ ¡ . At a certain time t , each node takes time (iteration

time) ()iL t ∈ ¡ to execute the workload with its current resources. The goal is to redistribute

the total workload among the workstations such that if G is not changed for some finite time

A , then a global balance can be achieved. In other words, the goal is to redistribute iW

23

proportional to the iteration time iL . In addition, the algorithm used to redistribute the total

workload should be scalable with the number of workstations.

4.4 Problem Assumptions

The problem assumes the execution of pipelined SPMD application on a heterogeneous

network of workstations with the following characteristics:

- Computational intensive SPMD applications, which involves a large number of iterations

(much larger than the number of workstations) like heat transfer simulations, weather

simulations and computational fluid dynamics (CFD) simulations (sections 5.1). In these

applications, the problem is usually divided into a grid of data points. The simulation

progresses in time with each iteration.

- the main data domain is uniform, which means that each data point requires the same

amount of computations.

- each processing unit has the same executable program, and is assigned a continuous part

of the main data domain,

- neighboring workstations communicate regularly to exchange boundary variables,

- pipelined in the sense that each workstation can’t begin its execution before it receives the

boundary variables from the neighbors,

- there is no synchronization required between the different processing units.

4.5 Problem Parameters

We clearly identify the different parameters that will be used throughout the literature for

describing the problem.

4.5.1 Pipelined SPMD Application

The pipelined SPMD application is divided among the workstations such that:

- The smallest computation unit is called a datapoint.

- Each workstation i is assigned a number of continuous datapoints iW .

24

- The application requires l loops (iterations) to complete, where the number of loops is

much bigger than the number of workstations.

4.5.2 Heterogeneous Network of Workstations Parameters

The HNOW consists of P different workstations; each workstation has processing power of

F datapoints per second, free memory fM datapoints, and swap access time of aM

datapoints per second. The workstations are connected to each other through a network with

bandwidth of BW datapoints per second; the bandwidth may differ between different

workstations.

The total execution time is given by:

[1..]
(([] [] [] [] []))Total comp mem comm o bal

i P
l

T MAX T i T i T i T i T i
∈

= + + + +∑ (4.1)

Where compT is the computational time given by:

workload per processor
Processor speedcomp

W
T

F
= = (4.2)

- memT is the extra time taken using the swap memory given by the product of both the

datapoints in the swap memory and the retrieval time:

 mem s rT M T= × (4.3)

- Tcomm is the time taken in exchanging boundary data points, given by:

Datapoints exchanged
 Latency

Transfer ratecommT = +

comm

LE
T L

BW
= + (4.4)

- oT : is the extra time introduced by the parallelization scheme, which includes: parallelism

coding overhead, synchronization overhead, and load imbalance overhead.

- balT : is the extra time experienced when using a load balancing algorithm, which includes:

extra computations added by the load balancing algorithm, extra load exchanged for

balancing, and miscellaneous messages used to exchange load status.

25

The main goal is to execute the SPMD application in minimal time. In other words to

minimize the total execution time totalT .

It is not hard to see that minimizing the above equation to obtain the optimum solution

involves gathering all the different parameters from all the workstations to one central

processor. This central processor should execute a certain algorithm to minimize the total

execution time and then send to each workstation its required load distribution with its

neighbors. Obviously, this is not a scalable technique. In the following section, we prove that

this problem is actually an NP complete problem and thus there exists no optimal solution that

can be implemented.

4.6 Problem NP-Completeness

The task of distributing the total workload among a cluster of heterogeneous workstations

seems very hard. Actually, we will prove that it is an NP-Complete problem. We will consider

the case of distributing the workload on a dedicated cluster of workstations, i.e., a static case.

4.6.1 Problem Description

We consider a dedicated cluster of workstation composed of a finite set of heterogeneous

workstations interconnected by a communication network. The underlying parallel

computation is performed on a large data set that is divided among the workstations. We

represent the system as follows:

- Set of processors { }1 2, , mP p p p= … , each processor is defined by the following two

tuple, () [], , 1,i i ip f m i m= ∈ where if is the processor speed and im is the memory

available for processor ip .

- Set of data domains { }1 2, , nD d d d= … , each represents a segment of the whole

computational data domain,

- Set of communication time []{ }: , 1ijC c i j m= ∈ … , which represents the

communication time between the processors ip and jp .

26

- Set of tasks { }1 2, , nT t t t= … , each task is defined by the tuple () [], , 1i i it d b i n= ∈ur … ,

where id is the computational data domain, and ib
ur

 is the communication requirement

from data domain id to the other domains.

- Length () [] [], , , 1 , 1j i jl t p c i m j n+∈ ∈ ∈ur … …Z , which represents the time taken for a

task jt on processor ip , including the communication time jc
uur

 required to communicate

with the other processors.

4.6.2 Problem Statement:

We will refer to our problem as NOW scheduling defined as follows:

INSTANCE

Set of Tasks T , number m +∈ Z of processors, length (), ,j i jl t p c +∈ur Z for each task jt on

processor ip with communication time requirement jc
uur

, [] []1 , 1i m j n∈ ∈… … .

PROBLEM

An m -processor schedule for T ,i.e., a function []: 1f T m→ … , that minimizes the total

execution time given by
[] ()

()1
max , ,

j
j i ji m f t i

l t p c
∈ =

∑…
ur .

We can rewrite the problem as a decision problem as follows:

QUESTION

Is there an m -processor schedule for T ,i.e., a function []: 1f T m→ … that meets the

overall deadline D +∈ Z , such that the total execution time
[] ()

()1
max , ,

j
j i ji m f t i

l t p c D
∈ =

≤∑…
ur ?

Before discussing the complexity of this problem, let us refer to a similar problem “Minimum

Multiprocessor Scheduling”.

27

INSTANCE

Set of Tasks T , number m +∈ Z of processors, length (),j il t p +∈ Z for each task jt T∈

on processor ip , [] []1 , 1i m j n∈ ∈… … .

PROBLEM

An m -processor schedule for T , i.e., a function []: 1f T m→ … , that minimizes the total

execution time given by
[] ()

()1
max ,

j
j ii m f t i

l t p
∈ =

∑…
.

QUESTION

Is there an m -processor schedule for T ,i.e., a function []: 1f T m→ … that meets the

overall deadline D +∈ Z , such that the total execution time
[] ()

()1
max ,

j
j ii m f t i

l t p D
∈ =

≤∑…
?

This problem has been proven to be an NP-Complete problem [LST90]. We will reduce this

problem to our problem. The reduction process involves creating a polynomial time algorithm

R which transforms the inputs of the multiprocessor scheduling to equivalent inputs of our

problem.

First, let us assume that we have an algorithm for the NOW scheduling problem that answers

the scheduling question. We will then construct a polynomial algorithm that reduces the

multiprocessor scheduling problem inputs to the NOW scheduling problem inputs.

The inputs to the multiprocessor scheduling are given by ,T P< > , where T is the set of

tasks and P is the set of processors, each processor ip has a processing power of if and

infinite memory. While the inputs for our problem are , , ,T P M C< > where T is the set of

tasks and P is the set of processors, each processor ip has a processing power of if and

memory of im M∈ , and C is the set of communication times between each two processors.

Construct the following function R , by simply adding the memory and communication

parameters to the inputs. The memory is initialized to a very large number, while the

communication is initialized to zero.

28

(), , , , 0R T P T P M C= = ∞ =

Accordingly, we can then use the NOW scheduling problem to answer the question of the

multiprocessor scheduling problem. That means if the NOW scheduling algorithm answered

“yes” there is a solution then the answer will be “yes” to the multiprocessor scheduling

problem too and vice versa.

That means that the multiprocessor scheduling is no harder than the NOW scheduling. Since

the multiprocessor scheduling is NP-Complete, then it follows that the NOW scheduling is

also an NP-Complete problem and there exists no optimal algorithm to solve it.

It is worth noting that in our analysis we only considered a dedicated cluster of heterogeneous

workstations, i.e., the cluster resources dedicated for the application are static, which is simpler

than the non-dedicated version.

29

Chapter 5

PIPELINED APPLICATIONS: IMPLEMENTATION AND ANALYSIS

In this chapter, we will review two different types of pipelined applications and demonstrate

the advantages of using pipelining as a parallel paradigm. Each application has been

implemented on a different kind of underlying hardware architecture: a cluster of workstations

and a supercomputer. We will discuss the details of each implementation, analyze its

performance, and show how to extract the different parameters required for our simulations.

These parameters include both hardware and application parameters.

 The first section discusses a CFD application implemented on a cluster of workstations, while

the second section discusses a real-time distributed dispatcher implemented on a

supercomputer.

5.1 Domain Decomposition of Large Eddy Simulations of Ship Wakes1,2

Simulation of turbulent fluctuations in ship wakes is one of the complex applications of large

eddy simulations in computational fluid dynamics (CFD). Ship wakes simulation requires

extensive computations and large amounts of computer resources. The accuracy of ship wake

prediction is limited by the memory of the workstation.

In this section, we present the parallel implementation of large eddy simulations (LES) of a flat

plate wake using domain decomposition technique for a cluster of workstation environment.

We present the results of the implementation executed on a cluster of workstations and show

how the pipeline paradigm scales up with the number of workstations.

1 This work was funded by the DoD research grant No. N000014-98-1-0611, monitored by the Office of Naval

Research to WVU
2 The implementation is a joint work with the department of mechanical and aerospace engineering under the

supervision of Prof. Ismail Celik. Special thanks to Andrei Smirnov and Shoaping Shi.

30

5.1.1 Introduction

Algorithmic improvements and faster machines, particularly parallel machines, provide the

opportunity for effectively using large-eddy simulations (LES) for the problems of practical

importance. The main objective in this paper is to predict the turbulent flow development in a

ship wake using cluster computing and investigate its scalability using the domain

decomposition technique.

This requires analysis of the ship wake flow, development of an efficient and accurate

simulation of the in the ship wakes by refining the large eddy simulation methodology, setting

up the computational domain, analysis of the computer resources, and analysis of the results.

5.1.1.1 Related work

Direct Numerical Simulation (DNS) of turbulence requires many CPU days even months and

Gigabytes of memory. These requirements limit most DNS to using supercomputers, available

at supercomputer centers. With the rapid development and low cost of PCs, PC clusters are

evaluated as a viable low-cost option for scientific computing. A number of studies have been

made to evaluate the cluster capabilities. One of the recent studies [KEB99] presented a

comprehensive overall evaluation of the applicability of PC/Linux clusters for DNS of

turbulence. Low and high-end PC clusters were compared to existing supercomputers, both at

kernel and application level, to evaluate the CPU and network capabilities. The research

concluded that parallel simulations using Ethernet-based networks indicate inefficiency in

communications above four processors. Internal timings indicate that the bottleneck is due to

group communications (e.g. MPI all-to-all).

Another recent research [OB99] was concerned about the different programming paradigms.

These are message passing (MPI), shared memory (CC-NUMA), and multithreading. A

dynamically adapting, unstructured mesh application was used to evaluate the different

paradigms. The research concluded that the multithreading offers the highest scalability, the

message passing offers the best portability while the shared memory offers the simplest

coding.

 Using the previous results, we preferred to use MPI for portability and pipelining the different

computational domains in order to avoid group communication and synchronization delays.

31

5.1.1.2 Simulation of turbulent flows using LES

Turbulent forced convection occurs in many important technological applications, such as

mechanical, aerospace, electrical, computer, chemical, and nuclear engineers and in flows of

interest to meteorologists and earth scientists. The three-dimensional unsteady Navier-Stokes

(NS) equations are known to govern such flows. Direct numerical simulation (DNS), which

involves numerically solving the full unsteady NS equations, is currently limited to only the

simplest flow geometries and low Reynolds numbers. Alternatively, the Reynolds averaged

Navier-Stokes (RANS) equations, obtained from time averaging the unsteady NS equations,

require much less computational resources and are used successfully to compute many flows

of practical importance. However, the turbulence models used in conjunction with the RANS

equations are not applicable to a wide range of flow geometries and are unsuccessful for many

turbulent flow situations.

Large eddy simulation (LES) is a compromise between DNS and RANS. LES relies on the fact

that small scales of turbulent motion are nearly isotropic and independent of the geometry,

whereas the large scales of turbulent motion are mostly anisotropic and vary from flow to

flow. The small-scale motion, which is mostly a function of the amount of energy that must be

dissipated and therefore more universal, is filtered out of the governing equations and modeled

with a subgrid scale (SGS) model. The large-scale motion is computed directly by numerically

solving the three-dimensional, time dependent filtered NS equations. Although LES is not

computationally expensive as DNS, it still requires large amounts of computer resources.

5.1.1.3 Significa nce

Through the different experiments, we were able to confirm:

- The capability of pipelined domain decomposition technique to adopt the cluster

computing potentials and scale up with the number of workstations,

- The importance of granularity on the scalability,

- The ability to predict the execution time and number of workstations required for the ship

wake simulation using a small-scaled pilot simulation.

32

In the following sections, we will briefly describe the methodology used in LES simulations.

Then, discuss in details the cluster environment used and present the domain decomposition

strategy. Finally, we will present the implementation results and analyze its scalability.

5.1.2 Methodology

Large-eddy simulation of the turbulent wake is an expensive but useful approach, since it

allows the detailed study of the flow in which rapid stream-wise adjustment is present. For this

reason, the near-wake region is very difficult to model theoretically. The simulation of a

turbulent wake, especially the ship wake, requires a refinement in the LES technique. The flow

is spatially developing, inhomogeneous along all three dimensions and strongly influenced by

the interaction with the free surface. This creates the need for time-dependent turbulent inflow

and outflow boundary conditions.

In this study, an LES code originally developed by Zang and Street [ZS92] and modified by Shi

and Celik [SSC01], boundary fitted grid technique is used in which a single-connected curved

domain can be transferred into rectangular domain with unit cubic cells. The Navier-Stokes

solver itself is built on regular shaped grid and, consequently, it is efficient and easily modified

if necessary. A global second order accurate scheme in both temporal and spatial directions is

applied. The governing equations are discretized by using finite volume method. With the

exception of the convective terms, all the spatial derivatives are approximated with second-

order central differences. The convective term in the momentum equation is discretized using

QUICK scheme or central differencing. Because there is no explicit relation to solve for the

pressure in time, the fractional step method in conjunction with the projection method is

applied to solve the incompressible Navier-Stokes equation. Multigrid technique is used to

solve the pressure Poisson equation. Although in LES, explicit schemes are preferable, some

implicitness, e.g. via Crank-Nicolson time splitting, can be introduced if stability is an issue. In

this code, time advancement is semi-implicit, using an explicit Adams-Bashforth scheme for

the convective and source terms and an implicit Crank-Nicolson scheme for the diffusive

terms.

There are many different kinds of subgrid-scale (SGS) models used to capture the unresolved

(small) subgrid-scale motion. A basic and widely used SGS model is the Smagorinsky eddy-

33

viscosity model. We [SSC00] have applied Smagorinsky model, dynamic viscosity and

dynamic mixing model in our study of wake flow, such as wake of bluff body, wake of flat

plate and wake of a ship. None of them could predict all the turbulence features very well. On

the other hand, the results without any subgrid-scale model but with some degree of numerical

dissipation, using, for instance the QUICK discretization scheme, could provide reasonable

predictions and are much more attractive from computational viewpoint and stability

considerations. The detail information including the governing equations and the subgrid-scale

models can be found in the references [SCS99] and [SSC00].

5.1.3 Computer Resources

Figure 5.1: CFD lab’s cluster [SS01]

The experiments were implemented on a Beowulf cluster [BWF] of 10 DEC-Alpha

workstations at the CFD laboratory of WVU. The cluster is running Linux as a software

34

operating system, interconnected by a private high-speed network as seen in figure 5.1. We

implemented message passing parallel programming model using MPI [GLS94], [MPCH]

protocol for message passing.

5.1.4 Domain Decomposition Strategy

The conventional domain decomposition technique [Hwg93] for elliptic problems is realized

through a two-way exchange of data at the boundaries of the domains [Smn92] and [DGP84]

as illustrated in figure 5.2(a) for a one-dimensional problem. This guarantees the physical

integrity of the solution and the convergence to the corresponding single domain case.

However, this strategy may carry an excessive communication overhead for three-dimensional

CFD simulations. If the problem is parabolic in one of the spatial directions one can employ a

more efficient one-way communication approach illustrated in figure 5.2(b). This may reduce

communication overhead considerably especially when non-blocking send-routines are used.

 (a) Two-way decomposition

(b) One-way decomposition

Figure 5.2: Decomposition strategy: a,b,c – cells of the grid in different computational
domains

Considering these factors, we implemented the first parallel version of the LES code using

one-way data exchange. This approach is valid for ship-wake applications since the flow in

most of the ship-wake region has a parabolic character. Even though small re-circulation zones

35

exist in the proximity of ship's stern, they do not stretch far enough and can be contained

entirely within the first sub-domain.

To exploit the parabolic nature of the solution the computational domain of the whole wake

should be subdivided into Nd sub-domains by cutting it with planes normal to the ship-

velocity. Figure 5.3 illustrates a typical layout of two sub-domains. Data exchange between the

domains occurs at the plane EH. As can be seen this implementation of the domain-

decomposition technique is rather simple and straightforward. It also carries minimum

communication overhead and is suitable for ship-wake applications.

Figure 5.3: Wake decomposition

The drawback of the scheme is the necessity to provide additional outlet boundary conditions

for each domain, which can alter the character of the flow close to the domain outlet, as

compared to the two-way coupled case.

5.1.4.1 Assumptions

- identical workstations in a cluster using MPI.

- SPMD (Single Program Multiple Data) model is used, in which the same program code

runs on all the workstations, while the data domain is partitioned among them.

- The domain used is a three dimensional domain.

36

Domain 1 Domain 2 Domain 3 Domain P

Machine 1 Machine 2 Machine 3 Machine P
Figure 5.4: Domain decomposition of the application

The application is considered pipelined in the sense that the task cannot proceed before it

exchanges messages with the proceeding task of an adjacent domain as shown in Figure 5.4.

5.1.4.2 Scalability Analysis

A computer system, including all its hardware and software resources, is called scalable if it can

scale up (i.e., improve its resources) to accommodate ever-increasing performance and

functionality demand and/or scale down (i.e., decrease its resources) to reduce cost. To exploit

the power of scalable parallel computers, the application programs must also be scalable

[HX98].

The speedup can be used as a measure to the scalability. The speedup is defined as the ratio

between the execution time of an application on a parallel system and the best-known serial

algorithm.

S s

P

T
T

= (5.1)

Where:

- sT is the execution time taken using the serial algorithm,

- PT is the execution time taken in case of the parallel system.

Since the memory resources limit the accuracy of the ship wake, we use the fixed memory

model for our analysis [SN93]:

37

- Cluster case:

The total execution time:

 = (number of cycles) (time for one pipeline cycle)
 (-1)()

P

P comp comm

T
T L P T T

×
= + +

Where:

- L : is the number of instances (time steps),

- P : is the number of workstations (processors),

- compT : is the computation time of one instance in a workstation,

- commT : is the communication time to exchange variables.

- Serial case:

The total execution time taken to process the same data:

() () = total number of instances time of instance
 ()

s

s comp

T
T LPT

×
=

()
(,)

1 1 comm

comp

LP
S L P

T
L P

T

∴ =
 

+ − +  
 

 (5.2)

The ratio comm

comp

T
T

 is called the granule size, the bigger the granule size the better the speedup.

For ideal cases L P? . Then:

(,)

1 comm

comp

P
S L P

T
T

=
 

+  
 

 (5.3)

For the system to be scalable, it should perform the same or better as the number of

processors and/or problem size increases. The efficiency is used to measure this aspect.

38

()

Speed upEfficiency =
no. of processors

(,)

1 1 comm

comp

LE L P
TL P
T

=
 

+ − +   

 (5.4)

The above equation suggests that for small L the scalability is worse as we increase the number

of processors. For large L , the only factor that affects the scalability is the granule size.

- The effect of granularity on the speedup:

According to equation 5.2, it is obvious that as the granularity increases, the better the

speedup. The granule size can be chosen by the amount of data assigned to the workstation. It

should be noted that the granule size has a maximum value limited by the memory of the

processor. Therefore, care should be taken in choosing the granule size.

It may seem that for a fixed size problem that by increasing the processing elements the

speedup will increase linearly. This is only valid as long as the granule size remains constant.

Actually as we increase the number of processing elements for fixed size problems,

compT decreases as each processor takes a smaller load and commT may increase as network load

increases with more overheads. This gives smaller granularity, which leads to lower efficiencies.

Therefore, it is important to investigate the granularity of the application by measuring a

number of parameters like the network bandwidth/latency, network performance under

different loads, and computation regularity.

For our LES application, equal loads were assigned to each processor as shown in figure 5.5.

We concluded the following:

y

x

z PE

Nx

Ny
Nz

PE

Figure 5.5: Load assignment to processing elements

39

- The computation is regular, i.e., calc x y zT N N Na where ,x yN N and zN are the number of

grid nodes in the direction of X, Y and Z axis.

- The communication is made through a dedicated switch with only 10 workstations, so we

can neglect the effect of network load.

- Comm y zT N Na , which represents the interface between the different processing elements.

- For fixed size problems, 1
xN Pa where P is the number of processors. As we increase

the number of processors, the load assigned for each processor decreases.

comm

comp

T
GP

T
∴ = where G is the granularity constant.

Substituting in equation 5.2:

() ()(,)
1 1
LP

S L P
L P GP

∴ =
+ − +

 (5.5)

Figure 5.6: Speedup and granularity

Plotting the above equation for different values of granularity constants and different number

of processors, we obtain figure 5.6. It is shown that a slight increase in granularity constant

reduces the effective speedup. Actually, the granularity may even inhibit any speedup

40

regardless of the number of processors added. Hence, care must be taken in choosing the

granule size and measurements should be made to ensure this choice.

5.1.5 Simulation Results

A flat plate wake was used for demonstration and making pilot simulations. A number of

different simulations were carried out with different parameters to investigate the influence of

each parameter on the results.

5.1.5.1 Domain information

For flat plate wake, the domain size is 1.0m x 0.2m x 0.6m in X, Y, and Z direction

respectively. A number of simulations have been made for the flat plate wake with different

grid size.

Non-uniform grid is used in the different directions. Note that X represents the stream-wise

direction, Y represents the vertical direction, and Z represents the span-wise direction, as

shown in figure 5.7.

Figure 5.7: The schematic of the flat plate wake [SS01]

5.1.5.2 Boundary conditions

For both cases, inflow boundary and outflow boundary are applied in x direction. For outflow

boundary, we applied convective outflow boundary, i.e.

0
x
u

U
t
u

con =
∂
∂

+
∂
∂ (5.6)

41

Symmetry boundaries are used in Y direction and periodic boundaries are used in the span-

wise direction. At the free surface, slip in X and Z directions are allowed, but the velocity

component normal to the free surface is set to zero. The free surface is approximated as a flat

plane without walls. For more details, see [SS01].

5.1.5.3 Simulation test

A 2-processor simulation was successfully conducted on two processors of the cluster using a

grid size of 18x18x18 nodes for each domain. The stream-wise velocity contours is shown in

figure 5.8 from [SS01]. The two domains are consistent very well. This indicates that the one-

way decomposition technique is successful.

Figure 5.8:The stream-wise velocity contours of one-way decomposition scheme.

5.1.5.4 Simulation results

A number of different experiments were carried out on the cluster with different parameters.

The parameters used for the analysis are the number of processors, the number of grid nodes

per workstation (accuracy), and the total simulation time (number of iterations). The results of

each experiment with various parameters are shown in the following sections.

42

- Effect of the simulation time

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0 20,000 40,000 60,000 80,000 100,000 120,000

Simulation
Time (loops)

Execution
Time (sec)

Figure 5.9: Execution time versus the simulation time

These simulations were executed on three workstations with a grid size of 18 18 18× × nodes

each, for different simulation time (iterations). We can predict the speedup using equation 5.3,

and the measured quantities of commT and compT .

0.0012secCommT = , 0.637secCalcT = . Then, 2.99S ≈ .

As illustrated in figure 5.9, the execution time is nearly directly proportional to the required

simulation time (number of iterations). This is due to the fact that for this case the ratio

1comm compT T = , so equation 5.3 is reduced to (),S L P P≈ . This makes it easy to predict

the total execution time required for long simulations using the results from a small number of

processors.

- Effect of the number of processors

In these simulations, we increase the problem size proportional to the number of processors.

In other words, the number of grid nodes for each processor is not changed when adding

another processor. The number of grid nodes used for each workstation is 18 18 18× × with

a simulation time of 5000 loops.

43

Figure 5.10, illustrates the speedup experienced while increasing the problem size with the

number of processors. It is clearly seen that the speedup is directly proportional to the number

of processors as long as the granularity remains constant.

This demonstrates one of the important features of cluster computing, which is the ability to

scale up the size of the problem for the same execution time with the number of available

workstations. Also, we notice that the measured speedup is directly proportional to the

number of processors as predicted.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Speedup

Number of
processors

 Figure 5.10: Speedup experienced while increasing the problem size with the number of

processors.

44

- Effect of the number of grid nodes per workstation

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50000 100000 150000 200000 250000 300000 350000

Execution
Time (sec)

Number of
Grids/processor

Figure 5.11: Execution time versus number of grid nodes per workstation.

To test for the effect of the number of grid nodes per workstation on the execution time, a

number of experiments were carried on 4 workstations for a simulation of 1000 iteration.

Figure 5.11 illustrates the results obtained, which shows that the execution time is directly

proportional to the total number of grid nodes per workstation, or in other words the

execution time is of order ()3O N where N is the grid nodes per dimension. Note that when

the total number of grid nodes per workstation is changed other parameters like memory size

and cache replacement methods could affect the results.

With the previous experiments and deducted relations, one may predict the execution time or

the number of processors required using a small-scaled pilot simulation. For example, consider

the execution time for 18 18 18× × grid nodes per workstation for 8 processors is 3254

seconds for a simulation time of 5000 simulation ticks (iterations). One can estimate the

execution time for 66 66 66× × grid nodes per workstation, on four processors with

simulation time of 1000 ticks. Using the previous relations, the estimated execution time is

32082 seconds. Actually, the estimated execution time is fairly close to the measured value,

which is 34760 seconds. A number of experiments were carried out wit different parameters

and compared to the estimated execution time; the relative error never exceeded 10%.

45

Accordingly, a small-scaled simulation is sufficient to estimate the actual execution time for a

large-scaled simulation.

5.1.6 Conclusion

Beowulf clusters can provide ample and cost effective resources for high performance

computing. However, it encapsulates many features that are unique, and offers hope of

providing a solution to the needs of many supercomputer users. The Beowulf architecture

provides a standard message-passing hardware and software environment, with a low cost of

entry.

We have implemented pipelined domain decomposition technique in simulating a flat plane

wake flow. One of the great merits of pipeline domain decomposition is that it permits the

overlapping between communication and computation, so synchronization time can be

neglected.

The domain decomposition has shown its ability to adopt the cluster computation potential

and to scale up with the cluster capabilities. The numerical experimental have verified the

analytic study of the scalability of the domain decomposition.

It is possible to predict the execution time and the number of processors required for a

simulation by using a small pilot simulation, and the relations deducted between the grid size,

simulation time and the number of processors. This is important especially when

computational time is being paid for. However, one of the weaknesses of this domain

decomposition technique is that the execution time is very sensitive to the slowest workstation

in the pipeline, which can cause degradation in performance.

5.2 Distributed Algorithm for Partially Clairvoyant Dispatchers3

Real-time systems are finding use in complex and dynamic environments such as cruise

controllers, life support systems, nuclear reactors, etc.,. These systems have separate

components that sense, control and stabilize the environment towards achieving the mission

or target. These consociate components synchronize, compute and control themselves locally

3 The implementation is a joint work under the supervision of Dr. K. Subramani. Special thanks to K.

Yellajyosula.

46

or have a centralized component to do the above. Distributed computing techniques improve

the overall performance and reliability of large real-time systems with spread components.

Partially Clairvoyant scheduling was introduced in [Sak94] to determine the schedulability of

hard real-time jobs with variable execution times. The problem of deciding the Partially

Clairvoyant schedulability of a constrained set of jobs has been well studied in the literature

[GPS95, Cho00, Sub03]. These algorithms determine the schedulability of the job set offline

and produce a set of dispatch functions. The dispatch functions of a job depend on the start

and execution times of the jobs sequenced before the job. The dispatching problem is

concerned with the online computation of the time interval to start a job such that none of the

constraints is violated. In certain situations, the dispatcher fails to dispatch a job, as it takes

longer to compute the interval within which the job has to be dispatched; this phenomenon is

called Loss of Dispatchability. For a job set of size n , sequential approaches using function lists

suffer from two major drawbacks; ()nΩ dispatching time and the Loss of Dispatchability

phenomenon. Existing approaches to this problem have been along sequential lines using

stored function lists.

In this section, we implement and evaluate a distributed pipeline-dispatching algorithm for

Partially Clairvoyant schedules. For a job set of size n , the algorithms have dispatch times of

()1O per job. All the processors execute jobs assigned to them and compute the dispatch

functions in a certain defined order.

5.2.1 Introduction

Real-time systems are characterized by deadlines, dependencies between jobs and parameter

variability; execution time is one such parameter. The execution time of a job can vary due to

input dependent loops, caching and compiler-architecture mapping of the machine as

explained in [Sub02]. Another factor varying the execution time is the alteration of the clock

frequency by power aware processors. Transmeta's LongRun, AMD's PowerNow, or Intel's

SpeedStep technologies vary the processor voltage or clock frequency to decrease the power

consumed by the processors according to the system load. [AM+01] proposes to decrease

energy consumption for real-time systems by adjusting processor speed and reusing the

unused processor cycles.

47

Distributed computing is quite popular in various consumer and safety-critical applications

today. The huge applications that exist today have multiple levels of processing spread-out in

various domains. In such applications, local control is preferred with little data moving

between the levels. These applications have intelligent online algorithms that are invoked in

response to the fl uctuations within the environments. Consider a few examples of distributed

systems that need to respond in small durations when presented with unpredictable

circumstances:

- Clusters of independent robots are being developed to achieve missions in hostile

environments like surveying landscape and searching for survivors [RG+02]. The robots

control their own motion, communicate with each other, and complete jobs distributed

among them to complete the mission. The motion of a robot requires complex modeling

and has to consider various kinematics equations, which require different computing times

[YYM01, HCF03]. This motivates the requirement of online controllers, which would

control the actions of the robot and maintain the deadlines across them. Since the

environment is dynamic, we cannot use any online strategy for controlling the system.

[RS+00] presents the hardware and software components of a robotic team that survey a

landscape communicating with the central robot.

- An automobile cruise control maintains the speed of the car by coordinating and

monitoring the actions of different components of the engine such as fuel injection,

braking, transmission, etc.,. New cars have adaptive shifting algorithms, modifying shift

points based on road conditions, weather, and the driver's individual habits. The cruise

control system can vary the car acceleration according to the exact speed of the car

provided by the Anti-lock Braking System. These systems require variable times to

compute the required torque to drive the car at the speed safely. A 7-series BMW has 63

microprocessors while a Mercedes S-class has 65 microprocessors.

For job-sets of size n, [GPS95] and [Cho00] propose ()nΩ dispatching algorithms for

Partially Clairvoyant schedules. These dispatch algorithms may result in the phenomenon

called “Loss of Dispatchability” due to the linear dispatch time. [TL99] proposes linear time,

online algorithms that schedule firm aperiodic, hard sporadic and periodic jobs in priority

based real-time systems with a complexity of ()nq . [Sub00] proposes a parallel algorithm with

48

()1O dispatch time per job to eliminate Loss of Dispatchability. This algorithm requires n

processors, uses ()O n space on each processor, and provides a tradeoff between the

computing time and resources required, i.e., the constraints are met by increasing the resources

to compute the interval during which the job can be dispatched. Hard real-time systems

require reliability of the system at any cost [SP92, SS+98].

In this section, we use the number of the processors as an input parameter much less than the

number of jobs and propose an algorithm with a ()1O dispatch time. We explore the

dispatchability of schedules for different job-sets with different timing constraints and show

that scaling up the number of processors would successfully dispatch some non-dispatchable

schedules. This work marks the distribution of the jobs of a Partially Clairvoyant schedule

across processors using a simple heuristic and demonstrates communication between the

processors and synchronization of job execution across the processors. We present results

observed on dispatching schedules of different sizes with varying number of processors.

5.2.2 Problem Statement

5.2.2.1 Job model

Let { }1 2, , , nJ J J J= … be a set of non-preemptive, ordered hard real-time jobs. We assume

that job execution starts at time 0t = .

5.2.2.2 Constraint model

The constraints on the jobs are described by the following equation:

.[] , TA s e b e E≤ ∈rr r r (5.7)

where,

- A is an 2m n× rational matrix; unless explicitly stated otherwise, we assume that the

constraint set comprises of standard constra ints between two jobs. Constraints express the

relationships between the start times or finish times of jobs.

49

- E is an axis-parallel rectangle aph represented by:

[] [] []1 1 2 2, , ,n nE l u l u l u= × ×… (5.8)

The aph E models the fact that the execution time of job iJ can assume any value in the

range [],i il u , i.e., it is not constant.

- []1 2, , , ns s s s=r … is the start time vector of the jobs, and

- []1 2, , , ne e e e E= ∈r … is the execution time vector of the jobs.

5.2.2.3 Query model

Suppose that job ,1aJ a n≤ ≤ has to be dispatched. We assume that the dispatcher has

access to the start times { }1 2 1, , as s s −… and the execution times { }1 2 1, , ae e e −… of the jobs

{ }1 2 1, , aJ J J −… .

Definition 5-1

A Partially Clairvoyant Schedule of an ordered set of jobs, in a scheduling window, is a vector

[]1 2, , , ns s s s=r … , where each ,1is i n≤ ≤ , is a function of the start time and execution time

variables of jobs sequenced prior to job iJ .

Definition 5-2

A Partially Clairvoyant Schedule of sr for the constraint system 1 is said to be feasible, if for all

sequences 1 1 2 2, , , , , ,seq n nb s e s e s e′ ′ ′ ′ ′ ′= … , where is ′ is chosen as per sr and [],i i ie l u′ ∈ , we have

.[] ,TA s e b′ ′ ≤
ur ur r

 where is ′ and ie′ are numeric vectors, corresponding to the sequence seqb .

The discussion above directs us to the following formulation of the schedulability query:

[] [] []1 1 1 1 2 2 2 2, , , .[] ?T
n n n ns e l u s e l u s e l u A s e b′ ′∃ ∀ ∈ ∃ ∀ ∈ ∃ ∀ ∈ ≤

ur ur r…

The combination of the Job model, Constraint model and the Query model constitutes a

scheduling problem specification within the E -T-C scheduling framework [Sub02].

50

Definition 5-3

A feasible Partially Clairvoyant schedule is said to be dispatchable on a machine M, if for every

job iJ , M can start executing iJ such that none of the constraints are violated.

Definition 5-4

A safety interval for a job is the time interval during which the job can be started without

violating any of the constraints imposed on it.

In this research, we are concerned with the dispatching problem, i.e., how to compute the

safety intervals of the jobs, such that the jobs can be dispatched safely within the proper time

intervals, assuming that a Partially Clairvoyant schedule was obtained from the above query.

5.2.3 Motivation and Related Work

[Sub02] proposes the E-T-C framework to formalize problems in real-time systems, which

takes into account the variability of execution time, complex relationships between jobs and

clairvoyance of the system. [Sak94] introduced Partially Clairvoyant scheduling to reduce the

inflexibility of static scheduling in hard real-time systems. Partially Clairvoyant scheduling is

explained in detail in [GPS95, Sub03] and [Sub00]. [GPS95] proposes a sequential online

dispatching algorithm for the schedule generated using the algorithm in [Sak94]. The algorithm

stores lists of dispatch functions and has dispatch time proportional to the number of jobs.

The computing overhead of the online dispatcher may cause constraint violation, i.e., the time

after computing the safety interval (),b bl r exceeds br . The phenomenon by which a job cannot

be dispatched is called Loss of Dispatchability. [Sub00] proposes a parallel online algorithm for

eliminating Loss of Dispatchability for Partially Clairvoyant schedules.

The original single controller algorithm proposed in [Sub00] assumes that there are as many

processors as the number of jobs n . The jobs are executed on a central processor, which then

broadcasts the start and execution time of the completed job to the other processors. The n

supporting processors receive the start and execution times of a job kJ and update the safety

intervals, by relaxing the 4 constraints between the job completed and the job assigned to it.

The satellite processor k sends the safety interval of job 1kJ + . This algorithm has

()1O dispatch time per job and uses ()O n space per processor.

51

5.2.4 Computer Resources

Experiments were conducted on Lemieux system at the National Science Foundation (NSF)

Terascale computing system at the Pittsburgh Supercomputing Center (PSC). Lemieux

comprises 750 Compaq Alphaserver ES-45 nodes and two separate front end nodes. Each

computational node contains four 1GHz processors SMP with 4 Gbytes of memory and runs

the Tru64 Unix operating system. Nodes are connected using a quadrics interconnection

network.

The quadrics network has two building blocks, a programmable network interface called Elan

and a low-latency high bandwidth communication switch called Elite. The Elan network

interface links the high-performance, multi-stage Quadrics network to the nodes. The Elan

also provides substantial local processing power to implement high-level message-passing

protocols, such as MPI, in addition to generating and accepting packets to and from the

network. The Elite switch provides 8 bidirectional links supporting two virtual channels in

each direction, an internal 16 8× full crossbar switch and a bandwidth of 400 MB/s with a

latency of 35ns . We used MPI libraries in C to implement the dispatcher.

5.2.5 Experiment Design

The parameters used to generate the test cases are:

- Number of jobs n : The number of jobs in the schedule

- Execution time (),l u : The lower and upper limit of the execution time of the jobs.

- Spacing time (),p q : The time interval [],p q in which the next job would begin.

- Number of constraints E : The number of standard constraints between jobs.

5.2.5.1 Generation of Partially Clairvoyant schedules

We specify the number of jobs n , the number of constraints E , the execution time [],l u and

the spacing time [],p q . We also specify a random seed for generating the constraints. The

generating algorithm GA does as follows:

52

- For each job, GA generates two numbers between l and ()u u l> , which are bounds

for the execution time of the job.

- Between every job iJ and ()1 1iJ i n+ ≤ ≤ , GA generates standard constraints of the

form 1i i is e s ++ ≤ and 1i i is s e c+ ≤ + + where c is a random number between the

p andq . The generator generates at least 2n constraints.

- If the number of constraints 2E n> , then constraints are generated between the two

jobs at random such that a Partially Clairvoyant schedule exists.

5.2.5.2 Schedule execution

The dispatcher takes as input the number of jobs, execution time periods, a random seed, and

the dispatch functions. The dispatch functions are stored in a two-dimensional triangular array.

Arrays are maintained to store the start time, execution time, and execution time periods of the

jobs.

During execution, the control passes from one processor to the other with every job. In order

to avoid clock synchronization and drift problems of the processors in our implementation, we

also send the current time from one processor to the other with the start and execution times.

The communication time is measured by dividing the sum of time required to send and receive

a message to the next processor by 2. This approximately simulates the time that would be

required by the next processor to receive a message. In case the receiving processor is still

updating constraints, then the waiting time is automatically added to the communication time,

which agrees with the other case that relies on the processors' clock.

The pipeline approach alternates between different stages of updating and execution. At first, a

processor executes a job and sends the start and execution times to the next processor. After

sending the current time, the processors update the safety intervals of the remaining jobs

assigned to them. The other processors relay the start and executing times before updating the

safety intervals of the jobs assigned to them. Figure 5.12 illustrates the expected outcome

compared to the serial implementation.

53

Update

Jobs

Maximum
Jobs

Conversion
Point

Single
Processor

Multiple
Processors

Non
Dispatchable

Communication
+ Update

Figure 5.12: Single and Parallel implementation performance with respect to the number

of jobs

5.2.6 Empirical Analysis

For our hardware architecture, we noticed that we have two stages of communication; intra -

node communication and inter-node communication. Intra-node communication is

communication between processors of the same node through the ELAN interface, while

inter-node communication is communication between processors on different nodes through

the Quadrics interconnect network. Thus, we performed two sets of experiments for each

implementation of the dispatchers. In the first set of experiments, all processors are chosen

from the least number of nodes containing them while the second set of experiments chooses

one processor per node resulting in inter-node communication only.

During our tests, we observed serious overshoots with the communication time that includes

waiting time for the updates. These overshoots are probably due to uncontrolled traffic over

the network or other operating system jobs, where the response time depends on the network

load between the nodes. We performed many experiments and observed the communication

time between the different nodes. We noticed that the normal communication time is limited

to an interval of time and the overshoots occur further than ten times the length of this

interval as seen in figure 5.13.

54

0

500

1000

1500

2000

2500

3000

3500

0.0
00

00
5

0.0
00

00
8

0.0
00

01
1

0.0
00

01
4

0.0
00

01
7

0.0
00

02

0.0
00

02
3

0.0
00

02
6

0.0
00

02
9

0.0
00

03
2

Communication time

F
re

q
u

en
cy

Figure 5.13: Histogram of the communication time observed in our experiments

Accordingly, we neglected theses overshoots by checking if the observed communication time

is greater than 10 times the previous communication time. These overshoots can be safely

neglected, as real-time systems require dedicated machines with predictable performance.

5.2.6.1 Using all processors on a node (packed node)

We conducted experiments to investigate the dispatchability of the job sets with different

number of processors. In these experiments, nodes are allocated such that all the processors of

the same node are used where applicable. For example, to conduct an experiment with 9

processors, 3 nodes are allocated; all 8 processors of the 2 nodes and 1 processor of the third

node are used.

55

4

8

12

16

20

24

28

32

36

40

0 2000 4000 6000 8000 10000

Jobs

P
ro

ce
ss

o
rs

Figure 5.14: Undispatchable jobs for packed nodes

As illustrated in figure 5.14, each processor set dispatches different job sets. There is no

observable relation between the number of processors and job sets other than that all the

processors failed to dispatch job sets larger than 8000 compared to 5000 for the serial

implementation. In addition, we observe that increasing the number of computing nodes does

not increase the dispatchability sets. We conclude that, multiple processors can dispatch more

job sets than the serial implementation and each processor set dispatches different job sets.

5.2.6.2 Using one processor per node

In these experiments, we eliminate the effect of intra-node communication by allocating one

processor per node. For example, to conduct an experiment with nine processors, we allocate

nine processors on nine nodes. Figure 5.15 illustrates the job sets that are not dispatchable by

the processor sets.

56

3

4

5

6

7

8

9

10

11

12

0 2000 4000 6000 8000 10000

Jobs

P
ro

ce
ss

or
s

Figure 5.15: Undispatchable jobs while using one processor per node

It is clear that this implementation of the dispatcher is superior to the previous implementation

as all of the job sets are dispatched except for a few cases. We conclude that by eliminating the

intra-node communication, the processor sets are able to dispatch more job sets. We account

this observation to the increased network congestion caused at the ELAN interface by

communication requests produced by processors of the same node.

5.2.7 Conclusion

We implemented a distributed dispatcher using pipelined approach. Our results show the

superiority of distributed dispatching over the uniprocessor dispatching. We showed that for

every schedule, there would be a processor set which dispatches the schedule successfully.

Our tests show that choosing a processor per node is better than multiple processors per node.

This increases the length of the connection paths between processors through switches but the

load on the ELAN switches decreases. The ELAN switch that uses a shared memory to

communicate data between processors in a node becomes a bottleneck when all the processors

send data to each other. Thus, it is important to know the characteristics of the underlying

hardware before attempting to write a parallel program.

57

Chapter 6

HNOW MODELLING

In order to design load-balancing algorithms for a heterogeneous network of workstations

(HNOW), a number of parameters need to be well defined. These parameters should cover

the heterogeneity of the network of workstations, the applications considered and the

characteristics of the required load-balancing algorithm. In this chapter, we will discuss these

different parameters, and then we will discuss the different approaches to model the HNOW

specifically theoretical and simulation modeling. Finally, we will present our HNOW model.

6.1 HNOW Measurable Parameters

HNOW measurable parameters are divided into cluster heterogeneity parameters and HNOW

performance parameters. Cluster heterogeneity parameters are used to describe the structure of

the HNOW while the performance parameters are used to measure the performance of the

HNOW for a certain application.

6.1.1 Cluster Heterogeneity Parameters

The sources of heterogeneity in a network of workstations can be divided into three main

categories: processor, memory, and network parameters.

6.1.1.1 Processor Parameters

In a fully detailed processor model, we would need to consider the speed of a processor in

terms of the number of floating-point operations per second, and the number of integer

operations per second. Multiple instructions and instruction pipelining would further

complicate the model. Thus, a number of more simplified parameters that have shown their

effectiveness may be considered as follows:

- Processor speed: some researches [LL96] just considered the processor speed only and

used benchmarks to obtain the speed index.

58

- Relative processor speed: most researches use the “relative processor speed” defined as

the ratio of the time taken to execute a sample of the application on the processor in

consideration, with respect to the time taken on a base processor. This measurement

incorporates most of the workstation elements from processor speed to cache and

memory. It should be noted that the relative processor speed is application dependent.

- Processor load: some other researches use the workload observed at time of load

balancing on the processors as an indication of the workstation computational power

[DCG93]. There are two main alternatives for estimating this value: by means of external

functions (active methods) or by using the application itself (passive methods). This latter is an

ideal solution that aims at avoiding extra overheads caused by the active methods.

Although active methods are more time wasteful, they guarantee transparency to the

programmer and a more accurate estimate to the actual workload.

6.1.1.2 Memory Parameters

The required memory required by the application and the actual available memory should be

considered in scheduling the computations and data. Usually the total amount of memory in

the cluster limits the data size considered by numerical scientific applications like weather

modeling and computational dynamics. In HNOW, the amount of physical memory for each

machine may be different which requires special consideration when scheduling workloads.

A closer inspection to the memory, we find that the total memory is divided into physical

“RAM” memory and “swap” memory. RAM is high-speed random access memory, while the

swap memory uses the slower hard disk drive as an extension to the RAM. Most of the

researches use the term total memory and free memory without specifying which type is

included in their experiments. Obviously, the performance degrades as more swap memory is

used.

It should be noted that the access time of the RAM ranges from (5–50 ns) from the SRAM to

(60–100 ns) of the DRAM while the swap memory ranges from (10-20 ms) for seek time

besides data transfer time (5-40 MB/sec).

Many researches as in [OP97], [CCN97], [LL96], [B99], and [HLA95] assume infinite memory

in their models, which is an invalid assumption for our HNOW model.

59

6.1.1.3 Network Parameters

For a heterogeneous network of workstations, we have to consider the cost of communication

between linked (logically linked by the application) machines. We must consider both the

network latency and bandwidth.

- Network latency: This is one of the primary concerns for heterogeneous systems. High

latency can make communication extremely expensive, and restrict the scalability of the

system.

- Network bandwidth: With different interconnection networks, the network

heterogeneity can become a significant factor in the parallel performance of applications.

Bandwidth can even be a bottleneck, especially for Ethernet LAN.

Accordingly, the network parameters may be summarized into two parameters: the startup

time (independent of message size) and the actual time spent for sending the message

(proportional to the size of the message).

6.1.2 HNOW Performance Parameters

Performance parameters are important in order to evaluate parallel programs. The most

common performance parameters are the speedup and efficiency. We define the speedup,

efficiency, and related variables as follows.

- Number of processors P

P is the number of processors involved in the HNOW. The performance measured needs to

be referred to the number of processors used. Good algorithms should be able to scale with

the number of processors.

- Sequential execution time sT

sT is the time taken by a by a single workstation to execute the application. In a heterogeneous

network, we will consider the minimum execution time (spT) achieved by a single workstation

P of the HNOW for the calculation of the speedup.

 i.e. ()s spT Min T=

60

- Parallel execution time pT

pT is the time taken by the HNOW to execute the parallel version of the application.

- Speedup ()S p

The speedup is the ratio between the serial execution time and the parallel execution time. It

indicates the degree of speed gain in a parallel computation. Most researches use this

parameter only as an acceptable measure for performance.

i.e., () s

p

T
S p

T
=

- Efficiency ()E p

The efficiency is the ratio between the speedup and the number of workstations. It measures

the useful portion of the total work performed by the processors. Efficiency drops as overhead

of parallel processing grows. The lowest efficiency corresponds to the entire program being

executed sequentially on a single processor.

()
()

S p
E p

p
=

6.2 Theoretical Model of Parallel Computers

Several theoretical models were introduced to facilitate the study of the behavior of algorithms

applicable to parallel computers. We will summarize these different models in the following

and discuss if its suitability in modeling a heterogeneous network of workstations.

6.2.1 PRAM Model

Figure 6.1 illustrates the parallel random access machine (PRAM) model, which is a

multiprocessor system with shared memory and zero synchronization and no memory access

overhead.

61

Shared Memory

Processors
Tightly coupled

Figure 6.1: PRAM model

There are four variants of the PRAM depending on how the memory reads/writes are

handled.

- EREW-PRAM (Exclusive Read Exclusive Write): This model forbids more than one

processor to read or write the same memory cell simultaneously.

- CREW-PRAM (Concurrent Read Exclusive Write): This model forbids more than one

processor to write the same memory cell simultaneously, but concurrent reads to the same

memory cell is allowed.

- ERCW-PRAM (Exclusive Read Concurrent Write): This allows exclusive read or

concurrent writes to the same memory cell.

- CRCW-PRAM (Concurrent Read Concurrent Write): Concurrent read or write to the

same memory cell.

The conflicting writes are resolved by one of the following:

- Arbitrary: Any one of the values written may remain and all the other are ignored

- Minimum: The value written by the processor with the minimum index will remain

- Priority: The values written are combined using some function as summation or

maximum.

Certainly, this model is suitable for shared memory parallel computers only.

62

6.2.2 BSP Model

P/M

System Interconnect

Processor/Memory
Loosely coupledP/M P/M P/M

Figure 6.2: BSP model

The bulk synchronous parallel (BSP) [LV90] was introduced to overcome the shortcomings of

the PRAM model, while keeping its simplicity. It consists of a set of n processor/memory

pairs that are interconnected by a communication network as shown in Figure 6.2. Also, it has

a synchronizer, which performs barrier synchronization.

Figure 6.3: BSP execution

The essence of the BSP approach to parallel programming is the notion of the superstep, in

which communication and synchronization are completely decoupled. A BSP program is

simply one, which proceeds in phases, with the necessary global communications taking place

between the phases as shown in Figure 6.3.

A BSP computation consists of a sequence of parallel supersteps, where each superstep is a

sequence of steps carried out on local data, followed by a barrier synchronization at which

63

point any non-local data accesses take effect. Requests for non-local data, or to update non-

local data locations, can be made during a superstep but are not guaranteed to have completed

until the synchronization at superstep end. Such requests are non-blocking; they do not hold

up computation.

The BSP model is more realistic than the PRAM model as it accounts for different overheads

listed as follows:

- Load imbalance, with w as the maximum computational time taken by a processor.

- Synchronization overhead, which has a lower bound of the communication network

latency l .

- Communication overhead gh , where h represents the maximum number of messages

that can be sent and received by each processor in each superstep, and g is a constant

decided by the machine platform.

- The time for the superstep is estimated by the sum w gh l+ + .

The BSP model is a realistic model that facilitates the time-complexity analysis of parallel

algorithms. However, it’s mainly used for homogeneous cluster calculations. Also, the BSP

assumes a special hardware support to synchronize all processors at the end of the superstep.

The synchronization hardware may not be available on many parallel machines. Most existing

parallel machines use messages for synchronization, which has a different model than the one

used by BSP. Furthermore, BSP model does not support overlapping computations with

communications.

64

6.2.3 LogP Model

Message Passing
Interconnection

Network

M M

MM

M

Processors

Figure 6.4:LogP model

The LogP model [CKS93] reflects the convergence of parallel machines towards systems

formed by a collection of complete computers, each consisting of a microprocessor, cache,

and large DRAM memory, connected by a communication network as shown in Figure 6.4.

The LogP model for parallel computation models communication performance through the

use of four parameters: the communication latency L , overhead o , bandwidth g and the

number of processors P . Communication is modeled by point-to-point messages of some

fixed short size.

LogP model represents a more realistic model for network of workstations than the other

models. However, it uses only fixed message size and a large memory. Also, it does not

incorporate most of the parameters needed for the heterogeneous workstations.

A number of other models like {[GMR94], [ACS89], [MMT95], [MNV94]} derived from the

discussed models were suggested, but none of them captures the heterogeneity parameters.

It should be noted that theoretical models and the choice of their parameters is a compromise

between faithfully capturing the execution characteristics of real machines and providing a

reasonable framework for algorithm analysis and design. No small set of parameters can

describe all machines completely. On the other hand, analysis of interesting algorithms is

65

difficult with a large set of parameters. Accordingly, most researches (refer to related work)

use simulation or experimental studies.

It should be noted that in our study we are interested in dynamic behavior as well as the static

performance of load balancing algorithms. These theoretical models are used only to provide

static performance of an algorithm on a certain parallel computing system. Consequently, we

choose to simulate the HNOW environment with simulation models as presented in the next

section.

6.3 HNOW Simulation Model

We built a discrete event simulation model of HNOW. We used OMNeT++ [OMNT] that

provides the simulation environment and programmed the model using visual C++. In the

next section, we will list the different features of OMNeT++ and discuss how we used it in

our simulations.

6.3.1 What is OMNeT++?

OMNeT++ is an object-oriented modular discrete event simulator. The name itself stands for

Objective Modular Network Testbed in C++. The simulator can be used for modeling:

- communication protocols,

- computer networks and traffic modeling,

- multi-processor and distributed systems,

- any other system where the discrete event approach is suitable.

6.3.2 Modeling Concepts

An OMNeT++ model consists of hierarchically nested modules, which communicate with

messages. Modules that contain submodules are termed compound modules, as opposed

simple modules, which are at the lowest level of the module hierarchy. Simple modules contain

the algorithms in the model. The user implements the simple modules in C++, using the

OMNeT++ simulation class library.

Modules communicate by exchanging messages. In an actual simulation, messages can

represent frames or packets in a computer network, jobs, or customers in a queuing network

66

or other types of mobile entities. Messages can contain arbitrarily complex data structures.

Simple modules can send messages either directly to their destination or along a predefined

path, through gates and connections. Due to the hierarchical structure of the model, messages

typically travel through a series of connections.

OMNeT++ supports a process-style description method for describing activities. During

simulation execution, simple module functions appear to run in parallel, because they are

implemented as co-routines. Co-routines were chosen because they allow an intuitive

description of the algorithm and they can serve as a good basis for implementing other

description methods like state-transition diagrams or Petri nets.

6.3.3 Building and Running Simulations

An OMNeT++ model consists of the following parts:

- NED language topology description(s), which describe the module structure with

parameters, gates etc.

- Simple modules sources: These are C++ files.

The simulation system provides the following components:

- Simulation kernel: This contains the code that manages the simulation and the simulation

class library.

- User interfaces: OMNeT++ user interfaces are used with simulation execution, to facilitate

debugging, demonstration, or batch execution of simulations.

The simulation executable is a standalone program; thus, it can be run on other machines

without OMNeT++ or the model files being present. When the program is started, it reads in

a configuration file (usually called omnetpp.ini); it contains settings that control how the

simulation is run, values for model parameters, etc. The configuration file can also prescribe

several simulation runs; in the simplest case, they will be executed by the simulation program

one after another.

67

The output of the simulation is written into data files: output vector files, output scalar files,

and possibly the user's own output files. OMNeT++ provides a GUI tool named Plove to

view and plot the contents of output vector files. This process is summarized in figure 6.5

Figure 6.5: Building and running a simulation

6.3.4 Simulation Model

In order to construct a simulation model for the HNOW, we need to identify the following:

- Input variables that define the system,

- Output variables that define the performance measures,

- Mathematical/logical relationship between the inputs and outputs.

In the following sections we will discuss each of these in details.

6.3.4.1 Input variables that define the system

To simplify our model, we define “datapoint” as our main measuring unit. A data point is the

smallest calculation unit of the SPMD. It represents the grid point or an array element,

68

according to the application. Each data point is characterized by requiring the same number

of operations and the same storage space.

Without loss of generality, we may relate the processor speed and memory to the datapoints.

For example, the processor can execute 2000 datapoint operations/sec (DPOPS) or its

memory can hold up to 5000 datapoints (DP). Also, reverting back to the standard units is

easy, just by measuring the data point size and the number of Mflops needed. Therefore, in

our simulations and calculations we will be using this application unit “DP”. We summarize

the notation of all the parameters in the following table:

Terminology Notation Unit Application Unit
Processor speed F MHz Datapoint operations /s
Workload W MB Datapoints (DP)
Free memory Mf MB Datapoints (DP)
Swap memory Ms MB Datapoints (DP)
Memory Access time (swap) Ma Sec Sec
Latency L Sec Sec
Bandwidth BW MB/sec Datapoints /s

Table 6.1: HNOW metrics expressed in datapoints

6.3.4.2 Output variables that define the performance measures

There are two different sets of performance parameters: parameters that measure the HNOW

performance and parameters that measure the performance of the load-balancing algorithms.

- HNOW performance parameters

The most common is the scalability measured by the speedup of an application with the

number of workstations as discussed before.

- Load-balancing algorithms performance parameters

The most common performance parameters are:

Convergence: the number of steps required to reach steady state from an imbalanced state.

Load Exchange: total number of extra data points exchanged to reach steady state.

Balancing Overheads: this includes both extra time required for the computation for the load-

balancing algorithm and the extra messages exchanged for the balancing algorithm

69

6.3.4.3 Relationship between the inputs and outputs

The nature of applications considered in this research assumes the following:

- Computational intensive applications, which involves a large number of iterations (much

larger than the number of processing units),

- Large data domains (more than that one processing unit can handle),

- The main data domain’s shape is regular,

- The main data domain is uniform, which means that each datapoint requires the same

amount of computations.

The parallel programming paradigm implemented is a pipelined SPMD in which:

- Each processing unit has the same executable program,

- Each processing unit is assigned a continuous pa rt of the main data domain,

- Neighboring processing units communicate regularly to exchange boundary variables,

- Pipelined in the sense that each processing unit can’t begin its execution before it receives

the boundary variables from the neighbors,

- There is no synchronization between the different processing units.

The network of workstation used is a non-dedicated heterogeneous cluster of workstations.

70

Chapter 7

DYNAMIC LOAD BALANCING ALGORITHM OUTLINE

7.1 Dynamic Load Balancing Algorithm (DLAH) for HNOW Overview

The DLAH algorithm is based on the diffusion technique in which neighboring (logically

connected by the application) workstations communicate with each other and exchange

workloads to eliminate any load imbalance. Diffusion technique has a number of properties

listed as follows:

- Load balancing algorithm is distributed as there is no central scheduler,

- No synchronization is required as each workstation may be triggered independently

depending on its current state,

- Decision making is mainly based on local information exchange which yields less

communication cost,

- Uniform communication between the neighboring workstations, which supports the

pipelined SPMD applications.

It seems that the diffusion technique may not converge towards a globally balanced system,

but it has been proven mathematically [CLZ99] that the execution of a diffusive load-balancing

policy nullifies any load imbalance in a system. The results were derived on massively parallel

architectures and implemented algorithms demonstrated their scalability and robustness. We

extend the diffusive policy to incorporate the HNOW parameters.

The main features that we consider essential for the DLAH algorithm are summarized in the

following points:

- Dynamic to accommodate for the non-dedicated cluster nature .

- Scalable with the number of workstations in the cluster.

- Preserve the relationship adjacency by shifting workloads between adjacent workstations

only.

71

We use the taxonomy defined in section 2.5 to classify the DLAH algorithm:

- Initiation: Sender initiated by the overloaded workstation

- Load balancer Location: Distributed, Asynchronous

- Decision making: Local

- Communication: Uniform, Local

- Processor/Load matching: The overloaded processor sends load-packets to its neighbors until

its own load drops to a specific threshold or the average load.

The main performance parameters we will focus on are the convergence rate and the extra

load exchanged.

A detailed description and analysis of the algorithm is presented in the following sections.

7.2 Convergence of the Diffusive Policy

The diffusion policy relies on neighboring workstations that communicate with each other and

exchange workloads to eliminate any load imbalance between them. It has been proved

[CLZ99] that this policy drives the whole system to a global balanced state. We will discuss the

proof in details in this section.

For this analysis, the workstation memory is considered infinity and the total workload

assigned for the network of workstations remains constant throughout the whole execution,

i.e. workloads are neither created nor destroyed but rather moved around the system. Also, the

execution time is directly proportional to the workload assigned, thus it is equivalent to analyze

the system with the workload or the execution time.

Let i denote the i-th workstation in the cluster. Let its loop execution time at time t be ()iL t

The average system execution time at time t is:

() ()
1

1 P

i
i

t L t
P

µ
=

= ∑ (7.1)

72

One simple measure of the system imbalance is the variance of the loop execution time of the

workstations given by.

()
() ()()2

2 1

P

i
i

L t t
t

P

µ
σ =

−
=

∑
 (7.2)

We will state the main theorem and discuss the proof in details.

Theorem 7-1

The execution of a diffusive load balancing policy nullifies any load imbalance in the system,

i.e.,

()
() ()()2

2 10, 0 such that

p

i
i

L T T
T T

P

µ
ε σ ε=

−
∀ > ∃ > = <

∑
 (7.3)

To prove theorem 7-1, we need to use theorem 7-2.

Theorem 7-2

Reducing the local variance of loop executions in a domain D of workstations, by exchanging

workload among themselves, reduces the global variance of the system.

73

Proof:

Using equations 6.3 and 6.4, we can express the variance of the loop time execution as follows:

()
() ()()

() () () ()

() () ()

() ()

2

2 1

2 2

1 1

2 2 2

1

2 2

1

2

2

1

P

i
i

P P

i i
i i

P

i
i

P

i
i

L t t
t

P

L t t L t P t

P

L t P t P t

P

L t t
P

µ
σ

µ µ

µ µ

µ

=

= =

=

=

−
=

− +
=

− +
=

= −

∑

∑ ∑

∑

∑

 (7.4)

Assume after time t∆ , the loop execution time variance changes due to the act of the load-

balancing algorithm in domain D only, as shown in the following equation:

()
() ()()

() ()

2

2 1

2 2

1

1

P

i
i

P

i
i

L t t t t
t t

P

L t t t t
P

µ
σ

µ

=

=

+ ∆ − + ∆
+ ∆ =

= + ∆ − + ∆

∑

∑

 (7.5)

Therefore, the change in variance can be expressed as:

() () ()

() () () ()()

2 2 2

2 2 2 2

1 1

,

1 1P P

i i
i i

t t t t t t

L t t L t t t t
P P

σ σ σ

µ µ
= =

+ ∆ = + ∆ −

= + ∆ − − + ∆ −∑ ∑
 (7.6)

As mentioned before, the workload is not created nor destroyed but moved from one

workstation to another, thus the average remains constant, i.e., () ()t t tm m+ ∆ = .

Since the workloads of the workstations outside of the domain did not change, i.e., their loop

execution time did not change. Then we may rewrite the change in the variance as follows:

74

()
() () () ()

() ()

() () () ()

() () ()()

() () ()()

2 2 2 2

2

2 2

2 2 2 2

2 2 2

2 2 2

,

,

,

i i i i
i D i D i D i D

i i
i D i D

D D D D D D D D

D D D D D

D D
D D D

L t t L t t L t L t
t t t

P

L t t L t

P
N t t N t t N t N t

P
N t t t N t t t

P
N N

t t t t t t
P P

σ

σ µ σ µ

σ µ µ

σ µ µ

∈ ∉ ∈ ∉

∈ ∈

 
+ ∆ + + ∆ − + 

 ∆ + ∆ =

+ ∆ −
=

+ ∆ + + ∆ − −
=

∆ + ∆ + + ∆ −
=

= ∆ + ∆ + + ∆ −

∑ ∑ ∑ ∑

∑ ∑

 (7.7)

where DN is the number of workstations in the domain of interest.

Since the workloads are exchanged in domain D only, then the average has not been changed.

Therefore, the above equation is reduced to:

() ()2 2, ,D
D

N
t t t t t t

P
σ σ∆ + ∆ = ∆ + ∆ (7.8)

From the above equation, we can see that the global variance depends directly on the change

of the variance of the domain only. That means if the load-balancing algorithm is able to

decrease the variance of the local domain then that will directly decrease the global variance

and accordingly contribute to the global balance.

The result of this lemma assumes that the load-balancing algorithm acts only in one domain at

a time. This result can be generalized to show that the load-balancing algorithm can act on

several disconnected domains in parallel to achieve a global balance.

In the next section, we will prove theorem 7-1.

75

Proof of theorem 7-1:

Let us assume that the cluster of workstations is divided into domains, each domain overlaps

with the neighboring domains. The load-balancing algorithm can operate on any number of

domains at the same time. The load-balancing algorithm realizes any imbalance and works to

diminish the local variance.

The load-balancing algorithm will only stop at a time T when each domain is balanced. At

time T t− ∆ , the system was imbalanced with a variance of e . The above setup guarantees

that at least one of the domains is imbalanced. Using the result of theorem 7-2, the diffusive

policy reduces the local variance of each domain beyond e . Thus, when the load-balancing

algorithm stops, the global variance will be reduced to a value beyond e .

7.3 DLAH Algorithm

Figure 7.1 presents a flowchart diagram of the DLAH algorithm. Before beginning the

procedure, the execution time of a predefined number of iterations (loops) is measured. This

execution time measured includes all the HNOW factors as it includes the calculation time,

communication time and various overheads such as paging, caching, and operating system

overheads. The load balancer then classifies the workstations into three categories: Overloaded,

Normal and Underloaded workstations.

The load balancer algorithm will only be invoked if the workstation status is overloaded. Then,

it checks its underloaded neighbors to see how much extra data points they can accept before

there status changes to normal. Accordingly, if they can accommodate the extra points, the

load balancer algorithm sends the datapoints that just make it changes its status from

overloaded to normal. Otherwise, the overloaded workstation sends the datapoints, which can

be accepted by the neighbors, and averages its extra load among the underloaded and normal

workstations.

76

Measure Tactual

Calculate Taverage

Status = Overloaded

|Tactual – Taverage|
> Threshold?

Tactual > Taverage ?

Can the
neighbors

accommodate
for the extra

load?

Send datapoints that
can be accepted by

neighbors and
distribute the extra load

Send extra datapoints

Status = Underloaded

Status = Normal

Send Status

Yes

Yes

Yes

No

No

NoCalculate the datapoints that
can be accepted and still be

within the threshold

Figure 7.1: DLAH algorithm

It is worth noting that the most critical part of the algorithm is the calculation of the load to be

exchanged. If the load calculation does not consider HNOW parameters, a bouncing effect may

result. The bouncing effect is characterized by sending data points to a neighboring

workstation. This neighboring workstation would take more execution time than expected

(due to neglecting the HNOW parameters) and in turn will return to the sender some or all the

workload received and this cycle repeats as seen in figure 7.2. Actually, in some cases this

bouncing effect can prevent any convergence to the global balance.

77

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1.8e+08

2e+08

0 100000 200000 300000 400000 500000 600000 700000 800000

W
or

kl
oa

d
(D

P
)

Time (Sec)

WS[0]
WS[1]

Figure 7.2: Workload exchanged between two workstations with a load-balancing

algorithm designed for a homogenous network

The load-balancing algorithm is governed by the following equations:

- Deciding the status:

Overloaded: actual average thresholdT T T− >

Normal: actual average thresholdT T T− <

Underloaded: average actual thresholdT T T− >

Where:

Tactual : is the average time needed to complete an iteration.

Taverage: is the local average execution time for the workstation and its neighbors.

Ttheshold: is user-defined according to the application and execution environment. It determines

the accepted toleration between the execution times of the workstations. This may be an

explicit value or just a percentage from the average time.

78

- Calculating the extra data points that can be accepted by the underloaded and

normal workstations

Extra execution time = extra execution time for added data points + extra time for points

added in swap memory + extra boundary points added.

- (-)new actual f a

DP K DP
T T DP M M

F BW
×

= + × + (7.9)

Where:

DP: is the extra workload added to the workstation,

Tnew-Tactual: is the extra execution time added because of the extra workload,

F: is the workstation processing power,

DP-Mf: is the extra data points added to the swap memory,

aM : is the memory access time for the swap memory,

BW : the network bandwidth,

K : is a constant, which determines the extra boundary data points, resulting from the extra

workload exchange.

Conversely, we can calculate the number of extra data points needed for a workstation to

change its status from underloaded to normal as shown below.

()
1

threshold actual f a

a

T T M M
DP

KMF BW

− + ×
=

+ +
 (7.10)

 The DLAH algorithm calculates the reduction of the execution time gained by each neighbor.

Once it finds that the neighbors can change the workstation status from overloaded to normal,

it issues the corresponding send requests. Otherwise, it will proceed to the averaging phase as

detailed in the next section.

- Averaging the load among underloaded and normal neighbor workstations

In this phase, when the neighbors can’t change the status of the workload from overloaded to

normal, the overloaded workstation will first send the datapoints that the neighbors can

accommodate then it distributes the remaining load among themselves.

79

It should be noted that the algorithm calculation does not depend on the total number of the

workstations in the cluster, but on the number of neighbors. The number of neighbors is

usually a constant for each application depending on the data decomposition; it usually ranges

from two in one dimensional data decomposition to six for three-dimensional data

decomposition. Accordingly, the calculation time for the algorithm is constant with respect to

the total number of workstations, thus it is scalable.

7.4 DLAH Analysis and Bounds

In this section, we will present an analytical bound that will provide an approximation to the

number of steps required to reach the balanced state by using the DLAH algorithm. The

analysis is performed on a homogeneous network of workstations.

To derive an upper bound for the number of steps required to reach balanced state we will use

theorem 14 from [San96].

Theorem 7-3

The worst case balancing time for diffusion for on the linear array with diffusion parameter

12a = is in ()2O P , where P is the number of workstations.

Where a determines the ratio of the extra workload exchanged.

From this theorem, we state our theorem:

Theorem 7-4

The worst case balancing time for diffusion for a one-dimensional pipelined application that

averages its workload with its neighbor is in ()2O Steps .

 Where ()()
2

1 1log 2
m cSteps c

− −≥ , if Steps P<

and Steps P= , if Steps P≥ ,

m is the ratio of the workload of the workstation with the maximum workload to that of the

workstation of minimum workload,

80

[]0,1c ∈ is the threshold ratio which determines the stable region, which is a ratio from the

local average. Thus the stable region is ()1 c Local Average± × . 0c = means that there is

no stable region and strict balance is required while 1c = means that no balance is required.

Proof:

We are going to proof that we do not need all the workstations to participate in the load

imbalance for all the cases and determine the balance time from the number of workstations

required to balance the system.

Let us consider the worst case of a homogeneous cluster of P workstations with a one-

dimensional pipelined application. The first processor has a load of mL , while all the other

processors have a load of L as shown in figure 7.3. DLAH algorithm will operate until the

workload of each workstation is within the threshold range thresholdT .

mLmL

LL LL LL

1 2 3 P

Figure 7.3: DLAH Analysis

The local average is calculated from the neighbors’ workloads only, while the threshold is

calculated as a percentage from the local average as shown in the following equations.

() []1 , 0,1
average i

i N

Threshold average

T L

T c T c
∈

=

= + ∈
∑

 (7.11)

When 0c = , that means that it is required to strictly balance the workstation to the local

average. While 1c = , means that the workstation can tolerate an imbalance equal to twice the

local average.

81

At step 1:

The first workstation is overloaded. It will compare its current workload with the local average

and will invoke the DLAH algorithm if it is more than the threshold, as shown in the

following equation.

()1
Threshold

Average

mL T
mL c T

>
> + (7.12)

Accordingly, the first workstation will send to its neighbor a load to decrease its current

workload below the threshold. If the load sent makes the second workstation’s workload

above the threshold, then the two workstations average their workloads. For simplicity, we will

consider the extra load is large enough and that all the workstation will average its workload

with its underloaded neighbors. Thus, both workstations will have an equal workload after the

load exchange with a value, as shown in the following equation:

()12 2
mL L L m+ = + (7.13)

At step 2:

The first workstation is normal; however, the second workstation is now overloaded. The

second workstation will compare its current workload with the local average and invoke the

DLAH algorithm if it is more than the threshold, as shown in the following equation.

()

() ()
()

12
121 12 2

threshold
L m T

L m LL m c

+ >

+ +
+ > +

 (7.14)

Accordingly, the second workstation will average its load with the third workstation, so each

workstation will now have a load of:

82

()
()

12 32 4

L m L L m
+ +

= + (7.15)

At step 3:

The third workstation is now overloaded. The procedure will be repeated as above.

Accordingly, the third workstation will average its workload with the forth workstation, as

shown in the following equation.

()
()

34 72 8

L m L L m
+ +

= + (7.16)

At step i :

The thi will have a workload of:

()1 22
i

i
L m − + (7.17)

The workload propagation will stop when the value of the workload decreases below the

threshold, as shown in the following equations:

83

()
() ()

() ()
()

()
()()

() ()()

()()

1

1 22
1 2 12

1 221 2 12 2

1 11 1 12 2
1 1 1

2 2.2
2 1 1 12 2

1 12 2

i
Thresholdi

i
Averagei

i
ii

i

i i

i i

i

i

L m T
L m c T

L m LL m c

m mc

m c m c
m c m

c
m c

c

+

− + ≤

− + ≤ +
  − + +   − + ≤ +      

 −   −   + ≤ + +       
− + −− ≤

− − + −≥
− −≥

 (7.18)

Therefore, the number of steps required to propagate the extra workload from the first

workstation to the other workstations is:

()()
2

1 1log 2i
m cSteps c

− −≥ (7.19)

Checking the above equation with the two extremes:

When 0c = , the threshold is equal to the local average time. This means a strict balance is

required in which all the workstations have to have a workload equal to the local average.

Thus, the extra workload of the first workstation has to be distributed equally among all the

workstations in the cluster. In this case, the number of workstations required to propagate the

extra workload of the first workstation indicated by the above equation is infinity. Of course in

our case, the networks of workstations is not infinity but limited by the number of

workstations P .

When 1c = , the threshold is equal to twice the local average time. This means we have a very

relaxed balancing condition. Thus for workstation i , we have the following equation:

84

() ()
()1 221 2 1 12 2

i
ii

i

L m LL m
  − + +   − + ≤ +      

 (7.20)

The equation is true for all i . Therefore, no kind of balanced action needs to be taken.

Checking the number of steps given by the equation, it would give us negative infinity, which

practically means no need to take any balance actions.

So far, we have just traced the number of steps required to propagate the extra workload from

the first workstation to the remainder of the network. However, during this operation the

second workstation will send a part of its workload to its next neighbor. This will probably

cause an imbalance between the first and second workstation and another propagation

sequence will start. The propagation sequences will continue until all the workstations reach a

steady state. However, in the following stages, the algorithm will need much less workstations

to propagate the workload as the workload difference is much less now.

Since the maximum number of workstations required to balance the system is Steps with a

maximum of P , then the worst case balancing time is in the order of ()2O Steps .

Figure 7.4 depicts the relation between the threshold ratio and the upper bound on the

number of steps required to reach balance state. As the threshold ratio increases the number of

steps decreases exponentially, then it remains nearly constant for a while and finally decreases

slowly at the end. It is worth noting that careful consideration should be taken when choosing

the threshold ratio, as we can see that it can considerably increase the number of steps needed

to reach the steady state. We recommend that pilot experiments are to be conducted in which

the execution time variance is measured and thus have a better judgment in choosing the

threshold value.

85

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold Ratio c

S
te

ps
i

Figure 7.4: Relation between the threshold ratio and the upper bound of the number of

steps required to balance

86

Chapter 8

SIMULATIONS

Extensive simulations were conducted to target the following objectives: verify and validate the

simulation model, investigate the performance of the DLAH algorithm and compare the

performance of the DLAH algorithm to other dynamic load balancing algorithms. These

simulations are discussed in details in the following sections.

8.1 Simulation Model Verification and Validation

Verification is concerned with determining if the simulation computer program is working as

intended while validation is concerned with determining how closely the simulation model

represents the actual system; the following were some of the verification and validation

procedures preformed:

- The HNOW simulation model was coded and debugged in steps; in an incremental

fashion.

- An interactive debugger was used to verify that each program path is correct.

- A trace in which all the model parameters and state variables were printed out and

compared to hand calculations to confirm that the simulation program is operating as

intended.

- In several cases, the simulation model was run under simplified assumptions with

deterministic inputs and the outputs were compared to the computed results. The results

were computed from equation 4.1 by calculating the loop time for the slowest workstation

and multiplying it in the number of iterations. Both results matched since there was not

any randomness introduced to the model.

- The simulation environment provided an animation of the HNOW simulation model in

which messages could be easily traced and verified.

87

- The input probability distributions were verified that they were correctly generated. This

was achieved by plotting a histogram of the inputs and comparing it to the probability

distribution.

- The simulation model results were checked for reasonableness. For example, figure 8.1

illustrates how the execution time of the workstation jumps when the RAM becomes full

and becomes proportional to the datapoints in the swap memory.

51.16

51.17

51.18

51.19

51.2

51.21

51.22

51.23

51.24

50000 100000 150000 200000 250000 300000 350000 400000 450000

Lo
op

 T
im

e
(S

ec
)

Memory (DP)
Figure 8.1: Loop time vs. memory available

It is worth noting that it is generally impossible to validate a simulation model completely,

since some part of the actual system may not actually exist. Thus, a simulation model of a

complex system can only be an approximation to the actual system [LK91].

8.2 DLAH Performance

In this section, we will study the performance of the DLAH algorithm. First, we will validate

the DLAH algorithm by conducting simulation on homogeneous network of workstations and

comparing it to the analytical bounds. Then, we will examine the sensitivity of the DLAH

algorithm to each of the HNOW parameters. Finally, we will study the performance for a

complete HNOW and check its scalability. The following table 8.1 describes the parameters

used for the simulations:

88

PP Processing power with a default of 100,000 DP/S. Processing power of each

workstation has a uniform distribution around its mean with a range of
0.1PP PP± × .

Memory Memory (RAM) size available to the application. Default is 10,000,000 DP

_Disk Access Hard disk access (virtual memory) with a default of 2,100,000 DP/S and a
latency of 10ms .

Network The Network bandwidth has a default of 10,000,000 DP/S which corresponds to
10 MB/S and a latency of 1ms .

workload Number of datapoints assigned to a workstation. Default is 9,800,000 DP, which
occupies the default memory size.

Boundary Boundary datapoints required to communicate between calculation phases.
Default is 200,000 DP from both left and right neighbors.

Threshold Threshold level determines the stable region. Workstations with loop time more
than the threshold level are overloaded while those below the threshold level are
underloaded. Default value is 0.3 of the local average loop time.

Table 8.1 Simulation parameters

8.2.1 Homogenous Network of Workstations

The following sections are organized by stating the objective of each set of simulations, the

simulation parameters, expected results and the actual results.

8.2.1.1 Validate the DLAH algorithm to the analytical performance bounds

- Simulation objective

Validate the DLAH algorithm by comparing it to the analytical performance bounds.

- Simulation parameters

Two cases were conducted; the first case a homogeneous network of 100 workstations with

one workstation overloaded with 10 times the workload of the other workstations, the second

case a network of 10 workstations with one workstation 50 times the other workstations.

Simulations were performed with different threshold levels.

- Expected outcome

The graph of the number of steps obtained from the simulations should resemble that of the

analytical performance bounds.

The number of steps is in ()2O Steps

89

Where ()()
2

1 1log 2
m cSteps c

− −≥ , if Steps P<

and Steps P= , if Steps P≥ ,

overloaded

normal

Workloadm Workload= is the is the ratio of the workload of the overloaded workstation to

that of the normal workstation,

[]0,1c ∈ is the threshold ratio which determines the stable region, which is a ratio from the

local average. Thus the stable region is ()1 c Local Average± × . 0c = means that there is

no stable region and strict balance is required while 1c = means that no balance is required.

- Results

Figure 8.2 and figure 8.3 illustrate the relation between decreasing the threshold ratio c and

the number of steps required to reach the balanced state. As the threshold ratio c decreases,

the stable region decreases, thus it will need more steps to reach the balanced state. The

DLAH algorithm performance is similar to the analytical performance bounds.

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Threshold Ratio

S
te

p
s

DLAH

Analytical

Figure 8.2:Number of steps obtained from the simulation vs. analytical performance

bounds with iSteps P<

90

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

Threshold Ratio

S
te

p
s

DLAH

Analytical

Figure 8.3: Number of steps obtained from the simulation vs. analytical performance

bounds with iSteps P> for some cases

8.2.1.2 Validate the DLAH algorithm

- Simulation objective

Validate the DLAH algorithm, since it is easier to track the performance for a homogeneous

network of workstations.

- Simulation parameters

Random workloads are assigned to 5 identical workstations with a uniform distribution

ranging from /10workload to 10workload × .

Processing power of each workstation has a uniform distribution around the mean ranging

from 0.1PP PP± ×

- Expected outcome

All the workstations will eventually have the corresponding workload within the desired

threshold.

91

- Results

Figure 8.4 illustrates how the DLAH reacts to load imbalance in a homogeneous network of

workstation. The loop time, which is the time taken to execute one loop is plotted with respect

to the simulation time. The algorithm was able to reduce the loop time difference between the

workstations. In order to check that the DLAH algorithm reduced the difference to the

desired threshold we use a smoothed version. Figure 8.5 is a smoothed version in which every

200 samples are replaced by its average, this allows us to roughly calculate the loop time

difference and check if it falls below the threshold level.

0

200

400

600

800

1000

1200

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Lo
op

 T
im

e
(S

ec
)

Time (Sec)

WS[0]
WS[1]
WS[2]
WS[3]
WS[4]

Figure 8.4: Loop time of a homogeneous network of 5 workstations

92

100

200

300

400

500

600

700

800

900

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Lo
op

 T
im

e
(S

ec
)

Time (Sec)

WS[0]
WS[1]
WS[2]
WS[3]
WS[4]

Figure 8.5: Smoothed loop time of a homogeneous network of 5 workstations

DLAH’s heuristic is based on the eliminating the slower workstations. Checking the slowest

workstation in this simulation WS[1], it has a loop time of 650 sec while its neighbors WS[0]

and WS[2] are 500 sec and 600 sec respectively. The local average of WS[1] is 550 sec, which

makes it overloaded with respect to its neighbors. The threshold level is 1.3 550 715× = sec.

Thus, WS[1] is operating within its threshold level. The same argument has been repeated to

the other workstations to confirm the validity of the algorithm. In figure 8.6, we plot the

workload of each workstation to the simulation time. The distribution of the workload with

time resembles the loop time, as this is a homogeneous network of workstations.

93

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

1e+08

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

W
or

kl
oa

d
(D

P
)

Time (Sec)

WS[0]
WS[1]
WS[2]
WS[3]
WS[4]

Figure 8.6: Workload assignment for a homogeneous network of 5 workstations.

8.2.1.3 DLAH performance for a homogeneous network of workstations with different workloads

- Simulation objective

Investigate the DLAH performance for a homogeneous network of workstations with

different workloads.

- Simulation parameters

Each simulation, workstation WS[0] was assigned a different workload ranging from

/10workload to 5workload × .

Processing power of each workstation has a uniform distribution around the mean ranging

from 0.1PP PP± ×

- Expected outcome

All the workstations will eventually have the corresponding workload within the desired

threshold hence they will all have loop time within the desired threshold.

94

- Results

Figure 8.8 tracks the performance of the HNOW to a homogeneous network of workstations

with different workloads. The loop time is plotted with respect to the simulation time. The

DLAH algorithm was able to successfully balance WS[0] with its neighbors WS[1] and WS[4].

50

100

150

200

250

300

350

400

450

0 50000 100000 150000 200000

Lo
op

 T
im

e
(S

ec
)

Time (Sec)

WS[0]
WS[1]
WS[2]
WS[3]
WS[4]

Figure 8.7: Loop time of a homogeneous network with workstation where WS[0] has been

assigned a workload 4 times its neighbors.

In order to study the performance of DLAH to different workloads, we changed the workload

for WS[0] only; starting from 0.1 times the normal workload to 5 times the normal workload.

Figure 8.8 and figure 8.9 illustrate the performance of the DLAH algorithm. It is worth noting

that as the workload increases; it takes more time for the workstation to balance itself with its

neighbors, as it has longer calculations (loop time) before it begins its balancing phase.

95

0

100

200

300

400

500

600

0 20000 40000 60000 80000 100000

Lo
op

 ti
m

e
(S

ec
)

Time (Sec)

Workload x 0.1
Workload x 1.0
Workload x 2.0
Workload x 3.0
Workload x 4.0
Workload x 5.0

Figure 8.8: Workstation WS[0] loop time with different workloads.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 20000 40000 60000 80000 100000

W
or

kl
oa

d
(D

P
)

Time (Sec)

Workload x 0.1
Workload x 1.0
Workload x 2.0
Workload x 3.0
Workload x 4.0
Workload x 5.0

Figure 8.9 Workstation WS[0] workload distribution with time

96

The previous simulations have been conducted on a homogeneous network of workstations

to validate the performance of the DLAH algorithm, as it is much easier to predict the flow of

the extra workloads. The next section studies the sensitivity of the algorithm to the different

HNOW parameters and measures its performance in each case.

8.2.2 HNOW with Different Processing Power

- Simulation objective

Investigate the DLAH performance for an HNOW of different processors.

- Simulation parameters

HNOW of 20 workstations with different processing power ranging from 0.1PP to 5PP .

Processing power of each workstation has a uniform distribution around its mean ranging

from 0.1PP PP± ×

- Expected outcome

Each workstation will have a workload corresponding to its processing power within the

threshold limit.

- Results

Figure 8.10 presents how the DLAH redistributes the workload with time while

figure 8.11 shows the corresponding loop time of the workstations. The loop time is smoothed

such that each 20 samples are replaced with their mean so that tracking the loop times would

be easier. the figures show that it takes about one or two steps to reach the balanced state.

97

6e+06

7e+06

8e+06

9e+06

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

0 100000 200000 300000 400000 500000 600000 700000 800000

W
or

kl
oa

d
(D

P
)

Time (Sec)

WS[0]
WS[1]
WS[2]
WS[3]
WS[4]
WS[5]
WS[6]
WS[7]
WS[8]
WS[9]

WS[10]
WS[11]
WS[12]
WS[13]
WS[14]
WS[15]
WS[16]
WS[17]
WS[18]
WS[19]

Figure 8.10: Workload distribution of an HNOW of different processing power.

70

80

90

100

110

120

130

140

150

0 100000 200000 300000 400000 500000 600000 700000 800000

Lo
op

 T
im

e
(S

ec
)

Time (Sec)

WS[0]
WS[1]
WS[2]
WS[3]
WS[4]
WS[5]
WS[6]
WS[7]
WS[8]
WS[9]

WS[10]
WS[11]
WS[12]
WS[13]
WS[14]
WS[15]
WS[16]
WS[17]
WS[18]
WS[19]

Figure 8.11: Smoothed loop time of an HNOW of different processing power.

98

We conducted a series of simulations and calculated the average number of steps required to

reach balance state, as seen in table 8.2. Thus, we can conclude that with 90% confidence that

the average number of steps 0.83 is in the interval [0.78, 0.89]. On the other hand, figure 8.12,

which is a histogram of the number of steps encountered for balance, indicates that about 50%

of the cases did not need any balance actions and that 90% of the cases needed two steps or

less.

Average number
 of steps

Standard
 deviation

95% Confidence
interval

90% Confidence
interval

0.834 0.977 0.058 0.048

Table 8.2: Confidence interval for an HNOW of workstations
of different processing power.

0

100

200

300

400

500

0 1 2 3 4 5 6 7 Steps

F
re

qu
en

cy

.00%
10.00%
20.00%

30.00%
40.00%
50.00%

60.00%
70.00%
80.00%

90.00%
100.00%

C
um

ul
at

iv
e

Figure 8.12: Histogram of the steps required for balance

In order to verify that the results obtained from the simulations are reliable enough, we plotted

the graph of the 95% confidence interval with the number of simulations conducted as shown

in figure 8.13. The confidence interval decreases as we increase the number of simulations, this

observation validates both the HNOW simulation model and the DLAH algorithm. Also,

from the graph we notice that we only need about 400 simulations to get a confidence interval

less than 0.1.

99

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000

No. of Experiments

C
o

n
fi

d
en

ce
 In

te
rv

al

Figure 8.13: 95% confidence interval vs. number of simulations

In order to study the sensitivity of the DLAH algorithm to the processing power difference, a

series of simulations have been conducted on an HNOW in which only workstation WS[0] has

different processing power ranging from 0.2 to 10 times the normal processing power. Figure

8.14 illustrates the performance of the algorithm to different processing power. The DLAH is

able to balance the workstations for the desired threshold setting, but it is not easy to conclude

its relation to the number of steps required to reach the balanced state. Therefore, we

conducted a series of simulations summarized in figure 8.15; we plotted the number of steps

required to reach the balance state versus the processing power, which is a percentage of the

default processing power. We can now conclude that the less the processing power, the more

steps are required to reach the balance state.

100

0

100

200

300

400

500

600

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Lo
op

 T
im

e
(S

ec
)

Time (Sec)

Processor / 0.1
Processor / 1.0
Processor / 2.0
Processor / 3.0
Processor / 4.0
Processor / 5.0

Figure 8.14:Workstation WS[0] with different processing power

0

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Processing Power Ratio

S
te

p
s

Figure 8.15: Number of steps vs. processing power ratio

101

8.2.3 HNOW with Different Memory Capacities

- Simulation objective

Investigate the DLAH performance for an HNOW of different memory capacities.

- Simulation parameters

HNOW of 20 workstations with different memory capacities, such that some workstations will

have to use their swap memory.

To show the effect of the memory capacity on the performance, the total memory access time

has to be comparable to the total loop time. Thus, we have increased the workload to twice its

default value.

- Expected outcome

Each workstation will have a workload such that the total loop time for each workstation will

be within the threshold range with its neighbors.

- Results

Figure 8.16 and figure 8.17 present both the loop time and the workload distribution with the

simulation time. For this configuration, the DLAH was able to achieve balance in just one step

as seen from the workload distribution with time. Table 8.3 shows the average number of

steps required to reach the balance state.

Average number
 of steps

Standard
 deviation

95% Confidence
interval

90% Confidence
interval

0.067 0.251 0.014 0.012
Table 8.3: Average number of steps for an HNOW with

different memory capacities.

102

19

20

21

22

23

24

25

26

27

0 20000 40000 60000 80000 100000 120000

Lo
op

 T
im

e
(S

ec
)

Time (Sec)

WS[0]
WS[1]
WS[2]
WS[3]
WS[4]
WS[5]
WS[6]
WS[7]
WS[8]
WS[9]

WS[10]
WS[11]
WS[12]
WS[13]
WS[14]
WS[15]
WS[16]
WS[17]
WS[18]
WS[19]

Figure 8.16: Loop time of an HNOW of 20 workstations of different memory capacities

1.7e+07

1.75e+07

1.8e+07

1.85e+07

1.9e+07

1.95e+07

2e+07

2.05e+07

2.1e+07

2.15e+07

0 20000 40000 60000 80000 100000 120000 140000

D
at

ap
oi

nt
s

(D
P

)

Time (Sec)

WS[0]
WS[1]
WS[2]
WS[3]
WS[4]
WS[5]
WS[6]
WS[7]
WS[8]
WS[9]

WS[10]
WS[11]
WS[12]
WS[13]
WS[14]
WS[15]
WS[16]
WS[17]
WS[18]
WS[19]

Figure 8.17: Workload distribution of an HNOW with different memory capacities.

103

We studied the sensitivity of the algorithm to the memory capacity by changing the memory

capacity to workstation WS[0] only and plotted the result as shown in figure 8.18. The figure

plots the memory capacity ratio, which is the ratio of the memory capacity of workstation

WS[0] to the memory capacity of the default memory capacity. As the available memory

decreases, the effect of the virtual memory increases. The number of steps increases steadily

with the decrease of the available memory.

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Memory Capacity Ratio

S
te

p
s

Figure 8.18: Number of steps vs. memory capacity ratio

8.2.4 HNOW with Different Network Parameters

- Simulation objective

Investigate the DLAH performance for workstations of different network parameters.

- Simulation parameters

HNOW of 20 workstations with different network parameters.

- Expected outcome

The workstation with slower network connections will send some of its workload to its

neighbors such that the total loop time will be within the threshold limits.

- Results

In figure 8.19 we plotted the loop execution time to the simulation time for one of the

simulations in which each workstation had different network parameters. The slow

104

workstations from the figure; they are characterized by having a loop time peak when they

transfer their extra workloads to its neighbors. In this set of simulations, all of the overloaded

workstations did not take more than one step to get balanced. Table 8.4 reports the average

number of steps it required to reach balanced state.

0

100

200

300

400

500

600

700

800

900

1000

1100

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Lo
op

 T
im

e
(S

ec
)

Time (Sec)
Figure 8.19: Loop time for an HNOW with different network parameters.

Average number
 of steps

Standard
 deviation

95% Confidence
interval

90% Confidence
interval

0.2194444 0.470413 0.028055334 0.023544791
Table 8.4: Average number of steps for an HNOW with

different network parameters.

To study the sensitivity of the algorithm to the network parameters like the previous cases, we

conduct a series of simulations with different network parameters assigned to one workstation

WS[0]. Figure 8.20 and figure 8.21 confirm that the workstations need only one-step to get

balanced irrespective of how slow the network connection is and obviously, the workstation

with slower network connection takes a longer loop time to send its workload.

105

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000 12000 14000

Lo
op

 T
im

e
(S

ec
)

Time (Sec)

Network x 1000
Network x 0.0100
Network x 0.0050
Network x 0.0033
Network x 0.0025
Network x 0.0020

Figure 8.20: Loop time for workstation WS[0] with different network parameters.

0

1

2

0.001 0.01 0.1 1 10 100 1000

Network Ratio

S
te

p
s

Figure 8.21: Number of steps vs. network ratio

106

8.2.5 Complete HNOW

- Simulation objective

In this section, we study the overall DLAH performance for a complete HNOW in which all

the workstations differ in all the parameters.

- Simulation parameters

HNOW of workstations with different parameters.

- Expected outcome

The number of steps should be within the same range, irrespective the random assignment of

the parameters.

- Results

Figure 8.22 displays a histogram of the number of steps used to balance one workstation in the

complete HNOW, while table 8.5 illustrates the average number of steps encountered from

1080 simulations conducted with different random seeds.

0

100

200

300

400

500

0 1 2 3 4 5 6 7 More Steps

F
re

q
u

en
cy

.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

C
um

ul
at

iv
e

Figure 8.22: Histogram of the number of steps required to reach balance state.

107

Average number

 of steps
Standard
 deviation

95% Confidence
interval

90% Confidence
interval

1.723 1.914 0.114 0.095
Table 8.5: Average number of steps for a complete HNOW.

The complete HNOW simulations have been repeated with different number of workstations.

All of the simulations yielded nearly the same results as seen in figure 8.23. Each average

number of steps is plotted with its confidence interval versus the number of workstations.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

10 20 30 40 50 60

Workstations

S
te

ps

Figure 8.23: Average number of steps vs. number of workstations.

8.3 DLAH Influencing Factors

In the previous section, the DLAH performance was studied for different HNOW parameters.

However, there are other parameters that may influence the DLAH performance, which need

further investigation. These factors are the workload difference between neighbors, the

threshold limit, and the scalability of the algorithm. We will investigate each factor in the

following sections.

8.3.1 The Effect of the Workload

Simulations have been conducted to study the effect of the workload difference between

neighbors on the DLAH performance. We used a homogeneous network of workstation with

one workstation being assigned a different workload.

108

In figure 8.24, we plotted the workload ratio, which is the ratio between the workload of

workstation WS[0] to the default workload, and the number of steps required to reach balance

state.. As the workload difference increases, it takes more steps to reach the balance state, this

also agrees with the analytical performance bounds.

0

1

2

3
4

5

6
7

8
9

10

0 1 2 3 4 5 6 7 8 9 10

Workload Ratio

S
te

p
s

DLAH

Analytical

Figure 8.24: The effect of the workload difference between neighbors

8.3.2 The Effect of the Threshold Level

As mentioned previously, the threshold ratio determines the stable region, which is a ratio

from the local average. Thus the stable region is ()1 c Local Average± × . 0c = means that

there is no stable region and strict balance is required while 1c = means that no balance is

required. Figure 8.25 depicts the relationship between the threshold ratio and the number of

steps required for balance. Obviously, the less the threshold the more responsive the algorithm

will be to the changes, but the more overheads it requires keeping it in balance. Furthermore,

when the threshold drops below the loop time variance, the algorithm will keep running until

the end of the simulation.

109

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Threshold Ratio

S
te

p
s

DLAH
Analytical

Figure 8.25: The effect of the threshold level

8.3.3 Scalability of the DLAH Algorithm

One of the main attributes that we set as a goal while designing the DLAH algorithm is to

make sure that the algorithm is scalable with the number of workstations. As discussed

previously, the DLAH algorithm uses the information of its neighbors only to determine its

current status and accordingly exchange different workloads to achieve balance. Therefore, the

DLAH should be scalable with the number of workstations as it only depends on the number

of neighbors and not the total number of workstations in the network. We have conducted

several simulations to confirm that theory. Figure 8.26 confirms that the DLAH algorithm is

scalable; the figure shows the average number of steps required for balancing with its

confidence interval versus the number of workstations in the network. The average number of

steps is nearly constant throughout the whole simulations.

110

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

5 10 15 20 30 40 50 60 80 10
0

20
0

30
0

40
0

50
0

Workstations

S
te

p
s

Figure 8.26: Average number of steps vs. the number of workstations

8.4 DLAH Compared to Other Dynamic Load Balancing Algorithms

In this section, we compared the performance of the DLAH algorithm to other diffusion

algorithms. We compared its performance to a diffusion-oriented algorithm for a

homogeneous network of workstations. In addition, we compared it to another diffusion

algorithm for an HNOW that takes into account the processor heterogeneity only.

We conducted two sets of simulations. In the first set of simulations, random values were

assigned to each workstation and then we measured the average number of steps and load

exchanged it takes to reach a steady state. We conducted the second set of simulations on a

non-dedicated homogeneous network of workstations. The non-dedication is simulated by

reducing the available resources to a random value at a certain time, then releasing back the

resources after some time. Both simulations are discussed in details in the following sections.

8.4.1 DLAH Compared to Other Diffusion Algorithms on an HNOW

In this set of simulations, we assigned random variables to each workstation. We conducted

several simulations with different number of workstations. Figure 8.27 compares the average

number of steps required to balance the HNOW system. DLAH shows slightly better

performance over the other diffusive algorithms and the processor only algorithm shows a.

111

slightly better performance than the homogeneous algorithm. However, figure 8.28 indicates

that the datapoints exchanged to achieve the balance is much less using the DLAH algorithm.

This shows that the DLAH algorithm is able to tune into the HNOW parameters and

exchange just exact the datapoints required to balance the system

0

1

2

3

4

5

6

100 200 300 400 500

No. of workstations

A
ve

ra
ge

 n
o.

 o
f

st
ep

s

Homogeneous Algo.

Processor only

DLAH

Figure 8.27: Comparison between the average numbers of steps required for balance

9500000

10000000

10500000

11000000

11500000

12000000

12500000

13000000

13500000

100 200 300 400 500

No. of workstations

A
ve

ra
ge

 D
P

 e
xc

ha
ng

ed

Homogeneous Algo.

Processor only

DLAH

Figure 8.28: Comparison between the average DP exchanged.

112

8.4.2 DLAH Compared to Other Diffusion Algorithms on a Non-Dedicated

Homogeneous Network of Workstations.

It seems obvious that the DLAH algorithm should perform better than the other algorithms

that do not consider all the HNOW parameters. Consequently, we conducted another set of

simulations on a homogeneous network of workstation to compare the DLAH’s performance.

This set of simulations was conducted on a non-dedicated homogeneous network of

workstations. A step of disturbance was introduced at the first workstation by reducing its

resources to a set value at loop 100, then releasing them back at loop 600. The simulations

were conducted on a network of 10 workstations. Table 8.6 shows that the DLAH has a

slightly better performance regarding the average number of steps required to cope with the

disturbance step. However, table 8.7 shows that the DLAH needs much less datapoints (about

half) to be exchanged to achieve the balance.

Figure 8.29 shows an example of the reaction of each algorithm to the step disturbance. Both

the homogeneous and processor only have the same response, while the DLAH exchanged

less load to reach the steady state.

Algorithm Average number
 of steps

Standard
 deviation

95% Confidence
interval

90% Confidence
interval

Homogeneous Algo. 1.532 2.149 0.133 0.111
Processor only 1.458 2.0170 0.125 0.104

DLAH 1.417 2.416 0.149 0.125

Table 8.6: Average number of steps
Algorithm Average number

DP exchanged
Standard
 deviation

95% Confidence
interval

90% Confidence
interval

Homogeneous Algo. 10194117 20273108 1256516 1054502
Processor only 10179673 20261533 1255799 1053900

DLAH 5730649 13268132 822351 690139

Table 8.7: Average number of datapoints exchanged

113

0

200

400

600

800

1000

1200

1400

0 20000 40000 60000 80000 100000 120000 140000 160000

Lo
op

 T
im

e
(S

ec
)

Time (Sec)

Homogeneous
Processor only

DLAH

Figure 8.29:The Algorithms reactions to a step disturbance

8.5 Summary of Results

In this chapter, we applied the DLAH algorithm to a simulation model we developed for an

HNOW. We conducted several types of simulations to study the DLAH algorithm. These

simulations are divided into four different sections.

In the first section, we conducted a set of simulations to validate the DLAH algorithm. This

set of simulations was conducted on a homogeneous network of workstations, as the

simulations results are predictable in this case, thus, validation can take place. The simulations

included:

- Compare the results of the DLAH with different threshold ratio to the analytical

performance bounds. Results showed that the DLAH follows the analytical bounds.

- Track the execution of the DLAH algorithm on a homogeneous network with random

workloads assigned to the workstations. The results showed that the DLAH is working as

expected; hand calculations were performed on the results to validate the algorithm.

114

- Track the performance of the DLAH on a homogeneous network with one workstation

being assigned different workloads. All the workstations eventually were balanced within

the threshold range.

In the second section, we studied the sensitivity the DLAH algorithm to the HNOW

parameters. The simulations were conducted on an HNOW, which included:

- HNOW with different processing power. The number of steps increased as the processing

power mismatch increased. We also plotted the confidence interval with the number of

simulations conducted. We found that the confidence interval decreases with increasing

number of simulations; that is yet another validation of the simulation model.

- HNOW with different memory capacities. The number of steps increased as the memory

capacity mismatch increases.

- HNOW with different network capacities. In this case, DLAH needed only step to

eliminate any load imbalance due to network connections. It does not make any difference

how much the network mismatch is. The slow network connections are characterized by

having a loop execution time impulse when they send their extra workload to their

neighbors.

- Complete HNOW. A series of simulations were conducted with different number of

workstations being assigned random HNOW parameters. All of these simulations needed

nearly the same number of steps to reach global balance.

In the third section, we studied the performance of the DLAH algorithm to influencing

factors. The simulations included:

- The effect of the workload. We studied the effect of workload mismatch on the DLAH

performance in more details. The number of steps required for balance increases with the

workload mismatch. The number of steps is bound by the analytical performance bound.

- The effect of the threshold ratio. In these simulations, we plotted the result of changing

the threshold ration with the number of steps required to reach balance. The number of

steps increased as the threshold decreases. The results show that they obey the analytical

115

bounds too. It is worth to note that as the threshold ratio decreases the DLAH becomes

more responsive to imbalance, but also takes more steps to reach a balanced state.

- Scalability of the DLAH. One of the important factors that we needed to check is that we

do not want the load-balancing algorithm to inhibit the scalability of the pipelined SPMD

application. Simulations were conducted on networks ranging in size from 5 to 500

workstations. The output results were nearly the same; number of steps needed to reach

global balance was nearly the same. This confirms that our algorithm is scalable with the

number of workstations.

In the last section, we compared the performance of the DLAH algorithm to other related

algorithms. The simulations included:

- Complete HNOW. Although the number of steps required to reach a balanced state was

close to the other algorithms, the DLAH was able to achieve balance with much less load

exchanged. This simulation was repeated for different number of workstations and the

results were almost the same each time.

- Non-dedicated homogeneous network of workstations. We also compared the

performance of the DLAH to the related algorithms on a non-dedicated homogeneous

network simulated by a pulse of disturbance. The number of steps to achieve balance was

practically the same. However, the DLAH was superior in that it was able to achieve

balance with much less load exchanged nearly half the others.

116

Chapter 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions and Contributions

Throughout this work, we designed DLAH, which is a scalable dynamic load-balancing

algorithm for pipelined SPMD applications on HNOW. During this process, we formally

defined the load-balancing problem and proved it to be an NP-Complete problem. We

identified the different HNOW parameters and proposed a general taxonomy for load-

balancing algorithms. Accordingly, we designed DLAH and deduced its analytical bounds.

We used measurements from two case studies to build our simulation model of the HNOW.

We then implemented the DLAH on the simulation model and conducted four different sets

of simulations.

The first set is concerned with validating the DLAH algorithm. These simulations were

conducted on a homogenous network of workstation. They included comparing the results

with the analytical performance bounds and hand calculations.

The second set of simulations studied the sensitivity of the DLAH algorithm to the HNOW

parameters, summarized in the following points.

- As the processing power mismatch increases between the workstations, the number of

steps required to reach the steady state increases.

- As the available memory mismatch increases between the workstations, the number of

steps required to reach the steady state increases.

- As for the network mismatch, the DLAH needed only step to eliminate any load

imbalance due to network connections. It does not make any difference how much the

network mismatch is. The slow network connections are characterized by having a loop

execution time impulse when they send their extra workload to their neighbors.

117

In the third set of simulations, we studied the performance of the DLAH algorithm to

influencing factors, which are the workload mismatch, threshold ratio and the scalability.

- The number of steps required for balance increases with the workload mismatch. The

number of steps conforms to the analytical performance bound.

- The number of steps increases as the threshold ratio decreases. This also agrees with the

analytical bounds. It is worth noting that as the threshold ratio decreases the DLAH

becomes more responsive to the imbalance, but also takes more steps to reach a balanced

state.

- The DLAH algorithm is scalable with the number of workstations, as it only depends on

the neighbors to obtain its status.

In the last set of simulations, we compared the performance of DLAH to other load-balancing

algorithms. Although the simulations showed that the DLAH takes slightly less steps to reach

the balanced state in average, it does however achieve it with much less load exchanged (nearly

half as much). This is because the DLAH is able to tap into the HNOW parameters and

suppress the bouncing effect.

We would like to point out that the process of designing DLAH is as important as the DLAH

algorithm itself. The process is summarized in the following points:

- Comprehend the different HNOW parameters in the intended network.

- Understand the application and determine the best suitable parallel programming

paradigm.

- Determine the essential features for the load-balancing algorithms besides the main

purpose of it, which is balancing itself. These features include scalability, responsiveness,

least overheads, simplest implementation, etc.

- Design the load-balancing algorithm accordingly using the proposed taxonomy (Figure

2.3).

- Derive analytical performance bounds to be able to verify the performance of the new

algorithm.

118

- Conduct pilot simulations and measure the performance using the different performance

parameters.

9.2 Future Work

As old clusters are updated with new workstations, the need for a good load-balancing

algorithm or scheduler increases (in order to take full advantage of the HNOW). As

mentioned before, there is no load-balancing algorithm fit for all types of applications. We

have only tackled one kind of applications, the pipelined SPMD. Other parallel paradigms

need to be investigated like phase parallel, divide and conquer, and work pool.

The analytical performance bounds for diffusive strategies derived in this research are based

on a homogeneous network of workstations. Deriving analytical performance bounds for

HNOW will allow us to validate load-balancing algorithms for HNOW besides the

homogeneous network of workstations.

In this research, we considered the common case in which the workstations communicate only

two of its data domain sides. Actually, depending on the domain decomposition, the

workstation may communicate all its six data domain sides. Although the DLAH algorithm is

scalable with the number of workstations, but the overall performance may be affected when

increasing the communication sides. Further investigation is required to study the

performance.

In our simulations, we made our best effort to capture the parameters of a real network of

workstation. However, there are many other parameters like cache memory, word length,

operating system, etc., that we did not consider in our model. Implementing the DLAH on a

real pipelined SPMD application and comparing its performance to the simulations will give us

an indication of how close the simulation model is to the real HNOW and how well does the

DLAH perform accordingly.

In addition, the load-balancing problem is still an NP-Complete problem; the field is open to

all kind of algorithms and heuristics especially for the HNOW.

119

One of the interesting research topics that we recommend is building a theoretical model that

captures the different HNOW features, which could provide us with quick static performance

measures.

120

REFERENCES

[ACS89] A. Aggarwal, A. K. Chandra, and M. Snir. “On communication latency in
PRAM computations,” In Proceedings of the first ACM Symp. on Parallel
Algorithms and Architectures, pages 11-21, June 1989.

[AM+01] H. Aydin, R. Melhem, D. Mosse, and P. Meja-Alvarez. “Dynamic and
aggressive scheduling techniques for power-aware real- time systems,” In the
22nd IEEE Real-Time Systems Symposium (RTSS'01), pages 95-105,
Washington - Brussels - Tokyo, December 2001.

[B99] C.A. Bohn. “Asymmetric load balancing on a heterogeneous cluster of PCs,”
MSCE Thesis, AFIT/GE/ENG/99M-02, Graduate School of Engineering, Air
Force Institute of Technology (AETC), Wright Patterson AFB OH, March
1999.

[BWF] The Beowulf Project : http://www.beowulf.org, 2000.
[CCN97] M. Colajanni, M. Cermele and G. Necci. “Dynamic Load Balancing of

Distributed SPMD Computations with Explicit Message-Passing,” In
Proceedings of the IEEE Workshop on Heterogeneous Computing, pages 2-16,
1997.

[Cho00] Seonho Choi. “Dynamic time-based scheduling for hard real- time systems,”
Journal of Real-Time Systems, 2000.

[CK98] T. L. Casavant, and J. G. Kuhl. “A Taxonomy of Scheduling in General-
Purpose Distributed Computing Systems,” IEEE Trans. on Soft. Eng. 14, pages
141-154, 1998.

[CKS93] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R.
Subramonian, and T. von Eicken. “LogP: Towards a realistic model of parallel
computation,” In Proceedings 4th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, May 1993.

[CLZ99] A. Corradi, L. Leonardi, and F. Zambonelli. “Diffusive load-balancing policies
for dynamic applications,” IEEE Concurrency Parallel, Distributed and Mobile
Computing, pages 22-31, January-March 1999.

[CZL97] Michal Cierniak, Mohammed Javeed Zaki, and Wei Li. “Compile-time
Scheduling Algorithms for Heterogeneous Network of Workstations,” The
Computer Journal , special issue on Automatic Loop Parallelization, Vol. 40,
No. 6, December 1997.

[DCG93] Dietz, H. G., Cohen, W.E. and Grant, B. K. “Would You Run it Here... or
There?” Automatic Heterogeneous Supercomputing, International Conference
on Parallel Processing, Volume II: Software, pages 217-221, 1993.

[DFM95] Jean-Luc Dekeyser, Cyril Fonlupt, and Philippe Marquet. “Analysis of
synchronous dynamic load balancing algorithms,” Parallel Computing: State-
of-the Art Perspective (ParCo'95), volume 11 of Advances in Parallel
Computing, pages 455-462, Gent, Belgium, September 1995.

121

[DGP84] Dihn, QQ.V., Glowinski, R. and Periaux, J.. “Solving Elliptic Problems by

Domain Decomposition Methods with Applications,” Elliptic Problem Solvers
II, Academic Press, New York, 1984.

[FMD98] C. Fonlupt, P. Marquet, and J. Dekeyser. “Data-parallel load-balancing
strategies,” Parallel Computing 24, pages 1665-1684, 1998.

[GJ79] Michael R. Garey, David S. Johnson. “Computers and intractability: a guide to
the theory of NP-completeness,” New York, W.H. Freeman, 1979.

[GLS94] W. Gropp, E. Lusk, and A. Skjellum. “Using MPI: Portable Parallel
Programming the Message-Passing Interface,” The MIT Press, Cambridge,
MA, first ed., 1994.

[GPS95] R. Gerber, W. Pugh, and M. Saksena. “Parametric Dispatching of Hard Real-
Time Tasks,” IEEE Transactions on Computers, 1995.

[GMR94] P.B. Gibbons, Y. Matias, and V. Ramachandran. “The Queue­Read
Queue­Write PRAM model: Accounting for contention in parallel algorithms,”
SIAM Journal on Computing, 1997.

[HCF03] Karin Hgstedt, Larry Carter, and Jeanne Ferrante. “On the parallel execution
time of tiled loops,” IEEE Trans. on Parallel and Distributed Computing,
March 2003.

[Hil85] W.D. Hillis. “The Connection Machine,” MIT press, 1985.
[Hwg93] Kai Hwang. “Advanced Computer Architecture: Parallelism, Scalability,

Programmability, ” MIT Press, 1993.
[HX98] Kai Hwang, Zhiwei Xu. “Scalable Parallel Computing,” McGraw-Hill, 1998.
[KEB99] G-S Karamanos, C. Evangelinos, R.C. Boes, R.M. Kirby and G.E. Karniadakis.

“Direct Numerical Simulation of Turbulence with a PC_Linux Cluster Fact or
Fiction,” Proceedings of Supercomputing conference SC99, Oregon, Portland,
November 1999.

[LK91] Averill M. Law and W. David Kelton. “Simulation Modeling and Analysis,”
McGraw-Hill, 1991.

[LL96] C. Lu and S. Lau. “An Adaptive Load Balancing Algorithm for Heterogeneous
Distributed Systems with Multiple Task Classes,” In Proceedings of the 16th
International Conference on Distributed Computing Systems, pages 629-636,
1996.

[LST90] J. K. Lenstra and D. B. Shmoys and É. Tardos. “Approximation Algorithms for
Scheduling Unrelated Parallel Machines,” Mathematical Programming: Series
A, Volume 46(3), pages 259-271, 1990.

[LV90] L. G. Valiant. “A bridging model for parallel computation,” Communications
of the ACM, 33(8):103-111, August 1990.

[Mat96] T. G. Mattson. “Scientific computation,” Parallel and Distributed Computing
Handbook (A. Y. Zomaya, editor), Series on Computer Engineering, pages
981-1002, McGraw-Hill, 1996.

122

[MG97] N.A. Moga and M. Gabbouj. “Parallel Image Component Labeling with

Watershed Transformation,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 19 No. 5, pages 441-450, 1997.

[MMT95] B. M. Maggs, L. R. Matheson, and R. E. Tarjan. “Models of parallel
computation: A survey and synthesis,” In Proceedings of the 28th Hawaii
International Conference on System Sciences, pages II: 61--70, January 1995.

[MNV94] Y. Mansour, N. Nisan, and U. Vishkin. “Trade­offs between communication
throughput and parallel time,” In Proceedings of the 26th ACM Symp. on
Theory of Computing, pages 372-381, 1994.

[MPCH] MPICH A Portable Implementation of MPI: http://www-unix.mcs.anl.gov/mpi,
2000.

[OA02] A. Osman , H. Ammar. “Dynamic Load Balancing Strategies for Parallel
Computers,” International Symposium on Parallel and Distributed Computing
(ISPDC), Romania, July 2002.

[OA101] A. Osman , H. Ammar, A. Smirnov, S. Shi, and I. Celik. “Domain
Decomposition Analysis of Large Eddy Simulations of Ship Wakes,” IASTED
International Conference, Modeling and Simulation MS’2001, May 2001.

[OA201] A. Osman , H. Ammar, A. Smirnov, S. Shi, and I. Celik. “Scalability Analysis
and Domain Decomposition of Large Eddy Simulations of Ship Wakes,”
ACS/IEEE International Conference on Computer Systems and Applications
(AICCSA), June 2001.

[OB99] L. Oliker, R. Biswas. “Parallelization of a Dynamic Unstructured Application
using Three Leading Paradigms,” Proceedings of Supercomputing conference
SC99, Oregon, Portland, November 1999.

[OMNT] OMNeT++, discrete event network simulation tool, http://whale.hit.bme.hu/
omnetpp, 2002.

[OP97] S. Orlando and R. Perego. “Scheduling Data-Parallel Computations on
Heterogeneous and Time-Shared Environments,” Technical Report TR-16/97,
Dip. di Mat. Appl. ed Informatica, Universit`a di Venezia, Sept. 1997.

[PFK93] C. Powley, C. Ferguson, and R. E. Korf. “Depth-first heuristic search on a
SIMD machine,” Artificial Intelligence, 60:199-242, 1993.

[PRR03] Plastino, A., Ribeiro, C. C. and Rodriguez, N. R. “Developing SPMD
applications with load balancing,” Parallel Computing 29, pp: 743-766, 2003.

[Qui94] M. J. Quinn. “Parallel Computing - Theory and Practice,” Mc.Graw Hill,
1994.

[RG+02] Paul E. Rybski, Maria Gini, Dean F. Hougen, Sascha A. Stoeter, and Nikolaos
Papanikolopoulos. “A distributed surveillance task using miniature robots,” In
Maria Gini, Toru Ishida, Cristiano Castel- franchi, and W. Lewis Johnson,
editors, Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS'02), pages 1393-1394. ACM Press,
July 2002.

123

[RS+00] Paul E. Rybski, Sascha A. Stoeter, Michael D. Erickson, Maria Gini, Dean F.

Hougen, and Nikolaos P. Papanikolopoulos. “A Team of Robotic Agents for
Surveillance,” In Carles Sierra, Maria Gini, and Jeffrey S. Rosenschein,
editors, Proceedings of the Fourth International Conference on Autonomous
Agents, pages 9-16, Barcelona, Catalonia, Spain, June 2000.

[Sak94] Manas Saksena, “Parametric Scheduling in Hard Real-Time Systems,” PhD
thesis, University of Maryland, College Park, June 1994.

[San96] P. Sanders. “On the efficiency of nearest neighbor load balancing for random
loads,” In Parcella 96, VII. International Workshop on Parallel Processing by
Cellular Automata and Arrays, pages 120-127, Berlin, 1996.

 [SCS99] Shi, S., Celik, I., Smirnov, A. “Comparison of different numerical schemes and
sub-scale models in large-eddy simulation,” Boston, Massachusetts, 1999.

[Smn92] Simon, H.D., “Parallel Computational Fluid Dynamics: Implementations and
Results Using Parallel Computers,” MIT Press, Cambridge, 1992.

[SP92] Michael Schiebe and Saskia Pferrer. “Real-Time Systems Engineering and
Applications,” volume 1. Kluwer Academic Publishers, 1992.

[SN93] X. H. Sun and L. Ni. “Scalability Problems and Memory-Bounded Speedup,”
Journal of Parallel and Distributed Computing, Vol. 19, pages 27-37,
September 1993.

[SS01] Shi, Shaoping. “Large-Eddy Simulation of Ship Wakes,” Dissertation, West
Virginia University, 2001.

[SS94] R. Subramanian and I. Scherson. “An Analysis of Diffusive Load Balancing,”
Proceedings of Sixth Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 220-225, June 1994.

[SS+98] John A. Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio C.
Buttazzo. “Deadline Scheduling for Real-Time Systems,” Kluwer Academic
Publishers, 1998.

 [SSC00] Smirnov, A., Shi, S., Celik, I.. “Large Eddy Simulations of Particle- laden
Turbulent Wakes Using a Random Flow Generation Technique,” In ONR 2000
Free Surface Turbulence and Bubbly Flows Workshop, pages 13.1-13.7,
California Institute of Technology, Pasadena, CA, 2000.

[SSC01] Smirnov, A., Shi, S., Celik, I.. “Random Flow Generation Technique for Large
Eddy Simulations and Particle-Dynamics Modeling,” Trans. ASME, Journal of
Fluids Engineering, Vol. 123, pages 359-371, 2001.

[Sub00] K. Subramani. “Duality in the Parametric Polytope and its Applications to a
Scheduling Problem,” PhD thesis, University of Maryland, College Park,
August 2000.

[Sub02] K. Subramani. “A specification framework for real- time scheduling,” In W.I.
Grosky and F. Plasil, editors, Proceedings of the 29th Annual Conference on
Current Trends in Theory and Practice of Informatics (SOFSEM), volume
2540 of Lecture Notes in Computer Science, pages 195-207. Springer-Verlag,
November 2002.

124

[Sub03] K. Subramani. “An analysis of partially clairvoyant scheduling,” Journal of

Mathematical Modeling and Algorithms, 2003. Conference version available in
Proceedings of the 8th International Conference on High-Performance
Computing (Hi-PC), Lecture Notes in Computer Science, volume 2228, pages
36-46, Springer-Verlag.

[TL99] Michael E. Thomadakis and Jyh-Charn S. Liu. “On the efficient scheduling of
non-periodic tasks in hard real-time systems,” In Proceeding of the 20th IEEE
Real Time Systems Symp., Phoenix, AZ, December 1999.

[VS90] V. A. Saletore. “A distributive and adaptive dynamic load balancing scheme
for parallel processing of medium-grain tasks,” Proceedings of the 5th
Distributed Memory Conference, pages 995-999, April 1990.

[WA99] Barry Wilkinson and Michael Allen. “Parallel Programming,” Prentice Hall,
1999.

[WLR93] M.H. Willebeek-LeMair and A.P. Reeves. “Strategies for dynamic load
balancing on highly parallel computers,” IEEE Trans. on parallel and
distributed systems, vol. 4, No. 9, Sept. 1993.

[YYM01] Yang.S.X, Guangfeng Yuan, and Meng M., “Real-time collision-free path
planning and tracking control of a non-holonomic mobile robot using a
biologically inspired approach,” In Proceedings of Computational Intelligence
in Robotics and Automation, pages 113-118. IEEE Computer Society, 2001.

[ZLP96] M. J. Zaki, W. Li and S. Parthasarathy. “Customized dynamic load balancing
for a network of workstations,” Proceedings of the 5th IEEE Int. Symp., pp.
282-291, HPDC, 1996.

[ZS92] Zang, Y. and Street, R., “Program to solve 3-D Navier-Stokes Equation on a
Composite Grid,” Stanford University, 1992.

 1

Curriculum Vitae

Ashraf M. Osman
Ph.D. Computer Engineering

Lane Department of Computer Science
& Electrical Engineering,
West Virginia University,
Morgantown, WV 26505-6109
Office phone: (304) 293-0405, ext. 2537

Home address: 1200C Van Voorhis Rd.,
Morgantown, WV 26505
Home phone: (304) 599-9062
Email: osman@csee.wvu.edu
http://www.csee.wvu.edu/~osman

Summary of qualifications

- Nine years of experience in academic and industrial environments.
- Ability to communicate and interact with large groups of diverse backgrounds and to work

independently or in teams.
- Oriented towards achieving research goals and experienced with both experimental and

simulation-based research environments.
- Developed and taught classes to undergraduates, graduates and professionals in class sizes

ranging from 2 to 80 persons.
- Developed, deployed and managed several commercial software applications.

Education

Aug. 1999 – Dec. 2003
Ph.D. in Computer Engineering, Lane Department of Computer Science and Electrical
Engineering, West Virginia University, Morgantown, WV.
Thesis subject: Designing a scalable dynamic load-balancing algorithm for pipelined single
program multiple data applications on a non-dedicated heterogeneous network of workstations.
GPA: 4.0/4.0

Sept. 1994 – May 1999
M. Sc. Computer Engineering, Cairo University, Cairo, Egypt.
Thesis: Adaptive synchronization for real-time multimedia applications.
GPA: 3.8/4.0

Sept. 1989 – June 1994
B. Sc. Electrical Engineering, Cairo University, Cairo, Egypt.
Graduation project: Multimedia-based archiving system documenting tourist sites in Cairo.
GPA: 3.9/4.0

 2

Publications

1. A. Osman, H. Ammar. “DLAH: a scalable dynamic load-balancing algorithm for pipelined

single program multiple data applications,” journal paper to be submitted.
2. A. Osman. “Designing a scalable dynamic load-balancing algorithm for pipelined single

program multiple data applications on a non-dedicated heterogeneous network of workstations,”
PhD Dissertation, West Virginia University, December 2003.

3. A. Osman, H. Ammar. “Dynamic Load Balancing Strategies,” International Symposium on
Parallel and Distributed Computing (ISPDC), Iasi, Romania, July 2002.

4. A. Osman, H. Ammar, A. Smirnov, S. Shi, and I. Celik. “Scalability Analysis and Domain
Decomposition of Large Eddy Simulations of Ship Wakes,” ACS/IEEE International
Conference on Computer Systems and Applications (AICCSA), June 2001.

5. A. Osman, H. Ammar, A. Smirnov, S. Shi, and I. Celik. “Domain Decomposition Analysis of
Large Eddy Simulations of Ship Wakes,” IASTED International Conference, Modeling and
Simulation MS’2001, pp 327:112, May 2001.

6. H. Arafa and H. Ammar, and A. Osman, “An Adaptive Dynamic Scheduling Technique for
Parallel Loops on Shared Memory Multiprocessor Systems,” in Proceedings of the 13th
International Conference on Parallel and Distributed Computing Systems (PDCS-2000), Las
Vegas, Nevada, August 2000.

7. A. Osman, A. Darwish and S. Shaheen, “Adaptive synchronization for real-time multimedia
applications,” SPIE Proceedings, Multimedia Systems and Applications, Vol. 3528, p. 202-213,
Boston, MA, USA, 1999.

Academic Experience

Aug. 2001 – present
Graduate Teaching Assistant,
West Virginia University, Morgantown, WV.
Developed, taught, and graded assignments and exams for graduate and undergraduate courses
(Object oriented programming in C++, Introduction to data structures using C++ and standard
template library). Developed course web sites at http://www.csee.wvu.edu/~osman/.

Jun 2000 – July 2000
Instructed a course in Embedded Real-time Systems,
The National Energy Technology Laboratory (NETL), Morgantown, WV.
Participated in developing and teaching a course in “Embedded Real-time Systems,” including a final
interfacing project on an SBC (Single Board Computer). The course was offered to NETL staff.

Aug. 1999 – Aug. 2001
Graduate Research Assistant,
West Virginia University, Morgantown, WV.
Participated in a multi-disciplinary research project focused on: Parallelizing a Computational Fluid
Dynamics problem of “Large Eddy Simulations of Ship Wakes” onto a cluster of workstations using
C and Fortran. Research was funded by the DoD and monitored by the Office of Naval Research to
WVU.

Jan. 1995 – Aug. 1999
Teaching Assistant,
Cairo University – Fayoum Campus, Egypt.

 3

Prepared lectures for discussion sections, graded assignments and administered laboratory sessions
for undergraduate courses.
Courses developed and taught:
- Visual Basic programming language: developed course, lab assignments and final exams and

project. Taught this course for 80 undergraduate students including labs.
- Fortran Programming language: developed course, assignments and taught lab sessions.
Courses taught:
Logic design, Microprocessors, Matlab, Electrical engineering labs.

Industrial Experience

March 1999 – Aug. 1999
Information Technology Officer
United Nations Education, Science and Culture Organization (UNESCO),
Cairo Office, Egypt.
- Provided technical support in the implementation of the UNESCO programme for Upgrading

Science and Engineering Education (USEE).
- Maintained the main web-site for the office, including designing the required databases, reports

and web-entry forms found at: http://unesco-cairo.org.
- Assisted in organizing workshops.

June 1994 – Jan. 1999
Systems Engineer,
Cairo Information Technology and Engineering (CITE) company,
Cairo, Egypt.
Job responsibilities included development, deployment, training, and support for computerized
payroll system and telephone billing system.

Honors and Activities

Egyptian Student Organization (2003) President, WVU.
Egyptian Student Organization (2001 – 2002) Secretary, WVU.
TRUTH student Organization (2001 – 2002) President, WVU.
Distinction Award (1994) Faculty of Engineering, Cairo University.
Academic Excellence Award for 4 consecutive years
(1990 – 1994)

Faculty of Engineering, Cairo University.

Research Interests

Generally, computer engineering field and specifically: parallel computing, load balancing algorithms,
simulation and modeling, performance analysis, software engineering, reliability and fault tolerance,
and real-time multimedia traffic.

	Designing a scalable dynamic load -balancing algorithm for pipelined single program multiple data applications on a non-dedicated heterogeneous network of workstations
	Recommended Citation

	DLAH Load Balancing Algorithm for SPMD on HNOW

		www.wvu.edu/~thesis
	2003-11-24T17:06:51-0500
	West Virginia University Libraries
	John H. Hagen
	I am approving this document

