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ABSTRACT 

DESIGNING A SCALABLE DYNAMIC LOAD-BALANCING 
ALGORITHM FOR PIPELINED SINGLE PROGRAM MULTIPLE 

DATA APPLICATIONS ON A NON-DEDICATED 
HETEROGENEOUS NETWORK OF WORKSTATIONS 

Ashraf Osman 

Dynamic load balancing strategies have been shown to be the most critical part of an efficient 
implementation of various applications on large distributed computing systems. The need for 
dynamic load balancing strategies increases when the underlying hardware is a non-dedicated 
heterogeneous network of workstations (HNOW). This research focuses on the single 
program multiple data (SPMD) programming model as it has been extensively used in parallel 
programming for its simplicity and scalability in terms of computational power and memory 
size. 

This dissertation formally defines and addresses the problem of designing a scalable dynamic 
load-balancing algorithm for pipelined SPMD applications on non-dedicated HNOW. During 
this process, the HNOW parameters, SPMD application characteristics, and load-balancing 
performance parameters are identified.  

The dissertation presents a taxonomy that categorizes general load balancing algorithms and a 
methodology that facilitates creating new algorithms that can harness the HNOW computing 
power and still preserve the scalability of the SPMD application.  

The dissertation devises a new algorithm, DLAH (Dynamic Load-balancing Algorithm for 
HNOW). DLAH is based on a modified diffusion technique, which incorporates the HNOW 
parameters. Analytical performance bound for the worst-case scenario of the diffusion 
technique has been derived.  

The dissertation develops and utilizes an HNOW simulation model to conduct extensive 
simulations. These simulations were used to validate DLAH and compare its performance 
to related dynamic algorithms.  The simulations results show that DLAH algorithm is 
scalable and performs well for both homogeneous and heterogeneous networks. Detailed 
sensitivity analysis was conducted to study the effects of key parameters on performance.  
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GLOSSARY  

CFD. Computational Fluid Dynamics. 

Confidence Interval. A range of values constructed around a point estimate that makes it 
possible to state that an interval contains the population parameter between its upper and 
lower confidence limits. The most frequently used confidence interval is the 95% confidence 
interval. This can be interpreted, as there is only a 5% chance that the sample is so extreme 
that the 95% confidence interval calculated will not cover the population mean.  

Discrete Event Simulation. (DES) concerns the modeling of a system as it evolves over time 
by representing the changes as separate events. 

DLAH. Dynamic Load-balancing Algorithm for HNOW. 

DP. Data Points. 

HNOW. Heterogeneous Network of Workstation.  

NP-Complete. The complexity class of decision problems for which answers can be checked 
for correctness, given a certificate, by an algorithm whose run time is polynomial in the size of 
the input (that is, it is NP) and no other NP problem is more than a polynomial factor harder. 
Informally, a problem is NP-complete if answers can be verified quickly, and a quick algorithm 
to solve this problem can be used to solve all other NP problems quickly. 

PSPACE. The set of decision problems that can be solved by a Turing machine using a 
polynomial amount of memory, and unlimited time. 

SPMD. Single Program Multiple Data. 

 

 



 

 

Chapter 1  

INTRODUCTION 

1.1 Motivation 

Due to the recent advances in high-speed network, network based distributed computing has 

become a low-cost alternative to dedicated parallel supercomputer systems. These systems are 

becoming widely available in academic and industrial environments. To benefit from the 

maximum computation power of these systems, it is necessary to use all available resources, 

namely old machines in addition to more recent ones. Such a network is called heterogeneous 

network of workstations (HNOW). Accordingly, a dynamic load-balancing algorithm is required to 

harness the computing power potential of this HNOW. 

Dynamic load balancing strategies have been shown to be the most critical part of an efficient 

implementation of various algorithms on large distributed computing systems, as load 

imbalance can cause poor efficiency. A load-balancing algorithm must deal with different 

unbalancing factors, according to the application and to the environment in which it is 

executed. Unbalancing factors may be static, as in the case of processor heterogeneity, or 

dynamic like the unknown computational cost of each task, dynamic task creation, task 

migration, and variation of available computational resources due to external loads. 

Each application type requires a different load-balancing strategy. Actually, it is very crucial to 

define the application type clearly and understand the underlying hardware architecture before 

attempting to design a load-balancing algorithm.  

In this research, we focus on the single program multiple data (SPMD) programming model as it 

has been extensively used in parallel programming, due to the ease of designing a program that 

consists of a single code running on different processors. Moreover, data decomposition is a 

natural approach for the design of parallel algorithms for many problems. In addition, the 

SPMD model provides attractive scalability in terms of computational power and memory size. 
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1.2 Objectives 

The main objective of this research is to design a scalable dynamic load-balancing algorithm 

for pipelined SPMD applications on a non-dedicated HNOW. Load balancing for 

heterogeneous parallel computing systems is a relatively new topic and has been investigated 

less frequently. Thus, we need to identify the HNOW parameters and its measuring units, 

study the pipelined SPMD application characteristics, and develop a taxonomy that categorizes 

current load-balancing strategies and enables us to design new strategies that suit our 

application. Accordingly, we will come up with an optimal solution if possible.  

In addition, we need to identify performance parameters that measure the quality of the load-

balancing algorithms; this will allow us to compare the performance of different load-balancing 

strategies. 

The analysis of load-balancing algorithms involves performing exhaustive tests on a controlled 

HNOW environment. This is not applicable in real life so we turn to modeling. Unfortunately, 

there is not any theoretical model that captures the complexity of an HNOW, especially, its 

dynamic behavior. Therefore, we need to design a general reusable simulation model.  

Besides designing a new load-balancing algorithm, we will develop a general framework that 

facilitates the design for new load-balancing algorithms in general. 

1.3 Contributions 

The main contributions for this research are summarized as follows: 

- Proving that load-balancing for an HNOW is an NP-Complete problem (section 4.6). This 

means that there does not exist any optimal algorithm that can balance the HNOW.  

- A general taxonomy for categorizing load-balancing algorithms for HNOW (section 2.5). 

A number of classifications have been proposed, but each classification is focused on 

certain applications. This taxonomy is more general, it allows us to classify current load-

balancing algorithms and facilitate the design of new algorithms.  

- Detailed scalability analysis for pipelined SPMD applications (chapter 5). Before designing 

a new load-balancing algorithm, it is imperative to study the underlying hardware 

architecture and the application type. The analysis shows that the pipelined SPMD 
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applications are able to adopt the cluster computation potential and to scale up with the 

cluster capabilities. In addition, the pipeline paradigm permits the overlapping between 

communication and computation, which eliminates the need for synchronization. 

However, the pipelined SPMD application shows that the performance of the system is 

very sensitive to the slowest workstation in the pipeline and the communication time.  

- General reusable simulation model of HNOW (section 6.3). In order to construct a 

simulation model, we need to identify the input variables that define the system, output 

variables that define the performance measures, and a mathematical/logical relationship 

between the inputs and outputs that defines the system behavior. We have defined these 

points and discussed the discrete event simulation environment. 

- Analytical performance bounds for estimating the performance of diffusive load-balancing 

algorithms on a homogeneous network of workstations (chapter 7). The diffusive strategy 

relies on neighboring workstations that communicate with each other to eliminate any load 

imbalance between them.  It has been proved that this strategy drives the whole system to a 

global balance. We derived analytical bounds for the number of steps required to reach the 

balanced state.  

- DLAH: a scalable dynamic load-balancing algorithm for SPMD applications on non-

dedicated HNOW (section 7.3). DLAH algorithm is based on the diffusive strategy while 

incorporating the HNOW parameters. Its performance has been studied (chapter 8) and 

compared to other related algorithms. DLAH shows better performance.   

- A general framework for designing new load-balancing algorithms (section 9.1). During 

this whole process we present the necessary steps needed to design new load-balancing 

algorithms. 

1.4 Thesis Organization 

Chapter 2 provides an overview of load-balancing algorithms in general, discussing the 

HNOW parameters, application types, and characteristics of load-balancing algorithms. It 

concludes by presenting a general taxonomy used to classify any load-balancing algorithm.  We 

use this taxonomy in chapter 3 to categorize load-balancing algorithms of related work. Then, 

we formally define the problem in chapter 4 and prove that it is an NP-complete problem.   
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In chapter 5, we implement two case studies of pipelined SPMD applications. From these 

applications, we analyze the scalability of the pipelined SPMD applications and measure the 

different cluster parameters that will be used to build our simulation model in chapter 6.  

In chapter 6, we discuss the current theoretical models of parallel computers and show that 

they are inadequate to capture the complexity of the HNOW, particularly, its dynamic 

behavior. Thus, we create a simulation model for the HNOW. 

In chapter 7, we propose our algorithm DLAH and derive its analytical performance bounds. 

We implement the DLAH algorithm on the HNOW simulation model in chapter 8 and study 

its performance for different HNOW settings. Finally, we conclude our research in chapter 9, 

summarize our contributions, and provide several pointers for further research.  
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Chapter 2  

OVERVIEW OF LOAD-BALANCING ALGORITHMS FOR HNOW 

2.1 Overview of Heterogeneous Network of Workstations 

Network based distributed computing has attracted a lot of attention lately, due to the recent 

advances in high-speed networks. It has become a cheap alternative to dedicated parallel 

supercomputer systems. As these systems are widely available in academic and industrial 

environments, it is becoming increasingly popular to use these resources. To benefit from the 

maximum computation power, it is necessary to use all available resources, namely old 

machines in addition to more recent ones. Such a network is called heterogeneous network of 

workstations (HNOW). Figure 2.1 illustrates a simple HNOW example. 

Network 2

Network 1

 
Figure 2.1: A simple scheme of an HNOW 

The sources of heterogeneity in an HNOW include the processors of different speed; the 

memory, with different amount of available memory on different machines; the network, with 

varying cost of communication among pairs of processors; and the software level, with the 
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various operating systems and environments. Accordingly, a dynamic load-balancing 

algorithm is required to deal with these different parameters to provide the best performance.  

A dynamic load-balancing algorithm must deal with different unbalancing factors, according to 

the application and the environment in which it is executed. Unbalancing factors maybe static, 

as in the case of processor heterogeneity, or dynamic. Examples of dynamic unbalancing 

factors include the unknown computation task for each task, dynamic task creation and 

migration, and variation of available computational resources due to external loads from other 

applications. 

For the last ten years, load-balancing problems for homogeneous parallel computing systems 

have been thoroughly studied. A large number of results have been gained with the help of 

simulations, theoretical investigations, or experimental applications {[Hil85], [PFK93], 

[FMD98], [DFM95], [SS94], [VS90], [WLR93], [CLZ99], [ZLP96]}.  

Load balancing for heterogeneous parallel computing is a relatively new topic and has been 

investigated less frequently. In order to design load-balancing algorithms for HNOW, a 

number of parameters need to be well defined. These parameters should cover the 

heterogeneity of the network of workstations, the applications considered and the 

characteristics of the required load-balancing algorithm. Figure 2.2 summarizes the HNOW 

parameters that are discussed in details in the following sections.  

HNOW Parameters

Cluster 
Heterogeneity

Application 
Type

Algorithm 
Characteristics

• Phase parallel 
• Divide and conquer
• Pipeline
• Process Farm
• Work pool

• Processor
• Memory
• Network Latency
• Network Bandwidth

• Responsiveness
• Simple Implementation
• Scalable
• Least Overheads
• …  

Figure 2.2: HNOW parameters 
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2.2 Cluster Heterogeneity Parameters 

The sources of heterogeneity in a network of workstations are mainly attributed to processor 

speed, available memory, network latency, and network bandwidth.  

- Processor parameters:  

In a fully detailed processor model, we need to consider the speed of a processor in terms of 

the number of floating-point operations per second, and the number of integer operations per 

second. Multiple instructions and instruction pipelining would further complicate the model.  

- Memory:  

The required memory required by the application and the available memory should be 

considered in scheduling computations and data. Usually the total amount of memory in the 

cluster limits the data size considered by numerical scientific applications like weather 

modeling and computational dynamics. The amount of physical memory varies for different 

machines. 

- Network latency and bandwidth:  

This is one of the primary concerns for heterogeneous systems. Slow networks can make 

communication extremely expensive, and restrict the scalability of the system. 

A detailed description of these parameters and how to measure them are discussed later in 

chapter 6. 

2.3 Application Type 

Parallel applications fall into a number of categories according to the parallel paradigm 

employed. Phase parallel, divide and conquer, pipeline, process farm, and work pool are some 

examples [WA99]. These programs may have regular or irregular computation and 

communication. Other characteristics, such as the communication to computation ratio, could 

dictate the decision to parallelize and the parallelization used. Accordingly, there is no load-

balancing algorithm, which will have good performance for all the different application types. 
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2.4 Algorithm Characteristics 

Before designing a load-balancing algorithm, it is necessary to define the essential features for 

the load-balancing algorithm besides the load balancing itself like scalability, responsiveness, 

least overheads, simplest implementation, etc. These characteristics are also used to measure 

the performance of the load-balancing algorithm accordingly. The most common parameters 

used to measure performance are convergence, extra load exchange, and load-balancing 

overheads. 

- Convergence:  

Convergence is a measure for the responsiveness, which is the number of steps required by the 

algorithm to reach a load balance state. The fewer steps it takes to reach the balanced state, the 

more responsive the algorithm is. 

- Extra load exchange:  

Extra load exchange is the total amount of extra load exchanged during execution for the load 

balancing. The fewer loads exchanged to reach a balanced state, the better the algorithm in 

estimating the load to be exchanged.  

- Load-balancing overheads:  

Load-balancing overheads are the total amount of overheads added by the load-balancing 

algorithm. These overheads are divided into computation overhead, and the communication 

overhead, which represents the extra messages produced by the load-balancing algorithm to 

exchange status values. 

Before attempting to design a new load-balancing algorithm, we need to define a taxonomy 

that provides a terminology for describing different load balancing algorithms. 

2.5 Load-Balancing Algorithms Classification 

A number of classifications have already been proposed, but each classification was focused on 

certain applications. For example, [CK98] deals with scheduling of processes in distributed 

operating systems and with scheduling of jobs in parallel applications based on functional 

decomposition. [PRR03] deals with strategies for load distribution in SPMD applications. We 

will use our taxonomy proposed in [OA02], which, incorporates dynamic load balancing 



 

9 

 
algorithms designed for homogeneous and heterogeneous systems, task migration and data 

parallel algorithms, central and distributed algorithms. In addition, we have shown how this 

taxonomy is used to design load-balancing algorithms for any kind of the application types. 

In order to completely define a dynamic load-balancing algorithm, the main four sub-strategies 

(initiation, location, exchange, and selection) have to be well defined. A detailed discussion of 

these sub-strategies is presented in the following sections. 

2.5.1 Initiation 

The initiation strategy specifies the mechanism, which invokes the load balancing activities. 

This may be a periodic or event-driven initiation. Periodic initiation is a timer-based initiation in 

which load information is exchanged every pre-determined time interval. The event-driven is a 

usually a load dependent strategy based on the observation of the local load.  

The load dependent strategies can be either sender-initiated or receiver-initiated. Sender-initiated 

means that over-loaded processors initiate activities while the receiver-initiated means that the 

under-loaded processors initiate the activities. Obviously, these initiation methods can be 

combined. Conditions like “over-loaded” and “under-loaded” are often defined by two-load 

thresholds L and H: if the load of a processor is less than L then it is under-loaded, if it is 

between L and H then it is normally loaded, and if it is larger than H, it is over-loaded. 

Event-driven strategies are more responsive to load imbalances, while periodic strategies are 

easier to implement. However, periodic strategies may result in extra overheads when the loads 

are balanced. 

2.5.2 Load-Balancer Location 

This strategy specifies the location at which the algorithm itself is executed. The load-balancing 

algorithm is said to be central if it is executed at a single processor, determining the necessary 

load transfers and informing the involved processors. On the other hand, if all the processors 

take part in the load balancing decisions, the algorithm is classified as distributed.  

Distributed algorithms are further classified as synchronous and asynchronous. A synchronous load-

balancing algorithm must be executed simultaneously at all the participating processors. When 

a synchronous algorithm is invoked the processors stop processing the application and turn to 
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load balancing. Usually this algorithm is used in applications in which application processing 

must stop at synchronization points for synchronism.  

As for asynchronous algorithms, it can be executed at any moment in a given processor, with 

no dependency on what is being executed at the other processors. 

Although the use of centralizing processor may lead to a bottleneck, it is important to 

remember that distributed strategies require load information to be propagated to all the 

processors, leading to higher communication costs. 

2.5.3 Information Exchange 

This specifies the information and load flow through the system. The information used by the 

dynamic load-balancing algorithm for decision-making can be local information on the processor 

or gathered from the surrounding neighborhood. Contrarily, it can be global information 

gathered from all the processors. 

Although local information exchange strategies may yield to less communication costs, global 

information exchange strategies tend to give more accurate decisions. 

The communication policy specifies the connection topology of the processors in the system, 

which determines the neighborhood of each processor. This topology does not have to 

represent the actual physical topology of the processors. A uniform topology indicates a fixed 

set of neighbors to communicate with, while in a randomized topology the processor randomly 

chooses another processor to exchange information with it. 

In addition, the communication policy specifies the task/load exchange between different 

processors. In global strategies, task/load transfers may take place between any two processors, 

while local strategies define group of processors, and allow transfers to take place only between 

two processors within the same group. 

2.5.4 Load Selection 

The load exchange policy specifies the processors involved in the load exchange (processor 

matching). Apart from that, it specifies the appropriate load items (load matching) to be 

exchanged. Local averaging represents one of the common techniques. The overloaded 
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processor sends load-packets to its neighbors until its own load drops to a specific threshold 

or the average load.  

This taxonomy may be summarized as shown in Figure 2.3. 

Dynamic Load Balancing

Initiation Information ExchangeLoad Balancer Location Load Selection

Periodic Event Driven

Sender
Initiated

Receiver
Initiated

Central Distributed Decision 
making

Communication

Local Global Task ExchangeTopology

Local GlobalUniform RandomizedSynchronous Asynchronous

Processor
matching

Load
matching

 
Figure 2.3: Dynamic load balancing taxonomy 
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Chapter 3  

RELATED WORK 

 

With the previous taxonomy, it is now possible to review load-balancing algorithms for 

HNOW and compare their different characteristics. 

3.1 Automatic Heterogeneous Supercomputing (AHS) [DCG93] 

AHS uses a quasi-dynamic scheduling strategy for minimizing the response time observed by a 

user when submitting an application program for execution. This system maintains an 

information file for each program that contains an estimate of the execution time of the 

program on each of the available machines. When a program is invoked by a user, AHS 

examines the load on each of the networked machines and executes the program on the 

machine that it estimates will produce the fastest turn-around time. Once the program is 

initiated on a specific processor, however, no further scheduling is performed. 

- Heterogeneity parameters: 

Work load on every networked machine, 

Estimate for the execution time of each program on each of the available machines 

- Application type: 

 Whole independent programs executed on a single machine (no processor 

communication)  

- Algorithm strategy: 

Initiation: Event driven (user initiated by submitting program) 

Load balancer location: Central 

Decision making/Communication: Global/ Randomized-Global 

Processor/Load matching: it estimates the fastest turn-around time obtained from the 

load on every workstation / the whole program is distributed. 
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This algorithm is limited to whole independent programs. It uses a central scheduler, which 

would be sufficient for a small number of jobs, but as the number of jobs increase the 

scheduler may become a bottleneck. Also, the algorithm requires providing an estimate time 

for the execution for each program on each workstation, which is not practical especially if 

there exists a lot of heterogeneous workstations. 

3.2 Self-Adjusting Scheduling for Heterogeneous Systems (SASH) [HLA95] 

It utilizes a maximally overlapped scheduling and execution paradigm to schedule a set of 

independent tasks onto a set of heterogeneous processors. Overlapped scheduling and 

execution in SASH is accomplished by dedicating a processor to execute the scheduling 

algorithm. SASH performs repeated scheduling phases in which it generates partial schedules. 

At the end of each scheduling phase, the scheduling processor places the tasks scheduled in 

that phase on to the working processors’ local queues. The SASH algorithm is a variation of 

the family of branch-and-bound algorithms. It searches through a space of all possible partial 

and complete schedules. 

The cost function used to estimate the total execution time produced by a given partial 

schedule consists of cost of executing a task on a processor and the additional communication 

delay required to transfer any data values needed by this task to the processor. 

- Heterogeneity parameters: 

Cost function: CP(Tn,Pm) + CC(Tn,Pm) where: 

CP(Tn, Pm): Cost of executing a task Tn on a processor Pm, 

CC(Tn, Pm): Cost of additional communication delay required to transfer any data 

values needed by task Tn on processor Pm.  

- Application type: 

Independent tasks. 

- Algorithm strategy: 

Initiation: Event driven (depends on the shortest execution time achieved by the 

processors) 

Load balancer location: Central 
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Decision making/Communication: Global/Random-Global 

Processor/Load matching: Using the cost function, the processor that will give the 

least cost will be selected. 

This algorithm has an advantage of accounting for the non-uniformity in the tasks’ 

communication and processing costs when scheduled on specific processors (although the 

calculation of the processor and the communication costs are not defined). Also, it overlaps 

scheduling with execution. On the other hand, it has a central (dedicated processor), which 

hinders scalability. Also, this algorithm assumes the computation cost and communication cost 

are constant throughout the scheduling which is valid for dedicated systems only.  

3.3 Support for Parallel Loop Execution (SUPPLE) [OP97] 

This strategy groups iterations into load chunks. Each processor executes its load chunks. 

Once a processor load decreases than a certain threshold, it asks other processors for chunk 

loads. A round-robin strategy is used by the underloaded processors to find an overloaded 

processor. Once an overloaded processor is located, it must choose the most appropriate 

number of chunks to migrate. Also, underloaded processors broadcast a termination message 

to reduce the number of processor checking.  

- Heterogeneity parameters: 

Load chunks (overloaded and underloaded). 

- Application type: 

Parallel loops. 

- Algorithm strategy: 

Initiation: Receiver initiated 

Load balancer location: Distributed, Asynchronous 

Decision making/Communication: Local/ Random, Global 

Processor/Load matching: Overloaded processors are matched by underloaded 

processors in a round robin way. Load transferred is a ratio of the available chuck 

loads, depending on the current chunks and the number of processors (chuck/ 

(2*processors)). 
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The main advantage of this algorithm is that it preserves the adjacency relationships among 

the processors that might have to exchange borders (load chunks sent are those without any 

other dependency except the sender). On the other hand, this algorithm only applies to parallel 

loops and it assumes uniform communication cost. 

3.4 Data Migration Environnent (DAME) [CCN97] 

DAME aims to extend the Single Program Multiple Data (SPMD) programming paradigm to 

better harness heterogeneous NOWs with time-varying workloads. A centralized master 

collects information at run-time on the load of the workstations involved and explicit 

primitives are furnished to programmers in order to activate load checking and redistribute 

arrays in blocks whose sizes depend on the actual capacities of each workstation. Another 

drawback is the proposal of a global synchronization.  

- Heterogeneity parameters: 

Computing power available (using external monitors or the application evolution 

itself), 

External workload (tasks in queue) 

- Application type: 

SPMD applications 

- Algorithm strategy: 

Initiation: Periodic 

Load balancer location: Central 

Decision making/Communication: Global/ Random, local 

Processor/Load matching: neighborhood processors exchange the workload.  

This algorithm preserves the adjacency relationships among the processors that might have to 

exchange borders as it exchanges workloads only among neighbors. On the other hand, it’s a 

central periodic algorithm, which hinders much the scalability. It also assumes uniform 

communication cost. 
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3.5 Asymmetric Load Balancing on a Heterogeneous Cluster of PCs [B99] 

 Addresses the techniques by which the sizes of tasks are suitable matched to the processors 

and memories. A static load balancing strategy is used based on specific measurements and 

benchmarks 

- Heterogeneity parameters: 

Relative computing power (using external benchmark applications), 

- Application type: 

Data decomposed regular problems. 

- Algorithm strategy: 

This algorithm implements a static load balancing strategy. It uses the previous 

benchmark results to partition the problem among them. 

This strategy uses a classic static load-balancing algorithm. The main contribution is reducing 

the time taken to obtain the benchmark results. The static load balancing is more suitable for 

dedicated systems. 

3.6 GR Protocol [LL96]  

This protocol proposes an adaptive load-balancing algorithm (GR.batch) for heterogeneous 

distributed systems subject to different classes of tasks with different processing requirements. 

The key to the algorithm is to transfer a suitable amount of processing workload from queues 

of senders to receivers, which is determined dynamically.  

- Heterogeneity parameters: 

Relative processor speed, 

Processing requirement for task, 

Task size, 

Arrival rate of task. 

- Application type: 

Tasks eligible for relocation, with a known service (processing) demand. 

- Algorithm strategy: 

Initiation: Receiver/Sender initiated 
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LB Location: Distributed, Asynchronous 

Decision making/Communication: Local/ Random, Global 

Processor/Load matching: Polls others until it finds a match. Workload is then 

negotiated between the sender and receiver.  

The performance of the algorithm has only been evaluated using simulations. The results have 

shown the adaptive behavior of the algorithm towards heterogeneous systems. This algorithm 

assumes the heterogeneity lies only in the processing power of the different workstations. 

Also, the processing requirement (service demand) of each task must be known in advance.  

3.7 Compile-time Scheduling Algorithms [CZL97]  

Proposes a simple yet comprehensive model for use in compiling for a network of processors, 

and develop compiler algorithms for generating optimal and near-optimal schedules of loops 

for load balancing, communication optimizations, network contention, and memory 

heterogeneity.  

- Heterogeneity parameters: 

Relative processor speed, 

Resident memory size, 

Start up time for messages, 

Message transfer rate, 

Number of iterations. 

- Application type: 

Independent parallel loops on dedicated NOW for SPMD/ Master-Slave model of 

computation. 

- Algorithm strategy: 

Compiler algorithms for generating optimal and near optimal schedules of loops were 

developed with specific cost functions. 

This is one of the very few strategies that considered heterogeneity in many aspects. It 

incorporated most of the heterogeneous parameters. However, this strategy assumes a 

dedicated system. Also, it is application dependent, which means for different applications the 
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relative processor power and resident memory size must be calibrated. This strategy is 

classified as a static algorithm. 

Table 3.1 summarizes the different algorithms. It is clearly observed that most studies on 

heterogeneous network of workstations consider only the relative processing power of the 

workstations as the only factor for heterogeneity. In practice, heterogeneous network of 

workstations may contain different workstations with different memory size and network 

connections. In fact large computational applications like computational fluid dynamics CFD 

are limited by the memory size. Thus, it is important to consider all heterogeneous parameters 

when considering HNOW. 
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Heterogeneity parameters Load balancer algorithm Algorithm 
Processor Memory Network 

Application 
Pros Cons 

AHS 
[DCG93] 

Yes Yes No Whole 
independent 

programs 

Simple algorithm - Estimating the execution time of 
each program on each machine 

- Central Scheduler 

SASH  
[HLA95] 

Yes No Yes Independent 
tasks 

Overlaps scheduling with 
execution 

- Estimating the execution time of 
a task on a certain processor 

- Central Scheduler 
- Dedicated system 

SUPPLE 
[OP97] 

Yes No No Parallel loops - Distributed with 
asynchronous execution 

- Preserves adjacency 
relationships 

- Broadcasting termination 
messages 

DAME 
[CCN97] 

Yes No No SPMD 
Applications 

- Preserves adjacency 
relationships 

- Periodic 
- Central 

[B99] Yes No No Data 
decomposed 

regular 
problems 

- Suitable for dedicated systems - Static 

GR protocol 
[LL96] 

Yes No No Tasks eligible 
for relocation 

- Distributed, Asynchronous - Service demand of each task 
must be known in advance 

Compile-
time 

[CZL97] 

Yes Yes Yes Independent 
parallel loops 

- Incorporates all 
heterogeneous parameters 

- Compile time only which is 
suitable for dedicated systems 
only 

Table 3.1: Summary of different load balancing algorithms for HNOW 
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Chapter 4  

PROBLEM DEFINITION 

4.1 Problem Statement 

The problem considered in this research is defined as follows: 

“Designing a scalable dynamic load-balancing algorithm for pipelined SPMD applications on 

non-dedicated heterogeneous network of workstations (HNOW)” 

4.2 Problem Significance 

We will discuss the different aspects of the problem statement and its significance in the 

following sections. 

4.2.1 Non-Dedicated Heterogeneous Network of Workstations 

Network based distributed computing has become a low cost alternative to dedicated parallel 

supercomputer systems. As these systems are widely available in academic and industrial 

environments, it is becoming increasingly popular to use these resources. To benefit from the 

maximum computation power, it is necessary to use all available resources, namely old 

machines in addition to more recent ones. Thus, a scalable load-balancing algorithm is required 

to harness the computing power potential of this heterogeneous network of workstations. 

No load-balancing technique is suitable for all the different application types. Instead one 

studies the different attributes and programming model of one’s application and develops a 

load-balancing algorithm accordingly. We have chosen the SPMD programming model as it 

has been widely used in parallel programming, due to the ease of designing a program that 

consists of a single code running on different processors. Moreover, data decomposition is a 

natural approach for the design of parallel algorithms for many problems [Mat96].  We will 

discuss in details the different SPMD attributes in the following section.  
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4.2.2 SPMD applications 

By definition [Qui94], SPMD applications are suitable for implementation on the network of 

workstations model. This model provides attractive scalability in terms of computational 

power and memory size.   

SPMD involves a number of parameters namely the computation time, communication time 

and the communication pattern. The computation to communication ratio is called the 

granularity ratio, which could dictate the decision to parallelize and the parallelization method 

used. 

Partitioning 

Block 

Distribution
Cyclic 

Distribution

3D 2D 1D

 
Figure 4.1: Data partitioning and distribution 

SPMD also involves partitioning of data (data domain decomposition) and distributing it to 

different workstations. Depending on the problem a suitable partitioning that increases the 

granularity ratio is desired [OA201]. Figure 4.1 illustrates a number of possible partitioning and 

distribution options. 

SPMD applications usually involve running a simulation for a large number of simulation steps 

(iterations); we will refer to that as SPMD simulation steps. Another aspect that we should 

consider is the regularity of the computations and the communication pattern between 

different workstations. For example, although each workstation executes the same program 

and has the same domain size, each may have different number of computations like molecular 
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dynamics simulations. Also, each application has its own communication pattern to exchange 

different boundary data. 

In this study, we are concerned with regular domain computations and uniform 

communications applications. In fact, a large number of simulation applications belong to this 

class of applications like computational fluid dynamics (CFD). Other examples of SPMD 

applications are simulations like ship wake simulations [OA101], Heat transfer simulations, 

weather simulations, and image processing applications [MG97]. 

4.2.3 Scalable Dynamic Load-Balancing Algorithm 

SPMD applications are scalable by nature, as the same program is being executed on different 

workstations but with different data sets. Thus, in order to take full advantage of the 

heterogeneous network of workstations, it is necessary to design a scalable load-balancing 

algorithm that does not hinder the SPMD scalability. 

From the previous discussions, it becomes imperative to design a scalable dynamic load-

balancing algorithm that can cope to the non-dedicated heterogeneous workstations in the 

cluster and ensure that each workstation is assigned a fair workload proportional to its 

capabilities.  

4.3 Formal Problem Description 

We consider an environment of a set of autonomous non-dedicated workstations connected 

by a communication network. The system is represented by an undirected graph ( ),G V E= , 

where V is the set of workstations labeled from 1 through P , and E V V⊆ × is the set of 

edges. Each edge ( ),i j E∈ corresponds to the communication link between processors i  and 

j . At time t  node iv V∈ has a processing power ( )iF t ∈¡ , available memory 

( )
if

M t ∈¡ and a workload of ( )iW t ∈ ¡ . At a certain time t , each node takes time (iteration 

time) ( )iL t ∈ ¡  to execute the workload with its current resources. The goal is to redistribute 

the total workload among the workstations such that if G  is not changed for some finite time 

A , then a global balance can be achieved. In other words, the goal is to redistribute iW  
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proportional to the iteration time iL . In addition, the algorithm used to redistribute the total 

workload should be scalable with the number of workstations. 

4.4 Problem Assumptions 

The problem assumes the execution of pipelined SPMD application on a heterogeneous 

network of workstations with the following characteristics: 

- Computational intensive SPMD applications, which involves a large number of iterations 

(much larger than the number of workstations) like heat transfer simulations, weather 

simulations and computational fluid dynamics (CFD) simulations (sections 5.1). In these 

applications, the problem is usually divided into a grid of data points. The simulation 

progresses in time with each iteration.  

- the main data domain is uniform, which means that each data point requires the same 

amount of computations. 

- each processing unit has the same executable program, and is assigned a continuous part 

of the main data domain,  

- neighboring  workstations communicate regularly to exchange boundary variables, 

- pipelined in the sense that each workstation can’t  begin its execution before it receives the 

boundary variables from the neighbors, 

- there is no synchronization required between the different processing units. 

4.5 Problem Parameters 

We clearly identify the different parameters that will be used throughout the literature for 

describing the problem. 

4.5.1 Pipelined SPMD Application 

The pipelined SPMD application is divided among the workstations such that: 

- The smallest computation unit is called a datapoint. 

- Each workstation i  is assigned a number of continuous datapoints iW . 
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- The application requires l  loops (iterations) to complete, where the number of loops is 

much bigger than the number of workstations. 

4.5.2 Heterogeneous Network of Workstations Parameters 

The HNOW consists of  P   different workstations; each workstation has processing power of 

F  datapoints per second, free memory fM  datapoints, and swap access time of aM  

datapoints per second. The workstations are connected to each other through a network with 

bandwidth of BW  datapoints per second; the bandwidth may differ between different 

workstations. 

The total execution time is given by: 

[1.. ]
( ( [ ] [ ] [ ] [ ] [ ]))Total comp mem comm o bal

i P
l

T MAX T i T i T i T i T i
∈

= + + + +∑  ( 4.1) 

Where compT is the computational time given by: 

workload per processor
Processor speedcomp

W
T

F
= =  ( 4.2 ) 

- memT is the extra time taken using the swap memory given by the product of both the 

datapoints in the swap memory and the retrieval time: 

 mem s rT M T= ×   ( 4.3 ) 

- Tcomm is the time taken in exchanging boundary data points, given by: 

Datapoints exchanged
  Latency  

Transfer ratecommT = +  

comm

LE
T L

BW
= +   ( 4.4 ) 

- oT : is the extra time introduced by the parallelization scheme, which includes: parallelism 

coding overhead, synchronization overhead, and load imbalance overhead. 

- balT : is the extra time experienced when using a load balancing algorithm, which includes: 

extra computations added by the load balancing algorithm, extra load exchanged for 

balancing, and miscellaneous messages used to exchange load status. 
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The main goal is to execute the SPMD application in minimal time. In other words to 

minimize the total execution time totalT . 

It is not hard to see that minimizing the above equation to obtain the optimum solution 

involves gathering all the different parameters from all the workstations to one central 

processor. This central processor should execute a certain algorithm to minimize the total 

execution time and then send to each workstation its required load distribution with its 

neighbors. Obviously, this is not a scalable technique. In the following section,  we prove that 

this problem is actually an NP complete problem and thus there exists no optimal solution that 

can be implemented. 

4.6 Problem NP-Completeness 

The task of distributing the total workload among a cluster of heterogeneous workstations 

seems very hard. Actually, we will prove that it is an NP-Complete problem.  We will consider 

the case of distributing the workload on a dedicated cluster of workstations, i.e., a static case. 

4.6.1 Problem Description 

We consider a dedicated cluster of workstation composed of a finite set of heterogeneous 

workstations interconnected by a communication network. The underlying parallel 

computation is performed on a large data set that is divided among the workstations. We 

represent the system as follows:  

- Set of processors { }1 2, , mP p p p= … , each processor is defined by the following two 

tuple, ( ) [ ], , 1,i i ip f m i m= ∈  where if  is the processor speed and im  is the memory 

available for processor ip . 

- Set of data domains { }1 2, , nD d d d= … , each represents a segment of the whole 

computational data domain, 

-  Set of communication time [ ]{ }: , 1ijC c i j m= ∈ … , which represents the 

communication time between the processors ip  and jp . 
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-  Set of tasks { }1 2, , nT t t t= … , each task is defined by the tuple ( ) [ ], , 1i i it d b i n= ∈ur … , 

where id  is the computational data domain,  and ib
ur

  is the communication requirement 

from data domain id  to the other domains. 

-  Length ( ) [ ] [ ], , , 1 , 1j i jl t p c i m j n+∈ ∈ ∈ur … …Z ,  which represents the time taken for a 

task jt  on processor ip , including the communication time  jc
uur

 required to communicate 

with the other processors. 

4.6.2 Problem Statement: 

We will refer to our problem as NOW scheduling defined as follows: 

INSTANCE 

Set of Tasks T , number m +∈ Z  of processors, length ( ), ,j i jl t p c +∈ur Z  for each task jt  on 

processor ip  with communication time requirement  jc
uur

, [ ] [ ]1 , 1i m j n∈ ∈… … . 

PROBLEM 

An m -processor schedule for T ,i.e., a function [ ]: 1f T m→ … , that minimizes the total 

execution time given by 
[ ] ( )

( )1
max , ,

j
j i ji m f t i

l t p c
∈ =

∑…
ur . 

We can rewrite the problem as a decision problem as follows: 

QUESTION 

Is there an m -processor schedule for T ,i.e., a function [ ]: 1f T m→ …  that meets the 

overall deadline D +∈ Z , such that the total execution time 
[ ] ( )

( )1
max , ,

j
j i ji m f t i

l t p c D
∈ =

≤∑…
ur ? 

Before discussing the complexity of this problem, let us refer to a similar problem “Minimum 

Multiprocessor Scheduling”.  
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INSTANCE 

Set of Tasks T , number m +∈ Z  of processors, length ( ),j il t p +∈ Z  for each task jt T∈  

on processor ip , [ ] [ ]1 , 1i m j n∈ ∈… … . 

PROBLEM 

An m -processor schedule for T , i.e., a function [ ]: 1f T m→ … , that minimizes the total 

execution time given by 
[ ] ( )

( )1
max ,

j
j ii m f t i

l t p
∈ =

∑…
. 

QUESTION 

Is there an m -processor schedule for T ,i.e., a function [ ]: 1f T m→ …  that meets the 

overall deadline D +∈ Z , such that the total execution time 
[ ] ( )

( )1
max ,

j
j ii m f t i

l t p D
∈ =

≤∑…
? 

This problem has been proven to be an NP-Complete problem [LST90]. We will reduce this 

problem to our problem. The reduction process involves creating a polynomial time algorithm 

R  which transforms the inputs of the multiprocessor scheduling to equivalent inputs of our 

problem.  

First, let us assume that we have an algorithm for the NOW scheduling problem that answers 

the scheduling question. We will then construct a polynomial algorithm that reduces the 

multiprocessor scheduling problem inputs to the NOW scheduling problem inputs.  

The inputs to the multiprocessor scheduling are given by ,T P< > , where T is the set of 

tasks and P is the set of processors, each processor ip  has a processing power of if  and 

infinite memory. While the inputs for our problem are , , ,T P M C< >  where T is the set of 

tasks and P is the set of processors, each processor ip  has a processing power of if  and 

memory of im M∈ , and C is the set of communication times between each two processors.  

Construct the following function R , by simply adding the memory and communication 

parameters to the inputs. The memory is initialized to a very large number, while the 

communication is initialized to zero.  
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( ), , , , 0R T P T P M C= = ∞ =  

Accordingly, we can then use the NOW scheduling problem to answer the question of the 

multiprocessor scheduling problem. That means if the NOW scheduling algorithm answered 

“yes” there is a solution then the answer will be “yes” to the multiprocessor scheduling 

problem too and vice versa. 

That means that the multiprocessor scheduling is no harder than the NOW scheduling. Since 

the multiprocessor scheduling is NP-Complete, then it follows that the NOW scheduling is 

also an NP-Complete problem and there exists no optimal algorithm to solve it. 

It is worth noting that in our analysis we only considered a dedicated cluster of heterogeneous 

workstations, i.e., the cluster resources dedicated for the application are static, which is simpler 

than the non-dedicated version.  
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Chapter 5  

PIPELINED APPLICATIONS: IMPLEMENTATION AND ANALYSIS 

 

In this chapter, we will review two different types of pipelined applications and demonstrate 

the advantages of using pipelining as a parallel paradigm. Each application has been 

implemented on a different kind of underlying hardware architecture: a cluster of workstations 

and a supercomputer. We will discuss the details of each implementation, analyze its 

performance, and show how to extract the different parameters required for our simulations. 

These parameters include both hardware and application parameters. 

 The first section discusses a CFD application implemented on a cluster of workstations, while 

the second section discusses a real-time distributed dispatcher implemented on a 

supercomputer.  

5.1 Domain Decomposition of Large Eddy Simulations of Ship Wakes1,2  

Simulation of turbulent fluctuations in ship wakes is one of the complex applications of large 

eddy simulations in computational fluid dynamics (CFD). Ship wakes simulation requires 

extensive computations and large amounts of computer resources. The accuracy of ship wake 

prediction is limited by the memory of the workstation. 

In this section, we present the parallel implementation of large eddy simulations (LES) of a flat 

plate wake using domain decomposition technique for a cluster of workstation environment. 

We present the results of the implementation executed on a cluster of workstations and show 

how the pipeline paradigm scales up with the number of workstations.  

                                                 
1 This work was funded by the DoD research grant No. N000014-98-1-0611, monitored by the Office of Naval 

Research to WVU 
2 The implementation is a joint work with the department of mechanical and aerospace engineering under the 

supervision of Prof. Ismail Celik. Special thanks to Andrei Smirnov and Shoaping Shi. 
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5.1.1 Introduction 

Algorithmic improvements and faster machines, particularly parallel machines, provide the 

opportunity for effectively using large-eddy simulations (LES) for the problems of practical 

importance. The main objective in this paper is to predict the turbulent flow development in a 

ship wake using cluster computing and investigate its scalability using the domain 

decomposition technique. 

This requires analysis of the ship wake flow, development of an efficient and accurate 

simulation of the in the ship wakes by refining the large eddy simulation methodology, setting 

up the computational domain, analysis of the computer resources, and analysis of the results. 

5.1.1.1 Related work 

Direct Numerical Simulation (DNS) of turbulence requires many CPU days even months and 

Gigabytes of memory. These requirements limit most DNS to using supercomputers, available 

at supercomputer centers. With the rapid development and low cost of PCs, PC clusters are 

evaluated as a viable low-cost option for scientific computing. A number of studies have been 

made to evaluate the cluster capabilities. One of the recent studies [KEB99] presented a 

comprehensive overall evaluation of the applicability of PC/Linux clusters for DNS of 

turbulence. Low and high-end PC clusters were compared to existing supercomputers, both at 

kernel and application level, to evaluate the CPU and network capabilities. The research 

concluded that parallel simulations using Ethernet-based networks indicate inefficiency in 

communications above four processors. Internal timings indicate that the bottleneck is due to 

group communications (e.g. MPI all-to-all). 

Another recent research [OB99] was concerned about the different programming paradigms. 

These are message passing (MPI), shared memory (CC-NUMA), and multithreading. A 

dynamically adapting, unstructured mesh application was used to evaluate the different 

paradigms. The research concluded that the multithreading offers the highest scalability, the 

message passing offers the best portability while the shared memory offers the simplest 

coding.  

 Using the previous results, we preferred to use MPI for portability and pipelining the different 

computational domains in order to avoid group communication and synchronization delays. 
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5.1.1.2 Simulation of turbulent flows using LES 

Turbulent forced convection occurs in many important technological applications, such as 

mechanical, aerospace, electrical, computer, chemical, and nuclear engineers and in flows of 

interest to meteorologists and earth scientists. The three-dimensional unsteady Navier-Stokes 

(NS) equations are known to govern such flows. Direct numerical simulation (DNS), which 

involves numerically solving the full unsteady NS equations, is currently limited to only the 

simplest flow geometries and low Reynolds numbers. Alternatively, the Reynolds averaged 

Navier-Stokes (RANS) equations, obtained from time averaging the unsteady NS equations, 

require much less computational resources and are used successfully to compute many flows 

of practical importance. However, the turbulence models used in conjunction with the RANS 

equations are not applicable to a wide range of flow geometries and are unsuccessful for many 

turbulent flow situations.  

Large eddy simulation (LES) is a compromise between DNS and RANS. LES relies on the fact 

that small scales of turbulent motion are nearly isotropic and independent of the geometry, 

whereas the large scales of turbulent motion are  mostly anisotropic and vary from flow to 

flow. The small-scale motion, which is mostly a function of the amount of energy that must be 

dissipated and therefore more universal, is filtered out of the governing equations and modeled 

with a subgrid scale (SGS) model. The large-scale motion is computed directly by numerically 

solving the three-dimensional, time dependent filtered NS equations. Although LES is not 

computationally expensive as DNS, it still requires large amounts of computer resources. 

5.1.1.3 Significa nce 

Through the different experiments, we were able to confirm:  

-  The capability of pipelined domain decomposition technique to adopt the cluster 

computing potentials and scale up with the number of workstations, 

- The importance of granularity on the scalability, 

- The ability to predict the execution time and number of workstations required for the ship 

wake simulation using a small-scaled pilot simulation. 
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In the following sections, we will briefly describe the methodology used in LES simulations. 

Then, discuss in details the cluster environment used and present the domain decomposition 

strategy. Finally, we will present the implementation results and analyze its scalability. 

5.1.2 Methodology 

Large-eddy simulation of the turbulent wake is an expensive but useful approach, since it 

allows the detailed study of the flow in which rapid stream-wise adjustment is present. For this 

reason, the near-wake region is very difficult to model theoretically. The simulation of a 

turbulent wake, especially the ship wake, requires a refinement in the LES technique. The flow 

is spatially developing, inhomogeneous along all three dimensions and strongly influenced by 

the interaction with the free surface. This creates the need for time-dependent turbulent inflow 

and outflow boundary conditions.  

In this study, an LES code originally developed by Zang and Street [ZS92] and modified by Shi 

and Celik [SSC01], boundary fitted grid technique is used in which a single-connected curved 

domain can be transferred into rectangular domain with unit cubic cells. The Navier-Stokes 

solver itself is built on regular shaped grid and, consequently, it is efficient and easily modified 

if necessary. A global second order accurate scheme in both temporal and spatial directions is 

applied. The governing equations are discretized by using finite volume method. With the 

exception of the convective terms, all the spatial derivatives are approximated with second-

order central differences. The convective term in the momentum equation is discretized using 

QUICK scheme or central differencing. Because there is no explicit relation to solve for the 

pressure in time, the fractional step method in conjunction with the projection method is 

applied to solve the incompressible Navier-Stokes equation. Multigrid technique is used to 

solve the pressure Poisson equation. Although in LES, explicit schemes are preferable, some 

implicitness, e.g. via Crank-Nicolson time splitting, can be introduced if stability is an issue. In 

this code, time advancement is semi-implicit, using an explicit Adams-Bashforth scheme for 

the convective and source terms and an implicit Crank-Nicolson scheme for the diffusive 

terms. 

There are many different kinds of subgrid-scale (SGS) models used to capture the unresolved 

(small) subgrid-scale motion. A basic and widely used SGS model is the Smagorinsky eddy-
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viscosity model. We [SSC00] have applied Smagorinsky model, dynamic viscosity and 

dynamic mixing model in our study of wake flow, such as wake of bluff body, wake of flat 

plate and wake of a ship. None of them could predict all the turbulence features very well. On 

the other hand, the results without any subgrid-scale model but with some degree of numerical 

dissipation, using, for instance the QUICK discretization scheme, could provide reasonable 

predictions and are much more attractive from computational viewpoint and stability 

considerations. The detail information including the governing equations and the subgrid-scale 

models can be found in the references [SCS99] and [SSC00]. 

5.1.3 Computer Resources 

 
Figure 5.1: CFD lab’s cluster [SS01] 

The experiments were implemented on a Beowulf cluster [BWF] of 10 DEC-Alpha 

workstations at the CFD laboratory of WVU. The cluster is running Linux as a software 
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operating system, interconnected by a private high-speed network  as seen in figure 5.1. We 

implemented message passing parallel programming model using MPI [GLS94], [MPCH] 

protocol for message passing. 

5.1.4 Domain Decomposition Strategy 

The conventional domain decomposition technique [Hwg93] for elliptic problems is realized 

through a two-way exchange of data at the boundaries of the domains [Smn92] and [DGP84] 

as illustrated in figure 5.2(a) for a one-dimensional problem. This guarantees the physical 

integrity of the solution and the convergence to the corresponding single domain case. 

However, this strategy may carry an excessive communication overhead for three-dimensional 

CFD simulations. If the problem is parabolic in one of the spatial directions one can employ a 

more efficient one-way communication approach illustrated in figure 5.2(b). This may reduce 

communication overhead considerably especially when non-blocking send-routines are used.  

 
 (a) Two-way decomposition 

 
(b) One-way decomposition 

Figure 5.2: Decomposition strategy:  a,b,c – cells of the grid in different computational 
domains 

Considering these factors, we implemented the first parallel version of the LES code using 

one-way data exchange. This approach is valid for ship-wake applications since the flow in 

most of the ship-wake region has a parabolic character. Even though small re-circulation zones 



 

35 

 
exist in the proximity of ship's stern, they do not stretch far enough and can be contained 

entirely within the first sub-domain.  

To exploit the parabolic nature of the solution the computational domain of the whole wake 

should be subdivided into Nd sub-domains by cutting it with planes normal to the ship-

velocity. Figure 5.3 illustrates a typical layout of two sub-domains. Data exchange between the 

domains occurs at the plane EH. As can be seen this implementation of the domain-

decomposition technique is rather simple and straightforward. It also carries minimum 

communication overhead and is suitable for ship-wake applications.  

 
Figure 5.3: Wake decomposition 

The drawback of the scheme is the necessity to provide additional outlet boundary conditions 

for each domain, which can alter the character of the flow close to the domain outlet, as 

compared to the two-way coupled case. 

5.1.4.1 Assumptions 

-  identical workstations in a cluster using MPI. 

-  SPMD (Single Program Multiple Data) model is used, in which the same program code 

runs on all the workstations, while the data domain is partitioned among them. 

- The domain used is a three dimensional domain.  
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Domain 1 Domain 2 Domain 3 Domain P

Machine 1 Machine 2 Machine 3 Machine P 
Figure 5.4: Domain decomposition of the application 

The application is considered pipelined in the sense that the task cannot proceed before it 

exchanges messages with the proceeding task of an adjacent domain as shown in Figure 5.4.  

5.1.4.2 Scalability Analysis 

A computer system, including all its hardware and software resources, is called scalable if it can 

scale up (i.e., improve its resources) to accommodate ever-increasing performance and 

functionality demand and/or scale down (i.e., decrease its resources) to reduce cost. To exploit 

the power of scalable parallel computers, the application programs must also be scalable 

[HX98]. 

The speedup can be used as a measure to the scalability. The speedup is defined as the ratio 

between the execution time of an application on a parallel system and the best-known serial 

algorithm. 

S s

P

T
T

=  ( 5.1 ) 

Where: 

- sT is the execution time taken using the serial algorithm,  

- PT is the execution time taken in case of the parallel system. 

Since the memory resources limit the accuracy of the ship wake, we use the fixed memory 

model for our analysis [SN93]: 



 

37 

 
- Cluster case: 

The total execution time: 

 = (number of cycles) (time for one pipeline cycle)
  ( -1)( )

P

P comp comm

T
T L P T T

×
= + +

 

Where: 

- L : is the number of instances (time steps), 

- P : is the number of workstations (processors), 

- compT : is the computation time of one instance in a workstation, 

- commT : is the communication time to exchange variables. 

- Serial case: 

The total execution time taken to process the same data: 

( ) ( ) = total number of instances time of instance
 ( )

s

s comp

T
T LPT

×
=

 

( )
( , )

1 1 comm

comp

LP
S L P

T
L P

T

∴ =
 

+ − +  
 

 ( 5.2 ) 

The ratio comm

comp

T
T

 is called the granule size, the bigger the granule size the better the speedup.  

For ideal cases L P? . Then:  

( , )

1 comm

comp

P
S L P

T
T

=
 

+  
 

  ( 5.3 ) 

For the system to be scalable, it should perform the same or better as the number of 

processors and/or problem size increases. The efficiency is used to measure this aspect. 
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( )

Speed upEfficiency =
no. of processors

( , )

1 1 comm

comp

LE L P
TL P
T

=
 

+ − +   

 ( 5.4 ) 

The above equation suggests that for small L the scalability is worse as we increase the number 

of processors. For large L , the only factor that affects the scalability is the granule size. 

- The effect of granularity on the speedup: 

According to equation 5.2, it is obvious that as the granularity increases, the better the 

speedup. The granule size can be chosen by the amount of data assigned to the workstation. It 

should be noted that the granule size has a maximum value limited by the memory of the 

processor. Therefore, care should be taken in choosing the granule size.  

It may seem that for a fixed size problem that by increasing the processing elements the 

speedup will increase linearly. This is only valid as long as the granule size remains constant. 

Actually as we increase the number of processing elements for fixed size problems, 

compT decreases as each processor takes a smaller load and commT may increase as network load 

increases with more overheads. This gives smaller granularity, which leads to lower efficiencies.  

Therefore, it is important to investigate the granularity of the application by measuring a 

number of parameters like the network bandwidth/latency, network performance under 

different loads, and computation regularity. 

For our LES application, equal loads were assigned to each processor as shown in figure 5.5. 

We concluded the following: 

y

x

z PE

Nx

Ny
Nz

PE

 
Figure 5.5: Load assignment to processing elements 
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- The computation is regular, i.e., calc x y zT N N Na  where ,x yN N  and zN are the number of 

grid nodes in the direction of X, Y and Z axis. 

- The communication is made through a dedicated switch with only 10 workstations, so we 

can neglect the effect of network load. 

- Comm y zT N Na , which represents the interface between the different processing elements. 

- For fixed size problems, 1
xN Pa where P  is the number of processors. As we increase 

the number of processors, the load assigned for each processor decreases. 

comm

comp

T
GP

T
∴ =  where G is the granularity constant. 

Substituting in equation 5.2: 

( ) ( )( , )
1 1
LP

S L P
L P GP

∴ =
+ − +

 ( 5.5) 

 
Figure 5.6: Speedup and granularity 

Plotting the above equation for different values of granularity constants and different number 

of processors, we obtain figure 5.6. It is shown that a slight increase in granularity constant 

reduces the effective speedup. Actually, the granularity may even inhibit any speedup 
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regardless of the number of processors added. Hence, care must be taken in choosing the 

granule size and measurements should be made to ensure this choice. 

5.1.5 Simulation Results 

A flat plate wake was used for demonstration and making pilot simulations. A number of 

different simulations were carried out with different parameters to investigate the influence of 

each parameter on the results. 

5.1.5.1 Domain information 

For flat plate wake, the domain size is 1.0m x 0.2m x 0.6m in X, Y, and Z direction 

respectively. A number of simulations have been made for the flat plate wake with different 

grid size. 

Non-uniform grid is used in the different directions. Note that X represents the stream-wise 

direction, Y represents the vertical direction, and Z represents the span-wise direction, as 

shown in figure 5.7. 

 
Figure 5.7: The schematic of the flat plate wake [SS01] 

5.1.5.2 Boundary conditions 

For both cases, inflow boundary and outflow boundary are applied in x direction. For outflow 

boundary, we applied convective outflow boundary, i.e. 

0
x
u

U
t
u

con =
∂
∂

+
∂
∂    ( 5.6 ) 
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Symmetry boundaries are used in Y direction and periodic boundaries are used in the span-

wise direction. At the free surface, slip in X and Z directions are allowed, but the velocity 

component normal to the free surface is set to zero. The free surface is approximated as a flat 

plane without walls. For more details, see [SS01].  

5.1.5.3 Simulation test 

A 2-processor simulation was successfully conducted on two processors of the cluster using a 

grid size of 18x18x18 nodes for each domain. The stream-wise velocity contours is shown in 

figure 5.8 from [SS01]. The two domains are consistent very well. This indicates that the one-

way decomposition technique is successful.  

 
Figure 5.8:The stream-wise velocity contours of one-way decomposition scheme. 

5.1.5.4 Simulation results 

A number of different experiments were carried out on the cluster with different parameters. 

The parameters used for the analysis are the number of processors, the number of grid nodes 

per workstation (accuracy), and the total simulation time (number of iterations). The results of 

each experiment with various parameters are shown in the following sections. 
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- Effect of the simulation time 
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Figure 5.9: Execution time versus the simulation time 

These simulations were executed on three workstations with a grid size of 18 18 18× ×  nodes 

each, for different simulation time (iterations). We can predict the speedup using equation 5.3, 

and the measured quantities of commT and compT .  

0.0012secCommT = , 0.637secCalcT = . Then, 2.99S ≈ . 

As illustrated in figure 5.9, the execution time is nearly directly proportional to the required 

simulation time (number of iterations). This is due to the fact that for this case the ratio 

1comm compT T = , so equation 5.3 is reduced to ( ),S L P P≈ . This makes it easy to predict 

the total execution time required for long simulations using the results from a small number of 

processors. 

- Effect of the number of processors 

In these simulations, we increase the problem size proportional to the number of processors. 

In other words, the number of grid nodes for each processor is not changed when adding 

another processor. The number of grid nodes used for each workstation is 18 18 18× ×  with 

a simulation time of 5000 loops.  
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Figure 5.10, illustrates the speedup experienced while increasing the problem size with the 

number of processors. It is clearly seen that the speedup is directly proportional to the number 

of processors as long as the granularity remains constant. 

This demonstrates one of the important features of cluster computing, which is the ability to 

scale up the size of the problem for the same execution time with the number of available 

workstations. Also,  we notice that the measured speedup is directly proportional to the 

number of processors as predicted. 
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 Figure 5.10: Speedup experienced while increasing the problem size with the number of 

processors. 
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- Effect of the number of grid nodes per workstation  
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Figure 5.11: Execution time versus number of grid nodes per workstation. 

To test for the effect of the number of grid nodes per workstation on the execution time, a 

number of experiments were carried on 4 workstations for a simulation of 1000 iteration. 

Figure 5.11 illustrates the results obtained, which shows that the execution time is directly 

proportional to the total number of grid nodes per workstation, or in other words the 

execution time is of order ( )3O N  where N  is the grid nodes per dimension. Note that when 

the total number of grid nodes per workstation is changed other parameters like memory size 

and cache replacement methods could affect the results. 

With the previous experiments and deducted relations, one may predict the execution time or 

the number of processors required using a small-scaled pilot simulation. For example, consider 

the execution time for 18 18 18× ×  grid nodes per workstation for 8 processors is 3254 

seconds for a simulation time of 5000 simulation ticks (iterations). One can estimate the 

execution time for 66 66 66× ×  grid nodes per workstation, on four processors with 

simulation time of 1000 ticks. Using the previous relations, the estimated execution time is 

32082 seconds. Actually, the estimated execution time is fairly close to the measured value, 

which is 34760 seconds. A number of experiments were carried out wit different parameters 

and compared to the estimated execution time; the relative error never exceeded 10%. 
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Accordingly, a small-scaled simulation is sufficient to estimate the actual execution time for a 

large-scaled simulation. 

5.1.6 Conclusion 

Beowulf clusters can provide ample and cost effective resources for high performance 

computing. However, it encapsulates many features that are unique, and offers hope of 

providing a solution to the needs of many supercomputer users. The Beowulf architecture 

provides a standard message-passing hardware and software environment, with a low cost of 

entry.  

We have implemented pipelined domain decomposition technique in simulating a flat plane 

wake flow. One of the great merits of pipeline domain decomposition is that it permits the 

overlapping between communication and computation, so synchronization time can be 

neglected. 

The domain decomposition has shown its ability to adopt the cluster computation potential 

and to scale up with the cluster capabilities. The numerical experimental have verified the 

analytic study of the scalability of the domain decomposition.  

It is possible to predict the execution time and the number of processors required for a 

simulation by using a small pilot simulation, and the relations deducted between the grid size, 

simulation time and the number of processors. This is important especially when 

computational time is being paid for. However, one of the weaknesses of this domain 

decomposition technique is that the execution time is very sensitive to the slowest workstation 

in the pipeline, which can cause degradation in performance.  

5.2 Distributed Algorithm for Partially Clairvoyant Dispatchers3 

Real-time systems are finding use in complex and dynamic environments such as cruise 

controllers, life support systems, nuclear reactors, etc.,. These systems have separate 

components that sense, control and stabilize the environment towards achieving the mission 

or target. These consociate components synchronize, compute and control themselves locally 

                                                 
3 The implementation is a joint work under the supervision of Dr. K. Subramani. Special thanks to K. 

Yellajyosula. 
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or have a centralized component to do the above. Distributed computing techniques improve 

the overall performance and reliability of large real-time systems with spread components. 

Partially Clairvoyant scheduling was introduced in [Sak94] to determine the schedulability of 

hard real-time jobs with variable execution times. The problem of deciding the Partially 

Clairvoyant schedulability of a constrained set of jobs has been well studied in the literature 

[GPS95, Cho00, Sub03]. These algorithms determine the schedulability of the job set offline 

and produce a set of dispatch functions. The dispatch functions of a job depend on the start 

and execution times of the jobs sequenced before the job. The dispatching problem is 

concerned with the online computation of the time interval to start a job such that none of the 

constraints is violated. In certain situations, the dispatcher fails to dispatch a job, as it takes 

longer to compute the interval within which the job has to be dispatched; this phenomenon is 

called Loss of Dispatchability. For a job set of size n , sequential approaches using function lists 

suffer from two major drawbacks; ( )nΩ dispatching time and the Loss of Dispatchability 

phenomenon. Existing approaches to this problem have been along sequential lines using 

stored function lists. 

In this section, we implement and evaluate a distributed pipeline-dispatching algorithm for 

Partially Clairvoyant schedules. For a job set of size n , the algorithms have dispatch times of 

( )1O  per job. All the processors execute jobs assigned to them and compute the dispatch 

functions in a certain defined order. 

5.2.1 Introduction  

Real-time systems are characterized by deadlines, dependencies between jobs and parameter 

variability; execution time is one such parameter. The execution time of a job can vary due to 

input dependent loops, caching and compiler-architecture mapping of the machine as 

explained in [Sub02]. Another factor varying the execution time is the alteration of the clock 

frequency by power aware processors. Transmeta's LongRun, AMD's PowerNow, or Intel's 

SpeedStep technologies vary the processor voltage or clock frequency to decrease the power 

consumed by the processors according to the system load. [AM+01] proposes to decrease 

energy consumption for real-time systems by adjusting processor speed and reusing the 

unused processor cycles. 
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Distributed computing is quite popular in various consumer and safety-critical applications 

today. The huge applications that exist today have multiple levels of processing spread-out in 

various domains. In such applications, local control is preferred with little data moving 

between the levels. These applications have intelligent online algorithms that are invoked in 

response to the fl uctuations within the environments. Consider a few examples of distributed 

systems that need to respond in small durations when presented with unpredictable 

circumstances: 

- Clusters of independent robots are being developed to achieve missions in hostile 

environments like surveying landscape and searching for survivors [RG+02]. The robots 

control their own motion, communicate with each other, and complete jobs distributed 

among them to complete the mission. The motion of a robot requires complex modeling 

and has to consider various kinematics equations, which require different computing times 

[YYM01, HCF03]. This motivates the requirement of online controllers, which would 

control the actions of the robot and maintain the deadlines across them. Since the 

environment is dynamic, we cannot use any online strategy for controlling the system. 

[RS+00] presents the hardware and software components of a robotic team that survey a 

landscape communicating with the central robot. 

- An automobile cruise control maintains the speed of the car by coordinating and 

monitoring the actions of different components of the engine such as fuel injection, 

braking, transmission, etc.,. New cars have adaptive shifting algorithms, modifying shift 

points based on road conditions, weather, and the driver's individual habits. The cruise 

control system can vary the car acceleration according to the exact speed of the car 

provided by the Anti-lock Braking System. These systems require variable times to 

compute the required torque to drive the car at the speed safely. A 7-series BMW has 63 

microprocessors while a Mercedes S-class has 65 microprocessors. 

For job-sets of size n, [GPS95] and [Cho00] propose ( )nΩ  dispatching algorithms for 

Partially Clairvoyant schedules. These dispatch algorithms may result in the phenomenon 

called “Loss of Dispatchability” due to the linear dispatch time. [TL99] proposes linear time, 

online algorithms that schedule firm aperiodic, hard sporadic and periodic jobs in priority 

based real-time systems with a complexity of ( )nq . [Sub00] proposes a parallel algorithm with 
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( )1O  dispatch time per job to eliminate Loss of Dispatchability. This algorithm requires n  

processors, uses ( )O n  space on each processor, and provides a tradeoff between the 

computing time and resources required, i.e., the constraints are met by increasing the resources 

to compute the interval during which the job can be dispatched. Hard real-time systems 

require reliability of the system at any cost [SP92, SS+98]. 

In this section, we use the number of the processors as an input parameter much less than the 

number of jobs and propose an algorithm with a ( )1O dispatch time. We explore the 

dispatchability of schedules for different job-sets with different timing constraints and show 

that scaling up the number of processors would successfully dispatch some non-dispatchable 

schedules. This work marks the distribution of the jobs of a Partially Clairvoyant schedule 

across processors using a simple heuristic and demonstrates communication between the 

processors and synchronization of job execution across the processors. We present results 

observed on dispatching schedules of different sizes with varying number of processors. 

5.2.2 Problem Statement 

5.2.2.1 Job model 

Let { }1 2, , , nJ J J J= …  be a set of non-preemptive, ordered hard real-time jobs. We assume 

that job execution starts at time 0t = . 

5.2.2.2 Constraint model 

The constraints on the jobs are described by the following equation:  

.[  ] , TA s e b e E≤ ∈rr r r  ( 5.7 ) 

where, 

- A  is an 2m n×  rational matrix; unless explicitly stated otherwise, we assume that the 

constraint set comprises of standard constra ints between two jobs. Constraints express the 

relationships between the start times or finish times of jobs. 
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- E  is an axis-parallel rectangle aph  represented by: 

[ ] [ ] [ ]1 1 2 2, , ,n nE l u l u l u= × ×…  ( 5.8 ) 

The aph E models the fact that the execution time of job iJ can assume any value in the 

range [ ],i il u , i.e., it is not constant. 

- [ ]1 2, , , ns s s s=r …  is the start time vector of the jobs, and 

- [ ]1 2, , , ne e e e E= ∈r …  is the execution time vector of the jobs. 

5.2.2.3 Query model 

Suppose that job ,1aJ a n≤ ≤  has to be dispatched. We assume that the dispatcher has 

access to the start times { }1 2 1, , as s s −… and the execution times { }1 2 1, , ae e e −… of the jobs 

{ }1 2 1, , aJ J J −… . 

Definition 5-1 

A Partially Clairvoyant Schedule of an ordered set of jobs, in a scheduling window, is a vector 

[ ]1 2, , , ns s s s=r … , where each ,1is i n≤ ≤ , is a function of the start time and execution time 

variables of jobs sequenced prior to job iJ . 

Definition 5-2 

A Partially Clairvoyant Schedule of sr for the constraint system 1 is said to be feasible, if for all 

sequences 1 1 2 2, , , , , ,seq n nb s e s e s e′ ′ ′ ′ ′ ′= … , where is ′ is chosen as per sr  and [ ],i i ie l u′ ∈ , we have 

.[  ] ,TA s e b′ ′ ≤
ur ur r

 where is ′  and ie′ are numeric vectors, corresponding to the sequence seqb . 

The discussion above directs us to the following formulation of the schedulability query: 

[ ] [ ] [ ]1 1 1 1 2 2 2 2, , , .[  ] ?T
n n n ns e l u s e l u s e l u A s e b′ ′∃ ∀ ∈ ∃ ∀ ∈ ∃ ∀ ∈ ≤

ur ur r…  

The combination of the Job model, Constraint model and the Query model constitutes a 

scheduling problem specification within the E -T-C scheduling framework [Sub02]. 
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Definition 5-3 

A feasible Partially Clairvoyant schedule is said to be dispatchable on a machine M, if for every 

job iJ , M can start executing iJ  such that none of the constraints are violated. 

Definition 5-4 

A safety interval for a job is the time interval during which the job can be started without 

violating any of the constraints imposed on it. 

In this research, we are concerned with the dispatching problem, i.e., how to compute the 

safety intervals of the jobs, such that the jobs can be dispatched safely within the proper time 

intervals, assuming that a Partially Clairvoyant schedule was obtained from the above query. 

5.2.3 Motivation and Related Work 

[Sub02] proposes the E-T-C framework to formalize problems in real-time systems, which 

takes into account the variability of execution time, complex relationships between jobs and 

clairvoyance of the system. [Sak94] introduced Partially Clairvoyant scheduling to reduce the 

inflexibility of static scheduling in hard real-time systems. Partially Clairvoyant scheduling is 

explained in detail in [GPS95, Sub03] and [Sub00]. [GPS95] proposes a sequential online 

dispatching algorithm for the schedule generated using the algorithm in [Sak94]. The algorithm 

stores lists of dispatch functions and has dispatch time proportional to the number of jobs. 

The computing overhead of the online dispatcher may cause constraint violation, i.e., the time 

after computing the safety interval ( ),b bl r exceeds br . The phenomenon by which a job cannot 

be dispatched is called Loss of Dispatchability. [Sub00] proposes a parallel online algorithm for 

eliminating Loss of Dispatchability for Partially Clairvoyant schedules. 

The original single controller algorithm proposed in [Sub00] assumes that there are as many 

processors as the number of jobs n . The jobs are executed on a central processor, which then 

broadcasts the start and execution time of the completed job to the other processors. The n  

supporting processors receive the start and execution times of a job kJ  and update the safety 

intervals, by relaxing the 4 constraints between the job completed and the job assigned to it. 

The satellite processor k sends the safety interval of job 1kJ + . This algorithm has 

( )1O dispatch time per job and uses ( )O n space per processor. 
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5.2.4 Computer Resources 

Experiments were conducted on Lemieux system at the National Science Foundation (NSF) 

Terascale computing system at the Pittsburgh Supercomputing Center (PSC). Lemieux 

comprises 750 Compaq Alphaserver ES-45 nodes and two separate front end nodes. Each 

computational node contains four 1GHz processors SMP with 4 Gbytes of memory and runs 

the Tru64 Unix operating system. Nodes are connected using a quadrics interconnection 

network.  

The quadrics network has two building blocks, a programmable network interface called Elan 

and a low-latency high bandwidth communication switch called Elite. The Elan network 

interface links the high-performance, multi-stage Quadrics network to the nodes. The Elan 

also provides substantial local processing power to implement high-level message-passing 

protocols, such as MPI, in addition to generating and accepting packets to and from the 

network. The Elite switch provides 8 bidirectional links supporting two virtual channels in 

each direction, an internal 16 8× full crossbar switch and a bandwidth of 400 MB/s with a 

latency of 35ns . We used MPI libraries in C to implement the dispatcher.  

5.2.5 Experiment Design 

The parameters used to generate the test cases are: 

- Number of jobs n : The number of jobs in the schedule 

- Execution time ( ),l u : The lower and upper limit of the execution time of the jobs. 

- Spacing time ( ),p q : The time interval [ ],p q  in which the next job would begin.  

- Number of constraints E : The number of standard constraints between jobs. 

5.2.5.1 Generation of Partially Clairvoyant schedules 

We specify the number of jobs n , the number of constraints E , the execution time [ ],l u  and 

the spacing time [ ],p q . We also specify a random seed for generating the constraints. The 

generating algorithm GA does as follows: 
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- For each job, GA generates two numbers between l  and ( )u u l> , which are bounds 

for the execution time of the job.  

- Between every job iJ and ( )1 1iJ i n+ ≤ ≤ , GA generates standard constraints of the 

form 1i i is e s ++ ≤  and 1i i is s e c+ ≤ + +  where c  is a random number between the 

p andq . The generator generates at least 2n  constraints. 

- If the number of constraints 2E n> , then constraints are generated between the two 

jobs at random such that a Partially Clairvoyant schedule exists. 

5.2.5.2 Schedule execution 

The dispatcher takes as input the number of jobs, execution time periods, a random seed, and 

the dispatch functions. The dispatch functions are stored in a two-dimensional triangular array. 

Arrays are maintained to store the start time, execution time, and execution time periods of the 

jobs.  

During execution, the control passes from one processor to the other with every job. In order 

to avoid clock synchronization and drift problems of the processors in our implementation, we 

also send the current time from one processor to the other with the start and execution times. 

The communication time is measured by dividing the sum of time required to send and receive 

a message to the next processor by 2. This approximately simulates the time that would be 

required by the next processor to receive a message. In case the receiving processor is still 

updating constraints, then the waiting time is automatically added to the communication time, 

which agrees with the other case that relies on the processors' clock. 

The pipeline approach alternates between different stages of updating and execution. At first, a 

processor executes a job and sends the start and execution times to the next processor. After 

sending the current time, the processors update the safety intervals of the remaining jobs 

assigned to them. The other processors relay the start and executing times before updating the 

safety intervals of the jobs assigned to them.  Figure 5.12 illustrates the expected outcome 

compared to the serial implementation. 
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Figure 5.12: Single and Parallel implementation performance with respect to the number 

of jobs 

5.2.6 Empirical Analysis 

For our hardware architecture, we noticed that we have two stages of communication; intra -

node communication and inter-node communication. Intra-node communication is 

communication between processors of the same node through the ELAN interface, while 

inter-node communication is communication between processors on different nodes through 

the Quadrics interconnect network. Thus, we performed two sets of experiments for each 

implementation of the dispatchers. In the first set of experiments, all processors are chosen 

from the least number of nodes containing them while the second set of experiments chooses 

one processor per node resulting in inter-node communication only. 

During our tests, we observed serious overshoots with the communication time that includes 

waiting time for the updates. These overshoots are probably due to uncontrolled traffic over 

the network or other operating system jobs, where the response time depends on the network 

load between the nodes. We performed many experiments and observed the communication 

time between the different nodes. We noticed that the normal communication time is limited 

to an interval of time and the overshoots occur further than ten times the length of this 

interval as seen in figure 5.13. 
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Figure 5.13: Histogram of the communication time observed in our experiments 

Accordingly, we neglected theses overshoots by checking if the observed communication time 

is greater than 10 times the previous communication time. These overshoots can be safely 

neglected, as real-time systems require dedicated machines with predictable performance. 

5.2.6.1 Using all processors on a node (packed node) 

We conducted experiments to investigate the dispatchability of the job sets with different 

number of processors. In these experiments, nodes are allocated such that all the processors of 

the same node are used where applicable. For example, to conduct an experiment with 9 

processors, 3 nodes are allocated; all 8 processors of the 2 nodes and 1 processor of the third 

node are used.  
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Figure 5.14: Undispatchable jobs for packed nodes 

As illustrated in figure 5.14, each processor set dispatches different job sets. There is no 

observable relation between the number of processors and job sets other than that all the 

processors failed to dispatch job sets larger than 8000 compared to 5000 for the serial 

implementation. In addition, we observe that increasing the number of computing nodes does 

not increase the dispatchability sets. We conclude that, multiple processors can dispatch more 

job sets than the serial implementation and each processor set dispatches different job sets. 

5.2.6.2 Using one processor per node 

In these experiments, we eliminate the effect of intra-node communication by allocating one 

processor per node. For example, to conduct an experiment with nine processors, we allocate 

nine processors on nine nodes. Figure 5.15 illustrates the job sets that are not dispatchable by 

the processor sets.  
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Figure 5.15: Undispatchable jobs while using one processor per node 

It is clear that this implementation of the dispatcher is superior to the previous implementation 

as all of the job sets are dispatched except for a few cases. We conclude that by eliminating the 

intra-node communication, the processor sets are able to dispatch more job sets. We account 

this observation to the increased network congestion caused at the ELAN interface by 

communication requests produced by processors of the same node. 

5.2.7 Conclusion 

We implemented a distributed dispatcher using pipelined approach. Our results show the 

superiority of distributed dispatching over the uniprocessor dispatching. We showed that for 

every schedule, there would be a processor set which dispatches the schedule successfully.  

Our tests show that choosing a processor per node is better than multiple processors per node. 

This increases the length of the connection paths between processors through switches but the 

load on the ELAN switches decreases. The ELAN switch that uses a shared memory to 

communicate data between processors in a node becomes a bottleneck when all the processors 

send data to each other. Thus, it is important to know the characteristics of the underlying 

hardware before attempting to write a parallel program. 
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Chapter 6  

HNOW MODELLING 

 

In order to design load-balancing algorithms for a heterogeneous network of workstations 

(HNOW), a number of parameters need to be well defined. These parameters should cover 

the heterogeneity of the network of workstations, the applications considered and the 

characteristics of the required load-balancing algorithm. In this chapter,  we will discuss these 

different parameters, and then we will discuss the different approaches to model the HNOW 

specifically theoretical and simulation modeling. Finally, we will present our HNOW model. 

6.1 HNOW Measurable Parameters 

HNOW measurable parameters are divided into cluster heterogeneity parameters and HNOW 

performance parameters. Cluster heterogeneity parameters are used to describe the structure of 

the HNOW while the performance parameters are used to measure the performance of the 

HNOW for a certain application.  

6.1.1 Cluster Heterogeneity Parameters 

The sources of heterogeneity in a network of workstations can be divided into three main 

categories: processor, memory, and network parameters. 

6.1.1.1 Processor Parameters 

In a fully detailed processor model, we would need to consider the speed of a processor in 

terms of the number of floating-point operations per second, and the number of integer 

operations per second. Multiple instructions and instruction pipelining would further 

complicate the model. Thus, a number of more simplified parameters that have shown their 

effectiveness may be considered as follows: 

- Processor speed: some researches [LL96] just considered the processor speed only and 

used benchmarks to obtain the speed index.  
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- Relative processor speed: most researches use the “relative processor speed” defined as 

the ratio of the time taken to execute a sample of the application on the processor in 

consideration, with respect to the time taken on a base processor. This measurement 

incorporates most of the workstation elements from processor speed to cache and 

memory. It should be noted that the relative processor speed is application dependent. 

- Processor load: some other researches use the workload observed at time of load 

balancing on the processors as an indication of the workstation computational power 

[DCG93]. There are two main alternatives for estimating this value: by means of external 

functions (active methods) or by using the application itself (passive methods). This latter is an 

ideal solution that aims at avoiding extra overheads caused by the active methods. 

Although active methods are more time wasteful, they guarantee transparency to the 

programmer and a more accurate estimate to the actual workload.  

6.1.1.2 Memory Parameters 

The required memory required by the application and the actual available memory should be 

considered in scheduling the computations and data. Usually the total amount of memory in 

the cluster limits the data size considered by numerical scientific applications like weather 

modeling and computational dynamics. In HNOW, the amount of physical memory for each 

machine may be different which requires special consideration when scheduling workloads. 

A closer inspection to the memory, we find that the total memory is divided into physical 

“RAM” memory and “swap” memory. RAM is high-speed random access memory, while the 

swap memory uses the slower hard disk drive as an extension to the RAM. Most of the 

researches use the term total memory and free memory without specifying which type is 

included in their experiments. Obviously, the performance degrades as more swap memory is 

used.  

It should be noted that the access time of the RAM ranges from (5–50 ns) from the SRAM to 

(60–100 ns) of the DRAM while the swap memory ranges from (10-20 ms) for seek time 

besides data transfer time (5-40 MB/sec).  

Many researches as in [OP97], [CCN97], [LL96], [B99], and [HLA95] assume infinite memory 

in their models, which is an invalid assumption for our HNOW model.  
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6.1.1.3 Network Parameters 

For a heterogeneous network of workstations, we have to consider the cost of communication 

between linked (logically linked by the application) machines. We must consider both the 

network latency and bandwidth.  

- Network latency: This is one of the primary concerns for heterogeneous systems. High 

latency can make communication extremely expensive, and restrict the scalability of the 

system. 

- Network bandwidth: With different interconnection networks, the network 

heterogeneity can become a significant factor in the parallel performance of applications. 

Bandwidth can even be a bottleneck, especially for Ethernet LAN.  

Accordingly, the network parameters may be summarized into two parameters: the startup 

time (independent of message size) and the actual time spent for sending the message 

(proportional to the size of the message).  

6.1.2 HNOW Performance Parameters 

Performance parameters are important in order to evaluate parallel programs. The most 

common performance parameters are the speedup and efficiency. We define the speedup, 

efficiency, and related variables as follows. 

- Number of processors P  

P is the number of processors involved in the HNOW. The performance measured needs to 

be referred to the number of processors used. Good algorithms should be able to scale with 

the number of processors. 

- Sequential execution time sT  

sT  is the time taken by a by a single workstation to execute the application. In a heterogeneous 

network, we will consider the minimum execution time ( spT ) achieved by a single workstation  

P  of the HNOW for the calculation of the speedup.  

 i.e. ( )s spT Min T=  
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- Parallel execution time pT  

pT is the time taken by the HNOW to execute the parallel version of the application.  

- Speedup ( )S p  

The speedup is the ratio between the serial execution time and the parallel execution time. It 

indicates the degree of speed gain in a parallel computation. Most researches use this 

parameter only as an acceptable measure for performance. 

i.e., ( ) s

p

T
S p

T
=  

- Efficiency ( )E p  

The efficiency is the ratio between the speedup and the number of workstations. It measures 

the useful portion of the total work performed by the processors. Efficiency drops as overhead 

of parallel processing grows. The lowest efficiency corresponds to the entire program being 

executed sequentially on a single processor.  

( )
( )

S p
E p

p
=  

6.2 Theoretical Model of Parallel Computers 

Several theoretical models were introduced to facilitate the study of the behavior of algorithms 

applicable to parallel computers. We will summarize these different models in the following 

and discuss if its suitability in modeling a heterogeneous network of workstations. 

6.2.1 PRAM Model 

Figure 6.1 illustrates the parallel random access machine (PRAM) model, which is a 

multiprocessor system with shared memory and zero synchronization and no memory access 

overhead.  
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Figure 6.1: PRAM model 

There are four variants of the PRAM depending on how the memory reads/writes are 

handled. 

- EREW-PRAM (Exclusive Read Exclusive Write): This model forbids more than one 

processor to read or write the same memory cell simultaneously. 

- CREW-PRAM (Concurrent Read Exclusive Write): This model forbids more than one 

processor to write the same memory cell simultaneously, but concurrent reads to the same 

memory cell is allowed. 

- ERCW-PRAM (Exclusive Read Concurrent Write): This allows exclusive read or 

concurrent writes to the same memory cell. 

- CRCW-PRAM (Concurrent Read Concurrent Write): Concurrent read or write to the 

same memory cell. 

The conflicting writes are resolved by one of the following:  

- Arbitrary:  Any one of the values written may remain and all the other are ignored 

- Minimum: The value written by the processor with the minimum index will remain 

- Priority: The values written are combined using some function as summation or 

maximum. 

Certainly, this model is suitable for shared memory parallel computers only. 
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6.2.2 BSP Model 
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Figure 6.2: BSP model 

The bulk synchronous parallel (BSP) [LV90] was introduced to overcome the shortcomings of 

the PRAM model, while keeping its simplicity. It consists of a set of n processor/memory 

pairs that are interconnected by a communication network as shown in Figure 6.2. Also, it has 

a synchronizer, which performs barrier synchronization.  

 
Figure 6.3: BSP execution 

The essence of the BSP approach to parallel programming is the notion of the superstep, in 

which communication and synchronization are completely decoupled. A BSP program is 

simply one, which proceeds in phases, with the necessary global communications taking place 

between the phases as shown in Figure 6.3. 

A BSP computation consists of a sequence of parallel supersteps, where each superstep is a 

sequence of steps carried out on local data, followed by a barrier synchronization at which 
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point any non-local data accesses take effect. Requests for non-local data, or to update non-

local data locations, can be made during a superstep but are not guaranteed to have completed 

until the synchronization at superstep end. Such requests are non-blocking; they do not hold 

up computation. 

The BSP model is more realistic than the PRAM model as it accounts for different overheads 

listed as follows: 

- Load imbalance, with w  as the maximum computational time taken by a processor. 

- Synchronization overhead, which has a lower bound of the communication network 

latency l . 

- Communication overhead gh , where h  represents the maximum number of messages 

that can be sent and received by each processor in each superstep, and g  is a constant 

decided by the machine platform.  

- The time for the superstep is estimated by the sum  w gh l+ + . 

The BSP model is a realistic model that facilitates the time-complexity analysis of parallel 

algorithms. However, it’s mainly used for homogeneous cluster calculations. Also, the BSP 

assumes a special hardware support to synchronize all processors at the end of the superstep. 

The synchronization hardware may not be available on many parallel machines. Most existing 

parallel machines use messages for synchronization, which has a different model than the one 

used by BSP. Furthermore, BSP model does not support overlapping computations with 

communications. 
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6.2.3 LogP Model 
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Figure 6.4:LogP model 

The LogP model [CKS93] reflects the convergence of parallel machines towards systems 

formed by a collection of complete computers, each consisting of a microprocessor, cache, 

and large DRAM memory, connected by a communication network as shown in Figure 6.4.  

The LogP model for parallel computation models communication performance through the 

use of four parameters: the communication latency L , overhead o , bandwidth g  and the 

number of processors P . Communication is modeled by point-to-point messages of some 

fixed short size. 

LogP model represents a more realistic model for network of workstations than the other 

models. However, it uses only fixed message size and a large memory. Also, it does not 

incorporate most of the parameters needed for the heterogeneous workstations. 

A number of other models like {[GMR94], [ACS89], [MMT95], [MNV94]} derived from the 

discussed models were suggested, but none of them captures the heterogeneity parameters.  

It should be noted that theoretical models and the choice of their parameters is a compromise 

between faithfully capturing the execution characteristics of real machines and providing a 

reasonable framework for algorithm analysis and design. No small set of parameters can 

describe all machines completely. On the other hand, analysis of interesting algorithms is 
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difficult with a large set of parameters.  Accordingly, most researches (refer to related work) 

use simulation or experimental studies.  

It should be noted that in our study we are interested in dynamic behavior as well as the static 

performance of load balancing algorithms. These theoretical models are used only to provide 

static performance of an algorithm on a certain parallel computing system. Consequently, we 

choose to simulate the HNOW environment with simulation models as presented in the next 

section.  

6.3 HNOW Simulation Model 

We built a discrete event simulation model of HNOW. We used OMNeT++ [OMNT] that 

provides the simulation environment and programmed the model using visual C++. In the 

next section, we will list the different features of OMNeT++ and discuss how we used it in 

our simulations. 

6.3.1 What is OMNeT++? 

OMNeT++ is an object-oriented modular discrete event simulator. The name itself stands for 

Objective Modular Network Testbed in C++. The simulator can be used for modeling:  

- communication protocols, 

- computer networks and traffic modeling, 

- multi-processor and distributed systems, 

- any other system where the discrete event approach is suitable. 

6.3.2 Modeling Concepts 

An OMNeT++ model consists of hierarchically nested modules, which communicate with 

messages. Modules that contain submodules are termed compound modules, as opposed 

simple modules, which are at the lowest level of the module hierarchy. Simple modules contain 

the algorithms in the model. The user implements the simple modules in C++, using the 

OMNeT++ simulation class library.  

Modules communicate by exchanging messages. In an actual simulation, messages can 

represent frames or packets in a computer network, jobs, or customers in a queuing network 
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or other types of mobile entities. Messages can contain arbitrarily complex data structures. 

Simple modules can send messages either directly to their destination or along a predefined 

path, through gates and connections. Due to the hierarchical structure of the model, messages 

typically travel through a series of connections. 

OMNeT++ supports a process-style description method for describing activities. During 

simulation execution, simple module functions appear to run in parallel, because they are 

implemented as co-routines. Co-routines were chosen because they allow an intuitive 

description of the algorithm and they can serve as a good basis for implementing other 

description methods like state-transition diagrams or Petri nets. 

6.3.3 Building and Running Simulations 

An OMNeT++ model consists of the following parts:  

- NED language topology description(s), which describe the module structure with 

parameters, gates etc. 

- Simple modules sources: These are C++ files. 

The simulation system provides the following components:  

- Simulation kernel: This contains the code that manages the simulation and the simulation 

class library.  

- User interfaces: OMNeT++ user interfaces are used with simulation execution, to facilitate 

debugging, demonstration, or batch execution of simulations.  

The simulation executable is a standalone program; thus, it can be run on other machines 

without OMNeT++ or the model files being present. When the program is started, it reads in 

a configuration file (usually called omnetpp.ini); it contains settings that control how the 

simulation is run, values for model parameters, etc. The configuration file can also prescribe 

several simulation runs; in the simplest case, they will be executed by the simulation program 

one after another.  
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The output of the simulation is written into data files: output vector files, output scalar files, 

and possibly the user's own output files. OMNeT++ provides a GUI tool named Plove to 

view and plot the contents of output vector files. This process is summarized in figure 6.5 

 
Figure 6.5: Building and running a simulation 

6.3.4 Simulation Model 

In order to construct a simulation model for the HNOW, we need to identify the following:  

- Input variables that define the system, 

- Output variables that define the performance measures, 

- Mathematical/logical relationship between the inputs and outputs. 

In the following sections we will discuss each of these in details. 

6.3.4.1 Input variables that define the system 

To simplify our model, we define “datapoint” as our main measuring unit. A data point is the 

smallest calculation unit of the SPMD. It represents the grid point or an array element, 
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according to the application. Each data point is characterized by requiring the same number 

of operations and the same storage space.  

Without loss of generality, we may relate the processor speed and memory to the datapoints. 

For example, the processor can execute 2000 datapoint operations/sec (DPOPS) or its 

memory can hold up to 5000 datapoints (DP). Also, reverting back to the standard units is 

easy, just by measuring the data point size and the number of Mflops needed. Therefore, in 

our simulations and calculations we will be using this application unit “DP”. We summarize 

the notation of all the parameters in the following table: 

Terminology Notation Unit Application Unit 
Processor speed F MHz Datapoint operations /s  
Workload W MB Datapoints (DP) 
Free memory Mf MB Datapoints (DP) 
Swap memory Ms MB Datapoints (DP) 
Memory Access time (swap) Ma Sec Sec 
Latency L Sec Sec 
Bandwidth BW MB/sec Datapoints /s 

Table 6.1: HNOW metrics expressed in datapoints 

6.3.4.2 Output variables that define the performance measures 

There are two different sets of performance parameters: parameters that measure the HNOW 

performance and parameters that measure the performance of the load-balancing algorithms. 

- HNOW performance parameters 

The most common is the scalability measured by the speedup of an application with the 

number of workstations as discussed before. 

- Load-balancing algorithms performance parameters 

The most common performance parameters are:  

Convergence: the number of steps required to reach steady state from an imbalanced state. 

Load Exchange: total number of extra data points exchanged to reach steady state. 

Balancing Overheads: this includes both extra time required for the computation for the load-

balancing algorithm and the extra messages exchanged for the balancing algorithm 
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6.3.4.3 Relationship between the inputs and outputs 

The nature of applications considered in this research assumes the following: 

- Computational intensive applications, which involves a large number of iterations (much 

larger than the number of processing units), 

- Large data domains (more than that one processing unit can handle), 

- The main data domain’s shape is regular, 

- The main data domain is uniform, which means that each datapoint requires the same 

amount of computations. 

The parallel programming paradigm implemented is a pipelined SPMD in which: 

- Each processing unit has the same executable program, 

- Each processing unit is assigned a continuous pa rt of the main data domain,  

- Neighboring processing units communicate regularly to exchange boundary variables, 

- Pipelined in the sense that each processing unit can’t begin its execution before it receives 

the boundary variables from the neighbors, 

- There is no synchronization between the different processing units. 

The network of workstation used is a non-dedicated heterogeneous cluster of workstations. 
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Chapter 7  

DYNAMIC LOAD BALANCING ALGORITHM OUTLINE 

7.1 Dynamic Load Balancing Algorithm (DLAH) for HNOW Overview 

The DLAH algorithm is based on the diffusion technique in which neighboring (logically 

connected by the application) workstations communicate with each other and exchange 

workloads to eliminate any load imbalance. Diffusion technique has a number of properties 

listed as follows: 

- Load balancing algorithm is distributed as there is no central scheduler,  

- No synchronization is required as each workstation may be triggered independently 

depending on its current state, 

- Decision making is mainly based on local information exchange which yields less 

communication cost,  

- Uniform communication between the neighboring workstations, which supports the 

pipelined SPMD applications. 

It seems that the diffusion technique may not converge towards a globally balanced system, 

but it has been proven mathematically [CLZ99] that the execution of a diffusive load-balancing 

policy nullifies any load imbalance in a system. The results were derived on massively parallel 

architectures and implemented algorithms demonstrated their scalability and robustness. We 

extend the diffusive policy to incorporate the HNOW parameters.  

The main features that we consider essential for the DLAH algorithm are summarized in the 

following points: 

- Dynamic to accommodate for the non-dedicated cluster nature . 

- Scalable with the number of workstations in the cluster.  

- Preserve the relationship adjacency by shifting workloads between adjacent workstations 

only. 
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We use the taxonomy defined in section 2.5 to classify the DLAH algorithm:  

- Initiation: Sender initiated by the overloaded workstation 

- Load balancer Location: Distributed, Asynchronous 

- Decision making: Local 

- Communication: Uniform, Local  

- Processor/Load matching: The overloaded processor sends load-packets to its neighbors until 

its own load drops to a specific threshold or the average load. 

The main performance parameters we will focus on are the convergence rate and the extra 

load exchanged. 

A detailed description and analysis of the algorithm is presented in the following sections. 

7.2 Convergence of the Diffusive Policy  

The diffusion policy relies on neighboring workstations that communicate with each other and 

exchange workloads to eliminate any load imbalance between them. It has been proved 

[CLZ99] that this policy drives the whole system to a global balanced state. We will discuss the 

proof in details in this section.  

For this analysis, the workstation memory is considered infinity and the total workload 

assigned for the network of workstations remains constant throughout the whole execution, 

i.e. workloads are neither created nor destroyed but rather moved around the system. Also, the 

execution time is directly proportional to the workload assigned, thus it is equivalent to analyze 

the system with the workload or the execution time.  

Let i  denote the i-th workstation in the cluster. Let its loop execution time at time t  be ( )iL t   

The average system execution time at time t  is: 

( ) ( )
1

1 P

i
i

t L t
P

µ
=

= ∑  ( 7.1) 
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One simple measure of the system imbalance is the variance of the loop execution time of the 

workstations given by. 

( )
( ) ( )( )2

2 1

P

i
i

L t t
t

P

µ
σ =

−
=

∑
 ( 7.2 ) 

We will state the main theorem and discuss the proof in details. 

Theorem 7-1 

The execution of a diffusive load balancing policy nullifies any load imbalance in the system, 

i.e.,  

( )
( ) ( )( )2

2 10, 0 such that 

p

i
i

L T T
T T

P

µ
ε σ ε=

−
∀ > ∃ > = <

∑
 ( 7.3) 

To prove theorem 7-1, we need to use theorem 7-2. 

Theorem 7-2 

Reducing the local variance of loop executions in a domain D  of workstations, by exchanging 

workload among themselves, reduces the global variance of the system. 
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Proof: 

Using equations 6.3 and 6.4, we can express the variance of the loop time execution as follows: 

 

( )
( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

2 1

2 2

1 1

2 2 2

1

2 2

1

2

2

1

P

i
i

P P

i i
i i

P

i
i

P

i
i

L t t
t

P

L t t L t P t

P

L t P t P t

P

L t t
P

µ
σ

µ µ

µ µ

µ

=

= =

=

=

−
=

− +
=

− +
=

= −

∑

∑ ∑

∑

∑

 ( 7.4 ) 

Assume after time t∆ , the loop execution time variance changes due to the act of the load-

balancing algorithm in domain D only, as shown in the following equation:  

( )
( ) ( )( )

( ) ( )

2

2 1

2 2

1

1

P

i
i

P

i
i

L t t t t
t t

P

L t t t t
P

µ
σ

µ

=

=

+ ∆ − + ∆
+ ∆ =

= + ∆ − + ∆

∑

∑

 ( 7.5 ) 

Therefore, the change in variance can be expressed as: 

( ) ( ) ( )

( ) ( ) ( ) ( )( )

2 2 2

2 2 2 2

1 1

,

1 1P P

i i
i i

t t t t t t

L t t L t t t t
P P

σ σ σ

µ µ
= =

+ ∆ = + ∆ −

= + ∆ − − + ∆ −∑ ∑
 ( 7.6 ) 

As mentioned before, the workload is not created nor destroyed but moved from one 

workstation to another, thus the average remains constant, i.e., ( ) ( )t t tm m+ ∆ = .  

Since the workloads of the workstations outside of the domain did not change, i.e., their loop 

execution time did not change. Then we may rewrite the change in the variance as follows: 
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 ( 7.7 ) 

where DN  is the number of workstations in the domain of interest. 

Since the workloads are exchanged in domain D  only, then the average has not been changed. 

Therefore, the above equation is reduced to: 

( ) ( )2 2, ,D
D

N
t t t t t t

P
σ σ∆ + ∆ = ∆ + ∆  ( 7.8 ) 

From the above equation, we can see that the global variance depends directly on the change 

of the variance of the domain only. That means if the load-balancing algorithm is able to 

decrease the variance of the local domain then that will directly decrease the global variance 

and accordingly contribute to the global balance. 

The result of this lemma assumes that the load-balancing algorithm acts only in one domain at 

a time. This result can be generalized to show that the load-balancing algorithm can act on 

several disconnected domains in parallel to achieve a global balance. 

In the next section, we will prove theorem 7-1. 
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Proof of theorem 7-1: 

Let us assume that the cluster of workstations is divided into domains, each domain overlaps 

with the neighboring domains. The load-balancing algorithm can operate on any number of 

domains at the same time. The load-balancing algorithm realizes any imbalance and works to 

diminish the local variance.  

The load-balancing algorithm will only stop at a time T when each domain is balanced. At 

time T t− ∆ , the system was imbalanced with a variance of e . The above setup guarantees 

that at least one of the domains is imbalanced. Using the result of theorem 7-2, the diffusive 

policy reduces the local variance of each domain beyond e . Thus, when the load-balancing 

algorithm stops, the global variance will be reduced to a value beyond e . 

7.3 DLAH Algorithm  

Figure 7.1 presents a flowchart diagram of the DLAH algorithm. Before beginning the 

procedure, the execution time of a predefined number of iterations (loops) is measured. This 

execution time measured includes all the HNOW factors as it includes the calculation time, 

communication time and various overheads such as paging, caching, and operating system 

overheads. The load balancer then classifies the workstations into three categories: Overloaded, 

Normal and Underloaded workstations.  

The load balancer algorithm will only be invoked if the workstation status is overloaded. Then, 

it checks its underloaded neighbors to see how much extra data points they can accept before 

there status changes to normal. Accordingly, if they can accommodate the extra points, the 

load balancer algorithm sends the datapoints that just make it changes its status from 

overloaded to normal. Otherwise, the overloaded workstation sends the datapoints, which can 

be accepted by the neighbors, and averages its extra load among the underloaded and normal 

workstations. 
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Figure 7.1: DLAH algorithm 

It is worth noting that the most critical part of the algorithm is the calculation of the load to be 

exchanged. If the load calculation does not consider HNOW parameters, a bouncing effect may 

result. The bouncing effect is characterized by sending data points to a neighboring 

workstation. This neighboring workstation would take more execution time than expected 

(due to neglecting the HNOW parameters) and in turn will return to the sender some or all the 

workload received and this cycle repeats as seen in figure 7.2. Actually, in some cases this 

bouncing effect can prevent any convergence to the global balance. 



 

77 

 

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1.8e+08

2e+08

0 100000 200000 300000 400000 500000 600000 700000 800000

W
or

kl
oa

d 
(D

P
)

Time (Sec)

WS[0]
WS[1]

 
Figure 7.2: Workload exchanged between two workstations with a load-balancing 

algorithm designed for a homogenous network 

The load-balancing algorithm is governed by the following equations: 

- Deciding the status: 

Overloaded: actual average thresholdT T T− >   

Normal: actual average thresholdT T T− <   

Underloaded: average actual thresholdT T T− >  

Where: 

Tactual :   is the average time needed to complete an iteration.  

Taverage: is the local average execution time for the workstation and its neighbors.  

Ttheshold:  is user-defined according to the application and execution environment. It determines 

the accepted toleration between the execution times of the workstations. This may be an 

explicit value or just a percentage from the average time. 

 



 

78 

 
- Calculating the extra data points that can be accepted by the underloaded and 

normal workstations 

Extra execution time = extra execution time for added data points + extra time for points 

added in swap memory + extra boundary points added. 

- ( - )new actual f a

DP K DP
T T DP M M

F BW
×

= + × +  ( 7.9 ) 

Where: 

DP: is the extra workload added to the workstation, 

Tnew-Tactual: is the extra execution time added because of the extra workload, 

F: is the workstation processing power, 

DP-Mf: is the extra data points added to the swap memory, 

aM : is the memory access time for the swap memory, 

BW : the network bandwidth, 

K : is a constant, which determines the extra boundary data points, resulting from the extra 

workload exchange. 

Conversely, we can calculate the number of extra data points needed for a workstation to 

change its status from underloaded to normal as shown below. 

( )
1

threshold actual f a

a

T T M M
DP

KMF BW

− + ×
=

+ +
 ( 7.10 ) 

 The DLAH algorithm calculates the reduction of the execution time gained by each neighbor. 

Once it finds that the neighbors can change the workstation status from overloaded to normal, 

it issues the corresponding send requests. Otherwise, it will proceed to the averaging phase as 

detailed in the next section.  

- Averaging the load among underloaded and normal neighbor workstations 

In this phase, when the neighbors can’t change the status of the workload from overloaded to 

normal,  the overloaded workstation will first send the datapoints that the neighbors can 

accommodate then it distributes the remaining load among themselves. 
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It should be noted that the algorithm calculation does not depend on the total number of the 

workstations in the cluster, but on the number of neighbors. The number of neighbors is 

usually a constant for each application depending on the data decomposition; it usually ranges 

from two in one dimensional data decomposition to six for three-dimensional data 

decomposition. Accordingly, the calculation time for the algorithm is constant with respect to 

the total number of workstations, thus it is scalable. 

7.4 DLAH Analysis and Bounds 

In this section, we will present an analytical bound that will provide an approximation to the 

number of steps required to reach the balanced state by using the DLAH algorithm.  The 

analysis is performed on a homogeneous network of workstations. 

To derive an upper bound for the number of steps required to reach balanced state we will use 

theorem 14 from [San96]. 

Theorem 7-3 

The worst case balancing time for diffusion for on the linear array with diffusion parameter 

12a =  is in ( )2O P , where P  is the number of workstations. 

Where a determines the ratio of the extra workload exchanged. 

From this theorem, we state our theorem: 

Theorem 7-4 

The worst case balancing time for diffusion for a one-dimensional pipelined application that 

averages its workload with its neighbor is in ( )2O Steps . 

 Where ( )( )
2

1 1log 2
m cSteps c

− −≥ ,  if Steps P<  

and Steps P= , if Steps P≥ , 

m is the ratio of the workload of the workstation with the maximum workload to that of the 

workstation of minimum workload, 
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[ ]0,1c ∈  is the threshold ratio which determines the stable region, which is a ratio from the 

local average. Thus the stable region is ( )1  c Local Average± × . 0c = means that there is 

no stable region and strict balance is required while 1c = means that no balance is required. 

Proof: 

We are going to proof that we do not need all the workstations to participate in the load 

imbalance for all the cases and determine the balance time from the number of workstations 

required to balance the system.  

Let us consider the worst case of a homogeneous cluster of  P  workstations with a one-

dimensional pipelined application. The first processor has a load of mL , while all the other 

processors have a load of L  as shown in figure 7.3. DLAH algorithm will operate until the 

workload of each workstation is within the threshold range thresholdT .  

mLmL

LL LL LL

1 2 3 P
 

Figure 7.3: DLAH Analysis 

The local average is calculated from the neighbors’ workloads only, while the threshold is 

calculated as a percentage from the local average as shown in the following equations. 

( ) [ ]1 ,    0,1
average i

i N

Threshold average

T L

T c T c
∈

=

= + ∈
∑

 ( 7.11 ) 

When 0c = , that means that it is required to strictly balance the workstation to the local 

average. While 1c = , means that the workstation can tolerate an imbalance equal to twice the 

local average. 
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At step 1: 

The first workstation is overloaded. It will compare its current workload with the local average 

and will invoke the DLAH algorithm if it is more than the threshold, as shown in the 

following equation.  

( )1
Threshold

Average

mL T
mL c T

>
> +  ( 7.12 ) 

Accordingly, the first workstation will send to its neighbor a load to decrease its current 

workload below the threshold. If the load sent makes the second workstation’s workload 

above the threshold, then the two workstations average their workloads. For simplicity, we will 

consider the extra load is large enough and that all the workstation will average its workload 

with its underloaded neighbors. Thus, both workstations will have an equal workload after the 

load exchange with a value, as shown in the following equation: 

( )12 2
mL L L m+ = +  ( 7.13 ) 

At step 2: 

The first workstation is normal; however, the second workstation is now overloaded. The 

second workstation will compare its current workload with the local average and invoke the 

DLAH algorithm if it is more than the threshold, as shown in the following equation.  

( )

( ) ( )
( )

12
121 12 2

threshold
L m T

L m LL m c

+ >

+ +
+ > +

 ( 7.14 ) 

Accordingly, the second workstation will average its load with the third workstation, so each 

workstation will now have a load of: 
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( )
( )

12 32 4

L m L L m
+ +

= +  ( 7.15 ) 

At step 3: 

The third workstation is now overloaded. The procedure will be repeated as above. 

Accordingly, the third workstation will average its workload with the forth workstation, as 

shown in the following equation. 

( )
( )

34 72 8

L m L L m
+ +

= +  ( 7.16 ) 

At step i : 

The thi  will have a workload of: 

( )1 22
i

i
L m − +  ( 7.17 ) 

The workload propagation will stop when the value of the workload decreases below the 

threshold, as shown in the following equations: 
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 ( 7.18 ) 

Therefore, the number of steps required to propagate the extra workload from the first 

workstation to the other workstations is: 

( )( )
2

1 1log 2i
m cSteps c

− −≥  ( 7.19 ) 

Checking the above equation with the two extremes:  

When 0c = , the threshold is equal to the local average time. This means a strict balance is 

required in which all the workstations have to have a workload equal to the local average. 

Thus, the extra workload of the first workstation has to be distributed equally among all the 

workstations in the cluster. In this case, the number of workstations required to propagate the 

extra workload of the first workstation indicated by the above equation is infinity. Of course in 

our case, the networks of workstations is not infinity but limited by the number of 

workstations P . 

When 1c = , the threshold is equal to twice the local average time. This means we have a very 

relaxed balancing condition. Thus for workstation i , we have the following equation:  
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( ) ( )
( )1 221 2 1 12 2

i
ii

i

L m LL m
  − + +   − + ≤ +      

 ( 7.20 ) 

The equation is true for all i . Therefore, no kind of balanced action needs to be taken. 

Checking the number of steps given by the equation, it would give us negative infinity, which 

practically means no need to take any balance actions. 

So far, we have just traced the number of steps required to propagate the extra workload from 

the first workstation to the remainder of the network. However, during this operation the 

second workstation will send a part of its workload to its next neighbor. This will probably 

cause an imbalance between the first and second workstation and another propagation 

sequence will start. The propagation sequences will continue until all the workstations reach a 

steady state. However, in the following stages, the algorithm will need much less workstations 

to propagate the workload as the workload difference is much less now. 

Since the maximum number of workstations required to balance the system is Steps  with a 

maximum of P , then the worst case balancing time is in the order of ( )2O Steps . 

Figure 7.4 depicts the relation between the threshold ratio and the upper bound on the 

number of steps required to reach balance state. As the threshold ratio increases the number of 

steps decreases exponentially, then it remains nearly constant for a while and finally decreases 

slowly at the end. It is worth noting that careful consideration should be taken when choosing 

the threshold ratio, as we can see that it can considerably increase the number of steps needed 

to reach the steady state. We recommend that pilot experiments are to be conducted in which 

the execution time variance is measured and thus have a better judgment in choosing the 

threshold value. 
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Figure 7.4: Relation between the threshold ratio and the upper bound of the number of 

steps required to balance 
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Chapter 8  

SIMULATIONS 

 

Extensive simulations were conducted to target the following objectives: verify and validate the 

simulation model, investigate the performance of the DLAH algorithm and compare the 

performance of the DLAH algorithm to other dynamic load balancing algorithms. These 

simulations are discussed in details in the following sections. 

8.1 Simulation Model Verification and Validation 

Verification is concerned with determining if the simulation computer program is working as 

intended while validation is concerned with determining how closely the simulation model 

represents the actual system; the following were some of the verification and validation 

procedures preformed: 

- The HNOW simulation model was coded and debugged in steps; in an incremental 

fashion.  

- An interactive debugger was used to verify that each program path is correct. 

- A trace in which all the model parameters and state variables were printed out and 

compared to hand calculations to confirm that the simulation program is operating as 

intended. 

- In several cases, the simulation model was run under simplified assumptions with 

deterministic inputs and the outputs were compared to the computed results. The results 

were computed from equation 4.1 by calculating the loop time for the slowest workstation 

and multiplying it in the number of iterations. Both results matched since there was not 

any randomness introduced to the model. 

- The simulation environment provided an animation of the HNOW simulation model in 

which messages could be easily traced and verified. 
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- The input probability distributions were verified that they were correctly generated. This 

was achieved by plotting a histogram of the inputs and comparing it to the probability 

distribution.  

- The simulation model results were checked for reasonableness. For example, figure 8.1 

illustrates how the execution time of the workstation jumps when the RAM becomes full 

and becomes proportional to the datapoints in the swap memory. 
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Figure 8.1: Loop time vs. memory available  

It is worth noting that it is generally impossible to validate a simulation model completely, 

since some part of the actual system may not actually exist. Thus, a simulation model of a 

complex system can only be an approximation to the actual system [LK91]. 

8.2 DLAH Performance 

In this section,  we will study the performance of the DLAH algorithm. First, we will validate 

the DLAH algorithm by conducting simulation on homogeneous network of workstations and 

comparing it to the analytical bounds. Then, we will examine the sensitivity of the DLAH 

algorithm to each of the HNOW parameters. Finally, we will study the performance for a 

complete HNOW and check its scalability. The following table 8.1 describes the parameters 

used for the simulations: 
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PP  Processing power with a default of 100,000 DP/S. Processing power of each 

workstation has a uniform distribution around its mean with a range of 
0.1PP PP± × . 

Memory  Memory (RAM) size available to the application. Default is 10,000,000 DP 

_Disk Access  Hard disk access (virtual memory) with a default of 2,100,000 DP/S and a 
latency of 10ms . 

Network  The Network bandwidth has a default of 10,000,000 DP/S which corresponds to 
10 MB/S and a latency of 1ms . 

workload  Number of datapoints assigned to a workstation. Default is 9,800,000 DP, which 
occupies the default memory size. 

Boundary  Boundary datapoints required to communicate between calculation phases. 
Default is 200,000 DP from both left and right neighbors.  

Threshold  Threshold level determines the stable region. Workstations with loop time more 
than the threshold level are overloaded while those below the threshold level are 
underloaded. Default value is 0.3 of the local average loop time. 

Table 8.1 Simulation parameters 

8.2.1 Homogenous Network of Workstations 

The following sections are organized by stating the objective of each set of simulations, the 

simulation parameters, expected results and the actual results. 

8.2.1.1 Validate the DLAH algorithm to the analytical performance bounds 

- Simulation objective 

Validate the DLAH algorithm by comparing it to the analytical performance bounds.  

- Simulation parameters 

Two cases were conducted; the first case a homogeneous network of 100 workstations with 

one workstation overloaded with 10 times the workload of the other workstations, the second 

case a network of 10 workstations with one workstation 50 times the other workstations. 

Simulations were performed with different threshold levels. 

- Expected outcome 

The graph of the number of steps obtained from the simulations should resemble that of the 

analytical performance bounds. 

The number of steps is in ( )2O Steps   
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Where ( )( )
2

1 1log 2
m cSteps c

− −≥ ,  if Steps P<  

and Steps P= , if Steps P≥ , 

overloaded

normal

Workloadm Workload=  is the is the ratio of the workload of the overloaded workstation to 

that of the normal workstation, 

[ ]0,1c ∈  is the threshold ratio which determines the stable region, which is a ratio from the 

local average. Thus the stable region is ( )1  c Local Average± × . 0c = means that there is 

no stable region and strict balance is required while 1c = means that no balance is required. 

- Results 

Figure 8.2 and figure 8.3 illustrate the relation between decreasing the threshold ratio c  and 

the number of steps required to reach the balanced state. As the threshold ratio c  decreases, 

the stable region decreases, thus it will need more steps to reach the balanced state. The 

DLAH algorithm performance is similar to the analytical performance bounds. 
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Figure 8.2:Number of steps obtained from the simulation vs. analytical performance 

bounds with iSteps P<  
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Figure 8.3: Number of steps obtained from the simulation vs. analytical performance 

bounds with iSteps P>  for some cases  

8.2.1.2 Validate the DLAH algorithm 

- Simulation objective 

Validate the DLAH algorithm, since it is easier to track the performance for a homogeneous 

network of workstations.  

- Simulation parameters 

Random workloads are assigned to 5 identical workstations with a uniform distribution 

ranging from /10workload  to 10workload × . 

Processing power of each workstation has a uniform distribution around the mean ranging 

from 0.1PP PP± ×  

- Expected outcome 

All the workstations will eventually have the corresponding workload within the desired 

threshold. 
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- Results 

Figure 8.4 illustrates how the DLAH reacts to load imbalance in a homogeneous network of 

workstation. The loop time, which is the time taken to execute one loop is plotted with respect 

to the simulation time. The algorithm was able to reduce the loop time difference between the 

workstations. In order to check that the DLAH algorithm reduced the difference to the 

desired threshold we use a smoothed version. Figure 8.5 is a smoothed version in which every 

200 samples are replaced by its average, this allows us to roughly calculate the loop time 

difference and check if it falls below the threshold level. 

0

200

400

600

800

1000

1200

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Lo
op

 T
im

e 
(S

ec
)

Time (Sec)

WS[0]
WS[1]
WS[2]
WS[3]
WS[4]

 
Figure 8.4: Loop time of a homogeneous network of 5 workstations  



 

92 

 

100

200

300

400

500

600

700

800

900

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Lo
op

 T
im

e 
(S

ec
)

Time (Sec)

WS[0]
WS[1]
WS[2]
WS[3]
WS[4]

 
Figure 8.5: Smoothed loop time of a homogeneous network of 5 workstations 

DLAH’s heuristic is based on the eliminating the slower workstations. Checking the slowest 

workstation in this simulation WS[1], it has a loop time of 650 sec while its neighbors WS[0] 

and WS[2] are 500 sec and 600 sec respectively. The local average of WS[1] is 550 sec, which 

makes it overloaded with respect to its neighbors. The threshold level is 1.3 550 715× = sec. 

Thus, WS[1] is operating within its threshold level. The same argument has been repeated to 

the other workstations to confirm the validity of the algorithm.  In figure 8.6, we plot the 

workload of each workstation to the simulation time. The distribution of the workload with 

time resembles the loop time, as this is a homogeneous network of workstations. 
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Figure 8.6: Workload assignment for a homogeneous network of 5 workstations.   

8.2.1.3 DLAH performance for a homogeneous network of workstations with different workloads 

- Simulation objective 

Investigate the DLAH performance for a homogeneous network of workstations with 

different workloads. 

- Simulation parameters 

Each simulation, workstation WS[0] was assigned a different workload ranging from 

/10workload  to 5workload × . 

Processing power of each workstation has a uniform distribution around the mean ranging 

from 0.1PP PP± ×  

- Expected outcome 

All the workstations will eventually have the corresponding workload within the desired 

threshold hence they will all have loop time within the desired threshold. 
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- Results 

Figure 8.8 tracks the performance of the HNOW to a homogeneous network of workstations 

with different workloads. The loop time is plotted with respect to the simulation time. The 

DLAH algorithm was able to successfully balance WS[0] with its neighbors WS[1] and WS[4]. 
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Figure 8.7: Loop time of a homogeneous network with workstation where WS[0] has been 

assigned a workload 4 times its neighbors. 

In order to study the performance of DLAH to different workloads, we changed the workload 

for WS[0] only; starting from 0.1 times the normal workload to 5 times the normal workload. 

Figure 8.8 and figure 8.9 illustrate the performance of the DLAH algorithm. It is worth noting 

that as the workload increases; it takes more time for the workstation to balance itself with its 

neighbors, as it has longer calculations (loop time) before it begins its balancing phase.  
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Figure 8.8: Workstation WS[0] loop time with different workloads. 
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Figure 8.9 Workstation WS[0] workload distribution with time 
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The previous simulations have been conducted on a homogeneous network of workstations 

to validate the performance of the DLAH algorithm, as it is much easier to predict the flow of 

the extra workloads. The next section studies the sensitivity of the algorithm to the different 

HNOW parameters and measures its performance in each case. 

8.2.2 HNOW with Different Processing Power 

- Simulation objective 

Investigate the DLAH performance for an HNOW of different processors. 

- Simulation parameters 

HNOW of 20 workstations with different processing power ranging from 0.1PP  to 5PP . 

 
Processing power of each workstation has a uniform distribution around its mean ranging 

from 0.1PP PP± ×  

- Expected outcome 

Each workstation will have a workload corresponding to its processing power within the 

threshold limit. 

- Results 

Figure 8.10 presents how the DLAH redistributes the workload with time while  

figure 8.11 shows the corresponding loop time of the workstations. The loop time is smoothed 

such that each 20 samples are replaced with their mean so that tracking the loop times would 

be easier. the figures show that it takes about one or two steps to reach the balanced state. 
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Figure 8.10: Workload distribution of an HNOW of different processing power. 
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Figure 8.11: Smoothed loop time of an HNOW of different processing power. 
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We conducted a series of simulations and calculated the average number of steps required to 

reach balance state, as seen in table 8.2. Thus, we can conclude that with 90% confidence that 

the average number of steps 0.83 is in the interval [0.78, 0.89]. On the other hand, figure 8.12, 

which is a histogram of the number of steps encountered for balance, indicates that about 50% 

of the cases did not need any balance actions and that 90% of the cases needed two steps or 

less. 

Average number 
 of steps 

Standard 
 deviation 

95% Confidence  
interval 

90% Confidence 
interval 

0.834 0.977 0.058 0.048 

Table 8.2: Confidence interval for an HNOW of workstations 
of different processing power. 
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Figure 8.12: Histogram of the steps required for balance 

In order to verify that the results obtained from the simulations are reliable enough, we plotted 

the graph of the 95% confidence interval with the number of simulations conducted as shown 

in figure 8.13. The confidence interval decreases as we increase the number of simulations, this 

observation validates both the HNOW simulation model and the DLAH algorithm. Also, 

from the graph we notice that we only need about 400 simulations to get a confidence interval 

less than 0.1. 
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Figure 8.13: 95% confidence interval vs. number of simulations 

In order to study the sensitivity of the DLAH algorithm to the processing power difference, a 

series of simulations have been conducted on an HNOW in which only workstation WS[0] has 

different processing power ranging from 0.2 to 10 times the normal processing power. Figure 

8.14 illustrates the performance of the algorithm to different processing power. The DLAH is 

able to balance the workstations for the desired threshold setting, but it is not easy to conclude 

its relation to the number of steps required to reach the balanced state. Therefore, we 

conducted a series of simulations summarized in figure 8.15; we plotted the number of steps 

required to reach the balance state versus the processing power, which is a percentage of the 

default processing power. We can now conclude that the less the processing power, the more 

steps are required to reach the balance state.  
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Figure 8.14:Workstation WS[0] with different processing power 
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Figure 8.15: Number of steps vs. processing power ratio 
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8.2.3 HNOW with Different Memory Capacities 

- Simulation objective 

Investigate the DLAH performance for an HNOW of different memory capacities. 

- Simulation parameters 

HNOW of 20 workstations with different memory capacities, such that some workstations will 

have to use their swap memory. 

To show the effect of the memory capacity on the performance, the total memory access time 

has to be comparable to the total loop time. Thus, we have increased the workload to twice its 

default value.  

- Expected outcome 

Each workstation will have a workload such that the total loop time for each workstation will 

be within the threshold range with its neighbors. 

- Results 

Figure 8.16 and figure 8.17 present both the loop time and the workload distribution with the 

simulation time. For this configuration, the DLAH was able to achieve balance in just one step 

as seen from the workload distribution with time. Table 8.3 shows the average number of 

steps required to reach the balance state. 

Average number 
 of steps 

Standard 
 deviation 

95% Confidence  
interval 

90% Confidence 
interval 

0.067 0.251 0.014 0.012 
Table 8.3: Average number of steps for an HNOW with 

different memory capacities. 
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Figure 8.16: Loop time of an HNOW of 20 workstations of different memory capacities 
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Figure 8.17: Workload distribution of an HNOW with different memory capacities. 
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We studied the sensitivity of the algorithm to the memory capacity by changing the memory 

capacity to workstation WS[0] only and plotted the result as shown in figure 8.18. The figure 

plots the memory capacity ratio, which is the ratio of the memory capacity of workstation 

WS[0] to the memory capacity of the default memory capacity. As the available memory 

decreases, the effect of the virtual memory increases. The number of steps increases steadily 

with the decrease of the available memory.   
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Figure 8.18: Number of steps vs. memory capacity ratio 

8.2.4 HNOW with Different Network Parameters 

- Simulation objective 

Investigate the DLAH performance for workstations of different network parameters. 

- Simulation parameters 

HNOW of 20 workstations with different network parameters. 

- Expected outcome 

The workstation with slower network connections will send some of its workload to its 

neighbors such that the total loop time will be within the threshold limits. 

- Results 

In figure 8.19 we plotted the loop execution time to the simulation time for one of the 

simulations in which each workstation had different network parameters. The slow 
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workstations from the figure; they are characterized by having a loop time peak when they 

transfer their extra workloads to its neighbors. In this set of simulations, all of the overloaded 

workstations did not take more than one step to get balanced. Table 8.4 reports the average 

number of steps it required to reach balanced state. 

0

100

200

300

400

500

600

700

800

900

1000

1100

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Lo
op

 T
im

e 
(S

ec
)

Time (Sec)  
Figure 8.19: Loop time for an HNOW with different network parameters. 

Average number 
 of steps 

Standard 
 deviation 

95% Confidence  
interval 

90% Confidence 
interval 

0.2194444 0.470413 0.028055334 0.023544791 
Table 8.4: Average number of steps for an HNOW with 

different network parameters. 

To study the sensitivity of the algorithm to the network parameters like the previous cases, we 

conduct a series of simulations with different network parameters assigned to one workstation 

WS[0]. Figure 8.20 and figure 8.21 confirm that the workstations need only one-step to get 

balanced irrespective of how slow the network connection is and obviously, the workstation 

with slower network  connection takes a longer loop time to send its workload.  
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Figure 8.20: Loop time for workstation WS[0] with different network parameters. 
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Figure 8.21: Number of steps vs. network ratio 
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8.2.5 Complete HNOW 

- Simulation objective 

In this section,  we study the overall DLAH performance for a complete HNOW in which all 

the workstations differ in all the parameters. 

- Simulation parameters 

HNOW of workstations with different parameters. 

- Expected outcome 

The number of steps should be within the same range, irrespective the random assignment of 

the parameters. 

- Results 

Figure 8.22 displays a histogram of the number of steps used to balance one workstation in the 

complete HNOW, while table 8.5 illustrates the average number of steps encountered from 

1080 simulations conducted with different random seeds. 
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Figure 8.22: Histogram of the number of steps required to reach balance state. 
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Average number 

 of steps 
Standard 
 deviation 

95% Confidence  
interval 

90% Confidence 
interval 

1.723 1.914 0.114 0.095 
Table 8.5: Average number of steps for a complete HNOW.  

The complete HNOW simulations have been repeated with different number of workstations. 

All of the simulations yielded nearly the same results as seen in figure 8.23. Each average 

number of steps is plotted with its confidence interval versus the number of workstations. 
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Figure 8.23: Average number of steps vs. number of workstations.  

8.3 DLAH Influencing Factors 

In the previous section, the DLAH performance was studied for different HNOW parameters. 

However, there are other parameters that may influence the DLAH performance, which need 

further investigation.  These factors are the workload difference between neighbors, the 

threshold limit, and the scalability of the algorithm. We will investigate each factor in the 

following sections. 

8.3.1 The Effect of the Workload  

Simulations have been conducted to study the effect of the workload difference between 

neighbors on the DLAH performance. We used a homogeneous network of workstation with 

one workstation being assigned a different workload.  
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In figure 8.24, we plotted the workload ratio, which is the ratio between the workload of 

workstation WS[0] to the default workload, and the number of steps required to reach balance 

state.. As the workload difference increases, it takes more steps to reach the balance state, this 

also agrees with the analytical performance bounds. 
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Figure 8.24: The effect of the workload difference between neighbors 

8.3.2 The Effect of the Threshold Level 

As mentioned previously, the threshold ratio determines the stable region, which is a ratio 

from the local average. Thus the stable region is ( )1  c Local Average± × . 0c = means that 

there is no stable region and strict balance is required while 1c = means that no balance is 

required. Figure 8.25 depicts the relationship between the threshold ratio and the number of 

steps required for balance. Obviously, the less the threshold the more responsive the algorithm 

will be to the changes, but the more overheads it requires keeping it in balance. Furthermore, 

when the threshold drops below the loop time variance, the algorithm will keep running until 

the end of the simulation.   
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Figure 8.25: The effect of the threshold level 

8.3.3 Scalability of the DLAH Algorithm 

One of the main attributes that we set as a goal while designing the DLAH algorithm is to 

make sure that the algorithm is scalable with the number of workstations. As discussed 

previously, the DLAH algorithm uses the information of its neighbors only to determine its 

current status and accordingly exchange different workloads to achieve balance. Therefore, the 

DLAH should be scalable with the number of workstations as it only depends on the number 

of neighbors and not the total number of workstations in the network. We have conducted 

several simulations to confirm that theory. Figure 8.26 confirms that the DLAH algorithm is 

scalable; the figure shows the average number of steps required for balancing with its 

confidence interval versus the number of workstations in the network. The average number of 

steps is nearly constant throughout the whole simulations. 
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Figure 8.26: Average number of steps vs. the number of workstations 

8.4 DLAH Compared to Other Dynamic Load Balancing Algorithms 

In this section, we compared the performance of the DLAH algorithm to other diffusion 

algorithms. We compared its performance to a diffusion-oriented algorithm for a 

homogeneous network of workstations. In addition, we compared it to another diffusion 

algorithm for an HNOW that takes into account the processor heterogeneity only.  

We conducted two sets of simulations. In the first set of simulations, random values were 

assigned to each workstation and then we measured the average number of steps and load 

exchanged it takes to reach a steady state. We conducted the second set of simulations on a 

non-dedicated homogeneous network of workstations. The non-dedication is simulated by 

reducing the available resources to a random value at a certain time, then releasing back the 

resources after some time. Both simulations are discussed in details in the following sections. 

8.4.1 DLAH Compared to Other Diffusion Algorithms on an HNOW 

In this set of simulations, we assigned random variables to each workstation. We conducted 

several simulations with different number of workstations. Figure 8.27 compares the average 

number of steps required to balance the HNOW system. DLAH shows slightly better 

performance over the other diffusive algorithms and the processor only algorithm shows a. 
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slightly better performance than the homogeneous algorithm. However, figure 8.28 indicates 

that the datapoints exchanged to achieve the balance is much less using the DLAH algorithm. 

This shows that the DLAH algorithm is able to tune into the HNOW parameters and 

exchange just exact the datapoints required to balance the system 

0

1

2

3

4

5

6

100 200 300 400 500

No. of workstations

A
ve

ra
ge

 n
o.

 o
f 

st
ep

s

Homogeneous Algo.

Processor only

DLAH

 
Figure 8.27: Comparison between the average numbers of steps required for balance  
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Figure 8.28: Comparison between the average DP exchanged. 
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8.4.2 DLAH Compared to Other Diffusion Algorithms on a Non-Dedicated 

Homogeneous Network of Workstations. 

It seems obvious that the DLAH algorithm should perform better than the other algorithms 

that do not consider all the HNOW parameters. Consequently, we conducted another set of 

simulations on a homogeneous network of workstation to compare the DLAH’s performance.  

This set of simulations was conducted on a non-dedicated homogeneous network of 

workstations. A step of disturbance was introduced at the first workstation by reducing its 

resources to a set value at loop 100, then releasing them back at loop 600. The simulations 

were conducted on a network of 10 workstations. Table 8.6 shows that the DLAH has a 

slightly better performance regarding the average number of steps required to cope with the 

disturbance step. However, table 8.7 shows that the DLAH needs much less datapoints (about 

half) to be exchanged to achieve the balance.  

Figure 8.29 shows an example of the reaction of each algorithm to the step disturbance. Both 

the homogeneous and processor only have the same response, while the DLAH exchanged 

less load to reach the steady state. 

Algorithm Average number 
 of steps 

Standard 
 deviation 

95% Confidence 
interval 

90% Confidence 
interval 

Homogeneous Algo. 1.532 2.149 0.133 0.111 
Processor only 1.458 2.0170 0.125 0.104 

DLAH 1.417 2.416 0.149 0.125 

Table 8.6: Average number of steps 
Algorithm Average number 

DP exchanged 
Standard 
 deviation 

95% Confidence 
interval 

90% Confidence 
interval 

Homogeneous Algo. 10194117 20273108 1256516 1054502 
Processor only 10179673 20261533 1255799 1053900 

DLAH 5730649 13268132 822351 690139 

Table 8.7: Average number of datapoints exchanged 
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Figure 8.29:The Algorithms reactions to a step disturbance 

8.5 Summary of Results 

In this chapter, we applied the DLAH algorithm to a simulation model we developed for an 

HNOW. We conducted several types of simulations to study the DLAH algorithm. These 

simulations are divided into four different sections. 

In the first section, we conducted a set of simulations to validate the DLAH algorithm. This 

set of simulations was conducted on a homogeneous network of workstations, as the 

simulations results are predictable in this case, thus, validation can take place. The simulations 

included: 

- Compare the results of the DLAH with different threshold ratio to the analytical 

performance bounds. Results showed that the DLAH follows the analytical bounds. 

- Track the execution of the DLAH algorithm on a homogeneous network with random 

workloads assigned to the workstations. The results showed that the DLAH is working as 

expected; hand calculations were performed on the results to validate the algorithm. 
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- Track the performance of the DLAH on a homogeneous network with one workstation 

being assigned different workloads. All the workstations eventually were balanced within 

the threshold range. 

In the second section, we studied the sensitivity the DLAH algorithm to the HNOW 

parameters. The simulations were conducted on an HNOW, which included: 

- HNOW with different processing power. The number of steps increased as the processing 

power mismatch increased. We also plotted the confidence interval with the number of 

simulations conducted. We found that the confidence interval decreases with increasing 

number of simulations; that is yet another validation of the simulation model. 

- HNOW with different memory capacities. The number of steps increased as the memory 

capacity mismatch increases.  

- HNOW with different network capacities. In this case, DLAH needed only step to 

eliminate any load imbalance due to network connections. It does not make any difference 

how much the network mismatch is. The slow network connections are characterized by 

having a loop execution time impulse when they send their extra workload to their 

neighbors. 

- Complete HNOW. A series of simulations were conducted with different number of 

workstations being assigned random HNOW parameters. All of these simulations needed 

nearly the same number of steps to reach global balance. 

In the third section, we studied the performance of the DLAH algorithm to influencing 

factors. The simulations included: 

- The effect of the workload. We studied the effect of workload mismatch on the DLAH 

performance in more details. The number of steps required for balance increases with the 

workload mismatch. The number of steps is bound by the analytical performance bound. 

- The effect of the threshold ratio. In these simulations, we plotted the result of changing 

the threshold ration with the number of steps required to reach balance. The number of 

steps increased as the threshold decreases. The results show that they obey the analytical 
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bounds too. It is worth to note that as the threshold ratio decreases the DLAH becomes 

more responsive to imbalance, but also takes more steps to reach a balanced state. 

- Scalability of the DLAH. One of the important factors that we needed to check is that we 

do not want the load-balancing algorithm to inhibit the scalability of the pipelined SPMD 

application. Simulations were conducted on networks ranging in size from 5 to 500 

workstations. The output results were nearly the same; number of steps needed to reach 

global balance was nearly the same. This confirms that our algorithm is scalable with the 

number of workstations. 

In the last section, we compared the performance of the DLAH algorithm to other related 

algorithms. The simulations included: 

- Complete HNOW. Although the number of steps required to reach a balanced state was 

close to the other algorithms, the DLAH was able to achieve balance with much less load 

exchanged. This simulation was repeated for different number of workstations and the 

results were almost the same each time. 

- Non-dedicated homogeneous network of workstations. We also compared the 

performance of the DLAH to the related algorithms on a non-dedicated homogeneous 

network simulated by a pulse of disturbance. The number of steps to achieve balance was 

practically the same. However, the DLAH was superior in that it was able to achieve 

balance with much less load exchanged nearly half the others.  
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Chapter 9  

CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions and Contributions 

Throughout this work, we designed DLAH, which is a scalable dynamic load-balancing 

algorithm for pipelined SPMD applications on HNOW. During this process, we formally 

defined the load-balancing problem and proved it to be an NP-Complete problem. We 

identified the different HNOW parameters and proposed a general taxonomy for load-

balancing algorithms. Accordingly, we designed DLAH and deduced its analytical bounds.  

We used measurements from two case studies to build our simulation model of the HNOW. 

We then implemented the DLAH on the simulation model and conducted four different sets 

of simulations.  

The first set is concerned with validating the DLAH algorithm. These simulations were 

conducted on a homogenous network of workstation. They included comparing the results 

with the analytical performance bounds and hand calculations.  

The second set of simulations studied the sensitivity of the DLAH algorithm to the HNOW 

parameters, summarized in the following points. 

- As the processing power mismatch increases between the workstations, the number of 

steps required to reach the steady state increases. 

- As the available memory mismatch increases between the workstations, the number of 

steps required to reach the steady state increases.  

- As for the network mismatch, the DLAH needed only step to eliminate any load 

imbalance due to network connections. It does not make any difference how much the 

network mismatch is. The slow network connections are characterized by having a loop 

execution time impulse when they send their extra workload to their neighbors. 
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In the third set of simulations, we studied the performance of the DLAH algorithm to 

influencing factors, which are the workload mismatch, threshold ratio and the scalability.  

- The number of steps required for balance increases with the workload mismatch. The 

number of steps conforms to the analytical performance bound. 

- The number of steps increases as the threshold ratio decreases. This also agrees with the 

analytical bounds. It is worth noting that as the threshold ratio decreases the DLAH 

becomes more responsive to the imbalance, but also takes more steps to reach a balanced 

state. 

- The DLAH algorithm is scalable with the number of workstations, as it only depends on 

the neighbors to obtain its status. 

In the last set of simulations, we compared the performance of DLAH to other load-balancing 

algorithms. Although the simulations showed that the DLAH takes slightly less steps to reach 

the balanced state in average, it does however achieve it with much less load exchanged (nearly 

half as much). This is because the DLAH is able to tap into the HNOW parameters and 

suppress the bouncing effect.  

We would like to point out that the process of designing DLAH is as important as the DLAH 

algorithm itself. The process is summarized in the following points: 

- Comprehend the different HNOW parameters in the intended network.  

- Understand the application and determine the best suitable parallel programming 

paradigm. 

- Determine the essential features for the load-balancing algorithms besides the main 

purpose of it, which is balancing itself. These features include scalability, responsiveness, 

least overheads, simplest implementation, etc. 

- Design the load-balancing algorithm accordingly using the proposed taxonomy (Figure 

2.3). 

- Derive analytical performance bounds to be able to verify the performance of the new 

algorithm. 
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- Conduct pilot simulations and measure the performance using the different performance 

parameters. 

 

9.2 Future Work 

As old clusters are updated with new workstations, the need for a good load-balancing 

algorithm or scheduler increases (in order to take full advantage of the HNOW). As 

mentioned before, there is no load-balancing algorithm fit for all types of applications. We 

have only tackled one kind of applications, the pipelined SPMD. Other parallel paradigms 

need to be investigated like phase parallel, divide and conquer, and work pool.  

The analytical performance bounds for diffusive strategies derived in this research are based 

on a homogeneous network of workstations. Deriving analytical performance bounds for 

HNOW will allow us to validate load-balancing algorithms for HNOW besides the 

homogeneous network of workstations. 

In this research, we considered the common case in which the workstations communicate only 

two of its data domain sides. Actually, depending on the domain decomposition, the 

workstation may communicate all its six data domain sides. Although the DLAH algorithm is 

scalable with the number of workstations, but the overall performance may be affected when 

increasing the communication sides. Further investigation is required to study the 

performance. 

In our simulations, we made our best effort to capture the parameters of a real network of 

workstation. However, there are many other parameters like cache memory, word length, 

operating system, etc., that we did not consider in our model. Implementing the DLAH on a 

real pipelined SPMD application and comparing its performance to the simulations will give us 

an indication of how close the simulation model is to the real HNOW and how well does the 

DLAH perform accordingly. 

In addition, the load-balancing problem is still an NP-Complete problem; the field is open to 

all kind of algorithms and heuristics especially for the HNOW. 
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One of the interesting research topics that we recommend is building a theoretical model that 

captures the different HNOW features, which could provide us with quick static performance 

measures. 
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