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ABSTRACT 
 

Characterization of Nickel-substituted Hexaaluminate Catalysts 

Jason C. Hissam 

 

A characterization study was performed on two series of hexaaluminate catalysts 

of the form MI(MII)xAl12-xO19-δ; where MI refers to the mirror cation (MI = Ba, Sr, La) and 

MII to the cation (MII = Ni) substituted into the lattice.  The first series was synthesized 

for comparison of different mirror cations while holding the Ni substitution level constant 

at x = 0.4.  The second series was developed with the same mirror cation of Ba, but 

varied x, the level of Ni substitution.  Experiments were conducted by means of the 

following characterization techniques: scanning electron microscopy (SEM), unit-cell 

refinement (UCR), in situ temperature-programmed reduction and X-ray diffraction 

(TPR-XRD) and Fourier-transform infrared (FT-IR) spectroscopy.   

UCR showed that Ni has been incorporated into the hexaaluminate lattice during 

synthesis.  Increasing the Ni substitution level results in an increase in the a and b 

parameters and a decrease in the c direction.  The overall volume of the unit-cell was 

found to increase with higher Ni substitution level.  In situ TPR-XRD studies with La and 

Sr hexaaluminates have shown that Ni in the lattice upon reduction with H2 turns into 

metallic Ni0 on the hexaaluminate surface of the crystal.  Experiments with Ba 

hexaaluminates were mostly inconclusive due to the hexaaluminate diffraction pattern 

having intense peaks in the same positions as Ni0 metal so that the hexaaluminate pattern 

masks the appearance of Ni0 metal peaks.  Fourier-transform infrared spectroscopy of the 

absorption of CO on reduced catalysts was performed to distinguish between Ni+2 ions 

and Ni0 metal species on the hexaaluminate surfaces.  However, the analysis of the FT-IR 

spectra provided no evidence for CO adsorbed on either Ni+2 ions or metallic Ni0 on the 

hexaaluminate surface.  During exposure of CO, there was the appearance of multiple 

peaks that indicate the presence of gas phase CO and CO2 molecules as well as the 

formation of carboxylates and carbonates.  Upon evacuation of the experimental 

chamber, the only remaining peaks belonged to those of the appropriate mirror cation 

carbonate.    
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Chapter 1: Introduction 

Energy conservation and pollution prevention are of the utmost importance in 

order to ensure the stability of future energy requirements of the United States of 

America, as well as the rest of the world.  One significant source of excessive fuel 

consumption and emissions is a result of the idling of heavy-duty diesel engines, 

particularly in long haul trucks.  In order to confront this problem, the Environmental 

Protection Agency (EPA) established the SmartWay Transport Partnership, a 

collaborative program between the EPA and the freight industry with the goals of 

increasing energy efficiency and reducing air pollution and greenhouse gases (1). 

Long-haul truck drivers idle their engines during periods of rest to provide heat or 

air-conditioning to the cab, to prevent the engine block from freezing in cold weather, 

and to maintain battery voltage for the use of electrical appliances both inside and outside 

of the truck cab.  Idling engines operate at low levels of efficiency and lead to excess fuel 

consumption, emissions and wear and tear on the engine.  Detailed data on idling is not 

available, but industry sources have provided rough estimates of its frequency (1).  Truck 

driver surveys have indicated periods of rest in the range of six to eight hours per day, 

operating over 300 days per year.  For the 500,000 to 1,000,000 trucks matching this 

description, it is estimated that 30-40% of the total engine operating time is due to idling.  

Over 960 million gallons of diesel fuel are consumed through long-duration truck idling 

annually.  The resulting emissions are an estimated 11 million tons of carbon dioxide, 

180,000 tons of nitrogen oxides, and 5,000 tons of particulate matter. 

There are several alternatives to idling that have been investigated and each 

method has strengths and weaknesses (2; 3).  The most feasible and cost-effective 

technology to reduce diesel fuel consumption is to mount an auxiliary power unit (APU) 

on the truck cab (2).  While the main engine is disengaged, the APU supplies heating and 

air-conditioning of the sleeper cab, heat for engine startup and power for electrical 

appliances.   

According to Stodolsky and others (2), conventional APUs consist of a small 

internal combustion engine equipped with a generator to provide energy for heating and 

cooling of the cab and powering appliances (2).  For air-conditioning, the APU can be a 

power source for the existing air-conditioning system of the truck or an additional 
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electrically powered air-conditioning unit can be installed in the sleeper area.  

Comparison studies conducted at the Aberdeen Test Center and the Oak Ridge National 

Laboratory indicate that the installation of an APU gives fuel savings (and CO2 

reduction) on the order of 60-85%, 50-97% reductions in NOx, CO and hydrocarbons and 

particulate matter ranged from a mass increase of 20% to reduction of 95% depending on 

the age and model of the truck (2; 4).  Although current APUs have been proven to 

provide the solutions the EPA and industry are seeking, the units are heavy, noisy, costly 

and require an external supply of water for cooling purposes. 

A promising alternative to the conventional APU’s is the diesel-powered solid 

oxide fuel cell (SOFC).  The SOFC-based APU can combine the functions of existing 

APU technology with the advantages of fuel cells, such as fuel flexibility, low or no 

maintenance, high efficiency and silent operation.  Jain et al. (3) describe a typical 

SOFC-based APU as having a single air compressor that provides air for reformer 

operation and cathode requirements.  The anode recycle stream and water generated from 

unreacted anode tail-gas captured in a tail-gas burner, supply water for the reformer and 

decrease the need for an on-board supply of water.    

  Complementary to the SmartWay Transport Partnership of EPA mentioned 

earlier, the U.S. Department of Energy (DOE) has sponsored the Solid State Energy 

Conversion Alliance (SECA), forming partnerships between the U.S. government, 

industry, universities, and other research organizations in order to promote the 

development of environmentally friendly SOFC for a variety of energy needs (5).  As 

part of the SECA program, the National Energy Technology Laboratory (NETL) of the 

DOE is working on the development of a new class of structural oxide catalysts based on 

hexaaluminate architecture for use with diesel-fueled APUs (6).  The hexaaluminate 

catalysts are of the form MI(MII)xAl12-xO19-δ,  where MI refers to the cation (MI = Ba, Sr, 

La) and MII to the cation (MII = Ni) substituted into the lattice.  The variable x refers to 

the substitution level and δ is the relationship between x and the specific molecular 

formula.  Two series of hexaaluminate catalysts were prepared at the Morgantown, WV 

site of NETL.  The first series was synthesized for comparison of different elemental 

mirror cations while holding the Ni substitution level constant at x = 0.4.  The second 

series was created with the same mirror cation of Ba, but varies x, the level of Ni 

substitution.   
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The goal of this project is to obtain a fundamental understanding of the nature of 

active sites present in hexaaluminate catalysts.  There are two primary objectives under 

consideration for this project.  The first objective is to identify the phase of catalytically 

active Ni that has been substituted into the lattice of hexaaluminate catalysts.  The second 

objective was to determine the location of Ni species in the hexaaluminate lattice during 

synthesis, reduction and reaction.  The aforementioned investigations have demonstrated 

that the reducibility of Ni-substituted hexaaluminates depends strongly on the properties 

of Ni, and is also affected by mirror cation type, ionic radius and valence level of the 

cation.  Although the work performed at NETL and other institutions has resulted in a 

wealth of information, there are still many questions to be answered about the structure of 

Ni-substituted hexaaluminates and the behavior of active Ni.  How does varying the Ni 

substitution level affect the hexaaluminate lattice of the Ba series of catalysts?  What is 

the state of the Ni before and after reduction?  Upon reduction, is the Ni exchanged 

within the hexaaluminate reduced to Ni0 metal or is it in the form of an oxygen-deficient 

mixed-metal oxide?  If Ni ions are present, what is the average oxidation state?   

This project is collaboration between NETL, West Virginia University (WVU) 

and Louisiana State University (LSU).  Catalyst synthesis, reaction studies and initial 

testing have been performed at NETL.  Characterization techniques will be conducted at 

WVU by means of the following methods: scanning electron microscopy (SEM), unit-

cell refinement (UCR) and Fourier-transform infrared (FT-IR) spectroscopy.  Extended 

X-ray absorption fine-structure (EXAFS) and X-ray absorption near edge spectroscopy 

(XANES) of the samples will be simultaneously conducted by researchers at LSU. 

The results from the characterization study will lead to more tailored testing and 

operating conditions to take advantage of the active sites of the hexaaluminate catalysts.  

After characterization, researchers at NETL will utilize the information with ongoing 

tests in SOFC-based APU to assess their capability under real-time reaction conditions.  

It is hoped that Ni-substituted hexaaluminates will be an inexpensive, long-lasting option 

for reforming catalysts in SOFC-based APU.  This will result in the conservation of 

diesel fuel and a reduction in operating costs and the ensuing emission of pollutants from 

fuel combustion.  
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Chapter 2: Literature Review 

2.1 Hexaaluminate Structure and Properties 

 Hexaaluminates have been the subject of interest of a variety of research areas 

due to their ability to retain moderate surface areas up to 1400°C (7; 8), and to resist 

sintering, phase transformation and carbon deposition (9; 10).  It is believed that these 

properties originate from the hexaaluminate crystal structure (9; 11).  Hexaaluminates are 

hexagonal poly-aluminates having a lattice structure related to either magnetoplumbite or 

β-alumina and both forms are characterized by hexagonal symmetry of space group 

P63/mmc (12).  Hexaaluminates are of the general form MI(MII)xAl12-xO19-δ,  where MI is 

the cation (MI = Ba, Sr, La) and MII refers to the metal dopant (MII = Ni) substituted for 

Al within the lattice (6).  The variable x refers to the substitution level and δ is the 

relationship between x and the specific molecular formula.  The ideal unit-cell structures 

of the magnetoplumbite and β-alumina hexaaluminate forms are illustrated as Figure 1 

(7). 

 

 
Figure 1: Ideal unit-cell structures of hexaaluminates (7) 
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The parent structures are composed of spinel structured blocks which are stacked together 

in such a manner that adjacent blocks are separated by cation containing mirror planes 

along the c axis.  Each spinel block consists of four oxygen layers with trivalent cations 

in both octahedral and tetrahedral sites (12).  As illustrated by Figure 1, the β-alumina 

and magnetoplumbite structures are identical in the spinal block but the fundamental 

difference between the two configurations lies in the mirror plane regions.  In the 

magnetoplumbite structure, the mirror plane contains an aluminum ion, three oxygen ions 

and a large cation.  In the β-alumina structure there is only an oxygen ion and a large 

cation.  These differences are largely due to the ionic radius and/or valence level of the 

mirror cation(s) used in the synthesis of the hexaaluminate.    

The large cation of hexaaluminates is possible to be monovalent, divalent or 

trivalent.  Hexaaluminates composed of large trivalent cations such as La have been 

found to be of a magnetoplumbite structure and are of the formula MIAl11O18. 

Hexaaluminates containing a divalent cation (Ca, Sr etc.) are also of the magnetoplumbite 

structure with the general formula MIAl12O19.  Until the early seventies, Ba 

hexaaluminate was assigned to the magnetoplumbite structure with stoichiometry of 

BaAl12O19, like other hexaaluminates consisting of divalent cations (12).  Many studies in 

the late seventies to mid eighties (13; 14) revealed that the compound “BaAl12O19” does 

not exist, except as a mixture of two distinct nonstoichiometric phases, first referred to as 

phase I and phase II by Kimura et al. (13).   Further investigations by Iyi et al. (14; 15) 

concluded that the barium hexaaluminate structure of phase I is of β-alumina type and has 

the structural formula Ba0.75Al11O17.25 and that the structure of phase II is of 

magnetoplumbite type and has the structural formula Ba2.34Al21.0O33.84.     

2.2 Previous Work on Hexaaluminates 

Several investigations have been performed on the substitution of various metals 

as metal dopants in the hexaaluminate lattice (3; 6; 14; 16; 17).  Although many metals 

(Mn, Pt, Co, Fe etc.) have had more successful results than Ni with regards to partial 

oxidation (POx) and combustion of CH4 (3; 6; 14), supported Ni catalysts are of interest 

industrially due to Ni being less expensive than the alternatives (3; 10; 16).  In order for 

Ni-substituted hexaaluminates to be active and selective, Ni sites within the cell lattice 

must be formed by the reduction of Ni-O bonds present in the lattice (18).  The number of 
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Ni sites that are reducible and their coordinative environment are properties that need to 

be evaluated. 

Machida and coworkers (11) used a variety of experimental techniques in an 

investigation on a series of cation-substituted Ba hexaaluminates, BaMIIAl11O19-δ (MII = 

Cr, Mn, Fe, Co and Ni).  The crystal structure of a hexaaluminate is retained for 

BaMIIAl11O19-δ in which one Al site per every double spinel block is replaced by an MII 

ion.  In situ thermogravimetry (TG) measurements of cation-substituted Ba 

hexaaluminates concluded that the average oxidation state of nickel was determined to be 

divalent.  Transmission electron microscopy (TEM) observation indicated that crystal 

growth along the c axis is strongly suppressed compared to that along the directions 

normal to the c axis (a, b).  Machida et al. (11) have also reported the same crystal 

morphology in previous investigations on BaAl12O19 (19) and found the crystal growth 

patterns are a common feature among hexaaluminate-related compounds.  The 

investigators conclude that the crystal growth suppression along the c axis is the reason 

why hexaaluminates are able to retain a large surface area after calcination at 1300°C and 

the reduction/oxidation behavior of the transition elements in the crystal lattice influence 

the catalytic activity of the metal doped substituted hexaaluminate (11).          

Xu and coworkers (10) designed a series of Ni-substituted La hexaaluminate 

catalysts for CO2 reforming of methane to synthesis gas and used the characterization 

methods of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and 

temperature-programmed reduction (TPR).  X-ray diffraction and TPR results indicated 

that the basic La hexaaluminate structure showed very little change when exposed to high 

temperatures and that TPR plots showed the appearance of a Ni0 phase after reduction 

that indicated a large fraction of metallic Ni0 had separated from the hexaaluminate phase 

to form an individual metallic phase.  The reduction profiles showed higher intensities of 

Ni0 peaks with increased Ni substitution.  The investigators suggested that a large fraction 

of metallic Ni0 is separated from Ni2+ ions in the hexaaluminate lattice to form an 

individual metallic phase at 1100°C and that the metallic Ni0 is the active component for 

reaction.  

Another notable observation by Xu et al. (10) is that Ni-substitution in the range 

of 0 < x ≤ 1 results in the formation of catalysts with hexaaluminate structure of 

LaNixAl12-xO19-δ.  X-ray photoelectron spectroscopy results indicated that less than 1% of 
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the Ni lies on the surface of the hexaaluminate lattice and the majority remains in the 

catalyst bulk.  Considering the limitations on the amount of Ni that may be substituted in 

the lattice and remain hexaaluminate form, it is not expected that any Ni-substituted 

hexaaluminate catalysts will have a large availability of Ni sites on the surface for 

reaction. 

Xu and others (9) also studied the CO2 reforming of methane to synthesis gas over 

a series of Ca, Sr, Ba and La Ni-substituted catalysts and utilized the same 

characterization techniques as previously mentioned: XRD, XPS and TPR.  Results of 

this investigation confirm that in each mirror-cation-type hexaaluminate, the Ni ions in 

the lattice are stable, have only oxidation state Ni2+ and only a part of these ions are 

reduced to Ni0 at 1100°C.  When alkaline earth metals are doped, the reduction peak 

temperature decreases with an increase in the ionic radius of the mirror cation.  Overall, 

the Ni-substituted La hexaaluminate gives the lowest reduction temperature.  It was 

observed that the catalytic activity is directly proportional to the ionic radius of the mirror 

cation.  The activity sequence of the reduced hexaaluminates followed the order of 

LaNiAl11O19-δ > BaNiAl11O19-δ > SrNiAl11O19-δ > CaNiAl11O19-δ. 

Chu and company (16; 20) studied the POx of CH4 to syngas over a series of Ni-

modified Ba hexaaluminate catalysts.  Characterization techniques of XRD, FT-IR, XPS 

and TPR were conducted on catalysts with the form of BaNixAl12-xO19-δ, where x = 0.3, 

0.6, 0.9 and 1.0.  Neither pure NiO nor BaAl12O19 showed satisfactory activity for the 

methane oxidation reaction, but BaNixAl12-xO19-δ catalysts showed high levels of activity 

for the same reaction conditions.  The results of XPS indicated that after 100 h of testing, 

the Ni/Al ratio was nearly unchanged from the level in the fresh catalyst and suffered low 

levels of carbon deposition (16).  It was found that catalytic activity and CO selectivity 

increased with increasing levels of nickel substitution, but only when the weight of Ni is 

lower than 2% (20).  There was little to no change when more than 2% was present.  This 

behavior was attributed to decomposition of the support structure by too much of metal 

dopant dispersed in the lattice or due to crystallization of the active species.   

In 2007 at the NETL, Gardner et al. (18) conducted reforming studies on Ni-

substituted hexaaluminate catalysts, MINi0.4Al11.6O19-δ (MI = La, Sr and Ba), to reform 

liquid hydrocarbon fuels into H2-rich synthesis gas for fuel cell applications.  

Experiments with the POx of n-tetradecane, with and without dibenzothiophene, were 
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conducted to test the stability and sulfur poisoning resistance of the Ni-substituted 

hexaaluminates and the results were correlated to the Ni surface concentration and the Ni 

dispersion induced by the mirror cation.  The divalent catalysts, SrNi0.4Al11.6O19-δ and 

BaNi0.4Al11.6O19-δ, showed stable performance with reaction of n-tetradecane, whereas 

LaNi0.4Al11.6O19-δ exhibited declining activity and indicated C deposition on the surface 

which blocked active Ni sites.   The results suggested that the different mirror cations 

influenced the coordination of Ni sites within the lattice and adsorption of hydrocarbons 

to the surface of the catalysts.   

The catalysts were examined for the formation of metallic Ni0 after undergoing n-

tetradecane POx.  The formation of metallic Ni0 peaks was observed in both 

LaNi0.4Al11.6O19-δ and SrNi0.4Al11.6O19-δ indicating that some of the Ni+2 initially present 

within the hexaaluminate lattice was reduced and separated to form an individual metallic 

phase.  There was no discernable evidence of formation of Ni peaks in BaNi0.4Al11.6O19-δ; 

however this was attributed to peak overlap between the Ba hexaaluminate phase and the 

metallic Ni0 phase.  X-ray photoelectron spectroscopy and H2 pulse chemisorptions 

techniques were utilized to determine the concentration of Ni at the surface of the catalyst 

and resulted in the order of:  LaNi0.4Al11.6O19-δ > SrNi0.4Al11.6O19-δ > BaNi0.4Al11.6O19-δ.   

Gardner et al. (18) also examined the effect of the mirror cation on the formation 

of reduced Ni sites.  The catalysts were each subjected to a reducing environment and Ni 

dispersions were tabulated.  Table 1 (18) illustrates the values of the surface area, 

dispersion and bulk and surface Ni concentrations of the three mirror cation 

hexaaluminate catalysts obtained by the study. 

 

Table 1: Surface Area, Dispersion and Bulk Surface Ni Concentration of Ni-

substituted Hexaaluminate Catalysts (18) 

Mirror 
Cation  

 

Catalyst Surface 
Area  

(m2/g) 

Dispersion 
(H/Ni) 

Bulk Ni 
Concentration 

(wt. %) 

Surface Ni 
Concentration 

(wt. %) 
La LaNi0.4Al11.6O19-δ 22.6 0.025 2.11 5.3 
Ba BaNi0.4Al11.6O19-δ 14.3 0.0095 2.33 <0.1 
Sr SrNi0.4Al11.6O19-δ 16.2 0.019 2.30 0.7 
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The Ni dispersions were determined to follow the same order as the Ni concentration at 

the surface:  LaNi0.4Al11.6O19-δ > SrNi0.4Al11.6O19-δ > BaNi0.4Al11.6O19-δ.  Due to the Ni 

dispersions for all three catalyst types being less than 3%, the results indicate that most of 

the Ni remained as Ni-O within the lattice, leading the investigators to observe that only a 

fraction of the Ni sites are reduced and responsible for catalytic activity (18).  However, 

the low dispersions may also indicate that the metal particles are large and only a portion 

lies on the catalyst surface. 

 Gardner (6) further investigated various levels of Co, Fe and Ni-substituted La 

hexaaluminate catalysts, in addition to the Ni-substituted Sr and Ba catalyst series 

previously mentioned.  Hydrogen consumption measurements during TPR of the 

catalysts suggest that the mirror cation has a large effect on the reduction temperature, 

with reduction peak temperatures of 982°C for LaNi0.4Al11.6O19-δ and 938°C for 

SrNi0.4Al11.6O19-δ.  BaNi0.4Al11.6O19-δ had a low-temperature peak location at 611°C and a 

high-level peak at 1064°C.  TPR data show that reduction occurs at temperatures above 

800°C, suggesting that Ni has been incorporated into the hexaaluminate structure since 

Ni-O is reduced to Ni0 metal around 300°C.  Hydrogen consumption peak data correlated 

with dopant substitution level led to the observation that increasing the degree of Ni 

modification resulted in an increase of accessible reduced Ni-O sites.  It was observed 

that relative to La and Sr, the Ba mirror cation produced a stabilizing effect on the Ni-O 

bond in the hexaaluminate lattice.  This behavior led to the suggestion that reduced Ni 

sites were located in a region near the mirror cation and reduction was influenced by the 

type of mirror cation present in the lattice. 

Hexaaluminate catalysts for this project were prepared by Todd Gardner and 

Mark Smith at the DOE’s NETL facility in Morgantown, WV.  The hexaaluminates are 

of the form MI(MII)xAl12-xO19-δ,  where MI is the cation (MI = Ba, Sr, La), MII refers to the 

metal dopant (MII = Ni) substituted into the lattice, x is the substitution level and δ is the 

relationship between x and the specific molecular formula.  The catalysts include a series 

of Ba hexaaluminates where the Ni substitution level was varied from x = 0.2, 0.4, 0.6, 

0.8 and 1.0.  An additional Ba hexaaluminate catalyst sample was included for 

comparison with x = 0.0 Ni substitution.  Another series of samples kept the Ni level 

constant at x = 0.4 but varied the mirror cation, using Ba, Sr or La.   
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The investigators chose to employ liquid-phase coprecipitation to synthesize the 

catalysts (6).  The first step of preparing the catalysts was to weigh out the calculated 

amount of nitrate precursor salts to create the desired hexaaluminate.  The salts were 

dissolved in 300 mL of de-ionized water stirred continuously at 60°C.  The requisite 

amount of ammonium carbonate needed to neutralize the nitrates was measured and 

dissolved in a separate container of 300 mL of de-ionized water stirred continuously at 

30°C.  For example, synthesizing 20 g of BaNi0.4Al11.6O18.8 requires 55.39 g of 

ammonium carbonate, 112.36 g of Al nitrate, 6.75 g of Ba nitrate and 3.00 g of Ni nitrate.  

The pH of the solutions ranged from 8.5 to 9.0 for the ammonium carbonate and 1.0 to 

2.0 for the nitrates.  The nitrate solution was added drop-wise through a separatory funnel 

to the ammonium carbonate solution until a combined pH of 7.5 was achieved.   

The resultant gel was aged at 60°C for six hours under vigorous mixing 

conditions.  After aging, the gel was separated by vacuum filtration and rinsed three times 

with de-ionized water to remove excess nitrates.  The filter cake was dried overnight at 

110°C, crushed and placed in an oven.  The samples were decomposed at 425°C in air for 

1 h and then calcined at 1250-1400°C for 2-6 h.  Earlier samples were calcined at 1250°C 

for 2 h.  Samples synthesized later were calcined for one hour at each temperature with 

set points of 900°C, 1000°C, 1100°C, 1200°C, 1300°C and 1400°C in a ramp-and-soak 

manner.  Table 2 illustrates the synthesis conditions of the catalysts to be investigated. 
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Table 2: Ni-Substituted Hexaaluminates Synthesis Conditions 

Sample Name 
[ID#] 

Mirror 
Cation 

Ni substitution 
Level 

Calcination 
Conditions 

LaNi0.4Al11.6O19 

[35] 
Lanthanum 0.4 1250°C 

2 h 
SrNi0.4Al11.6O19 

[52] 

Strontium 0.4 1250°C 
2 h 

BaNi0.4Al11.6O18.8 

[75] 
Barium 0.4 1300°C 

4 h 
BaAl12O19 

[38C] 
Barium 0.0 1300°C 

6 h 
BaNi0.2Al11.8O18.9 

[115B] 
Barium 0.2 900-1400°C 

6 h* 
BaNi0.4Al11.6O18.8 

[116B] 
Barium 0.4 900-1400°C 

6 h* 
BaNi0.6Al11.4O18.7 

[117B] 
Barium 0.6 900-1400°C 

6 h* 
BaNi0.8Al11.2O18.6 

[118B] 
Barium 0.8 900-1400°C 

6 h* 
BaNiAl11O18.5 

[119B] 
Barium 1.0 900-1400°C 

6 h* 
*6 hours total calcination time, 1 hour each at 900, 1000, 1100, 1200, 1300, 1400°C 

 

In addition to the experiments performed at NETL on various hexaaluminates, 

some initial tests were conducted by Gardner et al. (6; 18) on Ni-substituted Ba 

hexaaluminates (21).  Figure 2 (21) illustrates the H2 consumption measurements during 

temperature programmed reduction of the Ni-substituted Ba series.   
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Figure 2: H2 consumption curves illustrating the reduction temperatures of  

Ni-substituted Ba hexaaluminates (21) 
 

As can be seen in Figure 2, the level of Ni substitution has a direct effect on the 

reduction temperatures of the hexaaluminate catalysts.  The higher the Ni substitution, the 

lower the temperature for initiation of reduction and the higher the intensity of the H2 

consumption peaks.  The two samples with the lowest Ni substitution, BaNi0.2Al11.8O19-δ 

[115B] and BaNi0.4Al11.6O19-δ [116B], have an additional reduction peak around 600°C.  

Gardner (6) previously studied the H2 consumption peaks of the Ni0.4-substituted La, Sr 

and Ba series of samples which indicated the mirror cation also has a large effect on 

reduction conditions.   
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 The temperature-programmed oxidation (TPO) reaction of CH4 over inert quartz 

chips versus BaNi0.8Al11.2O19-δ is illustrated in Figure 3 (21) and Figure 4 (21). 

0

2

4

6

8

10

0 200 400 600 800 1000

C
on

ce
nt

ra
tio

n 
(v

ol
%

)

Temperature (°C)

H2
CO
CO2
CH4

H2
CO
CO2
CH4

 
Figure 3: Temperature programmed oxidation of CH4 over quartz (21) 
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Figure 4: Temperature programmed oxidation of CH4 over BaNi0.8Al11.2O19.6 (21) 

 
 

For both cases of the BaNi0.8Al11.2O19-δ [118B] catalyst and quartz, no reaction 

was observed over the temperature range of 200°C to 400°C.   Between 400°C to around 

660°C, the BaNi0.8Al11.2O19-δ [118B] catalyst allows for the combustion of CH4 and 

resulting formation of CO2 whereas the quartz chips indicated no activity.    Around 

660°C, catalyst light-off occurred, which is the minimum temperature necessary to 

initiate the catalytic reaction.  All BaNixAl12-xO19-δ catalysts within the series produced 

similar catalytic behaviors.  After reaction to 900°C, it was observed that the upper 

portion of the bed remained blue and free of C deposition.  The lower portion achieved a 

gray appearance, suggesting that either some carbon formation occurred in the 
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downstream portion of the bed (21) or that Ni+2 ions, with characteristic blue color, have 

been reduced to Ni0 metal and turned from blue to gray. 

In a similar characterization study to this project, Bukhtiyarova et al. (22) 

performed XRD and FTIR spectroscopy of adsorbed probe molecules (CO and CDCl3) 

on SrAl12O19, BaAl12O19 and LaAl11O18.  The Bukhtiyarova samples were created via the 

coprecipitation method under similar conditions to the samples synthesized at NETL by 

Gardner (6; 22).   The XRD profiles were recorded with Cu Kα (λ = 1.5418 Å) radiation 

and in both continuous and step-by-step scanning modes at 0.05 – 0.1° in 2θ and dwell 

time of 20-30 sec depending on the crystallinity of the sample (22).   X-ray diffraction 

confirmed the formation of single-phase hexaaluminates in the SrAl12O19 and BaAl12O19 

samples; however the LaAl11O18 sample contained an additional LaAlO3 phase.  It was 

also observed that the cell parameters changed with increasing temperature during 

calcination: a, b directions increased for all three of the samples, while the c direction 

decreased for all the samples except for BaAl12O19. 

2.3 Characterization Techniques 

Several characterization techniques will be applied to investigate the two series of 

catalysts.  Characterization techniques will be conducted at WVU by means of the 

following methods: scanning electron microscopy (SEM), unit-cell refinement (UCR), 

simultaneous temperature-programmed reduction and X-ray diffraction (TPR-XRD) and 

Fourier-transform infrared (FT-IR) spectroscopy.  Scanning electron microscopy will be 

used to determine differences in catalyst surface morphology.  Unit-cell refinement will 

confirm that Ni is incorporated into hexaaluminate lattice.  Temperature-programmed 

reduction and X-ray diffraction will allow the monitoring of changes in structure and the 

formation of metal-oxygen species during reduction conditions. Temperature 

programmed reduction under H2 followed by CO pulse chemisorption will also be 

performed on the samples to determine reduction temperatures and level of Ni0 on the 

catalyst surface to optimize FT-IR measurement conditions.  Fourier-transform infrared 

spectroscopy will detect surface species adsorbed on reduced catalyst and distinguish 

between Ni+2 ions and Ni0 metal.  The results obtained from each of the techniques will 

be analyzed and combined in order to gather a clearer understanding of the activity of Ni 
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on the hexaaluminate catalysts surfaces and what effect varying the cations and Ni 

substitution level have on the hexaaluminate structure. 

The first characterization technique to be performed on the hexaaluminate 

catalysts will be SEM.  Scanning electron microscopy images of magnification levels up 

to 10k will be taken on equipment available at WVU.  These images illustrate any 

differences in surface morphology between samples of varying composition as well as 

fresh versus spent catalysts. 

   Temperature-programmed reduction is a technique used to indicate the relative 

strength of metal-oxygen bonds present in the lattice.  For Ni substituted into the 

hexaaluminate lattice to become catalytically active, the Ni-O bond within the lattice 

must be reduced (18).  The reduced Ni sites form either metallic Ni0 or remain as a defect 

site within the lattice as a Ni ion.  If metallic Ni0 sites form, either the active sites exist as 

nano-dispersed Ni sites embedded at the surface, or metallic Ni0 clusters may form if the 

reduced sites are in a high concentration.  Temperature-programmed reduction shows the 

energy required to reduce Ni within the hexaaluminate lattice as well as the temperature 

range in which reduction occurs.   

Unit-cell refinement (UCR) (23) is a technique commonly utilized in 

mineralogical and petrological research to determine lattice parameters of materials from 

XRD diffraction patterns of actual observed data.  The lattice parameters are calculated 

via non-linear least-squares refinement of the whole diffraction pattern and also 

incorporate regression diagnostics to detect and dismiss outliers that may skew results.  In 

this study, the XRD software Jade was utilized to calculate the lattice parameters of the 

samples and the results are given in the form of a, b and c parameters, the overall lattice 

cell volume and the respective standard error of each measurement.  

In situ time-resolved studies of the formation of catalysts are important in order to 

understand the synthesis mechanisms.  Using time-resolved XRD, it is possible to follow 

structural changes during TPR and temperature-programmed oxidation (TPO).  It has 

been shown that O2 diffusion is preferred to occur via the O-2 ions within the monatomic 

layer of the mirror plane rather than those present in the spinel block (24).  Under TPR it 

is anticipated that O-2 ions within the mirror plane of Ni-substituted hexaaluminates will 

reduce and expose active Ni0 sites.  In situ observation also enables detection of 

intermediate phases, helps in establishing optimal synthesis conditions and makes it 
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possible to investigate the kinetics of phase transitions and to determine the changes of 

crystallite size as a function of time and reaction conditions (25).   In situ time-resolved 

XRD will be executed by simultaneously performing TPR and TPO while scanning the 

samples via XRD under high intensity synchrotron radiation.  Synchrotron measurements 

provide high positional accuracy and excellent signal-to-noise ratio.   

As previously mentioned in Section 2.2, Xu and coworkers (9; 10) performed 

TPR with catalyst embedded in a fixed-bed quartz tube, although XRD measurements 

were not simultaneously taken during the procedure.  Before reaction, the samples were 

treated at 300°C under Ar for 30 min and cooled to room temperature.  The samples were 

then heated to 1200°C at 20°C/min under 10% H2/Ar gas mixture at a flow rate of 30 

ml/min.  Chu et al. (16) chose similar conditions for TPR studies but used 5% H2/Ar and 

the sample was heated to 1250°C. 

Unit-cell refinement and in situ time-resolved XRD characterization will be 

conducted at the X7B beam line of the National Synchrotron Light Source (NSLS) 

facility at Brookhaven National Laboratory (BNL) in Upton, NY.  Investigations 

conducted at the NSLS facility at BNL as well as other institutions have resulted in the 

practicality of conducting subminute, time-resolved XRD experiments under a wide 

variety of temperature (-190°C to 900°C) and pressure (< 45 atm) conditions (25; 26).  

Poul Norby, a BNL chemist, and Jonathan Hanson, beam line scientist of the X7B beam 

line, have both helped to develop in situ diffraction techniques that are available for 

researchers who visit BNL. 

The NSLS X7B beamline offers a vertically and horizontally focused beam, 

making it possible to obtain high intensity in a small spot (27).   For time-resolved XRD 

experiments performed at X7B, a sample in a sapphire capillary tube mounted 

horizontally in front of an imaging plate detector.   Under operation, the image plate 

collects a continuous series of powder diffraction profiles as a function of time.  The time 

resolution depends on the exposure time needed to obtain a satisfactory diffraction 

pattern and the time needed to transmit this data to a computer.  Typically exposure times 

are 1 to 3.5 minutes and transfer times are 1.5 minutes so that data can be collected at 2.5 

to 5 minute intervals.  The imaging data are obtained in the form of Debye-Scherrer rings 

that upon integrating lead to structural information about the sample (27).  Both the 

position and intensity of the rings are an indication of the structure and crystallinity of the 
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sample.  The geometry of the experimental set-up was acquired from Norby (27) and is 

shown as Figure 4.   

 
Figure 5: Schematic representation of the geometry of the X7B beamline 

experimental setup (27) 

 

The parameters are D0, the distance from the sample to the imaging plate measured 

perpendicular to the imaging plate; z0, the zero point; α, the tilt angle of the imaging 

plate; and λ, the wavelength.  These parameters are determined by calibration from a 

known powder standard, typically LaB6 for beamline X7B. 

 The number of reaction sites on a catalyst surface can be determined via in situ FT-

IR spectroscopy with absorption of gaseous compounds (typically CO, CO2 or NO) onto 

the surface of Ni on alumina supported materials.  Hydrogen gas also dissociates on 

adsorption and binds strongly to metal surfaces such as Ni atoms.  However, H2 on a 

metal surface cannot be detected by infrared spectroscopy.  Carbon monoxide is 

particularly useful as it absorbs as a molecule on both metal and metal-ion surfaces and 

produces strong infrared spectra on each.  Fourier-transform infrared spectroscopy will 
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show how CO probe molecules bind to Ni-exchanged hexaaluminates after reduction.  

There have been extensive investigations that have been performed using these probe 

molecules, however, there is little information regarding in situ FT-IR analysis of 

hexaaluminates, particularly on Ni-substituted hexaaluminates.  

  Galuszka et al. (28) performed an infrared study of the adsorption of CO as well 

as the coadsorption of CO and H2 on alumina-supported Ni catalysts and discovered that 

a total of six different IR bands were found in the spectral region of 2250-1800 cm-1 due 

to adsorbed CO.  The experimenters adsorbed CO on alumina supported 5% Ni for 7 

hours at 10 Torr and 150°C and then allowed the sample to cool to room temperature.  

The system was then evacuated and then the intensity and frequency of the bands were 

monitored.  The intensity of some of the six bands was found to be influenced by the 

presence of H2.  There were two bands that were found to occur higher than gaseous CO.  

One of these bands at a wavelength of 2250 cm-1 was only present when the temperature 

was above 100°C.  When the same conditions were applied to an alumina supported 1% 

Ni sample, only one weak peak at 2050 cm-1 with accompanying shoulder appeared.  This 

band was found to be easily removed during evacuation and only the wider shoulder peak 

at 2080 cm-1 remained on the surface up to 200°C. 

In a 2002 study, Bengaard and others (29) utilized Ni catalysts for steam 

reforming and studied graphite formation and methods to block the active sites.  The 

researchers proposed that CO binds on Ni(111) and/or Ni(211) with a preference for three 

fold site on the planar Ni(111) surface.  The investigators also stated that CO is usually 

adsorbed at temperatures below 300 K on the low-index Ni surfaces and by CO 

desorption when the temperature is increased to about 450 K and no C or O2 is left on the 

surface. 

In the Bukhtiyarova et al. (22) study previously mentioned in Section 2.2, FTIR 

spectra of adsorbed probe molecules (CO and CDCl3) on SrAl12O19, BaAl12O19 and 

LaAl11O18 were recorded in the region of 4000 – 1200 cm-1 and a resolution of 4 cm-1.  

The samples were pressed to self-supporting disks (10-20 mg·cm-2), transferred to an IR 

cell and then evacuated at 500°C for 1.5 h to a residual pressure of less than 10-4 Torr.  

Carbon monoxide was adsorbed at -196°C at pressures from 0.1 to 10 Torr.   

A similar study by Kantcheva et al. (30) characterized LaMnAl11O19 by XRD and 

in situ FT-IR spectroscopy with NO and NO/O2 probe molecules.  Fourier transform 



20 
 

 
 

infrared measurements were recorded with a spectrometer equipped with a liquid-

nitrogen cooled Mercury Cadmium Telluride (MCT) detector at a resolution of 4 cm-1.  

The in situ FT-IR measurements consisted of a sample of the hexaaluminate calcined at 

1000°C for 1 h.  Self-supporting discs were created and activated in the IR cell by heating 

for 1 h in vacuum at 500°C and in O2 followed by evacuation for 1 h at 500°C.  The 

spectrum of the sample at ambient temperature was used as a background reference and 

then a flow of 99.9% pure NO gas was applied.  After the subtraction of the spectrum of 

gaseous NO, two bands at 1861 and 1827 cm-1 were observed, and were attributed to 

coordinatively unsaturated Mn+3-NO species.  The coadsorption of NO and O2 at room 

temperature leads to the formation of various nitro-nitrato structures, and the species 

were found to decompose at 350°C directly to N2 and O2.    

Hu et al. (31) performed a temperature-programmed FT-IR study of the 

adsorption of CO and co-adsorption of CO and H2 on Ni on supported Al2O3.  Although 

the samples were not hexaaluminates, the variety of methods utilized in the investigation 

of the samples is of interest.  The first method was low-partial-pressure desorption of CO 

on the samples under vacuum in which the system was exposed to CO at 22 Torr for a 

specified time, then the system was evacuated and spectrum was recorded.  The second 

method was temperature-programmed heating in a CO atmosphere at 18 Torr and spectra 

were recorded at different temperatures.  The third technique was temperature-

programmed-reaction in a CO and H2 atmosphere and performed three different ways: 

exposure of CO then H2 both at 20 Torr; exposure of H2 (15 Torr) then CO (20 Torr); and 

finally, premixed CO (25 Torr) and H2 (45 Torr) were introduced to the samples and 

spectra were recorded at different temperatures.  
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Chapter 3: Materials and Methodology 

3.1 Scanning Electron Microscopy (SEM) 

The SEM images of the hexaaluminate catalysts were taken on a Hitachi S4700 

Field Emission Scanning Electron Microscope located at WVU.  The catalysts in the 

calcined state were ground with an agate mortar and pestle.  However, in order to view 

more of the external surface area, the catalysts obtained from the reactor bed experiments 

by Gardner (6) were only crushed.  The samples were spread onto double-sided carbon 

tape and then placed on an Al sample stub.  The tape and stubs were supplied by Ted 

Pella, Inc.  Upon initial capturing of the images, it was determined that the catalysts were 

charging badly and needed to be coated to enhance the picture quality.  The samples were 

treated with approximately 10 nm of gold sputter coating.  However, the morphology of 

the catalysts prevented a uniform coating and some charging remained.  The pictures 

were taken under the following conditions: an accelerating voltage of 1.0kV, a working 

distance of 11.9-12.4mm, and magnification levels at 400, 5k, and 10k.       

3.2 X-ray Diffraction (XRD) 

Unit-cell refinement and TPR-XRD pattern measurements were conducted at the 

X7B beam line (λ = 0.9225 Å) of the NSLS facility at BNL in Upton, NY.  The X-ray 

diffraction patterns of the hexaaluminate catalysts were measured during TPR and during 

TPO with the POx of CH4.  The diffraction patterns were measured at specific time 

intervals to determine if any changes in the crystal structure occur as a function of time 

and temperature.   

The first step of XRD sample preparation was to obtain a new single-crystal 

sapphire capillary tube or to clean out a previously used tube using pressurized air.  Each 

sapphire tube was open at both ends and was 50 mm in length with a 1.1 mm outer 

diameter and a 0.8 mm inner diameter.  A small piece of quartz wool was spun into a 

small cylindrical roll and stuffed about ¼ of the distance inside the capillary tube to serve 

as a plug.  The sample to be studied was ground to a fine powder in an agate mortar and 

pestle.  Using a quartz capillary tube with a funnel on one end as a scoop, the sample was 

loaded into the sapphire tube until it filled about 2 cm of the length of the tube.  Another 

quartz wool plug was placed on the other end to secure the sample in place.  The sapphire 
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tube was threaded through a 24 AWG Kanthal wire heating coil and loaded into the cell.  

Figure 5 is an image of the cell used in the experiment. 

 

 

Gas Inlet Gas Outlet 

Heating Coil Catalyst Bed

Sapphire Tube Thermocouple

Figure 6: Experimental cell used at beamline X7B 

 

The cell, designed and fabricated by the catalysis group at BNL, was attached to the 

goniometer head of the X7B beam line and positioned in the path of the beam.  Tubing 

was connected to the cell and the sample was flushed with a gas flow of ~5 cc/min flow 

of 5% H2-95% He gas mixture acquired from Praxair.  The outlet was connected to a 

residual gas analyzer (RGA).       

3.2.1 Unit-cell Refinement (UCR) 

 Each catalyst sample was first investigated by UCR.  Unit-cell refinement 

measurements were conducted at BNL NSLS on beam line X7B (λ = 0.9225 Å) using a 

Rayonix Mar345 image plate detector to determine changes in the crystalline size and 

volume for the hexaaluminate catalyst samples with changing Ni-substitution level.  X-
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ray diffraction patterns were taken at 25°C under He over a scanned region of 0 to 50° in 

2θ.   

 The original Debye-Scherrer powder rings were integrated with FIT2D code, a 

dimensional data analysis software created by the European Synchrotron Research 

Facility, to provide conventional diffraction angle and intensity data.  The FIT2D 

parameters for the integration of the raw synchrotron data were obtained with lanthanum 

hexaboride, LaB6, being used as an external calibration standard.  LaB6 is also used to 

determine the proper tilt angle, sample-to-detector distance, wavelength, and tilting angle 

of the image plate.  A three-dimensional chart document was obtained with a Fortran 

CHITOUXDS code, written by BNL X7B beamline researcher Jonathan Hanson.  The 

time-resolved XRD pattern files were analyzed using Jade Plus 7.5, a XRD pattern 

processing and search-and-match software created by Materials Data Incorporated.  The 

diffraction-pattern database used with Jade is PDF-4+ 2006 from the International Centre 

for Diffraction Data (ICDD).  Calculation of crystal dimensions required basic symmetry 

information that is obtained from the PDF-4+ database. 

3.2.2 In situ Temperature-programmed Reduction and X-ray Diffraction 

(TPR-XRD)  

In the TPR-XRD procedure, the first temperature ramping step was to hold at 

25°C for 2 minutes, followed by heating at a rate of 10°C/min to 625°C and then at the 

rate of 5°C/min until 925°C.  The temperature was held at 925°C for 30 minutes, and 

then the sample was allowed to cool to room temperature.  The 5% H2-95% He gas 

mixture continued to flush through sample during the entire run.  Diffraction 

measurements were collected every 5 minutes using synchrotron radiation with a 

wavelength of 0.9225 Å and a residual gas analyzer (RGA) was utilized to follow the 

composition of product gases.  The run with SrNi0.4Al11.6O19 [52] had small variations in 

the heating rate in that the sample was not held at specific temperatures between 

heating/cooling steps.      
Time-resolved or in situ XRD measurements were also conducted at BNL NSLS 

on beam line X7B.  The entire range that was measured was of the region of 0 to 50° in 

2θ.  Measurements were taken every 5 minutes, which consisted of the time needed to 

scan the sample and transfer the data from the imaging plate to a computer.  The same 
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computer programs utilized in the UCR experiments were also required for TPR-XRD 

data acquisition and analysis. 

3.3 In Situ Fourier-transform Infrared (FT-IR) 

To optimize the FT-IR measurement conditions characterization techniques of 

TPR with 5% H2 followed by CO pulse chemisorption were conducted on the samples.  

Temperature-programmed reduction experiments, where the gas effluent is measured 

using a mass spectrometer, were conducted at NETL utilizing TPR under H2 to determine 

bond strength and reduction temperatures.  This was followed by a CO pulse-absorption 

technique used on the reduced catalysts to determine the amount of Ni species on the 

catalyst surface.  The catalyst characterization group at the NETL has the resources of a 

Micromeritics Autochem 2920 Catalyst Characterization System with the sample off-gas 

analyzed by a ThermoONIX Prima δβ magnetic sector mass spectrometer.  These 

experiments are typically carried out under 5% H2-95% Ar, 10% CO-90% He and UHP 

Ar gases.  Pulses of CO are sent to the reduced catalysts until surface saturation was 

reached.  The amount of gas adsorbed is obtained by calculating the difference between 

the volume of each pulse and the fraction of CO not adsorbed.   

Fourier-transform Infrared Spectroscopy was conducted at WVU with a Thermo 

Nicolet Nexus 670 spectrometer loaned by NETL.  The spectrometer setup is shown in 

Figure 6. 
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Temperature Controller Nexus 670 Spectrometer 

MFC Controller and Read Out Smart Collector 

Figure 7: Thermo Nicolet Nexus 670 infrared spectrometer setup 

 

The spectrometer was supplied with several categories of Smart Accessories that were 

also manufactured by Thermo Nicolet.  The primary accessory utilized in the study was 

the Smart Collector, which is designed for infrared analysis of solid, especially 

powdered, samples via Diffuse Reflectance Infrared Fourier-transform Spectroscopy 

(DRIFTS) environmental chamber cell shown in Figure 7.  Experiments were conducted 

with a DRIFTS Dual Environmental Chamber in which the temperature (up to 900°C), 

pressure (from ambient to 1000 psi and 10-5 Torr) and gas phase in the environment can 

be controlled by the user.  However, equipment tests have shown that the particular 

DRIFTS cell utilized in this study was restricted to a maximum temperature of 780°C; 

therefore experimental conditions did not exceed 750°C and were often operated at 

600°C. 
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Gas Outlet Chamber 2 Chamber 1

Water Inlet

Gas Inlet Water Outlet

Figure 8: DRIFTS dual environmental chamber for smart collector 

 

 Inside each chamber is a ceramic heater sample cup with thermocouple to monitor 

the temperature of the sample.  A Thermo electronics temperature read-out with an 

Omega CN8500 series temperature controller was utilized to control the temperature and 

ramping rate of the sample cups in the dual chambers.  To prevent the environmental 

chamber from overheating and damaging the chamber window, O-ring seals and/or smart 

accessory, a VWR recirculation chiller was connected to the system and was set to cool 

the water at 15°C.  A FT-IR purge gas generator manufactured by Parker Balston 

Analytical Gas Systems, model 75-52, was installed to remove water and carbon dioxide 

from purge air and supply a dry, high-purity stream of air flow (50 psi) to the Nexus 670 

spectrometer.   

The gas feed for the dual-chambered DRIFTS cell was adjacent to the 

spectrometer.  The process flow diagram (PFD) for the setup of the gas feed for the dual 

chambered DRIFTS cell is illustrated as Figure 8.  The unit has three separate (1/8” 316 

stainless steel tubing) feed lines that are each passed through a 0.5 µm filter and then into 
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a Brooks 5850E mass flow controller (MFC).  The MFCs are controlled by a Brooks 

Instrument Read Out & Control Electronics 0154 unit.  Line 1 contains 5% H2 gas 

(balance He) and was calibrated by Brooks for 0-20 sccm of He flow.  Line 2 is set up for 

pure He gas and calibrated by Brooks for 0-50 sccm of He flow.  Line 3 is attached to a 

cylinder of 500 ppm CO gas (balance He) and was calibrated by Brooks for 0-20 sccm of 

He flow.  All of the gas cylinders were supplied by Airgas, Inc.  Following the MFCs, 

line 1 passes through a check valve and connects to a 3-way valve that directs flow to the 

dual environmental chamber or to a ventilation hood.  Lines 2 and 3 each passed through 

check valves and connect to a 6-port sampling valve and finally connect to 3-way valves 

leading to the chamber inlet.  The 6-port valve allows either continuous flow or a 

controlled volume sampling flow of 500 ppm CO gas to the sample in the DRIFTS cell.  

The gases or combinations of gases fed into the inlet of the dual environmental chambers 

and the outlet connected to the inlet line of a mechanical pump.  The pump was used to 

evacuate the system before changing the gas flow through the DRIFTS cell.  The outlet of 

the pump was plumbed into a ventilation hood.  Figure 9 is an image of the setup 

fabricated for this investigation. 

Due to the high reduction temperatures of hexaaluminate samples, the DRIFTS 

cell was unable to reduce the calcined samples sufficiently, and pretreatment was 

required.   The hexaaluminates were placed in ceramic boats inside a tubular reactor and 

heated to 1000°C under a 50cc/min 5% H2-95% He mixture at a rate of 10°C/min.  The 

samples were held at 1000°C for 8h and allowed to cool.  After being flushed with He for 

30 min, the samples were passivated with 3% O2-97% He gas mixture for 1 h at room 

temperature.  Passivation of the catalysts creates a thin oxide layer on the sample surface 

that can later be re-reduced under less extreme conditions.  Upon removal of the tubular 

reactor, the samples were found to remain gray in color, indicating the passivation 

procedure was successful.  

The passivated samples were ground into a fine powder via an agate mortar and 

pestle.  About 0.3g of the sample was loaded into one of the sample cups of the DRIFTS 

cell and the sample surface was leveled evenly with the lip of the ceramic cup.  The 

samples were carefully packed in the ceramic cup due to the fact that loose samples could 

be blown out by the flow of gases and compacted samples would restrict the flow.  A 

secondary sample or an Al2O3 standard was placed in the second sample cup to flow 
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Figure 9: Process flow diagram of setup of the gas feed inlet of dual environmental chamber cell  

F, filter; MFC, mass flow controller; CV, check valve 

Line 3 
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Line 1 
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Line 1 

Line 2 

Line 3 

Figure 10: Setup of the gas feed inlet of dual environmental chamber cell 

 

gases across both cups more evenly.  The O-rings were covered with vacuum grease to 

ensure a tight seal and the optic chamber lids were fastened to the DRIFTS cell.   The 

next step of sample preparation was to connect the feed gas and cooling water lines to the 

cell.   Finally, the system and lines were tested for leaks. 

The passivated samples were heated until reaching the set temperature of 600-

750°C under 40cc/min 5% H2-95% He at a rate of 10°C/min and held at maximum 

temperature for 2 h.  After the holding period the samples were allowed to cool and the 

gases were evacuated via a mechanical pump for 15 min.  A scan of the sample was then 

taken by the FT-IR to serve as a background for the scans after CO exposure.  A 

40cc/min flow of 500 ppm CO-balance He was applied to the chamber and scans were 

taken after 2, 5, 10, 15, 20, 25 and 30 min of exposure to CO.  After 30 min, the chamber 

was evacuated via a mechanical pump and scans were taken at 5, 10 and 15 min after 

exposure to determine what species remained bonded to the surface of the catalysts.  
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Additional instructions for FT-IR operations are located in the Section A.1 of the 

Appendix.  

3.4 Safety 

The chemicals used in this study are 5% H2 gas (balance He), 500 ppm CO gas 

(balance He), 5% CH4-2.5% O2-92.5% (balance He) gas, He gas, and liquid nitrogen.  

Material safety data sheets (MSDS) were obtained for each of the chemicals used in this 

study.  Helium and H2 can act as simple asphyxiants and H2 is widely known to be highly 

flammable.  Carbon monoxide is toxic upon inhalation and has warnings regarding its 

flammability.  Although the concentrations of H2 and CO utilized in this investigation are 

below minimum flammability levels and cannot burn, special care was taken to keep 

them away from flames and other ignition sources.  Exit lines are plumbed into the 

ventilation hood.  Liquid N2 can be an asphyxiant and may cause frostbite upon contact 

with skin.  Liquid N2 transport requires the use of a Dewar.  All cylinders contain gases 

and/or liquids under high pressure and must be handled with care.  Detailed MSDS data 

on hexaaluminates is not readily available, however like most powders, the 

hexaaluminates are assumed to be irritants to the eyes, skin and respiratory system; thus 

all handling of the samples was conducted in a ventilation hood with proper safety attire. 

Safety apparatus including laboratory coats, glasses, goggles, masks, latex gloves 

and thermal gloves were worn as necessary or as required by safety rules when operating 

equipment, handling chemicals and/or performing experiments.  The laboratory is 

equipped with ventilation hoods, fire extinguishers and blankets, chemical safety 

showers, eye-wash stations and first aid kits.  Material safety data sheets for all chemicals 

utilized and/or stored in the laboratory in addition to a contact list for emergency 

response is posted at each entrance of the laboratory. 
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Chapter 4: Results and Discussions 

4.1 SEM 

The hexaaluminate catalysts prepared at NETL were examined by scanning 

electron microscopy at WVU.  Both series were investigated via the procedure and 

conditions as described in Section 3.1.  Figures 10, 11 and 12 illustrate the 

LaNi0.4Al11.6O19 [35], SrNi0.4Al11.6O19 [52] and BaNi0.4Al11.6O18.8 [75] samples 

respectively, each at a magnification level of 10,000x.  There does not seem to be a 

uniform shape to describe all of the samples and all appear to be a cluster of 

hexaaluminate particles.  The SEM images of the mirror-cation-varied samples are very 

similar to each other; however there seems to be slight differences on how the particles 

agglomerate.  The LaNi0.4Al11.6O19 [35] sample seems to have morphology similar to a 

coral reef.   The SrNi0.4Al11.6O19 [52] sample appears to be more like a collection of 

breakfast-cereal flakes.  BaNi0.4Al11.6O18.8 [75] has particles that might be described as 

having the appearance of steamed rice.   

 The series of Ni-substituted Ba hexaaluminates was also examined by SEM and 

the images of BaNi0.8Al11.2O18.6 [118B] and BaNiAl11O18.5 [119B] are provided in Figures 

13 and 14 respectively.  There appears to be little to no difference between the 

morphology of the different Ni-substituted Ba catalysts.  The similarity between samples 

indicates that the percentage of Ni is low enough that variations do not have a substantial 

effect on surface morphology.  Figure 15 is an image of BaAl12O19 [38C] which does not 

contain any Ni.  The BaAl12O19 [38C] sample appears to have thinner flaky, sometimes 

needle-like architecture and has a different morphology than the other hexaaluminates 

that contain Ni.   
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Figure 11: SEM image of calcined LaNi0.4Al11.6O19 [35] 
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Figure 12: SEM image of calcined SrNi0.4Al11.6O19 [52] 
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Figure 13: SEM image of calcined BaNi0.4Al11.6O18.8 [75] 
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Figure 14: SEM image of calcined BaNi0.8Al11.2O18.6 [118B] 
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Figure 15: SEM image of calcined BaNiAl11O18.5 [119B] 
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Figure 16: SEM image of calcined BaAl12O19 [38C] 
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The Ni-substituted Ba hexaaluminate series of catalysts were used for TPO of the 

POx of CH4 at NETL (18), as described in Section 2.2, and samples were obtained from 

different locations in the catalyst bed.  The leading edge of the catalyst bed continued to 

have the original blue color catalyst particles, whereas the particles further into the 

reactor turned from blue to gray.  Samples taken from both regions of the reactor bed 

were acquired and analyzed via SEM to discern any differences.  Crushing the particles 

showed uniform coloration throughout, which is an indication that the samples were 

completely reduced and did not have diffusion effects.   

Figure 16 shows the blue phase of BaNiAl11O18.5 [119B-blue] and Figure 17 

shows the gray phase for the same material.  Examination of the SEM images could not 

distinguish any substantial differences between the blue and gray samples, with all of the 

particles closely resembling the fresh materials observed previously.   
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Figure 17: SEM image of blue particle of BaNiAl11O18.5 [119B-blue] after CH4 POx  
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Figure 18: SEM image of gray particle of BaNiAl11O18.5 [119B-gray] after CH4 POx 
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4.2 XRD 

4.2.1 UCR  

Unit-cell refinement was performed on all of the fresh hexaaluminate catalyst 

samples with the XRD scan taken at 25°C.  These samples were run in 0.5 mm quartz 

capillary tubes.  The wavelength of the beamline was calculated using LaB6 external 

standards and determined to be 0.9209 Å for this series of measurements.  The image 

plate data of the scans were evaluated via Fit2D and imported into Jade to determine the 

crystal lattice parameters of the samples.  There are no Ni-substituted hexaaluminates 

located in the ICDD database so non-substituted hexaaluminate formulas were used.  The 

XRD diffraction patterns for each of the three cation hexaaluminate samples types were 

chosen from the best results of the search and match analysis in Jade using the ICDD 

database.  The ICDD crystal lattice parameters of the chosen patterns are displayed in 

Table 3. 

 

Table 3: ICDD Crystal Lattice Dimensions of Baseline Patterns 

Name 
[ICDD#] 

a,b (Å) c (Å) Volume (Å3) 

LaAl11O18 

[00-033-0699] 
5.561 22.041 590.29 

LaAlO3 

[00-031-0022] 
5.364 13.110 326.67 

SrAl12O19 

[04-007-6069] 
5.562 21.972 588.66 

Ba0.75Al11O17.25 

[04-010-2927] 
5.582 22.715 612.95 

 

The XRD patterns for the La, Sr and Ba Ni-modified hexaaluminate catalysts as 

well as the peak information of the standards chosen from ICDD are illustrated as Figures 

18, 19 and 20.  
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Figure 19: X-ray diffraction pattern of fresh LaNi0.4Al11.6O19 [35] 
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Figure 20: X-ray diffraction pattern of fresh SrNi0.4Al11.6O19 [52] 
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In Figure 18, LaNi0.4Al11.6O19 [35] appears to have an impurity phase of LaAlO3.  

At a w

 of the Ni-modified hexaaluminate samples composed of different 

cations

 
Figure 21: X-ray diffraction sh BaNi0.4Al11.6O18.8 [75] 
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avelength of 0.9209 Å, LaNi0.4Al11.6O19 [35] is found to have characteristic peaks 

located at 11.1, 18.9, 19.7, 20.0, 21.3, 23.1, 25.0, 26.3, 33.8, 34.6 and 38.5° in 2θ.  

Several minor peaks are found at additional locations; however the relatively low 

intensity indicated low concentration levels.  Peaks located at 13.9, 19.7, 24.1, 28.0, 34.6 

and 40.1° in 2θ were attributed to a LaAlO3 phase.  In Figure 19, SrNi0.4Al11.6O19 [52] is 

observed to have major peaks at 11.9, 19.0, 20.1, 21.3, 22.0, 23.2, 24.1, 25.1, 26.4, 33.9, 

34.8, 38.6, 40.9 and 43.9° in 2θ.  Similarly, in Figure 20, BaNi0.4Al11.6O18.8 [75] peaks 

were detected at 11.1, 11.8, 14.3, 18.9, 19.6, 21.1, 22.9, 24.8, 26.0, 33.5, 34.0, 34.4, 38.3, 

39.9 and 43.5° in 2θ.   

Cell refinement

 was performed in Jade, with LaAl11O18 used as the baseline pattern for La, 

SrAl12O19 used for Sr, and Ba0.75Al11O17.75 used for Ba.  As long as the sample pattern 

and baseline pattern shared the same symmetry and space group of P63/mmc, the 

refinement results were identical and no error terms were introduced.  In the P63/mmc 

space group, the a and b parameters are identical to each other and have a 120° angle in 
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relation to each other.  The c parameter is arranged with an angle 90° to the direction of 

both a and b.   

The crystal lattice parameters that were calculated from the cell refinement of 

fresh, unreacted samples are presented in Table 4. 

 

Table 4: Crystal Lattice Parameters of Fresh Ni-Substituted La, Sr and Ba 

Hexaaluminates 

 

Sample Name 
[ID#] 

a,b (Å) c (Å) Volume (Å3) 

LaNi0.4Al11.6O19 

[35] 
5.575 ±  
0.014 

22.034 ±  
0.009 

592.98 ± 
2.095 

SrNi0.4Al11.6O19 

[52] 
5.560 ±  
0.021 

21.971 ±  
0.007 

588.13 ± 
3.160 

BaNi0.4Al11.6O18.8 

[75] 
5.596 ±  
0.021 

22.684 ±  
0.005 

615.17 ± 
3.211 

The data obtained from the cell refinements in Table 4 are comparable to the ICDD 

database values for the baseline patterns presented in Table 3.  There are a few extra 

peaks in the spectra of the diffraction patterns are attributed to the presence of an 

impurity, as in the case of LaNi0.4Al11.6O19 [35].   

Cell refinement of the fresh Ba hexaaluminate samples with varying Ni 

substitution was also performed via Jade with Ba0.75Al11O17.25 used as the baseline 

pattern.  Other than some minor differences in intensity, when compared to Figure 20, 

there are not any significant differences observed in the X-ray patterns over the 

remaining Ba series of catalysts.   The crystal lattice parameters that were calculated from 

the cell refinement are presented in Table 5. 
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Table 5: Crystal Lattice Parameters of Fresh Ni-substituted Ba Hexaaluminates 

Sample Name 
[ID#] 

a,b (Å) c (Å) Volume (Å3) 

BaAl12O19 

[38C] 
5.583 ±  
0.020 

22.720 ±  
0.004 

613.28 ± 
3.052 

BaNi0.2Al11.8O18.9 

[115B] 
5.588 ±  
0.020 

22.689 ±  
0.004 

613.50 ± 
3.116 

BaNi0.4Al11.6O18.8 

[116B] 
5.596 ±  
0.021 

22.683 ±  
0.004 

615.06 ± 
3.194 

BaNi0.6Al11.4O18.7 

[117B] 
5.603 ±  
0.022 

22.668 ±  
0.005 

616.27 ± 
3.441 

BaNi0.8Al11.2O18.6 

[118B] 
5.608 ±  
0.010 

22.643 ±  
0.003 

616.75 ± 
1.597 

BaNiAl11O18.5 

[119B] 
5.610 ±  
0.010 

22.641 ±  
0.004 

617.13 ± 
1.525 

 

Due to the values of the parameters being so close to each other, the cell refinement 

results will be compared graphically.  The a and b parameters are further illustrated as Figure 

21, the c parameters of the barium series are shown as Figure 22 and the overall cell volumes 

of the Ba hexaaluminates are illustrated as Figure 23. 
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Figure 22: a and b lattice parameters of fresh Ba Ni-substituted hexaaluminates 
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Figure 23: c lattice parameters of fresh Ba Ni-substituted hexaaluminates 
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Figure 24: Cell volumes of fresh Ni-substituted Ba hexaaluminates 
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The figures show that the a and b dimensions expand and the c dimension 

contracts with higher levels of Ni substitution.  This observation is similar to the findings 

by Machida et al. (11; 19) of suppressed growth along the c axis in comparison to the a 

and b axes.  The variations in Figures 21 and 22 result in an overall increase in the cell 

volume in Figure 23, proportional to the Ni level in the lattice.  From the change in unit-

cell dimensions with Ni substitution, there is a clear indication that Ni is being exchanged 

into the fresh hexaaluminate lattice.   

Unit-cell refinement was also performed on the used Ni-substituted Ba 

hexaaluminate series of catalysts that were used for TPO of the POx of CH4 studies at 

NETL (18).  Samples were recovered from the catalyst bed upon completion of 

experiments.  As noted earlier in Section 2.1, the leading edge of the catalyst bed had 

blue catalyst particles, whereas the particles further into the reactor had turned from blue 

to gray.  The gray color is attributed to reduction of Ni+2 ions in the hexaaluminate lattice 

to Ni0 metal on the edge of the unit cell.  Table 6 illustrates the crystal lattice parameters 

that were calculated from the unit-cell refinement. 

 

Table 6: Crystal Lattice Parameters of Gray Ni-substituted Ba Hexaaluminates 

Sample Name 
[ID#] 

a,b (Å) c (Å) Volume (Å3) 

BaNi0.2Al11.8O18.9 

[115B-gray] 
5.584 ±  
0.020 

22.677 ±  
0.004 

612.47 ± 
3.038 

BaNi0.4Al11.6O18.8 

[116B-gray] 
5.588 ±  
0.014 

22.652 ±  
0.005 

612.48 ± 
2.124 

BaNi0.6Al11.4O18.7 

[117B-gray] 
5.591 ±  
0.021 

22.632 ±  
0.004 

612.62 ± 
3.185 

BaNi0.8Al11.2O18.6 

[118B-gray] 
5.587 ±  
0.022 

22.611 ±  
0.004 

611.23 ± 
3.442 

BaNiAl11O18.5 

[119B-gray] 
5.592 ±  
0.025 

22.625 ±  
0.005 

612.75 ± 
3.911 

 

The a and b parameters of the used Ni-substituted Ba hexaaluminates are illustrated as Figure 

24, the c parameters of the series are shown as Figure 25, and the overall cell volumes are 

illustrated as Figure 26. 
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Figure 25: a and b lattice parameters of used gray Ni-substituted Ba hexaaluminates 

 

 

115B-gray

116B-gray

117B-gray

118B-gray

119B-gray

22.60

22.61

22.62

22.63

22.64

22.65

22.66

22.67

22.68

22.69

0 0.2 0.4 0.6 0.8 1

c
(Å

)

x (BaNixAl12-xO19-δ)

 
Figure 26: c lattice parameters of used gray Ni-substituted Ba hexaaluminates 
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Figure 27: Cell volumes of used gray Ni-substituted Ba hexaaluminates 

 

The cell refinement data of the used Ni-substituted Ba hexaaluminate catalysts 

that were involved with TPO of the POx of CH4 follows similar trends to that of the fresh 

catalyst samples.  The data indicate that Ni is still present within the hexaaluminate 

lattice.  The figures indicate that the c parameter contracts with higher levels of Ni 

substitution.  However, the a and b dimensions and the overall cell volume were not 

found to be proportional to the Ni level in the lattice.  The data indicates that the Ni+2 ions 

have been reduced to Ni0 and relocated from the unit cell.    

For analysis, the data of the fresh and used Ni-substituted Ba hexaaluminates are 

compared graphically.  Figure 27 compiles the a and b parameters of both of the 

unreacted and reacted samples.  As can be seen in Figure 27, there is a smaller variation 

in the a and b parameters of the used samples than the fresh catalysts.  When going from 

lower to higher Ni substitution the a and b parameters of the fresh samples have a 

positive slope but there is essentially no slope between the used samples.  This is 

attributed to a portion of the Ni+2 ions moving from within the hexaaluminate lattice to 

the surface during the TPR procedure.  This results in the a and b parameters of the 

hexaaluminate cell contracting with the movement of Ni and the structural measurements 

of the hexaaluminate series becoming more similar to each other.     
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Figure 28: Compilation of a and b unit-cell refinement data of both fresh and used 
samples 

 
Figure 28 is a compilation of the c parameters of the catalysts before and after 

reaction. 
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Figure 29: Compilation of c unit-cell refinement data of both fresh and used samples 
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Although the a,b parameters of the Ni-substituted Ba hexaaluminates contract after the 

TPO reaction of the POx of CH4, the c parameters exhibit little to no contraction and are 

almost unchanged by reaction.  The gray samples have higher values of the c parameters 

than the fresh samples which could be influenced by carbon deposition. 

 Figure 29 is the accumulated volumetric data of the unit cell calculations. 
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Figure 30: Compilation of unit-cell refinement of cell volume data of both fresh and 

used samples 
 

Similarly to the a and b parameters of the catalysts, the unit-cell volume of the 

unreacted series has more variation than the catalysts used for CH4 POx.  In going from 

lower to higher Ni-substituted samples, the unreacted series has a positive slope and the 

reacted catalysts series has a zero slope indicating a loss of Ni from the unit-cell lattices.  

While the overall cell volumes of the fresh catalysts increased with Ni substitution, the 

post-reaction volumes of the unit-cells showed little to no difference between higher and 

lower Ni substitution. 

From the unit-cell refinement study, it is concluded that the addition of Ni is 

substituted into the hexaaluminate lattice and increases the a and b parameters as well as 

the overall cell volume of the samples.  The c parameter decreases with increased Ni 

substitution.  Upon TPR via H2 and TPO reaction studies of CH4 POx, Ni+2 ions are 
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reduced to Ni0 metal and relocate from the lattice via the a and b directions and are 

heavily involved with catalytic activity of the catalyst.  The c parameters are mostly 

unchanged from the values of those of the fresh samples indicating the c dimension is 

unaffected by the POx reaction.   The overall cell volumes of the reacted, higher Ni-

substituted Ba hexaaluminates approach the values of the lower Ni-composition catalysts. 

4.2.2 In situ TPR-XRD 

Temperature-programmed reduction with simultaneous X-ray diffraction was 

performed as described in Section 3.2.1 to determine the speciation between nickel ions 

in the hexaaluminate lattice from nickel metal on the catalyst surface.  Each sample was 

heated while flushed with H2 gas.  X-ray diffraction patterns were simultaneously 

measured at regular time intervals to determine any changes in the crystal structure as a 

function of time and temperature.  If peaks appear at the values of Ni0 metal, then Ni 

comes out of the hexaaluminate structure when reduced, whereas no change in cell 

structure demonstrates that no separation took place.  Additionally, TPO of CH4 provided 

information on the oxidation state before and after reaction.     

The locations for nickel metal ICDD [00-004-0850] peaks at 0.9225 Å 

wavelength were tabulated from the ICDD database and are presented in Table 7: 

 

Table 7: Positions of Ni0 Metal Peaks at Wavelength of 0.9225 Å  

Degrees in 2θ Relative Intensity Lattice Plane (h,k,l) 
26.214 100% (1,1,1) 
30.351 42% (2,0,0) 
43.454 21% (2,2,0) 

 

Since Ni0 metal peaks do not occur beyond 43.5° in 2θ, the region of interest for this 

study is in the range of 25-45° in 2θ.  It is expected that, while the sample is heated and 

flushed with the 5% H2 gas mixture, the Ni+2 ion will be reduced to Ni0.  Consequently, 

the Ni0 metal will form on the surface of the active catalyst, distinguishing the surface 

species from the ions in the hexaaluminate lattice and shifting the lattice structure.  

Unless the peaks are masked by the hexaaluminate structure, the diffraction lines for 

metallic Ni0 appear at the above mentioned locations in degrees 2θ, providing evidence 

that Ni+2 reduction has occurred. 
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 Over the range of 25°C to 925°C, lines of the TPR-XRD figures indicate readings 

taken at 50°C intervals.  Upon reaching 925°C, the temperature is held for 30 min and 

scans were taken every 5 minutes.  In these TPR-XRD figures (Figures 30-38), the x axis 

is the diffraction angle in units of degrees in 2θ, the y axis is the scan number (not shown) 

and the z axis is the intensity in arbitrary units (not shown).  The figures were taken at a 

40-degree viewing angle in the y direction and an angle of zero degrees in each of the x 

and z axes.  It is important to note that the peaks shift to the left as the temperature is 

increased due to thermal expansion, and at the upper portion of the figure, the peaks will 

appear to form at lower angles at 925°C than they would at lower temperatures.  The 

arrows in the TPR-XRD figures mark the areas where peaks would be expected to appear 

near 26.2°, 30.3° and 43.5°, indicating that Ni0 metal particles relocated to the surfaces of 

the hexaaluminates at elevated temperatures.   

The first set of samples to be analyzed was the series varying the mirror cation 

while holding the nickel substitution level constant at x = 0.4.  Figure 30 illustrates the 

TPR-XRD measurement of LaNi0.4Al11.6O19 [35] from 25-45° in 2θ.     

 

 
Figure 31: TPR-XRD of LaNi0.4Al11.6O19 [35] from 25-45° in 2θ 
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Figure 31 takes a closer viewpoint of the spectra for LaNi0.4Al11.6O19 [35] in the 

range of 25-35° in 2θ, where the strongest peak for metallic Ni0 is expected to appear. 

 

 
Figure 32: Detail of TPR-XRD of LaNi0.4Al11.6O19 [35] from 25-35° in 2θ 
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Again, the formation of a peak near 26.2° in 2θ is clearly distinguishable.  The Ni0 peak 

forms around 900°C and shifts to the left of the hexaaluminate peak as the temperature 

increases, until there are two separate peaks.  The Ni0 peak appears due to the exchanged 

Ni+2 in the La hexaaluminate being reduced.  With reduction, Ni+2 ions relocate from the 

hexaaluminate crystal structure to form metallic Ni0.  An O-2 or OH- ion also comes out of 

the hexaaluminate lattice to maintain charge balance.  The hexaaluminate diffraction 

peaks show little change during the TPR-XRD procedure, indicating that the majority of 

sample activity is due to Ni transition.  It is difficult to obtain a clear view of a metallic 

Ni0 peak at 30.3° in 2θ due to an overlap with the hexaaluminate peaks; however, there is 

a small increase in intensity at this point during the hold period at 925°C.   
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Figure 32 allows a zoomed-in look at the LaNi0.4Al11.6O19 [35] peak at 43.5° in 2θ.  

 

 
Figure 33: Detail of TPR-XRD of LaNi0.4Al11.6O19 [35] from 35-45° in 2θ 
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The peak at 43.5° is very weak in intensity and could easily be overlooked.  However, the 

behavior of the Ni peak at 43.5° is similar to that of the peak at 26.2°, in that the peak 

appears around 900°C among the hexaaluminate structural peaks.  As can be seen from 

the large hexaaluminate peak at 38.6°, there is a shift toward lower angles as the 

hexaaluminate structure expands during heating.  Once the Ni+2 is reduced at 925°C, the 

size of the unit-cell contracts and the hexaaluminate peak reverses direction, shifting 

toward higher angles as Ni0 metal forms and leaves the cell lattice.   
The plot of TPR-XRD data of Ni-substituted Sr hexaaluminate has similar results. 

Figure 33 illustrates the TPR-XRD measurement of SrNi0.4Al11.6O19 [52] during the entire 

region of interest of 25-45° in 2θ.  The structure of the SrNi0.4Al11.6O19 [52] sample 

allows Ni0 peaks that appear at all three positions (26.2°, 30.3° and 43.5° in 2θ) to be 

viewed.   
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Figure 34: TPR-XRD of SrNi0.4Al11.6O19 [52] from 25-45° in 2θ 
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Figure 34 allows a closer inspection of the peaks at 26.2° and 30.3° in 2θ. 

 

 
Figure 35: Detail of TPR-XRD of SrNi0.4Al11.6O19 [52] from 25-35° in 2θ 
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It can be seen in Figure 34 that a Ni0 metal peak is formed at 26.2° and follows similar 

behavior as the results of the LaNi0.4Al11.6O19 [35] sample.  There is also a small increase 

in the peak at 30.3° that is attributed to the formation of metallic Ni.  There is another 

weak Ni0 peak near 43.5° in 2θ that is illustrated more clearly in Figure 35. 

 

 
Figure 36: Detail of TPR-XRD of SrNi0.4Al11.6O19 [52] from 35-45° in 2θ 
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Two-Theta (deg)
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When comparing the peak at 38.6° on the SrNi0.4Al11.6O19 [52] peak on Figure 35 

to the LaNi0.4Al11.6O19 [35]  peak on Figure 32, it can be seen that the peak has not begun 

to arc to higher angles at 925°C.  This is an indication that the Ni0 peak has just begun to 

appear and the reaction was ended too soon.  It is important to note that the 

SrNi0.4Al11.6O19 [52] sample was run prior to the rest of the samples, and a hold period at 

925°C was not deemed necessary at that time.  After reviewing these data, a hold period 

of 30 min was applied to the rest of the samples and this resulted in a more-intense Ni0 

peak definition.  The low intensity of the Ni0 peak formation during TPR-XRD is credited 

to incomplete reduction due to slow reaction and diffusion rates associated with the TPR 

experiments.  The hold period allows the reduction kinetics to equilibrate, and results in 

the formation of more defined peaks.   
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Figure 36 illustrates the TPR-XRD data collected for BaNi0.4Al11.6O18.8 [75] from 

25-45° in 2θ. 

 

 
Figure 37: TPR-XRD of BaNi0.4Al11.6O18.8 [75] from 25-45° in 2θ 
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As shown in Figure 36, there are very strong peaks near the areas where Ni0 metal peaks 

appear.  However, these peaks are attributed to the hexaaluminate structure of the Ba 

samples and are of a much higher intensity than Ni0 metal peaks.  Due to the masking 

effect of the Ni-substituted Ba hexaaluminate structure, there is little to no evidence of 

Ni0 peak formation in these figures.  However, when looking at the results of Ba samples 

with higher concentrations of Ni substitution there is a formation of a weak Ni0 peak that 

appears.   

Figure 37 examines the data from the BaNiAl11O18.5 [119B] sample, which has a 

peak formation at 30.3° in 2θ.  Although the Ni0 peaks at 26.2° and 43.5° in 2θ are 

masked by the more intense Ba hexaaluminate peaks, there is a shoulder peak that forms 

at approximately 30.3° in 2θ and bridges two adjacent peaks.   
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Figure 38: TPR-XRD of BaNiAl11O18.5 [119B] from 25-45° in 2θ 
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Figure 38 allows a closer inspection of the peak 30.3° in 2θ. 

 

 
Figure 39: Detail of TPR-XRD of BaNiAl11O18.5 [119B] from 25-35° in 2θ 
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The area around 30.3° at 25°C has a low gap with a small peak on its left side and a 

medium-sized double peak on the right.  At this same point at 925°C, the gap has been 

filled by the presence of Ni0 metal peak bridging the adjacent hexaaluminate peaks.   

Although a peak attributed to the Ni0 peak around 30.3° in 2θ for BaNiAl11O18.5 

[119B] has appeared, the TPR-XRD data for the Ba series of hexaaluminates is largely 

inconclusive.  The hexaaluminate structure of Ba has large peaks in the same positions as 

Ni0 metal.  Due to the low concentration of Ni in the lattice, the hexaaluminate peaks 

have a much higher intensity than the Ni and dwarf their presence.  This is an unfortunate 

consequence of the unit-cell size for Ba hexaaluminate.  Due to the peak overlapping 

with the Ba hexaaluminate samples, the TPR-XRD results will be combined with other 

surface characterization techniques to conclusively determine the presence of Ni0 metal 

in the surface of the hexaaluminate samples.  The XANES and EXAFS analysis is being 

performed at LSU and the results of FT-IR analysis are presented in Section 4.3.  

4.3 In Situ FT-IR 

To optimize the FT-IR measurement conditions characterization techniques of 

TPR with 5% H2 followed by CO pulse chemisorption were conducted on the samples as 

described in Section 3.3.  Small quantities of CO were absorbed on each catalyst and 

there are very low amounts of active Ni0 metal on the surfaces of the hexaaluminates.  

The results of CO pulse chemisorptions of Ni0 metal are presented in Table 8. 

 

Table 8: Results of CO Pulse Chemisorptions of Ni0 Metal in La, Sr and Ba Ni-
substituted Hexaaluminates 

Sample Name 
ID# 

Ni0 Dispersion  
(%) 

Ni0 Surface Area 
(m2/g sample) 

Ni0 Surface Area 
(m2/g metal) 

LaNi0.4Al11.6O19 

[35] 
0.0198 0.0040 0.1317 

SrNi0.4Al11.6O19 

[52] 
0.0149 0.0030 0.0993 

BaNi0.4Al11.6O18.8 

[75] 
0.0204 0.0041 0.1358 

 

In situ FT-IR spectroscopy study allows for the differentiation of CO molecules 

adsorbed on Ni ions and on Ni0 metal on the surface of the active catalyst, as the position 



61 
 

 
 

of the bands in the infrared spectrum indicates whether the CO has absorbed on a metal 

or metal-ion.  The peaks observed after exposure of CO were also analyzed to identify the 

presence of other species.  Table 9 lists the wavenumber values for adsorbed and gas 

phase CO molecules.   

 

Table 9: Position of Infrared Bands for CO on Adsorbed Ni Species  

Adsorption Site Wavenumber, cm-1 (Ref.) 
CO on Ni+2 2180 (32; 33; 34) 
CO on Ni0 2082 (32; 34) 
CO on Ni0  2060 (32; 33; 34)  
CO on Ni0  1950 (32; 33; 34) 

 

According to Kubelkova et al. (32), the adsorption of CO on Ni/Al2O3 at low pressures 

has two bands, at 1950 cm-1 and 2060 cm-1, which are attributed to the stretching 

vibrations of CO in bridged Ni-(CO)-Ni and on-top Ni-CO complexes on Ni0 metal 

surfaces respectively.  In experiments with increasing pressure, two bands proportional to 

each other at 2082 cm-1 and 2180 cm-1 are observed.  The peak at 2082 cm-1 is also 

attributed to on-top Ni0 metal clusters, and the peak at 2180 cm-1 is assigned to CO 

adsorbed on Ni+2 ions (32).  Carbon monoxide is visible in its gas phase as a doublet at a 

wavenumber of 2143 cm-1 (34). 

Table 10 lists the expected assignments of absorption peaks for gases and 

compounds that appear on the hexaaluminate surfaces. 

 

Table 10: Position of Infrared Bands for CO on Adsorbed Non-Ni Species  
Adsorption Site Wavenumber (cm-1) 
CO2 gas phase 2359, 2311 (34)  
CO gas phase 2143 (34)  

Carboxylate, CO2 1630-1560 (34)  
Monodentate carbonate  1530-1470 (34)  

vasCOO-  1420-1350 (34)  
 

The double peak at 2359 cm-1 is attributed to gas phase CO2 and the double peak at 2143 

cm-1 is accredited to gas phase CO (34).  There are three peaks at 1650 cm-1, 1525 cm-1 

and 1380 cm-1 that are attributed to surface carbonate-carboxylate compounds (34).   
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FT-IR experiments were conducted on all eight of the Ni-substituted 

hexaaluminate samples.  The non-substituted sample, BaAl12O19 [38C], was also included 

for comparison measurements.  The experimental procedure is as described in Section 

3.4.  Scans were taken after 2, 5, 10, 15, 20, 25 and 30 min of exposure to CO.  After 30 

min, the chamber was evacuated via a mechanical pump and scans were taken at 5, 10 

and 15 min after evacuation to determine what species remain bonded to the surface of 

the catalysts.    

Figure 39 presents spectra of LaNi0.4Al11.6O19 [35] during CO exposure and after 

chamber evacuation.  There are a number of peaks visible in the spectrum; however, there 

are no peaks observed at 2180 cm-1 or in the range of 1950 cm-1 to 2080 cm-1.  Therefore 

CO was not found to adsorb on Ni+2 ions or on Ni0 metal.  From 3750 cm-1 to 2700 cm-1, 

there is a large broad peak attributed to CO interacting with OH species on the 

hexaaluminate surface (34).  There are two doublets that form near wavenumbers 2359 

cm-1 and 2143 cm-1 due to gas phase CO2 and CO.  These doublets appear and increase in 

intensity during the first 10 minutes of exposure and are constant for the remainder of the 

30 min period of exposure to CO.   

 Upon turning off the flow of CO and evacuating the system via a mechanical 

pump, most of the peaks in the LaNi0.4Al11.6O19 [35] spectra disappear.  As expected, the 

peaks attributed to gases in the environmental chamber disappeared.  The carboxylate 

peak at 1650 cm-1 is vastly reduced, to approximately one-third of the previous intensity.  

The carbonate peaks around 1525 cm-1 and 1380 cm-1 are the only peaks that remain at 

the height they were during CO exposure.   

 Similar behavior was observed with the other seven samples of hexaaluminate 

catalysts.  Figure 40 shows the FT-IR spectrum of SrNi0.4Al11.6O19 [52] and Figure 41 

illustrates the spectrum of BaNi0.4Al11.6O18.8 [75].   The spectra of all of the samples have 

peaks at wavenumbers identical to those observed in the case of LaNi0.4Al11.6O19 [35].  

The only difference among all of the samples is that the peaks at 1525 cm-1
 and 1380 cm-1 

have intensities that change depending on which metal carbonate is formed from the 

varying mirror cations.   The carbonate peaks on the Ba sample were found to have 

stronger intensities than either La or Sr. 
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Figure 40: FT-IR spectra of LaNi0.4Al11.6O19 [35] after CO exposure
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Figure 41: FT-IR spectra of SrNi0.4Al11.6O19 [52] after CO exposure 
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Figure 42: FT-IR spectra of BaNi0.4Al11.6O18.8 [75] after CO exposure
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 The only discrepancy from the spectra comes from the CO2 double peak in each 

hexaaluminate spectra at 2359 cm-1.  In both of the LaNi0.4Al11.6O19 [35] and 

BaNi0.4Al11.6O18.8 [75] spectra, the peaks appear throughout the entire CO exposure step, 

but disappear during evacuation.  In the SrNi0.4Al11.6O19 [52] spectrum, the CO2 peaks 

initially appear but quickly diminish and are not observed after 10 min of exposure to 

CO.  This peculiar behavior suggests that there may be impurities present in the gas 

source.  To test for impurities in the 500 ppm CO/balance He gas cylinder, FT-IR 

experiments were conducted on IR inert KBr.  It was discovered that undesirable CO2 

was indeed present in the CO/He gas cylinder and were being introduced into the FT-IR 

spectra of the hexaaluminates and increase the intensity of the carboxylate and carbonate 

peaks.  A second cylinder composed of 250 ppm CO/balance He gas mixture was tested 

and was found to be free of CO2.  Each of the samples were re-tested with the 250 ppm 

CO/balance He cylinder, however, the FT-IR spectra results were very similar regardless 

of the pure or impure cylinder source.  The only noticeable effect of the CO2 impurity 

was an enhanced CO2 peak at a wavelength of 2359 cm-1. 

The spectra of the Ni-substituted Ba hexaaluminate series were compared to 

determine any differences due to differences in Ni composition.  The spectrum of 

BaNi0.8Al11.2O18.6 [118B] is shown in Figure 42.  The comparison of the spectra of 

BaNi0.4Al11.6O18.8 [75] to that of BaNi0.8Al11.2O18.6 [118B] shows a few noticeable 

differences.  There appears to be a slight increase in the peak intensity at a wavenumber 

of 1525 cm-1
 and a moderate increase at 1380 cm-1 with higher Ni substitution.  To test 

the effect of Ni substitution, the hexaaluminate with zero Ni composition, BaAl12O19 

[38C], was also analyzed via FT-IR, and the spectra are shown in Figure 43.  

Comparisons of the spectra of BaAl12O19 [38C] to the spectra of the Ni-substituted 

hexaaluminates reveal very similar results.   

Unit cell refinement and TPR-XRD investigations indicate that Ni+2 ions are 

reduced to Ni0 metal and form on the surface of the Ni-substituted catalysts.   Fourier 

transform infrared results did not indicate the adsorption of CO on Ni0 metal or Ni+2 ions. 

The only species to form on the hexaaluminate surfaces were attributed to various 

carboxylates and carbonates.  The intensity of the carboxylates and carbonates seems to 

be influenced more by the mirror cation than the presence or substitution level of Ni in 

the lattice.  However, with the lack of peaks appearing at the Ni+2 ion or Ni0
 metal 
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wavenumbers, it is difficult to draw any concrete conclusions.   There may be other 

factors that prevent active Ni sites from being receptive to CO adsorption on 

hexaaluminate materials.  From reviewing literature and performing the FT-IR 

experiments, a few potentially flawed reasons are suggested.    
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Figure 43: FT-IR spectra of BaNi0.8Al11.2O18.6 [118B] after CO exposure
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Figure 44: FT-IR spectra of BaAl12O19 [38C] after CO exposure
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 First, strong-metal support interactions (SMSIs) have been shown to suppress the 

chemisorptive properties of the dispersed metal (35).  Traditionally, SMSI occurs in 

systems where the transition metal oxides have d-orbital electrons or is partially reducible 

(35).  Although alumina does not follow these generalities, Raupp et al. (36) have 

suggested that, under certain conditions, supports such as alumina could exhibit SMSI-

type behavior.  These interactions may be the reason for the lack of peaks that correspond 

to CO molecules adsorbed on either Ni2+ or Ni0.   

 Second, the DRIFTS environmental chamber cell had several irregularities that 

made reaching and maintaining the desired temperature difficult.  According to the 

manufacturer’s specifications, the cell is capable of reaching temperatures up to 900°C, 

which would be ideal for the high reduction temperatures of hexaaluminates.  However, 

the particular unit utilized in this study, even after repairs by the manufacturer, could not 

consistently reach temperatures above 700°C, and so experiments were restricted to 

600°C.  A passivation technique was implemented in an attempt to circumvent the 

DRIFTS cell’s limitations, but the data did not show any indication of CO bonding to 

Ni+2 ions or Ni0 metal.  Perhaps new DRIFTS cell or different equipment with no 

temperature limitations would result in appearances of these desired peaks.  
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Chapter 5: Conclusions and Recommendations  

There were two primary objectives under consideration for this project.  The first 

objective was to identify the phase of catalytically active Ni that has been substituted into 

the lattice of hexaaluminate catalysts.  The second objective was to determine the 

location of Ni species in the hexaaluminate lattice after synthesis, reduction and reaction.  

In order to satisfy these objectives, several characterization techniques were applied to 

investigate the two series of catalysts.  Experiments were conducted by means of the 

following methods: scanning electron microscopy (SEM), unit-cell refinement (UCR), in 

situ temperature-programmed reduction and X-ray diffraction (TPR-XRD) and Fourier-

transform infrared (FT-IR) spectroscopy.   

Scanning electron microscopy was used to determine differences in catalyst 

surface morphology. The SEM images of the mirror-cation-varied samples were found to 

be very similar in morphology; however there seems to be slight differences on how the 

particles agglomerate.  The LaNi0.4Al11.6O19 [35] sample seems to have morphology 

similar to a coral reef.  The SrNi0.4Al11.6O19 [52] sample appears to be more like a 

collection of breakfast-cereal flakes.  BaNi0.4Al11.6O18.8 [75] has particles that might be 

described as having the appearance of steamed rice. There appears to be little to no 

difference between the morphologies of the different Ni-substituted Ba catalysts.  They 

all appear to have agglomerates of hexaaluminate particles, and there is an indication that 

the percentage of nickel is low enough that variations do not have a substantial effect on 

surface morphology.  Examination of the SEM images could not distinguish any 

substantial differences between the blue and gray particles of samples taken from TPO 

experiments with the POx of CH4. 

Unit-cell refinement demonstrates that Ni has been incorporated into the 

hexaaluminate lattice during synthesis.  Increasing the Ni substitution level results in an 

increase in the a and b parameters and a decrease in the c direction.  The overall volume 

of the unit-cell was found to increase with higher Ni modification.  Upon TPR via H2 and 

TPO reaction studies of CH4 POx, it was determined that Ni+2 ions are reduced to Ni0 

metal and relocate from the lattice via the a and b directions and are heavily involved 

with catalytic activity of the catalyst.  When going from lower to higher Ni substitution 

the a and b parameters of the fresh samples have a positive slope but there is essentially 
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zero slope between the used samples indicating a loss of Ni from the unit-cell lattices.  

The c parameters are mostly unchanged from the values of those of the fresh samples and 

the c dimension is unaffected by the POx reaction.   Similar to the behavior of the a and b 

parameters, while the overall cell volumes of the fresh catalysts increase with Ni 

substitution, the post-reaction volumes of the unit-cells shows little to no difference 

between higher and lower Ni substitution. 

In situ TPR-XRD studies with La and Sr hexaaluminates show that, upon 

reduction with H2, Ni in the lattice turns into metallic Ni0 on the hexaaluminate surface of 

the crystal.  This allows the Ni-substituted hexaaluminate to be an active catalyst for POx 

of CH4.  Experiments with XRD of Ba hexaaluminates are mostly inconclusive, due to 

the hexaaluminate diffraction pattern having intense peaks in the same positions as Ni0 

metal so that the hexaaluminate peaks mask the appearance of Ni0 peaks.  This is an 

unfortunate consequence of the unit-cell size for Ba hexaaluminate. 

  Fourier-transform infrared spectroscopy of the absorption of CO on reduced 

catalysts was performed to distinguish between Ni+2 ions and Ni0 metal species on the 

hexaaluminate surfaces.  The analysis of the FT-IR spectra leaves no indication of the 

presence of Ni in any form on the surface.  Chemisorption of CO supports the results of 

FT-IR, in that very low quantities of CO were adsorbed due to low Ni dispersion on the 

hexaaluminate surfaces.  The appearance of multiple peaks indicates the presence of CO 

and CO2 gas molecules as well as the formation of La, Sr and Ba carboxylates and 

carbonates.  Upon evacuation of the DRIFTS chamber, the only remaining peaks belong 

to those of the appropriate mirror cation carboxylate-carbonates near 1525 cm-1 and 1380 

cm-1.    

 It is possible that the passivation procedure was not sufficient to keep the catalysts 

in their reduced state for the FT-IR procedure.  It is recommended that future FT-IR 

investigations should be repeated with a DRIFTS cell or similar apparatus with operating 

conditions in the 900°C to 1100°C range to allow for complete reducing conditions.  In 

addition to probing the samples with CO, it is suggested that adsorption of another probe 

gas, NO, be attempted as well to support or counter the results obtained in this 

experiment.  Other probe gases that are found to be prevalently used in literature include 

NO/O2 and CO/H2 mixtures, but great care should be given if operated at elevated 

temperatures to avoid the formation of dangerous compounds. 
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Additional experimentation in the techniques of XANES and EXAFS are required 

to obtain a more complete understanding of the nature of active sites present in 

hexaaluminate catalysts.  As part of collaboration with NETL, WVU and LSU, detailed 

XANES analysis will simultaneously be conducted at LSU by Andrew Campos as part of 

his PhD dissertation project.  However, this information will be published after the 

completion of this work and is unavailable at this time.  The combination of results from 

SEM, TPR-XRD, TPR-EXAFS, TPR-XANES and FT-IR characterization techniques 

will satisfy the goals and objectives of this investigation. 

 Future work should include further characterization techniques such as in situ 

electron spectroscopy for chemical analysis (ESCA), scanning tunneling microscopy 

(STM) and electron-energy loss spectroscopy (EELS).  In situ ESCA should be used to 

examine the possibility of SMSI on hexaaluminate catalysts.  Scanning tunneling 

microscopy can be used to study the atomic surface morphology of oxides as a function 

of temperature and under reaction conditions (26).  Although the images obtained by 

STM are not a full visual representation of the catalyst surface, information can be 

determined about the atomic structure at the Fermi energy level.  Electron-energy loss 

spectroscopy can be used in conjunction with XANES and EXAFS techniques to provide 

information about elemental information, bonding and next nearest neighbor distribution.  

Due to the success of TPR-XRD with the La and Sr samples, series of La and Sr 

hexaaluminates with varying Ni-substitution level could be synthesized.  Experiments via 

UCR and FT-IR could be repeated on these samples to support and/or improve upon the 

results obtained on the Ba hexaaluminate series.  Alternatively, a series of Ba 

hexaaluminates could be created with a different metal dopant than Ni (Co, Fe, Mg, etc.), 

and the same characterization techniques performed in this study could be repeated on 

those samples.   
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Appendix 

A.1 Procedure for FTIR Experiments 
 
1. Grind sample in mortar and pestle to fine powder.  Load sample into ceramic cup of 

DRIFTS Chamber #2 until there is a flat surface even to the lip of the cup. 
 

2. Using vacuum grease, rub a very thin layer around large O-ring and place in 
designated groove around the cup.  Place lid on the chamber and tighten the screws 
in place to seal the chamber. 

 
3. Repeat Steps 1,2 in DRIFTS Chamber #1 with separate sample or KBr standard to 

ensure even flow across both chambers.   
 

4. Take DRIFTS cell and attach inlet and outlet lines of water cooling system and test 
for leaking.  If leaking occurs, repeat previous Step 2 on leaky chamber until no 
leaks occur. 
 

5. Place DRIFTS cell into Smart Collector and slide to chosen position (scanning 
Chamber 1 or 2). 
 

6. Attach gas inlet and outlet lines to DRIFTS cell.   
 

7. Turn on control system for mass flow controllers and set desired flow of 5% H2-95% 
He gas.  Test gas lines for leaks with leak detection bubble solution. 

 
8. Attach heater cable and thermocouple lines of DRIFTS cell to heater controller.  

Turn on heater control system and set desired program. 
 

9. Run program to reduce samples and monitor system until program is completed.   
 

10. If using MCT/A detector (CaF2), the detector reservoir needs to be filled with liquid 
N2 30 min prior to the end of the program.  Refill liquid N2 as needed to keep 
detector cool.  

 
11. Allow sample to cool to 25°C.  Turn off flow of 5% H2-95% He gas.  Turn on 

mechanical pump to evacuate system. 
 

12. Enable power to the Nexus spectrometer. 
 

13. After spectrometer is running, turn on power to computer. 
 

14. Open Omnic software on computer. 
 

15. Allow software to perform diagnostic tests on spectrometer and accessories. 
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16. Select Nexus Smart Collector Experiment program.  Click on Collect » 
Experiment Setup to view/change scanning parameters. 

 
a. No. of scans: 128 
b. Resolution: 4 cm-1 
c. Detector: MCT/A 
d. Max range limit: 4000 cm-1 
e. Min range limit: 1200 cm-1 
f. Gain: Autogain 
g. Velocity: 1.8988 
h. Aperture: 32 

 
17. Click icon to Collect Background to take background scan of sample. 

 
18. Turn off mechanical pump.  Turn on flow of 500 ppm CO-balance He gas. 

 
19. Click icon to Collect Sample to take scans at 2, 5, 10, 15, 20, 25 and 30 min 

intervals.   
 

20. Upon 30 min of exposure to CO, turn off flow of gas.  Turn on mechanical pump to 
evacuate system. 

 
21. Click icon to Collect Sample to take scans at 5, 10 and 15 min intervals. 
   
22. End the experiment.  Turn off control systems for heating, cooling and mass flow 

controllers. 
 

23. Shut down computer THEN power down spectrometer.   
 

24. Detach gas, water and heating/thermocouple lines from DRIFTS cell.  
 

25. Open DRIFTS cell chambers and recover samples.  
 

26. Begin preparations for new experiment.  
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