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A B S T R A C T  

A Kinetic Study of Decyl Phosphite Stabilizers 

John K. Snodgrass 

Decyl phosphite stabilizers are used to improve the molecular stability of polymers during 
processing and end use giving durability to the many plastic products used in daily life.  By 
understanding the governing kinetics of the decyl phosphite reaction system, improvements and 
alternative manufacturing methods may be possible.  Diphenyl isodecyl phosphite, phenyl di-
isodecyl phosphite, and tri-isodecyl phosphite are the products of reacting isodecanol and 
triphenyl phosphite in the presence a sodium methylate.  Concentration and time data were 
collected by performing laboratory reactions at various reactant ratios and temperatures. 

Analysis of laboratory data shows that the system can be adequately described by five 
coupled ordinary differential equations resulting from power-law kinetic theory at the lower 
temperature range studied.  The frequency factors associated with the rate constants vary with 
initial reactant ratio.  As the phosphite reaction rates increase the power-law kinetic model losses 
accuracy.  This is believed to be due to limiting interactions with the sodium decylate 
intermediate.  A kinetic model following a Michaelis-Menten form with two reactants has the 
potential to adequately describe the system under these conditions. 
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xK  - General Michaelis constant for equation X 
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PDDP - Phenyl di-isodecyl phosphite, 2)(OROPφ  
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I N T R O D U C T I O N  

Polymer stabilizers provide essential protection against molecular degradation caused by 

trace free radicals by providing active sites for free radical attack.  This degradation results in 

lower polymer molecular weight, lower viscosities, and discoloration.  Phosphite chemistry has 

been used over the last fifty years to provide stabilization of various polymers during such 

processing as heating, bending, and extrusion. 

Commercial phosphite stabilizer production commonly begins with the production of 

triphenyl phosphite by reacting phosphorous trichloride with phenol.  The triphenyl phosphite is 

then reacted with an alcohol in the presence of sodium methylate.  The resulting 

transesterification reaction yields an alkyl phosphite mixture, phenol, and sodium salt particulate. 

One specific set of phosphite stabilizers is produced using isodecanol as the reacting 

alcohol by batch reaction and product stripping.  The mixture of stabilizers contains diphenyl 

isodecyl phosphite, phenyl di-isodecyl phosphite, and tri-isodecyl phosphite.  These products are 

commonly called DPDP, PDDP, and TDP, respectively.  The stabilizers differ in stabilization 

characteristics and are therefore available commercially in three grades corresponding to the 

dominant stabilizer in the product mixture. 

The purpose of this research is to gain insight to the isodecanol-triphenyl phosphite 

reaction system so that improvements in manufacturing can be made.  These improvements may 

range from optimizing current operating conditions to new manufacturing methods.  A kinetic 

model of the reaction system can provide this insight. 

R E V I E W  O F  L I T E R A T U R E  

No United States patents have been found involving the study of this system.  No 

published items regarding the kinetics of this reaction system have been found. 
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B A C K G R O U N D  

Detailed information regarding the mechanisms and kinetics of the triphenyl phosphite / 

isodecanol reaction system has not been fully investigated and documented.  Sodium methylate 

is added to the reactant mix in a small amount and is commonly referred to as the ‘catalyst’.  

Conversations with experienced employees led to insight about this system.   

During discussions with an engineer1, the reaction system was described according to 

Equations 1 through 3. 
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E X P E R I M E N T A L  P R O C E D U R E S  

The laboratory experiments are conducted by measuring out the reactants by weight 

using a typical analytical scale.  Typical charge amounts are shown in Table 1.  The reactants are 

placed in a 500-milliliter round-bottomed flask equipped with a mixer, automatic temperature 

Table 1: Typical laboratory reaction charge amounts 
Temperature, ºC Ratio Isodecanol, g TPP, g Catalyst, g 

110 1:1 101.06 199.05 0.0403 

110 2.5:1 168.1 132.15 0.0435 

110 5:1 215 87.3 0.0407 

 

control, and a nitrogen blanket.  The desired reaction temperature is set and a sample is taken 

every fifteen minutes.  The sample is drawn using a syringe through a rubber septum.  Reaction 

is effectively halted by immediately diluting two drops of the sample with 10 milliliters of 

cyclohexane solvent.  Sampling is continued until the analysis shows no significant changes 

between sequential samples.  Figure 1 shows the apparatus. 

Each sample is prepared by filtering about 1 milliliter of sample / solvent mixture into a 

chromatography vial.  The vial is then placed into a chromatograph equipped with a gel 

permeation chromatography (GPC) packed column using tetrahydrofuran as the mobile phase.  

When properly calibrated, the GPC will show distinct peaks for DPDP, PDDP, TDP, and phenol.  

A draw back to the GPC analysis is the single peak that represents TPP also contains the 

isodecanol signal.  Another chromatography vial is prepared and placed in a gas chromatograph 

equipped with a Varian CP7542 column.  When properly calibrated, this will result in a strong TPP 

peak.  The isodecanol amount is calculated by balance.  Typical chromatography results are 

shown in Figures 2 and 3.  Gauge repeatability and reproducibility studies have shown that the 

results from this equipment exhibit approximately ±0.275% variability.  When shown graphically, 

the error range is effectively smaller than the data markers representing the experimental results. 
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Figure 1: Laboratory reactor apparatus 
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Figure 2: Typical GPC results 
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Figure 3: Typical GC results 
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R E S U L T S  

The decyl phosphite reaction system is given by Equations 8 through 12.  The rate 

relationships for the system are given in Equations 13 through 17.  The reaction in Equation 8 is 

an initiation reaction and only provides for the start of the system.  The reaction in Equation 12 is 

much faster relative to the other reactions.  Based on this, the rate equations given in Equations 

18 through 22 are representative of the rates of reaction.  Table 2 contains the Arrhenius 

equation parameters found in the rate equations by initial reactant ratio.  The rate equations are 

valid for temperatures between 110ºC and 150ºC.  There is a loss of accuracy as the temperature 

increases. 

Table 2: Arrhenius equation constants 

kTPP kDPDP kPDDP   
1:1 2.5:1 5:1 1:1 2.5:1 5:1 1:1 2.5:1 5:1 

E (J/mol K) 1.78×104 9.99×103 9.77×102 1.85×105 7.92×104 5.51×104 5.03×104 1.42×104 4.07×104

A (sec-1) 7.63×10-2 8.23×10-3 5.26×10-4 2.56×1020 3.30×106 3.25×103 2.90×102 7.51×10-3 1.02×101
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D I S C U S S I O N  

Laboratory runs using this reaction system were carried out prior to the beginning of this 

study. The experimental data are shown in Figures 4 through 12.  The reaction runs were made 

at temperatures of 110, 130, and 150ºC with three reactant ratios of 1:1, 2.5:1, and 5:1 

isodecanol to triphenyl phosphite at each temperature.   Samples were taken in 15-minute 

intervals. 

Two additional reaction runs were performed varying sodium methylate concentration 

and mixing rate.  These two runs were performed using a 2.5:1 reactant ratio and a temperature 

of 130ºC.  Samples were taken as quickly as possible at the onset of the reaction and slower as it 

progressed.  Figures 13 and 14 show the experimental data.  Several proposed mechanisms 

have been evaluated. 

1. Equilibrium catalyzed reaction 

The equilibrium system, as described by Equations 1 through 3, was considered.  After 

developing the rate expressions based on simple power-law forms and equilibrium constant 

relations, the experimental data were reviewed.  In all cases, the reactions progressed until a 

limiting reagent was encountered.  This was clear evidence that the system was not described by 

this mechanism. 

In addition, graphs of a kinetic model developed outside of this study based on these 

data were presented in an internal company presentation3.  The model was presumably based on 

the same idea of equilibrium.   Exact rate forms and constants were not given.  Visual 

examination of the presentation graphs shows approximately 10 to 15% error when compared to 

the laboratory data.
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Figure 4: Results from 1:1 isodecanol to TPP ratio at 110ºC 



       11 

  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 2000 4000 6000 8000 10000

Time (sec)

C
on

ce
nt

ra
tio

n 
(m

ol
/c

m
3 )

TDP
PDDP
DPDP
TPP
Decyl
Phenol

 

Figure 5: Results from 2.5:1 isodecanol to TPP ratio at 110ºC 
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Figure 6: Results from 5:1 isodecanol to TPP ratio at 110ºC
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Figure 7: Results from 1:1 isodecanol to TPP ratio at 130ºC
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Figure 8: Results from 2.5:1 isodecanol to TPP ratio at 130ºC
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Figure 9: Results from 5:1 isodecanol to TPP ratio at 130ºC
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Figure 10: Results from 1:1 isodecanol to TPP ratio at 150ºC
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Figure 11: Results from 2.5:1 isodecanol to TPP ratio at 150ºC
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Figure 12: Results from 5:1 isodecanol to TPP ratio at 150ºC
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Figure 13: Results from 2.5:1 isodecanol to TPP ratio at 130ºC with 0.04 grams of sodium methylate
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Figure 14: Results from 2.5:1 isodecanol to TPP ratio at 130ºC with 0.4 grams of sodium methylate
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2. Irreversible reaction with intermediate 

While reviewing the sodium methylate involvement, the mechanism described by 

Equations 8 through 12 was proposed.  Viewing Equation 8 as an initiation reaction and 

assuming that Equation 12 proceeds much faster than those of Equations 9 through 11, it is 

reasonable to consider the sodium decylate concentration to be constant.  The net reaction rate 

relationships under this assumption are shown in Equations 13 through 17. 
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Simple power-law rate expressions for this case were written and are given in Equations 

23 through 27. 
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The resulting coefficients from fitting the experimental data to this system are given in 

Table 3.  The derivatives were estimated by numerical differentiation of the concentration and 

time data.  Polymath was used to solve the system at the experimental conditions of 110, 130, 
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and 150ºC at 2.5:1 reactant ratio.  The results are graphed in Figures 15 through 17. The results 

reasonably follow observations at the lower two temperatures but then deviate somewhat at 

150ºC. 

Table 3: Regressed reaction coefficients for Equations 23 through 27 
T = 110ºC T = 130ºC T = 150ºC 

Ratio 
kTPP kDPDP kPDDP kTPP kDPDP kPDDP kTPP kDPDP kPDDP 

1:1 3.01×10-4 1.16×10-5 3.96×10-5 3.29×10-4 3.94×10-4 8.67×10-5 5.14×10-4 2.78×10-3 2.72×10-5

2.5:1 3.50×10-4 5.67×10-5 8.27×10-5 4.35×10-4 1.55×10-4 1.20×10-4 4.70×10-4 6.00×10-4 1.25×10-4

5:1 3.87×10-4 9.13×10-5 2.72×10-5 3.93×10-4 2.70×10-4 5.91×10-5 3.99×10-4 4.66×10-4 9.07×10-5

 

The rate constants appear to follow the familiar Arrhenius relationship shown in 

Equations 28 through 30.  Table 2 gives the regressed values for A, the frequency factor, and E, 

the activation energy for each constant at each reactant ratio.  A data point for the rate constant 

of PDDP in a 1:1 reactant ratio at 150°C was omitted on the basis of gross error because the 

directional change was contrary to the direction of the previous two temperatures.  In other words, 

the data point suggested the reaction slowed as the temperature increases when all other data 

suggested the opposite.  The frequency factor for kDPDP seems to be unreasonable compared to 

the others.  This is either due to error of regressing with limited data or because power-law 

kinetics may not govern over the analyzed range. 
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Figure 15: Power law kinetic model comparison for 2.5:1 reactant ratio at 110ºC
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Figure 16: Power law kinetic model comparison for 2.5:1 reactant ratio at 130ºC 
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Figure 17: Power law kinetic model comparison for 2.5:1 reactant ratio at 150ºC
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Substituting Equations 28 through 30 into Equations 23 through 27 gives the following 

general rate expressions for the decyl phosphite system as seen in the Results section.  Figure 

18 shows this general model versus experimental data for the case of a 2.5 ratio and 110ºC for 

comparison against Figure 15.  It is suggested that the Arrhenius equation factors, A and E, be 

extrapolated for reactant ratios not given in Table 2.  As with any data set, care should be taken if 

values are extrapolated outside of the studied range and is not recommended. 
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It is suspected that the frequency factor may be related to the reactant ratio but further 

analysis of these constants did not provide meaningful insight.  The frequency factor and 

activation energy was fit to a second order polynomial of the reactant ratio for each species.  The 

coefficients are shown in Table 4.  The resulting polynomials do not provide stable results across 

the studied region of reactant ratios.  For example, the frequency factor polynomial for kPDDP 

exhibits a minimum between the reactant ratios of 2.5 and 5 of about -72 sec-1 and the activation 

energy polynomial for kTPP exhibits a negative minimum.  Negative values are physically 

unreasonable for either of these factors.  The notion of a set of general equations involving the 

reactant ratio as an independent variable to describe the reaction system was abandoned. 
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Figure 18: General power law kinetic model comparison for 2.5:1 reactant ratio at 110ºC
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Table 4: Coefficients for polynomial fit of Arrhenius equation parameters to reactant ratio 
kTPP kDPDP kPDDP   

A (sec-1) E (J/mol K) A (sec-1) E (J/mol K) A (sec-1) E (J/mol K) 
a2 0.011 400 4.27×1019 15223 49 8667 
a1 -0.082 -6608 -3.20×1020 -123815 -366 -54400 
a0 0.148 24008 5.33×1020 293592 607 96033 
Polynomial = a2z2 + a1z + a0, where z is the reactant molar ratio 

 

3. Limited but Fixed Reactant 

While it is reasonable to consider the sodium decylate concentration constant, the 

decreasing accuracy as temperature increases of the power-law form model may suggest that the 

formation of sodium decylate is not fast enough to provide enough reactant for the three 

competing phosphite steps.  Levenspiel4 discusses how some reactions may follow Michaelis-

Menten kinetics if the rate-controlling step is associated with a limited but fixed amount of 

reactant.  If the conversion of sodium phenate back to sodium decylate is not fast enough relative 

to the phosphite reactions, then this would be the case. 

Applying the simplest concentration relationships for Michaelis-Menten kinetics to rate 

relationships in Equations 13 through 17 results in the rate forms given in Equations 31 through 

35. 
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Separating variables and integrating Equation 31 results in a form that can be rearranged to give 

a linear equation to easily evaluate experimental data.  This linear form is given in Equation 36.  

The graphical results for experimental data are shown in Figures 19 through 21.  The same linear 

form was used to find k4 and k4´ in Equation 35 associated with the rate of disappearance of 
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isodecanol.  The rate constants are summarized in Table 5 along with the R2 value from the 

regression.  This model does not appear to be any better than the power-law model presented 

above. 
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Table 5: Rate constants for Equations 31 and 35 
T = 110ºC T = 130ºC T = 150ºC 

Constant 
1:1 2.5:1 5:1 1:1 2.5:1 5:1 1:1 2.5:1 5:1 

1k  4.0×10-5 3.0×10-4 9.0×10-4 3.0×10-5 4.0×10-4 1.9×10-3 2.0×10-5 2.0×10-4 2.3×10-3

1k′  0.5763 1.1801 2.8213 0.6373 2.1462 2.5719 0.7838 2.7134 3.1085

Fit R2 0.9638 0.9598 0.9920 0.6884 0.8289 N/A 0.6503 0.8190 N/A 

4k   1.8×10-4 5.5×10-5 2.6×10-6 2.5×10-4 1.5×10-4 1.1×10-5 1.9×10-4 1.8×10-4 1.8×10-5 

4k′   0.5263 0.2851 0.3054 0.6769 0.3509 0.2845 1.3744 0.3353 0.2816 

Fit R2 0.9937 0.5234 0.0212 0.8429 0.5829 0.7895 0.5607 0.8202 0.8207

 

An attempt was made to determine the remaining rate constants by non-linear regression 

using the experimental data for a reactant ratio of 2.5:1 at a temperature of 130ºC.  This was 

unsuccessful.  The regression fits were very poor and did describe the data being fit. 

It was noted that as the ratio increased, i.e. higher excess of isodecanol, the apparent 

curvature of the data in Figures 19 through 21 decreases.  This may imply that the correct rate 

form should include a second species, perhaps the sodium decylate intermediate.  Equation 37 is 

the result of extending the Michaelis-Menten kinetic form to include two reactants5.  This kinetic 

form can not be tested because the measurement of this species was not possible with the 

available analytical methods. 
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 Expanding this concept for the rate expressions and still assuming that the isodecanol 

concentration is representative of the sodium decylate concentration results in Equations 38 

through 42.  The regressed coefficients for the experimental data observed at 110ºC and a 

reactant ratio of 2.5:1 are shown in Table 6.  Figure 22 shows a graph of the model and the 

experimental data. 
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Figure 19: Michaelis-Menten coefficient determination at 110ºC 
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Figure 20: Michaelis-Menten coefficient determination at 130ºC 
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Figure 21: Michaelis-Menten coefficient determination at 150ºC
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Table 6: Regression results for Equations 38 through 42 for reactant ratio of 2.5:1 at 110ºC 

K1 k1 kTPP kROH1 
6.13×10-3 1.00 3.62 1.72 

K2 k2 kDPDP kROH2 
4.00×10-3 1.00 9.63 7.06 

K3 k3 kPDDP kROH3 
2.16×10-4 1.00 1.38 0.684 

 

The model does not predict the experimental data adequately.  This does not, however, 

mean the model is not valid.  The regression of the coefficients was very sensitive to initial 

guesses.  It is believed that a set of coefficients exist that adequately describe the system at each 

reactant ratio and temperature.  Solution to these situations has not been found.  Numerous 

solutions were found that gave good statistical fit to the data but would cause the rate equations 

to change sign depending on concentration values.  These coefficient solutions are not physically 

meaningful.  A method of solving for the best set of coefficients within a physically meaningful 

space is needed before this kinetic form can be fully assessed.
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Figure 22: Two-reactant Michaelis-Menten kinetic model comparison for 2.5:1 reactant ratio at 110ºC
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4. Alternative reaction system 

If sodium decylate was isolated and used as the reactant in place of isodecanol, then the 

kinetics should follow traditional power-law forms and limitations imposed by the limited reactant 

would be eliminated.  Sodium decylate can be created by reacting sodium methylate and 

isodecanol using methanol as a common solvent.  The expected reactions are shown in 

Equations 43 through 45. 
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A laboratory experiment was performed to make sodium decylate using the same 

apparatus described in the Experimental Methods section with the addition of a vent condenser.  

A sufficient amount of methanol was added to the flask.  After starting the circulation of chilled 

glycol through the vent condenser, sodium methylate and isodecanol were added to the methanol 

in stoichiometric proportion.  The solution was then heated gently and the methanol was collected 

through the vent condenser.  The sodium decylate crystals remained and were collected from the 

flask. 

 No experiments were run beyond the creation of the sodium decylate crystals.  Issues 

around the pursuit of this alternative reaction system include the commercial handling and 

delivery of the sodium decylate, the recovery of the sodium from the sodium phenate, and the 

purification of the decyl phosphites.  Initially, any production of the decyl phosphites through the 

proposed system would be at an economic disadvantage compared to current manufacturing 

practices.  This is out of the scope of this study. 
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C O N C L U S I O N  

Isodecyl phosphites are used to enhance the stability of polymers during processing and 

subsequent use.  The decyl phosphites have been commercially produced for over fifty years 

using batch reactors without a detailed understanding of the reaction mechanism and associated 

kinetics.  The commercial production of this family of stabilizers could be enhanced through better 

understanding of this complex reaction system.  By gaining insight, improvements to today’s 

batch processes are possible.  This understanding is also the foundation from which to design a 

continuous reactor system in the future. 

The decyl phosphite stabilizer reaction system is a complex series that, when run under 

the right conditions, can be described adequately by the power-law rate equations depicted in 

Equations 18 through 22 and values found in Table 2.  Conditions that seem to allow this 

behavior are sodium methylate concentrations of less than 0.015 wt % and reaction temperatures 

at or below 150ºC.  Outside of this range the assumptions of constant and / or available sodium 

decylate are no longer valid.  Under those conditions, the reaction rate does not follow power-law 

kinetics. 

Recommendations for future work include solving for coefficient sets to Equations 38 

through 42 and completing the model assessment, improving the sampling and analytical 

methods for the species of the system, perform the laboratory reactions at additional 

temperatures to define the frequency factors and activation energies, and study the alternative 

reaction system to determine its viability. 



  38  

R E F E R E N C E S  

                                                      

1 Ryan, Terry, Personal Communication, September 2005. 
2 Marlin, Gary, Personal Communication, September-October 2005 
3 Jack F. Welch Technology Center, PowerPoint presentation, 2002 
4 Levenspiel, Octave, Chemical Reaction Engineering, Hoboken, New Jersey: John Wiley & 

Sons, Inc., 1999. 
5 Internet resource, Enzyme Kinetics, http://www.chem.qmul.ac.uk/iubmb/kinetics/ek4t6.html. 

 


	A kinetic study of decyl phosphite stabilizers
	Recommended Citation

	A KINETIC STUDY OF DECYL PHOSPHITE STABILIZERS

		2009-04-22T14:20:18-0400
	John H. Hagen
	I am approving this document.




