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ABSTRACT 

The Effect and Mechanism of Action of Volatile Fatty Acids on the Catabolism of 
Progesterone  

Darron Louis Smith 

Factors that affect the clearance of progesterone by the hepatocyte were 
examined.  In study one, the objective was to determine if increased hepatic portal acetate 
or propionate could alter hepatic metabolism of progesterone.  Serum concentrations of 
progesterone after an oral gavage of either acetate or propionate began to diverge as early 
as 0.5 h and were different (P < 0.05) at 3-h (1.09 ± 0.09 ng/ml vs. 2.04 ± 0.48 ng/ml) 
and 4-h (1.20 ± 0.09 ng/ml vs. 1.95 ± 0.41 ng/ml) for ewe lambs gavaged with acetate or 
propionate, respectively.  Increasing portal vein propionate reduced progesterone 
clearance.  In study two, the objective was to determine the effect of a single oral gavage 
of either acetate or propionate on peripheral concentrations of insulin and glucagon in the 
ewe.  Serum concentrations of insulin, after an oral gavage of either acetate or 
propionate, were different (P < 0.05) at 0.5 h (0.14 ± 0.04 nM vs. 0.63 ± 0.08 nM) and 1 
h (0.12 ± 0.04 nM vs. 0.23 ± 0.04 nM) for ewe lambs orally-gavaged with acetate and 
propionate, respectively.  Further, serum concentrations of glucagon, after an oral gavage 
of either acetate or propionate, were different (P < 0.05) at 0.5 h (0.019 ± 0.002 nM vs. 
0.048 ± 0.007 nM), 1 h (0.021 ± 0.004 nM vs. 0.041 ± 0.006 nM) and 2 h (0.016 ± 0.003 
nM vs. 0.033 ± 0.006 nM) for ewe lambs orally-gavaged with acetate and propionate, 
respectively.  The last study determined progesterone clearance in response to challenge 
with different concentrations of insulin, glucagon or a combination of insulin and 
glucagon in a hepatic cell line.  In response to a challenge with insulin, there was a dose 
dependant decrease in the disappearance of progesterone.  There was a reduction (P < 
0.05) in the rate of decay with the addition of 0.1 nM insulin, when compared to control.  
Further, there was a greater reduction (P < 0.05) in the rate of decay in response to 1.0 
and 10 nM insulin than control and 0.1 nM insulin.  There was no observable change in 
the disappearance of progesterone with either physiological (0.01 nM) or 
pharmacological (0.1 and 1.0 nM) treatment with glucagon.  Pharmocological 
concentrations of glucagon (1.0 nM) negated the effects of either 0.1 or 1.0 nM insulin on 
the clearance of progesterone.  However, with physiological concentrations of glucagon 
(0.01 nM) and 1.0 nM insulin, glucagon was not able to negate the reduction in 
progesterone disappearance caused by insulin.  These data show that when animals have 
high concentrations of insulin, hepatocytes exhibit a reduced catabolism of progesterone.  
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REVIEW OF LITERATURE 

Progesterone and Maintenance of Pregnancy 

Secretion of progesterone by the corpus luteum is necessary for the maintenance 

of pregnancy (Prenant, 1898; Hess, 1920; Schmaltz, 1921; Hammond, 1927; McDonald 

et al., 1952; McDonald et al., 1953; Estergreen et al., 1967).  In the cow, luteal 

progesterone is required throughout gestation (Raeside and Turner, 1950).  However, in 

the sheep, the placenta secretes enough progesterone to maintain pregnancy from day 50 

of gestation (Casida and Warwick, 1945). 

It can be surmised that variations in peripheral concentrations of progesterone are 

a result of variations in the production and/or catabolism of progesterone.  Some reports 

have indicated beneficial effects of exogenous progestogen supplementation (Wiltbank et 

al., 1956; Johnson et al., 1958; Kunkel et al., 1977; Robinson et al., 1989) while others 

have not been able to demonstrate any benefit of exogenous progestogen (Sreenan et al., 

1979; Sreenan and Diskin, 1983; Stevenson and Mee, 1991) on pregnancy rates in cattle.  

However, it has been shown that cows treated with exogenous progesterone on days 1-4 

of pregnancy exhibit altered histotrophic composition and embryos were more advanced 

than control animals by day 5 of pregnancy (Garret et al., 1988). 

In the cow, the minimum production of progesterone by the corpus luteum 

necessary to maintain pregnancy has been estimated by replacement therapy following 

the removal of the corpus luteum.  Raeside and Turner (1950) surgically removed the 

corpus luteum followed by daily administration of 50 mg of progesterone, which resulted 

in 50 % pregnancy retention.  McDonald et al. (1952) were able to maintain 2 of 6 

pregnancies in lutectomized Holstein cows by daily intramuscular administration of 75 
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mg of progesterone between days 57 and 63.  Three of six Holstein heifers maintained 

pregnancy following surgical removal of the corpus luteum between days 60 and 96 

followed by daily treatment with 125 mg of progesterone intramuscularly (Johnson and 

Erb, 1962).  Tanabe (1966; 1970) investigated the minimum amount of one intramuscular 

injection of progesterone necessary to maintain pregnancy in dairy cows at 11 different 

stages of gestation for 10 days.  The minimum concentration of progesterone in a slow-

release vehicle necessary at day 30 to maintain pregnancy in cows for 10 days was 0.75 

mg per kilogram of body weight, injected intramuscularly.  Bridges et al. (2000) achieved 

successful maintenance of pregnancy in beef cows by twice daily subcutaneous injections 

of 150 mg of progesterone. 

In cattle, contrary to reported changes in the concentration of progesterone in 

response to underfeeding, numerous researchers have shown that alterations in nutrition 

did not have consistent effects on the concentrations of progesterone in nulliparous 

heifers (Folman et al., 1973; Apgar et al., 1975; Spitzer et al., 1978; Easdon and 

Chesworth, 1980).  There was no significant difference between the concentration of 

plasma progesterone in three heifers fed at maintenance when compared to being fed 

50% of maintenance (Chesworth and Easdon, 1983).  Many of the demonstrated effects 

of nutrition on concentrations of progesterone in the cow result from severe 

undernutrition, which prevented the growth of follicles and therefore the formation of the 

corpus luteum, completely precluding any opportunity for conception (Holness et al., 

1979; Chesworth and Easdon, 1983). 

Concentrations of progesterone were approximately 25% lower in heifers fed a 

high energy diet as compared to those fed a low energy diet, which may have been a 
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result of increased clearance (Nolan et al., 1998).  In lactating dairy cows, the clearance 

of progesterone may be increased due to high dietary protein (Westwood et al., 1998).  

During the breeding period, any increase in the clearance of progesterone due to high 

dietary intake may be combined with the effects of a negative energy balance to reduce 

concentrations of progesterone and fertility (Butler, 2000).  During the fifth week of 

pregnancy in lactating dairy cows, embryonic survival was less in cows with 

progesterone concentrations in the lowest quartile (Starbuck, 2001). 

In sheep bled every 10 days throughout gestation, plasma progesterone increased 

from 2 to 3 ng/mL in early pregnancy to approximately 10 to 20 ng/mL on d 130 to 140 

of gestation and fell to 1 ng/mL at parturition (Bassett et al., 1969).  Further, utilizing 

ewes fed below and in excess of maintenance, Parr et al. (1987) showed that at least 2 

ng/mL of progesterone were necessary for a normal conception rate.  In the ewes fed in 

excess of maintenance, resulting in reduced concentrations of progesterone, pregnancy 

rate was restored with exogenous progesterone (Parr et al., 1987). 

The sheep embryo is particularly sensitive to reductions in peripheral 

concentrations of progesterone over a 48-h period on d 11 and 12 of pregnancy (Parr, 

1992).  However, progesterone concentrations greater than 4 to 5 ng/mL in early 

pregnancy caused reductions in pregnancy rate (Parr et al., 1987).  Concentrations of 

progesterone peaked on days 11 to 15 which were consistent with the idea that 

progesterone is responsible for the rapid preimplantation growth phase of the embryo 

(Bindon, 1971).  Peak concentrations of progesterone on days 11 and 12 of the estrous 

cycle were reduced when ewes were fed at two times maintenance energy requirement 

(Lamond et al., 1972).  It has also been shown that within the first three weeks of 
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pregnancy concentrations of progesterone were elevated when ewes were fed a sub-

maintenance diet (Cummings et al., 1971; Parr et al., 1982).  When underfed, 

ovariectomized pregnant ewes were given exogenous progesterone, peripheral 

concentrations of progesterone were elevated compared to ones that were not underfed 

(Parr et al., 1982).  These differences in progesterone concentartions indicates that the 

effects of nutrition may impact the metabolic clearance rate, rather than synthesis, of 

progesterone by the corpus luteum (Parr et al., 1982).  However, Boone et al. (1975) 

showed that well fed ewes had a slightly higher concentration of progesterone than 

poorly fed ewes.  This increase was significant on day 8 of the estrous cycle, but not in 

pregnant ewes.In the cow, the effects of nutrition on concentrations of progesterone were 

equivocal.  Some authors have shown that the effects of under nutrition on concentrations 

of progesterone were temporary while others demonstrated permanent effects 

(Staigmiller et al., 1979; Beal et al., 1978).  Hill et al. (1970) reported that the reduction 

in the concentration of progesterone lasted for only the first cycle.  Other experiments 

demonstrated that undernutrition caused concentrations of progesterone to rise for one 

cycle followed by a decrease the next cycle (Donaldson et al., 1970; Gombe and Hansel, 

1973).  Dunn et al. (1974) reported concentrations of progesterone were increased when 

beef cattle were fed a restricted diet.  Finally, increased feed intake increased liver blood 

flow and progesterone metabolism in both lactating and non-lactating dairy cattle 

(Sangsritavong et al., 2002). 

Progesterone Synthesis 

Cholesterol is the substrate for steroidogenesis.  The liver synthesizes the majority 

of cholesterol (as reviewed by Krisans, 1996), and it is transported to steroidogenic 
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tissues such as the adrenal cortex, follicle, corpus luteum, placenta, or testes, by the 

blood.  Cholesterol is transported through the blood as a component of lipoprotein 

particles, and the most common blood born cholesterol sources for steroid production are 

low-density and high-density lipoprotein particles, which are composed of 

apolipoproteins and lipids (Ohashi et al., 1982; Pate and Condon, 1982; Hwang and 

Menon, 1983). 

Low-density lipoprotein particles are transported into the luteal cell by receptor-

mediated endocytosis (Brown and Goldstein, 1986).  Once in the cell, the endosomes 

combine with lysosomes and the low-density lipoprotein particle is disassociated from its 

receptor, thus freeing approximately 2500 molecules of cholesterol (Grummer and 

Carroll, 1988).  High-density lipoprotein particles binds to a plasma membrane-bound 

high-density lipoprotein binding protein, and the high-density lipoprotein particle is 

transported into the cell by a mechanism that is not receptor mediated (Lestavel and 

Fruchart, 1994; Assanasen et al., 2005). 

In the cytosol, cholesterol can be used for steroidogenesis or other cellular 

functions.  Cholesterol also may be esterified with fatty acids to form cholesterol esters 

by the enzyme cholesterol ester synthetase (as reviewed by Johnson et al., 1997).  The 

cholesterol esters can be stored as lipid droplets.  These droplets have been used as a 

morphological determinant of steroidogenic cellular phenotype.  When the steroidogenic 

cell needs cholesterol, the enzyme cholesterol esterase hydrolyzes the cholesterol esters 

stored in the lipid droplet to provide free cholesterol for the cell (Caffrey et al., 1979). 

Steroidogenesis is dependent on cholesterol being transported through the 

cytoplasm to the outer and then the inner mitochondrial membrane (Stone and Hechter, 
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1954).  An intact cytoskeleton is required for cholesterol transport.  It has been shown 

that inhibitors of both microtubule and microfilament assembly prevent the movement of 

cholesterol to the outer mitochondrial membrane (Crivello and Jefcoate, 1978).  The rate-

limiting step in the steroidogenic pathway is the transport of cholesterol from the outer to 

the inner mitochondrial membrane.  Steroidogenic acute regulatory protein transports 

cholesterol from the outer to the inner mitochondrial membrane when it is inserted into 

the membrane (Waterman, 1995).  In addition to steroidogenic acute regulatory protein, a 

peripheral-type benzodiazepine receptor is present in the membrane of the mitochondria 

(Tsai et al., 1996).  When the gene for this receptor has been deleted, steroid production 

is dramatically reduced, and synthesis is restored upon reinsertion of the receptor 

(Papadopoulos et al., 1997).  Both steroidogenic acute regulatory protein and the 

benzodiazepine receptor appear to be necessary for normal transport of cholesterol from 

the outer to the inner mitochondrial membrane (Niswender, 2000). 

In the inner mitochondrial membrane the enzyme P450 side chain cleavage, 

adrenodoxin and adrenodoxin reductase cleave the side chain from cholesterol to form 

pregnenolone (Stone and Hechter, 1954).  Pregnenolone is then transported to the smooth 

endoplasmic reticulum, which is closely associated with the mitochondria.  In the smooth 

endoplasmic reticulum, pregnenolone is converted to progesterone by the enzyme 3 beta-

hydroxysteroid dehydrogenase ∆4,5 isomerase (Hanukoglu, 1992).  Progesterone does not 

appear to be stored and moves freely out of the cell. 

Progesterone Action 

The ability of progesterone to maintain pregnancy has been well documented.  

The hypothalamic-pituitary axis and the reproductive tract are the main targets for 
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progesterone (Niswender et al., 2000).  Most of the effect of progesterone is mediated by 

progesterone binding to its nuclear receptors, which in turn bind to specific progesterone 

response elements on the DNA that regulate transcription (Moutsatsou and Sekeris, 

1997).  

In livestock species, production of progesterone receptors in the reproductive tract 

requires previous exposure to estradiol (Kaneko et al., 1993; Kraus and 

Katzenellenbogen, 1993; Ing and Tornesi, 1997), conversely, progesterone downregulates 

estrogen receptors (Brenner et al., 1974; Evans and Leavitt, 1980; West et al., 1987; Iwai 

et al., 1995).  Further, progesterone blocks secretion of estradiol-stimulated proteins 

(Verhage and Fazleabas, 1988).  Finally, the half-life for messenger RNA that encode for 

hormone receptors are regulated by their own hormones, either by positive or negative 

feedback loops that limit or augment hormonal response (Ing, 2005). 

Progesterone caused quiescence of the myometrium by preventing the expression 

of gap junctions between the myometrial cells (Parkington, 1983).  Progesterone 

decreased the expression of genes that encode voltage-gated calcium channels (Tezuka et 

al., 1995), which decreased the uptake of extracellular calcium that is required for 

contraction (Bartol et al., 1985). Progesterone also blocked the ability of estrogens to 

induce alpha-adrenergic receptors, which can cause myometrial contractions (Bottari et 

al., 1983).   

In the hypothalamus, progesterone blocked the surge secretion of gonadotropin 

releasing hormone (Attardi and Happe, 1986; Kasa-Vubu et al., 1992).  Progesterone also 

reduced the number of pituitary gonadotropin releasing hormone receptors by 

downregulating the mRNA for the receptor.  This reduction in gonadotropin releasing 
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hormone caused a reduction in the release of luteinizing hormone partly by a reduction in 

gonadotropin releasing hormone receptors in the pituitary (Janovick and Conn, 1996).  

High concentrations of progesterone decreased expression of the genes that encode for 

the beta-subunit of both luteinizing hormone (Brann et al., 1993) and follicle-stimulating 

hormone (Brann et al., 1993; Digregorio and Nett, 1995). Furthermore, the gene that 

encode the alpha subunit, common to the gonadotropins, was downregulated by 

progesterone (Brann et al., 1993; Digregorio and Nett, 1995; Attardi et al., 1997). 

Embryonic Loss 

Embryonic mortality can be caused by either environmental or genetic factors 

(Ayalon, 1978; King, 1991; Kastelic, 1994).  Environmental factors include both internal 

and external factors.  Internal factors include the uterine environment, the maternal 

hormonal milieu and hormones secreted by the embryo.  External factors would include 

things such as nutrition, disease, or ambient temperature.  If the embryo was surgically 

removed or died before day 15 in the cow (Northey and French, 1980), or day 12 in the 

ewe, the inter-estrous interval remained the same as the estrous cycle (Moor and Rowson, 

1966).  If the embryo died after this time, the estrous cycle was extended because 

maternal recognition of pregnancy had occurred. 

In cattle, Maurer and Chenault (1983) reported that 67% of embryonic mortality 

occurred by day 8.  Similarly, Diskin and Sreenan (1980) showed the majority of 

embryonic loss occurred by day 16; while Dunne et al. (2000) reported that the loss 

occurred by day 14.  Embryonic loss after maternal recognition of pregnancy has been 

estimated between 7% to 12% with the majority occurring between days 24 to 75 as 

determined by concentrations of progesterone in milk (Kummerfield, et al., 1978; 
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Bulman and Lamming, 1979).  For lactating dairy cows on a timed insemination protocol, 

estimates of embryonic loss between day 28 and 42 ranged from 13.3 % (Cartmill et al., 

2000) to 45.9 % (El-Zarkouny, et al., 2000). Inskeep (2002) reviewed data showing that 

regardless of synchronization treatment, or the stage of the cycle, embryonic loss ranged 

from 15 % to 30 % in timed inseminated lactating dairy cattle.   

In sheep, Bolet (1986) calculated embryonic and fetal loss to be 30%.  Others 

have reported most of the loss occured before day 18 of gestation (Moor and Rowson, 

1960; Quinlivan et al., 1966).  Hulet et al. (1956) estimated embryonic/fetal loss to be 9.4 

% after day 18.  Similarly, Moor and Rowson (1960) reported that the majority of loss 

after day 18 occurred post attachment, which occurred at approximately day 20.  Fetal 

loss after day 30 to parturition was estimated to be low (Robinson, 1951; Quinlivan et al., 

1966).  Researchers have shown in sheep that individual embryos can be lost without the 

total loss of pregnancy (Rhind et al., 1980; Schrick and Inskeep, 1993).  Further, 

Quinlivan et al. (1966) reported that 54 % of ewes had twin ovulations, but only had one 

embryo on day 18, however, only 3.9 % of ewes lost all embryos.  Similarly, Dixon 

(2004) showed that late embryonic and fetal losses from ovulation to term were more 

often partial losses than complete loss.  In fact, Dixon (2004) calculated the total loss 

from ovulation to term to be 50.4%, with approximately three percentage points of loss 

occurring during every 20-day period throughout gestation (Dixon, 2004). 

Progesterone Catabolism 

Progesterone is a short half-life steroid that is degraded rapidly by the liver 

(Miller et al., 1963; Estergreen et al., 1977; Clemens and Estergreen, 1982; Rico, 1983), 

with the breakdown products being excreted in the feces and urine (Taylor, 1971; Parr, 
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1992).  Experiments employing radioinfusion (14C-progesterone) in domestic ruminants 

have demonstrated that the predominant route of excretion of radioactive metabolites was 

through the bile and feces (Williams, 1962; Stupnicki et al., 1969; Estergreen et al., 1977, 

Palme et al., 1996).  Therefore, the analysis of fecal progesterone metabolites is a 

possible method for classifying ovarian function and/or for pregnancy detection, as it has 

been used in cattle (Desaulniers et al., 1989; Bamberg and Schwarzenberger, 1990; 

Klingler, 1991; Larter et al., 1994).  Fecal progesterone metabolites were characterized in 

immunoassays utilizing antibodies generated against 4-pregnene-3, 20-dione 

(progesterone; Desaulniers et al., 1989; Klingler, 1991; Kirkpatrick et al., 1993; Larter et 

al., 1994), 4 pregnene-20α-ol-3-one (20α-dihydroprogesterone; Shaw et al., 1995) and 4 

pregnene-20β-ol-3-one (20β-dihydroprogesterone; Bamberg and Schwarzenberger, 

1990). 

Research on the catabolism of radioactively-labeled progesterone (Shideler et al., 

1993; Brown et al., 1994), and studies using high performance liquid chromatographic 

separation of fecal extracts and subsequent immunoassay analysis (Shideler et al., 1993; 

Brown et al., 1994) showed that progesterone was metabolized before excretion into the 

feces.  In most cases, there are a number of progesterone metabolites excreted, which 

were described as pregnanediones and mono- and di-hydroxylated pregnanes 

(Schwarzenberger et al., 1996).  There was little if any, non-catabolized progesterone in 

the feces (Schwarzenberger et al., 1996).  Therefore, utilizing very specific progesterone 

antibodies may have underestimated the total amount of fecal progesterone metabolites 

(Schwarzenberger et al., 1996). 
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Researchers have utilized antibodies raised against 6-hydroxysteroid progesterone 

(Klingler, 1991) and 20β-dihydroprogesterone (Bamberg and Schwarzenberger, 1990) to 

determine fecal progesterone metabolites during the estrous cycle of cows.  The 

measurement of fecal metabolites was sensitive enough to identify the follicular and the 

luteal phases, but differences in progesterone metabolites in the transition between 

follicular and luteal phase were too small to make this suitable for classification of stage 

of cycle. 

Cytochrome P450 enzymes, particularly CYP3A4 and CYP2C19, contribute 

substantially to the hepatic catabolism of progesterone (Miller et al., 1963; Estergreen et 

al., 1977; Clemens and Estergreen, 1982; Rico, 1983; Guay, 1998; Bidstrup et al., 2003).  

Numerous researchers have shown that the CYP2C family of enzymes, especially 

CYP2C19, overlap in metabolic function with the more prominent CYP3A4 in 

progesterone metabolism (Kerr et al., 1994; Sonnichsen et al., 1995; Yamazaki et al., 

1997; Muck, 2000; Tang et al., 2000).  Bidstrup et al. (2003) confirmed that the in vitro 

metabolism of progesterone was a NADPH-dependent process and that the activity of 

CYP3A4 (6β- hydroxysteroid dehydrogenase) and CYP2C19 (20β-hydroxysteroid 

dehydrogenase) resulted in the formation of the major metabolites including 6β 

hydroxyprogesterone and 20α-hydroxyprogesterone, respectively. 

Both CYP3A4 and CYP2C19 catabolize many different substrates and 

competition among these substrates for binding sites, or limitations in enzymatic 

cofactors, may alter the ability of cytochrome P450 enzyme to metabolize a given 

substance (Bidstrup et al., 2003).   
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Volatile Fatty Acids 

As reviewed by Bergman (1990), volatile fatty acids contain 1 to 7 carbon atoms 

and are either straight or branch chained compounds.  The volatile fatty acids include 

formic, acetic, propionic, butyric, isobutyric, valeric, isovaleric, 2-methylbutyric, 

hexanoic, and heptanoic acid. The predominant forms of volatile fatty acids are acetic, 

propionic and butyric and are produced from the fermentation of plant materials such as 

celluloses, fiber, starches, and sugars.  Mammals do not produce enzymes that are able to 

break down long chain structural carbohydrates and so such breakdown requires 

microbial fermentation.  Therefore, volatile fatty acids are produced in the greatest 

quantity in herbivores.  Herbivores can be further categorized as foregut or hindgut 

fermentors.  The foregut fermentors have a fermentation chamber cranial to the gastric 

portion of the stomach, whereas hindgut fermentors have fermentation chambers caudal 

to the gastric stomach. Regardless of the site of fermentation, the major substrates are 

complex carbohydrates originating from plant cells.  The common molar ratios of acetate, 

propionate and butyrate produced from microbial fermentation of plant carbohydrates 

vary from 75:15:10 (forage type feedstuffs) to 40:40:20 (carbohydrate type feedstuffs). 

Cellulolytic bacteria produce extracelluar cellulase and other enzymes that 

degrade cellulose and hemicellulose, first to oligosaccharides and then to glucose, 

glucose 6-phosphate, fructose 6-phosphate, and triosephosphates (Bergman 1990). Both 

noncellulolytic and cellulolytic organisms utilize the products of cellulose degradation 

directly to produce volatile fatty acids.  Pectins and hemicellulose are first degraded to 

xylose and other pentoses.  The major pathway of pentose utilization involves hexose 

synthesis with the end products being fructose 6-phosphate and triosephosphates, as seen 
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in cellulose fermentation.  Starches and dextrans are degraded by amylases to maltose 

and further by maltases, with the end product being glucose 1-phosphate.  All of the 

above hexoses and triosephosphates, however, are rarely detectable in ruminal or 

intestinal fluid because they undergo a rapid transformation to pyruvate through the 

Emben-Meyerhof pathway of glycolysis.  Pyruvate, is then rapidly converted mostly to 

the more prominent volatile fatty acids (acetate, propionate, and butyrate), and, as a 

result, even pyruvate is not readily detectable in ruminal or intestinal fluids (Bergman 

1990). 

Volatile Fatty Acids and Glucose Production 

In ruminants, carbohydrates in the feed are largely converted to volatile fatty 

acids as a result of microbial fermentation so that concentrations of blood glucose are 

lower than in monogastrics and vary little with feeding (De Jong, 1982).  In ruminants, 

the liver must continually synthesize glucose to meet energy requirements for 

maintenance and lactation.  Although propionate is a major glucose precursor in 

ruminants, gluconeogenesis from propionate is inadequate to provide all the glucose 

needed by extra-hepatic tissues (Bergman, 1975).  Hepatic gluconeogenesis accounted for 

87% of glucose utilized in fed sheep (Bergman, 1975).  In sheep fed near maintenance, 

over 80% of propionate absorbed from the portal blood was utilized for glucose synthesis 

(Steinhour and Bauman, 1988).  In lactating dairy cows, even though over 90% of portal 

propionate was used by the liver for glucose production, hepatic propionate accounted for 

only about 55% of hepatic glucose output (Reynolds et al., 1988). 

Butyrate has been shown to be a potent inhibitor of glucose production from 

propionate (Aiello and Armentano, 1987; Looney et al., 1987) while acetate had no effect 
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on glucose production from propionate (Aiello et al., 1989).  Inhibition of glucose 

production from propionate by butyrate might have deleterious effects on glucose balance 

in lactating dairy animals because high producing dairy cattle are in a negative glucose 

state (Aiello et al., 1989).  Faulkner and Pollock (1991) concluded that in lactating 

ruminants, major changes in glucose and ketone production were not the result of long-

term changes within the hepatocyte, but occurred because of changes to the substrate 

supply and intracellular concentrations of metabolites.  Net hepatic glucose release 

increased with increased hepatic propionate uptake and tended to increase with increased 

metabolized amino acid and lactate uptake (Lomax and Baird, 1983; Freetly and Ferrell, 

1999). 

Liver Blood Flow and Volatile Fatty Acids 

Numerous researchers (Bergman and Wolff, 1971; Heitman et al., 1986; Burrin et 

al., 1989; Kristensen et al., 2000) have reported mean portal blood flow with ranges from 

5.6 to 7.6 L⋅h-1⋅(BW⋅75)-1.  Bensadoun and Reid (1962) demonstrated that hepatic arterial 

blood flow to the liver of ewes increases between 3 and 7 hours after feeding.  Similarly, 

mean hepatic portal blood flow increased by about 45% 3 hours after feeding (Katz and 

Bergman, 1969) and was influenced by the amount of energy in the diet (Parr et al., 

1993b). 

Ruminal infusion of volatile fatty acids increased hepatic portal blood flow 

(Sellers et al., 1964).  Increasing concentrations of volatile fatty acids, decreasing pH, and 

introducing carbon dioxide all increased blood flow from the rumen (Dobson and 

Phillipson, 1956).  In sheep, ruminal infusion of propionate resulted in a 5-fold greater 

increase in ruminal arterial blood flow than an isoenergetic infusion of acetate (Sellers et 
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al., 1964).  This may have been a function of propionate sensors within the rumen wall 

that may elicit the increase in blood flow when energy increases (Wieghart et al., 1986).  

These sensors were triggered by increased propionate crossing the rumen wall (Wieghart 

et al., 1986).  However, when volatile fatty acids were infused directly into the portal 

system, there was an increase in blood flow.  Bensadoun and Reid (1962) hypothesized 

that the increased clearance of progesterone from ewes fed high-energy diets may be due 

to increased blood flow to the liver.  Similarly, Sangsritavong et al. (2002) showed 

increased liver blood flow increased progesterone metabolism in both lactating and non-

lactating dairy cattle. 

Insulin, Glucagon, and Volatile Fatty Acids Interaction 

Volatile fatty acids have the ability to stimulate insulin secretion from the 

pancreas (Harmon, 1992).  Feeding diets with increased starch digestibility that increase 

the production of propionate, have led to increased secretion of insulin (Harmon, 1992).  

This stimulatory effect of volatile fatty acids on the pancreas is unique to ruminants 

(Horino et al., 1968; De Jong, 1982).  

It has been shown that large doses of volatile fatty acids caused not only the 

release of insulin, but glucagon as well (Bassett, 1972; Elliot, 1980).  In sheep, 

intravenous administration of either propionate or butyrate stimulated the secretion of 

both glucagon and insulin (Manns and Boda, 1967; Horino et al., 1968).  Further, Manns 

et al. (1967) demonstrated that intravenous administration of propionate, butyrate or 

valerate increased insulin secretion.  However, other researchers have not shown an 

increase in glucagon secretion.  An intravenous administration of a physiological dose of 

acetate increased plasma insulin secretion but did not alter glucagon secretion (Mineo et 
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al., 1990).  Similarly, Sano et al. (1995) showed an intravenous injection of butyrate 

increased plasma insulin concentrations but did not affect glucagon concentrations. 

When volatile fatty acids were infused directly into the rumen, some researchers 

have not seen an increase in the secretion of insulin and glucagon.  Stern et al. (1970) 

showed that doubling ruminal propionate by intraruminal infusion did not change the 

concentrations of insulin in the jugular vein.  However, De Jong (1982) saw an increase 

in insulin and glucagon following direct portal infusion of high doses of volatile fatty 

acids in the goat.  When a constant physiological dose of propionate was infused directly 

into the rumen for 4 hours, there was a small increase in insulin but not glucagon (De 

Jong, 1982). 

In the ruminant, acetate is the major circulating form of energy in the fed state 

(De Jong, 1982).  Acetate utilization is dependent on insulin (Baile and Mayer, 1967; 

Skarda and Bartos, 1969; Yang and Baldwin, 1973; Schwalm and Schultz, 1976).  

Researchers have shown no increase in the secretion of insulin following an oral gavage 

of acetate in sheep (Manns and Boda, 1967; Trenkle, 1970), goats (De Jong, 1982), and 

cattle (McAtee and Trenkle, 1971). 

It has been hypothesized that volatile fatty acids acted directly on the α and β 

cells of pancreatic islets of Langerhans.  Glucagon may be an intermediary between 

volatile fatty acids and insulin secretion, because glucagon was a potent stimulator of 

insulin (Bassett, 1971; Samols et al., 1972).  Bassett (1972) reported that glucagon 

secretion increases coincident with insulin in sheep.  It has been hypothesized that the 

initial post prandial increase in volatile fatty acids is a signal to secrete insulin and 
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glucagon but ultimately concentrations of blood glucose would attenuate the secretion of 

insulin and glucagon (Grodsky, 1972). 

Insulin  

Single chain proinsulin is synthesized in the rough endoplasmic reticulum, 

presumably on membrane-bound polyribosomes, and transformed within the islet cells to 

insulin, the main storage product of the β granules (Steiner et al., 1967; Steiner, 1967; 

Steiner et al., 1970; Sorensen et al., 1970).  The subcellular site at which proinsulin is 

transformed to insulin was localized to the golgi apparatus and/or the newly formed 

secretory granules (Steiner et al., 1970; Kemmler and Steiner, 1970).  The proteolytic 

conversion of proinsulin to insulin was a relatively slow process (on the order of hours), 

as shown by steady-state or pulse-chase labeling experiments (Steiner, 1967). 

Although pancreatic β cells are usually thought of as functioning in a synchronous 

manner, there is evidence of heterogeneity of both structure and function (Sando et al., 

1972).  For example, β cells in the center of the islet core were more degranulated after a 

glucose challenge than β cells in the periphery of the islet (Stefan et al., 1987).  There are 

several studies that showed that the thresholds for glucose stimulation of insulin secretion 

and biosynthesis vary considerably among β cells (Salomon and Meda, 1986; Schuit et 

al., 1988).  There is evidence that stimulated β cells of the dorsal lobe release more 

insulin than those in the ventral lobe (Weir and Weir, 1990).  Virtually nothing is known 

about the mechanisms that underlie this heterogeneity.  Presumably, some of the 

differences result from variations in the local environment and some are intrinsic to the 

cells (Weir and Weir, 1990). 
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Selvaraju et al. (2002) found in cattle treated with insulin, circulating 

concentrations of progesterone significantly increased.  Estrogen and other steroids have 

been shown to stimulate the expression of insulin messenger RNA and secretion from the 

β cells in the pancreas (Morimoto, et al., 2001).  Follicular estradial-17β is dependent on 

luteinizing hormone stimulated androgen production from thecal cells, which is enhanced 

by insulin and insulin-like growth factor-1 (Stewart et al., 1996).  Reduced concentrations 

of insulin led to reduced androgen and estradial production and reduced the expression of 

luteinizing hormone receptors in the follicle (Diskin et al., 2003).  Therefore, it is 

possible that dietary manipulations cause changes in pancreatic sensitivity to estrogen 

(Armstrong, et al., 2003). 

Bovine granulosa cell cultures were dependent on physiological concentrations of 

insulin (Gutierrez, et al., 1997; Glister, et al., 2001).  Armstrong, et al. (2001), showed 

that circulating concentrations of insulin changed during the estrous cycle and 

significantly increased with ovulation.  The precise mechanism that regulated the 

increased concentration of insulin is not known.  However, estrogen is a prime candidate 

as increased concentrations of estrogen paralleled increased concentrations of insulin 

(Armstrong, et al., 2003). 

Numerous researchers have shown that dietary restriction and negative energy 

balance reduced circulating concentrations of insulin (Mackey et al., 1999; Sinclair et al., 

2000).  Not only does insulin play a role in carbohydrate metabolism; it also serves as a 

metabolic signal influencing luteinizing hormone release by the anterior pituitary 

(Monget and Martin, 1997), and plays a role in regulating ovarian sensitivity to 

gonadotropin.  In the post-partum anestrous beef cow, ovulation of the dominant follicle 
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did not occur when there were low circulating concentrations of insulin (Sinclair et al., 

2000).  Gong et al (2002a; 2002b) showed that cows fed a diet to increase circulating 

concentrations of insulin during the first 50 days post-partum had a shorter post-partum 

anestrous without affecting milk yield.  In cattle, insulin is an important signal that 

mediates changes in nutrient intake associated with follicular dynamics.  Insulin infused 

into energy deprived beef heifers caused an increase in the diameter of the dominant 

follicle (Simpson et al., 1994) and increased ovulation rate (Harrison and Randel, 1986).  

Dairy cattle selected for milk yield had lower circulating insulin (Armstrong et al., 2003).  

The feeding of diets designed to increase concentrations of insulin can advance the 

interval to first ovulation following parturition (Gong et al., 2002). 

Glucagon 

Tissue-specific post-translational processing of proglucagon results in the 

production of a diversity of peptides from the pancreas and intestine.  Glucagon is the 

major product in the α cell of the pancreas, whereas glicentin, oxyntomodulin, glucagon-

like peptide-1 and glucagon-like peptide -2 are the proglucagon -derived peptides 

produced in the intestine (Gutniak et al., 1992; Nathan et al., 1992). 

Glucagon is an important factor in glucose and ketone metabolism, and its 

secretion is strongly influenced by changes in plasma glucose concentration (as reviewed 

by Weir and Weir, 1990).  Normally, an increase in glucose concentration suppresses 

glucagon secretion while simultaneously stimulating insulin secretion.  It is not known 

how much of the glucose effect is exerted directly upon the pancreatic α cell and how 

much is exerted indirectly through other islet cells and/or the autonomic nervous system 

(Weir and Weir, 1990).  It has been difficult to elucidate because effects of β and δ cells 
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and the autonomic nervous system and the numerous intraislet interactions must be 

controlled to determine direct effects of α cells (Weir and Weir, 1990).  Compared to 

insulin, relatively few in vitro studies have investigated the secretion of pancreatic 

glucagon.  In isolated islet systems (Buchanan et al., 1969; Chesney and Schofield, 1969; 

Stagner et al., 1980), high glucose concentrations inhibited glucagon release.  The 

mechanism of this action by glucose is not known, but glucose appeared to depress 

cytosolic concentrations of calcium in the α cells (Wang and McDaniel, 1990). 

Some caution must be placed on in vitro research into islet function because 

pancreozymin (an in vivo stimulator of glucagon) did not stimulate glucagon secretion, 

and none of these hormones (pancreozymin, secretin, gastrin) stimulated secretion of 

insulin in vitro (Weir and Weir, 1990).  This is different from findings in vivo.  One 

rather obvious explanation would be that the environment of the islets is altered radically 

and that the islets have become insensitive to hormone releasing stimuli during the 

isolation procedure (Weir and Weir, 1990). 

Animals fed a glucagon-stimulating diet, which would be similar to an acetate 

treatment, had a reduced embryo survival, and a decrease in circulating concentrations of 

progesterone on days 4 and 5 post-conception and the concentration of plasma 

progesterone was found to be positively related to the number of fetuses carried by the 

ewe (Bassett et al., 1969). 

Insulin and Glucagon Interactions 

Not only do β cells communicate within pancreatic islets, but there is also 

communication between the islets (Weir and Weir, 1990).  Insulin and glucagon in 
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plasma oscillate with a period of 12 to 15 minutes in normal men (Lang et al., 1979).  

These oscillation patterns have been demonstrated utilizing the isolated perfused canine 

pancreas (Stagner et al., 1980).  The mechanism(s) by which pancreatic islets 

synchronize their activity are not understood, but there may be some kind of intrinsic 

neural coordination that persists even after nerves that supply the pancreas are severed 

(Weir and Weir, 1990).  These oscillations have been suggested to provide greater 

efficiency of insulin and glucagon action upon the liver by exposing the liver to both 

hormones simultaneously or alternatively (O’Rahilly et al., 1988). 

Pancreatic glucagon has been reported to be a potent stimulator of insulin 

secretion in vivo (Samols et al., 1965; Ketterer et al., 1967) as well as in vitro (Turner and 

McIntyre, 1966; Iversen, 1970; Curry, 1970).  Pancreatic glucagon stimulation of insulin 

secretion in vivo is not well understood.  However, because of the rapid catabolism of 

peripheral concentrations of glucagon, to determine if pancreatic glucagon is 

insulinogenic in vivo, the potential stimulatory effect of glucagon must be measured 

locally before it is released into the peripheral system (Iversen, 1971). 
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STATEMENT OF THE PROBLEM 

In the livestock and dairy industries, significant cost and time is associated with 

the effort to maintain pregnancy.  Further, the cost associated with having females remain 

open, especially in the dairy industry, contributes significantly to operating cost as well 

as increasing culling rates. 

Early embryonic or fetal loss has been shown to be a major contributor to the low 

reproductive efficiency seen in the livestock and dairy industries.  As previously 

discussed in the literature review, low circulating concentrations of progesterone can 

impact embryo survival.  Further, it has been demonstrated that nutrition can alter the 

concentration of progesterone.  Especially in the dairy industry, where animals are fed to 

optimize milk production, little emphasis is placed on the regulation of reproductive 

function and possible nutritional factors that may be less than optimal for embryonic or 

fetal survival. 

Certainly, numerous factors contribute to embryonic or fetal loss; however, 

numerous researchers have shown that the circulating concentration of progesterone is a 

valuable indicator of potential embryonic or fetal loss.  Given, the apparent importance of 

concentrations of progesterone, a more in-depth understanding of progesterone 

catabolism is warranted. 

Progesterone is catabolized mainly by liver cytochrome P450 enzymes.  

Therefore, altering nutritional components of the diet, which alter the metabolic rate of 

the liver, might alter the catabolism of progesterone.  These alterations in the catabolism 

of progesterone may significantly impact circulating concentrations of progesterone and 

thus influence the potential for embryo survival. 
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Finally, if components of the diet could be substituted, that would allow for 

optimal production, without compromising reproductive efficiency, the livestock and 

especially the dairy industry would benefit.  This benefit could contribute to the 

efficiency and sustainability of the livestock and dairy industries. 
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EFFECT OF ACETATE OR PROPIONATE ON THE CLEARANCE OF 
PROGESTERONE IN THE SHEEP 

Abstract 

The objective of this experiment was to determine if an increase in the amount of acetate 

or propionate in hepatic portal blood, draining the gastrointestinal tract, could alter the 

metabolism of progesterone by the liver.  In a preliminary study, four crossbred ewe 

lambs (BW 45.5 ± 2.5 kg) fed for maintenance and given a once daily oral gavage (0.146 

Mcal/d) of acetate (0.7 moles) or propionate (0.4 moles) for 11 d.  Two d prior to the 

acclimation period, a portal-vein catheter was inserted, on d 12 post acclimation, portal 

and jugular venous blood were collected simultaneously (-0.5, 0, 1, 2, 3, 4, 5, 6, 7 h with 

respect to feeding and volatile fatty acid gavage) and serum was analyzed for 

concentrations of volatile fatty acids by gas-liquid chromatography.  The main 

experiment utilized 30 crossbred ewe lambs (BW 45.2 ± 1.9 kg) blocked by body weight 

and fed for maintenance for 11 d.  On d 12, each lamb was assigned randomly to one of 

two treatments, an oral gavage (0.146 Mcal/d) of either acetate (0.7 moles) or propionate 

(0.4 moles).  Animals received (i.m.) 20 mg progesterone in corn oil.  Plasma samples 

were collected (-0.5, 0.5, 1, 2, 3, 4, 5, 6, 8 h relative to feeding, volatile fatty acid gavage, 

and progesterone injection) via jugular venipuncture and concentrations of progesterone 

were determined by radioimmunoassay.  An oral gavage of acetate or propionate caused a 

marked change in the portal vein acetate or propionate concentrations for at least 4 h.  By 

24 h after the oral gavage, the concentrations of acetate and propionate returned to 

baseline.  Serum concentrations of progesterone after the oral gavage of either acetate or 

propionate began to increase as early as 0.5 h and were different (P < 0.05) at 3 h (1.09 ± 

0.09 ng/ml vs. 2.04 ± 0.48 ng/ml) and 4 h (1.20 ± 0.09 ng/ml vs. 1.95 ± 0.41 ng/ml) for 
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ewe lambs orally-gavaged with acetate or propionate, respectively.  By 5 h, coincident 

with the return to baseline portal vein acetate or propionate concentrations following an 

oral gavage, concentrations of progesterone were not different.  Increased portal vein 

concentrations of propionate reduced the clearance of progesterone. 

Key Words: Progesterone, Acetate, Propionate, Liver Metabolism, Sheep. 
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Introduction 

In sheep, plasma progesterone increases from 2 to 3 ng/ml in early pregnancy to 

approximately 10 to 20 ng/ml on d 130 to 140 of gestation and falls to 1 ng/ml at 

parturition (Bassett et al., 1969).  Further, at least 2 ng/ml of progesterone were necessary 

for a normal conception rate (Parr et al., 1987).  Increasing the clearance of progesterone 

may decrease peripheral concentrations of progesterone below the threshold necessary for 

embryo survival (Parr, 1992; O’Callaghan et al., 2000). 

The liver accounts for the majority of progesterone clearance.  In a number of 

experiments in which different energy intakes were used to modify the clearance of 

progesterone in sheep, dry matter intake has been confounded with metabolizable energy 

(as reviewed by Parr, 1992).  Rates of blood flow in the portal vein are related directly to 

the level of feeding (Bensadoun and Reid, 1962).  Variation in the quality and physical 

form of the diets, given equal nutrient densities, had no apparent effect on portal blood 

flow (Webster, et al., 1975).  However, ruminal infusion of propionate, or butyrate 

increased rumen arterial blood flow five times more than an isoenergetic infusion of 

acetate (Sellers et al., 1964). 

We hypothesized that changing the form of energy while balancing for dry matter 

intake and metabolizable energy will alter the clearance of progesterone from circulation.  

The objectives of these experiments were to: 1) Determine the hepatic portal vein acetate 

and propionate concentrations after a single, oral gavage of acetate or propionate, and 2) 

Determine the effect of a single oral gavage of acetate or propionate on the rate of 

progesterone clearance. 
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Materials and Methods 

Preliminary Study 

All procedures and protocols involving the use of animals were approved by the 

West Virginia University Animal Care and Use Committee (ACUC #02-1204).  Four 

crossbred, yearling ewe lambs (BW 45.5 ± 2.5 kg) were housed in individual (2.1 m x 2.1 

m) pens.  Lambs were fed grass hay at 2% of BW (%DM 89.2, %CP 9.2, %TDN 53.9) to 

meet NRC (1985) maintenance requirements (once daily at 0800).  Water was provided 

ad libitum throughout the acclimation and experimental period.  The lambs were assigned 

randomly to one of two treatments, a once daily oral gavage of 0.7 mole acetate in 200 ml 

H2O (sodium acetate, Lot 81K0206, Sigma Chemical Co., St Louis, Mo); or 0.4 mole 

propionate in 200 ml H2O (sodium propionate, Lot 021K0158, Sigma Chemical Co., St 

Louis, Mo); for an 11-d acclimation period.  The orally-gavaged energy content (0.146 

Mcal) was equal between the acetate and propionate treatments and represents 

approximately 10% of the ewe lamb’s daily energy requirement (NRC, 1985). 

Prior to the acclimation period, all lambs were determined to be anestrous, 

defined by serum concentrations of progesterone <0.7 ng/ml for two-blood samplings 6 d 

apart (-7 and -1 d).  A portal vein catheter was inserted in each lamb according to the 

method of Ferrell et al. (1992).  Following induction and maintenance of anesthesia, a 

paracostal incision (~34 cm) was made parallel to and 5 cm posterior to the last rib.  A 

hole was punctured in the portal vein approximately 8 cm from the liver utilizing a 14-g 

needle and a heparinized (TDMAC heparin complex, Lot 73733; Polyscience Inc., 

Warrington, PA) catheter (ID 1.0 mm, OD 1.8 mm, Lot 50466, Cole-Parmer Instrument 

Co., Vernon Hills, IL) was inserted (~6 cm) until the tip was at the liver.  A purse-string 



 28

suture was tied around the catheter to secure it inside the portal vein.  The catheter was 

sutured to the portal lymph node to further stabilize its placement.  The free end of the 

catheter was tunneled under the skin using a trocar and exteriorized near the middle of 

the back.  Catheter patency was confirmed, the catheter was filled with heparinized saline 

(100 i.u./ml heparin, 150 mM NaCl) and tied off.  One animal assigned to acetate 

treatment lost portal vein catheter patency prior to blood sampling and was removed from 

the experiment. 

On d 12 after the start of the acclimation period, 3 ml samples of portal and 

jugular venous blood were collected simultaneously at frequent intervals (-0.5, 0, 1, 2, 3, 

4, 5, 6, 7 h) with respect to feeding and the oral-gavage of volatile fatty acid.  Blood was 

combined with 100 µl of heparinized saline, stored at 4o C for less than 4 h until spun at 

3000 g for 15 min and the plasma was aspirated and frozen until assayed for 

concentrations of volatile fatty acids.  To determine the acetate and propionate 

concentrations for the feed alone, d 13 samples were collected in a similar manner as d 

12, except acetate and propionate were not orally-gavaged.    

Plasma (1 ml) was extracted with 5 ml of 100% ethanol, the precipitate was 

removed by centrifugation and the supernatant was mixed with 100 µl sodium hydroxide 

(0.2 M) and air dried.  The dry residue was reconstituted in 20 µl of 30 mM oxalic acid 

and 1 µl of the reconstituted sample was injected onto a 2 m x 2 mm I.D. glass column 

(80/120 Carbopack B-DA/4% Carbowax 20M, Supelco Inc., Bellefonte, PA) and gas-

liquid chromatography (Varian 3300 Gas Chromatograph, Varian Inc, Walnut Creek, 

CA; Integrator: Varian 4290, Varian Inc, Walnut Creek, CA) was used to determine 

jugular and portal vein volatile fatty acid concentrations (Remesy and Demigne, 1974). 
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Experiment 

Thirty crossbred yearling anestrous ewe-lambs, 16 in replicate 1 and 14 in 

replicate 2; (BW 45.2 ± 1.9 kg) were blocked by body weight and housed (3 x 3 m pens) 

two ewe-lambs per pen.  Within each pen, each lamb was assigned randomly to one of 

two treatments, either an oral gavage of acetate or propionate as in preliminary 

experiment.  Lambs were fed grass hay at 2% of body weight (%DM 89.2, %CP 9.2, 

%TDN 53.9) to meet NRC (1985) maintenance requirements (once daily at 0700), for an 

11-d acclimation period.  Water was provided ad libitum throughout the acclimation and 

experimental period.  All lambs were anestrus, defined as serum concentrations of 

progesterone <0.7 ng/ml at both of two samplings 6 d apart. 

On d 12, following the acclimation period, animals were injected  (i.m.) with 20 

mg progesterone (Lot 100K0204, Sigma Chemical Co., St Louis, Mo) in corn oil (20 

mg/ml) and orally-gavaged with either acetate (0.7 moles) or propionate (0.4 moles) as in 

the preliminary study.  Blood samples were collected via jugular venipuncture at –0.5, 

0.5, 1, 2, 3, 4, 5, 6, and 8 h relative to feeding, volatile fatty acid gavage, and 

progesterone treatment.  Blood was stored at 4o C for 24 h, spun at 3000 g for 15 min and 

the serum was aspirated and frozen until assayed.  Jugular serum concentrations of 

progesterone were determined by radioimmonoassay, with a sensitivity of 100 pg/mL and 

intra- and inter-assay CV 6.8 % and 7.1 %, respectively (Sheffel et al., 1982). 

Statistical Analysis 

Statistical models included treatment effect (acetate versus propionate), time, 

replicate, and a treatment x time interaction in a randomized block design.  Preliminary 

analysis showed no significant differences between replicates of the experiment, so the 
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data were combined and analyzed together.  The concentrations of progesterone were 

analyzed using PROC MIXED for repeated measures and means separation was 

performed using the LSMEANS procedure of SAS (SAS Inst., Inc., Cary, NC). 

Results 

Preliminary Study 

A single oral gavage of acetate or propionate increased the portal vein acetate or 

propionate concentration for at least 4 h compared to feed alone (Figure 1 and 2).  

Further, by 24 h post-gavage, the portal vein acetate or propionate concentrations 

returned to the baseline concentrations as demonstrated by the beginning (-0.05 h) acetate 

and propionate concentrations on d 13 (feed alone).  The concentrations of volatile fatty 

acids in the jugular vein relative to the oral gavage of volatile fatty acids are presented in 

Table 1.  Following the propionate treatment, there was only a minimal increase in the 

concentration of propionate in the peripheral circulation whereas following the acetate 

treatment, peripheral concentrations of acetate increased dramatically (Table 1). 

Experiment 

Serum concentrations of progesterone (Figure 3), after the oral gavage of either 

acetate or propionate, began to diverge as early 0.5 h and were different (P < 0.05) at 3 h 

(1.09 ± 0.09 ng/ml vs. 2.04 ± 0.48 ng/ml) and 4 h (1.20 ± 0.09 ng/ml vs. 1.95 ± 0.41 

ng/ml) for ewe lambs orally-gavaged with acetate or propionate, respectively.  By 5 h, 

coincident with the return to baseline, portal vein acetate or propionate concentrations 

seen in Figures 1 and 2, circulating concentrations of progesterone were not different. 
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Figure 1:  The hepatic portal vein concentration of acetate following feed alone or feed 

plus an oral gavage (0.146 Mcal) of acetate or propionate. 
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Figure 2:  The hepatic portal vein concentration of propionate following feed alone or 

feed plus an oral gavage (0.146 Mcal) of acetate or propionate. 
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Table 1: Concentrations of acetate and propionate (mM) in jugular vein plasma following 

feed alone or feed plus an oral gavage of 0.146 Mcal/d of acetate or propionate. 

 
 
        
         
 Feed Alone  Propionate Treatment  Acetate Treatment 
Hour Acetate Propionate  Acetate Propionate   Acetate Propionate
        
-0.05 0.31 0.02  0.29 0.07  0.60 0.03 
0 0.37 0.02 0.31 0.09  0.85 0.04 
1 0.43 0.02 0.32 0.09  0.80 0.03 
2 0.50 0.03 0.37 0.06  1.04 0.03 
3 0.49 0.03 0.37 0.04  1.00 0.03 
4 0.56 0.02 0.46 0.03  0.85 0.03 
5 0.55 0.02 0.46 0.03  0.80 0.02 
6 0.54 0.02 0.55 0.04  0.65 0.02 
7 0.59 0.02 0.49 0.04  0.65 0.03 
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Figure 3:  Concentration of serum progesterone (mean ± SEM) following a single oral 

gavage (0.146 Mcal) of acetate or propionate.  Asterisks denote differences (P<0.05) 

between the acetate and propionate treatments. 
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Discussion 

An oral gavage of acetate or propionate resulted in different rates of clearance of 

progesterone.  Peripheral concentrations of progesterone were elevated significantly in 

ewes consuming a diet meeting only 25 % of their maintenance energy requirements 

(Cumming et al., 1971).  Similarly, Parr et al. (1987) showed there was a decline in 

peripheral progesterone concentrations with increasing dietary energy.  The differences in 

the metabolic clearance rate of progesterone between ewes fed below, versus in excess, 

of maintenance was significant (Parr et al., 1993a).  Adams et al. (1994) showed a slower 

passage of digesta in restricted ewes, which was associated with an increase in the plasma 

concentration of hormone metabolites, which may in turn affect ovarian feedback.  

Further, Shevah et al. (1975) found no change in luteinizing hormone when ewes were 

fed either a below-maintenance diet versus a maintenance diet, resulting in greater 

concentrations of progesterone, or in excess of maintenance, resulting in lesser 

concentrations of progesterone.  Similarly, Abecia et al. (1995) concluded that the 

embryo loss that occurs in a sheep fed a below-maintenance diet versus a maintenance 

diet was not a result of increased luteinizing hormone or an increase in the capacity of the 

corpus luteum to synthesize and release progesterone.  Taken together, these observations 

support the suggestion that alterations in the diet alter the clearance, not the synthesis, of 

progesterone. 

It has been shown that at least 2 ng/ml of progesterone is necessary for 

satisfactory conception rates (Parr et al., 1987).  Ewes fed below their maintenance 

energy requirement had greater peripheral concentrations of progesterone, but on d 5 of 

the estrous cycle had lower endometrial concentrations of progesterone than ewes fed in 
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excess of maintenance energy requirement (Lozano et al., 1998).  Progesterone 

supplementation had no effect on ewes that were fed below-maintenance or maintenance 

diets, but in ewes fed the diet in excess of maintenance, progesterone supplementation 

increased the pregnancy rate from 48 to 76 % (Parr et al., 1987).  This led the authors to 

conclude that exogenous progesterone will increase pregnancy rate only in ewes fed in 

excess of maintenance or an increasing energy diet.  The present data show that at equal 

energy and dry matter intake there are alterations in the clearance of progesterone as a 

result of the form of energy. 

Bensadoun and Reid (1962) hypothesized that the increased clearance of 

progesterone from ewes fed high-energy diets may be due to increased blood flow to the 

liver.  In this experiment, hepatic portal blood flow was not determined.  However, 

numerous researchers (Bergman and Wolff, 1971; Heitman et al., 1986; Burrin et al., 

1989; Kristensen et al., 2000) have reported mean portal blood flow with ranges from 5.6 

to 7.6 L⋅h-1⋅(BW⋅75)-1.  Bensadoun and Reid (1962) demonstrated that blood flow to the 

liver of ewes increased between 3 and 7 h after feeding.  Similarly, mean hepatic blood 

flow increased by about 45% 3 h after feeding (Katz and Bergman, 1969) and was 

influenced by the amount of energy in the diet (Parr et al., 1993b). 

Less progesterone was cleared following the propionate than with the acetate 

gavage.  Ruminal infusion of volatile fatty acids increased hepatic portal blood flow 

(Sellers et al., 1964).  Increasing concentrations of volatile fatty acids, decreasing pH, and 

introducing carbon dioxide all increased blood flow from the rumen (Dobson and 

Phillipson, 1956).  In sheep, ruminal infusion of propionate resulted in a 5-fold greater 

increase in ruminal arterial blood flow than an isoenergetic infusion of acetate (Sellers et 
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al., 1964).  If blood flow was involved in the observed alteration in progesterone 

clearance, then one would expect that the likely greater increase in hepatic portal blood 

flow following the propionate gavage would have resulted in an increased rate of 

clearance.  Instead the opposite occurred with progesterone clearance reduced following 

the propionate as compared to the acetate treatment. 

Alterations in the type of feedstuffs or the physiological status of the ewe may 

play a greater role in embryo survival than previously thought.  Further, progesterone 

clearance was altered without alterations in dry matter intake or energy, and likely 

without changes in hepatic portal blood flow from those observed in the literature.  

Further research is needed to determine the mechanism that results in alterations in 

clearance of progesterone.  In this experiment, balancing dry matter intake and energy, 

while altering the volatile fatty acid profile leaving the rumen, resulted in alterations in 

the clearance of progesterone.  Therefore, alterations in feedstuffs may influence 

clearance of progesterone and potentially affect pregnancy rate. 
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EFFECT OF ACETATE OR PROPIONATE ON CIRCULATING 
CONCENTRATIONS OF INSULIN OR GLUCAGON IN THE EWE 

Abstract 

The objective of this experiment was to determine the effect of a single oral gavage of 

either acetate or propionate on peripheral concentrations of insulin and glucagon in the 

ewe.  Five crossbred yearling anestrous ewes (55.6 ± 1.4 kg) were fed for maintenance 

for an 11-d acclimation period.  On d 12, following the acclimation period, animals were 

orally-gavaged with either acetate (0.7 moles) or propionate (0.4 moles).  On d 17, each 

pen was treated again with acetate or propionate in a switchback design.  Blood samples 

were collected via jugular venipuncture at -0.5, 0.5, 1, 2, 3, 4, 5, 6, and 8 h relative to 

feeding and volatile fatty acid gavage.  Blood was assayed for concentrations of glucagon 

and insulin.  Serum concentrations of insulin after an oral gavage of either acetate or 

propionate, were different (P < 0.05) at 0.5 h (0.14 ± 0.04 nM vs. 0.63 ± 0.08 nM) and 1 

h (0.12 ± 0.04 nM vs. 0.23 ± 0.04 nM) for ewe lambs orally-gavaged with acetate and 

propionate, respectively.  Further, serum concentrations of glucagon after an oral gavage 

of either acetate or propionate, were different (P < 0.05) at 0.5 h (0.019 ± 0.002 nM vs. 

0.048 ± 0.007 nM), 1 h (0.021 ± 0.004 nM vs. 0.041 ± 0.006 nM) and 2 h (0.016 ± 0.003 

nM vs. 0.033 ± 0.006 nM) for ewe lambs orally-gavaged with acetate and propionate, 

respectively.  Rations that stimulate the production of propionate, increasing the portal-

vein propionate concentration, may alter insulin and glucagon secretion.   

KEY WORDS: Insulin, Glucagon, Acetate, Propionate, Sheep 
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Introduction  

In ruminants, carbohydrates in the feed are largely converted to volatile fatty 

acids as a result of microbial fermentation so that concentrations of blood glucose vary 

little with feeding (De Jong, 1982).  Volatile fatty acids stimulate insulin secretion from 

the pancreas (Harmon, 1992), a phenomenon unique to ruminants (Horino et al., 1968; 

De Jong, 1982).  

Feeding diets with increased starch digestibility or increasing the proportion of 

propionate through feed grade propionate have led to increased secretion of insulin 

(Harmon, 1992).  It has been shown that large pharmacological doses of volatile fatty 

acids caused not only the release of insulin, but glucagon as well (Bassett, 1972; Elliot, 

1980).  In sheep, intravenous administration of either propionate or butyrate stimulated 

the secretion of both glucagon and insulin (Manns and Boda, 1967; Horino et al., 1968).  

Further, Manns et al. (1967) demonstrated that intravenous administration of propionate, 

butyrate or valerate increased insulin secretion.  However, an intravenous administration 

of a physiological dose of acetate increased plasma insulin secretion but did not alter 

glucagon secretion (Mineo et al., 1990).  Similarly, Sano et al. (1995) showed that an 

intravenous injection of butyrate increased plasma insulin concentrations but did not 

affect glucagon concentrations. 

Stern et al. (1970) showed that doubling ruminal propionate by intraruminal 

infusion did not change the concentrations of insulin in the jugular vein.  However, De 

Jong, (1982) saw an increase in insulin and glucagon following direct portal infusion of 

high doses of volatile fatty acids in the goat.  When a constant physiological dose of 
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propionate was infused directly into the rumen for 4 h, there was a small increase in 

insulin but not glucagon (De Jong, 1982). 

The objective of this experiment was to determine the effect of a single oral 

gavage of either acetate or propionate on peripheral concentrations of insulin and 

glucagon in the ewe. 
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Materials and Methods 

All procedures and protocols involving the use of animals were approved by the 

West Virginia University Animal Care and Use Committee (ACUC #04-0604).  Five 

crossbred yearling anestrous ewe-lambs (55.6 ± 1.37 kg), were housed in 3 x 3 m pens; 

two ewe-lambs in one pen and three ewe-lambs in an adjacent pen.  Lambs were fed 

grass hay at 2% of body weight (%DM 90.6, %CP 14.7, %TDN 64.8) to meet NRC 

(1985) maintenance requirements (once daily at 0700), for an 11-d acclimation period.  

Water was provided ad libitum throughout the acclimation and experimental period. 

On d 12, following the acclimation period, animals were orally-gavaged with 

either acetate (0.7 moles) or propionate (0.4 moles).  Each pen was assigned to one of 

two treatments, an oral gavage of 0.7 mole acetate in 200 ml H2O (sodium acetate, Lot 

81K0206, Sigma® Chemical Co., St Louis, Mo); or 0.4 mole propionate in 200 ml H2O 

(sodium propionate, Lot 021K0158, Sigma Chemical Co., St Louis, Mo).  The orally-

gavaged energy content (0.146 Mcal) was equal between the acetate and propionate 

treatments and represented approximately 10% of the ewe lamb’s daily energy 

requirement (NRC, 1985).  Again, on d 17 each pen was treated alternatively with acetate 

or propionate in a switchback design.  Blood samples were collected via jugular 

venipuncture at –0.5, 0.5, 1, 2, 3, 4, 5, 6, 8 h relative to feeding and volatile fatty acid 

gavage.  Blood was combined with 100 µl of heparinized saline, stored at 4o C for less 

than 1 h until centrifuged at 3000 g for 15 min and the plasma aspirated and frozen until 

assayed for concentrations of glucagon (double antibody glucagon radioimmunoassay, 

Lot 0021, Diagnostic Products Corporation, Los Angeles, CA) and insulin (insulin 

enzyme-linked immuno-sorbent assay, Lot 05264, Diagnostic Systems Laboratories, Inc., 
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Webster, TX), according to the manufacturers’ instructions.  The assays had a sensitivity 

of 13 pg/mL and intra- and inter-assay CV of 5.5 % and 9.1 % for glucagon and a 

sensitivity of 1 ng/mL and intra- and inter-assay CV of 4.5 % and 6.5 % for insulin. 

Statistical Analysis 

Statistical models included treatment effect (acetate or propionate), time, and a 

treatment x time interaction in a crossover design.   The circulating concentrations of 

insulin (cube root transformed) and glucagon (log transformed) were analyzed using the 

GLM T-TEST procedure of SAS (SAS Inst., Inc., Cary, NC). 

Results 

Serum concentrations of insulin for ewe lambs (Figure 4), after an oral gavage of 

either acetate or propionate, were different (P < 0.05) at 0.5 h (0.14 ± 0.04 nM vs. 0.63 ± 

0.08 nM) and 1 h (0.12 ± 0.04 nM vs. 0.23 ± 0.04 nM), respectively.  Serum 

concentrations of glucagon (Figure 5), were different (P < 0.05) at 0.5 h (0.019 ± 0.002 

nM vs. 0.048 ± 0.007 nM), 1 h (0.021 ± 0.004 nM vs. 0.041 ± 0.006 nM) and 2 h (0.016 

± 0.003 nM vs. 0.033 ± 0.006 nM) after ewe lambs were orally-gavaged with acetate or 

propionate, respectively. 
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Figure 4:  The jugular vein concentration of insulin following an oral gavage (0.146 

Mcal) of acetate or propionate.  Means ± SEM with different letters differ (P < 0.05). 
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Figure 5:  The jugular vein concentration of glucagon following an oral gavage (0.146 

Mcal) of acetate or propionate.  Means ± SEM with different letters differ (P < 0.05). 
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Discussion 

We have demonstrated previously that, while the amount of acetate or propionate 

we orally-gavaged into the rumen is physiologically relevant, representing approximately 

10 percent of the ewe-lamb’s daily energy requirement, the hepatic portal vein 

concentration in the 4 h following the oral gavage was supraphysiological (Figure 1).  In 

the ruminant, acetate is the major form of circulating energy in the fed state (De Jong, 

1982).  Acetate utilization is dependent on insulin (Baile and Mayer, 1967; Skarda and 

Bartos, 1969; Yang and Baldwin, 1973; Schwalm and Schultz, 1976).  However, this 

experiment showed no increase in the secretion of insulin following an oral gavage of 

acetate.  This is in agreement with other researchers who reported similar results in sheep 

(Manns and Boda, 1967; Trenkle, 1970), goats (De Jong, 1982), and cattle (McAtee and 

Trenkle, 1971).  Similar to De Jong, (1982), in the current experiment, acetate did not 

appear to affect the secretion of glucagon. 

In this experiment, an oral gavage of propionate increase plasma concentration of 

both insulin and glucagon in sheep.  This is in agreement with De Jong, (1982) who 

reported similar findings in goats.  It has been hypothesized that volatile fatty acids act 

directly on the alpha and beta cells of pancreatic islets of Langerhans.  There is the 

possibility that glucagon is an intermediary between volatile fatty acids and insulin 

secretion because glucagon is a potent stimulator of insulin secretion (Bassett, 1971; 

Samols et al., 1972).  In this study glucagon secretion increases coincident with insulin, 

which agrees with Bassett (1972), who reported similar results in sheep.  However, it 

should be noted that glucagon is probably responsible for only a portion of the increase in 
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insulin as insulin concentrations were reduced before glucagon returned to baseline 

concentrations. 

From our previous work, we showed an increase in the concentration of 

propionate in the hepatic portal vein for approximately 4 h (Figure 2).  It is surprising that 

the increased secretion of insulin and glucagon both returned to baseline before 

propionate leaving the rumen should have decreased.  Therefore, we hypothesize that the 

initial increase in volatile fatty acids is a signal to secrete insulin and glucagon but 

ultimately concentrations of blood glucose would maintain the appropriate hormone 

secretion as seen in the monogastric (Grodsky, 1972).  Rations that stimulate the 

production of propionate, increasing the portal-vein propionate concentration, may alter 

insulin and glucagon secretion. 
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ALTERATIONS IN THE RATE OF PROGESTERONE CLEARANCE INDUCED 
BY INSULIN, GLUCAGON, OR INSULIN TO GLUCAGON RATIO, IN A 

MOUSE HEPATIC CELL LINE 

Abstract 

To determine the rate of progesterone clearance in response to challenge with 

different concentrations of insulin, glucagon or a combination of insulin and glucagon, a 

mouse hepatic line was plated in five 12-well (105 per well) plates with 5 ng/ml of 

progesterone added to the culture medium.  To calculate the fractional rate of decay for 

progesterone, media were harvested 0, 1, 2, 3, and 4 hr following treatment.  The 

concentrations of progesterone in conditioned media were determined by 

radioimmunoassay.  Cells also were cultured in the presence of insulin (0, 0.1, 1.0 and 10 

nM), glucagon (0, 0.01, 0.1, and 1.0 nM) or both insulin and glucagon at different ratios 

of insulin and glucagon (0 and 0, 1.0 and 1.0, 1.0 and 0.1 or 0.1 and 1.0, nM insulin and 

glucagon, respectively).  In response to a challenge with insulin, there was a dose 

dependent decrease in progesterone disappearance.  There was a reduction (P < 0.05) in 

the rate of decay with the addition of 0.1 nM insulin, when compared to control.  Further, 

there was a greater reduction in the rate of decay in response to 1.0 and 10 nM insulin (P 

< 0.05) than control and 0.1 nM insulin.  There was no observable change in the 

disappearance of progesterone with either physiological (0.01 nM) or pharmacological 

(0.1 and 1.0 nM) treatment of cells with glucagon.  Pharmacological concentrations of 

glucagon (1.0 nM) negated the effects of either 0.1 or 1.0 nM insulin on the clearance of 

progesterone.  However, with physiological concentrations of glucagon (0.01 nM) and 

1.0 nM insulin, glucagon was not able to negate the reduction in progesterone 
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disappearance caused by insulin.  These data show that high concentrations of insulin 

reduce catabolism of progesterone in a mouse hepatic cell line. 

KEYWORDS: Progesterone; Insulin; Glucagon; Hepatocyte; Mouse 
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Introduction 

The sheep embryo is particularly sensitive to reductions in peripheral 

concentrations of progesterone over a 48-h period on d 11 and 12 of pregnancy (Parr, 

1992).  It also has been shown that within the first three weeks of pregnancy 

concentrations of progesterone are elevated when ewes are fed a sub-maintenance diet 

(Cummings et al., 1971; Parr et al., 1982).  When underfed, ovariectomized pregnant 

ewes were given exogenous progesterone, peripheral concentrations of progesterone were 

elevated compared to ewes not underfed (Parr et al., 1982).  This indicates that the effects 

of nutrition may impact the metabolic clearance rate, rather than synthesis of 

progesterone by the corpus luteum (Parr et al., 1982).   

Cytochrome P450 enzymes, particularly CYP3A4 and CYP2C19, contribute 

substantially to the hepatic catabolism of progesterone (Miller et al., 1963; Estergreen et 

al., 1977; Clemens and Estergreen, 1982; Rico, 1983; Guay, 1998; Bidstrup et al., 2003).  

Bidstrup et al. (2003) confirmed that the in vitro metabolism of progesterone was a 

NADPH-dependent process and that the activity of CYP3A4 (6β- hydroxysteroid 

dehydrogenase) and CYP2C19 (20β-hydroxysteroid dehydrogenase) result in the 

formation of the major metabolites including 6β hydroxyprogesterone and 20α-

hydroxyprogesterone, respectively.  Both CYP3A4 and CYP2C19 catabolize many 

different substrates and competition among these substrates for binding sites or 

limitations in enzyme cofactors may alter the ability of cytochrome P450 enzymes to 

metabolize a given substrate (Bidstrup et al., 2003). 

Numerous researchers have shown that dietary restriction and negative energy 

balance reduce circulating concentrations of insulin (Mackey et al., 1999; Sinclair et al., 



 54

2000).  Further, Pell et al. (1983) have shown that concentrations of plasma insulin are 

lower in lactating versus non-lactating dairy cattle.  To further emphasize lactational 

interactions, dairy cattle selected for milk yield show a lower circulating concentration of 

insulin (Armstrong et al., 2003).  However, Selvaraju et al. (2002) found in cattle treated 

with insulin, circulating concentrations of progesterone were significantly increased.  

Therefore, reduced concentrations of insulin could reduce androgen and estradial 

production or clearance (Diskin et al., 2003).  

The objectives of this experiment were to determine the rate of progesterone 

clearance in a murine hepatic cell line following challenge with insulin, glucagon or a 

combination of insulin and glucagon. 
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Materials and Methods 

A mouse hepatic cell line (cell line CRL-2390), was obtained from American 

Type Culture Collection, (Manassas, VA).  The fetal bovine serum (Lot # 1125143), 

penicillin-streptomyocin (10,000 units and 10,000 µg/ml, respectively; Lot # 15140122), 

and Hank’s balanced salt solution (Lot 14170112) were obtained from Invitrogen 

(Carlsbad, CA).  The medium (F-12K, Lot # 3000357) was purchased from American 

Type Culture Collection (Manassas, VA).  Insulin (Lot # 064K8403), glucagon (Lot # 

123K8928), and progesterone (Lot # 100K0204) were purchased from Sigma Chemical 

Co. (St. Louis, MO).  All other reagents used were of the purest grade available. 

Experiment  

Cells (105 per well) were plated in five 12-well plates (wells 3.8 cm2, well volume 

6 ml) in 1.0 ml medium (F-12K) with 10% fetal bovine serum and 1% penicillin-

streptomyocin.  The plates were incubated for 12 h at 36° C and 5% CO2 to allow the 

cells to adhere to the wells and grow to 40% confluency. 

Following the initial 12 h incubation period, the medium was aspirated out of the 

wells and 1.0 ml of new medium with 10% fetal bovine serum and 1% penicillin-

streptomyocin with the addition of 5 ng/ml of progesterone and one of 4 treatments (0, 

0.1, 1.0 and 10 nM insulin) was added to each well.  Treatments were replicated in 

triplicate, and each plate contained all 4 treatments.   

Five time points were used to calculate the fractional rate of decay for 

progesterone, 0, 1, 2, 3, and 4 hr.  A preliminary experiment showed that from 0 to 4 hr 

the cells continued to multiply, reaching confluency at approximately 4 hr (Figure 6).  At  
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Figure 6:  Number of hepatocytes per well during 6 h of culture in media containing 5 

ng/ml of progesterone. 
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each time point, one plate was removed from the incubator and the medium was aspirated 

from each well into a microcentrifuge vial.  For the 0 h, 1 ml medium plus treatment was 

placed in each well and immediately aspirated back out of the well and placed into a 

microvial.  The other four plates were placed back into the incubator at 36°C, 5% CO2 

and remained undisturbed until the appropriate hour.  The vials were spun at 300 g and 

decanted into new vials, which were frozen until assayed for progesterone.  The 

experiment was replicated 3 times.  Concentrations of progesterone in conditioned media 

were determined by radioimmunoassay, with a sensitivity of 100 pg/ml and intra- and 

inter-assay CV of 6.5 % and 7.6 %, respectively (Sheffel et al., 1982). 

Cells were cultured in the presence of glucagon exactly as with insulin, except 

treatments included 0, 0.01, 0.1, and 1.0 nM of glucagon in place of insulin.  Finally, 

cells were cultured in the presence of both insulin and glucagon as with insulin and 

glucagon alone, except the treatments contained different ratios of insulin and glucagon 

including 0 and 0, 1.0 and 1.0, 1.0 and 0.1 or 0.1 and 1.0, nM insulin and glucagon, 

respectively.  

Statistical Analysis 

Fractional rate coefficients were calculated for each treatment and then expressed 

as a percentage of the control coefficient.  Statistical models included treatment effect 

(concentration of insulin or glucagon), time, replicate, and a treatment x time interaction 

in a complete block design.  Preliminary analysis showed no significant differences 

among replicates of the experiment, so the data were combined and analyzed together.  

Concentrations of progesterone in media were analyzed using PROC GLM and means 
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separation was performed using the DUNCANS procedure of SAS (SAS Inst., Inc., Cary, 

NC). 

Results 

When cells were treated with insulin, there was a dose dependant decrease in the 

disappearance of progesterone (Figure 7).  There was a reduction (P < 0.05) in the rate of 

decay with the addition of 0.1 nM insulin when compared to control (Figure 7).  Further, 

there was a greater reduction in the rate of decay in response to 1.0 and 10 nM insulin (P 

< 0.05) than with 0.1 nM insulin.  There was no observable change in the disappearance 

of progesterone with either physiological (0.01 nM) or pharmacological (0.1 and 1.0 nM) 

treatment of cells with glucagon (Figure 8).  Pharmacological concentrations of glucagon 

(1.0 nM) negated (Figure 9) the effects of either 0.1 or 1.0 nM insulin on the clearance of 

progesterone observed when cells were challenged with insulin alone (Figure 7).  

However, with physiological concentrations of glucagon (0.01 nM), glucagon was not 

able to negate the reduction in progesterone disappearance caused by 1.0 nM insulin 

(Figure 9). 
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Figure 7:  The fractional rate of decay of progesterone, by cells, challenged with 0, 0.1, 1 

and 10 nM insulin.  Means ± SEM with different letters differ (P < 0.05). 
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Figure 8:  The fractional rate of decay of progesterone, by cells, challenged with 0, 0.01, 

0.1 and 1.0 nM glucagon.  Means ± SEM with different letters differ (P < 0.05). 
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Figure 9:  The fractional rate of decay of progesterone, by cells, challenged with 

different ratios of insulin and glucagon (0 and 0, 1.0 and 1.0, 1.0 and 0.1 or 0.1 and 1.0, 

nM insulin and glucagon, respectively).  Means ± SEM with different letters differ (P < 

0.05).   
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Discussion 

The results from this experiment show that less progesterone is cleared by the 

hepatocyte when in the presence of insulin or insulin and physiological concentrations of 

glucagon.  Further there was a dose response relationship between insulin treatment and 

progesterone clearance, with the exception that the highest dosage of insulin (10 nM) was 

not different than 1.0 nM.  This was to be expected as the insulin receptor saturation in 

the mouse hepatocyte is approximately 1 nM, (Valverde et al., 1997), therefore the 

addition of 10 nM insulin should not further decrease progesterone clearance beyond 

what was observed with 1.0 nM insulin.  Glucagon had no apparent effect on the 

clearance of progesterone, however, a pharmacological dosage was able to negate the 

effects of insulin. 

In our earlier research (Figure 3), animals that were orally-gavaged with 

isoenergetic acetate or propionate, less progesterone was cleared with the propionate 

treatment.  Further, an oral gavage of propionate significantly increased circulating 

concentrations of insulin (Figure 4).  As seen in other research (De Jong, 1982), the oral 

gavage of propionate also increased the secretion of glucagon (Figure 5).  However, it 

should be noted that the increased concentration of glucagon was similar to that in the 

physiological combination (1.0 insulin and 0.1 glucagon), which did not prevent insulin 

from decreasing the clearance of progesterone (Figure 9).  Similarly, Selvaraju et al. 

(2002) found in cattle treated with insulin, circulating concentrations of progesterone 

were increased significantly.  Diskin et al. (2003) concluded that reductions in the 

concentration of insulin could reduce androgen and estradial production or clearance.  

One could further extrapolate from this and earlier research with limited-fed versus over-
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fed ewes, that there would be differences in the insulin to glucagon ratio.  Animals fed a 

glucagon-stimulating diet, which would be similar to the acetate gavage, had a reduced 

embryo survival, and reduced circulating concentrations of progesterone on d 4 and 5 

post-conception (Bassett et al., 1969).  Further, when underfed, ovariectomized pregnant 

ewes were given exogenous progesterone peripheral concentrations of progesterone were 

elevated compared to ewes not underfed (Parr et al., 1982).  This indicates that the effects 

of nutrition may impact the metabolic clearance rate, rather than synthesis of 

progesterone by the corpus luteum (Parr et al., 1982). 

There are numerous experiments that demonstrate the effect of insulin on the 

messenger RNA and clearance of substrates by hepatocytes.  Sidhu and Omiecinski 

(1999) cultured hepatocytes in either 0 or 1 nM insulin.  When exposed to phenobarbital 

the hepatocytes incubated in the absence of insulin showed a 1.5 to 2.0 fold increase in 

the messenger RNA for the cytochrome P450 enzymes.  In addition, the time required to 

attain maximal gene expression was reduced in the non-insulin treated cultures (Sidhu 

and Omiecinski, 1999).  Similarly, Sidhu et al. (2001) demonstrated again that 

suppression of messenger RNA for cytochrome P450 enzymes was reduced by insulin 

but was not the result of an alteration in phosphatidylinositol 3-kinase.  Finally, there was 

an 80 to 90 percent reduction in the messenger RNA for hepatocyte derived cytochrome 

P450 enzymes when incubated in either 1.0 or 10 nM insulin (Woodcroft and Novak, 

1999).  These researchers also incubated cells in a supra-physiological dose of 100 nM of 

glucagon.  There was an approximately 7-fold increase in messenger RNA for the 

cytochrome P450 enzymes.  However, when 1 nM insulin was added to the supra-

physiological dose of glucagon, expression of the messenger RNA was similar to 
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controls, indicating a mutual antagonistic signaling pathway in which insulin and 

glucagon negate each others effect on the expression of messenger RNA for the 

cytochrome P450 enzymes (Woodcroft and Novak, 1999). 

The cytochrome P450 enzymes, particularly CYP3A4 and CYP2C19, which 

contribute substantially to the hepatic catabolism of progesterone, might be influenced by 

concentrations of insulin.  Further, it should be noted that while messenger RNA 

expression for cytochrome P450 enzymes (CYP3A4 and CYP2C19) was not measured, 

other hepatic cytochrome P450 enzymes are altered by insulin.  Our experiments 

demonstrate this same effect, however, further experiments elucidating the basis for the 

reduction in progesterone catabolism are warranted. 
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GENERAL DISCUSSION 

It has been shown that circulating concentrations of progesterone are at least a 

critical indicator of possible embryo loss, or maybe more importantly may contribute 

directly to pregnancy retention.  The overall purpose of these experiments was to study 

the catabolism of progesterone, because a greater understanding of progesterone 

catabolism may help to reduce late embryo or fetal loss, through the possible nutritional 

manipulation of progesterone catabolic rate. 

Numerous researchers have suggested that alterations in dry matter intake are 

responsible for the differences seen in circulating concentrations of progesterone in 

animals fed at different levels relative to maintenance.  In the first experiment, we 

utilized an isoenergetic, oral gavage of acetate or propionate such that a balanced diet 

with equal energy and dry matter intake was provided, but that the form of energy varied.  

Therefore, the alterations in the clearance of progesterone seen in experiment 1 were the 

result of the form of energy orally-gavaged and not variation in dry matter intake or 

energy balance. 

These observations led us to experiment two, in which we utilized the exact same 

oral gavage of acetate or propionate to determine secretion patterns of both insulin and 

glucagon.  Acetate did not increase the secretion of either insulin or glucagon.  However, 

an oral gavage of propionate stimulated secretion of both insulin and glucagon in sheep.  

It has been hypothesized that volatile fatty acids act directly on the alpha and beta cells of 

pancreatic islets of Langerhans.  There is the possibility that glucagon is an intermediary 

between volatile fatty acids and insulin secretion because glucagon is a potent stimulator 

of insulin secretion.  As we saw in experiment two, glucagon secretion increased 
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coincident with insulin.  However, glucagon was probably only responsible for a portion 

of the increase in insulin, as insulin concentrations were reduced before glucagon 

returned to baseline concentrations.  In the first experiment, we observed that the increase 

in the concentration of propionate in the hepatic portal vein was for approximately 4 

hours.  In experiment two, we observed that the increased secretion of insulin and 

glucagon returned to baseline before propionate leaving the rumen should have 

decreased.  Therefore, we hypothesized that the initial increase in volatile fatty acids is a 

signal to secrete insulin and glucagon but ultimately concentrations of blood glucose 

would maintain the appropriate hormone secretion. 

In the last experiment, information from the first two experiments was to examine 

whether the propionate induced reductions in progesterone catabolism were mediated by 

insulin in cultured mouse hepatocytes.  We were able to investigate whether hepatic 

catabolism of progesterone could be modulated in the absence of alterations in hepatic 

blood flow.  The results from the experiment showed that less progesterone was cleared 

by the cells when in the presence of insulin and physiological concentrations of glucagon.  

Further there was a dose response relationship between insulin treatment and 

progesterone clearance, with the exception that the highest dosage of insulin (10 nM) was 

not different than 1.0 nM.  This was to be expected as the insulin receptor saturation in 

the mouse hepatocyte is approximately 1 nM.  Glucagon had no apparent effect on the 

clearance of progesterone, however, a pharmacological dosage was able to negate the 

effects of insulin.  Our hypothesis is that insulin causes a reduction in the expression of 

messenger RNA for the cytochrome P450 enzymes in the hepatocyte.   
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Our experiments demonstrate that propionate stimulates insulin and in turn, 

insulin decreases the clearance of progesterone metabolized by the liver hepatocytes.  

Further experiments elucidating the basis for the reduction in progesterone catabolism are 

warranted. 
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