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A novel sensor fusion design framework is presented with the objective of improving the overall multisensor measurement system
performance and achieving graceful degradation following individual sensor failures. The Unscented Information Filter (UIF)
is used to provide a useful tool for combining information from multiple sources. A two-step off-line and on-line calibration
procedure refines sensor error models and improves the measurement performance. A Fault Detection and Identification (FDI)
scheme crosschecks sensor measurements and simultaneously monitors sensor biases. Low-quality or faulty sensor readings are
then rejected from the final sensor fusion process. The attitude estimation problem is used as a case study for the multiple sensor
fusion algorithm design, with information provided by a set of low-cost rate gyroscopes, accelerometers, magnetometers, and
a single-frequency GPS receiver’s position and velocity solution. Flight data collected with an Unmanned Aerial Vehicle (UAV)
research test bed verifies the sensor fusion, adaptation, and fault-tolerance capabilities of the designed sensor fusion algorithm.

1. Introduction

Sensing through a fusion of diverse but interrelated sensory
data could reveal information that is difficult to measure
directly. Having complementary and multiperspective view-
points also allows for real-time evaluation of individual
sensors’ performance and limitations, further enabling a
reconfiguration of the measurement system if necessary.
From this perspective, sensor fusion can be viewed as a
process of refining internalmodels of both themeasured phe-
nomenon (for improved performance) and the measurement
system (for improved reliability) throughprocessing a hetero-
geneous set of sensory data. Within this context, a three-step
sensor fusion design framework is presented in this paper.

Step 1. Combine sensory data from diverse and redundant
sources to derive a fused solution that is difficult to measure
directly and/or has better quality than the output of each
participating sensor.

Step 2. Refine sensor error models with feedback from the
sensor fusion algorithm.

Step 3. Reconfigure the measurement system to achieve
performance enhancement under nominal conditions and
graceful degradation following sensor failures.

Step 1 reflects a “traditional” view of sensor fusion. Many
existing approaches are model based, which relies on a set
of mathematical models to relate individual measurements to
the fused solution.Thesemodels represent a priori knowledge
of the system to be measured and are based either on known
relationships or on assumptions and heuristics. For numeri-
cal sensory data, a Bayesian filter [1, 2] is often used to derive
a fused solution. This solution can either be computed at a
centralized location or distributed among sensor nodes [3–5].

Step 2 enables the measurement system to maintain an
updated knowledge of its states. At the sensor level, redundant
information sources provide references for crosschecking and
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calibrating individual sensors used within the measurement
system.This extends the traditional off-line sensor calibration
[6] process to an on-line process. If a certain mathematical
structure of the sensor model is assumed, the dynamic
sensor calibration reduces to a parameter identification [7,
8] problem. For example, sensor bias or scaling factors are
often estimated along with other states within a sensor fusion
algorithm [9].

Step 3 integrates results from the first two levels to
further improve the performance and robustness of the
measurement system in several aspects. First, the sensor
error models refined through the dynamic calibration pro-
cess could improve the overall estimation performance and
provide indications of the health condition of each sensor.
Second, a comparison of sensory data collected from diverse
but interrelated sources provides information for sensor Fault
Detection, Identification, and Accommodation (FDIA) [10,
11]. Finally, the robustness of the measurement system could
be improved by rejecting [4] low quality or faulty sensor
measurements from the measurement update.

The goal of this paper is to demonstrate this three-
step sensor fusion approach through a practical applica-
tion: to achieve reliable and accurate attitude estimation
with a low-cost Inertial Measurement Unit (IMU), Global
Positioning System (GPS) receiver, and triaxial magnetome-
ters. As an important navigation problem, the 3D attitude
for Unmanned Aerial Vehicles (UAVs), mobile robots, and
mobile devices were estimated using a variety of information
sources.This includes but not limited to dead reckoning with
rate gyroscopes, sensing of earth’s gravity [12] and magnetic
vectors [13], angular position of celestial objects [14], horizon
line [15], terrain shape [16], optical flow [17], and known radio
sources [18] such as GPS [19] and cellular network [20]. The
selection of IMU, GPS, and magnetometers as the primary
sensors for this study was mainly due to their widespread
availability and popularity in various platforms, as well as
the low-computational requirement of implementing these
sensors when compared with methods such as computer
vision or Lidar based mapping.

The novel contributions of this effort include the follow-
ing:

(1) A systematic design approach that integrates both
sensor calibration and fault tolerance into a multiple
sensor fusion system.

(2) A FDI method based on information crosschecking
and sensor bias tracking.

The performance of all presented algorithms is evaluated
with flight datasets, through processing of real flight data
taken from an experimental UAV. Portions of this paper,
including some figures and tables, are contained within a
chapter of the second author’s graduate thesis [21].

The rest of the paper is organized as follows. Section 2
introduces four different sensor fusion formulations for vehi-
cle attitude estimation using Unscented Information Filter
(UIF) as the nonlinear estimator. The sensor calibration
process for refining sensor error models is described in
Section 3. Section 4 presents the FDIA methods. Section 5

discusses the experimental setup used in this study.Themain
results of this work are presented in Section 6, followed by a
conclusion in Section 7.

2. Fusion of GPS, IMU, and Magnetometer
Measurements

2.1. Coordinate Systems. Two coordinate systems are used
throughout this paper. A local-level Cartesian navigation
frame (𝐿) is defined with its origin 𝑂

𝐿 at an arbitrary
point near the vehicle, positive 𝑥

𝐿 axis pointing toward the
geographic north, positive 𝑦

𝐿 axis pointing east, and positive
𝑧
𝐿 axis pointing to the center of the earth. A vehicle body-axes
coordinate system (𝐵) is defined with its origin at vehicle’s
Center of Gravity (CG), with positive 𝑥

𝐵 pointing forward of
the vehicle, positive 𝑦

𝐵 axis toward right, and positive 𝑧
𝐵 axis

toward the bottom of the vehicle. Each sensor on-board of
the UAV is assumed are assumed to be aligned with the body
axes and to be located relatively close to each other (i.e., a very
small lever arm between the GPS and IMU).

The rotation of measurements between the two coordi-
nate systems is calculated through the use of three attitude
(Euler) angles: yaw (𝜓), pitch (𝜃), and roll (𝜙). For example,
the earth’s gravity vector and centrifugal acceleration due to
the earth’s rotation (i.e., sensed “plumb-bob” acceleration)
components in the vehicle body axis are found by assuming
that it is parallel to the navigation frame 𝑧

𝐿 axis and rotating
with a Direction Cosine Matrix (DCM):

[
[
[

[

𝑔
𝐵

𝑥

𝑔
𝐵

𝑦

𝑔
𝐵

𝑧

]
]
]

]

= DCM (𝜙, 𝜃, 𝜓)
𝑇
⋅
[
[

[

0

0

𝑔

]
]

]

(1)

that is defined by the body-axis attitude:

DCM (𝜙, 𝜃, 𝜓)

=
[
[

[

𝑐𝜓𝑐𝜃 −𝑠𝜓𝑐𝜙 + 𝑐𝜓𝑠𝜃𝑠𝜙 𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑠𝜃𝑐𝜙

𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜙 + 𝑠𝜓𝑠𝜃𝑠𝜙 −𝑐𝜓𝑠𝜙 + 𝑠𝜓𝑠𝜃𝑐𝜙

−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙

]
]

]

,

(2)

where “𝑠” and “𝑐” are abbreviated sine and cosine functions,
respectively.

2.2. Information Sources. Two types of information sources
are generally available for estimating a vehicle’s attitude
angles: (1) the time-integration of rate gyroscope measure-
ments; (2) the measurement of external vector fields of well-
known directions. With readings from a set of 3-axis strap-
down rate gyroscopes, the attitude angles are computed with
a set of attitude kinematic equations [22]:

𝜙̇ = 𝑝 + 𝑞 sin𝜙 tan 𝜃 + 𝑟 cos𝜙 tan 𝜃,

𝜃̇ = 𝑞 cos𝜙 − 𝑟 sin𝜙,

𝜓̇ = (𝑞 sin𝜙 + 𝑟 cos𝜙) sec 𝜃,

(3)
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where 𝑝, 𝑞, and 𝑟 are the roll rate, pitch rate, and yaw
rate measured in the body axis, respectively. This attitude
solution will diverge over the time due to the accumulation
of rate gyroscope biases during the integration process. For
typical low-cost microelectromechanical systems- (MEMS-)
based gyroscopes, the uncorrected attitude solutions are not
directly usable after a short period of time.

A standard approach for controlling the attitude error
growth is to regulate it with nondrifting information sources,
such as the known direction of an external vector field.
Examples of commonly used aiding information include the
earth’s gravity vector [12], the earth’s magnetic vector [13],
GPS [19], cellular network [20], celestial map [14], horizon
line [15], terrain map [16], computer vision [17], and known
radio sources [18]. From this list, earth’s gravity andmagnetic
vector fields are often the easiest to measure and therefore
are discussed in detail in this paper. Four sensor fusion
formulations are presented in the rest of this section to
show that a fusion of any combination of GPS, IMU, and
magnetometers is capable of providing nondrifting Euler
angle estimates.

2.3. Sensor Fusion Formulation #1: GPS/IMU. The attitude
of a stationary vehicle can be directly solved from (1) using
measurements from a set of 3-axis accelerometers. For amov-
ing vehicle, the accelerometers measure both the acceleration
due to gravity and the vehicle’s acceleration in the inertial
frame. To isolate the gravity vector from inertial acceleration,
a GPS receiver’s velocity solution provides an independent
observation of the vehicle’s inertial acceleration in the local
Cartesian coordinates. Since the GPS will not sense the
earth’s gravity, the relationship between accelerometer mea-
surements a𝐵 and GPS velocity measurements V𝐿 can be
described by

[
[
[
[

[

𝑉̇
𝐿

𝑥

𝑉̇
𝐿

𝑦

𝑉̇
𝐿

𝑧

]
]
]
]

]GPS

= DCM (𝜙, 𝜃, 𝜓) ⋅

[
[
[

[

𝑎
𝐵

𝑥

𝑎
𝐵

𝑦

𝑎
𝐵

𝑧

]
]
]

]IMU

+
[
[

[

0

0

𝑔

]
]

]

. (4)

Using the heading information provided by the GPS,

𝜓 = tan−1(
𝑉
𝐿

𝑦

𝑉𝐿
𝑥

) . (5)

Equation (4) can be explicitly solved to calculate Euler angles
[12]. However, a better approach exists with the use of the
stationary gravity vector to regulate the INS integration
error with a recursive estimator. Within this formulation,
the state, input, and measurement vectors are, respectively,
x = [𝜙 𝜃 𝜓]

𝑇, u = [𝑝 𝑞 𝑟]
𝑇, and z = a𝐿 = [𝑎

𝐿

𝑥
𝑎
𝐿

𝑦
𝑎
𝐿

𝑧
]
𝑇

.

The nonlinear continuous-time state transition equations ẋ =

f𝑐(x, u,w) are directly based on (3):

[
[
[

[

𝜙̇

𝜃̇

𝜓̇

]
]
]

]

=

[
[
[

[

(𝑝 + 𝑤
𝑝
) + (𝑞 + 𝑤

𝑞
) sin𝜙 tan 𝜃 + (𝑟 + 𝑤

𝑟
) cos𝜙 tan 𝜃

(𝑞 + 𝑤
𝑞
) cos𝜙 − (𝑟 + 𝑤

𝑟
) sin𝜙

((𝑞 + 𝑤
𝑞
) sin𝜙 + (𝑟 + 𝑤

𝑟
) cos𝜙) sec 𝜃

]
]
]

]

,

(6)

where 𝑤
𝑝,𝑞,𝑟

are the noises associated with the correspond-
ing rate gyroscope measurements, which are assumed to
be zero mean white Gaussian: w

1
= [𝑤𝑝 𝑤

𝑞
𝑤
𝑟]
𝑇

≈

𝑁(0,Q
1
). Note that 𝑤

𝑝,𝑞,𝑟
are implemented as nonadditive

input noises instead of modeling process noise additive on
the state estimates, which is commonly used in Kalman filter
formulations.

The continuousobservation equations z = h𝑐(x, k) are
also nonlinear and are modeled by

[
[
[
[

[

𝑉̇
𝐿

𝑥
+ V
𝑔𝑥

𝑉̇
𝐿

𝑦
+ V
𝑔𝑦

𝑉̇
𝐿

𝑧
+ V
𝑔𝑧

]
]
]
]

]GPS

= DCM (𝜙, 𝜃, 𝜓) ⋅

[
[
[

[

𝑎
𝐵

𝑥
+ V
𝑎𝑥

𝑎
𝐵

𝑦
+ V
𝑎𝑦

𝑎
𝐵

𝑧
+ V
𝑎𝑧

]
]
]

]IMU

+
[
[

[

0

0

𝑔

]
]

]

,

(7)

where V
𝑔𝑥,𝑔𝑦,𝑔𝑧

are the noises assumed to be white for the
GPS estimated accelerations and V

𝑎𝑥,𝑎𝑦,𝑎𝑧
are noises asso-

ciated with the accelerometer measurements, with v
1

=

[V𝑔𝑥 V
𝑔𝑦

V
𝑔𝑧

V
𝑎𝑥

V
𝑎𝑦

V
𝑎𝑧]
𝑇

≈ 𝑁(0,R
1
).

2.4. Sensor Fusion Formulation #2: IMU/Magnetometers.
The gravity vector used in Formulation #1 can be directly
substituted with the Earth’s magnetic vector in regulating
the growth of the rate gyroscope integration error. For this
formulation, the state, input, and measurement vectors are
given, respectively, by x = [𝜙 𝜃 𝜓]

𝑇, u = [𝑝 𝑞 𝑟]
𝑇, and

z = [𝑀
𝐵

𝑥
𝑀
𝐵

𝑦
𝑀
𝐵

𝑧
]
𝑇

, where 𝑀
𝐵

𝑥,𝑦,𝑧
are the magnetometer

measurements. The state transition equations are the same as
in (6), and the nonlinear observation equations are given by

[
[
[

[

𝑀
𝐵

𝑥
+ V
𝑀𝑥

𝑀
𝐵

𝑦
+ V
𝑀𝑦

𝑀
𝐵

𝑧
+ V
𝑀𝑧

]
]
]

]

= DCM (𝜙, 𝜃, 𝜓)
𝑇
⋅

[
[
[

[

𝑀𝑒
𝐿

𝑥

𝑀𝑒
𝐿

𝑦

𝑀𝑒
𝐿

𝑧

]
]
]

]

, (8)

where 𝑀𝑒
𝐿

𝑥,𝑦,𝑧
is the local magnetic vector determined with

National Oceanic and Atmospheric Administration’s
Geomagnetic Online Calculator [23], and v

2
=

[V𝑀𝑥 V
𝑀𝑦

V
𝑀𝑧]
𝑇

≈ 𝑁(0,R
2
) are the noises associated

with the magnetometer measurements, which are assumed
to be zero mean, white, and Gaussian. An appealing feature
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for the IMU/magnetometers formulation is that it can
operate indoors or within other GPS-denied environments.
However, the local magnetic field can be distorted by the
existence of ferromagnetic materials in the close vicinity,
affecting the attitude estimation performance. A solution to
this problem is discussed in Section 3.

2.5. Sensor Fusion Formulation #3: GPS/Magnetometers. The
body-axis magnetic field measurements, coupled with GPS
heading, also provide adequate information for Euler angle
estimation at most places on earth that are not near the
magnetic poles. In this formulation, the state, input, and
measurement vectors are, respectively, x = [𝜙 𝜃]

𝑇, u =

[0 0]
𝑇, and z = [𝑀

𝐵

𝑥
𝑀
𝐵

𝑦
𝑀
𝐵

𝑧
]
𝑇

. Since the rate gyroscope
measurements are not available in this case, the state transi-
tion equations are simply defined as follows:

[

𝜙̇

𝜃̇

] = [

0

0
] + w

2
, (9)

where the unknowns 𝜙 and 𝜃 are assumed to be perturbed
with white noises w

2
≈ 𝑁(0,Q

2
). The observation equations

are the same as in (8), where 𝜓 is calculated with (5). The
observation equations could also be augmented with (7) to
incorporate additional gravity vector constraints during the
measurement update. The benefit of this formulation is that
it provides an independent attitude estimate without the rate
gyroscopes; therefore, this approach would not cause stability
issues [24] in control systems that rely on rate gyroscopes for
inner-loop feedback.

2.6. Sensor Fusion Formulation #4: GPS/IMU/Mag. So far,
combinations of any two sensors from the set of GPS, IMU,
and magnetometers have been used for attitude estimation.
Particularly, the differences between Formulations #1 and
#2 are only present in the observation equations. Combin-
ing the two sets of observation equations could lead to a
tighter regulation of the error growth in the strap-down INS
equations. In fact, any measureable external vector field of
known direction could be added to the observation equa-
tions in a similar fashion. For the GPS/IMU/magnetometers
formulation, the state, input, and measurement vectors are,
respectively, x = [𝜙 𝜃 𝜓]

𝑇, u = [𝑝 𝑞 𝑟]
𝑇, and z =

[𝑎
𝐿

𝑥
𝑎
𝐿

𝑦
𝑎
𝐿

𝑧
𝑀
𝐵

𝑥
𝑀
𝐵

𝑦
𝑀
𝐵

𝑧
]
𝑇

. The state transition equations
are the same as in (6), and the observation equations are
simply a combination of (7) and (8).

2.7. Unscented Information Filter. An information filter
approach [5] is used for the fusion of multiple sensor
measurements.Themain advantage of using the information
filter instead of Kalman filter is that the information update
can be expressed as a sum:

I
𝑘|𝑘

= I
𝑘|𝑘−1

+

𝑁

∑

𝑗=1

I
𝑗,𝑘

,

î
𝑘|𝑘

= î
𝑘|𝑘−1

+

𝑁

∑

𝑗=1

i
𝑗,𝑘

,

(10)

where I
𝑘|𝑘−1

is the predicted information matrix, î
𝑘|𝑘−1

is
the predicted information state vector, and I

𝑗,𝑘
, i
𝑗,𝑘

are the
measurement information matrix and information vector,
respectively, associated with the 𝑗th measurement out of
a total of 𝑁 independent measurements. This simple rela-
tionship in information update creates a suitable framework
for adding/removing sensors and handling unsynchronized
measurement updates within a multisensor fusion system.

The state estimation problems presented in Formulations
#1–#4 are solved with an Unscented Information Filter (UIF)
[3].TheUIF uses the same predictionmodel as an Unscented
Kalman Filter (UKF) [25, 26] to calculate the predicted error
covariance matrix, P

𝑘|𝑘−1
, and state estimation, x̂

𝑘|𝑘−1
. The

predicted information matrix, I
𝑘|𝑘−1

, and predicted informa-
tion state vector, î

𝑘|𝑘−1
, are simply defined as follows:

I
𝑘|𝑘−1

= P−1
𝑘|𝑘−1

,

î
𝑘|𝑘−1

= P−1
𝑘|𝑘−1

x̂
𝑘|𝑘−1

.

(11)

For the measurement update, the nonlinear observa-
tion equation for each independent measurement z

𝑗,𝑘
=

h
𝑗
(x̂
𝑘|𝑘−1

, k
𝑗,𝑘

) is locally linearized with a statistical linear
regression method [27]:

z
𝑗,𝑘

≈ [Hx
𝑗,𝑘

Hk
𝑗,𝑘]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

H𝑗,𝑘

[

x̂
𝑘|𝑘−1

k
𝑗,𝑘

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

x𝑎
𝑘|𝑘−1

+ b
𝑗,𝑘 (12)

that minimizes the sum of squared errors e
𝑗,𝑖

= 𝜒
𝑖

𝑗,𝑘
−

(H
𝑗,𝑘
𝜒
𝑖

𝑗,𝑘|𝑘−1
+ b
𝑗,𝑘

):

{H
𝑗,𝑘

, b
𝑗,𝑘

} = argmin
H,b

2𝐿

∑

𝑖=0

e𝑇
𝑗,𝑖
e
𝑗,𝑖
, (13)

where H
𝑗,𝑘

= P𝑇
𝑥𝑘𝑧𝑗,𝑘

P𝑎
𝑘|𝑘−1

−1 and b
𝑗,𝑘

= ẑ
𝑗,𝑘

− H
𝑗,𝑘
x𝑎
𝑘|𝑘−1

. The
mean and covariance of e

𝑗
are given by

e
𝑗
= 0,

P
𝑗,𝑒𝑒

= P
𝑧𝑗,𝑘𝑧𝑗,𝑘

− H
𝑗,𝑘
P𝑎
𝑘|𝑘−1

H𝑇
𝑗,𝑘

.

(14)

The measurement information matrix I
𝑗,𝑘

and informa-
tion vector i

𝑗,𝑘
for the 𝑗th measurement [3] can then be

provided by

i
𝑗,𝑘

= Hx𝑇
𝑗,𝑘
R−1
𝑗,𝑘

(z
𝑗,𝑘

− b
𝑗,𝑘

) .

I
𝑗,𝑘

= Hx𝑇
𝑗,𝑘
R−1
𝑗,𝑘
Hx
𝑗,𝑘

,

(15)

where R
𝑗,𝑘

is the covariance matrix for the sum of the
linearized actual observation noise R

𝑗
and the linearization

noise:

R
𝑗,𝑘

= Hz
𝑗,𝑘
R
𝑗
Hz𝑇
𝑗,𝑘

+ P
𝑗,𝑒𝑒

= P
𝑧𝑗,𝑘𝑧𝑗,𝑘

− Hx
𝑗,𝑘
P
𝑘|𝑘−1

Hx𝑇
𝑗,𝑘

.

(16)

The procedure for deriving (14)–(16) is outlined in [3].
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Following the information update equations (10) with all
the measurements during each time frame, the estimated
posterior covariancematrix and state vector can be recovered
using

P
𝑘|𝑘

= I−1
𝑘|𝑘

,

x̂
𝑘|𝑘

= P
𝑘|𝑘
î
𝑘|𝑘

.

(17)

3. Sensor Calibration

The existence of redundant information from different
sources provides an opportunity for calibrating each individ-
ual sensor within the measurement system. The calibration
process may be performed off-line [6], on-line [7, 28], or
using a combination of the two. The latter approach is
used in this paper where a batch off-line calibration is first
performed for the 3-axis magnetometers which then provide
the initial condition for the recursive on-line calibration.This
procedure has several advantages:

(1) The off-line calibration process is less restricted by the
availability of computational resources; therefore, a
large set of calibration parameters can be evaluated.
Additionally, the off-line calibration can be per-
formed through comparing with temporary sensors
of higher quality (to be removed before the operation)
and data from deliberately performed maneuvers.

(2) The off-line calibrated sensor parameters provide a
priori knowledge of the sensor error model. The on-
line calibration then starts from off-line calibrated
parameters, minimizing the impact of the transient
response based on better initial estimates.

(3) The on-line calibration provides the capability for
dealing with time varying parameters.

(4) The on-line calibrated parameters can be restricted
within a set of prespecified bounds and the calibration
can be turned off or revert to the off-line values in the
event of unstable conditions.

The concept of this 2-step calibration process is similar
to the adaptive augmentation of a baseline controller [29] in
control theory.Within this effort, the magnetometers are first
calibrated off-line, followed by an on-line estimation of nine
sensor biases associatedwith rate gyroscopes, accelerometers,
and magnetometers.

3.1. Magnetometer Error Model. The magnetometer readings
of earth’s magnetic field are often distorted by the existence of
ferromagneticmaterials in the local area, as well as the imper-
fection in the measurement system itself. The calibration of
the magnetometer is a well-studied problem in the literature
[27, 28, 30]. However, most calibration research in the past
was performed off-line, due to a lack of reference information
during the vehicle operation.

Without a loss of generality, the 3-axis magnetometer
calibration process is formulated as a nonlinear parameter
identification (PID) problem:

[
[
[
[

[

𝑀̂
𝐵

𝑥

𝑀̂
𝐵

𝑦
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𝐵

𝑧

]
]
]
]

]
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𝑀𝜙

, 𝑅
𝑀𝜃

, 𝑅
𝑀𝜓

)
𝑇
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b𝑀

,

(18)

where 𝑀̂
𝐵

𝑥,𝑦,𝑧
are the calibrated magnetometer measure-

ments, R
𝑀

is a rotation matrix parameterized by the three
rotation angles: 𝑅

𝑀𝜙
, 𝑅
𝑀𝜃

, and 𝑅
𝑀𝜓

, S
𝑀
is a diagonal scaling

matrix, and b
𝑀
is a bias vector. The nine parameters

Θ
𝑀

= [𝑅𝑀𝜙 𝑅
𝑀𝜃

𝑅
𝑀𝜓

𝑆
𝑀𝑥

𝑆
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𝑆
𝑀𝑧

𝑏
𝑀𝑥

𝑏
𝑀𝑦

𝑏
𝑀𝑧]
𝑇

(19)

to be estimated capture all of the soft iron effects, hard iron
effects, sensor nonorthogonality, bias, and scaling factor [27].

3.2. Magnetometer Off-Line Calibration. The off-line calibra-
tion process starts with the creation of a set of reference sig-
nals to be compared with the actual magnetometer measure-
ments. The reference is created by rotating the known earth’s
magnetic vectorM𝑒

𝐿 from the local Cartesian coordinates to
the vehicle’s body axisM𝑒

𝐵:

[
[
[

[

𝑀𝑒
𝐵

𝑥

𝑀𝑒
𝐵

𝑦

𝑀𝑒
𝐵

𝑧

]
]
]

]

= DCM (𝜙, 𝜃, 𝜓)
𝑇
⋅

[
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𝑦
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𝐿

𝑧

]
]
]

]

, (20)

where the Euler angles are provided by a GPS/IMU sensor
fusion algorithm discussed earlier. A set of estimated calibra-
tion parameters Θ̂

𝑀
is then acquired through minimizing a

cost function, which spans over an entire set of flight data,
using a quasi-Newton method:

𝐽 = ∑[(𝑀̂
𝐵

𝑥
− 𝑀𝑒
𝐵

𝑥
)

2

+ (𝑀̂
𝐵

𝑦
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𝐵

𝑦
)

2

+ (𝑀̂
𝐵

𝑦
− 𝑀𝑒
𝐵

𝑦
)

2

] ,

Θ̂
𝑀

= argmin
Θ𝑀∈𝑅

9

(𝐽) .

(21)

The off-line calibration problem can also be solved with a
maximum likelihood method similar to the one discussed in
[27].
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3.3. Mag., Gyro, and Accelerometer On-Line Calibration. The
on-line calibration process is performed by augmenting the
sensor fusion Formulation #4with nine additional bias states,
b = [𝑏𝐺𝑝 𝑏

𝐺𝑞
𝑏
𝐺𝑟

𝑏
𝐴𝑥

𝑏
𝐴𝑦

𝑏
𝐴𝑧

𝑏
𝑀𝑥

𝑏
𝑀𝑦

𝑏
𝑀𝑧]
𝑇, one for

each magnetometer, rate gyroscope, and accelerometer. In
this way, the attitude state estimation and sensor error model
parameter identification [8] are performed simultaneously.
During the state prediction stage, the state transition equa-
tions described in (6) are used for attitude states, with
the exception that the estimated rate gyroscope biases are
subtracted from the raw IMUmeasurements:

u = [𝑝 − 𝑏̂
𝐺𝑝

𝑞 − 𝑏̂
𝐺𝑞

𝑟 − 𝑏̂
𝐺𝑟

]
𝑇

. (22)

The dynamics of the nine bias states are modeled as random
walk using:

ḃ = 0 + w
3
, (23)

where the bias states are only assumed to be perturbed with
white noisesw

3
≈ 𝑁(0,Q

3
).The initial conditions for the bias

states are set to be

b
0
= [0 0 0 0 0 0 𝑏̃

𝑀𝑥
𝑏
𝑀𝑦

𝑏̃
𝑀𝑧

]
𝑇

, (24)

where 𝑏
𝑀𝑥,𝑀𝑦,𝑀𝑧

are off-line calibrated magnetometer bias
values.

The nonlinear observation equations are derived from (7)
and (8) with added bias terms on the accelerometer mea-
surements as well as the rotated and scaled magnetometer
measurements:
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where R̃
𝑀

and S̃
𝑀

are the rotation and scaling matrices
acquired from the off-line magnetometer calibration.

4. Fault Detection, Identification, and
Accommodation

The sensor FDIA is achieved through two independent
approaches: information crosschecking and sensor bias
tracking. The first approach detects discrepancies among all
information sources to identify outliers, which could be due
to temporary low-quality measurements or abrupt sensor
failures. The second method allows detection and tracking of
“soft” sensor failures that slowly develop over time.

In our information crosschecking approach, it is impor-
tant to mention that under nominal conditions, we assume
that each independent information source can observe valid
state estimates and that the optimal state estimate would
be the result of fusing all sources. Therefore, because we
have multiple redundant information sources, the goal is
to identify outlier estimates and exclude their associated
information sources from the state estimate altogether. A
graphical representation of the information crosschecking
approach is shown in Figure 1.

In Figure 1, first, multiple Kalman updated states
and error-covariance estimates (or equivalently information
matrices and vectors) are derived using the independent
sources of information available. In general, (S

𝑘
, I
𝑘
, î
𝑘
) are

available at each time step 𝑘, where S
𝑘
is a set of𝑁+1 indepen-

dent information sources from either prediction or a sensor
measurement, and I

𝑘
, î
𝑘
are sets of the associated Fisher

information matrices and vectors. Next, to identify potential
outlier information sources, the Mahalanobis distance [31]
is used to evaluate the “closeness” between pairwise sets of
estimates. For example, to determine if the 𝑠th information
source is consistent with the 𝑟th information source, we
evaluate

P
𝑠,𝑘

= I−1
𝑠,𝑘

,

x̂
𝑠,𝑘

= P
𝑠,𝑘
î
𝑠,𝑘

,

P
𝑟,𝑘

= I−1
𝑟,𝑘

,

x̂
𝑟,𝑘

= P
𝑟,𝑘
î
𝑟,𝑘

(26)

in order to calculate the square of the Mahalanobis distance
between them. Consider

𝐹
𝑠|𝑟,𝑘

= (x̂
𝑠,𝑘

− x̂
𝑟,𝑘

)
𝑇
(P
𝑠,𝑘

+ P
𝑟,𝑘

)
−1

(x̂
𝑠,𝑘

− x̂
𝑟,𝑘

) . (27)

We chose to use Mahalanobis distance because it is an intu-
itive metric that indicates the statistical agreement between
state estimates. Additionally, it takes into consideration esti-
mated error-covariance and is extensible to high dimension
state-spaces.

After considering all unique pairs of estimates from indi-
vidual information sources a total of 𝑁 + 1 unique values are
available to base our fault detection and identification upon.
However, these values represent the “closeness” between
estimate pairs, which is not the most convenient for the
goal of identifying individual faulty information sources. In
particular, it would be more beneficial if we could evaluate
how well each individual information source agrees with
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Figure 1: Fault Detection, Identification, and Accommodation approach.

all other sources in a single metric. To accomplish this, we
employ a simple vector in addition to combining the squared
Mahalanobis distance values from each information source
with respect to all others. The sum then represents how well
a particular information source agrees with all others. As
an example, for information source, 𝑠, we define all the unit
vectors to other information sources:

u⃗
𝑠|𝑖

=
(e
𝑠𝑘

− ẽ
𝑖𝑘
)

󵄩󵄩󵄩󵄩e𝑠𝑘 − ẽ
𝑖𝑘

󵄩󵄩󵄩󵄩

, (𝑖 = 1 : 𝑁, 𝑖 ̸= 𝑠) . (28)

Then, using the values calculated in (27), we use their inverse
values to scale each unit vector, sumwith vector addition, and
find the resultant magnitude. The use of the inverse of the
squared Mahalanobis distance is analogous to inverse square
laws that govern power loss. The resultant e

𝑠𝑘
is a sum of a

total of𝑁−1 vectors associated with e
𝑠𝑘
and each component

of Ẽ
𝑘
:

F⃗
𝑠
=

𝑁

∑

𝑖=1

F⃗
𝑠|𝑖
, (𝑖 ̸= 𝑠) . (29)

Finally, the magnitude of the detection vector, ‖F⃗
𝑠
‖, provides

a scalar assessment of the agreement between e
𝑠𝑘
and other

estimates at the same time. If ‖F⃗
𝑠
‖ is less than a prespecified

threshold, Ω
𝑠
, that is, set based upon empirical tuning, a

failure is declared for the sensor associated with e
𝑠𝑘
.

For the attitude estimation problem described in this
paper, three information sources are available at time step
𝑘 based on the posterior estimates from the previous step
(I
𝑘−1|𝑘−1

, î
𝑘−1|𝑘−1

), (1) rate gyroscopes based a priori estimates

(I
𝑘|𝑘−1

, î
𝑘|𝑘−1

); (2) the posterior estimates, (I𝐺
𝑘|𝑘

, î𝐺
𝑘|𝑘
), updated

with the gravity vector information; (3) the posterior esti-
mates, (I𝑀

𝑘|𝑘
, î𝑀
𝑘|𝑘
), updated with the magnetic vector informa-

tion. To ensure the independence of the three estimates, the
calculation of (I𝐺

𝑘|𝑘
, î𝐺
𝑘|𝑘
) and (I𝑀

𝑘|𝑘
, î𝑀
𝑘|𝑘
) are based on a random

walk assumption only instead of using the rate gyroscope
measurements during the prediction step:

ẋ = 0 + w
4
, (30)

where w
4
≈ 𝑁(0,Q

4
) are white noises.

To complement the information crosschecking approach,
the sensor bias tracking method monitors the bias states
estimated by the on-line calibration scheme. Under nominal
conditions, all sensor biases should be bounded within a
prespecified envelope e. The size of e can be determined
based on a statistical evaluation of data collected in the past as
well as common sensor error specifications, such as the bias
instability for the case of accelerometers and rate gyroscopes.
During the operation, if a sensor bias grows outside of e, an
anomaly warning for this particular sensor is declared and
no additional action is taken. If the bias continues to grow
beyond 𝛼⋅ e, where 𝛼 > 1 is a prespecified threshold value, a
sensor failure status is declared. Under this condition, the bias
states that are directly correlated or closely coupled with the
faulty sensor are capped at or below their current value, and
the associated error covariance matrix is scaled at each time
step to represent an increasingly uncertain knowledge of the
bias states:

P𝑓
𝑘|𝑘−1

= 𝛽 ⋅ P𝑓
𝑘|𝑘−1

, (31)
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Figure 3: WVU YF-22 research aircraft and relevant sensors.

where 𝛽 > 1 is empirically selected to be 1.005 in this
implementation.

Once a failure is declared with either FDI approach, fault
accommodation is based on a simple concept: with the avail-
ability of redundant information and with the information
update being a sum, the UIF has the freedom of rejecting
any sensor measurement it considers a fault or of lower-
quality. This approach allows the sensor fusion algorithm to
be conservative and only uses the best information for state
estimation. A block diagram for the UIF based fault-tolerant
multiple sensor fusion algorithm is shown in Figure 2.

5. Experimental Setup

The sensor fusion algorithms outlined in the previous sec-
tions are evaluated with the actual flight data from YF-22
unmanned research aircraft [32] developed at West Virginia
University. The vehicle, shown in Figure 3, is approximately
2.4m long with a 2m wing span and has a take-off weight
of approximately 22.5 Kg. The aircraft is powered with a
miniature turbine that provides 125N of static thrust. The
cruise speed for the aircraft is approximately 40m/s.

The aircraft instrumentation [33] includes three sensors
directly relevant to this study. An Analog Devices ADIS-
16405® tri-axis inertial sensor with magnetometers is used
to provide a 14-bit digital output of 3-axis acceleration,
angular rate, and magnetic field measurements, with a full
scale range of ±18 g, ±150∘/s, and ±2.5 Gauss, respectively.
The manufacturer reported 1 − 𝜎 initial bias errors for the
accelerometers, rate gyroscopes, and magnetometers that
are ±50mg, ±3∘/s, and ±4mGauss, respectively. A Novatel
OEM4® GPS receiver provides an estimate of the aircraft
3D position and velocity in the Earth-Centered, Earth-Fixed
(ECEF) coordinate system independent of the inertial and
magnetic sensors, which is transformed into a local Cartesian
coordinate system. The manufacturer reported GPS position
and velocity accuracies are 1.8 meter Circular Error Probable
(CEP) and 0.03m/s Root Mean Square (RMS), respectively.
A Goodrich VG34® mechanical vertical gyroscope is used to
provide independent pitch and roll angle measurements and
is used as the “truth data” for this sensor fusion study. The
VG34 has a ±90∘ measurement range on the roll axis and
a ±60∘ range on the pitch axis and is sampled with 16-bit
resolution.The VG34 has a self-erection system and reported
accuracy of within 0.25∘ of true vertical.
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Table 1: Statistics of attitude estimation algorithms.

Formulation 𝐸 (
󵄨󵄨󵄨󵄨𝜙err

󵄨󵄨󵄨󵄨) 𝜎 (𝜙err) 𝐸 (
󵄨󵄨󵄨󵄨𝜃err

󵄨󵄨󵄨󵄨) 𝜎 (𝜃err)

GPS/IMU 2.990 1.671 1.590 1.865
GPS/IMU + 6 bias states 1.516 1.524 1.558 1.700
GPS/Mag. (Off-L. Cal.) 1.726 2.008 2.315 2.195
IMU/Mag. (Off-L. Cal.) 15.81 19.59 22.99 27.69
GPS/IMU/Mag. (Raw) 8.061 3.219 5.276 2.279
GPS/IMU/Mag.
(Off-L. Cal.) 2.026 1.452 2.415 2.127

GPS/IMU/Mag.
(Off-L. + On-L Cal.) 1.598 1.697 1.417 1.679

6. Results

The sensor fusion algorithms are validated using three sets
of flight data. The first set is used for magnetometer off-line
calibration. A GPS/IMU sensor fusion algorithm (Formula-
tion #1) augmentedwith six rate gyroscope and accelerometer
bias states is used to estimate the attitude angles required
by the off-line magnetometer calibration algorithm. The
remaining two sets of flight data collected from two different
days were used to validate and compare different sensor
fusion algorithm performance. Table 1 lists the estimation
performance of eight sensor fusion algorithms in terms of
mean absolute error and error standard deviation for pitch
and roll angle estimates. An average of two flights is used
in calculating the value of each entry. The same stochastic
noise modeling assumptions of the GPS, rate gyroscope,
accelerometer, and magnetometer noises were used for each
formulation and no individual tuning was performed.

Table 1 shows that each algorithm is able to provide a
pitch and roll estimate. The GPS/IMU and GPS/Mag. for-
mulations both have good performance, but the IMU/Mag.
performs poorly with off-line calibrated magnetometers. The
performance of IMU/Mag. formulation is found to be highly
sensitive to the quality of the calibration.

The combination of all three sensors gives a good attitude
estimation performance once a set of off-line calibrated
magnetometer parameters are used. The introduction of an
on-line calibration scheme to the GPS/IMU/Mag. sensor
fusion algorithm provides an additional enhancement of its
performance. Figure 4 shows a section of the flight with
vertical gyroscope pitch measurements along with estimates
from the GPS/IMU/Mag. sensor fusion algorithm with raw
magnetometer readings, off-line calibrated parameters, and a
combined off-line and on-line sensor calibration.

The fault-tolerant aspect of the sensor fusion algorithm
is validated with simulated sensor failures superimposed on
the actual flight data. The performance of the sensor fusion
algorithm with and without FDI and fault accommodation
schemes under nominal condition were first evaluated, along
with the estimation performance under a set of simple sensor
failure scenarios, where the outputs of GPS, rate gyroscopes,
or magnetometers were lost for the second half (50%) of the
flight. Table 2 summarizes the results of this test.

Table 2: Statistics of UIF-based fault tolerant attitude estimation.

Operating condition 𝐸 (
󵄨󵄨󵄨󵄨𝜙err

󵄨󵄨󵄨󵄨) 𝜎 (𝜙err) 𝐸 (
󵄨󵄨󵄨󵄨𝜃err

󵄨󵄨󵄨󵄨) 𝜎 (𝜃err)

Nominal w/o FDIA 1.598 1.697 1.417 1.679
Nominal w/FDIA 1.585 1.708 1.360 1.610
GPS failure w/FDIA 3.566 5.546 2.205 3.185
Gyro failure w/FDIA 1.814 2.211 1.622 1.821
Mag. failure w/FDIA 1.890 2.111 1.534 1.892

UIF GPS/IMU/Mag. pitch estimation versus vertical gyroscope
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Figure 4: GPS/IMU/Mag. sensor fusion with raw, off-line calibra-
tion, and a two-stage off-line/on-line calibration.

An interesting observation is that the inclusion of the
FDIA scheme slightly improves the overall performance of
the sensor fusion algorithm even under nominal conditions
without imposed sensor failures. This is due to the fact that
the FDIA scheme monitors the quality of each measurement
and rejects information of lower quality.This desirable feature
is demonstrated in Figure 5, where four GPS data points were
rejected by the sensor fusion algorithm during a half-second
section of the flight.
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Figure 5: Rejection of low-quality GPSmeasurements by the sensor
fusion algorithm.

The ability of the sensor fusion algorithm to detect,
accommodate, and recover from different sensor failures is
further demonstrated in Figure 6, where a series of sequen-
tially imposed GPS, rate gyroscope, and magnetometer fail-
ures are presented. The force field based failure detection
signals for each set of sensors are also shown in Figure 7, along
with the respective detection threshold indicated as a dotted
line.

Figure 6 demonstrates an advantage of this informa-
tion filter based fault accommodation method for fault
accommodation.The transition between nominal and failure
conditions in terms of attitude estimation is smooth and
seamless. The estimation performance gracefully degrades
after a sensor failure and recovers after the failure is removed.

In addition to large and abrupt sensor failures, the ability
of the sensor fusion algorithm to handle slowly developing
“soft” failures is demonstrated in Figure 8. A random walk
bias (with 𝜎 = 0.02 deg/sec) is added to the pitch rate sensor
measurements and the pitch rate bias state estimate is used for
FDI. The sensor fusion algorithm compensates for the “soft”
failure through sensor calibration when the bias is small and
through sensor rejection when it becomes large.

7. Conclusions and Discussion

In this paper, a general 3-step sensor fusion approach is
proposed and is applied to a 3D attitude estimation prob-
lem. The validation results using sets of UAV flight data
show that having multiple redundant information sources
allows for on-line calibration of individual sensors within
the measurement system, leading to both improved per-
formance and improved understanding of sensor health
conditions, especially under “soft” sensor failure conditions.
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Figure 6: Sensor fusion with no failure, GPS failure, rate gyroscope
failure, and magnetometer failure.
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Figure 7: “Virtual Force Field” based failure detection signal.

Furthermore, a crosschecking among different information
sources allows for identifying “hard” failures or instantaneous
faulty measurements.The use of information filter provides a
convenient and scalable platform for multiple sensor fusion,
information crosschecking, and faulty sensor rejection.

The attitude estimation problem discussed in this paper
utilizes three information sources, which is the minimum
number required for the presented FDIA approach. With
an increased number of sensors, FDI could become more
reliable and the overall estimation performance would be
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Slowly time-varying pitch rate sensor failure detection
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Figure 8: Detection and accommodation of slowly building up
“soft” failure.

less sensitive to individual sensor failures. The development
of a decentralized on-line sensor calibration scheme is the
remaining bottleneck before a truly scalable multiple sensor
fusion algorithm could be implemented.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this manuscript.

Acknowledgment

This work was supported in part by NASA under project nos.
NNX10AI14G and NNX12AM56A.

References

[1] Z. Chen, “Bayesian filtering: from Kalman filters, to particle
filters, and beyond,” Tech. Rep., McMaster University, 2003,
http://web.maths.unsw.edu.au/∼peterdel-moral/chen bayesian
.pdf.

[2] J. L. Junkins and J. L. Crassidis, Optimal Estimation of Dynamic
Systems, Chapman & Hall/CRC, Washington, DC, USA, 2004.

[3] T. Vercauteren and X. D. Wang, “Decentralized sigma-point
information filters for target tracking in collaborative sensor
networks,” IEEE Transactions on Signal Processing, vol. 53, no.
8, pp. 2997–3009, 2005.

[4] D.-J. Lee, “Unscented information filtering for distributed esti-
mation and multiple sensor fusion,” in Proceedings of the AIAA
Guidance, Navigation and Control Conference and Exhibit,
AIAA 2008-7426, Honolulu, Hawaii, USA, August 2008.

[5] A. G. O. Mutambara, Decentralized Estimation and Control for
Multisensor Systems, CRC Press, Washington, DC, USA, 1998.

[6] A. S. Morris, Measurement & Instrumentation Principles, Else-
vier, Oxford, UK, 2001.

[7] K.Whitehouse andD. Culler, “Calibration as parameter estima-
tion in sensor networks,” in Proceedings of the 1st ACM Interna-
tional Workshop on Wireless Sensor Networks and Applications,
pp. 59–67, New York, NY, USA, September 2002.

[8] V. Klein and E. A. Morelli, Aircraft System Identification:Theory
and Pratice, AIAA, Reston, Va, USA, 2006.

[9] J. L. Crassidis, “Sigma-point filtering for integrated GPS and
inertial navigation,” in Proceednigs of the AIAA Guidance,
Navigation and Control Conference and Exhibit, San Francisco,
Calif, USA, August 2005.

[10] P. M. Frank, “Fault diagnosis in dynamic systems using analyt-
ical and knowledge-based redundancy: a survey and some new
results,” Automatica, vol. 26, no. 3, pp. 459–474, 1990.

[11] R. Isermann, “Model-based fault detection and diagnosis: status
and applications,” in Proceedings of the 16th IFAC Symposium on
Automatic Control in Aerospace, St. Petersburg, Russia, 2004.

[12] D. B. Kingston and R. W. Beard, “Real-time attitude and
position estimation for small UAVs using low-cost sensors,”
in Proceedings of the AIAA 3rd Unmanned Unlimited Systems
Conference andWorkshop, AIAA-2004-6488, Chicago, Ill, USA,
September 2004.

[13] U. Kayasal, Magnetometer Aided Inertial Navigation System:
Modeling and Simulation of a Navigation System with an Imu
and a Magnetometer, LAP Lambert Academic, 2009.

[14] Y. H. Li, J. C. Fang, and Z. K. Jia, “Simulation of INS/CNS/GPS
integrated navigation,” Journal of Chinese Inertial Technology,
vol. 06, 2002.

[15] S. Winkler, H. W. Schulz, M. Buschmann, T. Kordes, and
P. Vorsmann, “Horizon aided low-cost GPS/INS integration
for autonomous micro air vehicle navigation,” in Proceedings
of the 1st European Micro Air Vehicle Conference and Flight
Competition, Braunschweig, Germany, 2004.

[16] L. D. Hostetler and R. D. Andreas, “Nonlinear kalman filtering
techniques for terrain-aided navigation,” IEEE Transactions on
Automatic Control, vol. 28, no. 3, pp. 315–323, 1983.

[17] M. Rhudy, Y. Gu, H. Chao, and J. Gross, “Unmanned aerial
vehicle navigation using wide-field optical flow and inertial
sensors,” Journal of Robotics, vol. 2015, Article ID 251379, 12
pages, 2015.

[18] S. Vajda and A. Zorn, “Survey of existing and emerging
technologies for strategic submarine navigation,” in Proceedings
of the IEEE Position Location and Navigation Symposium, pp.
309–315, Palm Springs, Calif, USA, April 1998.

[19] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning
Systems, Inertial Navigation, and Integration, John Wiley &
Sons, Hoboken, NJ, USA, 2nd edition, 2007.

[20] T. S. Rappaport, J. H. Reed, and B. D. Woerner, “Position
location using wireless communications on highways of the
future,” IEEE Communications Magazine, vol. 34, no. 10, pp. 33–
41, 1996.

[21] J. Gross, Sensor fusion based fault-tolerant attitude estimation
solutions for small unmanned aerial vehicles [Ph.D. thesis], West
Virginia Univerisity, 2011.

[22] B. L. Stevens and F. L. Lewis, Aicraft Control and Simulation,
John Wiley & Sons, 2nd edition, 2003.

[23] NOAA’s Geophysical Data Center, Geomagnetic Online Calcu-
lator, http://www.ngdc.noaa.gov/geomag-web/.

[24] J. C. Doyle and G. Stein, “Robustness with observers,” IEEE
Transactions on Automatic Control, vol. 24, no. 4, pp. 607–611,
1979.



12 International Journal of Aerospace Engineering

[25] E. Wan and R. van der Merwe, “The unscented Kalman filter
for nonlinear estimation,” in Proceedings of the IEEE Adaptive
Systems for Signal Processing, Communications, and Control
Symposium (AS-SPCC ’00), Lake Loise, Canada, October 2000.

[26] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlin-
ear estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–
422, 2004.

[27] J. F. Vasconcelos, G. Elkaim, C. Silvestre, P. Oliveira, and B.
Cardeira, “A geometric approach to strapdown magnetometer
calibration in sensor frame,” in Proceedings of the 2nd IFAC
Workshop on Navigation, Guidance, and Control of Underwater
Vehicles (NGCUV ’08), pp. 172–177, Killaloe, Ireland, 2008.

[28] B. J. Anderson, L. J. Zanetti, D. H. Lohr et al., “In-flight
calibration of the NEAR magnetometer,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 39, no. 5, pp. 907–917, 2001.

[29] E. Lavretsky, “Robust adaptive inner-loop design for vehicles
with uncertain dynamics,” in Proceedings of the American
Control Conference (ACC ’08), pp. 2322–2327, Seattle, Wash,
USA, June 2008.

[30] P. F. Guo, H. T. Qiu, Y. C. Yang, and Z. Ren, “The soft iron
and hard iron calibration method using extended kalman filter
for attitude and heading reference system,” in Proceedings of
the IEEE/IONPosition, Location andNavigation Symposium, pp.
1167–1174, Monterey, Calif, USA, May 2008.

[31] K. I. Penny, “Appropriate critical values when testing for a single
multivariate outlier by using theMahalanobis distance,” Journal
of the Royal Statistical Society. Series C: Applied Statistics, vol. 45,
no. 1, pp. 73–81, 1996.

[32] Y. Gu, B. Seanor, G. Campa et al., “Design and flight testing
evaluation of formation control laws,” IEEE Transactions on
Control Systems Technology, vol. 14, no. 6, pp. 1105–1112, 2006.

[33] Y. Gu, J. Gross, F. Barchesky, H. Chao, and M. Napolitano,
“Avionics design for a sub-scale fault-tolerant flight control test-
bed,” in Recent Advances in Aircraft Technology, chapter 21,
InTech, Rijeka, Croatia, 2012.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


	A Fault-Tolerant Multiple Sensor Fusion Approach Applied to UAV Attitude Estimation
	Digital Commons Citation

	6217428.dvi

