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whether 5MTHF alleviated the effect of alcohol on NC
migration, the embryos were injected with 5MTHF at
two cell stages prior to being immersed in the alcohol-
containing MBS buffer. The neural crest migration was
analyzed with an in situ hybridization assay of Twist ex-
pression at the tadpole stage. Twist positive cells, absent
in the most ventral region of branchial arch upon alco-
hol exposure (Figure 4B), were clearly present in most
of the 5-MTHF injected embryos (Figure 4C). To fur-
ther exclude that the absence of Twist expression was
not due to any disabled differentiation processes (i.e. the
inability of twist expression to further induce cellular
differentiation) during the migration of the NC cells, em-
bryos were first labeled by injection of a GFP mRNA into
one blastomere at the two cell stage. The GFP-positive

neural crest cells from the injected blastomere were dis-
sected from the donor embryos and transplanted into
the similar place of normal embryos at the neurula stage
(Figure 4D). In MBS control groups (n = 18), these
cells were found to migrate ventrally in three fluorescent
streams (Figure 4E). However, alcohol incubation at the be-
ginning of gastrulation to NC transplant time (stage 16) of
donor embryos partially or completely impaired the ventral
movement of the fluorescent streams (Figure 4F, G). Upon
0.5% alcohol exposure, 12.5% fluorescent graft exhibited
partial migration (n = 16). At 1% alcohol concentration,
most of the grafts (22/25) migrated partially and 2 grafts
exhibit non-migration. The percentage of migration im-
pairment was increased up to 62.5% partial migration,
37.5% non-migration (n = 16) at 1.5% alcohol exposure.

Figure 2 Exposure to lower concentration of alcohol had no significant toxicity to neural crest development. We harvested the embryos
at stage 16 for Whole-mount In Situ Hybridization (WISH). (A) Both boarder determinator gene Pax3, Zic1 and neural crest specification marker
gene slug are kept intact. (B) Quantification of the effect of alcohol exposure on the expression of neural crest markers. (C) RT-PCR assays display
expression of Msx1, Pax3, Zic1 and Slug are identical according to divergent alcohol treatment. (D,E) Alcohol less than 2% did not trigger
abnormality of cell proliferation (labeled with pH3). Neural crest cell apoptosis was induced by 2% alcohol treatment as shown by activated
caspase3. (normalized with beta actin).
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2% alcohol exposure resulted in 47.6% partial migration
and 52.4% non-migration (n = 21) (Figure 4H) and this
migratory impairment was alleviated to 55.5% partial
migration and 16.7% non-migration with 27.8% (n = 18)
showing normal migration when the donor embryos were
injected with 5-MTHF at the 2 cell stage (Figure 4H).
These results suggested that alcohol affected folic acid-
homocysteine metabolism and thereby disrupted the
neural crest migration in Xenopus model.
FASD has been largely attributed to dysregulation of

NC development via either disruption of migration or
cell apoptosis. In this study we found that alcohol treat-
ment at 2% triggers apoptosis in Xenopus embryos,
leading to neural crest deformations. Interestingly, we
found that both 1.5% and 1.0% specifically inhibited NC
migration without detectable apoptosis. These results in-
dicate that alcohol preferentially affects the initiation of
NC migration. Moreover, we found that the process of
NC induction was not affected at 1.5% and 1.0% of alco-
hol treatment, suggesting that alcohol specifically inter-
feres with NC migration. Our study suggest that human
FADS could be more related to defective NC migration
than apoptosis since human blood alcohol concentration
is usually less than 0.5%.
FASD is a developmental disorder and the interaction

between environment and gene plays a major role in the
pathogenesis of FASD [26,27]. Our study showed that
5-MTHF could potentially prevent the alcohol-induced
developmental abnormalities. 5-MTHF plays a critical
role in nucleotide synthesis and methylation processes.
5-MTHF is important to recycle homocysteine and syn-
thesize S-adenosylmethionine (SAM). SAM is the main
methyl donor providing methyl residue for the most of
biological methylation reactions [28]. Our previous work
has indicated that modulating the metabolism of 5-MTHF

affected the histone 3 lysine (H3K) methylation during
neural crest development [11]. Furthermore, it has been
reported that the H3K methylation preferentially takes
place at Snail and Twist1 enhancer, consequently con-
trolling neural crest migration by altering transcrip-
tional accessibility [29]. Our study showed that alcohol
resulted in accumulation of homocysteine at relatively
late stage, indicating decreased level of 5-MTHF [30-32]
during early neural crest development. Addition of
5-MTHF enables neural crest the capability of blocking
the detrimental effects of alcohol on development. Clin-
ical studies also showed significantly enhancement of
serum homocysteine level upon alcohol consumption
[24,25]. Homocysteine has been known as a risk factor
for neurocristopathies [33-36]. Alcohol appears to perturb
neural crest migration by obstructing 5-MTHF absorption
and increasing homocysteine. These detrimental effect
could result in the abnormalities in FASD. Thus, modula-
tion of one carbon cycle might be beneficial to prevention
of FASD.
During embryonic development, alcohol targets many

types of cell and/or organ [37-41]. Importantly, our obser-
vations are consistent with previous studies that alcohol
causes NC migratory defectives via promoting apoptosis.
Meanwhile, our results further indicate that the dysregula-
tion of one carbon cycle during NC migration could be a
novel mechanism underlying FASD. This discovery shed a
light on the therapeutic possibility of folic acid. Our ex-
periments were specifically designed to investigate tox-
icity of alcohol on NC development. Mesoderm plays a
center role from the initiation to the migration of NC
development, and tightly regulates the formation of whole
body plan. Thus, further study is warranted to examine
the role of mesoderm in NC development and its effect
on FASD pathogenesis.

Figure 3 Alcohol exposure disrupts neural crest migration. (A) Both slug and twist1 in situ hybridization, performing along with gradient
alcohol treatment, displays neural crest migration is accordingly blocked by the increasing concentration of alcohol. (B,G) indicates 0.5% alcohol
treatment still allows fairly migration of neural crest versus control embryos (A,F). 1.0% alcohol treatment deteriorate the egressing process of neural
crest, however, there is perceivable migration occurring (C,H). Finally, both 1.5% and 2.0% appears completely freezing the migration (D,E,I,J).
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Conclusions
Our study demonstrate that prenatal alcohol exposure
causes neural crest cell migration abnormality and 5-
mehtyltetrahydrofolate could be beneficial for treating
fetal alcohol spectrum disorders.

Methods
Xenopus experiments
The experimental procedures for in vitro fertilization, ma-
nipulation and microinjection of the Xenopus embryos, as
well as for the in situ hybridization of whole mount
embryo were previously described [42]. The cartilage
staining was carried out using Alcian blue 8GX according
to protocol of Dr. Richard Harland’s lab (http://tropicalis.

berkeleyedu/home/gene_expression/cartilage-stain/alcian.
html) as well as described [43] and the in situ probes for
Zic1, Pax3 Slug and Twist gene expression were described
previously [44]. Microinjection was performed using the
PLI-1 Pico-injector (Harvard Apparatus) equipped with
the MK-1 micromanipulator (Singer Instruments).

Reverse transcription - polymerase chain reaction (RT-PCR)
To test the effect of alcohol on neural crest induction,
RT-PCR was carried out using whole embryos at the on-
set of gastrulation (stage9) until stage 16. H4 was used
as a loading control. The primers used for PCR were: Pax3:
5′-CAGCCGAATTTTGAGGAGCAAAT-3′ and 5′-GGG
CAGGTCTGGTTCGGAG TC-3′; Snail2: 5′ -TCC- CGC

Figure 4 5-mehtyltetrahydrofolate improves alcohol-induced developmental abnormalities. (A) Homocysteine was significantly increased
at stage 27 (from 25.5 ± 3.7 micromole/L /100embryos in control group to 41.8 ± 6.3 micromole/L /100embryos in alcohol group, P < 0.05),
whereas the alteration is undetectable statistically at stage 16(23.5 ± 2.5 micromole/L /100embryos in control and 23.0 ± 2.3 micromole/L /100embryos
in alcohol group, P > 0.05). Supplementation of 5MTHF significantly (P < 0.05) buffers the accumulation of endogenous homocysteine to 30.5 ± 2.3
micromole/L /100embryos at stage 27. (B,C) Injection of 5MTHF restored neural crest migration, and alleviated the effect of alcohol on neural crest
migration. (D) Schematic diagram illustrating the xenografting experiments. (E-G) Alcohol exposure partially or completely blocked GFP-labeled neural
crest xenografting migrating in living embryos. (H) Quantification of the GFP-labeled Neural crest migation upon gradient alcohol exposure and
5MTHF treatment.
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ACTGAAAATGCCACGATC -3′ and 5′- CCGTCCTAA-
AGATGAAGGGTATCCTG -3′. The primers for Msx1
were used as described [11]. Please simply describe the
procedure.

Embryo immunohistochemistry and western blot
Embryos were collected at stage 16 and fixed with parafor-
maldehyde. The frozen samples were sectioned in 10 μm
and the sections were stained with 1:200 Anti-phospho-
histone H3 (Millipore 16–657) to detect cell proliferation
and 300 nM DAPI (Life Technologies D1306) for nuclear
conterstain. Whole embryos at stage 16 were lysed with
1%triton-X100 in PBS containing a protease inhibitor
cocktail (Roche) and the samples were subject to Western
blot analysis with activated caspase3 antibody(Abcam
13847) to check cell apoptosis.

Homocysteine measurement
One hundred Xenopus embryos were collected at either
stage 16 and 27 and homogenized in 500 μl of lysis buffer
[1%triton-X100 in PBS containing a protease inhibitor
cocktail (Roche)]. The samples were centrifuge at 12000 g
for 10 min at 4°C. After centrifugation, samples were
separated into 3 phases; the lower sediment, intermedi-
ate water phase (which contained homocysteine) and
upper lipid phase. The intermediate water phase was
carefully collected without any lipid contamination. The
homocysteine concentration was determined by an en-
zymatic method (produced by Zhongyuan Bio. Ltd China)
on an automatic analyzer (Olympus AU 2700). The linear
range of Hcy measurement is from 3 μM to 50 μM.

Statistical analysis
All experiments were repeated at least 3 times, and the
P value were calculated with T-TEST.
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