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Figure 3. Sequence characteristics of PTBP1-dependent alternatively spliced exons. A. An RNA map shows enrichment of predicted
PTBP1 binding sites near PTBP1-dependent exons. The Y-axis plots average density of predicted PTBP1 binding states within a 24 nt window; the
length of overlap between two adjacent windows was 8 nt. B. To assess PTBP1 binding signatures of individual exons, known PTBP1 regulated exons
were clustered by their PTBP1 binding score profiles and visualized as heat maps. These heat maps indicate wide variation in the positions of PTBP1
binding sites between individual exons. C. Four sequence features including the PTBP1 binding scores and 39 splice site strength show statistically
significant differences between regulated and control exon groups (one-tailed Student’s t-tests).
doi:10.1371/journal.pcbi.1003442.g003
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the exons flanking enhanced exons. Interestingly however, we find

some PTBP1 enhanced exons that have PTBP1 binding sites

upstream of the exon. These were not seen in either previous

study. Our results are generally consistent with the known

placement of PTBP1 binding sites in PTBP1 target exons and

imply that rules correlating the position of PTBP1 binding to its

effect on a target exon are not as strict as seen for some other

splicing regulators. The mechanisms proposed from previous maps

of PTBP1 binding do not appear to be generalizable to all PTBP1

targets [13,19,27].

Binding maps for PTBP1 and other splicing regulators show the

averages of multiple exons. Since the data indicated a high level of

variability in binding site placement between individual exons, we

wanted to visualize target exons relative to each other. To display

binding signals for individual exons we created heat maps of the

binding scores upstream, within, and downstream of each exon in

the PTBP1 target set (Figure 3B). This display makes clear that the

location of PTBP1 binding sites within its known target exons is

variable. We found that 60% of PTBP1 repressed exons are

predicted to have strong binding sites within the upstream intron.

Most of these exons also have strong binding sites within either the

exon or the downstream intron, patterns that were observed

previously [13,19,27]. However, other patterns of binding site

placement are also seen, suggesting PTBP1 dependent exons are

following multiple rules. Some repressed exons score highly for

PTBP1 binding only within the exon or in both the exon and the

downstream intron. About half of PTBP1 enhanced exons have

strong PTBP1 binding sites downstream (Figure 3B). These can

co-occur with upstream intron-binding sites, but rarely with exon

binding sites. Interestingly, there are exons enhanced by PTBP1

with strong upstream binding in the absence of other sites. These

data demonstrate the heterogeneity in the position of PTBP1

binding sites for its target exons. This heterogeneity needs to be

considered for predicting PTBP1 dependent regulation.

PTBP1 repressed exons exhibited significantly higher average

binding scores in both the upstream intron and in the exon itself,

than either the control group of alternative exons or the PTBP1

enhanced exons (Figure 3C). The average binding scores in the

downstream introns were higher for both the PTBP1-repressed

and PTBP1-enhanced exons than the control group (Figure 3C),

although not at the same statistical significance. The variability of

binding site placement within the smaller group of PTBP1-

enhanced exons presumably contributes to the weaker statistical

correlation of binding scores with positive regulation.

We also compared the three exon sets for other features that

might contribute to their ability to be regulated by PTBP1,

including exon length, flanking intron length, and 59 and 39 splice

site strength. Most of these features were not statistically different

among the three-exon groups. However, both PTBP1 enhanced

and PTBP1 repressed exons were found to carry significantly

weaker 39 splice sites than the control exon set, as measured by the

Analyzer Splice Tool (Figure 3C) [36,37].

These results indicate that PTBP1-repressed exons, and perhaps

PTBP1-enhanced exons, exhibit an ensemble of sequence features

that define them as PTBP1 regulated and that should allow their

identification by sequence alone.

Prediction of PTBP1 repressed exons
Alternative exons are generally regulated by multiple factors

that act both positively and negatively on their ability to be spliced.

Thus, an exon controlled by a regulator in one context might not

be affected by it under other conditions where counteracting

factors are present, or required cofactors are absent. This means

that the most accurate predictions of splicing regulation will need

to consider many different factors. Nevertheless, models based on

single factors will be useful for understanding the relative

contributions of individual proteins to patterns of splicing

regulation. Such models will be easier to interpret regarding the

contributions of individual factors to individual exons than more

complex models. Moreover in the longer term, models developed

for different individual factors can be combined to make more

accurate predictions. To assess how well one might model splicing

regulation by a single factor, we examined whether the strength

and placement of predicted PTBP1 binding sites could be used to

predict new PTBP1 dependent exons. We plotted the scores for a

variety of sequence features against the percent of exons exhibiting

that score that also exhibit PTBP1 dependent exon repression

(Figure S5). These plots produced distinct sigmoidal curves where

most exons regulated by PTBP1 were found above or below a

particular score. This strongly suggests that a logistic regression

model incorporating each of these scores will be predictive of

PTBP1 repression.

We developed a multinomial logistic regression model and

trained it on three classes of regulated exons (Figure 4A) [38]. The

training set included PTBP1 repressed exons, PTBP1 enhanced

exons, and non-regulated exons. Each exon in each class was

scored for the four features found to correlate with PTBP1

regulation (x1 through x4), including the 39 splice site strength, and

the PTBP1 binding scores for each of three regions: the 250

nucleotides upstream of the exon, the exon itself, and the 100

nucleotides downstream of the exon. These intron lengths

encompass the regions of binding site enrichment for PTBP1

dependent exons (Figure 3).

The PTBP1-enhanced exons are fewer in number and show

more limited enrichment of PTBP1 binding sites than PTBP1-

repressed exons making the prediction for these exons less accurate.

We first tested models that considered just PTBP1-repressed exons

relative to control groups. However, we found that including the

enhanced exons as a separate training group improved the

prediction of repressed exons, even though enhanced exons

themselves are not as easily identified (data not shown).

The trained model yielded values for the b coefficients that

weight the different features contributing to the regulation. As

expected the upstream binding score was weighted most heavily in

predicting PTBP1 repression (Table S1), although binding scores in

all three regions contributed to the score for PTBP1 repression. In

contrast, we found that only the downstream binding score was

significantly associated with PTBP1 enhancement. The upstream

score generated a b coefficient close to zero making it essentially

neutral in the prediction of enhanced exons. The exon binding score

was subject to a negative b coefficient, indicating that exon binding

reduces the probability of PTBP1 enhancement. Using these b
coefficients, the trained models for repression or enhancement each

yield a value of the g-function (logit) for an exon (x) given by the log

of the ratio of the probability of repression or enhancement over the

probability that the exon is not regulated. From this, the probability

that an exon is repressed by PTBP1 can be determined from the two

g-values as shown in Figure 4A.

We assessed the multinomial logistic regression model by

recursively retraining on exon sets with one exon left out and

then scoring the missing exon. This leave-one-out cross validation

enabled assessment of the overall performance of the model [38]

(Figure S6). The PTBP1 dependent exon repression logit showed

good prediction, with an area under the curve (AUC) value of

0.72, substantially greater than random guessing (AUC = 0.5). As

expected, the enhanced exon logit was not as accurate as the

repression logit (AUC = 0.57), although it was better than random

(Figure S6A). Using these data, we assessed the sensitivity and
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specificity across the range of scores to define a decision threshold

for exon repression scores (Figure S6B). Increasing the threshold

increases the specificity by eliminating many false positives, but

decreases the sensitivity of the model in identifying maximum

numbers of repressed exons. We sought to choose a threshold that

gave a low false positive rate over one that yielded more regulated

exons. We found that above a threshold score of 0.65 the false

positive rate was 10% or lower (Figure S6B).

Figure 4. Scheme of the PTBP1 splicing regulation model and its application to an exon in Ptbp3. A. The PTBP1 splicing regulation model
was trained on known PTBP1-regulated and non-regulated exons and used to predict new PTBP1-dependent exons. Prediction results were
compared to changes in exon inclusion (PSI) measured by RT-PCR and RNA-seq. An exon from Ptbp3 is presented as a prediction example. From
intron and exon sequences, PTBP1 binding scores and 39 splice site strength were calculated and fed into the regulation model. B. The model
predicts exon 2 of Ptbp3 as repressed by PTBP1 with high probability (0.89). Ptbp1 knockdown in mouse neuroblastoma cells (N2A) confirmed
de-repression of the exon (from PSI = 45 to PSI = 70).
doi:10.1371/journal.pcbi.1003442.g004
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