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ABSTRACT 
 

Basic Theory and Experimental Approach to Characterize Flow 
and Fracture Properties of Fine Powder Bulk Body 

 
Wiratni Wiratni 

 
 
 

This dissertation comprised two parts, which were Part I for the development of a 
method to characterize the fine powder flow at ambient temperature and Part II 
for the application of the method in fine powder aeration at elevated temperature. 

 
The analysis conducted on fine powder aeration in Part I was based on the 
theory of homogeneously-aerated-expanded (HAE) emulsion phase, which 
viewed a system of aerated fine powders as a quasi-solid single phase.  

 
The original aeration data from an aeration experiment (gas velocity, pressure 
drop, and bed height) were transformed into the new variables specifically 
defined for aerated fine powder (powder strain and powder tensile stress). The 
plots of powder tensile stress against powder strain indicated a consistent 
tendency for all experimental data. Based on this fact, a parameter called elastic 
deformation coefficient (Y) was determined from those plots and defined as the 
characterization parameter for fine powder aeration behaviors. 
 
The point of intrinsic Umb could be accurately determined as the point of sudden 
change of Y value on the plot of Y against powder strain.  These Y values also 
provided a quantitative tool to compare the aeration quality of several different 
systems of fine powders. 
 
In Part II, to study the effect of temperature on aeration quality, the Y method 
was applied on aerated FCC catalyst at temperatures ranged from 26oC to 
600oC.  
 
At ambient temperature, the aeration quality of FCC catalyst was very poor and it 
was indicated by an initially high Y which kept increasing through the whole 
range of strain until the maximum expansion. In contrast to that, at elevated 
temperature, a region of constant Y was observed in the plot of Y against strain. 
This fact indicated that at high temperature, an ideal HAE emulsion phase could 
be maintained over a wide range of strain before the first fractures occurred. 
These results showed that Y value served as a general characterization 
parameter that could be applied consistently at both ambient and elevated 
temperature. 
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CHARACTERIZATION OF FINE POWDER 

AERATIONS AT AMBIENT TEMPERATURE 
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CHAPTER I.1. INTRODUCTION 

 

1. Background 

Powders are very frequently met both in daily life and in industry. For 

example, the food industry produces many different powders, such as 

starches, milk powder, and many other spray-dried products. In 

pharmaceutical industry, many medicines are produced in tablets by 

compression of powders.  The chemical industry is probably the largest user 

of powders with its widespread use of catalyst powders; while on the other 

hand, many of the final chemical products, such as polymers, are delivered as 

powders. 

 

There are numerous operations carried out with powders in industries, such 

as: 

1. Storage of powders in hoppers and bins. 

2. Transportation of powders from storage to the process area. 

3. Grinding or milling of the powder to improve its accessibility to the next 

process. 

4. Mixing of different powders to make a product with higher quality. 

5. Compression of powders in moulds to obtained a preformed solid 

product. 

6. Granulation of powders to obtain larger grains which can be more 

easily transported and processed. 



 

 3

7. Aeration by blowing gas upwardly through a powder bed in order to 

improve the contact between the powder particles and the aerating 

gas, such as in catalytic reactors or coal combustors. A famous 

example is the utilization of aerated silica alumina catalyst in FCC unit 

to produce high octane number gasoline from heavy distillates. 

 

Besides being a commercially important powder-operation, an aeration 

system is also a perfect tool to study the behavior of powders. Aeration 

experiments are relatively easy to perform because simply by varying gas 

velocity, pressure, and temperature, various powder behaviors can be 

observed. Phenomena of aeration can be well visualized by a simple 

experiment in which a bed of solid is supported by a porous plate as gas 

distributor and gas is then forced to flow upwards through the bed. When the 

pressure drop caused by this gas flow is sufficient to support the weight of the 

particles, the bed will expand.  

 

In general, the quality of aeration is visually distinguished by the homogeneity 

of expansion. Most of fluidizing reaction systems favors a homogeneous 

expansion without too many bubbles (particulate systems) because bubble 

existence reduces the effective contacts between gas and solid particles. A 

fluidization process with bubbling and fluctuating heterogeneous expansion 

(aggregative system) is usually avoided for its mechanical destructive 

tendency.  
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2. Problem 

Although the distinction between particulate and aggregative fluidization has 

drawn great attention for decades, relatively little has been discussed as to 

the transition condition. Among several attempts done in the past, the 

criterion of this transition condition required visual observations, such as the 

observation of the first bubble appearance (e.g. Davidson and Harrison, 1963, 

Verloop and Hertjes, 1970, Foscolo and Gibilaro, 1984, Bouillard and 

Gidaspow, 1991, Loezos et al., 2002), which could be very subjective and 

associated with high uncertainty. The methods available so far have not yet 

provided a satisfactory characterization parameter for aeration behavior, 

especially in the case of fine powder aeration. 

 

On the other hand, in the age of computerization, it is always desirable to 

describe everything in numerical measures in order to perform a quantitative 

optimization. For these reasons, it is necessary to develop such a quantitative 

variable that can very well define fine powder aeration quality. 

 

3. Objective 

The aim of this present work is to address the importance of a specific 

parameter called ‘elastic deformation coefficient’ to quantitatively describe the 

quality of fine powder aeration. This current work is based on the concept of 

fine powder aerated bed assumed as a quasi-solid material then known as a 

‘homogeneously aerated expanded (HAE) emulsion phase’ first introduced by 
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Kono’s research group in West Virginia University (Kono et al, 1994). In this 

theory, aerated fine powders are treated as a group of particles that forms a 

homogeneous single phase with the aerating gas instead of acting as 

individual particles. In this dissertation, while applying HAE emulsion phase 

basic theory, a new detail in data analysis is presented to improve the 

previous theory proposed by Kono’s research group.  Determination of the 

elastic deformation coefficient is conducted incrementally at various ‘powder 

strain’ in the range of homogeneous expansion of the bed without necessarily 

assuming the linearity in the relation of the bed height against the superficial 

gas velocity in the whole range of Umf<U<Umb as the work published 

previously by Kono et al. (1994).  Experimental data has shown that such an 

assumption oversimplifies real situations so that elimination of this 

assumption will have a significant impact on the usefulness of the model and 

potentially provides a better insight about fine powder behavior.  

 

4. Significance 

An understanding about the variables governing a homogeneous fine powder 

aeration is of great importance because in most powder handling operations 

such as catalytic reaction (fluidized bed hydrocarbon cracking using FCC for 

example), transportation, mixing, grinding, agglomeration, and separation, 

powders are continuously in an expanded state to some extent, either by 

applying gas or simply by turning over the powders so that gas is entrapped 

among the powder particles. A set of conditions that lead to homogeneous 
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aeration of a powder bed is then recognized as the conditions that will result 

in good powder flow ability in any other powder handling operations. This 

homogeneity is always desirable because it guarantees excellent flow and 

gas-solid contacts required to achieve the desirable yield. Therefore, a study 

about the conditions limiting the prevalence of a homogeneous aeration 

needs to be conducted, mainly in order to find the characterization 

parameters to quantify the aeration quality of fine powders, which will be 

useful either in the scale-up or scale-down projects of fine powder aeration, or 

in applying aeration data to predict powder behavior in other powder handling 

operations. 

 

The new approach based on the concept of elastic deformation coefficient of 

HAE emulsion phase can be used to infer one of the most challenging 

problems in fine powder aeration, i.e. accurate determination of minimum 

bubbling condition. Most importantly, this method solely needs regular 

aeration data without the necessity to insert any measuring devices into the 

aeration column so that the structure of the aerated powder is kept 

undisturbed. The elastic deformation coefficient is proposed to be a 

quantitative characterization parameter of a homogeneously aerated fine 

powder, which combines all crucial process conditions such as particle and 

gas physical properties, superficial gas velocity, pressure, and temperature 

into several simple correlations. 
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CHAPTER I.2. LITERATURE REVIEW 

 

1.  Hydrodynamic approach 

The famous pioneering work in powder aeration was conducted by Davidson 

(Davidson and Harrison, 1963). Davidson categorized powder aeration into 

two classes; those were ‘aggregative fluidization’ and ‘particulate fluidization’. 

Aggregative fluidization was a condition in which the gas velocity was greater 

than the minimum fluidization velocity, Umf, and some of the gas might pass 

through the bed as bubbles (Figure I.2.1. d). The bed height would remain 

constant although its surface was fluctuating due to the bursting bubbles 

(Figure I.2.1. d and e). The size and frequency of the bubbles did not affect 

the height of the bed because the bubbles pushed the surrounding particles 

closer to each other. Therefore, it is important to note that a portion of the 

incoming gas which passed through the bed as bubbles would not contribute 

to the bed expansion. 

 

On the other hand, in particulate fluidization, with the gas velocity above Umf, 

the bed height increased with velocity and there were no bubbles formed until 

the gas velocity reached the minimum bubbling point, Umb (Figure I.2.1. b and 

c). The particles were assumed to space themselves evenly so that the gas 

passed smoothly through the interstices. With this assumption, Davidson 

based the analysis to predict Umf, bubble formation, particle motion, and 

bubble stability on the assumption of isolated or free-floating spheres in a 
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uniform stream of gas. In the case of particulate fluidization, Umb could be far 

beyond Umf so that in between, a homogeneous powder expansion was 

observed. In the case of aggregative fluidization, however, the point of Umb 

was equal to the Umf. In other words, the bed would immediately form bubbles 

as soon as it started being aerated. Aerated fine powders would most likely 

behave as particulate bed while aerated coarse particles always formed an 

aggregative bed.  

 

 

 

 

 

 

 

 

 

     U = 0       Umf < U < Umb           U = Umb      U>Umb 

       (a)    (b)         (c)              (d)                   (e) 

 

Figure I.2.1. Illustration of fine powder aeration  

 

Davidson’s theory might work well on the system of coarse particles on which 

he conducted the experiments to verify his theory. Nevertheless, this 
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approach could not explain many phenomena encountered in fine powder 

aeration. Free-floating assumption could be reasonable for coarse particles 

because their sizes were much larger than the particle size that might cause 

strong interactions among particles. However, when people start dealing with 

much smaller particles in the order of 100 �m or less, they found that these 

tiny particles behaved very differently from their coarser counterparts (Seville 

et al., 2000) and Davidson’s theory could not explain the reasons behind this 

fact. 

 

Another theory stated that aerated powders were always unstable in the 

sense that small disturbances in the distribution of the particles would rise 

through the bed and would become more pronounced as they rose. In most 

aerated systems, the rate of growth of those disturbances was very rapid so 

that a smoothly aerated state could not survive (Anderson and Jackson, 

1964).  However, these authors admitted that the detailed treatment to 

explain the origin of the disturbances appeared to be prohibitively difficult. 

Besides, this instability theory was only proven true for the coarse particle 

system. For fine powders, one can expect a smooth aeration under ‘certain 

conditions’. The challenge is how to quantitatively define these ‘certain 

conditions’. 

 

On the basis of extensive observations of powder aeration, Geldart (1973) 

proposed a classification of powders as A, B, C, and D-powders. An A-
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powder was characterized by its homogeneous expansion when aerated with 

gas velocity not too far above Umf. On the contrary, B-powder, which was 

coarser in size than the A-powder, can never be able to be aerated 

homogeneously. As soon as the gas velocity reached Umf, bubbles appeared 

and grow larger as the gas velocity increased. Powders finer than A-powder 

were classified as C-powder and they were characterized by having strong 

cohesion among them so that they were said to be ‘unfluidizable’. An attempt 

to aerate this type of powder would only result in horizontal fractures or 

vertical channels of gas flow. The coarsest powders fell into D-powder class. 

The excess gas formed a vertical channel through which the particles were 

spouted upwards. In a diagram of solid density against the average particle 

size, Geldart had indicated the boundaries between those classes. This 

practical classification was often referred to in powder handling practices.  

 

Geldart’s classification has been satisfactory to classify the ‘conventional 

powders’, i.e. those obtained from conventional process in making powders, 

such as by grinding. Nowadays, people often encounter more sophisticated 

type of powders, for example those whose particle surface has been modified 

to improve the flow ability. The modification can be done by applying a certain 

coating material or grinding the powder with finer particles by a method called 

‘mechanofusion’ to create a ‘spacer’ that can overcome the excessive 

cohesiveness of the original powder (Geldart, 1989). With such a surface 

modification, a powder which is conventionally classified as the unfluidizable 
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Geldart’s C-powder due to its size can actually expand as homogeneously as 

the behavior of the aeratable Geldart’s A-powder. This fact underscores the 

complexity of fine powder systems and also shows that conventional variable 

such as particle diameter and physical properties of both gas and the 

particles are not satisfactory to describe the aeration behavior of fine 

powders. For fine powders, surface characteristics matter more than those 

conventional variables used in Geldart’s classification method. 

 

Many attempts have been made in the past to develop deterministic models 

of aerated powder. Most of the work treated the particulate phase and the 

aerating fluid as two interpenetrating continua, such as the work of Anderson 

and Jackson (1964), Gidaspow (1994), and Kwauk et al. (2000). This 

approach required very large computing resources for actual cases where 

ones had to deal with thousands particles and bubbles. Given that a powerful 

computer is available, the computing issues may not be a problem at all. 

However, only few of the operational difficulties encountered in fine powder 

processing in industries can actually be solved using sophisticated computer 

models due to the lack of their generalization capability to handle the unique 

characteristics of various fine powders (Geldart, 1989). In addition to the 

complicated calculations, this hydrodynamics approach still leaves us with 

many unexplained aspects in fine powder aeration. 
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The aforementioned citations imply that the technologies of the flow of 

aerated powders still present many scientific, engineering, and conceptual 

problems because the basic parameters in fine powder systems are not easily 

defined. Decades of research in aeration behaviors have inclined people to 

believe that hydrodynamic effects alone cannot characterize the aeration data 

of fine powders. Moreover, many researches suggested that such a 

characterization can be better developed by taking interparticle forces into 

account (Clift, 1993).  

 

2. Minimum bubbling condition 

Fine powders show an appreciable bubble-free expansion between certain 

values of gas velocities. The lower limit of homogeneous powder expansion is 

the minimum fluidization velocity (Umf), at which the initially packed powder 

starts to expand, and the upper limit is the minimum bubbling velocity (Umb) 

which is conventionally indicated by the ‘first’ appearance of bubbles. For fine 

powder aeration, the value of Umb is considerably higher than Umf and it is 

important to determine the Umb point as accurately as possible because many 

design correlations will need an input of Umb value. Generally, minimum 

bubbling velocity used to be determined by visual observation of the initial 

formation of bubbles (e.g. Bi and Grace, 1995). However, this method still 

needs reconsideration due to its subjectivity and high uncertainty associated 

with it.  
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Despite many attempts already done in the past (e.g. Abrahamsen and 

Geldart, 1980, Sciazko and Bandrowski, 1985, Jacob and Weimer, 1987, 

Gibilaro et al., 1988, Wong, 2002), it is always difficult to precisely identify an 

exact value of Umb based on its conventional definition because the transition 

from a homogeneous expansion to a bubbling one is never visually obvious 

(Lim et al., 1995, Loezos et al., 2002). Some occasional bubbles can appear 

in the aerated bed even when the gas velocity is only slightly above Umf and 

the overall expansion still seems to be smooth and stable.  

 

Bubble formation is closely related to the aeration stability. By defining a 

criterion for bubbling, one can manage to maintain the aeration condition in 

the stable region that can be expected to be homogeneous and smooth. It is 

not only important for achieving high yield but also in minimizing the 

mechanical destruction due to the bed fluctuations.  

 

Verloop and Heertjes (1970) proposed a criterion for bubble formation by 

assuming that bubbles were in fact shock waves. The transition condition was 

defined as shock wave that occurred at the point when the rising velocity of a 

porosity fluctuation (U�) was equal to the longitudinal propagation velocity of 

an equilibrium disturbance (Ue). The value of U� could be determined 

experimentally but Ue was unknown. The Ue value was then estimated by 

assuming an aerated system as an elastic substance. This created another 

problem because there was no device to measure the elasticity modulus of 
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aerated powders.  Similar approach was also used by Foscolo and Gibilaro 

(1984) and Bouillard and Gidaspow (1991) in their criterion for minimum 

bubbling point.  

 

All of the work cited above were done based on larger particle systems (the 

particles were in the order of 100 �m or larger), although these particles could 

still be categorized into particulate systems based on the occurrence of 

bubble-free expansion. For the case of finer powders, Rietema (1984) 

suggested that the effect of interparticle forces had to be incorporated into the 

shock wave criterion.  Rietema further stated that this interparticle effect 

would affect the value of elasticity modulus but still he admitted that a method 

for measuring this modulus directly was not yet available. 

 

3. The nature of interparticle forces in fine powder aeration 

The concept of interparticle forces in fine powders was first proposed by 

Rumpf (1958). Rumpf introduced the idea of powder structure by developing 

a theoretical equation to predict the strength of granules. Later, this theory 

was also widely applied by other researchers to characterize dry bulk 

powders as well. 

 

According to Rumpf, interparticle force at each contact point of the powders 

depended upon the diameter of particle, the porosity among the powders, and 

the particle’s coordination number. The effect of particle diameter dominated 
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the other factors and smaller particle diameter would result in stronger 

interparticle forces. 

 

Furthermore, Rumpf stated that for dry powders, even though there might not 

be any material-bridges (such as water bridge) existing between the particles, 

binding forces could still exist in the form of: 

a. Van der Waals force. This force would be more significant in the 

case of powder aeration in which the gravitational force was already 

counterbalanced by the drag force from the aerating gas. 

b. Binding due to electrostatic charging. Fine powder particles might be 

electrostatically charged by contacting or rolling friction with each other. The 

amount of electrostatic developed would depend on the material properties 

and the motion characteristics. 

c. Interlocking binding. This occurred when the powders were plate-like 

so that it could be twisted and entangled with the neighboring particles. 

 

Among several possibilities of the origin of interparticle forces in aerated 

powder bed, researchers believed that the dominant interaction force was the 

van der Waals force of attraction (Baerns, 1966, Visser, 1989). Van der 

Waals forces were effective up to a distance of 100 Å, while the distance 

between two particles in a bed of particulate materials near the Umf point was 

on the order of about 5 A between the point of contact (Baerns, 1966). From 

extensive researches on fine powder aeration, the interparticle forces 
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apparently depended more on particle surface properties than on the powder 

bulk property. Spherical particles of diameter of order 100 �m should exhibit 

interparticle van der Waals forces to equal their single particle weight (Seville 

et al., 2000). 

 

It had been proven that gas adsorption had the most significant effect on the 

magnitude of interparticle forces compared with the effect of surface 

asperities. In the case of FCC particles, adsorption of gases on the particle 

surface would enhance the interaction among particles and had been known 

to increase the van der Waals forces by one to two orders of magnitude, 

corresponding to pressure from one to fifteen bar at room temperature (Xie, 

1997). On the other hand, the interactions between surface asperities, rather 

than the parent particles, only began to dominate the interaction when the 

surface asperities were more than 0.1 �m in size, which was seldom the case 

for the powders commonly encountered in practice.   

 

4. Rheological approach 

Because of the insufficiency of the pure hydrodynamic approach to explain 

many specific behaviors of fine powders, powder technologists turn to an 

alternative approach to address fine powder aeration. While pure 

hydrodynamic approach pictures each particle entirely surrounded by fluid 

and completely separated from each other,  this alternative approach, which 

is then labeled as ‘rheological approach’, pictures the particles as being in 
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dynamic contact all the time.  Figure I.2.2. illustrates the difference between 

these two approaches.  

 

 

 

 

 

 

 

 

Hydrodynamic approach   Rheological approach 

 

Figure I.2.2. Illustration of the difference between hydrodynamic 

approach and rheological approach 

 

Taking interparticle forces into consideration, Molerus (1982) derived limiting 

conditions of powder classification which were equivalent to the conventional 

Geldart’s classification. The borders between each class of powder were 

determined as the ratio between hydrodynamic force to the interparticle force 

on each single particle. The hydrodynamic force was estimated by the drag 

on one particle while the interparticle force was assumed to be van der Waals 

force. Although these correlations might be oversimplifying, those criteria 
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provided a better physical interpretation than the empirical Geldart’s 

classification. 

 

With regard to aerated fine powders, in line with Rumpf’s theory, Rietema 

(1967) pointed out that gas-solid and solid-solid interaction contributed an 

important effect to the behavior of the aerated powders. According to 

Rietema, powder aeration was the result of a balance between hydrodynamic 

forces on one hand and gravitational and interparticle forces on the other 

hand.  It was the sum of all interparticle forces relative to the hydrodynamic 

forces which determined how an aerated bed of fine powders would behave. 

However, much controversy still held because the relative importance of the 

interparticle forces and hydrodynamic forces on the flow behavior of powders 

remained undefined. Many factors might contribute to the total interparticle 

force experienced by an assembly of fine particles and most were difficult to 

evaluate, in either absolute or relative terms. 

 

Based on the existence of those interparticle forces, Donsi and Massimilla 

(1973) suggested that the dense phase in the expanded state of 

homogeneous aeration formed a ‘cavity structure’ that would react to 

compression or expansion as an elastic body. This thought has lead 

researchers to study the behavior of aerated powder by taking analogies to 

the well-established theories of polymer rheology. Nevertheless, many 
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parameters have to be specifically redefined for fine powders because of their 

specific nature which is different from polymer materials. 

 

 

 

 

 

 

 

 

 

Figure I.2.3. Suggested cavity structure by Donsi and Massimila (1973) 

 

Inspired by the idea of fine powder bed elasticity, Mutsers and Rietema 

(1977) proposed a hypothesis that the interparticle forces created a 

mechanical structure in the powder body as a network of particle chains with 

many cross links. When the powder was deformed by external forces without 

breaking these particle contacts, the powder structure generated a 

compensating force which always tried to restore the powder bed to its 

original condition. The consequence of this situation was a hypothesis that 

powders had elasticity, and its expansion characteristics could be 

represented by its elasticity modulus which implicitly took into account the 

effects contributed by both solid particles and gas. Under this school of 
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thought, elasticity modulus was the intrinsic characteristic that governed the 

behavior of a particular powder under aeration. The determination of the 

mean elasticity of particulate phase is necessary to explain the distinction 

between particulate and aggregative behaviors (Clift, 1993). Furthermore, the 

values of elasticity modulus, which describes the macroscopic properties of 

the particulate phase, can give a range of stable expansion.  

 

Some authors had incorporated powder elasticity modulus into their proposed 

stability criteria for homogeneous aerated powder bed. Mutsers and Rietema 

(1977) introduced a new dimensionless number NF to predict the limits to 

where homogeneous aeration was possible. This criterion involved the 

elasticity modulus (E), but due to not being able to directly measure this E, NF 

was calculated using an equation with the maximum possible porosity at 

bubbling point as its sole variable. Poletto and Massimilla (1992) compared 

various theoretical approaches in defining the transition from bubble free to 

bubbling beds by considering the values of elasticity modulus of the dispersed 

phase using each approach. They found that the available theories, on which 

constitutive equations for elasticity modulus were based, were not 

satisfactory. 

 

The determination of powder elasticity modulus remains challenging. Unlike 

the case of actual continuous solids, such as metals, on which elasticity 

modulus can readily be obtained as the slope on their measured stress-strain 
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diagram from a standard tensile test, powder structure is actually composed 

by discrete particles interconnected by only very loose and weak interparticle 

forces. Therefore, there is no direct tensile stress measurement device 

available for aerated powder bed. 

 

5. Homogeneously-aerated-expanded (HAE) emulsion phase 

In 1994, Kono et al. showed that particle and gas physical properties were not 

good enough to define a condition of fine powder homogeneous expansion 

(Kono et al., 1994). They encountered some special treated powders whose 

particle size and other aeration conditions belonged to the ‘unfluidizable’ 

Geldart’s C-powder group, but in fact those powders could be aerated 

homogeneously like an A-powder. In contrast to Davidson’s theory of free-

floating particles in an aerated powder bed, Kono’s group viewed a 

homogeneous expanded powder as a quasi-solid body called 

‘homogeneously-aerated-expanded (HAE) emulsion phase’ in which the 

particles were always in dynamic contact during the homogeneous 

expansion.  

 

Although Kono’s research group also applied the rheological approach to 

study the behavior of fine powders, this approach was not exactly the same 

as those established by other researchers in this field. Kono’s approach 

treated the aerated fine powder bed as a unity of gas and particles behaved 

as a single phase instead of being a two-phase system of gas phase and 
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solid phase separately like the assumption taken by the majority of other 

researchers. Therefore, Kono’s HAE emulsion phase theory was more 

concerned on the macroscopic data obtained in the aeration experiment 

rather than the microscopic information about each single particle. 

 

Kono’s research group also concluded that elasticity and viscosity 

simultaneously affected the behavior of HAE emulsion phase so that both of 

them should be considered together in studying aeration behaviors. Their 

novel interpretation of experimental aeration data showed that the HAE 

emulsion phase behaved as a viscoelastic body and was well fitted by Voight-

Kelvin model (Kono et al., 2002). Based on this concept, a method was 

proposed to characterize the emulsion phase in term of aerated powder 

tensile strength, elastic deformation coefficient, and viscosity. Those 

quantities were determined by performing an aeration experiment. From the 

standard data of superficial gas velocity, equilibrium bed height, and 

equilibrium pressure drop obtained in aeration experiments, Kono et al. 

(1994) introduced a new variable called ‘excess pressure drop’ as a basic 

quantity for tensile strength calculation. The method assumed a linear 

correlation between bed height and superficial gas velocity. This assumption 

was not always true because in many cases of fine powder aeration between 

its minimum fluidization velocity (Umf) and its minimum bubbling velocity (Umb), 

the bed height was experimentally observed to increase in a non-linear curve 

with increasing gas velocity (this will be shown in Figure I.5.2).  
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CHAPTER I.3. BASIC CONSIDERATIONS 

 

1. The concept of ‘excess pressure drop’ 

In an aeration experiment, gas flowing upwardly through a bed of fine powder 

causes the bed to expand. Flow of the aerating gas through the aerated 

particles will be accompanied by friction loss along its path so that a 

significant pressure drop will be observed. Figure I.3.1 shows a typical plot of 

pressure drop and bed height as a function of superficial gas velocity. 

 

In Figure I.3.1, �Peq is defined as the actual observed pressure drop in an 

aeration experiment. It is a measure of how much energy goes into drag force 

to counterbalance the weight of the particles in the bed. In the range of 

aerating gas velocity between its minimum fluidization velocity (Umf) and the 

gas velocity corresponding to its maximum expansion (conventional Umb), the 

bed expands from its initial height (Hmf) to its maximum height (Hmax). 

Consequently, the value of �Peq is constant because friction loss is also 

constant due to increasing porosity with increasing gas velocity.  

 

On the other hand, �Ph is the pressure drop across the bed IF the bed does 

not expand at superficial gas velocity in the range of Umf<U<Umb. In this 

situation, the bed will act as a packed bed with a constant porosity so that the 

pressure drop will increase linearly with gas velocity at relatively low gas 

velocity. 
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Figure I.3.1. Typical plot of fine powder aeration data 
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At low gas velocity (Re <1), �Ph will exhibit the linearity of the viscous term of 

Ergun’s equation (Ergun and Orning, 1949, McCabe et al., 2001): 

     2
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�
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��
��     (I.3.1) 

For the case of fine powder aeration, the values of Re are typically much less 

than 1. As an example, Re for the aeration of Starch 1 with nitrogen at 

ambient temperature was 0.03. 

 

In the situation where the powder is retained under a screen, the pressure 

drop will be �Ph, which is a linear function of gas velocity according to Eq. 

(I.3.1). This case is represented by the dashed line in Figure I.3.1. The 

pressure drop will keep increasing even in the range of Umf<U<Umb as 

opposed to the actual aeration condition shown by the bold line in Figure 

I.3.1.  

 

If suddenly the screen is removed while the gas velocity is at some point 

between Umf and Umb, the bed will immediately expand following the bold line 

on the bed height curve in Figure I.3.1 while the pressure drop will suddenly 

drop to the constant value (�Peq) indicated by the bold line on the pressure 

drop curve in Figure I.3.1. This constant pressure drop is known as the 

pressure drop from the drag force used to overcome the weight of the 

particle.  This pressure drop represents the energy dissipation in the aerated 

system (Foscolo et al., 1983). When the powder is still retained under the 
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screen, the energy from the incoming gas is represented by �Ph but after 

screen removal, at the same gas velocity, there only remains �Peq observed, 

which is much lower than �Ph. Hence, the next logical question is then where 

the rest of the energy goes. 

 

The difference between �Ph and �Peq is a representation of a portion of the 

energy from the incoming gas consumed by the bed for expansion in the 

range of Umf<U<Umb. This portion is called the ‘excess pressure drop’. By 

definition, excess pressure drop is the difference between the pressure drop 

across a bed at certain gas velocity if the porosity of the bed is maintained 

constant at �mf and the pressure drop of an expanded bed with variable 

porosity, �(U), at the same gas velocity. It is mathematically represented as: 

�P* = �Ph - �Peq    (I.3.2)  

 

As long as the aerated powder still behaves as HAE emulsion phase, the 

interparticle forces will maintain a homogeneous structure of the emulsion 

phase and prevent it from being broken by the force from the incoming gas 

represented by �P*. When the �P* becomes too strong for the interparticle 

forces, the homogeneous structure will be destroyed. This point is analogous 

to the minimum bubbling point in conventional fluidization theory. 

 

2. Generalized variables 

Experiment has shown that the bed aspect ratio (B.A.R) which is defined as: 
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�     (I.3.3) 

affects the aeration data in the sense that different bed aspect ratio gives 

different set of bed height and pressure drop data.  This will create a problem 

in determining the elastic deformation coefficient because this coefficient 

should only depend upon the material and not be a function of the quantity of 

the material.  For this reason, it is necessary to define new variables that can 

eliminate the effect of bed aspect ratio.  These new variables are to be named 

‘generalized variables’. 

 

In order to make this generalization, the degree of bed expansion is 

expressed in term of bed expansion ratio specifically named ‘powder strain’ 

which is mathematically defined as: 

mf

mf
H

HHS �

�     (I.3.4) 

 

To generalize the excess pressure drop data, another variable will be 

introduced. In the concept of HAE emulsion phase, the particles in the 

aerated powder bed are assumed to arrange themselves in N numbers of 

‘horizontal powder layer units’ defined in previously published paper (Kono et 

al., 1994).  Figure I.3.2 shows the illustration of this assumption.  

 

For powders with uniform particle size (dp), numbers of powder layer units for 

a certain amount of a particular powder material is expressed as: 
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As the expansion proceeds with increasing gas velocity, the number of 

powder layer units is assumed to be constant, only the height of each layer 

will be larger at higher gas velocity. 

 

 

 

 

 

 

       Hmf 

 

 

 

        dp 

 

 

Figure I.3.2. The concept of powder layer unit 

 

 

The excess pressure drop defined in Eq. (I.3.2) refers to the whole bed of the 

HAE emulsion phase. Since this HAE emulsion phase consists of N horizontal 
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homogeneous powder layer units, the excess pressure drop across each 

layer will be: 

N
*P**P �

��     (I.3.6) 
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Figure I.3.3. Force balance on each powder layer unit 

 

 

This �P** corresponds to the force from incoming gas with certain gas 

velocity U per unit area of the aeration column, which is counterbalanced by 

the interparticle force within each powder layer in the HAE emulsion phase 
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(Kono et al., 1994), as illustrated in Figure I.3.3. Therefore, at equilibrium bed 

height for certain U, HAE emulsion phase tensile stress (�*) is defined as: 

�* = �P**    (I.3.7) 

 

3. Elastic deformation coefficient 

Elastic deformation coefficient (Y) is defined as the slope at any arbitrary 

points on the plot of tensile stress against strain: 

dS
*dY �

�             (I.3.8a) 

 

For a small change of strain (�S), the expansion is assumed to be linear so 

that the elastic deformation coefficient can be determined as: 

S
*Y

�

��
�               (I.3.8b) 

 

From aeration experiments, gas velocity (U), excess pressure drop (�P*), 

numbers of powder layer units (N), powder strain (S), and bed height at 

various gas velocity (Hmf and H) are readily obtained. The data are used to 

determine the HAE emulsion phase tensile stress (�*) based on Eq. (I.3.7) at 

several small increments of �S in the range of Smf<S<Smax. At each 

increment, elastic deformation coefficient (Y) is then determined using Eq. 

(I.3.8b).  
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The values of Y imply the flow characteristics of the HAE emulsion phase. An 

abrupt change of Y value indicates that a significant structural change takes 

place in the initially homogeneous internal structure of HAE emulsion phase. 

Therefore, by measuring Y at small increments of �S in the range of 

Smf<S<Smax, one can locate the point of the first major fractures of HAE 

emulsion phase, i.e. the physical meaning of the intrinsic minimum bubbling 

point. 
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CHAPTER I.4. EXPERIMENTAL PROCEDURES 

 

1. Material 

 

Table I.4.1. The amount of starch used in the experiments 

 

Starch Hmf/D (-) M (g) 

1 1 

1.5 

2 

2.5 

3 

630.8 

946.2 

1261.6 

1577 

1892.4 

2 1.2 730 

3 0.7 

1.2 

425.8 

730 

 

 

A starch (solid density = 1.5 g/cm3) with specially coated surface was chosen 

as a sample powder. The powder was received in three different sizes, which 

were Starch 1 (average diameter = 15 �m), Starch 2 (average diameter = 20 

�m), and Starch 3 (average diameter = 40 �m). The particle shape is 

spherical for all these starches. Due to its special surface properties, this 

sample powder could very well be aerated homogeneously in a relatively wide 
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range of superficial gas velocity. The amount of starch aerated in each 

experiment was listed in Table I.4.1. 

 

Nitrogen gas was used as the aerating gas in all experiment. The benefits of 

using nitrogen from its pressurized tank were its moisture-free nature and the 

fact that this gas did not chemically react with the powder. 

 

2. Experimental set up 

    a) Powder bed retained under a fixed screen 

In order to verify the linearity of the plot of excess pressure drop against gas 

velocity, an experiment was conducted using Starch 3 on a special aeration 

column designed so that a porous metal could be placed on top of the powder 

bed. The equipment was schematically drawn in Figure I.4.1. 



 34

 

 

 

 

 

 

 

             a 

 

             b 

                           e 

             c  

 

 

        f 

 

 

 

     d 

 

Figure I.4.1. Equipment for excess pressure drop measurement 
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The aeration column (10 cm ID) consisted of three separable parts (part a, b, 

and c in Figure I.4.1), which were: 

a. The top cylinder 

b. Porous metal plate 

c. The bottom cylinder which was mounted on a steel base equipped with 

porous metal plate as gas distributor 

 

The bottom cylinder (part c), which was shorter than the top cylinder, was 

filled by the starch until the surface of the powder bed was flat at the upper 

end of the cylinder. The filling process was done very carefully by passing the 

starch through a very fine sieve in order to break any possible agglomeration 

and to create a packed bed structure as close as possible to the assumption 

of ideal packing in HAE emulsion phase.  

  

A porous metal plate (Figure I.4.1b) was then put on top of this powder bed. 

The top cylinder (Figure I.4.1a) was placed right above this plate. All of these 

three parts were held tight together by a strong plastic tape. 

  

Aeration was begun by flowing nitrogen gas from the gas cylinder (Figure 

I.4.1d) through a flow meter (Figure I.4.1e).  The gas entered the bed from the 

bottom of the column base. A pressure gage (Figure I.4.1f) was placed on the 

gas line to make pressure drop reading.  The gas flow rate was gradually 
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increased and at each value of gas flow rate, the pressure drop was 

recorded. 

  

This experiment was best done by Starch 3 which had the largest particle size 

among the other starches. Experimental data from this starch was the most 

reliable to verify the linearity of excess pressure drop with increasing gas 

velocity. This was because the experiment could be carried out in a wide 

range of gas velocity without causing excessive powder compression. When 

this experiment was done using Starch 1 and Starch 2, whose size was half 

of that of Starch 3, bed compression was observed early at the beginning of 

the experiment so that it was impossible to assume constant bed porosity.  

 

    b) Regular aeration experiment 

The regular aeration experiment was similar to the previous packed bed 

experimental set up, except for the pressure drop measurement. In the case 

of packed bed experiment, the pressure drop could be so high that a pressure 

gage was needed to measure it. In regular aeration experiment for these 

starches, the pressure drop of its aerated condition was much lower than its 

packed bed condition and the pressure gage scale was too large to be able to 

detect this aerated pressure drop. Therefore, for aeration experiment, the 

pressure gage was replaced by water manometer that could read a pressure 

drop value more accurately.  The experimental set up for the regular aeration 

is shown in Figure I.4.2. 
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The aerating gas was flown from the gas cylinder (a in Figure I.4.2) through a 

couple of flow meters (b1 and b2 in Figure I.4.2) arranged in parallel. The first 

flow meter (b1 in Figure I.4.2) had finer scale and lower gas velocity range 

than the other (b2 in Figure I.4.2). Both flow meters were always opened 

together. The purpose of this arrangement was to facilitate small decrease or 

increase in gas flow rate. Besides, this arrangement made it possible to 

observe smooth transition from aerated bed to packed bed condition near Umf 

point. In this experiment, Umf point was very close to the lowest scale of flow 

meter b2 so that flow meter b1 was necessary to obtain an accurate reading. 

 

The gas entered the quartz column (10 cm ID) to aerate the powder through a 

chamber (f in Figure I.4.2) and a porous metal plate (e in Figure I.4.2) as the 

gas distributor. At the bottom of the chamber, a branched was placed to make 

a gas line to the water manometer.  

 

Experiment was started at gas velocity high enough to make a powder bed 

bubbling for several minutes. This was necessary to make sure that any 

possible agglomerations were already broken. The gas flow rate was then 

gradually reduced and at each gas flow rate, the bed height was read on the 

scale (d in Figure I.4.2) and the pressure drop was recorded from the water 

manometer (g in Figure I.4.2). 
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Figure I.4.2. Regular aeration experiment 
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CHAPTER I.5. RESULTS 

 

1. Verification of ‘excess pressure drop’ concept 

Figure I.5.1 shows a comparison between the result of a regular aeration 

experiment (the experimental set up is represented by Figure I.4.2) and an 

experiment using screen to maintain constant bed height (illustrated by Figure 

I.4.1).  The data from the experiment with screen show a linear tendency over 

the whole range of gas velocity applied in the experiment, as expected by the 

viscous term of Ergun equation (in Eq. I.3.1). 

 

However, it was found that the linear constant calculated using the relation 

suggested by Ergun equation was lower than the linear constant obtained by 

regression of the data presented in Figure I.5.1. There might be two possible 

explanations for this discrepancy.  The deviation from Ergun equation was 

most likely caused by the compaction of the particles in the bed. Ergun 

equation was derived based on the assumption of constant porosity (Ergun 

and Orning, 1949, McCabe et al., 2001). With a screen put on top of the bed 

surface and gas flowing upwardly, the particles were pushed upwardly to 

some extent. Consequently, the porosity will slightly decrease. For the case of 

Starch 1 and Starch 2, this compaction was clearly visible because the lower 

end of the powder bed was actually lifted during the aeration and visibly 

dropped when the gas flow was suddenly cut. In the case of Starch 3, which 
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was used to obtain the data in Figure I.4.1, this compaction was not actually 

obvious. Nevertheless, judging from the discrepancy from Ergun prediction, 

such a compaction must have taken place as well. 

 

Another possible cause was the non-uniformity of the particles. Size 

distribution of the particle and also its possibly imperfect sphericity might 

cause the powder bed to have lower porosity than that estimated by the 

assumption of uniform spherical particles. If it was the case, the pressure 

drop predicted by Ergun equation would be lower than the observed pressure 

drop. 

 

One of the advantages of the characterization method based on HAE 

emulsion phase theory presented in this dissertation is that it is not necessary 

to concern about the microscopic detail such as the porosity of the bed. All of 

the calculations and verifications can be done based on the macroscopic data 

only. Therefore, the detail discussion on the microscopic aspect concerning 

Ergun equation is beyond the scope of this dissertation. 
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Figure I.5.1. Comparison between the data from actual aeration experiment and the data from experiment 

using screen to prevent bed expansion



 42

The finding of this discrepancy gives important information that Ergun 

equation is not recommended to predict the value of �Ph in the HAE emulsion 

phase theory. Nevertheless, the linearity shown by the data in Figure I.5.1 

has verified the assumption taken in Chapter I.3 that for the case of fine 

powders whose Reynolds number is usually less than one, the pressure drop 

will linearly increase with gas velocity if the bed does not expand. It is 

preferred to calculate the actual value of �Ph for a particular aeration system 

using regression method on the linear part on the pressure drop plot against 

gas velocity (in the range of 0<U<Umf) rather than estimating based on Ergun 

equation. 

 

2. Original aeration data 

In a standard aeration experiment, data of �P and H against superficial gas 

velocity were easily obtained by the method described in Chapter I.4. Figure 

I.5.2 and I.5.3 are examples of such data. For every data set from aeration 

experiment, �Ph values were calculated using correlation obtained by linear 

regression of data points on the linear part of Figure I.5.3 in the range of 

0<U<Umf and accordingly, �P* was calculated based on its definition 

expressed in Eq. (I.3.2).  The results are displayed in Figure I.5.4. An 

example of this calculation procedure is provided in Appendix A. 
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Figure I.5.2. Bed height against gas velocity at various bed aspect ratios (Starch 1, ambient condition)



 44

0

500

1000

1500

2000

2500

0 0.1 0.2 0.3 0.4 0.5
U (cm/s)

D
el

ta
 P

  (
Pa

)

Hmf/D=1
Hmf/D=1.5
Hmf/D=2
Hmf/D=2.5
Hmf/D=3

 

Figure I.5.3. Pressure drop against gas velocity at various bed aspect ratios (Starch 1, ambient condition) 
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Figure I.5.4. Excess pressure drop against powder strain at various gas aspect ratios (Starch 1, ambient 

condition)
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Figure I.5.2, 3, and 4 shows that different bed aspect ratios give different curves. 

On the other hand, rheological properties of any materials must not depend on 

the quantity of the material. Therefore, generalized variables need to be 

introduced to eliminate the factor of bed aspect ratio in determining Y. 

 

The example of the transformation of these original aeration data into the 

generalized variables, which are powder strain and excess pressure drop per 

powder layer unit, are given in Appendix A. The results of such calculation are 

presented in the figures in the next section of this chapter. 

 

3. Transformation to generalized variables 

As briefly mentioned in previous section, powder strain (S) and excess pressure 

drop per unit layer (�P**) will serve as generalized variables to determine the 

rheological properties of an HAE emulsion phase. Figure I.5.5 is the powder 

strain calculated using Eq. (I.3.4) corresponding to original data in Figure I.5.3. 

An example of this calculation is available in Appendix A. It is shown in Figure 

I.5.5 that now the data are clustered together on a single curve. The same case 

is observed for the excess pressure drop per powder layer unit. While the plots of 

�P* are widely separated between each bed aspect ratio (Figure I.5.4), its 

corresponding �P** values are close to each other (Figure I.5.6). 
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Figure I.5.5. Powder strain against gas velocity at various bed aspect ratios (Starch 1, ambient condition) 
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Figure I.5.6. Powder tensile stress against powder strain (Starch 1, ambient condition) 
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Figure I.5.6 shows that �P**, which is powder tensile stress, is initially 

proportional to the powder strain but when the powder strain becomes higher, 

this linearity vanishes.  The behavior of this curve is best characterized by a 

parameter called ‘elastic deformation coefficient’, which is mathematically 

analogous to the elasticity modulus in the stress-strain diagram.  

 

Despite the similar mathematical definition, it is worth mentioning that the term 

elastic deformation coefficient defined for the case of HAE emulsion phase has a 

different physical meaning from the term elasticity modulus widely used for the 

case of actual solid because of the difference in the mechanism of the 

deformation. The specific feature of HAE emulsion deformation is that it is only 

assumed to be a quasi-solid material while in fact it is composed by discrete 

particles. Therefore, the interpretation of the powder stress-strain correlation in 

Figure I.5.6 will also be different from that for the actual solid materials. 

 

4. Elastic deformation coefficient (Y) 

The measurements of Y were done in several small changes of strain in the 

range of Smf<S<Smax. The procedure for this incremental Y calculation is 

documented in Appendix B. The values of Y for Starch 1 at various bed aspect 

ratios were plotted against powder strain as shown in Figure I.5.7.  An ANOVA 

test conducted on the data shown in Figure I.5.7 confirmed that bed aspect ratio 

did not make any significant differences on the Y data. The ANOVA test and also 

the box plot representation of Figure I.5.7 are presented in Appendix D. 
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Figure I.5.7. Elastic deformation coefficient for Starch 1 at ambient temperature 
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Figure I.5.7 shows that for the starches tested in this experiment, the value of 

elastic deformation coefficient is constant only up to a certain value of powder 

strain (S=0.58) and then the value abruptly increase until it finally reaches the 

maximum strain (Smax=0.78). The increasing values of elastic deformation 

coefficient imply that more stress is needed to achieve the same �S. This is 

caused by the immediate formation of several bubbles in the bed when gas 

velocity reached a certain value. To explain this phenomenon, an analysis based 

on the concept of ‘powder layer unit’ originally defined by Kono et al. (2002) is 

given as the following. 

 

Figure I.5.8 gives an illustration of powder layer unit expansion. At U=Umf, all 

particles are still in contact with each other and the height of each powder layer 

unit (h1) is assumed to be equal to the particle diameter (Figure I.5.8a). While 

expansion is taking place in the range of Umf<U<Umb, the height of each powder 

layer unit (h2) increases but it is still small enough to maintain a close distance 

between particles and the particles are still dynamically in contact with each other 

so that their interparticle forces are still significant to resist the stretching force 

from the incoming gas (Figure I.5.8b). The structure of HAE emulsion phase is 

then still very homogeneous and all of the incoming forces from the gas flow are 

consumed for bed expansion.  This situation is represented by a constant value 

of Y. 
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When the expansion comes to its bubbling point, the incoming gas starts to form 

‘fractures’ in the initially homogeneous structure of the HAE emulsion phase 

(Figure I.5.8c). These fractures are responsible for the increasing value of elastic 

deformation coefficient because with the fractures that form some ‘voids’ in the 

HAE emulsion phase, only a partial amount of the total gas supplied can be 

actually used for expanding the bed. A portion of the gas that appears as these 

voids is not useful for expansion (as has been explained in section 1 of Chapter 

I.1).  

 

 

 

 

 

 

 

 

       h1            h2  

   (a)         (b)           (c)                (d) 

  U=0           Umf<U<Umb          U = Umb    U>>Umb   

  

 

Figure I.5.8. Illustration of the physical meaning of the change in Y value  
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Due to the void formation at the condition in Figure I.5.8c, the same increase of 

gas velocity (�U) does not cause an increase on bed height as high as that of the 

condition in Figure I.5.8b anymore. At higher gas velocity, these voids become 

bigger and more new voids are also formed so that less portion of the incoming 

gas is actually used for bed expansion (Figure I.5.8d). Therefore, much more 

incoming gas is needed to make the same degree of expansion so that the 

elastic deformation coefficient is observed to be very high as U is increasing 

beyond Umb. 

 

The point at which a sudden increase of Y is observed indicates a significant 

change in the internal structure of the HAE emulsion phase and hence the gas 

velocity corresponding to this point is defined as the ‘new’ Umb, which is the 

upper limit of the HAE emulsion phase. It is worth mentioning that this newly 

defined Umb is different from the conventional meaning of Umb in the sense that 

visual observation of bubble appearance is not required to determine this newly 

defined Umb. 

 

Figure I.5.9 presents a comparison among Starch 1, 2, and 3 with respect to their 

Umb points determined based on their Y data. The numerical values of the Umb 

are tabulated in Table I.5.1. Although the Umb for Starch 1 are almost identical 

with those of Starch 2, whose average diameter is only 30% larger than that of 

Starch 1, the general tendency observed in Figure I.5.9 is that larger particles will 

have lower powder strain which is corresponding to the minimum bubbling 
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condition. This fact implies that the role of interparticle forces, which is important 

to maintain the homogeneity of the HAE emulsion phase, is much stronger on the 

HAE emulsion phase of smaller starch than that on larger starch. The 

interparticle forces are needed to prevent the formation of voids inside the 

homogeneous structure of HAE emulsion phase. 

 

 

Table I.5.1. Umb values for Starch 1,2, and 3 aerated at ambient temperature 

 

Starch Average 

dp (�m) 

Umb 

(cm/s) 

Umax 

(cm/s) 

Smb 

(-) 

Smax 

(-) 

% S 

difference*)

1 15 0.16 0.36 0.58 0.78 25.6 

2 20 0.14 0.20 0.54 0.74 27.0 

3 40 0.19 0.32 0.39 0.46 15.2 

*) 
max

mbmax
S

)SS(S% �

�  

 

Table I.5.1. shows that the intrinsic minimum bubbling condition (Smb) determined 

by this Y method is 15.2-25.6 % lower than the bubble points determined 

conventionally at the maximum bed expansion (Smax). The corresponding intrinsic 

Umb point is much lower than the gas velocity corresponding to the maximum 

expansion.  
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Figure I.5.9. Comparison of Y values among starch 1,2, and 3 
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This Y value method gives an accurate determination of the actual Umb. In order to 

achieve and maintain the desirable yield, one can choose the conditions needed to 

operate the aeration process in the HAE emulsion phase region and make sure that 

there are only negligible amount of bubbles. This control is very important especially 

in the aeration system involving chemical reactions because even very small 

improvement in conversion, as little as 0.5 %, could increase profits by millions of 

dollars worldwide (Geldart, 1989). 

 

Another important application of this Y value method is to quantitatively compare 

several systems of powder aeration, which can be those of different particle size, 

different physical properties, and/or different process condition. For example, it has 

been well known that addition of fine particles to a bed of coarser particles can 

improve the aeration quality. It is exhibited in Figure I.5.10 that addition of Starch 1 to 

Starch 3 can drastically shift its aeration behavior towards a much more expandable 

one. Based on the observation of its Y values, a mixture of 50 %(w/w) of Starch 3 

and 50 %(w/w) of Starch 1 behaves very similarly to the HAE emulsion phase of pure 

Starch 1 presented in Figure I.5.7. Although the constant Y value in the HAE 

emulsion phase region is still closer to that of Starch 3, the minimum bubbling point of 

the mixture is now the same as that of Starch 1 and the maximum Y value is also 

much lower than that of the pure Starch 3. 
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Figure I.5.10. Effect of mixing of starches with different sizes on the aeration behavior 
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By using sets of data as those exemplified in Figures I.5.9 and I.5.10, it will be easier 

to characterize fine powder of any materials and sizes aerated with any gas. Those 

data are also helpful to quantitatively compare the aeration qualities among several 

different aeration system in order to make decision of the best condition for a 

particular process which expects homogeneous fine powder aeration. 
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CHAPTER I.6. CONCLUSION AND SIGNIFICANCE 

 

The analysis conducted on fine powder aeration behavior in this dissertation was 

based on the theory of HAE emulsion phase, which viewed a system of aerated 

fine powders as a quasi-solid single phase. This emulsion phase was 

homogeneously expandable until a point where the formation of fractures ended 

its homogeneity.  From extensive experiments using a type of starch with 

specially coated surface, the following conclusions were drawn. 

 

1. Original aeration data from a fine powder aeration experiment, which were 

pressure drop and bed height as a function of gas velocity, need to be 

transformed to new variables specifically defined for fine powder, which were 

powder strain and powder tensile stress, to define generalized variables that 

could eliminate the effect of bed aspect ratio. The plots of powder tensile stress 

against powder strain indicated a consistent tendency for all aeration systems 

studied for this dissertation. Based on this fact, a parameter called elastic 

deformation coefficient, which was mathematically analogous to the elasticity 

modulus, was defined as the characterization parameter for fine powder aeration 

behaviors. 

 

2. Elastic deformation coefficient determined by the method presented here had 

been proven to be an important parameter to define the intrinsic minimum 

bubbling point of an HAE emulsion phase, so that the point of the first bubble 
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formation that caused the fracture of the HAE emulsion phase could be 

accurately determined. This method does not require visual observation of the 

first appearance of the bubble.   

 

3. This Y method provided a quantitative tool to compare the aeration quality of 

several different systems of fine powders. With a numerical value to denote ‘how 

good is good and how bad is bad’ in the case of fine powder aeration, it would be 

easier to carry out an optimization of an existing unit or to design a completely 

new process involving fine powder aeration. 

 

4. Besides its high reproducibility and precision, this method was of great 

practical importance because it was simple and did not need any instrument to 

be inserted inside the powder bed. The measurement was conducted by merely 

collecting the regular aeration data (gas velocity, pressure drop, and bed height) 

which would be easily measured by external devices so that the internal structure 

of the aerated powder could be maintained undisturbed and the data obtained 

would really reflect the actual internal condition of an aerated fine powder 

system. 
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PART II 

 

 

CHARACTERIZATION OF FINE POWDER 

AERATIONS AT ELEVATED TEMPERATURE 
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CHAPTER II.1. INTRODUCTION 

 

1. Background 

The most important aspect of the theory presented in Part I of this dissertation 

is its applicability at elevated temperature. Majority of the processes involving 

powder aeration in industry are conducted at elevated temperature but most 

researches on powder aeration have been done at ambient temperature. It 

has been known that many aeration behaviors which are essential for further 

characterization of the aerated bed, such as minimum fluidization velocity and 

minimum bubbling velocity, significantly depend on temperature without a 

convincing explanation available yet. That is why the Y method, which has 

been shown to provide a good characterization parameter at ambient 

temperature, needs to be tested at elevated temperature. 

 

In order to systematically study a phenomenon, it is necessary to decide 

which variables to be measured that can give the best insight of the 

phenomenon. Therefore, the key step in studying temperature effect on fine 

powder aeration is firstly to define characterization parameters, which have to 

be consistent in both ambient and elevated temperature conditions.   

 

There have been many researches conducted to use the ambient data to 

predict the corresponding behaviors at elevated temperature but the 

outcomes are not yet satisfactory. There will be several major papers 
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regarding this issue to be briefly reviewed in the next chapter (e.g. Kai and 

Furusaki, 1985, Wu and Baeyens, 1991, Raso et al., 1992, Yates, 1996, 

Lettieri et al., 2001). Some more papers will also be mentioned to underscore 

the fact that despite those many attempts in the past, there is still room for 

improvement. It is due to the lack of generality in the previously proposed 

methods to characterize fine powder aeration at elevated temperature. 

 

Most of the studies in the past ascribed the effect of temperature to the 

changes in gas density and, more importantly, viscosity. Thence, by using the 

same hydrodynamic models with slight modifications on gas properties as 

temperature increased, aeration behavior at elevated temperature was 

predicted based on correlation originally developed at ambient temperature.   

 

2. Problem 

For a long time, the influence of the operative temperature on fluid-dynamic 

characteristics of the aerated systems has been done by simply extrapolating 

results and relationship from those developed at ambient temperature. 

Unfortunately, this method was not always reliable. This approach overlooks 

possible modifications caused by temperature in the internal structure of the 

aerated bed. This structural change can cause drastic changes in the flow 

behavior of the aerated powders, which most of the time is unpredicted by 

pure hydrodynamic approach. It may lead to serious errors in evaluating the 
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transport phenomena, which in turn causes miscalculation in designing the 

process. 

 

The past publications on this field showed that the effect of temperature on 

fine powder bed behavior could not be explained on a hydrodynamic basis 

alone, as widely accepted at the present. Taking into consideration only the 

variations of gas density and viscosity with temperature, as has been done in 

most of the studies in this field, has not proved sufficient to provide design 

criteria that can predict the behaviors of the bed as accurately as those 

observed at ambient temperature.  

 

Another approach attributed the changes in aerated powder behavior at 

elevated temperature to the changes of the interparticle forces at higher 

temperature, especially in the case of fine powder aeration. This new 

standpoint is expected to complement the discussion based on pure 

hydrodynamic approach and still need more explorations.   

 

3. Objective 

In Part I, it has been shown that elastic deformation coefficient (Y) and Umb 

can very well define the flow characteristics of an HAE emulsion phase. Part 

II is devoted to application of Y method at elevated temperature. It will be 

shown that the Y method gives consistent results at elevated temperature as 

well. Furthermore, the Y value will be used to quantify the changes in the 
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aeratibility of fine powders when the aeration temperature is increased and 

the correlation between Y values and temperature will be also evaluated. 

 

Part I has already set the necessary foundation for the method, which was 

verified by using starches at ambient temperature. Part II deals with the more 

practical application at elevated temperature and studies how temperature will 

affect the Y values and the corresponding Umb. Starches would be burnt 

during the experiment at elevated temperature so that it was impossible to 

use it for that purpose. Hence, spent FCC catalyst was chosen to be the 

sample powder at elevated temperature.  

 

The data to be analyzed in Part II are the untreated and unpublished data of 

the previous student, J.J. Su, who did the experiment in 1995. However, 

those are merely raw aeration data consisted of superficial gas velocity and 

the corresponding pressure drop and bed height at various temperatures 

ranged from 26oC to 600oC. All analysis presented in this dissertation is 

completely original and different from the analysis presented by Su (1995). 

 

This part is a continuation from the previous part (Part I) which has given both 

theoretical development and experimental evidence to propose a new 

physical meaning of intrinsic Umb, which is different from its conventional 

definition. Therefore, it is important to note that hereinafter all discussions 
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involving the term ‘Umb’ are always refer to the new definition of intrinsic Umb 

presented in Part I of this dissertation unless it is indicated otherwise.  

 

4. Significance 

The urgency in the study of temperature effect on fine powder aeration is of 

increasing importance because: 

1. Most usage of these fine particles is as catalyst in reacting systems, 

which are most likely carried out at elevated temperature. 

2. People are still struggling to find the best correlation to apply pure 

hydrodynamic approach on coarse particles at elevated temperature. 

Their correlations, which are developed at ambient temperature, do not 

provide accurate characterization parameters for the same powders at 

higher temperature. For the more complex case of fine powder, pure 

hydrodynamic approach often fails even at ambient temperature so 

that more discrepancies will be encountered at elevated temperature.  

The study of fine powder aeration at elevated temperature is still in 

need of a better characterization method. 
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CHAPTER II.2. LITERATURE REVIEW 

 

1. The pure hydrodynamic approach 

There have been many attempts to correlate the ambient data to predict the 

corresponding behaviors at elevated temperature. Most of the studies in this 

field were conducted on particles whose average diameters are larger than 

100 �m so that the effect of interparticle forces was always overlooked. It is 

true that interparticle forces are negligible in aerated coarse particle at 

ambient temperature, but there have been some researches showing that 

interparticle forces can be much stronger at elevated temperature, even for 

the particles which are traditionally recognized as ‘coarse particles’ (e.g. Kai 

and Furusaki, 1985, Yamazaki et al., 1986, Kamiya et al., 2002).  

 

Therefore, neglecting interparticle forces at elevated temperature may result 

in serious error, not only for fine powder systems but also for coarse particle 

systems. For example, Wu and Baeyens (1991) studied the effect of 

temperature changes in the prediction of Umf based on Ergun equation. They 

stated that when the temperature of the powder bed changed, the only 

obvious changes were in the properties of the aerating gas. These in turn 

affected Umf. With increasing temperature, the density of the gas decreased 

and the viscosity of the gas increased. They did not look into the possibility of 

the effect of temperature on interparticle forces because their sample 

powders ranged between 134 to 1970 �m so that they assumed that the 
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interparticle forces would be always insignificant. However, they observed an 

unexplained behavior of the powders starting at 100oC. Their predictions 

deviated significantly from the experimental data and they had to introduce 

some new adjustable parameters to make the model well fit the data. 

Nevertheless, there was no theoretical background provided in their paper to 

explain these empirical adjustments.  A similar treatment was also conducted 

by Mii et al. (1973), Nakamura et al. (1985), Fan et al. (1986), Saxena et al. 

(1990), Fletcher et al. (1992), and Rapagna et al. (1994). 

 

In spite of the extensive work conducted to study powder behavior at elevated 

temperature, the present understanding of the characteristics of a bed of 

solids aerated at elevated temperature is still far from satisfactory and design 

criteria devised so far are still more or less empirical. This makes it difficult to 

perform scale up/down operations or to modify the existing unit to gain more 

yield on processes involving aerated powders.  

 

2. Effect of temperature on interparticle forces in aerated powder beds 

Raso et al. (1992) pointed out that accounting only for the variations of the 

physical properties of the aerating gas (density and viscosity) with 

temperature has not proved sufficient to provide a characterization of the fine 

powders as accurate as those obtainable at ambient condition. Raso et al. 

based their analysis on the effect of temperature on the bed voids near Umf 

point and they reported that their experimental data could not be explained on 
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a pure hydrodynamic basis. They observed that the increase in bed porosity 

also occurred even in the packed bed arrangement of the powders before the 

bed start expanding. This was shown to be a consequence of the 

enhancement of the interparticle forces acting in the particulate phase at 

medium and high temperature.  The same tendency was also reported 

previously by Botterill et al. (1982) on the bed of coarse particles (each group 

of particles had a narrow size distribution in the range of 370-2320 �m); 

although they could not offer any explanations regarding the cause of that 

phenomenon.  

 

Experimental evidence obtained in the study based on Rumpf’s powder 

structure theory showed that there was viscoelastic deformation observed at 

elevated temperature which was still below the sintering point of the powder 

particles. Viscous flattening of solid particles gave more space for a larger 

interparticle contact area so that it enhanced the effectiveness of Van der 

Waals forces. Because of this phenomenon, it is possible to observe more 

loosen yet stable structure of the powders at elevated temperature due to the 

fact that the stronger interparticle forces would stabilize the bed (Raso et al., 

1992). 

 

The significant effect of temperature on interparticle forces was also reported 

by several other authors in this area. Nevertheless, they offered various detail 

explanations which were different from each other. For example, Kai and 
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Furusaki (1985) believed that dry fine powders were greatly influenced by 

electrostatic forces among them at ambient temperature so that the fluidity 

was very poor. This electrostatic effect vanished at higher temperature so that 

the aerated powder gained more fluidity. Similar explanation was also 

presented by Yamazaki et al. (1986). Lettieri et al. (2000) showed the effect of 

temperature on the aeration behavior of FCC catalyst by observing the bed 

collapse rate and calculated the relative magnitude of the hydrodynamic 

forces and the interparticle forces as temperature increased. They stated that 

the characteristics of the surface of this catalyst changed as a function of 

temperature. Their results emphasized that a pure hydrodynamic equation 

could only predict the aeration behavior where the interparticle forces did not 

show a dominant role over the hydrodynamic forces. This fact was also 

underscored in the review paper authored by Yates (1996). Therefore, the 

new standpoint known as ‘rheological approach’ which accounted for 

interparticle forces complemented the discussion based on pure 

hydrodynamic approach. 

 

Another research group was more concerned about measuring the 

manifestation of the interparticle forces, which is powder bed tensile strength, 

at elevated temperature (Kamiya et al., 2002). Up to date, there are no 

measuring devices available for such a measurement purpose because most 

of the conventional measuring devices were made of metal and had to be in 

contact with the very hot powders. Thermal expansion coefficient of the metal 
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was much larger than that of the powder. Therefore the accurate 

measurement of the powder bed tensile strength was almost impossible to be 

done using conventional devices. On the other hand, the data of powder bed 

tensile strength is important in the rheological study of fine powder aeration. 

 

3. Minimum bubbling point at elevated temperature 

Compared to the work devoted to studying the effect of temperature on Umf, 

there has been very little work devoted to Umb at elevated temperatures.  With 

respect to bubble behavior, most of the work was done on coarse particles 

because earlier application of aerated powder was more concerned with this 

class of aeration.  As an example, Sitthiphong et al. (1981) studied the 

eruption diameter of bubbles in beds of large particles (average diameter of 3 

mm) and found a significant increase with temperature under equivalent 

conditions. However, this finding is contradictive to what has been observed 

in small particle systems (Yates, 1996). 

 

When fine powders became more frequently met in industrial processes, 

more attention has been drawn to the determination of Umb point, rather than 

the behavior of the bubbles, because in fine powder aeration, people usually 

want to maintain a bubble-free aeration. Therefore, in order to avoid operating 

the units in the bubbling region, the main concern in fine powder operation is 

to determine when the bubbles are actually formed. Moreover, there is still a 

challenge in the study of fine powder aeration to define characterization 
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parameters for aerated powders, which are consistent at ambient and 

elevated temperature, in order to better understand their behaviors.  

 

From hydrodynamic standpoint, one among several conventional ways to 

address fine powder aeration quality was by visual observation of the first 

bubble formation in the bed.  An improved method which still relied upon 

visual observation was to watch for the first clearly recognizable bubble 

eruptions at the bed surface. This might provide more clear observation, 

rather than trying to see bubble formation inside a three-dimensional aeration 

column. Geldart and Kapoor (1976) defined these ‘recognizable bubble 

eruptions’ as those whose sizes were about 2-3 mm in the aerated bed of 

particles of 118 �m average diameter. Based on that method, they concluded 

that Umb was least likely affected by temperature. However, they found that 

bubble size at 200 and 300oC was 75-85% of the size observed at ambient 

temperature.  

 

Up to recently, visual observation methods are still used to determine the 

aeration quality. Lettieri et al. (2001) verified ‘good bed mixing’ and measured 

Umb by visual observation of the bed surface using X-rays technique. The 

condition of internal flow patterns of the fluid and solids inside the column was 

qualitatively recorded as the indication of particulate/bubbling aeration and 

Umb was determined by noting the velocity at which the first bubbles began to 

appear as aerating gas velocity was increased. Furthermore they reported 
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their data as the ratio between the measured pressure drop across the bed 

(�Pm) and theoretical equilibrium pressure drop (�Pc = Mg/A) against gas 

velocity. They concluded that increasing temperature improved the aeratibility 

of the FCC catalyst. 

 

Another method was based on uniformity index based on pressure fluctuation 

and bubble frequency (Kai and Furusaki, 1985). The pressure fluctuations 

were detected by means of a piezoelectric pressure transducer. The point at 

which the pressure fluctuations become noticeable was defined as the Umb 

point.  Although this method still involved a subjective judgment about the 

measure of ‘noticeable fluctuations’, it had provided more systematic 

discussion about temperature effect on Umb point. Kai and Furusaki (1985) 

worked on fine particles (average diameter of 70 �m) and they reported that 

high temperature resulted in smaller amplitudes in the pressure fluctuations 

and also lower bubble frequency. This was an indication of better aeration 

quality. Bubble size was also significantly decreased with increasing 

temperature and it also indicated improvement in the quality of aeration with 

increasing temperature. Furthermore they attributed the improvement at 

elevated temperature to the vanishing effect of electrostatic forces that 

caused severe agglomeration at ambient temperature. This explanation was 

contradictive to the findings by other authors that reported increasing 

interparticle forces at higher temperature (e.g. reviewed by Raso et al., 1992). 
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A similar treatment based on pressure fluctuations was conducted by 

Rapagna et al. (1994). However, they did not account for interparticle forces. 

Their analysis was based on the pure hydrodynamic approach proposed by 

Foscolo and Gibilaro (1984). They concluded that the onset of bubbling, as 

measured by the minimum bubble voidage, was progressively delayed with 

increasing temperature. 

 

4. Effect of temperature on HAE emulsion phase 

Based on the theory of HAE emulsion phase described in Part I, previous 

researches suggested that the values of rheological parameters (elastic 

deformation coefficient and powder tensile strength) were much more useful 

at elevated temperature than the classical particle characterization data such 

as particle size, its shape factor, and the physical properties of the aerating 

gas (Kono et al., 1995).  

 

Kono et al. (1995) reported that the value of elastic deformation coefficient 

and powder tensile strength became smaller at elevated temperature. 

However, when the aeration condition was in the region of HAE emulsion 

phase, those two rheological parameters followed the same characteristic 

equation developed at ambient temperature. Smaller values of elastic 

deformation coefficient were indication of better aeration quality. They also 

presented a proof of qualitative relationship between the values of those 
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rheological parameters and the visual bubble images obtained in two-

dimensional aerated bed. 

 

The previous publications on HAE emulsion phase behavior (Kono et al., 

1994, 1995, 2002) reported the Y value as the average value between Umf 

and the conventional Umb. This average Y value was determined by assuming 

a linear expansion in the whole range of Umf<U<Umb. An incremental 

determination of Y values, which is presented in Part I, will provide a better 

insight about the actual phenomena and also may reveal some facts that 

were overlooked by the previously published average-Y method. 
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CHAPTER II.3. BASIC CONSIDERATION 

 

At elevated temperature, the effect of interparticle forces will become more 

evident and the measured Y value will give a quantitative description of this 

effect. The theory of HAE emulsion phase is a general theory so that although 

it is originally developed and verified at ambient temperature, it will not need 

any modifications to be applied at elevated temperature.  Therefore the same 

theory as presented in Chapter I.3 will be also applicable to the case of fine 

powder aeration at elevated temperature.   

 

However, there are some important considerations in order to apply the Y 

determination method and to get accurate results on the aerated particles at 

elevated temperature: 

 

1. The minimum bed height measurement has to be taken at the same 

temperature as the temperature during aeration experiment. Previous 

studies showed that the settled fine powder at elevated temperature 

can expand to some extent, even without gas flowing (Botterill et al., 

1982, Raso et al., 1992). Therefore, the height of a settled fine 

powder bed at elevated temperature can be considerably higher than 

that at ambient temperature. The Y method needs accurate values of 

powder strains, which very much depends on the measurement of 

minimum bed height (Hmf). 
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2. The Umb determination method, which defines the intrinsic Umb as the 

point where the Y value suddenly increase, can only give a valid result 

if there is no permanent structural change on the particles caused by 

sintering. The HAE emulsion theory is applicable at elevated 

temperature situation where the particles still maintain their 

individuality although high temperature may cause some deformation. 

Once sintering happen, the particles will agglomerate with a very 

strong chemical bonding. From HAE emulsion phase point of view, 

agglomeration is considered the same as bubble formation, i.e. a 

phenomenon that destroys the homogeneous structure of powder 

layers in the HAE emulsion phase quasi-solid body. So if sintering is 

the case, the aeration system cannot be categorized as HAE 

emulsion phase anymore and hence, the theory presented in Part I is 

no longer applicable. Nonetheless, the Y method can also be a help 

as the indicator of whether sintering happens or not in a particular fine 

powder aeration system. HAE emulsion phase theory expects lower Y 

value at higher temperature. When higher Y value is observed at 

higher temperature, it is an indication that sintering has already taken 

place. 
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CHAPTER II.4. EXPERIMENTAL PROCEDURE 

 

1. Material 

The material chosen as sample powder for experiment at elevated 

temperature was spent FCC catalyst, whose average particle diameter was 

67.5 �m and had the solid density of 1.85 g/cm3. All experiments were 

conducted with 956.3 g FCC catalyst in the aeration column. Dry air was used 

as the aerating gas. 

 

2. Experimental set up 

The experimental procedure was the same as that done at ambient 

temperature. Nevertheless, some modifications were made on the equipment 

to facilitate the aeration condition at very high temperature.  

 

The quartz column (ID = 10 cm) was equipped with electrical heater to 

increase and maintain the temperature of both the powder bed and the 

aerating gas. The pressure drop could not be measured by water manometer 

due to the high temperature of the system. Therefore, for pressure 

measurement, a Validyne Model P305D pressure sensor was utilized 

together with a PC for data processing. The bed height as a function of gas 

velocity was recorded by a video camera recorder to help making the 

measurement from a safe distance from the very hot unit. The schematic 

picture of the experimental set up is shown in Figure II.4.1. 
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Figure II.4.1. Experimental set up for experiment at elevated temperature 

           (Su, 1995).  

           (1) 3-D quartz column, (2) electric heater, (3) pressure  

probe, (4) pressure sensor,  (5) digital multimeter,  

(6) flowmeter, (7) gas distributor, (8) plenum chamber,  

(9) scale, (10) video camcorder 

Dry air
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CHAPTER II.5. RESULTS 

 

1. Original aeration data 

Figure II.5.1 shows that higher temperature leads to higher maximum bed 

heights for the same powder. This fact has been well-known in aeration 

practices. Later in this section, a new finding from elastic deformation point of 

view will be presented.  

 

In the past, the point of minimum bubbling was defined as either the point 

where the first bubble was visually observed or the point of maximum bed 

height as shown in Figure II.5.1. It is obvious in Figure II.5.1 that for the spent 

FCC used in this experiment, the conventional Umb at elevated temperature is 

about the same as that at ambient temperature. However, degree of 

expansion at elevated temperature is larger than that at ambient temperature 

on the same gas velocity. This phenomenon was not observed in the case of 

starches in Part I. For starches, larger homogeneous expansion was 

corresponding to higher Umb. From the fact observed in FCC catalyst aeration, 

obviously it was not always the case.  

 

Another set of original data is the pressure drop data plotted against gas 

velocity in Figure II.5.2.  All of the experiments were conducted with exactly 

the same amount of FCC catalyst. Therefore, the pressure drop curves for 26, 

400, and 600 oC are all identical. Theoretically, the equilibrium pressure drop 
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in an aeration process will only depend on the weight of the aerated particles 

and mathematically define as: 

A
MgPeq ��     (II.5.1) 

 

Figure II.5.2. implies that the same amount of energy was supplied from the 

aerating gas to support the particle weight. However, this same amount of 

energy turned out to cause different extent of expansion of the FCC catalyst 

bed at 26, 400, and 600 oC (the corresponding bed height curves is shown in 

Figure II.5.1). This fact shows that only by increasing temperature of aeration, 

the powder bed will react differently. At higher temperature, the bed becomes 

more expandable. 

 

Figure II.5.3. makes it clearer that in the system of aerated FCC catalyst, the 

same amount of energy from the aerating gas causes more expansion at 

higher temperature. This can only happen if there are changes on the surface 

characteristics of the particles due to the elevated temperature, which in turn 

significantly affects the nature of the interaction among particles or between 

particles and the aerating gas. Because of these surface phenomena, 

fractures formation in the HAE emulsion phase can be prevented up to much 

larger strain at elevated temperature.  
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Figure II.5.1. Bed height against gas velocity (FCC catalyst aerated by dry air) 



 83

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5
U (cm/s)

D
el

ta
P 

(P
a)

T=26 C
T=400 C
T=600 C

 

Figure II.5.2. Pressure drop against gas velocity (FCC catalyst aerated by dry air) 
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Figure II.5.3. Excess pressure drop against powder strain (FCC catalyst aerated by dry air) 
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2. Transformation to generalized variables 

If the data in Figure II.5.1 was converted into powder strain defined by Eq. 

I.3.4, Figure II.5.4 displays the fact that the strain curves for spent FCC 

catalyst at ambient temperature are very similar to those for starches 

presented in Part I of this dissertation. Nevertheless, it is obvious in Figure 

II.5.4 that the curve is steeper at higher temperature. For spent FCC catalyst 

used in this experiment, the curve eventually becomes perfectly linear at 600 

oC. In the first published paper about elastic deformation coefficient (Kono et 

al., 1994), it was assumed that an ideal HAE emulsion phase was defined by 

the linearity of the plot of strain against superficial gas velocity. Figure II.5.4 

showed that at high temperature, this linearity can also actually be reached 

for particles which does not aerate very well at ambient temperature. This 

ideal situation was also observed in the experiment at ambient temperature 

using starch with modified surface, which was presented in Part I. Therefore, 

it is worth mentioning that there are two possible ways to obtain ideal HAE 

emulsion phase aeration: 

a. Particle surface may be modified to engineer the interparticle forces 

among aerated particles and hence to manage more desirable 

homogeneous aeration (it is exemplified by the starches in Part I).  

b. High temperature can also somehow alter the surface condition of the 

particles and hence enhance the ability of the bed to expand 

homogeneously (as shown by FCC catalyst in Part II). 
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Figure II.5.4. Powder strain against gas velocity (FCC catalyst aerated by dry air) 
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Figure II.5.5. Powder tensile stress against powder strain (FCC catalyst aerated by dry air) 
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Figure II.5.6. Elastic deformation coefficient against powder strain (FCC catalyst aerated by dry air) 
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Figure II.5.5. , which is a plot of powder tensile stress as a function of powder 

strain, presents a clear picture of the temperature effect on the ideality of the 

HAE emulsion phase. At 600 oC, this plot becomes perfectly linear. More 

quantitative description about this temperature effect will be presented on the 

next section about elastic deformation coefficient. 

 

3. Elastic deformation coefficient 

Figure II.5.6 shows that at ambient temperature, the curve behaves rather 

differently from the starch curves presented in Part I. In starch experiment, 

the Y values were constant until the minimum bubbling point was reached. 

For FCC catalyst at ambient temperature, the Y values are already very high 

at the beginning and the constant region is not observed at all. This high 

value is caused by the strong cohesiveness among the spent FCC particles 

that cannot be overcome yet at low gas velocity.  As the result of this, most of 

the gas just flow through channels and does not contribute to bed expansion. 

High gas flow rate and small strain consequently lead to high value of Y. 

Once the gas velocity is high enough to destroy the channels, the bed now 

can be aerated homogeneously in the HAE emulsion condition and it behaves 

like the bed of starch in Part I.  This channeling situation did not happen in the 

experiments using starches in Part I because their modified surface made it 

possible to prevent the possibility of channeling even at very low gas velocity. 

Experiments at high temperature are free from channeling at low gas velocity 

so that the value of Y in Figure II.5.6 is much lower than the ambient case.  
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At ambient temperature, as soon as the bed starts expanding at Umf, the Y 

values keep increasing. At the point of Umb, however, the sudden jump of Y 

values is also observed. Therefore, it can be concluded that applying the Y 

value method to determine the intrinsic Umb point, which has been proven to 

work well on starches with modified particle surface, is also consistent in the 

case of FCC catalyst system although some nonideality is encountered at low 

gas velocity. 

 

The nonexistence of constant Y region in the plot of FCC catalyst at ambient 

temperature is interpreted as the highly nonideality of this aerated system. 

The increasing Y values are indication of either more frequent formation of 

bubbles or the growth of the existing bubbles.  

 

Some photographs had been taken in the experiment using the FCC catalyst 

particles aerated in two-dimensional (2-D) column. Figure II.5.7a displays the 

situation of the aeration at the Umb point at ambient temperature. It is obvious 

that the bubbles are very big and the bed expansion is much lower than those 

at higher temperature (Figure II.5.7b and c). These big bubbles must have 

grown from smaller bubbles that already occasionally formed in the range 

which was generally still expected to be HAE emulsion phase. The increasing 

values of Y indicate that FCC catalyst is actually never being an ideal HAE 

emulsion phase at ambient temperature. Its high Y values give numerical 

measure of how bad its aeration quality is. 
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When temperature reaches 400 oC though, the Y values show an increasing 

tendency at lower gas velocity but then attain a constant value at higher gas 

velocity before it suddenly jumps at Umb point. This constant Y value indicates 

an improvement of the aeration quality by increasing the temperature. At 

600oC, the aeration behavior completely mimics the ideal behavior of the 

starches in Part I.   

 

The corresponding photographs for experiment at 400 and 600oC are Figure 

II.5.7b and c, respectively. Although at 400oC the bubbles at the Umb point are 

still considered large, they are smaller than the ones in Figure II.5.7a. At 

600oC, the bubbles have been so small that they are barely visible.  

 

The photographs in Figure II.5.8 were taken from experiments in 2-D column 

specifically intended to take pictures, rather than to take an accurate 

measurement. In such a narrow slit of this 2-D column, the wall effect was not 

negligible and significantly contributed to form bigger bubbles. Therefore, in 

the actual aeration experiment using three-dimensional column at the same 

conditions (temperature and gas flow rate), the bubbles would be most likely 

much smaller than those shown Figure II.5.7. 
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Figure II.5.7. Photographs of FCC catalyst aeration experiments 
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Figure II.5.8. Comparison between FCC catalyst at ambient and elevated temperature and Starch 1 at ambient 

temperature
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Table II.5.1. Umb values for FCC catalyst aerated at 26, 400, and 600 oC 

 

T 

(oC) 

Average 

dp (�m) 

Umb 

(cm/s) 

Umax 

(cm/s) 

Smb 

(-) 

Smax 

(-) 

% S 

difference*)

26 67.5 0.56 0.58 0.16 0.22 27.3 

400 67.5 0.54 0.68 0.30 0.34 11.8 

600 67.5 0.54 0.68 0.33 0.37 10.8 

*) 
max

mbmax
S

)SS(S% �

�  

 

Lower Y values at higher temperature imply that the quality of aeration is 

improved by increasing the temperature. Visual observation (Figure II.5.7) 

confirmed that at elevated temperature, bubble size was smaller and hence 

the aerated powder bed became more stable.  The sudden change of Y 

observed in this experiment may be relating to the phenomenon of pressure 

fluctuation reported earlier by Kai and Furusaki (1985). However, by this new 

Y method, one can define the initiation of the fractures of HAE emulsion 

phase more quantitatively.   

 

Table II.5.1 shows that for the particles of the same average size, the values 

of Umb are the same for the whole range of temperature but the degree of 
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homogeneous expansion is higher at elevated temperature. This fact 

indicates that temperature has an important role to prevent bubble formation 

but does not very much affect the location of Umb point. From starch 

experiments at ambient temperature, it has been learned that different particle 

size leads to different Umb point. These empirical results show that Umb point 

will depend more on the particle size rather than on the temperature of the 

aerated system. 

 

Sudden increase of Y value at the intrinsic Umb point was certainly not caused 

by sintering phenomenon in the bed because at higher temperature, the Y 

values were lower than that at ambient temperature. If sintering did happen, 

the Y value would be higher at higher temperature because of the strong 

chemical bonding formed during sintering process. The change in Y values is 

most likely due to the changes on particle’s surface physical characteristics 

with the increasing temperature, which do not cause permanent deformation 

encountered in the case of sintering.  

 

Constant Y indicates a constant internal structure of the emulsion phase 

which defines an ideal HAE emulsion phase. Therefore, based on the data 

shown in Figure II.5.8, one can infer that at certain conditions, aeration can be 

done with perfect HAE emulsion phase condition. Based on Figure II.5.8, 

these conditions can be either modification on the particle surface (for the 

case of starch) or elevated temperature (for the case of FCC catalyst). 
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Sets of data presented in Figure II.5.6 and II.5.8 exemplifies a systematic way 

to conduct a characterization experiment to determine the optimum conditions 

(temperature and powder strain), under which one can expect a perfect HAE 

emulsion phase. For example, one can see that for FCC catalyst the ideal 

situation would be reached at 600oC. However, if the temperature cannot be 

raised too high, the aeration may also be carried out at lower temperature 

(400 oC), although based on Figure II.5.6, it has to be restricted to limit the 

powder strain between 0.2 and 0.3 in order to maintain a perfect HAE 

emulsion phase. 

 

Figure II.5.9 displays that the value of Y at Umb point is a linear function of 

temperature. The linear equation for the case of FCC catalyst aerated by air 

in the range of 26-600oC was found to be, 

Y(Pa) = 6.44 – 0.006 T(oK)    (II.5.1) 

with the coefficient of correlation of 97.6 %. Equation II.5.1 can be used to 

predict the Y value of FCC catalyst given a certain value of temperature. Then 

from the plot of Y as a function of strain (Figure II.5.6), other aeration 

conditions such as Smb and Umb can be determined (the procedure is 

presented in Appendix C). 

 

Although physically there is a big difference between HAE emulsion phase 

(as a quasi-solid material) and the actual solid material such as metal, a 

similar behavior is observed in the effect of temperature on the elastic 
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deformation coefficient.  The linearity of elasticity modulus with respect to 

temperature is not uncommon in the case of actual solid. Nadal and Le Poac 

(2003) reported that for some metals tested in their study (Ta, Cu, Au, Al, and 

Sn), the linear approach of elasticity modulus as a function of temperature 

could be extrapolated from the ambient temperature over a large temperature 

range based on the fit with experimental data.  
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Figure II.5.9. Elastic deformation as a function of temperature (FCC catalyst) 
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CHAPTER II.6. CONCLUSION 

 

By using the data generated previously (Su, 1995), a new analysis about HAE 

emulsion quality at elevated temperature was conducted based on Y 

determination method. From this study, the following points were noted. 

  

1. At ambient temperature, the aeration quality of FCC catalyst was very poor 

and it was indicated by an initially high Y which kept increasing through the whole 

range of strain until the maximum expansion. In contrast to that, at elevated 

temperature, a region of constant Y was observed in the plot of Y against strain. 

This fact indicated that at high temperature, in the case of spent FCC catalyst, an 

ideal HAE emulsion phase could actually be maintained over a wide range of 

strain until the first fractures occurred.  

 

2. By plotting the values of Y as a function of strain, one could simultaneously 

determine the conditions, such as the optimum temperature, gas flow rate, and 

particle size, required to operate the aerated system on the scheme of ideal HAE 

emulsion phase. In other words, Y served as a general characterization 

parameter that could be applied consistently at both ambient (as already 

described in Part I) and elevated temperature. 

 

3. The Y values decrease linearly with increasing temperature. This behavior is 

similar to that observed in the case of actual solid material. 
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APPENDIX A 

Calculation of Original Aeration Data  

 

The following examples are given based on the data from EXP1-17 (Starch 1, 

weight = 946.2 g, Hmf/D = 1.5). The original data from the aeration experiment 

are bed height (H) and pressure drop (�P) at various gas velocity. When the bed 

surface is fluctuating in the region above Umb, H is taken as the average value 

between the highest and lowest height reached in the fluctuation. These original 

data are displayed in column A, B, and C of Table A.1. 

 

1. Excess pressure drop 

The procedure for excess pressure drop calculation is as the following. 

a. A linear regression is performed on the data that shown a linear 

correlation on the plot of pressure drop against gas velocity in the range of 

0<U<Umf. For this set of data, the regression equation is: 

�P(U) = 16624 U    (A.1) 

 with �P in Pa and U in cm/s. The linear regression is done by Excel 

regression function which is graphically shown in Figure A.1. 

b. The hypothetical pressure drop as a function of temperature, �Ph(U), is 

calculated based on Eq. (A.1) and the results are listed in column D of 

Table A.1. 

c. The excess pressure drop is calculated as: 

     �P*(U) = �Ph(U)- �Peq    (A.2) 
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 For these data, �Peq = 1200 Pa (see Figure A.1). The calculation is 

performed for gas velocities data in the region of U>Umf. 

 The results are in column E of Table A.1. 

 

2. Number of powder layers 

For this set of data, the number of powder layers is: 

10000
cm)10x15(

cm15
d

HN 4
p

mf
���

�

  (A.3) 

 

3. Powder tensile stress 

By dividing column E in Table A.1 with the number of powder layer, the powder 

tensile stress is obtained as those listed in column F in Table A.1. 

 

4. Powder Strain 

The powder strains are calculated for the gas velocities between Umf and the gas 

velocity that makes the maximum expansion (it is the region bordered by the bold 

line in Table A.1). It is calculated as: 

mf

mf

H
HHS �

�      (A.4) 

For this data set, Hmf = 15 cm. The powder strains are those in column G in 

Table A.1. 
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Table A.1. Original data from EXP1-17 

 

A B C D E F G 

U (cm/s) H (cm) �P (Pa) �Ph (Pa) �P* (Pa) �P** (Pa) S (-) 

0.400 25.90 1201 6669 5469 0.550

0.370 26.00 1207 6131 4931 0.490

0.340 26.15 1193 5578 4378 0.440

0.300 26.25 1199 5009 3809 0.380

0.250 27.05 1189 4130 2930 0.320 0.80

0.230 26.50 1192 3829 2629 0.260 0.77

0.210 25.7 1196 3524 2324 0.230 0.71

0.190 25.2 1189 3216 2016 0.200 0.70

0.180 24.5 1186 2904 1704 0.170 0.63

0.160 23.8 1183 2588 1388 0.140 0.59
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Table A.1. (continued) 
 

A B C D E F G 

U (cm/s) H (cm) �P (Pa) �Ph (Pa) �P* (Pa) �P** (Pa) S (-) 

0.140 22.3 1180 2269 1069 0.110 0.50

0.120 20.9 1154 1946 746 0.070 0.39

0.100 18.6 1118 1619 419 0.040 0.30

0.080 15.7 1004 1288 88 0.010 0.10

0.060 15.4 969 954 44 0.005 0.03

0.040 15 600 616 0 0 0

0.030 15 523 545

0.029 15 465 477

0.025 15 426 414

0.021 15 358 355

0.018 15 330 301
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Table A.1. (continued) 
 

A B C D E F G 

U (cm/s) H (cm) �P (Pa) �Ph (Pa) �P* (Pa) �P** (Pa) S (-) 

0.015 15 271 251

0.012 15 213 201

0.009 15 175 162

0.008 15 155 123

0 15 0 0
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Figure A.1. Pressure drop data 
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APPENDIX B 

Calculation of Elastic Deformation Coefficient 

 

The following examples are given based on the data from EXP1-17 (Starch 1, 

weight = 946.2 g, Hmf/D = 1.5). 

 

 

 �P** 

         (�P**)4 

 

         (�P**)3 

          

 

        (�P**)2 

        (�P**)1 

  0      S1      S2      S3      S4         S 

 

Figure B.1. Powder tensile stress curve 

 

The average powder strain, for example in the range of 32 SSS �� , is calculated 

as: 

2
SSS 32

avg
�

�     (B.1) 
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Elastic deformation coefficient is defined as: 

S
*)*P(

S
*Y

�

��
�

�

��
�     (B.2) 

This Y will be calculated between several small increments of S between zero to 

the maximum observed S in the experiment. For example, for the range of 

32 SSS �� , the value of Y3 is: 

23

23
3 SS

**P**PY
�

���
�     (B.2) 

The results for this set of data are listed in Table B.1 
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Table B.1. Determination of elastic deformation coefficient for data from EXP1-17 

 

   �P** (Pa)   S (-)   Savg (-)   E (Pa) 

   0.4129   0.8 

             0.75   0.91 

   0.3216   0.7 

             0.60   0.47 

   0.2269   0.5 

             0.40   0.32 

   0.1619   0.3 

             0.20   0.17 

   0.1288   0.1 
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APPENDIX C 

Procedure to determine Umb from Y-S plot 

 

On the Y-S data, the point of minimum bubbling point is given as a pair of Y and 

S values at which the sudden change of Y value is observed. In this appendix, 

the procedure to determine Umb point from the sudden change point in Y-S plot is 

to be exemplified based on the plots of FCC catalyst at 26oC. 

 

The procedure is as the following : 

1. Locate the point of sudden change in Y-S plot (Figure C.1). At the plot for 

26oC, this point is observed at S = 0.165. 

2. From the S-U plot (Figure C.2), at S = 0.165 the corresponding U value is 

0.59 cm/s. This value is the intrinsic Umb point for FCC catalyst at 26oC. 
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Figure C.1. The plot of elastic deformation coefficient against powder strain 
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Figure C.2. The plot of powder strain against gas velocity 
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APPENDIX D 

Analysis of variance on Y data 

 

1. Data 

Table D.1 lists the Y values of Starch 1 at fixed values of bed aspect ratio and 

powder strain. There are two observations on each combination of bed aspect 

ratio and powder strain. 

 

Table D.1. Y data on Starch 1 

 

 Bed aspect ratio  

 1 1.5 2 2.5 3 

0.2 0.15 

0.19 

0.18 

0.20 

0.20 

0.20 

0.18 

0.19 

0.16 

0.20 

0.4 0.24 

0.25 

0.22 

0.23 

0.23 

0.24 

0.24 

0.19 

0.19 

0.24 

0.6 0.42 

0.43 

0.43 

0.42 

0.41 

0.40 

0.37 

0.42 

0.30 

0.41 

Po
w

de
r s

tra
in

  

0.8 0.88 

0.85 

0.93 

0.94 

0.89 

0.87 

0.83 

0.94 

0.76 

0.90 
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2. Two-way ANOVA 

A two-way ANOVA is performed by using the statistics toolbox in MATLAB 6.5. 

The output of the program is shown in Figure D.1. 

 

 

 

Figure D.1. The output of two-way ANOVA from MATLAB 6.5 

 

Based on the ANOVA output shown in Figure D.1, it can be concluded that: 

a. The F value for column (corresponding to bed aspect ratio) indicates that 

there is no significant difference caused by bed aspect ratio on Y value 

measurement (in 95% confidence interval). 



 122

b. The F value for row (corresponding to powder strain) implies that there is 

significant effect of powder strain on Y values (in 95% confidence interval). 

c. The F value for interaction does not indicate significant interaction 

between bed aspect ratio and powder strain (in 95% confidence interval). 

 

3. Box plot 

The statistical information of the data (Starch 1) is summarized in the box plot 

shown in Figure D.2. The plot is generated by statistics toolbox in MATLAB 6.5. 

 

 

 

Figure D.2. Box plot for Starch 1 data from MATLAB 6.5 
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